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ABSTRACT

The Fermi gas model of one-dimensional conductors is reviewed. The 
exact solution known for particular values of the coupling constants in a 
single chain problem /Tomonaga model, Luther-Emery model/ are discussed. Renor
malization group arguments are used to extend these solutions to arbitrary 
values of the couplings. The instabilities and possible ground states are 
studied by investigating the behaviour of the response functions. The rela
tionship between this model and others is discussed and is used to obtain 
further information about the behaviour of the system. The model is generalized 
to a set of coupled chains to describe quasi-one-dimensional systems. The 
crossover from one-dimensional to three-dimensional behaviour and the type 
of ordering are discussed.

АННОТАЦИЯ
Рассматривается Ферми-газ модель одномерных проводников. Обсуждают

ся точные решения модели, существующие при определенных значениях константы 
связи в случае одной нити /модель Томонаги, модель Лютера-Эмери/. Метод группы 
ренормировок применяется для обобщения этих решений для произвольных значений 
константы связи. Исследуются свойства функции отклика для изучения возможных 
основных состояний и неустойчивостей. Обсуждается связь данной модели и других 
моделей и полученные соотношения используются для получения дальнейших инфор
маций о свойствах системи. Модель далее обобщается на рассмотрение сети свя
занных нитей чтобы изучить квази-одномерных систем. Обсуждается переход от 
одномерных свойств к трехмерным и тип упорядочения.

KIVONAT

Áttekintést adunk az egydimenziós vezetők Fermi-gáz modelljéről. Az 
egylánc-problémában a csatolási állandók meghatározott értékénél /Tomonaga- 
modell, Luther-Emery modell/ egzakt megoldások léteznek. A renormálási cso
port segítségéve] ezeket a megoldásokat általánosíthatjuk a csatolások tet
szőleges értékére. A válászfüggvények vizsgálatával tanulmányozzuk a rendszer 
instabilitásait és a lehetséges alapállapotokat. Tárgyaljuk a Fermi gáz mo
dell és más modellek kapcsolatát!és felhasználjuk ezt, hogy további informá
ciót kapjunk a rendszerről. Általánosítjuk a modellt a csatolt láncok rend
szerére, hogy kváziegydimenziós rendszereket is leírhassunk. Tárgyaljuk az 
egydimenziós viselkedésből a háromdimenziós viselkedésbe történő átmenetet 
és a rendeződés tipusait.
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§ 1. INTRODUCTION

Chemists have long been aware that many organic 
crystals are highly anisotropic due to the stacking of 
the molecules into loosely coupled chains. The anisotropy 
can be characterized by the ratio of the conductivities 
measured parallel and perpendicular to the chain direction.

3This ratio can be as large as 10 . Elementary considera
tions can explain - at least partly - this large value.
The building blocks of these crystals are usually large 
flat molecules lying rather closely to each other in one 
direction, thus forming chains which are nearly perpendi
cular to the plane of the molecules. The overlap of the 
wave functions in the chain direction allows for an easy 
motion of the electrons along the chains. The next chain 
is some distance away consequently there is less probability 
of interchain hopping,thus the motion of electrons is almost 
one-dimensional /1—d/.

Physicists realized only relatively recently that 
these systems have many interesting, unusual properties.
They are due to the quasi-one-dimensional /quasi-l-d/ 
nature of these materials. It is well known that 1-d systems 
differ in many respect in their behaviour from 2-d and 3-d 
systems. By studying the properties of one-dimensional 
conductors it became possible for the first time to observe
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the peculiar dimensionality effects. Two different classes 
of quasi-l-d materials were investigated very intensively 
experimentally in the last few years, namely the mixed 
valence complexes and the charge transfer compounds.
The best studied example of mixed valence complexes is 
KCP [Kz Pi (c N) * 3 H^Oj . The anisotropically
oriented d orbitals of Pt represent an easy path for 
the motion of electrons in the direction of the Pt chains 
thus yielding a very large value for the ratio of the 
conductivities in the parallel and perpendicular directions.

A much richer class is that of the organic charge 
transfer compounds. In these materials two different kinds 
of molecules, namely donor and acceptor molecules are 
stacked separately into donor and acceptor chains. Once 
the charge transfer has taken place the motion of the 
electrons is confined almost exclusively to the chains.
The richness of this class of materials is due to the 
large number of molecules which can be donors in these 
compounds. TTF-TCNQ is the most famous member of this 
group but there are many other interesting compounds 
showing widely differing behaviour. Useful reviews of the 
experimental background can be found in the proceedings 
of recent conferences: "One-Dimensional Conductors"
/1975/, "Low-Dimensional Cooperative Phenomena" /1975/,
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"Chemistry and Physics of One-Dimensional Metals" /1977/ 
and "Organic Conductors and Semiconductors" /1977/.

The most interesting phenomena which are observed 
in many of these materials are the high conductivity at 
high temperatures, the transition to an insulating state 
at lower temperatures, the formation of charge density 
waves with wave vector U - Z.kF / kF is the Fermi 
momentum/ and the appearance of Peierls distortion /Peierls 
1955/ in the ionic positions. This latter effect and the 
accompanying phonon softening above the transition tempe
rature are typical 1-d effects in a coupled electron-phonon 
systqm. The other phenomena can possibly be understood by 
neglecting the effect of phonons and studying the electronic 
processes only. Accordingly basically there are two different 
theoretical approaches in the mathematical description of 
these systems. In one approach the starting Hamiltonian is 
the Fröhlich Hamiltonian /Fröhlich 1954/. The electron- 
phonon coupling leads to interesting dynamical effects such 
as the Kohn anomaly in the phonon dispersion relation and 
the phonon softening. This problem has a vast literature. 
Since we will not consider the effect of phonons we refer 
to a few papers where further references can be found:
Rice and Strässler 1973a, 1973b, Horovitz et al. 1974, 
Horovitz et al. 1975, Bjelis et al. 1974, Suzumura and 
Kurihara 1975, Brazovsky and Dzyaloshinsky 1976, Barisic 
1978, Lukin 1978.
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In tlie other approach only the electron system is 
considered, since - as it was mentioned - the particular 
features of the 1-d electron gas can already explain many 
properties of the one-dimensional conductors. Even when we 
restrict ourselves to consider the electron system only we 
still have two different approaches. For the description of 
systems where the conductivity along the chains is almost 
metallic, a Fermi gas model can be used. The electron- 
electron interactions are supposed to be weak and are taken 
into account in a consistent but perturbational way. In the 
other approach, which is more suitable for non-conducting 
systems, a Hubbard Hamiltonian /Hubbard 1963/ with strong 
intra-atomic correlation is used. These two models can be 
considered as limiting cases of a general model of inter
acting electrons written in different representations 
/momentum or site representation/. In this paper we will 
limit ourselves to reviewing the results obtained in the 
past few years for the Fermi gas model. The results for 
the Hubbard model will be mentioned only shortly to compare 
the two models.

The organization of the paper is as follows. Firstly, 
the model for the strictly 1-d case will be defined, then 
it will be shown that this model leads to a logarithmic 
problem where a perturbational treatment is not sufficient.
A consequent summation of the subsequent logarithmic correc-



tions can be achieved by using the renormalization group 
method. The real merit of the application of the renorma
lization group is to provide a means of scaling the original 
problem to other problems which might be simpler to solve.
In fact the Fermi gas model can be solved exactly for 
particular values of the coupling constants. The exact 
solution of the Tomonaga model and the Luther-Emery solu
tion of the backward scattering problem are presented. 
Following this, renormalization and scaling arguments will 
be used to extend these results for arbitrary values of the 
couplings. Based on this, the possible ground state configu
rations will be studied and the phase diagram will be 
presented. Further information can be obtained about the 
behaviour of the system described by this model if its 
relationship to other models is studied. The 2-d Coulomb 
plasma, spin models /e.g. 1-d X-Y-Z model and the 2-d X-Y 
model/ and field theoretical models are among those which 
are closely related to the Fermi gas model. The results for 
these models and their relations are also discussed. The 
choice of the cutoff is very important in proving the equi
valence of the various models, thus the problem of cutoff 
will be considered. Finally the model will be generalized 
to a set of coupled chains to provide a more realistic 
model for quasi-l-d materials. The effect of interchain
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scattering and hopping in the stabilization of the ordered 
phase, the type of ordering and the crossover from 1-d to 
3-d behaviour are described. We conclude the review by 
showing the possible application of this model to understand 
the properties of one-dimensional conductors.
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§ 2. THE MODEL

The Fermi gas model is a model of weakly interacting 
electrons. Other excitations, such as e.g. phonons, and 
their interactions with the electrons are neglected.
Though we may think that the effect of the electron-phonon 
interaction on the electronic properties can be accounted 
for by taking an effective electron-electron interaction, 
this interaction is a retarded one, whereas we will be 
concerned with a non-retarded interaction.

The unperturbed part of the Hamiltonian is

V  +£ г  Ci —J к к се ^ к < )к .of / 2 . 1 /

where c keC (сил| is a creation /annihilation/ operator of 
an electron with momentum к and spin . The kinetic
energy of the electrons measured from the Fermi energy is 
given by £k . In the first part of this paper a strictly 
1-d model will be considered. The electrons can propagate 
along the chain only. The dispersion relation in a nearly 
f-ree electron or tight binding approximation is illustrated 
schematically in fig. 1.
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Fig. 1. Dispersion relation of a 1-d electron gas.

It is in general true that only those electrons lying 
near the Fermi surface are important in the physical pro
cesses. The Fermi surface of a strictly 1-d metal consists 
of two points: \  It and - kF .In the neighbourhood of 
these points the dispersion curve can be approximated by 
straight lines and we get

£ k = vr̂ ( lUl - kp ) .

/ 2 . 2 /

This approximation is a reasonable one in a finite range 
around the Fermi points. A momentum ko is introduced to
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define the regions (- kr - Ue/ - WF + !<*) and kF4-We)
Within these regions the linearized dispersion of eqn.
/2.2/ will be used, whereas the states which are further 
away from the Fermi points will be neglected. Therefore ke 
serves as a cutoff for the allowed states. This cutoff is 
called bandwidth cutoff. In this model the bandwidth E0 
is determined by k0 , E0= 2\rpl<0 . The dispersion rela
tion is given in fig. 2.

Fig. 2. Dispersion relation of the 1-d Fermi gas 
model with bandwidth cutoff.

The use of a linear dispersion relation has many 
calculational advantages. If the states far from the
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Fermi points do not contribute essentially to the physical 
properties of the system, a linearized dispersion relation 
without bandwidth cutoff such as that given in fig. 3 
could be used. We will see, however, later that the 
introduction of a cutoff is always necessary to avoid 
unphysical singularities, though it may be different from 
the bandwidth cutoff. It is possible in some cases to use 
the whole linearized dispersion curve and to assume a 
cutoff for the momentum transferred in a scattering process. 
The difference between the two cutoff procedures will be 
discussed later in this section and in § 9.

Fig. 3. Linearized dispersion relation without band
width cutoff.
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A mathematically more rigorous treatment of the model 
can be made if the two branches of the dispersion curve do 
not terminate at k=o , both branches go from -oo to + oo 
as shown in fig. 4. This is the dispersion relation of the 
Luttinger model /Luttinger 1963/. The newly introduced 
non-physical states do not modify the physical results 
- at least not if the interaction is not very strong - 
but they do make the mathematical treatment easier.
In most of the considerations of the present paper we will 
limit ourselves to the model with bandwidth cutoff, but at 
some points we will also consider the other models.

Fig. 4. Dispersion relation of the Luttinger model.
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In any case there are two well defined branches of 
the dispersion relation. The operators for the electrons 
belonging to the branch containing the Fermi point + kF C-WF)

Turning now to the interaction processes, they can be 
conveniently classified into the four different types shown 
in fig. 5. The electrons belonging to the two branches are 
distinguished by solid and dashed lines. The scattering 
process with coupling strength corresponds to backward
scattering of electrons, the momentum transfer is of the 
order of lkF. The processes with and are
forward scattering terms, the momentum transfer is small.

couples the two branches, in the process all the
four participating electrons are from the same branch. 
Finally the process is an umklapp process. Its contri
bution is important only if the band is half-filled, in 
which case *-tWF is equal to a reciprocal lattice vector

are denoted by and a.kct (&-ko( and ) . In terms
of these operators the free Hamiltonian is

И ©
/2.3/

and all the four electrons can be near the Fermi surface.
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9l

Fig. 5. Possible scattering processes. Solid and
dashed lines correspond to electrons belonging 
to the branches containing + W F and - WF 
respectively.

In all these processes a spin dependence can be 
introduced. The coupling constant for electrons with pa
rallel spins will be denoted with the index n , that for 
electrons with opposite spins with the index J. .

This classification of the scattering processes is 
a reasonable one for the model with bandwidth cutoff.
For the other models, where the two branches meet at one 
point /see figs. 3 and 4/, it can be used only if the 
momentum dependence of the couplings is properly chosen, 
as will be discussed. The interaction part of the Hamil
tonian can be written in terms of the a. andкос к <*
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operators as follows:

The coupling constants depend in general on кл, and p
G in the third term is a reciprocal lattice vector. For 

a half-filled band G-^t<F .

In the model with bandwidth cutoff, where all the mo
menta are restricted to the regions (- kF - k0 ; - kF + k0 ) or 
(lcF-k0 t kF+-k„) , depending on whether they correspond
to G or a. operators, the momentum dependence of the coup
lings is usually neglected. In this case there should be no 
distinction between c^(( and cj3L|| , they correspond to 
the same process. Instead of having the four couplings 
с^и ' cj1x t <̂ гн and <̂ 21 , only three independent coup-
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lings should be used. A common choice in the literature 
is to have с̂ л\\ , (|u an(3 - с] г ± as t îe three
independent couplings. Similarly, the scattering processes 
given by and с^(( give no contribution, and the
remaining couplings between electrons with opposite spins 
are simply denoted by с^г and cj ц

This situation changes somewhat if one uses a momentum 
transfer cutoff, i.e. a cutoff on p .As we will see, 
in this case gives a trivial but non-vanishing
contribution and therefore it should be kept. , how
ever, gives no contribution and can be neglected in this 
case as well. The terms with cj, H and с̂ г|) do not corres
pond to exactly the same processes if the cutoff is only on 
the transfer p , while and can be anywhere in
the respective branch. They become equivalent only if in 
addition to the transfer cutoff a bandwidth cutoff is also 
used as it should be if backward scattering terms are also 
present.

Finally it should be mentioned that the other con
vention for the coupling constants often used in the litera-

t Iture can be translated to the language of -ology
by use of the identification
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U t( ^"/ c] m _ , v -> r j z ; -> n

/2.5/

and

\X/и 2.V _ Uu

/ 2 . 6 /

since this combination plays particular role.
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§ 3. PERTURBATIONAL TREATMENT OF THE MODEL

To obtain some sort of idea as to what may happen 
in our model, let us start by treating the model in a 
perturbational way. The behaviour of the Fermi gas can 
be studied by calculating the vertex function which 
describes the scattering of electrons and can reflect 
the instabilities of the system. The bare vertex functions 
are the same as the bare interaction processes shown 
diagrammatically in fig. 5. The first corrections to the 
scattering of two electrons from different branches are 
given in fig. 6. They are partly effective Cj д type 
/backward scattering/ and partly effective type / for
ward scattering/ processes. There are three types of 
diagrams. The four diagrams in fig. 6.a have the same 
structure: they contain in the intermediate state two 
electrons, one from each branch. These are the so-called 
Cooper pair diagrams. The other diagrams contain an 
electron-hole pair in the intermediate state. In the zero 
sound type diagrams /fig.6.b/ the electron and hole are 
on different branches; in the diagrams of fig. 6.c they 
are on the same branch. The structure of the diagrams is 
shown in fig. 7, where the interactions are represented 
by dots instead of wavy lines.
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Fig. 6. First corrections to the vertex in the 
a/ Cooper pair, b/ zero sound and 
с/ third channel.
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b.  t  Y  f b

/ Л / \ 
t Фa ,

4 \ /

Fig. 7. The structure of the vertex diagram in the 
a/ Cooper pair, b/ zero sound and с/ third 
channel.

In the calculation of the analytic contribution we 
will restrict ourselves to a particular choice of the 
variables of the vertex, since here we only wish to 
illustrate the problems we have to face. The momenta are 
fixed at the Fermi momentum / +kF and - 1<F , respec
tively/ and the energy variables are chosen in such a way 
that the usual combinations w, -ь ил, - and
are all equal to Co , a single energy variable. This 
special choice of the momentum and energy variables is 
shown in fig. 8.

Fig. 8. General vertex diagram showing the special 
choice of the external variables.
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Apart from the factors coming from the coupling cons
tants, the Cooper pair diagrams give

/3.1/

where and G_ are the Green's functions of electrons
for the two branches of the spectrum. The diagram is calcu
lated with a bandwidth cutoff .

The zero sound channel gives

Q (.U'-lkp , J-u] = — i—  Г2/rt vr L
CO V. ЛС

T ].
/3.2/

Since the third type of diagrams /'fig. 6.с/ does not 
give logarithmic correction, it will be neglected for 
energies co<S- E0. Taking now all the numerical factors into 
account, the analytic expression of the vertex is

 ̂ ~ <3,‘" *3*- +

^ L TCvr. ^*3 C f'|5 <* P> ТГ'Ур <̂ 1" ^ 1i- ^ *7

^  -  £ )  + . . .  /3 3/

The vertex corrections could be calculated for finite 
incoming momentum Ic or for finite temperature ~T
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In the logarithmic approximation, where non-singular terms 
are neglected compared to logarithmically singular contri
butions, (a*. (oj/E0) is replaced by ß*. |_̂ лх ю )/ео].
It is seen from eq. /3.3/ that the perturbational corrections 
are not small at low energies and low temperatures and 
higher order corrections should also be considered.

The first attempt to take into account the higher order 
corrections in a consistent way was that of Bychkov et al. 
/1966/. They pointed out that the 1-d Fermi gas is a typical 
logarithmic problem, i.e. the vertex is logarithmically 
singular in every order of the perturbational calculation.
In the n-th-order the correction is proportional to

i y>/s0). In a consistent calculation all these corrections 
have to be summed. This can be done by realizing that the 
leading logarithmic corrections come from a particular set 
of diagrams, the so-called parquet diagrams. These diagrams 
are built up of the two basic logarithmic bubbles, the 
Cooper pair and zero sound bubbles. Starting from these 
elementary bubbles, the higher order diagrams can be cons
tructed by inserting these bubbles instead of the bare 
vertex. A repetition of this procedure generates the so- 
called parquet diagrams. Typical examples are shown in 
fig. 9.
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The contribution of the parquet diagrams can be summed 
by writing a closed set of integral equations for the vertex 
/Diatlov et al. 1957/. This is a usual approximation in 
logarithmic problems and has been used e.g. by Abrikosov 
/1965/ for the Rondo problem, by Roulet et al. /1969/ and 
Nozi^res et al. /1969/ for the X-ray absorption problem and 
by Ginzburg /1974/ for the critical phenomena in di
mensions. A detailed description of the method can be found 
in the papers by Roulet et al. /1969/ and Noziéres et al. 
/1969/. Bychkov et al. /1966/ used the parquet summation 
to calculate the vertex in the particular case when all the 
interesting couplings are equal: ^ • T^e
umkiapp processes have been neglected since they are impor-

Fig. 9. Typical parquet diagrams.
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tant for a half-filled band only. They obtained

/3.4/

This result immediately shows the inadequacy of this 
approximation. The vertex is singular at a finite frequency 
or finite temperature given by

if ^ < 0 . This singularity is an indication of an instability, 
a phase transition in the system at this temperature.
This is in contradiction with the well known theorem which 
states that a 1-d system with short range forces cannot have 
a phase transition at any finite temperature. The failure 
of the parquet approximation follows from neglecting the 
lower order logarithmic corrections which, at low temperatures, 
are not negligible. A method which is capable of taking into 
account these subsequent corrections is presented in the 
following paragraphs.

The 1-d Fermi gas has many similarities to the Rondo 
problem /for a review on the Rondo problem see Grüner and

T W í

/3.5/
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Zawadowski 1974/. Both problems have an infrared divergence 
due to the continuum of low energy excitations. Formally 
this gives rise to the logarithmic corrections in the per- 
turbational expansion. The parquet diagram summation in the 
Kondo problem gives a sharp transition at a temperature T^, 
below which a bound polarization cloud is formed around the 
impurity. The expression for T^ is analogous to in
eqn. /3.5/. The sharp transition is non-physical and the 
corrections beyond the parquet approximation should also be 
considered. The renormalization group /Abrikosov and Migdal 
1970, Fowler and Zawadowski 1971 and Wilson 1975/ proved to 
be very useful in the Kondo problem to get a full under
standing of the physics of magnetic impurities in normal 
metals. A similar treatment is attempted in the next parag
raph .

An alternative approach is the application of skeleton 
graph technique /Ohmi et al. 1976/. This method allows - 
in the same way as the renormalization group - to go beyond 
the parquet approximation. The same results, which will be 
presented in the next paragraph, can be obtained in this 
way as well.
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§4. RENORMALIZATION GROUP TREATMENT

The multiplicative renormalization group has been 
known in field theory for a long time as a method to 
improve the results obtained in perturbation theory /see 
e.g. Bogoliubov and Shirkov 1959 and Bjorken and Drell 
1965/. This method is particularly useful in logarithmic 
problems, where only a few diagrams have to be calculated 
and the summation of the higher order contributions is 
achieved by solving the renormalization group equations.
The method has been applied to the logarithmic problems 
mentioned earlier. Abrikosov and Migdal /1970/ as well as 
Fowler and Zawadowski /1971/ studied the Kondo problem,
Di Castro /1972/ and Brézin et al. /1973/ formulated the 
critical phenomena in Ц-£ dimensions in this framework. 
Since the 1-d Fermi gas model is a logarithmic problem 
and the parquet approximation which is equivalent to 
summing the leading logarithmic corrections is not suffi
cient, it is hoped that a renormalization group treatment 
will allow a better approximation.

That aspect of the renormalization group that starting 
from a perturbational calculation a partial summation is 
obtained by solving the group equations is almost absent
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in the modern formulation of the renormalization group 
/see Wilson and Kogut 1974/, though it is present in 
most of the applications in a hidden form. Instead of 
that the scaling aspect is dominant. The basic idea is 
that one can find a set of equivalent problems which are 
described by Hamiltonians of similar form. The coupling 
constants and other parameters of the Hamiltonians may be 
different, but the systems should have the same physical 
behaviour. If there is a model among the equivalent ones 
which can be solved, the solution of the original problem 
can also be obtained.

The renormalization group transformations which 
relate the equivalent problems may be different to a very 
large extent depending on the problem at hand. One procedure 
which is very often used is to eliminate degrees of free
dom near the cutoff - if there is a natural cutoff in the 
problem - and compensate their effect by choosing diffe
rent coupling constants. This idea can be realized in many 
ways depending on how the equivalence of the problems is 
defined. It is very common to require that the free energy 
or partition function be invariant under the renormalization 
transformation. This is very suitable when thermodynamic 
properties are studied. Other conditions may be more con
venient when scattering properties and instabilities are
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considered. First a simple treatment, then a more sophis
ticated approach will be presented.

4.1. Poor man's scaling

Anderson /1970/ suggested that the equivalent problems 
can be obtained by requiring that the scattering properties 
be the same in the systems, i.e. the scattering matrix T 
be invariant under the renormalization transformation. This 
poor man's approach to scaling can easily be applied to the 
1-d Fermi gas model.

The scattering matrix T obeys the following equation

T  M +  4 T  (co| ;

/4.1/

where the free and the interaction parts of the Hamiltonian 
are given in eqns. /2.3/ and /2.4/. As it has already been 
mentioned, there is a natural cutoff in the model with 
bandwidth cutoff and this will serve as a scaling parameter.

If the cutoff E 0 is changed to a smaller value 
dLE0 , states which were allowed as intermediate 

states in scattering processes are no longer available and 
the Hamiltonian should be modified to compensate for these



28

lost states. A straightforward rearrangement of eqn. /4.1/
/Sólyom and Zawadowski 1974/ leads to the following form 
for the new Hamiltonian:

where the projection operator "P selects those states 
which contain at least one electron in the energy range 
(^E0 - d E 0 |  E 0 ) or at least one hole in the range 
^-E0, -Ê -v-dEo) • Strictly speaking the scattering matrix 
calculated with this new Hamiltonian and new cutoff is 
not the same as the original one. The new T matrix has 
matrix elements between states only in which the electrons 
before and after the scattering belong to the restricted 
band. These matrix elements are the same in the original 
and the new systems.

The Hamiltonian /4.2/ of the scaled system can be 
very different from that of the original one. It is energy 
dependent and may contain - in addition to two-particle 
scattering - terms which correspond to scattering of three, 
four, etc. particles. This scaling procedure is useful only 
if it does not lead to a large number of new types of

/4.2/
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couplings which are essential and if the dependence of 
the scaled couplings on the other parameters of the scatte
ring, like the energy and momentum of the electrons, is not 
important.

This is the case for the 1-d Fermi gas. The matrix 
element is taken between initial and final states which 
both contain two extra electrons from the neighbourhood of 
the Fermi surface, one from each branch, added to the filled 
Fermi sea. The initial state, (i> and final state, l|> 
are given as

i > = CX.. (3 I О > I f > - OL. . lo>

/4.3/

where |o> is the state vector of the filled Fermi sea. 
The momentum conservation requires that - U3 4- k4 .

The matrix element of H 4 between these states is

<  I H  >  =  z  L « V e4-0 Ó*7

- %  K s  ] .
/4.4/

A straightforward calculation of the next term in eqn. /4.2/
gives
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< ' Í If > =

/4.5/

We have neglected со and the energies of the scattered
e l e c t r o n s  w i t h  r e s p e c t  t o  E 0

The structure of eqn. /4.5/ is the same as that of
eqn. /4.4/. If the new coupling constants of the scaled 
Hamiltonian are chosen in the form , the
following relations are obtained:

/4.6/

/4.7/

/4.8/
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Since we have calculated everywhere the first 
correction only, this approximation, as it can immedia
tely be seen, is equivalent to the parquet approximation. 
The solution of these equations for spin-independent 
couplings and for non-half-filled band, where с|г can be 
neglected, gives

T 1
1 - 1 ТГ 0 _

- Í 4, + ' 3 i2_
< - «и. Ь

/4.9/

Here c^\ and are the couplings if the cutoff E0
Iis scaled to E0 . Similar singular behaviour appears as 

in the expression of the vertex in the parquet approximation 
/eqn. /3.4//. In fact the use of the first order scaling 
equations is equivalent to summing the leading logarithmic 
corrections. In order to go beyond the parquet approximation, 
we have to calculate the next corrections in eqns. /4.6/ -
/4.8/ .

The couplings in the scaled Hamiltonian are non-physical 
quantities in the sense that they depend on what invariance 
property has been required. When calculated from the T 
matrix, the couplings are different whether the self-energy 
corrections of the electrons in the initial and final states
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are considered or not. Since we want to use the scaling 
procedure to calculate physical quantities, namely Green's 
functions, response functions etc., a new formulation will 
be presented in the next section which allows this in a 
convenient form.

4.2. Multiplicative renormalization generated by cutoff 
scaling

The simple physical picture of renormalization by 
successive elimination of degrees of freedom through cutoff 
scaling is absent in the usual formulation of multiplicative 
renormalization. It turns out, however, that in logarithmic 
problems cutoff scaling generates a multiplicative renorma
lization of Green's functions, vertices and other related 
quantities. Thus a new renormalization procedure can be 
worked out for these problems which combines the physical 
idea of successive elimination of degrees of freedom with 
the mathematical framework of multiplicative renormalization. 
This approach reproduces the known results in the X-ray 
absorption and Kondo problems /Sólyom 1974/ and in the 
critical phenomena /Forgács et al . 1978/. Here we will pre
sent the ideas applied to the 1-d Fermi gas /Menyhárd and 
Sólyom 1973/. The conventional field theoretical renorma
lization group has been applied to this system independently 
by Kimura /1973/, but in the lowest approximation only.
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Before formulating the multiplicative renormalization 
transformation in a mathematical way, the dimensionless 
Green's function and vertices are introduced. In order to 
simplify the formulae we will restrict ourselves to the 
case when = o , i.e. umklapp processes are not allowed 
and с|ц type processes are also neglected. The general 
case will be discussed in § 7.

The dimensionless Green's function d. is defined by

The total vertex describing the scattering of two 
electrons from different branches is decomposed into three 
parts corresponding to the three different elementary 
scattering processes:

/4.10/

Г

/4.11/
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The dimensionless vertices Г\ (\= 4 н ( 4х; 2) are defined 
through this relation.

Multiplicative renormalization is usually defined by 
the transformation

Cjy —^ ~2L Czr or ck- —^ 21 cL

/4.12/

г  z r  Г  ( i - 4 M , < ±  , 2. ,
/ 4.13/

ф  Z  , v -  4 И , 4 - L  , 1  ,

/4.14/

Working with these transformed quantities, all measurable 
quantities can be made finite in a renormalizable field 
theory even if no cutoff is used. The group property of this 
transformation allows to improve the results obtained in 
perturbation theory.

In our model there is a well defined cutoff, and simi
larly to the poor man's scaling approach, this cutoff is 
used to generate the equivalent, scaled systems. It turns out
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that in the present model scaling of the physical cutoff 
generates a multiplicative renormalization analogous to 
the transformations in field theory, i.e. the model obeys 
the following scaling relationship:

i / scale the cutoff t 0 - 2_ o-p lc0 to a smaller 
value Eo «■ lvrF ,

ii/ change the couplings c^. (U-Ci, <1,1 ) lo cj'. f

iii/ fix the values of the new couplings from 
the requirement that the Green's function 
and vertices of the scaled system preserve 
the same analytic form as that of the ori
ginal system, i.e. they should differ in 
multiplicative factors only which are inde
pendent of the energy and momentum variables,

iv/ then the original and new couplings are 
related by the same multiplicative factors, 
the new couplings should be independent of 
the energy and momentum variables and can 
depend on the ratio of the new and old cut
offs only.

Formulated mathematically this means that
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/4.17/

/4.18/

It follows that the quantity Cj. Г*t ct is invariant, i.e.
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This quantity can be considered as an appropriately renor
malized vertex, where the self-energy corrections on the 
incoming and outgoing lines are also taken into account 
/Sólyom and Zawadowski 1974/. The invariance of this quan
tity is required instead of the invariance of the T matrix 
as in the poor man's scaling.

These scaling relations cannot be satisfied for most 
theories. For the 1-d Fermi gas model and several other 
logarithmic problems, however, they are satisfied in per
turbation theory at least for the leading and next to 
leading logarithmic terms. We will assume that they hold 
for the singular part of the Green's function and vertices 
in higher orders as well, though they may not be valid for 
the non-singular part.

Introducing the functions

/4.19/

t h e  n e w  c o u p l i n g s  a r e  o b t a i n e d  w h e n  E. is i d e n t i f i e d
\w i t h  t h e  n e w  c u t o f f  E a , i . e .

/4.20/
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These quantities are called invariant couplings since they 
are invariant under the same renormalization transformation

( Fo ' í E. ъ), <§и.( <§ZJ -

R /- (°  ̂ E0 t ^лм 1 ^ 1J- ' J •

/4.21/

This invariance is a consequence of the group property of 
the renormalization transformation. Starting from the 
original couplings and scaling the cutoff directly from 
E0 to E leads to the same new couplings as to go

tf i r s t  f r o m  E 0 t o  E 0 , w h e r e  t h e  n e w  c o u p l i n g s  a r e  g i v e n  
b y  e q n . / 4 . 2 0 /  a n d  t h e n  g o  f r o m  E 0 t o  E

The scaling equations for d ,  •; and 
written in a common form

v.Cj- can be

A UJ
Eo Ъ u• ̂  Л 2-

v ~  О I %

/4.22/
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A single variable is left in these equations. This variable 
is со , or vrFk depending on whether the energy,
temperature or momentum dependence is calculated. The fur
ther considerations can easily be extended to several 
variables.

The scaling equations can be written in a differential 
equation form. Differentiating the logarithm of eqn. /4.22/ 
with respect to co/e o (T/g„ or ^k/pjand then putting 
El equal to со (T ̂  ̂ rk)we get

where x=to/Eö C T /t0 or f̂ /̂'e:ö). These are the Lie equations 
of the renormalization group. The multiplicativ factor drops 
from this equation since it is independent of the energy, 
temperature or momentum variables, it depends on the ratio 
of the new and old cutoffs only. On the other hand when 
after the differentiation the new cutoff t 0 is put equal 
to to ( T or yF к ) , the invariant couplings in eqn. /4.2 3/
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appear as functions of the energy, temperature or momentum. 
In this sense it is common to speak about the energy, tempe
rature or momentum dependence of the invariant couplings.

Eqn. /4.2 3/ tells us that the quantity A can be 
calculated as a function of x if the behaviour of the 
scaled problem is known near the new cutoff. This renorma
lization transformation, i.e. scaling the cutoff to the 
energy variable in question is useful for logarithmic 
problems since near the new cutoff a perturbational treat
ment of the right-hand side might be sufficient, provided 
the invariant couplings are small at x . Unfortunately 
this is not always the case, as will be seen, but even in 
this case the scaling properties can give some insight into 
the behaviour of the system.

In the first step of any calculation the perturbational 
expressions of the Green's function and vertices have to be 
determined. Then the renormalization factors and the invariant 
couplings can be obtained in a perturbational form using 
the scaling equations /4.15/ - /4.17/. Using this perturba
tional result the solution of the Lie equation /4.23/ for 
the invariant couplings gives a summed up expression. Once 
this expression is known, other quantities can also be 
determined by solving the respective Lie equations.
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According to this programme the invariant couplings 
are determined in a perturbational form from the self 
energy and vertex corrections calculated to second order.
A straightforward calculation of the self energy and vertex 
diagrams shown in fig. 10 and 11 gives:

= 1 + И -  ^  )(^ fo - b T J + ... ,

/4.24/
Г.„ Ы  =  { +  -i- i f  I о ü  1 , <  л г / » i

L ^  q,„ ^  ~ 1 ' + v F 1 V  ('U
lJ
EL iTT —  4-

+  ^ + v  + 4 « ^  - K (‘ JbL <t iTr/ 4

/4.25/

^ ( и > ' i * . 4  «J« («* t  - i - )  -  á z Á Ú
U>Ik —  4to

+  d v  (■ 2- l -  гк  -  2 v )  ( A  “  - i ' T ) +
/4.26/

^  И  = 1 ^  A ?  "I-)1жм\ íj. +. _!—  1'" <Э'^ , г г ----lx оГ ^ [ C f  - i t

+ - >  -  v  +  Ч - *  - * * ) ( < -  t  - И + -
/4.27/
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+ \^ ^ + +

Fig. 10. Low order diagrams for the Green's function.
The dots stand for cj<lt , and cjz type
couplings.

Fig. 11. Low order diagrams for the vertex.
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The scaling equations are satisfied if the renorma
lized couplings have the form:

/4.28/
\

4"', ‘K. = <]’■ + it/гр ‘Ь'Ь tI +

4 - -g 2. 2-2ir \rF
I

Fo 4 .' ‘ /

/4.29/

(K 4- <
1 тг vT(-1 l-'v. E0

if0 4-

4 -
4
 ̂It + . .

/4.30/

The invariant couplings are real as they should be, and 
they are independent of the variables of the Green's func
tion and vertex /Menyhárd and Sólyom 1975/.

The Lie equations for the invariant couplings are 
obtained from the perturbational expression in the form
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7Г 0-
0. < И . Rl л

W  + г 7 Ч 1 ^ « (<) ̂  Ы  + -• J

/4.31/

гЯ c * , IliiU
< *
Л 1Г,. 4-

[ I’» (,<) <3’'i(<) + <j<Vw] + •■■ j, /4.32/

4  ̂  (/
Д  К* Ь V  w  + ГтгТ}CP (<> <3 > V w  + -..}

/4.33/

where X - Ec/'p. .

In the next order /third order renormalization/ 58 
fourth-order vertex diagrams and 2 third-order self-energy 
diagrams should be considered. Ting /1976/ did the calcula
tion in this order for spin independent couplings and 
obtained the following result for the invariant couplings:

R / f,
1 ' 1 F. , 1) Q. + о1 („1* +.

Г E.
JTT 1 D

T  }n.-5 «Jp о ' л ^ S' Л 2- E„ P  , Fc
K  4. — Ekv —- "  — - Etv   I 4 -

< / S „ t г ) л F0
2„-V,s ' 4  t  " ‘«Í' ' (lv ¥„ + • •

/4.34/
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^  Ы  ' Ъ  t i  =  t  +
* 2. л e.JLía

2 ttL iTp+Jr^n^í: + ív b l +

+ 13Гз U ‘ t  - ̂  t  ) «*
/4.35/

The Lie equations in this order are

i  j —  <£%cL< X С ттогр > 1 г ; Ziv
I5/ \ ^ О/ i

4< Ы  - +

+

ol cj* (x)
dx

U - R5(x) t (x> -  i RR(x) s R l w ]  +  ■ • • ! ,
/4.36/

< f * Cl/| < t5ii 7- t S i
- X 1 1^ -  ^  W  + ^  <3. W  *  Ы  +

+ 9irVr 1- t 5(x' t  l (*'] +-.., J.
/4.37/

The result obtained by Ting is actually more complicated. 
Fowler /19 76/ has shown that cjA -  Z<^x is an exact invariant 
at least for <̂ ,-2^г= 0  and conjectured that it holds for

as well. The approximation leading to eqns. 
/4.34/ - /4.37/ ensures this invariance.
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^Keeping the first term of the right-hand side in eqns. 
/4.31/ - /4.33/, the scaling equations /4.6/ - /4.8/ are 
recovered. The first order scaling equations led to non
physical singularities for ^  < О -We will
consider now the effect of higher order corrections.

The best way to analyse these equations is to plot 
the scaling trajectories, i.e. the lines connecting the 
equivalent problems in the space of couplings. Using the 
invariance

T" ы  - 1 1 * (x) - I™  " 4 ^ - ,

/4.38/

с ^ Ы  is easily obtained from (xl and therefore the
scaling trajectories are plotted on the plane.
Figs. 12.a and 12.b show the scaling curves in two diffe
rent approximations, taking into account the second order 
terms only or the third order terms as well. The arrow on 
the flow lines represents the direction of scaling when the 
cutoff is decreased.



Fig.12. Scaling trajectories in the plane
in /а/ leading and /b/ next to leading 
logarithmic approximation.

There are two well separated regions in the (cj1(J, plane 
where the behaviour of the system is expected to be different. 
For scaling trajectories go to the line

c^= О / i.e. the problems for which the coupling cons
tants are situated in this region are equivalent to a problem 
where the backward scattering is unimportant /the c^(l pro
cesses cannot be distinguished from the forward scattering
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processes if bandwidth cutoff is used/. If ĉ u =0 in the 
original problem already, it remains zero in the scaled 
problems as well, therefore the line M = О is a line 
of fixed points of the renormalization transformation. 
Starting from weak couplings, the renormalized couplings 
remain weak and a pertúrbationa1 treatment of the right- 
hand side of the Lie equations is a reasonable approximation.

In the other part of the plane scaling goes
to a strong coupling regime. In the lowest approximation 
tlie scaling curves go out to infinity, in the next order 
they converge to the points -  <:>*L ^  ^  ̂  or

а *~ ~  ~ 2. тг oF . These are the two fixed points
which are obtained from the zeros of the right-hand side 
of the Lie equations. In the next order /Ting 1976/ the 
value of the fixed point is further decreased, instead of 
~ - h rvrr the value - o.S Hr -oy appears. Since these
points are outside of the region of applicability of a 
series expansion in eqns . /4.31/ - /4.32/, only the tendency, 
that the problems are equivalent to a strong coupling prob
lem, should be taken seriously.

■4-3. Determination of the response functions

As already mentioned, one of the aims in studying this 
model is to understand what kind of instabilities are likely 
to occur in this system. The best way to do this is to cal-
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culate response functions or generalized susceptibilities. 
The response of the system to various external perturba
tions can be considered and a singularity in the response 
is an indication that a spontaneous distortion or ordering 
can occur in the system. Following Dzyaloshinsky and Larkin 
/1971/, Sólyom /1973/ and Fukuyama et al. /1974 a/ we will 
study here the response functions which are expected to be 
singular for a given range of the couplings, since they 
contain logarithmically singular terms in every order of 
perturbation theory. These quantities are the charge-density 
wave /CDW/, spin-density wave /SDW/, singlet-superconductor 
/SS/ and triplet-superconductor /TS/ response functions.
An instability in the CDW or SDW response function shows 
that a CDW or SDW state is formed in the system with that 
value of the wave vector, where the instability occurs 
first. This instability is expected to occur at k = l k F , 
reflecting the logarithmic singularity in the electron-hole 
bubble with this wave vector. Singlet or triplet super
conductivity is obtained if the response function of 
singlet or triplet Cooper pairs is singular.

The definitions of these functions are:

/4.39/



- сю  -

where

/I/ for the charge-density response function

0 (u.g= 4  2 ;
u.

/ 4 . 4 0 /
is the Fourier component of the charge-density 
for large momentum,

/II/ for the spin-density response function ^ (W ( to

0 4  w, U *4 2, I г 4.40
/ 4 . 4 1 /

or

0  ( u h  = 4  >V I </* /L w.
(M (a . if) + (j (t) CX k,T 4 u,+ k v - K, 4, к,4к т

/ 4 . 4 2 /

are the Fourier components of the longitudinal and 
transverse spin densities for large momentum, they 
should be equal in the disordered phase,



51

/III/ for the singlet-superconductor response

04 Ml = \ XK.dl a Ы + a., ft) «. tt)]
I 'г ^  L m  -lc ,+ W  4/ _ l ( , +u  J

/4.43/

corresponds to singlet Cooper pairs, and

/IV/ for the triplet-superconductor response (к,и>,

0 (k, + N I " í  Z  a  W  -  a  (t) ( r  (t|l
L  L >1/ h  ^  -lc ,+ lt A. J  /

/4.44/
or

к
vit cCa I - T or \y

/4.45/

correspond to triplet Cooper pairs. The different 
forms correspond to different values of the spin 
projection ( О <x*<l . The wave vectors
will be fixed at tc - 2.кF in the density responses 
and to lc = 0  in the pairing functions.

Throughout the calculation we studied the со dependence 
at T = o . The temperature dependence is easily obtained from
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this result, since in logarithmic approximation u*. (co/f< 
should be replaced by 4* (°,T )/e0] .

The perturbational expressions of these quantities 
are straightforwardly obtained

Ы M  = \ л CO
[ 1- + + V  _ Ъ  ) ^ E „  +

4 ^4 '" + C4'"‘b  + V  ' l Y %  +2£ K  e./4+_46/

+■ F F F  4 CJ*1 “ 4 2 ‘1г il v '" 1 ,

X < L  ~ \ { -  — - Q. ^  ~  +- 1— 2 it j~f J2 F e

- i ^ 4" 4 i d  -  4 <- %  4  2 d  ) e- t 4 -  1 ,
/4.47/

л "("’1 “ i  iw Eo [ ̂  + l b F <■ 1- 4 i d F .  4

4 t 1 <3» <̂  4 5 ̂  4,'"'K'F + 2 i d  ^  f .  +■

4 F v ’d  1'" 4 c3'1 " 2 ‘3,i,c3i 4 2 id  ̂  T  •*-•••] ,
/4.48/

A t Ы  = —  U  f Г Aтглт*. F., L 4 Т Г « ' '■ - I( 4̂“ + ̂ 2. ) ̂  IT ■+■

4 Ftv- ^2 >  ~ 4 I" <K cd  4 2 “t ) ̂  Г  4
/4.49/

I F F  I <3.1 4 4- - 4 "  4 ^
i  \ „ to_ 

Fc
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Only the real part has been calculated everywhere.

These susceptibilities do not obey the scaling hypo
thesis of eqn. /4.22/, they obey, however, the following 
relation

The functions are not simply multiplicatively renormalized 
when the cutoff is scaled, an additional constant appears. 
This constant disappears when eqn. /4.50/ is differentiated 
with respect to со , and the scaling equations can be 
used. It is more convenient to define the auxiliary functions 
R , following a suggestion of Zawadowski,

u3
fo / > ,  , % )  4- C  (

/4.50/

/4.51/

and to use the scaling equations for these functions.
The Lie equations have the form:

ck N l*)

/4.52/
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cL (
d  к { — -1— q* U) -t (.x) 4- ... 1I тга-р *l J,

I 4.53/
á  A s Ы

d  X { ^  [ * ' u) -’-£3*ul] + F(-*l+ -lj;

/4.54/
d (d

d  x [ [ ~ > ul + £+■ F W+...|JL J 4

/4.55/
where

F(-x) = d v -  [ d d * ' ц- v u ' ~ 2- > ul ^ u ' + 2- ,

/4.56/
and )( = <oo/e o , or x = T / e o if the temperature dependence 
is studied.

Inserting the invariant couplings into these equations, 
the energy or temperature dependence of the response func
tions can be obtained. The invariant couplings are non-singu
lar functions of x if we go beyond the first approximation, 
therefore any singularity in the response functions can 
appear at x ^ O  only, i.e. at u>=0 and T = 0  . The
leading behaviour at small x is obtained by inserting the
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invariant couplings at Y.-0 , i.e. the fixed point values.

According to the discussion in § 4.2 the scaling curves 
go to the fixed line <̂ A* = 0  if is satis
fied for the original couplings. The fixed point value of cjA|| 
is not universal, in a first approximation

4- curvd 1  Í1U +

/4.57/

Since the fixed point value is small, the higher order 
corrections in eqns. /4.52/ - /4.55/ can be neglected and 
the solution of the equations gives for the leading terms

. of = X >-■§! + 1 ,
/4.58/

* (х)~ хР - (

/ 4.59/

A S (*) ~  I К  = ~  1  +  t  +■ ... ,

14.60/

Д*. Ы  ~  x S S = - i «j„ + - i <}*+... .
/4.61/
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The result is very simple for spin-independent couplings.
In this case = О  and depending on the sign of x  ~

either the density response functions or the pairing res
ponses are singular at со =. О  .

♦The domain of attraction of the fixed point cj1( - }

< * * ■ ls and <ju < o
whereas for the fixed point <j,„ « - cj,* . - Ьлг, , - ± ~  - тгч-р
it is and cj1M < • Since the fixed point value
is not well determined in the approximation considered in 
§ 4.2 and the higher order corrections in eqns. /4.52/ - 
/4.55/ cannot be neglected, only a rough estimate of the 
exponents can be obtained. We get in second order scaling

/4.62/

4  ^ < °
/4.64/
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Л* W 5  = £  ~  ™ : ( i  I « - * )
/4.65/

Singularity can appear in the charge-density response 
function and in the singlet-superconductor response if 
cju  < 0  . The exponents are certainly modified by higher

order corrections, in the next approximation /Ting 1976/ 
the exponent - Ъ / 1_ is changed to — tol . It can be assumed, 
however, that the tendency is correctly obtained, only the 
charge-density and singlet-superconductor responses are 
divergent for • The singularity in the singlet-
superconductor response is stronger if > о ,
on the other hand for i charge-density
response is more strongly divergent.

The results are summarized in fig. 13, where the phase 
diagram is shown, i.e. the possible ground states of the 
system inferred from the singularity of the response func
tion are indicated for spin-independent couplings in the

plane. The solution is probably quite good in the 
upper half-plane ( > О ] , there may be, however, doubts
about the results obtained for < О .In the following
paragraphs other approaches will be considered, which - 
combined with scaling argument - can provide a better 
treatment of the model.
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Fig. 13. Phase diagram of the 1-d Fermi gas obtained 
in the second order scaling approximation.
The response functions corresponding to the 
phases indicated in bracket have a lower degree 
of divergence than those without bracket.

There is yet another response function which is of interest 
when comparison is made with the behaviour of quasi-l.-d 
materials. This is the  ̂kF response function 7Т(^Р(̂ ) 
calculated by Lee et al. /1977/ using the renormalization 
group approach. Without speaking about the mechanism how 
the fluctuations are excited by two-particle inter
actions, we consider the response function 3T
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which is defined through eqn. /4.39/ with

© ' ( ‘ » к . , * )  -  r k Z  \  w  C  f t l  Q „L k, t k,  ̂ kti/L l i, 1 5 10 \ . , V 4 * N '

/4.66/

A straightforward perturbational calculation gives

i t M (ok st "V------
Ъ 2. п * <г* ITvr,г f‘

u)

/4.67/
2.Since the factor <-*J appears in the contribution of all 

diagrams, and the remaining logarithms can give an extra 
power, the function

r 1 M = -i- i«. ̂ТГчГ, 4- + irVr Í ^  ̂  + ..]

/4.68/

can be studied. Assuming that the function "Ю* defined 
by eq. /4.51/ from the truncated function satisfies the 
scaling equation, we get

d  U  ТС'Ы
cl x

/4.69/
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Since the combination cj1lt-2_ĉ  is invariant under scaling, 
we obtain for the response function when the factor

is taken into account

7 С Ы  -
i  +

C O

/4.70/

A singularity can appear provided that has a large
negative value. At this value the higher order corrections 
are not negligible. As it will be seen later an exact 
solution of this problem can be obtained. It will be still 
valid that TC (u>) is singular for large negative .
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§ 5. EXACT SOLUTION OF THE TOMONAGA-LUTTINGER MODEL

The Tomonaga model /Tomonaga 1950/ is that particular 
case of the Fermi gas model in which the large momentum 
transfer interactions are neglected. These are the 
and cj3 terms in the Hamiltonian. In the model with band
width cutoff, gives no contribution and the effect of

cju is indistinguishable from that of f therefore
three couplings, and с|Ц1 remain. It follows
from the scaling equations /4.31/ - /4.33/ and the more 
detailed treatment of § 7 where all the couplings are 
considered, that the couplings do not get renormalized in 
the case when i.e. the invariant couplings
are the same as the bare couplings. Consequently 
itself remains zero in the equivalent models. This model 
is of particular interest since - as it will be seen - 
models with cĵ .̂ О  and 4 О can be scaled onto it if
ûi - and ' x t turns out that the

Tomonaga model can be solved exactly, thereby the solution 
of the Fermi gas model is known for the models which be
long to the domain of attraction of the Tomonaga fixed 
points.

In the usual treatments of the Tomonaga model the 
dispersion relation is that shown in fig. 3 and a momentum 
transfer cutoff is used instead of the bandwidth cutoff.



62

In this case cjMt gives a finite contribution coming from 
the first order self-energy corrections shown in fig. 14.

Fig. 14. First order self-energy diagrams.

The contributions of the two processes cancel each other 
in the model with bandwidth cutoff; with momentum transfer 
cutoff, however, this cancellation is not complete and a 
contribution proportional to the incoming momentum is 
obtained, which leads to a Fermi velocity renormalization. 
In the higher order diagrams the difference between the two 
kinds of cutoff is not important and either can be used. 
Another complication can arise from the <̂ лн and pro
cesses which become inequivalent in the model with momentum 
transfer cutoff. The problem of cutoffs will be considered 
in § 9. In this section momentum transfer cutoff will be 
used and the coupling c j w i l l  be considered together
with v  and Qw

A similar model has been proposed by Luttinger /1963/. 
The free particle spectrum is linear as shown in fig. 4.
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Compared to the Tomonaga model new states are introduced 
far from the Fermi points. These new states are all filled 
in the ground state. Since it is usually assumed that only 
electrons and holes lying in the neighbourhood of the Fermi 
surface are important in physical processes, the Luttinger 
and Tomonaga models are equivalent. Mathematically it is 
more convenient to work with the Luttinger model. The results 
- at least in the weak coupling case when the states with 
electrons and holes far from the Fermi surface can be neg
lected - can be applied to the Tomonaga model, too.

5.1. Green's function in the Tomonaga-Luttinger model

Dzyaloshinsky and Larkin /1973/ have shown that the 
Green's function of the Tomonaga model can be calculated 
exactly in a simple form in real space and time represen
tation. This is the consequence of two essential features 
of the model, namely that the dispersion relation is linear, 
and the number of particles in each branch and for each spin 
direction is conserved in every scattering process. They lead 
to the cancellation of many contributions and to a simple 
Ward identity and allow an exact summation of all the contri
butions .

The Green's functions of the unperturbed system are 
denoted by G +l (Л,00) and G_ corresponding
to electrons on the two different branches,
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U>-\rF (lc-lcp) +- i <5 StcjH. ( к - к* )
1

1
Uj — vrF i, le k.,. ) 4- C i  Ĉejv\. (̂ —Ic — kp)

/5.1/

íhe low order self-energy diagrams are shown in 
fig. 15. The diagrams contain one solid line connecting 
the incoming and outgoing lines and may contain several 
loops, but solid and dashed lines never mix in the loops. 
This is due to the neglect of backward scattering pro
cesses. In the calculation of the contributions, the 
relations

/5.2/

Q l °' 0<-p, u.^t) ' (Л, w) =

/5.3/

can be used, which are the consequences of the linear 
dispersion. It turns out that all the diagrams which con-
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tain loops with more than two interaction vertices are 
cancelled. Such mutually cancelling diagrams are shown 
in fig. 16.

Fig. 15. Low order self-energy diagrams in the 
Tomonaga model for electrons on the 
right going branch.

Fig. 16. Self-energy diagrams with cancelling
contribution.
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As a consequence of this cancellation the remaining 
self-energy diagrams may contain bubbles and series of 
bubbles only. The series of bubbles can easily be summed 
leading to effective interactions. The diagrammatic equa
tions for the effective <̂г and <̂ц type interactions 
are shown in fig. 17.

Fig. 17. Diagrammatic equations for the 
effective interactions. The 
diagrammatic equations are the 
same for parallel and antipa
rallel spin orientations.
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Denoting the effective couplings by ^ t \ \ ,  , Т>ци
and ТЭщ , these equations are simple algebraic equations

All = ^ ii +' ‘Ji.a.A Ail + <3|,i A  A i  4 

4 <ЗгД- А »  4 A  A i  ,
/5.4/

A i  = <i'ii + A  A i  + i A 1 \ ,  +

+ A 1 - A ,  *■ v J . A  ,

/5.5/

A,, = «ji. 4 + < 3 n A  A i  4

4 ^ Д -  A ,  4 *зчi. A  A i  !

i b . e i

~ я 1 i 4 «Ь. A  A ,  4 A  A «  +

4 % .  A  A i  4 < ь  x - A .  ,

/5.7/

where It and 1_ are the polarization bubbles for 
electrons on the positive and negative branches, respec
tively, for one spin orientation.
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Ti ль, ^  b ( u - ^ v |  I = ~ 2тг (új-+-\rF U) '

/5.8/
the solution of these equations for e.g. which
couples two electrons on the positive branch, is

A .  ( k . - W  (w-o-rk) [ A *- ue lc +c 5 к ю  4- uv lc - >; £> W 4-

4- C
Co — kx „ l«C + I. C) VqK. к -t D

-v.̂ sî kvU J (
/5.9/

where

/5.10/

U, - + £  C<j4. 1<э» +  % и ) ] г

I\1 Г w Г) о f 1c__ 1 1
*♦ 
1 i*-« îJ-/ 1

^  ^  ) +

/5.11/

Xir *3*--*-)
/5.12/
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*Ь = "ц ( 3м' ~ )

' ^  [ ч  +■ ^  - £  С % - ^ ч Г ] /
/5.13/

С  ^  -Ц U-. +<5-i) +

^ás *■  гА^-U1 -тг1%-ъ^],

/5.14/

t И - + ч- И -

Ц uf С ̂  ̂ Чн v Ч “ ) + ('Зч. 4~ ̂ 41) - jí *■ 4iJ j.
/5.15/

It should be noted that the effective coupling between 
two electrons on the negative branch is somewhat different.

The Dyson equation for the Green's function is given 
in fig. 18. The three-leg vertex appearing in it contains 
again effective interactions only, as shown in fig. 19.
It is denoted by T\ ( p, e, W , ui) . a similar vertex 
Г ( ̂  £ U, us) can be introduced for electrons on the nega
tive branch.
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>

Fig. 18. Dyson equation for the Green's function.

£-u>

Fig. 19. Three-leg vertex appearing in the Dyson 
equation.

Using eqns. /5.2/ and /5.3/ a Ward identity can be 
derived,

rjp.e.k.uj)

/5.16/
and analogously

Г  (p, £, k, * G_ Ip, ^ ) — G_ £ ^
CO +  Vpic

/5.17/
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It should be emphasized that the Ward identities are direct 
consequences of the conservation of the number of particles 
in each branch for each spin orientation and of the linear 
dispersion relation. They can also be obtained by writing 
the equation of motion for the vertex P+ /Everts and 
Schulz 1974/. The Ward identity allows to write the Dyson 
equation as a closed integral equation

where the term leading to Fermi energy renormalization has 
been neglected.

This equation can be solved in a simple form by 
transforming it to real space and time and the following 
expression is obtained

/5.18/

X- o'pt + ч / Aft)

* [ A L x  - +■ / AOfcl) ( t - v / AW)]

/5.19/
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with

* * Ц U(r t ^ It ~ <3u ) - u <r]

/5.20/

~ i ^  + ^ ц" ^ ~ Ы ?] •

/5.21/

In the calculation a smooth cutoff is used for the momen
tum transfer, i.e. a factor exp(-llcl/A| is introduced 
in the effective interaction and Л Ы  — A sign -t 
A bandwidth cutoff <5 — i/kF (<5 (t| = S ) should also appear 
in the free Green's function.

The analytic expression of the Green's function is 
complicated in momentum space. The interesting feature of 
the solution is that the Green's function has a branch cut 
instead of the usual pole structure. The cut is between 
£ = C p - kp \ and £ = ( p -WF ) . The influence of
the branch cut is negligible for electrons far from the 
Fermi surface. Near the Fermi surface, however, a drastic 
change occurs compared to normal Fermi systems. As a 
consequence of the branch cut, the momentum distribution 
nvCp) /Luttinger 1963, Gutfreund and Schick 1968/ has a 
power law type behaviour at the Fermi points
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2. oí j + 2. o<?
^ (■-p) = 1 ~ Cô s-t I P i ^  I S»CJIM (-t p - Wp) ;

/5.22/

with infinite slope at p = 1 kF , since both cx v and 
о are small positive numbers in the weak coupling case.
This has to be contrasted with the jump discontinuity in 
normal Fermi systems. The difference in the distribution 
function is an indication that the usual quasi-particle pic
ture breaks down in the Tomonaga model, the excitations of 
the system are collective excitations. On the other hand the 
effective interactions are very similar to boson propagators. 
Eqn. /5.9/ can be interpreted as describing the propagation
of two bosons, one with velocity the other with u.̂  .
These bosons are the density fluctuations of the fermion 
system. It will be shown in § 5.3 that, the Tomonaga model 
can in fact be solved in terms of boson fields, related 
to the densities.

5.2. Response functions of the Tomonaga-Luttinger model

Arguments similar to those applied in the calculation 
of the Green's function can be used for the response func
tions. The same response functions will be studied as in 
§ 4.3. It will be seen that similarly as before they have a
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simple form in real space and time representation. These 
charge-density and spin-density response functions corres
pond to large mementum transfer. The same response functions 
can also be calculated for small к and со in momentum 
representation. In this case

for the spin-density response. The diagrams which contribute 
to these response functions are the bubble series diagrams, 
as in the effective couplings, i.e. the external vertices 
are connected with a bubble series. We get

/5.23/

for the charge-density response, and

/5.24/

N  ( A  -) = |r Tf,

/5.25/

where
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Th
1 + 2T 7 c '3* 1

/5.26/

X • " 2 Л, f V  ‘ - I“  (.<}„ +^rJ
1 4-

1 H- vT,: Ц.,» (%, 4-t^J

/5.27/

This result shows that the density fluctuations with velo
city u.ff are in fact spin-density fluctuations, whereas 
those with velocity u.? are charge-density fluctuations.

Turning now to the density responses at 2 kf and to 
the pairing functions, it is still valid that apart from 
the two lines connecting the external vertices of the res
ponse functions, only simple bubbles should appear.
A new vertex Г1+._ can be introduced which corresponds 
to large momentum transfer, the incoming and outgoing 
electrons are on different branches. This vertex is shown 
in fig. 20. The charge-density and spin-density response
functions can be written in terms of this vertex as shown
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diagrammatically in fig. 21.

pt, ♦ U )

p,e, *(♦)

Fig. 21. Diagrammatic representation of the charge- 
-density and transverse spin-density res
ponse functions.

Fig. 20. Vertex with large momentum transfer.
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The vertex P__ is not related to the Green's func
tions by a simple Ward identity. A generalized Ward iden
tity can, however, be derived which relates Г + _ to 
vertices with two electron lines and two interaction 
lines. Let us define a vertex in which the incoming and out
going electrons belong to different branches, one inter
action line corresponds to the coupling to the external 
field with large momentum transfer, the other interaction 
line couples to electrons on the positive branch. This ver
tex is shown in fig. 22. Using eqn. /5.2/ or the Ward iden
tity in eqn. /5.16/, this vertex can be expressed in terms 
of P + _ , as also shown in fig. 22. A similar four-leg
vertex can be introduced in which the interaction line 
couples to electrons on the negative branch. A generalized 
Ward identity can be derived for this vertex, too, as given 
in fig. 23. These relations are valid only if the self
energy corrections on the external Green's function legs 
are also taken into account.
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Fig. 22. Four-leg vertex with a large momentum 
transfer interaction and with a small 
momentum transfer interaction coupling 
to electrons on the positive branch.

Fig. 23. Four-leg vertex with a large momentum 
transfer interaction and with a small 
momentum transfer interaction coupling
to electrons on the negative branch.

■L



79

The response functions can be expressed with the help 
of the four-leg vertices, as shown e.g. for N(ic uj) in 
fig. 24. The spin-density response can be written
similarly, with -D7i instead of D lH . Comparing the two 
representations of the response functions in figs. 21 and 24 
and using the relations given in figs. 22 and 23 the vertex 
^  and the response functions can be calculated. The solu
tion of the integral equation in real space and time gives:

N U  О  - IX G, (/,-t) Q u  ,r л ) ■

. L л1 1 

' Л’ (

* |.л + v / A W) ( x t — 1

t + i / Л ■*)) ( X +-u„^ - ' M W )X - u.

ÍV

(S

/5.28/
where

ß  „ ___1___ Ii I C 4 / \
I 7Г U r ■l2" Iх L I' W  ~  ̂'2̂11 +  ^2 1 )-

/5.29/

{ x, -t) has t h e  s a m e  s t r u c t u r e  as N ( 0 , o n l y ß 6 in

the exponent is replaced by

Fig. 24. Diagrammatic representation of the charge- 
-density response in terms of the four-leg 
vertices of figs. 22 and 23.
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A similar calculation can be performed for the
pairing functions and we obtain:

/5.30/

The triplet-superconductor response is obtained by replacing 
p, b vj . In the case of spi n-independent couplings
these expressions reduce to those obtained by Fogedby /1976/ 
with a different method.

The analytic expressions of the response functions in 
(Ic i.o I representation are quite involved. Their asymptotic 
form can however be obtained from dimensionality arguments 
when ló and (t ? b ) or vJr l< are small and of the
same order of magnitude:

, / . b 4 h; 2bJ ( < •;> ' \Jr ( 1 b )l '• < < >

/5.31 /

/5.32/

A . ( .. . vi,. W )
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A . (m о u + v f
”̂5 í( V

/5.34/

where and are in eqns. /5.26/ and /5.2 7/
Expanding the exponents in powers of the couplings, neglec
ting <̂ ц and taking into account that the choice of the 
couplings in § 4.3 corresponds to cj7ii cj7 cj14 and 
Sin * c|-i / it is seen from eqns. /4.58/ - /4.61/, that 
the renormalization group treatment in its first approxima
tion gives the first terms in the exponents. Higher order 
terms in the Lie equations could produce the higher order 
terms in the exponents. The branch cut in the Green's func
tion is not obtained by this simple scaling procedure, since 
it comes from non-logarithmic terms which have been neglec
ted in the scaling.

The phase diagram analogous to the one shown in fig. 
13 is given in fig. 25 in the Uj„, ) plane. There are
such regions in the plane of couplings where two response 
functions diverge. Assuming that the leading singularity 
will determine the structure of the system, the phase 
diagram is a very simple one: the different phases are 
separated by the diagonals and ^ltl - — .



Fig. 25. Phase diagram of the spin dependent 
Tomonaga model.
Fig. /а/ shows the regions where the 
various response functions are singu
lar. Fig. /b/ shows the phase diagram 
obtained from the dominant singularity.

Generalized Ward identities can be used also in the 
calculation of the response function. A straight
forward but tedious calculation of the Fourier transform 
of Jl (W '-hlcp ; со) defined by eqns. /4.39/ and /4.66/ leads
to the result

T1 l *■. = G + ( <, 1) G + ( /, 1 j C>_ (— *, - 1) ( x , 1) «

(X Uyl +> / AHI) C x +- U ̂ 1 —I / A (tl)
( x  1 /  A ( t )) ( x +  -  C /  A ( l l )

4  oCq-
• I /\Z ( у 0 , ^ 1  * «. / Л ( М )  ( X f  u . ^ 1  -  С / Д  (ti) I

\ / -1 - ̂ (Зо. А' ( х -t-i / Ad)) ( х 4- - v. /Л(1|) I /
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where oC and (1 are given in eqns. /5.20/, I S . 211 and 
/5.29/. Inserting the expressions for the Green's functions
we get

'It ил) ( x  -  \ > FЛ  t  í. / A ( t )  J (  X  4- vT p t  -  с / л  fcl)
^ U  - \Tp i ) ( x. + vTp! -  К & U)j

z
у

[ л Ч * - V  ^ / A^ ) U / A(d) J
- 1 Kt

/5.36/

where ^ is given in eqn. I S . 2 1 1 . It is interesting to 
note that this response function depends on the charge- 
density modes only as noticed by Emery /1976а/. In the spin- 
independent case this result agrees with his result and with 
the result obtained by Klemm and Larkin /1978/.

5.3. Boson representation of the Tomonaga-Luttinger 
Hamiltonian

We have seen in the preceding paragraph that two kinds 
of boson-like collective excitations appear in the Tomonaga- 
Luttinger-model, one of them corresponds to long wave length 
charge-density oscillations, the other to spin-density 
oscillations. Mattis and Lieb /1965/ have in fact shown that 
the Luttinger model Hamiltonian can be written in terms of 
boson operators in a diagonal form and the exact spectrum 
is easily obtained.
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Let us define the density operators for the two 
branches by

h) = Z  <4 a k* I a k. Q k ,

? гЛ-р) = 2_ C  ,

/5.35/

where p>0. The summation over к goes for the whole 
branch in the Luttinger model; in the Tomonaga model, 
however, the momenta к and к 4 p should belong to
the same branch, e.g. in ^lo< (p) the summation goes for 
к < — p . These operators obey boson-like commutation 

relations:

[?<« I k'j] = -El $  51 Í.TT Ы.л(b rf

[  ? 1«  ' ?г.р  ip' )  ] =  о , /5.36/

They are exact relations in the Luttinger model. The same 
commutation relations are obtained in the Tomonaga model, 
but here they are obeyed approximately only. The non- 
-vanishing contribution in the commutators comes from 
particles near k = 0  , i.e. from a region far from the
Fermi points Í lcF . Eqns. /5.36/ are valid for states in which 
no holes are excited in that region. This is the situation
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in the weak coupling case. In the strong coupling limit, 
when states far from the Fermi points are also excited, 
the use of a linearized dispersion relation cannot be 
justified and a different treatment of the electron gas 
model should be made /see § 11.4/.

Introducing the charge and spin densities by the 
definitions

and similar relations hold for the spin-density operators. 
The charge and spin-density operators commute.

The interaction part of the Hamiltonian in the

/5.37/

/5.38/

they obey the same commutation relations

/5.39/

Tomonaga-Luttinger model can straightforwardly be expressed
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in terms of the charge and spin-density operators

= IZ  (<3*. + с3ч) [ ? , Ы  ?г(-р) + ?Л-р) <?!(?!] +

+ [ Z. - 1 ^ ) [  б-Др) <ч(-р) + б-д-р) в'г(р)] 4-
р ><5

А 2_ (>■  f ?<W ? . Ы  4 ? t ( - p )? t lp ) ]  +

+ ц 2_ C«js„ [^(p) M-pl +- s'j.(-p) ff^lp)].
p >o /5.40/

The interaction Hamiltonian is bilinear in the charge and 
spin-density operators. This is a consequence of the neglect 
of the backward scattering terms.

As a consequence of the linear dispersion relation, 
the free Hamiltonian of eqn. /2.3/ too can be written in 
terms of the density operators in a bilinear form:

This form of the Hamiltonian follows from the facts that

= 2_ ( ? < ы  4 vZ-pi?^(-p|]
p *>o

p >o /5.41/
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r 2_ U  - kF) a u  а кж -v 2_. чД* к “ О  &kít ~

2n vJ,
L

2 -  [ ? Л р)?.с-р) + ?Д-pl ?,.ы]p >o

2 iror
Т Г 2_ [ бДр) (ГД-p) V ^  ( -pK . lp ) ] /5.42/

commutes with

н г = -77F 2  [?«Ы?Л-р1 + ?Д-г)?Др)] +-
p> о

+ ~[]“F 2_ [ блЫ  ̂ лС-р)

and the commutators of Hq with the density operators 
are the same irrespective whether eqn. /2.3/ or /5.41/ is 
used. As it will be seen, H^ can be exactly diagonalized. 
The eigenstates of which are constructed with the help
of and s\ are at the same time eigenstates of
with eigenvalues depending only on the filling of the Fermi 
sea. For a fixed number of particles in the Fermi system 

gives a ground state energy renormalization only and 
will be neglected, can be considered as the Hamiltonian
of the system and it will simply be denoted by H.
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The total Hamiltonian given in eqns. /5.43/ and /5.40/ 
is conveniently split into a charge-density and spin- 
-density H v part. Both of them can be diagonalized by a 
canonical transformation

/
/5.44/

where

S - iri v  ЧЧр>
pp > oL ?<( p )  V i ( ' p )  -  ? Д - р ) ? Д р ) ]

/5.45/

for the charge-density part and

Ы  r
L p > о [ йДр) < ч Ы  - в,(-р)^(р)

/5.46/

for the spin-density part. Using the relations

e (Эл (р) C o s f v  C^(p) +  <^x (p) ^ ( p ) ,

/5.47/

?Др1 s
9z.(p) 4>(p) ■+■ § < ( р )  s c k Z  c_p(p) (

/5.48/
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and similar relations for the spin-density operators, 
which are valid for all p , diagonalization is achieved 
i f

к ̂  - — --_________
Z * * r + íjs„ + <3̂ Wfc. 2^(p) ------- 3 h T_3ü ._

ir,rr + - « J m

/ 5.49/

The dependence of ^  and on f> comes from the depen
dence of the couplings on the momentum transfer. Finally
we get

и

И  -- H r. + H„5 * /

' -— •” 2_ [ tpl *■ p) +• p) I;

/5.50/

ГТ _ i-n-w И ? -
1 .  1. ? < Ы  V'fp) * Vi(-p) ?,.(?)]
p > о *

/5.51/

/5.52/

where and are given in eqns. /5.10/ - /5.11/.

After a suitable normalization, boson operators can be
defined
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/5.53/

and similar operators for the spin-density part, which 
satisfy the canonical commutation relations. Written 
in terms of these boson operators, the Hamiltonian is the 
sum of free boson field Hamiltonians, the dispersion 
relation is lc for the spin-density part and <р = к
for the charge-density part, in agreement with the conclu
sions of the preceding paragraph.

Using the bosonized Hamiltonian, all quantities which 
are expressed in terms of the density operators can be 
easily calculated. This is the case for the long wavelength 
susceptibilities. The single-particle Green's function, 
the CDW and SDW response functions at k=2_lcp and the 
superconductor responses are not trivially expressed in 
terms of the density operators. Theumann /1967/ succeeded 
in calculating the Green's function after very lengthy 
algebra. The advantage of the bosonized Hamiltonian be
came evident later, when Luther and Peschel /1974а/ and 
Mattis /1974а/ have shown independently that an operator
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identity can be used to calculate matrix elements of fermion 
operators in boson representation. The identities

/ 5 . 5 5 /

are operator identities in the sense that the matrix 
elements are the same for properly chosen states, i.e. 
since \̂>1S. (x) decreases the number of particles by one

W  -Ü, If , n m  t > -

/ 5 . 5 6 /
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where , hi > is the ground state having N particles on 
the positive branch and is an arbitrary function
of . The parameter oC is introduced to make the
summation over >p convergent, but the identity is in fact 
correct, the anticommutation relation of and
is satisfied, only if the limit c< О  is taken at the 
end of the calculation. The anticommutation relations of y JS 
with different ) and s are ensured by the phase factors

i t  = °  = г 5)4* у Д  ы  v ^ u ) ,

4 lt = г 2_ ^4« t.t1x1ч\Дх1 ,
S

i n  r iit 4 к  \ Л к  чч\ (*' Ч-itUl .

With this transformation from fermion to boson operators 
the Green's function and the response functions can be calcu
lated /Luther and Peschel 1974a/. The results are the same 
as obtained in the preceding paragraphs. In fact Luther and 
Peschel did the calculation for the spinless Tomonaga model, 
which can be obtained from our earlier treatment when putting

• As we have seen earlier in a consequent 
treatment of the Tomonaga model a cutoff is needed to avoid 
the non-physical divergences. This cutoff is usually taken 
in the momentum transfer. A consistent treatment of the
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Tomonaga model in the bosonized representation would be 
to introduce a momentum transfer cutoff Д  and the para
meter ^ and take the limit oc О . instead of this 
procedure it is common to keep finite in which case
no further cutoff is needed and OC plays the role of the 
cutoff. This defines a particular model. The relationship 
between this model and others with different choices of 
the cutoff will be discussed in § 9.
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§ 6 . THE LUTHER-EMERY SOLUTION OF THE BACKWARD SCATTERING 
PROBLEM

The exact solution of the Tomonaga-Luttinger model is 
rendered possible by the neglect of the large momentum 
transfer interactions, cj 4 L and . When these inter
actions are present, the Ward identities cannot be used and 
one cannot do better than to apply the renormalization group 
approach to sum a subset of diagrams, if the fermion repre
sentation of the Hamiltonian is used. Alternatively one can 
try to apply the bosonization transformation and explore 
the properties of the model in this way. Luther and Emery 
/1974/ realized using the bosonized Hamiltonian that for 
particular values of the couplings the backward scattering 
problem can be solved again exactly.

6.1. Calculation of the energy spectrum on the Luther-Emery 
line

We consider now the total Hamiltonian as given in eqns. 
/2.3/ - /2.4/, and use the boson representation of fermion 
operators. Writing the forward scattering processes in terms 
of the densities as in § 5.3 implies the use of a momentum 
transfer cutoff. As mentioned already, the terms with rjA)1 
and n ?_H are equivalent - apart from a sign difference - 
in the model with bandwidth cutoff, they are, however, not
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strictly equivalent if a momentum transfer cutoff is used. 
The difference is not significant if the contribution of 
states far from the Fermi surface can be neglected. It is 
therefore usual to assume the same boson representation for 
the term as that for the rj^ term and to use
and cj7 as independent couplings. This means that in the 
expressions obtained for the Tomonaga model cjxlt is replaced 
by — cj.nj and { is replaced by <|x

The transformation of the large momentum transfer terms 
is more delicate. Let us study first the backward scattering 
term . Transforming this term from the momentum repre
sentation to real space, a non-local interaction appears:

/ 6 . 1 /

The non-locality, the functional form of o,, depends on 
the choice of cutoff in momentum space. With any reasonable 
choice this interaction is of short range. Approximating 
this expression by a local, interaction <H*i) d (>q) <И*г >
which is equivalent to having no cutoff in momentum space,
the expression
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Z <3,1 [<*■< <  U) Z.s (k) Hv Z^ 4V,(Z
/6 .2 /

can be written in boson representation in the following form

(2 а7Г c* x e x.
~ T Ipl - v px

r Z  -------- Л(<5.(рЬ<ч(р|)
P  P

ft.c. =

Z
(Z n oc ) 1 -  И X (. о s, I 1 e " *  Ip* ‘ 1-p * f

~  Z  — -Г-------ßr(ff,(pl + ^(p,
p

/6.3/

The backward scattering term could be expressed entirely 
through the spin-density operators, though the expression is 
highly non-linear.

The same bosonization transformation can be performed 
on the umklapp terms in eq. /2.4/ leading to

\

rr oc cZx
(? - 1 Ы -4 p *
-— -—  ' l l (?,(p) + ?l(p)J + l X(G-4

/6.4/

The umklapp processes may play important role in a system 
with half-filled band. In this case and eqn. /6.4/
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can be written as

Z

(2r 't
- x l f ’l-'p«

I d, с о Д  L ir 2, -— -—  ft (?,ы * ?л))
г

/6.5/

The umklapp term is expressed entirely in terms of the 
charge-density operators.

Using the results of § 5.3 and eqns. /6.3/ and /6.4/, 
the total Hamiltonian can be separated into two parts, one 
containing the spin-density degrees of freedom, the other 
the charge-density degrees of freedom.Remembering that our 
choice of the couplings corresponds to replacing by

and ЬУ p we get

И - И*. 4
/ 6 . 6 /

where the spin-density part is

H ,  = УL ^ ^,(p) t p l  +■ S* C-p) (S jp j

-
L Z

p>o

qU. r4- - d Ux{l-TTi* ) J
Irr S~ <1z -Iw-
" L ? P

/6.7/
>
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and the charge-density part is

Z  [<?. Ы  ?Л-р) 4 ?,Л-р)?Пр)] +

+ 2 1  [$, Ы ? г М  4-?Д-р)?гЬ)

- Tq r ( r _ — I ipi-̂p*
+( W  r* l^rlr 2. e— ~— X?«w +?Up))Mg-*.iJ

+ e.c. J

/ 6 . 8 /

with

*« = + s ( % ^  -- ^  n rДГ ̂ % * + )

/6.9/

Before going on to solve the model, a few remarks 
have to be made about the approximations involved in this 
transformed Hamiltonian. One approximation is to neglect 
the difference between the Cj,,(( and cjtl( processes. This 
difference disappears if a bandwidth cutoff or no cutoff 
at all is used. The other approximation is in the bosoni- 
zation of the large momentum transfer terms. If the limit 
oC О is takeq as it should be, these terms contain no
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cutoff. We know, however, that without cutoff non-physical 
divergences appear and a cutoff should necessarily be intro
duced. Since in the Tomonaga model the procedure to identify 
oC with the cutoff and to keep it finite leads to results 
which are very similar to the ones obtained by using a momen
tum transfer cutoff, it is hoped that the same is true for 
the backward scattering model.

In the case of half-filled band the two parts of the 
Hamiltonian have exactly the same structure. For non-half- 
-filled band the charge-density part reduces to a Tomonaga 
Hamiltonian for which the solution is already known. The 
further discussion relates to the spin-density part, but 
all results can trivially be extended to the charge-density 
part as well, if umklapp processes are important.

We have seen in § 5.3 that the bilinear part of Ц fT
can be diagonalized by a canonical transformation. Using 
this transformation for the whole H , it affects theО
backward scattering term in a simple way, the exponent is
multiplied by e. /see eqn. /5.49/ for / and

Ид. - У ~ £<5,(p)^(-p) + ( r p) Ы

+
/ 6 . 10 /
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<-os (  к 4- kp ) -  Sov ©k ( к -k p

IIb-1_y Si^v ( к + kF j 4- cos 0^ (  к -  kp

/6.16/

is performed to new operators (It) and о̂ (к) . The trans
formed Hamiltonian is diagonal if

'tcu'v 2.0 „ = 1J-
2.ТГ ос к I

/6 .17/

and the spectrum for the two particles associated with of, Ik)
and ^2.^) is

e, си = Svĉl̂  ( к-Ml [ 4 u - o 1 + г *
]"• к ~kP

£x CM - M  - *4 - (Л + kF) L u * (1Ч - М )1 + 4 r lc^-kF
/6.18/

where

Д =
Б 1тг ос

/6.19/

At the particular value of the couplings given in eqn. /6.15/ 
a gap is present in the excitation spectrum of the spin-
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-density degrees of freedom. This has serious consequences 
for the response functions.

In the case of a half-filled band, when the Charge- 
-density part of the Hamiltonian has a form similar to the 
spin-density part, an analogous calculation /Emery et al. 
1976/ gives that the problem with umklapp scattering is 
soluble for

2 ira-s
~  ___

<T '

/ 6 . 20 /

The charge-density excitations have a gap which is given 
by

2.ТГ ex’
/6 .21/

There is no gap if the band is not half-filled.

6.2 Response functions of the Luther-Emery model

The response functions have already been considered 
in § 4.3 in the framework of the renormalization group 
approach and in § 5.2 where exact results were given for 
the Tomonaga-Luttinger model. The same response functions
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will be treated here for the particular values of the 
couplings for which the Luther-Emery solution applies.

The response function defined by eqns. /4.40/ - /4.45/ 
can be expressed in terms of the and 6  ̂ operators
using the bosonization transformations /5.54/ - /5.55/.
To simplify the discussion only one term in 0ХЦ-t) will 
be considered. This will reflect the correct analytic 
behaviour of the whole response function. In real space and 
time representation the response functions

кI U-t) = - i  < T  {M f * (x,-t) Yit U*l Ytt (°,°) Y tT^°i°)}>

/ 6 . 22/

y U + )  =  - i  < т { ч ,г 1  ( - ' Л )  Y i t  , 0 ' o )

/6.23/

A s(x,-t) < T  Y w M  Y,+i-t0.°) Yit
/6.24/

A +( = T  { Y jli. Y .r ^  Y ,t  l ° l'°) Y iT  (0.° ) | >

/6.25/
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when written in terms of the and б-- operators have
the following form:

X x

<j

1 i k F x

/6.26/

/6.27/

/ i b >  s ? t *-*1 s * o.-t)

where

/6.28/

/6.29/

£ ~ (x+)S - < t г t r i
- í w - r

P -IX
лн£

' т 1И
x expt J  f ^(§.ы±?,.ы)]|> ,

/6.30/
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and

s ; u - o  - < t  « P [ £ zL— о2 e p
i \Pl-vpX

^ ( ^ U p )  ±Mi>))] e
-aw,

(Z
(<o, (p) ± 6-г (р))

e *

/6.31/

The P and 0" parts of the response functions can 
be calculated independently. For a non-half-filled band 
the large momentum transfer terms affect only and
is the same as in the Tomonaga model. Therefore 5? is 
easily obtained from the charge-density part of the response 
functions of the Tomonaga model in eqns. /5.28/ and /5.30/ 
by identifying the cutoff Л with Vcxf

( * , * )  -  [ ( * -  - i o c

ti

I 6.32/

where ^ is given in eqn./5.27/. With our present choice 
of the couplings , <jiL -> and remembering
that the Luther-Emery solution is obtained for cj1)( = - G/ŝ ir-cy
* - Vs- (2iru> +<зЧц- ,

* + i V  И-- ~ V
 ̂ 4 1T7, + X r * t

z b f (cä-» * 4 - 1 -  ] ,/l

-Ц *
/6.33/
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In calculating the (S' part of the response functions 
the canonical transformation /5.44/ diagonalizing the bi
linear part of the Hamiltonian is performed first leading 
to

; г 1р1-;Рх Г  e (e,W±s-2((>))]<L

j= e±v(s;ip)t6'l(p))J j >_ .

/6.34/

On the Luther-Emery line, where i / S>~ can be
expressed in terms of the spinless fermion fields introduced 
in eqns. /6.12/ - /6.13/ and we get

S* 1*Л) = 2t <* <T [ [t, l".471 ti Л Л ) «  1 tr J [ч-̂ 0̂,0) ч-Л ] >

/6.35/

s~ ил) = <т [ ил) 4i.u,-t) чл w,°i л<+ (°,o)J > _

/6.36/

These expressions have been studied by Lee /1975/, Gutfreund 
and Klemm /1976/ and Finkelstein /1977/. The low frequency
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behaviour of the response functions is determined by the be
haviour of at large X and . The most important

+■ _ —difference in the behaviour of \  and bg. comes from the 
fact that corresponds to the propagation of a particle-
hole pair in the spinless fermion representation, whereas 
S' describes the propagation of a pair of particles.

In this respect the square root in is of minor importance.
Since

г + 1
< [Чч l°.°) (°. °>J > Ф о (

but

/6.37/

<. Ч ^ С 0,0 ) ^  (0,0 ) >  = 0

/6.38/

therefore in the limit к, "t »  , when < A(x,t) Ъ >  « < < T5>
g°es to a constant, while S,I(x,-bJ vanishes.

Thus the low frequency behaviour of the charge-density and
_ +singlet-superconductor responses which contain is

completely determined by the <̂> part and after Fourier 
transforming Ŝ, of eqn. /6.32/ we get

Ы(ъо) GO

/6.39/

A (ui) ~  GO íf
/6.40/
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Using eqn. /6.33/ for у ) the charge-density response 
function is divergent if

a  >  -  —  Т Г  v r  —  - -  q .  .. =  -  | r  X  ( +• \r. )

/6.41/

and the singlet-superconductor response is divergent if

< I Ч'.х =

/6.42/

The point divides the regions in which one or the
other response function is more divergent.

The behaviour of the spin-density and triplet-super
conductor responses is different. Sg. (x,4 is an oscilla
tory function of 4 and vanishes when x,4 -$> ̂  .
In Fourier representation (к(из) has Fourier components 
only for l̂ | > 2  corresponding to the fact that the mini
mum energy needed for the excitation of a pair of spinless 
fermions is 2. Д, . The response functions are convolutions

. . 4of Sg. (ЛЧ/ю,) with (k-k*, b j-uj1 Due to the existence 
of a gap in , the divergence of will not
be present in the total response function at small to 
Gutfreund and Klemm /1976/ have also shown that these res-
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ponse function are not divergent at the gap edge either.

The calculations can similarly be done for a half-filled
+model. In this case the analysis given for will be

valid for as well. The response functions containing
either or Sp cannot be divergent. The only divergence
is in . since both and go to constant for
large x and "t , Fourier transformation for small к 
and со gives

_ 1
N ^ из ) ьо

/6.43/

The *~»кр response function depends entirely on the 
charge-density degrees of freedom, therefore the same result 
is obtained as in the Tomonaga model, if the band is not
half-filled.
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§ 7. SCALING TO THE EXACTLY SOLUBLE MODELS

We have seen in § 5 and 6 that the Fermi gas model can 
be solved exactly for particular values of the couplings, 
namely for = c^= О /Tomonaga-Luttinger model/ and for
Â« = - I + ОГ +■ >  = - I +■ Ц̂,, +

A solution for other values of the couplings is not an easy 
task. A calculation of the eigenvalues of the Hamiltonian in 
the vicinity of the Luther-Emery limit was attempted by 
Schlottmann /1977a, 1977b/. He found that the gap exists 
in Hg, for < О , though the derivation of this result
contains approximations, which .restrict the validity of the 
calculation to the neighbourhood of the Luther-Emery line.

The renormalization group and scaling arguments presen
ted in § 4 establish a relationship between the original 
problem and a set of problems in which the coupling constants 
have a somewhat different value. If an exactly soluble model 
appears among these equivalent systems, the physical beha
viour of the original model can be predicted using the sca
ling arguments. The scaling relations were derived in § 4 
neglecting and cjt, . We study now the scaling curves
for the most general case with five coupling constants. As 
before,a bandwidth cutoff will be used and the couplings are
<3„, <3<x, = = 4 * and t in this case <3,,
gives no contribution.
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The scaling relations are analogous to those given in 
eqns. / 4.12/ - /4.18/, they have to be complemented by re
lations for the vertices and shown in figs. 26.
and 27. A lengthy but straightforward calculation /Kimura 
1975, Sólyom 1975/ leads to the following equations for the 
invariant couplings /'the superscript R is neglected for 
convenience/:

(  < 2- ■I г  1  .

(  1 « *
+  --------- -------

1 т с 1 < -  +  i  ■
.

/7.1/

, i 
cL / *

/7.2/

^ ( ̂ли ^г)
cL А  i  + ъ  -  ^  <3ч]+ - ]

/7.3/

- Н > - - Ы
/7.4/

fiit
c( X. М ^ ' Ч - )  1г ] + •}

/7.5/
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where X is the relative change of the cutoff. The combi
nation aM(-2.o is used instead of ok for later convenience.

Fig. 27. Low order diagrams of the vertex ^  P1 ̂ <5̂. )•
All the third order diagrams are logarithmically 
divergent.

Fig. 26. Low order diagrams of the vertex Г, = q- L (<3 «5 - А Д •
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The scaling equations form a complicated set of 
coupled equations. No analytic solution is possible in 
the general case. Considerable simplification is achieved 
if the effect of с|ц is treated approximately. We have 
seen that in a model with momentum transfer cutoff the 
term leads to a Fermi velocity renormalization

^  ^  + ^ )

or

°F ^  + + /7>6/
in the spin- and charge-density part of the Hamiltonian, 
respectively. In a model with bandwidth cutoff, where 
has no effect, the Fermi velocities

vr6- = Ъ  /

^  ^  ^ Lr b

/7.7/

are expected to appear. In fact in the scaling equations 
the terms containing с|ц can be incorporated in the cal
culated order into the renormalized Fermi velocities 
leading to

ci <
1

TT vT_ 1 z. _Л L-nr о*9 *}<« +' )

/7.8/
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Í 3 t ±  . ± { _i_ Q
ct * >< 1 -П- vr <̂1" ̂ '-L*- ff

4
'<T4i

/7.9/

d  X ■ i [ ( г
TTOT ^1 ? 2xV?l  C  ^ 1 l )  + ' " ‘ }

/7.10/

^ 3  a 1
d  x  * ( ТГ1ГР^ М + U% ~ 4 0

/7.11/

Two independent sets of equations are obtained, one for <̂ли 
and containing the Fermi velocity , the other
for <̂А Ц and containing the Fermi velocity \r̂ .
The two sets'have the same form if ĉi t ( cj<JL-* <̂ ъ 

and at  ̂-> \ĵ . This is in agreement with the separation
of the Hamiltonian into И  ̂ and in the bosonized
form. These equations agree with the scaling equations 
derived by Emery et al. /1976/, using a somewhat different 
scaling approach by analogy with the scaling treatment of 
the Hondo problem by Anderson et al. /1970/. The cutoff oC 
is the scaling parameter in this approach.
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In disagreement, however, with the separation of 
and H , the scaling equation /7.5/ for c]4 couples all 
the other coupling constants. A renormalization of cj4 itself 
is not surprising, it is present also in the model of Luther 
and Emery. To see this the derivation of the scaling equations 
of the bosonized Hamiltonians is briefly sketched. The 
Hamiltonian Mg- is transformed by the canonical transfor
mation /5.44/ to the form given in eqn. /6.10/. The para
meters of the original Hamiltonian are: the couplings

<-$m. anc* - <51,1 as well as the cutoff oc . After
the canonical transformation the couplings and cj4l( -
appear in two combinations namely in given in eqn.
/6 .11/ /which is the velocity of spin-wave excitations/ and 
in the phase factor \p /see eqn./5.49//. Performing a sca
ling on oc , cj.1JL and \p are renormalized as given in 
lowest order by Kosterlitz /1974/ and in higher order by 
Emery et al. /1976/, whereas the velocity remains .invariant.
Transforming the scaling equations obtained for , у
and into equations for cjlH ( and ĉ M _ ,
eqns. /7.8/ and /7.9/ are recovered for cj1l( and with
U T instead of . In the calculated order can be

approximated by and the two methods lead to the same
results. For ч̂м-̂ чо. / however, from the condition of the 
invariance of we get

+■ %

/7.12/
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Similarly, scaling of oc in leads to a scaling
relation for

cK x
j S  ̂ ( ] г. Д (, q - 2 cj J

Z ír vj'F + г|Ц(, + дЦ1 Л x

1 i/  T T Л (  ̂ +

From these two equations a scaling equation

/7.13/

d  <̂ U L 
< Í A 1 T" T ‘ 4 Ч " ~ ' Ч |сЬ + ■■ ^

/7.14/

is obtained for ^4x . This equation is very similar to
eqn. /7.5/ apart from a factor of 3. There is, however, a
fundamental difference. In the bosonized Hamiltonian <̂ци
is also present and the separation of H? and H^ is
complete if the combinations с^н are used. In the
model with bandwidth cutoff the cjMl coupling gives no
contribution and the scaling equations are all coupled via

о . The difference comes from the different choice of 1 'и
the cutoff. This problem will be further discussed in § 9.
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Neglecting now the renormalization of с̂ ц as a higher 
order correction, the renormalization group equations for <̂ (ll 
and are identical to the equations /4.31/ - /4.32/.
The flow lines in the plane are reproduced in
fig. 28. The Tomonaga-Luttinger model and the Luther-Emery 
model correspond to two crossing lines, the vertical line 

= О and the horizontal line cjAH = - | ц; лг_ / respectively. 
Similar scaling curves are obtained in the - 2<̂ г ( )
plane for the dimensionless couplings (̂ At, - lqx) / 2тг and 

^ / 1 t ^  . The models for which cj1l( >1« | or
<̂4M-2cjY > 1 cj, ( are equivalent to the Tomonaga model at least 
in their О or parts and the results of the Tomonaga
model can be used to determine their behaviour.

11
2TTv6

-  L E line —

Fig. 28. Flow lines of scaling in the and
( f y * , < 3j) planes. The dotted line is the
Luther-Emery line.
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The models for which ĉ „ ^ | ojAJJ or  ̂^л!
scale to a strong coupling fixed point, but before reaching 
this fixed point they pass through the Luther-Emery line. 
Thus the behaviour of these models can be inferred from 
the Luther-Emery solution, not relying on the approximations 
of § 4.3.
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§ 8. PHYSICAL PROPERTIES OF THE MODEL

It was shown in the preceding paragraph that the weak 
coupling Fermi gas model is equivalent to either the Tomonaga- 
Luttinger model or the Luther-Emery model. Thus the properties 
of the model can be obtained from the known behaviour of these 
models. First the possible ground states will be discussed, 
then various quantities such as the susceptibility, specific 
heat, conductivity will be considered.

8.1. Phase diagram of the Fermi gas model

Let us consider first a simple situation when the 
couplings are spin-independent, ĉ1u =. = / the band is
not half-filled, i.e. gives no contribution and the
Fermi velocity renormalization due to is neglected.
The domain of attraction of the Tomonaga fixed point (<^=o) 
is > о . According to Fowler /1976/ < ^ , i s  an
exact invariant of the renormalization transformation, there
fore the fixed point value of is - ~

It follows from the scaling relations for the response 
functions given in eqn. /4.50/ that the со dependence 
of the response functions of the original model with couplings 

and c^ is the same as that of the Tomonaga model
,'K iwith the fixed point value a = ĉ2. ~ I • Inserting this
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value into the exponents in eqns. /5.31/ - /5.34/, a 
singularity is obtained for small со in the density res
ponses if  ̂ > О and in the pairing responses

The behaviour of the system if < О  can be
determined by scaling to the Luther-Emery /LE/ line. The 
spin-density and triplet-superconductor responses are not 
singular on the LE line, so they are non-singular for 
arbitrary < О . The со dependence of the charge-
-density and singlet-superconductor responses is governed 
by the exponent  ̂ /see eqns. /6.39/ and /6.40//-The 
value of ^  given on the LE line in eqn. /6.33/ can be
easily extended by using the invariance of to
give for оц rr о

Inserting this value into eqns. /6.39/ and /6.40/, the 
charge-density response function is divergent if

if l  < °

/ 8 .1 /

/ 8 . 2 /

and the singlet-superconductor response is divergent if



122

< —  TC vT 5 F •

/8.3/

The line Ic^-c^-O divides the regions in which one 
or the other response function is more divergent. The 
phase diagram is shown in fig. 29 /Lee 1975/. For weak 
couplings it coincides with the phase diagram obtained from 
the renormalization group treatment of § 4 .3 .

21Tvf

L E  line

Fig. 29. Phase diagram obtained by scaling to the 
exact solutions of the Tomonaga-Luttinger 
and Luther-Emery models. The response func
tions corresponding to the phases indicated 
in bracket have a lower degree of divergence 
than those without bracket.
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The phase diagram becomes much more complicated if 
the couplings are spin-dependent or if the band is half- 
-filled and umklapp processes are important. There are 
four different regions in the space of couplings limited 
by the demarkation planes - 1 <̂ ъ\ and cjU) - \ .
In region I, where <j4|| and cjAM ^ \ \ , there
is no gap in either the <̂> or 6" -part of the Hamilto
nian; both Ĥ> and И  ̂  are equivalent to the Tomonaga 
Hamiltonian. The scaling equations can be solved approxi
mately only leading to the fixed point values

These values are to be used in the expressions for the 
Tomonaga model. All the four response functions have a 
power law behaviour for small со as given in eqns. 
/5.31/ - /5.34/ with exponents

/8.4/

/8.5/
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Since both and are larger than unity, the
charge-density response function is not singular. The 
dominant singularity is in the triplet-superconductor 
response, though the spin-density and singlet-superconduc
tor responses can also be divergent.

In region II, where Ч*« ^ I ĵ.1 but <̂ u - 2.<jz > I | ,
the models are equivalent to the Luther-Emery model. The 
<5 -part of the Hamiltonian scales to the LE line, 

there is a gap in the 6” -part of the excitation spec
trum. The <̂> -part scales to a Tomonaga model, the um- 
klapp processes have no influence. Analogously to the 
situation discussed in § 6.2 only the singlet-superconduc
tor and charge-density wave responses can be divergent.
Their behaviour for small Co is given in eqns. /6.39/ 
and /6.40/ with given in eqn. /8.5/. The dominant
singularity is in the singlet-superconductor response.

In region III, where > l <j4i| but < ( <js | ;
the situation is inversed concerning the GT and 9 -parts 
of the Hamiltonian. The gap is in the <p -part and there
fore only the charge-and spin-density responses containing

•"f* vcan be divergent. The exponents are ^ - 2  and V ^  - 2 
for the charge and spin-density responses, respectively, 
with ^  given in eqn. /8.4/. The dominant singularity is 
in the spin-density response.
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Finally in region TV, where 4Al( and - 2ĉ  < | <j31 ,
there is a gap in both the & and <p -parts of the 
Hamiltonian. As discussed in § 6.2 only the charge-density 
response function is divergent with an exponent - X .

The phase diagram has been constructed by Prigodin 
and Firsov /1976/ for this most general case. It is shown 
in fig. 30.

9i„
2TTv6

SDW

/
TS //

(SDW) / TS /
I /s' TS

/' , ISSI -

,/ 9 ,( 9 ц  )2V 25 \2TTv6 /
SDW

(COW) |g„l I I I

21Tv6
IV ■' i

1 9 э! /9 Jb
21Tvg V 25 1 \ 2TTvg

cow
ss

(COW) ss

Fig. 30. Phase diagram of the Fermi gas model for 
a half-filled band with spin-dependent 
couplings. The response functions corres
ponding to the phases indicated in bracket 
have a lower degree of divergence.
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The situation is somewhat different if the band is not 
half-filled. In this case the Q part is always equivalent to 
a Tomonaga model, is invariant and у  is given by

/ 8 . 6 /

Depending on whether or < | the analysis given
for region I and II can be repeated, but with /8.6/ instead of 
/8.5/ for ' y . The corresponding phase diagram is shown in 
fig. 31.

91 и -2g2 
-2f7s-

Fig. 31. Phase diagram of the Fermi gas model for not half- 
-filled band with spin-dependent coupling. The res
ponse functions corresponding to the phases indicated 
in bracket have a lower degree of divergence.



127

Gurgen 1shvi1i et al. / 19 77 / studied the phase diagram 
in magnetic field. The energy spectrum of free electrons is 
modified to

£ > )  = £ u + & И - vrf (lkl-kFe) , G - i 4
/8.7/

The energies are shifted differently for the two spin orien
tations, as shown in fig. 32, resulting in different Fermi 
points for the up- and down-spin bands.

Fig. 32. Dispersion relation of the Fermi gas
model in external magnetic field.
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The charge-density response function corresponds to 
the propagation of an electron-hole pair with the same 
spin. The singularity will appear at 2_Wp1. or i.e.
at k- 2 WF + 2 И /лгг . The charge-density wave state will 
therefore be a superposition of two charge-density waves.
The spin-density response corresponds to the propagation 
of an electron-hole pair with different spin orientation, 
and the singularity appears at kpir + kFA = 2 kF .In the 
singlet superconductivity the Cooper pairs are formed from 
electrons with opposite spin, the total momentum of the pair 
will therefore be h  (kFt~kF4J = + f\y f , a non-homogeneous
state appears. For triplet superconductivity the two elec
trons of the pair have the same spin, the total momentum of 
the pair is zero.

The response functions were calculated in the parquet 
approximation, the conclusions can, however, be formulated 
more generally. Since 2kPt and 2.kP<i, are different, back
ward scattering of an up-spin electron with momentum -*-kP  ̂
on a down-spin electron with momentum -kp̂  will necessarily 
produce electrons which are far from the Fermi surface.
In strong enough magnetic field м- W «-̂p (-'TrvJV /l<̂A| ) the
contribution of these processes will be negligible, the 
backward scattering processes are frozen in. The forward 
scattering terms are not affected by the external field, 
therefore the model becomes equivalent to the Tomonaga

- 128 -
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model, and the phase diagram is the same as in fig. 25.

The response function has been studied in § 4.3
and 5.2. It depends on the charge-density degrees of free
dom only, the results obtained in the Tomonaga model are 
therefore valid in the backwc'ird scattering model, provided 
the band is not half-filled. Singularity can appear for 
large negative values of C|, -  Ick.

This completes the determination of the possible ground 
states of a single chain. The ordered phase can occur at T = 0 
only, it can, however, be stabilized at finite temperatures 
if a weak coupling between the chains is taken into account. 
This problem will be discussed in § 12.

8 .2. Uniform susceptibi11ty, compressibility and specific 
heat.

The uniform response functions have been considered 
by Dzyaloshinsky and Larkin /1971/, Fukuyama et al.. /1974а/
and Kimura /1975/ using parquet diagram summation or renor
malization group approach. They studied the uniform magne
tic susceptibility, the charge-density response which is 
related to the compressibility and the specific heat. The 
existence of a gap in the excitation spectrum of the charge- 
or spin-density degrees of freedom will manifest itself in 
these quantities and may lead to unusual temperature depen
dence .



The Long wavelength susceptibilities of the Tomonaga 
model were obtained in eqn. /5.25/. In the so-called к
limit, i.e. for к О  and co/U-^O they go to a finite 
value. This is the situation for and ,̂,,-2«̂  >l<^|
Since N(oo) is related to the compressibility, both the 
magnetic susceptibility and the compressibility are finite in 
this region.

In the case when ce(t <. |cj1JL|, a gap appears in the 
spectrum of the spin degrees of freedom, and as a consequence 
the magnetic susceptibility has an activated behaviour 
/Luther and Emery 1974/.
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X (Q,o) i í  1 ТГ A  v  \' 'г 
г и <г I " k T  /

/ 8 .8 /

The value of the gap has been determined in § 6.1 for par
ticular couplings only. Its calculation for arbitrary 
couplings is a delicate problem, we will return to this 
problem in § 10. The magnetic susceptibility vanishes at 
T - О  and has a maximum at 1 - l  Ag. .

The compressibility has an analogous activated beha
viour for cj,M ~ 2 ĉ  < Ц г|.

The activated behaviour in the specific heat appears 
for half-filled band only in the region < I<̂ ( and
л < I (I . Otherwise there are always excitations
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which have no gap. The specific heat is then linear in 
temperature at loy temperatures, the singularity of the 
Green's function does not show up in the specific heat.

8.3. Temperature dependence of the conductivity

In the Fermi gas model as described in § 2.the only 
way to get momentum relaxation is by umklapp processes.
In that region of temperatures where the kinetic equation 
can be used (a; i ^ i) , the transport relaxation time 
coming from the electron-electron scattering /Gorkov and 
Dzyaloshinsky 1973/ is

T „ '  ~  г  I q u - H 1,
/ 8 . 9 /

where ( Tj is the renormalized vertex for umklapp
scattering defined in fig. 26. The prefactor Г is spe
cific for the 1-d case and follows from phase space argu
ments in contrast to the d L dependence in higher dimen
sions. The vertex Г* can be calculated by the use of 
the renormalization group. The Lie equation for Г5 is

/8.10/
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where л - Г /Е0 . Depending on the sign of о - 2.rj3 , the 
resistivity is increased or decreased compared to the linear 
dependence. The conductivity can be a monotonous function 
of temperature or can have a maximum, though the results 
obtained from eqns. /8.9/ and /8.10/ cannot be taken se
riously if \ l ъ l'f) 1 > 1 .

Unfortunately no better theory is available for the 
conductivity due to electron-electron scattering. One of the 
reasons is that the dominant contribution to the resistivity 
in one-dimensional conductors is probably coming from other 
scattering mechanisms, such as electron-phonon scattering or 
scattering on impurities; moreover the effect of disorder 
can be very important. A detailed discussion of these effects 
is outside the scope of the present review. A detailed study 
of the resistivity caused by impurities is presented in the 
review by Abrikosov and Ryzhkin /1978/. Here only a few 
remarks will be made.

It is known from the work of Mott and Twose /1961/ 
that a random potential, however weak it is, leads to loca
lization of the states in 1-d systems, Berezinsky /1973/ 
made a detailed calculation of the conductivity of a 1-d 
electron gas taking into account the effect of impurities 
exactly. The electron-electron interaction was neglected.
He has shown that the dc conductivity vanishes, indicating 
that the electron states are in fact localized. The conduc-
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tivity at finite frequencies depends on the amplitude of 
backward scattering on the impurity and has a maximum at 
to ~ where 'T3L is the corresponding collision
time. This conductivity is roughly temperature independent.

The interaction between electrons can give rise to an 
essential temperature dependence of the conductivity.
Luther and Peschel /1974b/ and Mattis /1974b/ have shown 
that treating the impurity scattering in Born approximation, 
but considering the electron-electron interaction exactly, 
the conductivity of the Tomonaga-Luttinger model is strongly 
temperature dependent and can be enhanced compared to the 
non-interacting case. It can be divergent at T - О  for 
attractive <3̂  interactions and its temperature dependence 
is

6-(T) - 6"» (.t ) • T ̂
_2ъ.
2ir ov

/ 8 . 11/

where <э0 (т) is the conductivity for impurity scattering 
calculated in Born approximation for the non-interacting 
system. In deriving this expression, Luther and Peschel used 
a relationship obtained by Götze and Wölfe /1972/ between 
the momentum relaxation time and charge-density response 
function

T  = Ь c
CO U. k'

^  N k ~  Ic со

Со -з> о
/8.12/
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where c is the impurity concentration and LC is the 
impurity potential. The main contribution comes from the 
2ЛР part of the charge-density response. The results 

have been extended by Gorkov and Dzyaloshinsky /1973/ 
and by Fukuyama et al. /1974b/ for the backward scattering 
model. Since the impurity scattering is treated in Born 
approximation, the localization effects are neglected. 
Therefore these calculations cannot predict the correct 
low temperature behaviour of the conductivity.
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§ 9. DIFFERENT CHOICES OF THE CUTOFF

It was emphasized in § 2 where the Fermi gas model 
was introduced that the cutoff has to be properly given 
in order to have a well defined theory. It was shown that 
there are two usual choices of the cutoff with different 
physical interpretation. In one case, i.e. in the model 
with bandwidth cutoff, all the momenta are restricted to 
a band which is symmetric around the Fermi points. This 
cutoff procedure was used in the renormalization group 
treatment. The other choice is to have a momentum transfer 
cutoff, i.e. to limit the momentum p in eqn. /2.4/ to 
small values. In fact the transferred momentum is small in
the <̂2 and cĵ terms, whereas it is around for
the cj., and terms. These latter processes can be in
terpreted as coming from phonon mediated effective electron- 
-electron scattering processes in which a phonon with momen
tum -2-̂ f is exchanged. Physically it would be more appro
priate to have a cutoff on the energy transfer, but this 
model is less easy to treat.

In the Tomonaga model where the large momentum trans
fer terms are neglected, a cutoff kt~ A  on p allows a 
consistent treatment as shown in § 5. It was pointed out 
by Chui et al. /1974/ that in a model with phonon mediated 
electron-electron interactions where the backward scattering
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terms are important two cutoffs should appear: a band
width cutoff E 0 and an energy transfer cutoff .
While a model with bandwidth cutoff is properly defined, 
a model with energy transfer cutoff is not well defined 
if backward scattering terms are present and a bandwidth 
cutoff should necessarily be introduced. The energy transfer 
cutoff will be replaced for simplicity by a momentum transT 
fer cutoff kc , where = l*sF кc . The results obtained
for models with two characteristic energies will be reviewed 
in this section.

A different cutoff procedure is used if the bosonized 
Hamiltonian is considered. In this case the parameter oC 
is kept finite and identified with the cutoff. Following 
Grest /1976/ and Theumann /1977/ the problem whether oC 
can be taken as a physical cutoff will be discussed in 
§ 9.2.

9.1. Scaling theories with two cutoffs

The phonon mediated attractive electron-electron inter
action which is used in the BCS theory of superconductivity 
is usually taken in an energy range of width 200  ̂ around 
the Fermi energy, where is the Debye energy. This
cutoff is usually smaller than the real bandwidth, this 
latter plays, however, no role in a 3-d system where only
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the Cooper-pair diagrams are singular. In a 1-d system, 
when electron-hole bubbles should also be taken into account 
on an.equal footing, both cutoffs appear in logarithmic 
contributions. Fig. 33 shows two typical diagrams. In the 
Cooper pair diagram of fig. 33.a the momenta in the inter
mediate state are limited to the neighbourhood of the in
coming momenta if the momentum transfer is restricted to a 
range 1 kc around 2Л,, and the analytic contribution is

/9.1/

The transferred momentum of the electron-hole bubble of 
fig. 33.b does not appear in the integration, the momenta 
in the intermediate state are not limited by the transfer 
cutoff and therefore a bandwidth cutoff has to be used 
leading to

Fig. 33. Cooper pair /а/ and electron-hole polarization /b/

/9.2/

diagrams in lowest order. The wavy line represents 
a phonon exchange.
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The model with two cutoffs, a cutoff kt for the 
momentum transfer and another cutoff E0 for the bandwidth, 
has been studied by Grest et al. /1976/ using the renorma
lization group. These authors show, extending a suggestion 
by Chui et al. /1974/ that this problem can be mapped onto
a one-cutoff problem by eliminating the phase space between 
the energies and E 0 . The new couplings of the one-
-cutoff problem are

T
\ - -32- Ee

Як ,

TT \r /9.3/

and the Fermi velocity vp is replaced by

лг Ъ_
2.ТГ

3« Q(* ? m 
I 

0 
1

/9.4/

The appairent divergence of is cured if this Fermi velo
city renormalization is taken into account. The scaling 
equations derived in § 4.3 can be used to calculate the 
response functions. The low frequency behaviour of the 
response functions of the two-cutoff model is the same as 
that of a one-cutoff model, provided the values cĵ and ^  
are taken for the bare couplings.

An alternative two-cutoff model has been considered 
by Sólyom and Szabó /1977/. Since the momentum transfer
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cutoff is only an approximation for the energy transfer 
cutoff in the phonon mediated electron-electron coupling, 
they made a different approximation by using a bandwidth 
cutoff at cOj, for this interaction. The direct electron- 
electron interaction is also considered with a bandwidth 
cutoff at E0 . It is shown that similarly as in the 
model of Grest et al., this model can also be mapped onto 
a one-cutoff model with effective с̂л and couplings.
Therefore the physical behaviour of the system is the same 
as discussed in § 8 .

9.2. Relationship between the physical cutoffs and the 
cutoff of the bosonized Hamiltonian

The overall behaviour of the Fermi gas model is simi
lar either a bandwidth cutoff or a momentum transfer cutoff 
is used. There are certainly differences in detail which 
were already mentioned in § 2 and in § 9.1. In the solu
tion of the backward scattering model iri § 6 a different 
cutoff procedure was used, namely the parameter cC of the 
bosonization transformation was kept finite to get non- 
-singular result for the energy spectrum. It can be shown 
that this procedure reproduces the results of the Tomonaga 
model with only a slight difference. In the expressions 
/5.19/, /5.28/ and /5.30/ obtained for the Green's function
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and response functions by direct diagram summation, the 
free Green's function contains a bandwidth cutoff <5~Vlc0, 
whereas the correction terms contain only A ~
Calculating the same quantities in the boson representa
tion, the bosonization of the Tomonaga Hamiltonian can be 
done without using eqns. /5.54/ - /5.55/. These operator 
identities are used only to express the fermion operators 
of the Green's function and response functions in terms of 
the boson operators. Finite of leads to an expression 
for similar to eqn. /5.19/ where c< appears
instead of both and A . The same is true for the
response functions. This shows that in the Tomonaga model, 
where exact results are available, o< does not correspond 
exactly either to a bandwidth cutoff or to momentum transfer 
cutoff, of appears at the place of both of them.

The situation is more complicated in the backward 
scattering model. Here no exact solutions are available 
without the bosonization transformation, and therefore no 
definite statement can be made. Calculations made by Grest 
/1976/ and Theumann /1977/ indicate, however, that keeping 
cxT finite poses some problems. Grest compared the pertur- 

bational expressions of the charge-density response function 
obtained in a model with bandwidth cutoff /see § 4.3/, 
using momentum transfer and bandwidth cutoff /see § 9.1/



141

and using the bosonization transformation /see § 6 .2/.
These are denoted by /Sólyom 1973/, /Grest et al.
1976/ and M Lg /Luther and Emery 1974/, respectively.
The results are as follows:

/9.5/

W G (Co = 1
ТГ <J1 « - £ [ 4 21T0-C( 4~ c,)1 J ^  £ 4... ] -

L z ĈJ. 4 -

/9.6/

(«) = 2 -тг<г
CO 0C
vr_ 4 - 2ir*r_

CO oc
4 -

-4-
- < u )  &

L 00 ^ ' 2-vr
/9.7/

The terms proportional to cj1)( and <|4i correspond to 
the same diagram, they differ only in the spin orientations 
on the lines. The corresponding contribution should be the 
same and it should be proportional to the square of the 
contribution of the simple electron-hole bubble. This is 
not true in the Luther-Emery solution. The extra factor 
of 2 in the argument of tL̂r (oo oc / Z u~F) indicates that the
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use of oC may.lead to nonphysical results in the next 
to leading logarithmic contributions already. Similar 
situation has been noticed by Wilson /1975/ by comparing 
his exact results with the results obtained with the 
bosonization transformation in the Kondo problem.

Theumann /1977/ studied the problem under which 
condition the transformations which allow to obtain the 
Luther-Emery solution, can be performed. She showed that 
the canonical transformation /5.44/ preserves the anticommu
tation relation of the fermion fields only if the limit 
oC-*o is taken first. The momentum transfer cutoff A 
appearing in the canonical transformation through and

cannot be identified with VoC , since in this case 
normalization factors would appear in the anticommutators.
On the other hand, the backward scattering term can be 
written as a bilinear expression of spinless fermions for 
the particular value cj4y = - - ( 2t ^f -ь - оЦА) only if the 
limiting process is inverted as in the Luther-Emery solu
tion and first while keeping oC finite.

There are, however, other physical arguments which 
suggest that the choice of a finite oc may be a reasonable 
cutoff procedure. Lee /1975/ pointed out, that the binding 
energy of a singlet pair in a model with linear dispersion 
and with a bandwidth cutoff at /оc is



143

In the limit of strong coupling A reduces to the value 
obtained by Luther and Emery /1974/ supporting that working 
with oC leads to physically correct results. Without 
making strong statements the only conclusion can be that 
the results obtained for the bosonized Hamiltonian should 
always be considered with some caution.
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§ 10. SOLUTION OF THE MODEL BELOW THE LUTHER-EMERY LINE

The strategy of this paper until now was to find 
exact solutions for particular cases of the Fermi gas model 
and to use scaling arguments to extend these results for 
arbitrary values of the couplings. Luther /1976, 1977/ 
has shown that an alternative approach is possible.
He pointed out that an exactly soluble model, the 1-d aniso
tropic Heisenberg model can be transformed to a form equi
valent with the backward scattering model. Knowing the 
energy spectrum of the 1-d spin model /Johnson et al. 1973/, 
that of the 1-d Fermi gas can also be obtained. New features 
will appear below the Luther-Emery line and here we will 
mostly be interested in this region.

Luther /1977/ started from the boson representation 
of the Fermi gas Hamiltonian. Similarly as in § 6.1, two 
transformations are performed on И e , first a canonical 
transformation given in eqns. /5.44/ and /5.46/, then a 
transformation to the spinless fermions introduced in eqns. 
/6.12/ and /6.13/. Leaving у  undetermined for the moment, 
the first transformation leads to
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н, = L_ ^  +  JLir̂ Tp ^ ц# 2-Др) ~  2 ~  ^ Ы  J *

< [ 6*4 Ы  ^ (— р) + ^хДр) ̂ Др)] +

~  Z [ |>  ihF t*. -1J] ^  ^  > -st Ẑ wj

[егДр) 6-Д-р) +- М~р) <*хЫ] -ь

р>о

+ с т Ы < * * М т 2
- тЫ-«-рх

Л «/(MpI+blO.))] + L cl . 
/10.1/

The spinless fermion representation can be used for the 
bacward scattering term if <fX «Д « i . Fixing ^  at 
this value, the Hamiltonian can be written in terms of Ck 
and cL^ introduced in eqns. /6.12/ and /6.13/:

H„. Ä ~~ Z [<эДД -t бД-Д <зД1с|] -
lc>o

- f  Z Д  1« + !;"<= 13 +' Д  U-~v)]l б-ДМ̂С-к) +
It

/10.2 /

where

<0,W = Z  C* C p ' 5,. (it) - Z  ct-Z ct
e p i ™ ' /

/10.3/
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and

лг

/Ю.4/

This Hamiltonian corresponds to a one-dimensional interac
ting spinless fermion system. The interaction vanishes on 
the Luther-Emery line, and the problem can be solved as 
shown by Luther and Emery /1974/. Apart from an attempt by 
Schlottmann /1977a,b/ no direct solution is known for other 
values of the couplings. However Luther produced a remarkable 
solution by noticing the analogy of this model to the spin- Vi
1-d anisotropic Heisenberg model.

The Hamiltonian of an anisotropic Heisenberg model on 
a chain with N sites is

where j denotes the lattice sites on the chain, оC stands 
for the component index x , ^ and ~z. and the exchange 
coupling "3̂  can be different for the three components. 
This model is also called X-Y-Z model. The S=l/2 spin 
problem is conveniently transformed to a spinless fermion

N

/Ю.5/
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problem by using the Jordan-Wigner transformation:

z + =
c *
s i + ' s'* = a; x

4 Ы
exp (

s,'- c *s i -<■ S» =
h

CX.X 
J Ы

e<p (“ vir ̂  ̂ ),

sr = a i
4
t  .

/10.6/

The spin operators expressed in terms of spinless fermions 
obey the correct commutation relations.

With a cyclic boundary condition for the chain, i.e. 
taking SM+4 = we get

H „ ™  =  -  XT \ )  Z  ( o.; a tt( +  <x+ a , ) -

- 7  (. a j ) ~И

“ ~̂ z. 2 1  j ~ 2l ) ( a i+< ~ l) '
/

- + + at a N ) *-*f> ( ' ^ 1  a e J -
U i

N

/10.7/

The last two terms can be merged into the first two terms
N

by extending the summation up to N if X  -  =4 <4 is
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an even number. If it is odd, the Hamiltonian should be 
treated somewhat differently. We will forget about this 
complication for a while, but will return to its cons- 
sequences later on.

Introducing the Fourier transformed operators with

where a, is the lattice constant, the Hamiltonian can be 
written in the form

/1 0.8/

U - V Z ( '\c

+- 4. —cica.4 e a  ̂  -t e

/Ю.9/

where

p

/10.10/
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In zero magnetic field the total magnetization
N

< Sz> < SÍ > = О  . Using eqn. /10.6/ this means that theIr« *
number of fermions OC = 2[ is w /2- * corresponding to a
half-filled band. The Fermi points are at kF a ±. тс/2.0.
The dispersion relation of the free fermions is the same as 
that shown in fig. 1. Assuming that particles lying near the 
Fermi surface play important role, the wave vectors in the 
region W ~ ± lcF contribute in the first and third terms, while 
the regions around О  and 2ЛР should be considered in 
the second term of eqn. /10.9/. Approximating the dispersion 
relation by two linear spectra as given in fig. 2 , the par
ticles corresponding to the two branches will be distinguished 
by the index 1 and 2 referring to the regions around + kF 
and - kF , respectively. Further approximations are made in 
the second and third terms, where cos(W«x) and <?- are
approximated by their first terms in the expansion around 
and and k = ±ltF , respectively. The Hamiltonian, when
written in terms of the operators СХЛ

and ■ 9,(ic)=2<4^k. °4p , has the form
P P

^ xyz. ~ t-icp ) ~~
It

- —  2  [ w  ?< M  +- sveo] -
n k>.

- ^  Z +N и.

+  * i  “  Л  ) •+“ a 2 . , -k -k J .
Ic

/10.11/
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The momentum summation is cut off at -(/cl . After a further 
transformation i ct̂  and using that the kinetic
energy term can be written in terms of <p as in the Tomonaga- 
Luttinger model, we have

^ * y z  ~  a  {  ~  С  T  +  ^ ) ~  F  ^ z ]  2  9 л ( - к ) 4- ? 2. ( - k )  4 -

+ ~  2. ?<(M pj-d +L- ^

- 7 l U - 7 J Z ( a 2.)lc-lcF + a,“ГД-lc*
/10.12/

This Hamiltonian is the same as /10.2/, if measured in units 
of cx . The correspondence between the coefficients is

( X [ 2_(?< * 'Ц) “ ЯР - ц" ~ ^ ^  ^

/10.13/

CL  ̂ - - V  <J« - X  X  [ Vt, 4- ±  C<j4. - <Jnj] ,

/10.14/

_3i£_
2.-1Г- oc

/10.15/
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The two soluble cases of the Fermi gas model correspond to 
simple situations in the X-Y-Z model. In the Tomonaga 
model cj4L= 0  . This corresponds to which is the
Heisenberg-Ising or X-X-Z model. The r.h.s. of /10.14/ 
vanishes on the Luther-Emery line, i.e. the Luther-Emery 
model corresponds to ~]T = О  which is the X-Y model.

The low-lying excited states of the X-Y-Z ж model have 
been determined exactly by Johnson et al. /1973/ using 
Baxter's relation /Baxter 1971, 1972/ between the energy 
levels of the X-Y-Z Hamiltonian and the eigenvalues of 
the eight-vertex transfer matrix. Using the correspondence 
in eqns. /10.13/ - /10.15/, the energy spectrum of the 1-d 
Fermi gas model can also be obtained.

Before writing down the results, it is appropriate to 
comment on the exactness of this correspondence. In the 
course of transformations leading to eqn. /10.12/, two 
approximations were made. First we simplified the Hamiltonian 
by neglecting in eqn. /10.7/ the phase factors

N.
ахр (чт Q.t) • This factor is 1 if the number of particles
is even. It is equal to -1 if the number of particles is odd. 
The Hamiltonian has to be treated separately in the two 
subspaces. Since the evenness and oddness of the number of 
particles is invariant under the further transformations, 
the Hamiltonian has to be treated separately in the subspaces
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in which the number of spin-wave quasiparticles is even 
or odd. As a consequence, the excited states of the system 
are obtained by adding pairs of quasiparticles to the ground 
state. The gap in the excitation spectrum is twice as big as 
the gap in the single spin-wave energy, but states with a 
single spin-wave are not eigenstates of the X-Y-Z Hamilto
nian. The equivalence with the Fermi gas model was obtained 
for the simplified Hamiltonian, therefore there is no 
restriction in the Fermi gas model that only pairs of quasi
particles can be excited.

An important approximation was made in eqn. /10.9/
. i.k o,when LosU*0-) and were expanded and only the first terms

were considered. Luther /1976/ argues that a continuum ver
sion of the X-Y-Z model can be introduced in the limit 
cx -> О , and the steps leading to eqn. /10.12/ are exact in 
the continuum limit. The continuum version of the Jordan- 
Wigner transformation was constructed by Luther and Peschel 
/1975/. There are of course important renormalizations of 
the coupling constants and it is in general a hard problem 
to consider this renormalization explicitly. Luther sugges
ted a smart procedure to avoid this problem. As mentioned 
before, the X-X-Z model - ”3̂ ) corresponds to the
Tomonaga model. The correlation functions can be calculated 
exactly for the X-X-Z model /Johnson et al. 1973/.
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On the other hand these quantities are known for the Tomonaga 
model as well. The corresponding problems should have the 
same exponent. The exponents appearing in the calculation for 
the Tomonaga model are expressed in terms of ^  given in 
eqn. /5.26/, which can be written as

К*" ^  * 2.ТГ
4 ^F + iV + JLtt 1 1

- ^  + 2Í Ц ци ~ j£r -I

/10.16/

if and are used instead of ĉ Im and . Calcula
ting the response functions for the Heisenberg-Ising model, 
the corresponding exponents are obtained in the form

Tfr =  4 -  £  ’ 4 -  ?

/10.17/

Using the identification given in eqns. /10.13/ and /10.14/
for  ̂ , the two expressions are not equivalent. This0
apparent contradiction is resolved if we take into account 
that eqns. /10.13/ - /10.15/ were obtained without performing 
the renormalization necessary in the continuum limit. In this 
limit, when c x О  , the renormalization should lead to
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identical exponents. Thus the identification of the renor
malized parameters of the spin model in the continuum limit 
with the parameters of the Fermi gas should be done by 
equating /10.16/ and /10.17/. It should be noted, that near 
the LE line, where is small, the expansions of /10.16/
and /10.17/ agree to first order, indicating that in the 
weak coupling limit of the spinless fermion problem states 
lying far from the Fermi surface, in a region where the 
dispersion is not linear, do not contribute essentially.

A further consequence of the continuum limit is that the 
anisotropy /(3*  ̂ should go to zero as <x-*0 .
One can therefore use the excitation spectrum valid in the 
limit of small anisotropy; £ ~ (Зх - 3^ j  / ( 3X -  3X ) О .

In this limit Johnson et al. /1973/ find that in the lattice 
theory there is a gap in the spin wave spectrum with

where у-л. is given in eqn. /10.17/. In the continuum limit
and i  should be replaced by their renormalized values.

The renormalized value of diverges as W cl . At the
/*-/тsame time i  should go to zero as cx to have a finite

/

/10.18/
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gap as сx О . It follows from eqn. /10.15/ that the 
quantity corresponding to the anisotropy lx""Xj is ,
therefore Luther /1977/ concludes that the value of the gap 
in the Fermi gas problem is

A  -
ТГ So'vit I V :/ i

к

r

)

/10.19/

where now yu. - тг ) is given by eqn. /10.16/. The
identification of yu and  ̂ with the corresponding 
expressions- in the Fermi gas model is not rigorous in a 
mathematical sense. It is, however, very reasonable physi
cally to use this identification, though certain problems 
arise. The exponent “it/2-м diverges when oj,,u->0 , i.e.
the gap vanishes on the line — О if [с̂ х| < -vr̂
This contradicts the result obtained in the renormalization 
group treatment according to which the scaling trajectories 
go through the —О line as shown in fig. 28. This dis
crepancy is either the consequence of treating the cutoff 
in a particular way or is due to the ambiguities in taking 
the continuum limit. The results are probably correct in 
the vicinity of the LE line where the renormalizations 
are unimportant.

Though the expression of yu. is terms of the Fermi gas 
parameters depends on the cutoff prescription, it is expected
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that the analogy with the X-Y-Z model allows a qualitati
vely correct behaviour. There is a gap in the excitation 
spectrum for any cjA1( < О . On the LE line itself the gap 
determined in § 6.1 is reproduced. Here we have to take 
into account that,as discussed earlier in this paragraph, 
the gap of the X-Y-Z model is twice the single particle 
gap.

Completely new features appear below the Luther-Emery
cline, i.e. for <jA)l < - - тг .In this region, which

corresponds to lx > 0  in the X-Y-Z model, bound states 
appear in addition to the free state solutions. In the limit 
of weak anisotropy, the energies of these excitations are 
given by

A r , I x *- i, iЙ ,  w  \  ^  ,

/10 .20 /

where

Д w. Л A, 2_,

/10.21/
cThese new states appear first at - - у  i t where

yLA. = 'тг/2_ • In the 'X-Y-Z model these are bound spin
wave states, since for a little bit stronger coupling,



157

their energy is lower than the energy of two free spin waves. 
The binding energy increases with stronger coupling.
At y  it , then at ^  i r  etc., further bound
states will appear.

In the Fermi gas model where one should not distinguish 
between states with even or odd number of particles, the 
bound states appear at twice the single particle gap, but 
can descend below it for strong enough coupling.

The appearance of bound states in the strong coupling 
regime will give rise to significant modifications in the 
response functions if compared with a model in which only 
free states are present. It is expected that the correlation 
function critical exponents will be modified. In the scaling 
treatment in § 7 where scaling to the LE line was used 
to get information about the region above the LE line, 
there was no indication that scaling cannot be continued to 
couplings below this line. Nevertheless, since the appearance 
of bound states is not compatible with the simple scaling 
ideas suggested for this model in § 4.2 , it is believed 
that this scaling does not hold any more in the strong coup
ling regime.

One should not, however, overemphasize the results 
obtained for the Fermi gas model using this analogy with
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the X-Y-Z model. This latter model is related directly 
to the spinless fermion model. It was mentioned already 
that the transformations leading from the original Fermi 
gas model to the spinless fermion model are not exact 
if oC in the bosonization transformation is identified 
with the cutoff and kept finite.
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§ 11. RELATIONSHIP BETWEEN THE FERMI GAS MODEL AND OTHER 
MODELS

As we have seen in the preceding section the spin-1/2 
X-Y-Z chain is equivalent to the Fermi gas model and the 
known solution of the spin model can help to construct the 
solution of the Fermi gas model. A remarkable feature of 
this particular model is that equivalence to several other 
models can be found. 1-d and 2-d spin models, field theore
tical models and the two-dimensional Coulomb gas are among 
these equivalent models. Using these relationships a large 
class of models can be studied, most of which are of inte
rest on their own right.

11.1. The two-dimensional Coulomb gas

Chui and Lee /1975/ recognized that the 1-d Fermi gas 
model is equivalent to the 2-d classical plasma with a long 
range logarithmic Coulomb potential. They started from the 
bosonized form of the Hamiltonian as given in eqns. /6 .6/ -
/6 .8/. For a non half-filled band the charge-density part 
is a Tomonaga model Hamiltonian and only the spin-density 
part will be considered. Similar equivalence holds for 
if umklapp processes are not negligible.
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After a canonical transformation H« takes the former
given in eqn. /6.10/. If the backward scattering term is
treated as a perturbation, the partition function 
~2_ - < ) > can be written as Z — Z Q- a Z where

Y_ Q i-s the partition function of the system without back
ward scattering and

a Z - Z  1 ( 2 ^ 1
b

(b тз Tr

Xv\. 2.V4-

((li Л*;) Y, < ̂  “ P { SaUI'íí <;)]!>J V -̂'4 J I-r\ ^
/11.1/

where
- ̂ IWl -clcx

/11.2 /

and the time dependence is defined in the usual way. 
depending on whether the term written out in eq. /6 .10/ or 
its complex conjugate is taken. The summation over Q„ goes 
over all possibilities in taking one of the two terms.
The average over the noninteracting Hamiltonian leads to 
/Schulz 1977/

i

1
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A Z <ä г. т,
11

(2 ТГ ос) Ы т ь, J ^ т1. ) d r ,  -
0 О о

lw 1-
Х ZL **Р [ - 1 е У 2-л Sq M  Selj| 1*'~ X,/ êr'Ci ~ U 5Tj)j

i*< <a i>j--<

/11.3/

wi th

-j(x,̂ ] - J Г /, , L V  - ‘V W 1 lV  4 ‘V'V
dcy — ■ [_ H  ^ <v) <2- + ̂ <у e

- 1 - 2 4  ] 4- I 111.4/

where

/11.5/

Using the symmetry properties of the function and
taking into account that the number of possible combinations 
in the summation over Q  is (2 к. ) ! / (к 1) , since an
equal number of terms with Ŝ (cJ - \ and sQ(<)=-< should 
be present, we get

д Z 2 ____
(̂Дтгч* )г

L

5 1  ( j
О  o l~''

)<

г < { - * «■ zz
v>i = 1

S; S «/ i'
/И.6/
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It is possible to arrange the terms with S; = ~ {  , 
that S- = i for i = \ to »V and S;*-4 for 1= to Zk, .

Following Chui and Lee /1975/ one can recognize in 
eqn. /11.6/ the grand partition function of a classical real 
gas of two kinds of particles with equal masses but opposite 
charges moving in a two-dimensional area and interacting
via a potential proportional to . In the limit oi-5>0,
this potential is the two-dimensional Coulomb potential on 
the surface of a cylinder of length L and circumference 
Ug.fi . In the zero temperature limit the usual logarithmic

2-d Coulomb potential with soft core cutoff is recovered

2- <^U^)
( o f  +- l ^ l ) 1 +

oC

2.
X

/11.7/

From the comparison of eqn. /11.6/ with the grand par
tition function of the 2-d Coulomb plasma, the fugacity 
"z. =. e->cp C.— jiy yu.) , where yu, is the chemical potential 
and is the inverse of the plasma temperature,
corresponds to

e ~ (**/* ^  fr*

/11.8 /
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and the charge e is related to у  by the relation

Pe = Ц = Ц
\r.

/11.9/

With this identification all that we know about the Coulomb 
plasma can be translated to the Fermi gas model and vice 
versa.

The properties of the 2-d Coulomb gas have been exten
sively studied recently. Hauge and Hemmer /1971/ and 
Kosterlitz and Thouless /1973/ pointed out that this system 
has a metal-insulator transition at a finite temperature.
It is interesting to remark that according to Chui and 
Weeks /1976/ and Zittartz /1978/ the neutral Coulomb gas 
in more than two dimensions is a conductor at any tempera
ture, whereas it is insulating at any temperature in less 
than two dimensions. Phase transition occurs in two-dimen
sional system only, at low temperatures particles of oppo
site charges are bound into pairs, but at high temperatures 
the system shows the usual properties of a free particle 
plasma. Contrary to this result Kosterlitz /1977/ found a 
metal-insulator transition for c i й  1 . This difference arises 
from different formulation of the renormalization transfor
mation .
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Zittartz and Huberman /1976/ calculated the wave vector 
and temperature dependent dielectric function in the
low density limit. Instead of a metallic and an insulating 
phase they find three different temperature regimes:

/ i / At low temperatures, i.e. for <i~ > Ц (T < с А  ),
the system behaves like an insulator, £(̂ cy,T) has a finite 
value at О . All charges are bound into pairs.

/ ii / In an intermediate temperature range 2. < < Ц

(У~/9кв< Т <  ег/1 кь) the pairs start to break up, the system 
goes continuously into a metallic-like state,the dielectric 
function is singular for small q I  oC <^ { , where <X is
a cutoff i.e. the minimal distance between the particles/. 
According to a suggestion of Everts and Koch /1977/ which 
was verified by Grinstein et al. /1978/, the behaviour of 

£- С су, T ) is different for «  i and cy \ ̂  i ,
where  ̂ is a correlation length given by  ̂ ) f

w i t h  V  -  2. (\}л — I V  « X

£(<*• T ) = \

е с т )
4 «  i

\ +•
T X T )

4\

/ 11 . 10/



/ i i i / In the high temperature region, i.e. for , г < 2.

( T > aL~ ( 2.WB ) all the charges are free, the fully screened 
Debye-Hückel dielectric function of a plasma is recovered,

I , С ( t )t < V T) , , S T f ,

/11.11/

The transitions between the three regions are continuous. 
The metallic screening characteristic for the high tempera
ture region is preserved in the intermediate temperature range 
for very large distances /very small q/. As the temperature 
approaches e /l»L v goes to infinity and in the low density 
limit the correlation length diverges as well. No metallic 
screening can be seen, the system becomes insulating. This 
result shows that the metal-insulator transition is a smooth 
one, the phase transition is of continuous order /Müller- 
Hartmann and Zittartz 1974, 1975/.

These three temperature regimes correspond to three 
regions in the space of couplings of the 1-d Fermi gas. Since 
the investigation of the Coulomb plasma is possible in the 
low density limit, i.e. for z -> О , the corresponding 
results in the 1-d Fermi gas are related to the neighbourhood 
of the line. Using the equivalence expressed in eqn.
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/11.9/, the low temperature region corresponds to > О ,
the high temperature region corresponds to < - T T °V
and the intermediate temperature region to - £ О
We can recognize in these values the boundaries obtained 
earlier in the 1-d Fermi gas. The region > О
scales to the Tomonaga model, the correlation functions 
have a simple power law behaviour with continuously varying 
exponent. In the 2-d Coulomb gas the corresponding critical 
exponents vary continuously with temperature.

The gap in the region <0 is related to the
screening length in the plasma, which in turn is inversely 
proportional to the number of free charges. The Debye-Htickel 
theory of the plasma can be applied in this region. In the 
usual approximations of this theory the free energy can be 
calculated leading to /Schulz 1977/:

F = E L_
U,

Ц
(V* A

'It
A

-  a / t

/ 11.12/

where the gap A is given by

A oC 2. ТГ
/11.13/

The exponent in this expression agrees with the one in
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eqn. /10.19/ if the equivalence in /11.9/ is used; the
numerical factors are somewhat different.

The analogy shows clearly that the behaviour of the 
1-d Fermi gas is different below and above the LE line 

= — — тг vr̂ . Unfortunately this analogy does not 
indicate the existence of a set of bound states for

<3,. <-fir'V
The analogy with the 2-d Coulomb gas allows also to 

calculate the response functions of the Fermi gas. Chui 
and Lee /1975/ have shown that e.g. the spin-density part 
Sg. C * ,^ ) of the singlet-superconductor response A s(x,t) 

/see eq./6.28// is related to the screened interaction of 
two charges ± y- g. imbedded into the Coulomb gas. This 
interaction can be determined from the knowledge of the 
dielectric constant in the low density limit leading to the 
already known result for the response function /Gutfreund 
and Huberman 1977/. The magnetic susceptibility has been 
studied by Everts and Koch /1977/. Unfortunately the tempe
rature dependence of this quantity does not produce the 
dependence expected for the 1-d Fermi system, showing that 
the analogy to the Coulomb gas has limited usefulness in 
the study of the behaviour of the 1-d Fermi gas.
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11.2. Spin models

We have seen in § 10 that the spin-1/2 X-Y-Z chain 
problem can be transformed by a Jordan-Wigner transformation 
to a spinless fermion problem which in the continuum limit 
is equivalent to the spinless fermion representation of the 
spin part of the backward scattering problem. This analogy 
has been used to obtain the solution of this latter problem 
for < О

It is remarkable that the Fermi gas model is related 
not only to the spin chain problem but also to two-dimensional 
spin problems. Unfortunately this relationship is rather 
controversial, various approximate treatments lead to comple
tely different mappings between the 2-d X-Y model and the 
1-d Fermi gas. Following Kosterlitz and Thouless /1973/, 
Villain /1975/, Zittartz /1976a, 1976b/ and Jósé et al. /1977/ 
used the analogy between the X-Y model and the 2-d Coulomb 
gas to describe the low temperature behaviour of the X-Y 
model. On the other hand Luther and Scalapino /1977/ mapped 
the 2-d X-Y model directly onto the 1-d Fermi gas and 
transcribed the results known for the Fermi gas to the corres
ponding quantities in the X-Y model. The main ideas of the 
various mappings are briefly sketched.

The low temperature behaviour of the classical planar 
rotator model /X-Y model/ defined by the Hamiltonian

Cos

/11.14/
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where S- is a 2-d classical vector of unit length at 
the lattice site R; and is the polar angle of this
vector, has been studied by Wegner /1967/ and Berezinsky 
/1970/. They used a harmonic approximation, i.e. replaced 
Cos by and studied the properties of this

model, which can be called harmonic rotator model. This is 
equivalent to taking spin wave excitations only and the 
correlation functions can be calculated giving

—?» >< st s,. > 1
/11.15/

if first neighbour interaction is assumed. The magnetization 
in an external magnetic field lv goes as

_1 _ 
~  L ц'г

/11.16/

and the zero field susceptibility diverges for T < Ятг 3
Berezinsky /1970/ emphasized that these results cannot 

be easily extended to high temperatures. Here such spin- 
-configurations may be important in which the spins make a 
full turn of CL'K and the neglect of the 2лг periodicity 
of the original interaction in the harmonic approximation 
can have serious consequences. Kosterlitz and Thouless /1973/ 
pointed out that these spin-configurations /called vortex 
configurations/ are metastable and should be present at any 
finite temperature in a 2-d X-Y model. The energy of a 
vortex configuration is a logarithmic function of its size.
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The interaction energy between two vortices is also loga
rithmic. Assuming that the spin waves and the vortices do 
not interact, Kosterlitz and Thouless proposed in a rather 
intuitive way a Hamiltonian

describes the interaction of vortices situated at -t and 
is the vorticity and cx is the lattice 

constant, finally the last term corresponds to the chemical
potential.

It can be seen that the vortex part of the Hamiltonian 
is equivalent to the 2-d Coulomb gas; the same logarithmic 
potential appears here. It is a plausible assumption that only 
vortices of unit strength are present since the creation of 
vortices with |<̂. J>1 is energetically not favourable. With 
this assumption the identification of the parameters gives

where p>xV is the inverse temperature of the X-Y model, 
and is the inverse temperature of the 2-d Coulomb gas.
Using eqns. /11.8/ and /11.9/, the relationship between 
the X-Y model and the 1-d Fermi gas is expressed as

И - 1 ~ 3 Z  I +  ̂ ^
/11.17/

where the first term corresponds to the spin wave excitations, 
cpt*̂) is the phase at the point + , the second term

/11.18/
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\ 4/,

\T 2rI "IC u,

/11.19/

The properties of this model were studied by Kosterlitz 
/1974/ using a cutoff scaling on the partition function. 
These scaling equations agree with the corresponding scaling 
equations of the 1-d Fermi gas model in the weak coupling 
case. In accord with the two distinct regions ĉ <(t >( ^nl 
and öj,„ , the behaviour of the X-Y model is
very different whether TT - 4 > 1 тг тс1!) or
х fhv ̂   ̂< 2-г «.* р (- (\у тс3 lV  . The critical temperature is
obtained from

ТГ 1 - 4 l ТГ <L < W Tc
/ 11 . 20 /

In the low temperature region, i.e. for T < T 0 , 
the vortices are bound into pairs, similarly as in the 
Coulomb gas the particles with opposite charges are bound 
into pairs, and they can be scaled out when the lattice 
constant is scaled to larger values. The problem is then 
equivalent to a spin wave problem and the correlation 
functions decay according to a power law as in eq. /11.15/, 
the dependence of on the physical /unrenormalized/ T
and TJ can be obtained from the scaling curves shown
in fig. 34.
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Fig. 34. Scaling curves of the 2-d X-Y model. The 
dashed line is the locus of the original 
X-Y model.

The X-Y model at Tc is equivalent to a model with
out vortices / It  < n c p = О / and = 0

Putting in this value into the exponent in eq. /11.15/,
^  ^ at Tc . For temperatures T < T0 ^ < */ц and

^ vanishes at T=o . Equivalence with the spin wave

1



173

problem indicates that the susceptibility is divergent in 
the whole temperature range T ± T c

The vortices have very drastic effect on the behaviour 
of the X-Y model at > T. . The vortex pairs start to 
break up resulting in an exponential decay of the correla
tion function. If the analogy with the 2-d Coulomb gas were 
complete, a further transition should occur at 1 H  = -
and in the high temperature region all the vortices should 
already be free. It is very probable that the analogy breaks 
down in the high temperature region and one cannot get a 
reliable description of the high temperature behaviour of 
the X-Y model in this way.

The analogy in the low temperature region has been 
further developed by Villain /1975/ and Jósé et al. /1977/. 
While the introduction of vortices by Kosterlitz and Thouless 
was done intuitively, Villain has shown that a modified form 
of the X-Y model in which cos q> is replaced by a mathema
tically more tractable expression, which is, however, 
periodic and thus allows the possibility of vortex states, 
can indeed be transformed into a decoupled system of spin 
waves and vortices. The difference between this model and 
the one treated before is that everywhere in eqns. /11.17/ - 
/11.20/ 1 should be replaced by A(3) ,
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А О )  = 1 (< -
/ 11 .21/

which in the low temperature region coincides with 1 .
The physical picture and the values of the exponents at Tc 
are the same as in the model of Kosterlitz and Thouless /1973/.

Jósé et al. /1977/ have pointed out that the Villain 
model or something very similar to it can be obtained from 
the original X-Y model by using the Migdal recursion rela
tion /Migdal 1975/. This justifies the use of the Villain 
model to study the properties of the X-Y model. In this way 
it is possible to show that the above-mentioned treatment of 
the X-Y model gives a reasonable description at low tempe
ratures but cannot be trusted above Tc

Zittartz /1976a, 1976b/ approached the problem of the 
2-d X-Y model in a different way. He relaxed the restric
tion D ̂  - 2.ir by allowing the angles to vary in the inter
val (-о«,*«) . Furthermore he introduced a term
which favours small angular differences. The Hamiltonian

и > - 2  [ * -  cos - 4>|-) 4- { >  (tp. - cf-|l j

/11.22/
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where ^  is the external magnetic field, is not 2ti.- 
periodic, but averages of 2 тс - periodic functions calcu
lated with should lead to the correct expressions ip
the limit ^ О  . In zero field Zittartz finds spin wave 
excitations only with the dispersion relation

£ k = 1 <i. A  11, t ) u.1

where cc is the lattice constant and

А  (Т.т) = 1 { \-X + )

/11.23/

/11.24/

at low temperatures and it vanishes at high temperatures.

As a consequence of the к dispersion, the correla
tion functions have power law behaviour for large distances, 
like in a spin wave theory, unless A (1,1“) vanishes at a 
finite temperature T  above which the decay is exponen
tial. In the harmonic rotator /spin wave/ model where tos 
is approximated by 4 - í  4»1 , т) is equal to "3

and is independent of T  , thus the correlations are always 
power law like. Zittartz assumes that in the X-Y model a T
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А ( 3 | =  1 ( 4 -  ^  ),
/11.21/

which in the low temperature region coincides with .
The physical picture and the values of the exponents at Tc 
are the same as in the model of Kosterlitz and Thouless /1973/.

Jósé et al. /1977/ have pointed out that the Villain 
model or something very similar to it can be obtained from 
the original X-Y model by using the Migdal recursion rela
tion /Migdal 1975/. This justifies the use of the Villain 
model to study the properties of the X-Y model. In this way 
it is possible to show that the above-mentioned treatment of 
the X-Y model gives a reasonable description at low tempe
ratures but cannot be trusted above

Zittartz /1976a, 1976b/ approached the problem of the 
2-d X-Y model in a different way. He relaxed the restric
tion D ̂  £ 2-тг by allowing the angles to vary in the inter
val (-oo,»-) . Furthermore he introduced a term -£ > (̂>. - . j1"
which favours small angular differences. The Hamiltonian

и *  -  2 1  " 3 i j  [  4 -  c o s  ( i f  - -  ц > - ) { У  (у. - • | l  j  _

4

- K, 2 -, cos f

/11.22/
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where ^  is the external magnetic field, is not -
periodic, but averages of 2tc - periodic functions calcu
lated with should lead to the correct expressions ip
the limit ^ О  . in zero field Zittartz finds spin wave 
excitations only with the dispersion relation

£ k - l o t  A O , t ) k.1

where cc is the lattice constant and

A  (T,>) = 1 ^  + ... )

/11.23/

/11.24/

at low temperatures and it vanishes at high temperatures.
2.As a consequence of the к dispersion, the correla

tion functions have power law behaviour for large distances, 
like in a spin wave theory, unless A ( 1,t ) vanishes at a 
finite temperature T  above which the decay is exponen
tial. In the harmonic rotator /spin wave/ model where cos 

is approximated by * - i , A 17J T ) is equal to *3 

and is independent of T  , thus the correlations are always 
power law like. Zittartz assumes that in the X-Y model a *1
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exists and A(̂ ,7") =0 for any T  > T 1 . In the 
low temperature region T < t ' he obtains for the two 
angle correlation function

<4; - Ri I

/11.25/

where now

T
X = (,тг A p,T)

/11.26/

The results obtained for the singular part of the free 
energy and for the magnetization are also similar to the 
results of the spin wave theory, namely

X L

/11.27/

At very low temperatures, where A - , the results of the
spin wave theory are reproduced. However, according to 
Zittartz /11.25/ and 11 1 . 2 1 1 are valid in the whole tempera
ture interval О < T  с T  . There are two characteristic 
temperatures in this temperature range. Below defined by
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^(Ti)-Z the susceptibility is divergent, while above it 
the susceptibility is finite. Above T 2 higher derivatives 
of the free energy with respect to the magnetic field can 
be divergent. When the temperature reaches defined by

the free energy is infinitely many times diffe
rentiable. The correlation length in zero magnetic field is 
divergent for any T  < and behaves for finite field as

* _  Z.

I  ~  ‘" г  .

/11.28/

Contrary to this behaviour, the phase transition found by 
Kosterlitz /1974/, Villain /1975/ and Jósé et al. /1977/ 
occurs at \ { J c )  ~ V m already. Above this temperature the 
correlation length is finite, though it does not have the 
usual power law behaviour,

 ̂ ~ tltp [_ ft <.т-те)*].

/11.29/

The disagreement stems probably from the failure of 
Zittartz's method to account for the vortex excitations.

It is interesting to remark that Zittartz / 1976a, b/ 
found an analogy between his model and the 2-d Coulomb gas.
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This analogy is, however, very different from the one 
suggested by Kosterlitz and Thouless and described above. 
The partition function in a finite magnetic field ív can
be written as

Z  = Z 0 a Z

/11.30/

where Z 0 is the partition function in the absence of 
field and A Z corresponds to the excess free energy due 
to the field. Expanding AZ in powers of , Zittartz
found an expression similar to /11.6 / and the following 
correspondence holds:

_L _ „-(V/* чи.
~ G- - ------

T IT) Li
+- ±_ „ пЧг.

/11.31/

This analogy holds for Д 2 only. The scaling relations 
of the 2-d Coulomb gas and 1-d Fermi gas predict that ^ 
is a relevant perturbation if ^lT ) ^ ^ i.e. 
is relevant if С О /, and it is irrelevant if T > ,
in agreement with the result of Jósé et al. /1977/. Although 
formally low temperatures in Zittartz's model correspond to
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high temperatures in the Coulomb gas and vice versa, this 
analogy does not help in the study of the X-Y model, 
because Z 0 - for which this analogy does not hold - will 
determine its behaviour.

A completely different approach to the study of the 
critical behaviour of the 2-d X-Y model has been proposed 
by Luther and Scalapino /1977/. They criticised the separa
tion of spin wave and vortex excitations explicitly made 
by Kosterlitz and Thouless /1973/. This separation holds in 
the Villain model, too. Luther and Scalapino argue that this 
separation is not correct near the critical point and in 
contrast to Zittartz's treatment it is not sufficient to 
consider elementary excitations with quadratic dispersion. 
They transform the Hamiltonian of the 2-d X-Y model in a 
series of transformations to a 1-d fermion problem and then 
use the known properties of this problem to determine the 
correlation functions of the 2-d X-Y model.

Universality of critical behaviour suggests that near 
T o the 2-d X-Y model and a two-component 2-d Ginzburg- 

Landau model have the same properties, one can therefore 
study the model in which the free energy functional is

^ [ч* j - J dU <4̂  ex I \|> Ы  11 4 I 4-

/11.32/
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where vp is a complex two-dimensional field and the 
partition function can be expressed as a functional integral

The transfer-matrix method allows to reduce the d di
mensional functional integral to a /d — 1/ dimensional quantum 
mechanical problem as shown by Scalapino et al. /1972/ and 
Stoeckly and Scalapino /1975/. The free energy and the order 
parameter correlation function of the original problem can be 
obtained from the ground state energy and low lying excitations 
of the transfer Hamiltonian. Stoeckly and Scalapino /1975/ have 
shown that in the particular case of a complex /two-component/ 
2_d Ginzburg-Landau model the transfer Hamiltonian corresponds 
to a 1-d set of linearly coupled anharmonic oscillators. This 
problem can be approximated if only low-lying states of the 
oscillators are considered in which case the equivalent 
Hamiltonian is a spin-one chain problem,

z  = « p  C-fb f {y })

/11.33/

/11.34/
with 3 a spin-one operator and
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The most serious approximation in the whole consideration 
of Luther and Scalapino is probably the one in which only 
the three lowest eigenstates of the individual oscillators 
are kept. A priori it is not clear that the vortices are 
correctly described in this approximation.

Luther and Scalapino /1977/ argue that in the low lying 
states of this system every site is in the triplet state, 
therefore *3 can be replaced by Ь  L +• S where both L 
and S are spin one-half operators. Then they show that 
using a continuum version of the Jordan-Wigner transformation, 
the transfer Hamiltonian can be expressed in terms of two 
spinless fermion fields corresponding to the two spin one- 
half operators. Finally the two spinless fermion fields are 
combined into one fermion field with spin. Introducing the 
charge and spin densities, the transfer Hamiltonian takes 
the form

и = H 0 +- H
/11.35/

with

/11.36/
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and

2 [б;М ̂(-bJ + MM] +lt>o

+ T 1' Z  +■L T

+ U
(J-Тгы)b  W - J r  Z

-ilM-Л
(еглЫ  н-^Ы) -bl.ej ,/11.37/

Formally this is the same as the Hamiltonian of the backward 
scattering model in eqns. /6 .6/ - / 6 . 8 / ,  the velocities and 
coupling constants are given by

and

2тг\г0 -= КЧтг + Ц T 1 v, -

Z ТГ \rA - ТГи 2- у 1ЛЦ —

Xz

aJTtt
Ц

VSjr A_
l

/11.38/

Since the Hamiltonian is the sum of two commuting terms, 
the correlation functions factor into two pieces

< \\> (j»~) \v*  ^ ~ C 0 I I c t t * - - +- / ,

/11.39/

where C0(*-*-') and QCv---*-') are calculated with И 0 and
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H,, respectively. Н0 is a Tomonaga model Hamiltonian 
and the correlation functions have power law behaviour. 
Using the results of § 5 we obtain

c0 U -

/11.40/

with

b [r] -
Z 1Г \Г0 +- У и 
2 . т ^ в —  \JU

/11.41/

The temperature dependence is incorporated into & , it
varies smoothly with temperature and decreases with decrea
sing T  . At high temperatures , U 4 < - 2.тг̂  and

corresponds to a strongly attractive backward scatte
ring model. This model cannot be studied by the conventional 
methods reviewed in this paper because for strong enough 
couplings the renormalized Fermi velocities become complex. 
Using the equivalence to the X-Y-Z model, the Fermi gas 
model with < - 2/г\гл can be mapped to a problem with
\дц > _ 2лг^ /Luther 1977/ and therefore in this case as 
well a gap exists in the excitation spectrum and there are 
also bound states. The finite excitation energy gives rise
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to an exponential decay in C A (* --r ) . With decreasing 
temperatures & approaches ir/z ; U„ goes to - 2.ir 
and the energy of the bound states approaches zero and 
eventually at Д -tt/l the system becomes degenerate. This 
defines the critical temperature Tc . Above T c Сл(+-V ) 
is expected to behave as

с л C ̂ ^ ~   ̂ -r’) / $).

/11.42/

At Tc and the correlation length £ diverges,
СЛ+-+') becomes a constant. The critical behaviour is 
determined by only, which at Tc (a takes the
value ^e(Tt) = . This result differs from the one obtained
by Kosterlitz /1974/. One way to understand this is to suppose 
that the critical behaviour is non-universal, it depends on 
the details of the particular model, the classical X-Y model 
and the two-component 2-d Ginzburg-Landau model do not belong 
to the same universality class. Jósé et al. /1977/ suggested 
another explanation. It is possible that the 2-d planar 
model has two phase transitions, the lower one has been 
studied by Kosterlitz /1974/, Villain /1975/ and Jósé et al. 
/1977/ and the transition studied by Luther and Scalapino 
/1977/ occurs at higher temperatures. The energy spectrum of 
the backward scattering model allows such an explanation
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because degeneracy occurs not only at Ц (|--2тг\г| but also at 
U„ - • The low temperature phase transition could be

associated with this point in the fermion representation. 
Finally there is the possibility that the discrepancy arises 
from the approximations made in the transfer Hamiltonian.

\

11.3. Field theoretical models

A further analogy /Heidenreich et al. 1975/ can be 
obtained for the spin-density part of the Hamiltonian using 
eq. /6.10/. Introducing the field variable

- ̂  1И -Ok*
4>U)

4 Lrr L 2к
/11.43/

and the canonical momentum

/11.44/

which obey the canonical commutation relation

/11.45/
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the first term of eqn. /6.10/ can be written in terms of qz 

and as a usual free field Hamiltonian; the second term
with the Hermitian conjugate gives a cosine thus leading to

Ц - f <£x I ~ £тгН<) -+ (v 4(*)) J

4- Z — 3li-—  cos I v/ТГтГ \fl 4(xj] i[hr*) u g L J •

/11.46/

This is just the same as the Hamiltonian of the sine-Gordon 
theory /Coleman 1975/ measured in units of ,

и = W *  { i ( y w  ч ^ + w r ]  - ^  Cos

/11.47/
with

=  -  2
(2.1гвс)г кх̂ .

/11.48/
and

or ' °V -1- ab >  ]
' ^  ~ Гг 4'u •

-r Vjl

/11.49/
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The cutoffs are defined in a different way in the two theories. 
Bergcan et al. /1978/ have shown that the cutoff OC in the 
boson representation of the backward scattering model and 
the cutoff Л in the sine-Gordon theory as defined by Coleman 
should satisfy the relation

relationship is satisfied, both theories have similar beha
viour for small space-like separations.

On the other hand Coleman /1975/ pointed out the equi
valence of the sine-Gordon theory to the zero-charge sector 
of the massive Thirring model defined by the Lagrangian den
sity

oc A - c-4

/11.50/
41%,where c =0.89 is related to Euler s constant. If this

/  = Y  Y  -  i  ‘i f v

/11.51/
• —— *4“where ^ is a two-component spinor, ^ ^  |0,

= 'Y Y
/11.52/

and the у matrices in one space and one time dimension 
can be expressed by the Pauli matrices
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О  Á

А о ; Ъ = 1S =
~ \ О
О  >1

/11.53/

The equivalence holds in a term-by-term comparison of the 
perturbation series if the following identification is made 
between the coupling constants:

/11.54/

A recent work by Schroer and Truong /1977/ indicates that

i.e. to the region below the Luther-Emery line. We have seen 
that in this range of the couplings bound states appear with
in the gap. The same result has been obtained by Dashen et al. 
/1975/ who studied the sine-Gordon theory using a semiclassi- 
cal WKB method. They have got soliton solutions with mass

this equivalence holds for О £[*>*■£ W  (^>o) only. Accor
ding to /11.49/ this region corresponds to -2лг^ ̂  it ,

/11.55/

and bound solution states at masses

u
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М „  - 2 М  с;*[ f

Comparing this result with eqn. /10.21/, the same 
structure appears, since from eqn. /10.16/ and /11.49/ the 
argument of the sine function is the same. The soliton mass 
is not correctly obtained in the semiclassical approach.
It is interesting to remark that Bergcan et al. /1978/ 
obtained almost the same expression for the soliton mass 
using a variational approach as the one obtained from the 
correspondence with the s - Vl X-Y-Z chain.

At p>=*iT or = О the sine-Gordon equation 
describes the zero-charge sector of a free massive Dirac 
field. This is again in agreement with the result of Luther 
and Emery who found that at cj<H = - ̂  irô  the backward 
scattering model can be transformed to a free spinless 
fermion problem.

The properties of the sine-Gordon theory for p> around 
Ятг depend on the way the model is defined. Coleman /1975/ 

eliminates all ultraviolet divergences by an appropriate 
normal-ordering operation with an arbitrary mass ho. . This

JL
Sir
J t8r

K  ̂4. 1 < Sir
£
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mass is then chosen so that the coefficient before the

symmetry considerations the dividing line between the gap
less region and the region with gap should be cjMI = lcjix| . 
Similar discrepancy is present in the relationship between 
the Fermi gas and the S=l/2 X-Y-Z chain.

Wiegmann /1978/ pointed out that this discrepancy can 
be eliminated if the sine-Gordon theory is defined on a 
lattice. In this case no instability arises, gets
renormalized and the scaling trajectories around 8ir agree, 
after the identification given in eqns. /11.48/ and /11.49/, 
with the scaling curves obtained earlier in the С |
plane.

11.4. The Hubbard model

The discussion of the various properties of the 1-d 
Fermi gas was based in this paper until now on the model 
Hamiltonian given in eqns. /2.3/ and /2.4/. An alternative 
approach can be to start from the Hubbard model /Hubbard 
1963/ which in its simplest form

cosine should be finite. This leads to the result that (V 
is unrenormalized and the theory has no ground state

i.

for р>г > Sir . This region corresponds to cjAM> 0  irres
pective of the value of , whereas on the basis of

/11.57/
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describes hopping between nearest neighbour sites labelled 
by x and Coulomb repulsion between electrons of opposite 
spin if they are on the same site. ) is a crea
tion /annihilation/ operator for an electron of spin & in 
the Wannier state localized at the i-H. lattice site. This 
model can be solved exactly in one dimension as was shown by 
Lieb and Wu /1968/. They find that in the case of half-filled 
band the ground state is insulating for any nonzero and
is antiferromagnetic. Each site is occupied by one electron 
and the spins are alternating.

Writing this Hamiltonian in Bloch state representation

N

/11.58/

and approximating the spectrum 2.1 cos(l<:<%) by linear spectra 
around ± , a Hamiltonian of the form described in 
§ 2  is obtained. All the couplings cj4U } and

are equal since they are all related to the single 
coupling U. of the Hubbard model. Considering the case when 
all the couplings are equal and positive we are in the situa
tion <̂A(( - and as shown in § 6 and 7 a gap
appears in the charge-density excitation spectrum but there



192

is no gap in the spectrum of spin-density excitations. 
According to the discussion in § 8.1 a spin-density wave

formed. This is in agreement with the result of Lieb and Wu 
that the ground state is antiferromagnetic and insulating.

Generalization of the Hubbard model taking into account 
the Coulomb interaction between electrons on neighbouring 
sites allows for nonequal values of the Fermi gas couplings. 
This model cannot be solved exactly but there is an extended 
literature on various approximate treatments of the extended 
Hubbard model. Here we mention only a few works which can 
be related to the models discussed in this review. In all 
our earlier considerations it was assumed that the inter
action energies are small compared to the bandwidth,

/2лгvT,. «  i  or in the language of the Hubbard model

studied the opposite limit, i.e. a 1-d electron gas with 
strong "on-site" interaction. They assume that the largest 
energy in the problem is lX , the hopping term and the

to it. The model they consider is defined by the Hamiltonian

and a charge-density wave both with wave vector 2kF are

. Efetov and Larkin /1975/ and Emery /1976b/

nearest neighbour Coulomb interaction V are small compared

+ v  Z

/11.59/
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The "on-site" Coulomb interaction Ы  is usually taken to 
be positive corresponding to repulsion between electrons 
on the same site, but in strongly polarizable molecules 
the direct Coulomb repulsion can be reduced and the indirect 
interaction can lead to U- < 0  . In this case electrons of 
opposite spin form pairs and the sites are either doubly 
occupied or unoccupied. Making a second order perturbational 
calculation, an effective Hamiltonian can be introduced in 
the space of paired states which is

+ C c C, +<, ~<s +- c

/11.60/

Introducing the pair operators

/11.61/
and the operators

/
/11.62/
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the effective Hamiltonian W has the form

И ' -  7 7̂7 Z  [ -  С  4 *  -  ^  •*" 2. *  2. «Г. <Г4И -  £ ]  4-

+ ^  Z  + 1).

/11.63/

The operators S'; give zero acting on doubly occupied or 
unoccupied sites and can be ignored. The commutation rela
tions of the ^  and operators

l A 4 < 1 = Í A  . ] = °  4
= о

[K-, , A - . M  = - 4
/11.64/

are the same as the commutation relations of spin-1/2 ope
rators with the identification

/11.65/

Thus the Hamiltonian /11.63/ is equivalent to a spin-1/2 
anisotropic Heisenberg model Hamiltonian



195

i.'+\ 2~t ( X  ч-sr O ]  +

/ 11.66/

We arrived at a model which has been shown already in § 10 
to be equivalent to the 1-d fermion gas. Using the results 
of Johnson et al. /1973/,Fowler /1978/ studied the behaviour 
of this generalized Hubbard model. He concluded from this 
analogy that the ground state is a charge-density wave state 
for V < 0  , whereas for V > О a superconducting state is
stabilized at T = О  .

Emery /1976b/ pointed out that in the strongly repulsive

occupied, the generalized Hubbard model can again be mapped 
onto a spin-1/2 Heisenberg chain problem, now with the iden
tification

case with half-filled band when all sites are singly

s:

/11.67/

and the ground state is a transverse or longitudinal spin- 
density wave state.
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11.5. Summary of relationship of various models

The list of models which can be related to the 1-d 
Fermi gas model is not exhausted yet. The 2-d Coulomb gas 
and the 2-d X-Y model can be further related to roughening 
models. Knops /1977/ and independently Jósé et al. /1977/ 
have shown that a general 2-d planar model

where is the polar angle at site R- , with an
arbitrary potential V can be transformed by a duality 
transformation into a general 2-d roughening model

И  = - 2  v
/11.68/

И
/11.69/

where takes on all integer values, provided

в-*- p

/11.70/

is the inverse temperature in the dual model. The
i
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Villain model /Villain 1975/ corresponds to a particular 
choice of V(q>) for which V { k ) is quadratic, the dual 
model is called the discrete Gaussian model.

On the other hand the discrete Gaussian model can be 
mapped /Chui and Weeks 1976/ onto a neutral Coulomb gas 
with arbitrary integer charges. Villain obtained the rela
tionship between his model and the Coulomb gas directly. 
When studying the properties of the Coulomb gas, particles 
with unit charge only are considered, which is probably a 
reasonable approximation at low temperatures only.

The various models mentioned in this paragraph and 
the transformations by which they can be related to each 
other are shown in Table 1. Table 2 summarizes the rela
tionship between the parameters of the various models, and 
indicates the behaviour of the systems in the different 
regimes.



T a b l e  1 .  M a p p i n g s  b e t w e e n  1 - d  a n d  2 - d  m o d e l s .  
D a s h e d  l i n e s  c o n n e c t  s i m i l a r  b u t  i n e q u i v a l e n t  m o d e l s .

E m e r y  / 1 9 7 5 /  C o l e m a n
/ 1 9 7 4 /  . л  / 1 9 7 5 /c o m p a r i s o n  o f

p a r t i t i o n  f u n c t i o n ,
C h u i  a n d  L e e  / 1 9 7 5 /

t r a n s f e r  
H a m i 1 t o n i  a n  
i n  t r u n c a t e d  
b a  s  i  s ,
L u t h e r  a n d
S c a l a p i n o
/ 1 9 7 7 /

2 - d
G i n z b u r g -  
L a n d a u  
m o d e  1
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T a b l e  2 .  R e l a t i o n s h i p  i n  t h e  b e h a v i o u r  a n d  b e t w e e n  
! t h e  p a r a m e t e r s  o f  t h e  v a r i o u s  m o d e l s .

m o  d e  1 p a r a m e t e r s  a n d  t h e i r  
r e l a t i o n  s h i p s r e g i o n  I . r e g i o n  I I . r e g i o n  I I I . •

s p i n - d e n s i t y  
p a r t  o f  t h e  
1 - d  F e r m i  g a s  
m o d e l

V  - /

^  =  ° ' f  + Ú  -  ^ i i
г i  , ,

О Г  U 5- *  [^S * 3 « l  J

« 3 «  -  ' ^ x l
T h i s  r e g i o n  s c a l e s  t o  
t h e  T o m o n a g a  m o d e l  w i t h  

c ^ j _  ■ =  О  . T h e r e  i s  n o  
g a p  i n  t h e  e x c i t a t i o n  
s p e c t r u m .

_  !  Т Г  -  >  <  H i l
T h i s  r e g i o n  s c a l e s  t o  a  
s t r o n g  c o u p l i n g  r e g i m e .  
T h e r e  i s  a  g a p  i n  t h e  
e x c i t a t i o n  s p e c t r u m .

- 2 t t ^  £
T h e r e  a r e  b o u n d  
s t a t e s  i n  t h e  e x c i 
t a t i o n  s p e c t r u m .

c h a r g e - d e n s i t y  
p a r t  o f  t h e  
1 - d  F e r m i  g a s  
m o d e l

^ 1 ;  Ъ  ,

^  -  \ T p  + ■  jz. (.<^1,11 +  <]ui) 

o r  =

~  2 - ^ x  -  1 < 3 s i
T h i s  r e g i o n  s c a l e s  t o  
t h e  T o m o n a g a  m o d e l  w i t h  

— О  • T h e r e  i s  n o  
g a p  i n  t h e  e x c i t a t i o n  
s p e c t r u m .

- § Г Ч ?  <  1 ( 3 s l
T h i s  r e g i o n  s c a l e s  t o  a  
s t r o n g  c o u p l i n g  r e g i m e .  
T h e r e  i s  a  g a p  i n  t h e  
e x c i t a t i o n  s p e c t r u m .

- 2 r q

T h e r e  a r e  b o u n d  
s t a t e s  i n  t h e  e x c i 
t a t i o n  s p e c t r u m .

2 - d  C o u l o m b  g a s t x " p ^  i V . ^  ^ т ч '

л  2. , ^
I V s  ‘  4 « c -  r r - J . .  J

! V  г  >

I n s u l a t i n g  p h a s e  i n  t h e  
l o w  t e m p e r a t u r e  r e g i o n .

1 Í  г 1  4  4  
M e t a l l i c  b e h a v i o u r  o n l y  
f o r  l a r g e  d i s t a n c e s  i n  
a n  i n t e r m e d i a t e  t e m p e r a 
t u r e  r e q i o n .

o  —  Р у  4  <  l
M e t a l l i c  p h a s e  i n  
t h e  h i g h  t e m p e r a 
t u r e  r e g i o n  .

1 - d  X - Y - Z  m o d e l
р ( Л  -  \ ,

Ц  -  X T ° V /
О - L í a  ~ Т г Ч . ]  ~  & T  <3 < "

E x t e n s i o n  o f  t h e  a n a -  
l o g y  t o  t h i s  r e g i o n  i s  
q u e  s t i o n a b l e .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
• J r  —  0

T h e r e  i s  a  g a p  i n  t h e  
s p i n  w a v e  s p e c t r u m .

" 3 Z  > 0
T h e r e  e x i s t  b o u n d  
s p i n  w a v e  s t a t e s .

2 - d  X - Y  m o d e l 3 ) -  , 

L  '’V  -  *  3 ' “  J

T c / b » Y  " J -  4  ^  l i r  e x p  ( -  (Ьж у  3  j
T h e  v o r t i c e s  a r e  b o u n d  
i n t o  p a i r s  i n  t h e  l o w  
t e m p e r a t u r e  r e g i o n .

<  It
T h e  v o r t i c e s  b e c o m e  
f r e e  i n  t h e  h i g h  t e m p e 
r a t u r e  r e g i o n .

E x t e n s i o n  o f  t h e  
a n a l o g y  t o  t h i s  
r e g i o n  i s  q u e s t i o 
n a b l e  .

2 - d  h a r m o n i c  
r o t a t o r  m o d e l

, , T  , 1 W  ^  2 V >  ]  1
г 1 т |  -  ( , » м " ц и  .  j . .  !

L ̂  ZT ^ ‘J

4 _ ( t ] >  Ц
T h e  m a g n e t i c  f i e l d  i s  
a n  i r r e l e v a n t  p e r t u r b a 
t i o n  i n  t h e  h i g h  t e m p e 
r a t u r e  r e g i o n .

1  é. ( r J  <  b
T h e  s u s c e p t i b i l i t y  i s  
f i n i t e ,  t h e  m a g n e t i c  
f i e l d  i s  a  r e l e v a n t  p e r 
t u r b a t i o n  i n  a n  i n t e r m e 
d i a t e  t e m p e r a t u r e  r e g i o n

0  £  ^  ( T )  <  1

T h e  s u s c e p t i b i l i t y  
i s  d i v e r g e n t  i n  t h e  
l o w  t e m p e r a t u r e  
r e q i o n .

S i n e - G o r d o n  ß 1  / - ( 2 t * ) í u s -

j ^

( i x >
T h e  t h e o r y  i s  m e a n i n g 
f u l  o n  a  l a t t i c e  o n l y .

r  £ .  [ 4  <  S t r
T h e  s o l i t o n s  h a v e  f i n i t e  
m a  s  s  .

0  £  [ V - < c  4  i t  
T h e r e  e x i s t  b o u n d  
s o l i t o n  s t a t e s .

i
T h i r r i n g  m o d e l  ! q -  — -  -  ц -

* fi
z Т Г

^  £ ' T -  X  <  1  £  ° V О
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§ 12. SYSTEM OF WEAKLY COUPLED CHAINS

So far a strictly one-dimensional model has been 
treated in this paper. The so-called "one-dimensional 
conductors" which are studied very extensively nowadays 
experimentally are in fact real three-dimensional systems. 
Their one-dimensional or quasi-one-dimensional character 
arises from their particular structure, namely they consist 
of weakly coupled linear chains. It would be natural to 
assume that this weak coupling does not modify strongly the 
behaviour of the system. It is known, however, that there 
are very important dimensionality effects in one-dimensional 
systems and a weak interchain coupling, however weak it is, 
can have drastic effects. It is therefore of great interest 
how a system of weakly coupled chains behaves and a compa
rison of existing experimental data should be done with the 
results obtained for coupled chains. In this respect the 
single chain problem serves as an example where the diffe
rent approaches have been elaborated and then these methods 
are easily applied to the coupled chain problem. Analogously 
to the strictly one-dimensional case there are exactly 
soluble models for the coupled chain problem, but unfortu
nately they do not correspond to physically relevant situa
tion. Therefore usually a leading logarithmic or next to
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leading logarithmic approximation is made in both the intra
chain and interchain couplings or the single chain problem 
is considered as a zeroth order approximation and the inter
chain couplings are taken into account in a mean field 
approximation. In this paragraph the main results obtained 
for a system of weakly coupled chains are presented.

There are various interaction mechanisms that can couple 
the one-dimensional chains. The phonon mediated coupling has 
been treated by several authors /Rice and Strässler 1973b, 
Bjelis et al. 1974 , Dieterich 1974, Leung 1975, Brazovsky 
and Dzyaloshinsky 1976, Brazovsky et al. 1977, Barisic 1978/. 
This problem will not be delt with in this paper and we will 
restrict ourselves to electron-electron interactions. The 
retardation effects which can be important in the case of a 
phonon mediated effective electron-electron interaction will 
not be considered here.

If the effect of phonons is not taken into account, 
two types of electronic interactions are usually considered 
to couple the chains. One is a Coulomb type two-body inter
action between electrons on different chains, the other is 
a direct hopping of electrons between the chains. The two 
mechanisms will be considered successively, starting first 
with the case when there is no hopping between the chains.
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Similarly to the earlier treatment of the single chain 
problem, in a first step the backward scattering will be 
neglected and an exact solution is given for the generalized 
Tomonaga model. Then the various approaches to treat the 
backward scattering will be presented. Finally the effect 
of interchain hopping will also be considered. The crossover 
from 1-d to 3-d behaviour will be briefly reviewed.

12.1. Chains coupled by interchain forward scattering

The Tomonaga model for a single chain can be solved 
exactly as was shown in § 5. This is due to the fact that 
the Hamiltonian of the Tomonaga model can be written as a 
bilinear expression of the charge- and spin-density, respec
tively, and an exact diagonalization is possible. The Ward 
identities used in § 5 are the consequences of this simple 
form of the Hamiltonian. For a system of coupled chains the 
same situation occurs if the interchain interaction has 
forward scattering components only. Using the same procedure 
as in § 5 the Green's function and response functions can 
be calculated exactly.

The Hamiltonian is best written in a mixed represen
tation with an index X denoting the chain on which the 
electron moves and an index к denoting the momentum along 
the chain. In this notation the Hamiltonian can be written
as
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И  - И 0 4- И ,VK.-fc /

/ 12.1/

where

Ио= 2 £, <  а * У £ С i<■ >к.с Л к счЛ. к,к,ос \к к  Л к  ос '

/ 12 . 2 /

and

vKfc L V  ( % v  V v  ,̂-(') а Гк.. ^ 4f ^ ►f ß
*% kz, p

>*4|i '^Wfji a‘>krf*t ^
Ц., p

+- <>.. 4> k i  .> lcx oc ^ k t ji ^  k L i p  (l Л 0< / * /12.3/

д>л is the coupling strength for the interaction of elec
trons moving on chains X and yu, and we assumed that the 
chains are equivalent, i.e. the dispersion relation is the 
same on all the chains. The cutoff will be on the m o m e n t u m  
transfer p and therefore cjM is also kept.
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The calculational procedure of § 5 can be repeated 
with a few trivial notational changes. The Ward identities 
in eqns. /5.16/ - /5.17/ and the generalized relations 
shown in figs. 22 and 23 are again valid for vertices 
which have the same chain index on the two fermion legs.
The effective interactions can be introduced by the same 
diagrammatic equations /fig. 17/. In these equations a 
summation over intermediate chain indices has to be per
formed. In the Fourier transformed form a momentum component 
q perpendicular to the chain direction appears and in this 

momentum representation the effective couplings have the 
same form as before /see eqns./5.9/ - /5.15// but everywhere 
g should be replaced by the q dependent g

/12.4/

where ^  and Q give the positions of the chains.
The renormalized velocities and are also q de
pendent .

U ( ̂) -

/12.5/
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Since the Green's function is diagonal in the chain index, 
the solution of the Dyson equation has a product form

Г fa l - -i- *- ^  + * /л(̂
 ̂ ‘ ' Hr- x -vr.-b +-с^Ы

, ft Í _ _ _ _ _ _ _  i
^ Ц х -  + ^ /A W p 1 (  х - и . ?Ц)1  + i /A f t ) )4'1- *

у [ л W  С * ~ °ч Ц) ̂  +  ̂/ л&|) C * + w f Ц) 1 - c /л(м)] *
 ̂ A1 Cl) (  X -  u ? Ц) t  +- < /Aft)) (  к -ь CA? Ц К  -  C /  Aft))J f ^ J

/12.7/

with

0<:,r̂  ~ iTüfri C + xrfr.m - *3̂j.c<v)) - u ĉyi] ̂
’ /12.8/

~ i +- Хг ЦмЦ) 4-{5чхЦ)) - ц)].
/12.9/
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The product has to be taken for all the perpendicular momenta 
in the Brillouin zone and N is the number of chains i.e. 
the number of possible q values. If the q dependence of 
the velocities can be neglected, the Green's function has 
the same form as for a single chain /see eqn. /5.19//, but

and are replaced by о and OĈ  , respectively,

A similar result is valid for the response functions. 
Considering again the same response functions as for the 
single chain problem, i.e. charge-density wave, spin-density 
wave, singlet and triplet Cooper pair response functions, 
they are all diagonal in the chain index and the response 
functions are obtained in product form. Neglecting again the 
q dependence in u.̂. and , the response functions

with

oC

/12.10/

and

/12.11/
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have the same form as in eqns. /5.28/ and /5.30/, but the

This result shows that at least for the weak coupling case 
when the q dependence of and can be neglected,
the interchain forward scattering alone does not change 
the structure of the response functions compared to the 
single chain problem, it only renormalizes the exponents.
An excitation of a charge- or spin-density wave or a Cooper 
pair has no response on other chains, the chains act as if 
they were decoupled. Therefore this system may have no phase 
transition at any finite temperature.

This result has been first obtained by Klemm and

exponents and Ц are replaced by and where

/ 12 .12/

/12.13/

Gutfreund /1976/. They used the bosonization transformation 
which in this model leads to the same result as the dia
grammatic approach. Furthermore the bosonization transfor
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mation allows to solve the model in which the intrachain 
backward scattering is included. The Luther-Emery solution 
can be used for a particular value of the strength of this 
process. The interchain forward scattering gives rise only 
to a renormalization of the exponents, but the singularities 
are not shifted to finite temperature, no real phase transi
tion can occur with interchain forward scattering.

12.2. Chains coupled by interchain backward scattering

Since the interchain forward scattering does not lead 
to correlation between different chains, the interchain 
backward scattering or hopping have to be considered as 
possible mechanisms giving rise to three-dimensional orde
ring. The treatment of backward scattering is rather diffi
cult for the single chain problem already. A similar treat
ment of the system of chains is even more complicated.
There are two usual approaches, extensions of two approaches 
used in the single chain problem.

The Fermi gas model of a system of coupled chains can 
be obtained by a simple extension of the model described 
in § 2. If there is no hopping between the chains, the 
dispersion relation in the quasi-l-d case is like the one 
in the 1-d problem. The logarithmic contributions appearing
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in the perturbational calculation are the consequences of 
the linear dispersion and therefore this problem is again 
a logarithmic one. We have seen that the parquet approxima
tion is a usual approximate treatment of logarithmic problems. 
Gorkov and Dzyaloshinsky /1974/ have studied the properties 
of the system of coupled chains in this approximation. In 
this way only the leading logarithmic corrections are pro
perly collected, but next to leading and subsequent correc
tions may be equally important. These corrections can be 
accounted for in a straightforward manner by using the re
normalization group approach as in § 4. This method has been 
applied to the present problem by Mihály and Sólyom /Д976/.
A detailed discussion of the effect of various couplings 
and of the possible phase transitions has been presented by 
Lee et al. /1977/.

In an alternative treatment of the system of coupled 
chains the linear dispersion relation allows to use the 
bosonization transformation, in the same way as for a single 
chain. Klemm and Gutfreund /1976/ applied this technique 
using the Luther-Emery solution of the single chain problem 
/ see § 6 ./ and treating the interchain backward scattering 
in mean field approximation, though the effect of fluctua
tions has also been estimated.

The Hamiltonian of even the single chain problem con
tains so many coupling constants in the most general spin-
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-dependent case, that it is difficult to handle it. A gene
ralization of the model to a system of coupled chains will 
increase the number of coupling constants enormously. In all 
the treatments so far a much simpler Hamiltonian is used in 
which spin dependence, umklapp processes and с̂ц type pro
cesses are neglected. We are then left with a problem with 
intrachain and interchain backward and forward scatterings, 
respectively. The Hamiltonian is written in the form

/12.14/

where

a

/12.15/

and

/12.16/
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It is assumed again that the chains are equivalent, the 
Fermi velocities are equal on all the chains. In the case 
of TTF-TCNQ the two types of chains have inverted bands 
with ilVTF «3 - ■'J'tcnq • Making an electron-hole transformation 
on one type of chains, the Fermi velocity changes sign and 
the sign of the coupling constants of the interactions coup
ling two different types of chains is also changed. Therefore 
without losing generality we will assume that the velocities 
are equal and the couplings can have any sign.

Since the problem defined by this Hamiltonian is a 
logarithmic one due to the linear dispersion, the renorma
lization group treatment allows a consistent calculation of 
leading, next to leading etc. logarithmic terms. In the same 
way as for the single-chain problem, the cutoff scaling can 
be formulated as a multiplicative renormalization /see Mihály 
and Sólyom /1976// and the Lie equations for the invariant 
couplings can be obtained in a straightforward way, gene
ralizing eqns. /4.31/ - /4.33/:

/12.17/
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d  x
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/12.18/

In the Lie equations for the invariant couplings X is the 
ratio of the new and old cutoffs. When the invariant coup
lings are used to calculate the temperature dependent res
ponse functions, the argument x of the invariant couplings 
has to be identified with the argument ~T/E0 of the res
ponse functions. Keeping this identification in mind we will 
speak about the temperature dependence of the invariant coup
lings .

Keeping only the second order terms, the parquet equa
tions of Gorkov and Dzyaloshinsky /1974/ are recovered. In 
this approximation as well as in the better one, in which the 
third order terms are also taken into account, we find two 
different regimes leading to two very different solutions.

The renormalization group equations have such fixed 
points for which (j,* = 0  and have non-universal
values. This corresponds to a system of Tomonaga chains 
coupled by interchain forward scattering only. This model 
was treated in § 12.1 and as it was shown, it has no real 
phase transition.
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The physically more interesting solution is a fixed 
point with strong attractive interchain backward scattering. 
In order to find this fixed point we will neglect the for
ward scattering terms in eqn. /12.17/. The reason for this 
is that, as we have seen, forward scattering alone does not 
lead to real phase transition, and it can also be seen from 
eqns. /12.17/ - /12.18/ that in the case of a large number 
of interacting chains the enhancement of the backward scatte
ring is much stronger during the renormalization than that of 
the forward scattering. Near the fixed point eqn. /12.17/ 
can be approximated as

Starting with intrachain and nearest neighbour interchain 
bare interactions, the renormalization will generate inter
actions between next nearest neighbours and further neigh
bours. Near the fixed point the renormalized interaction 
can be a long range one and therefore it is not sufficient 
to restrict the summation in eqn. /12.19/ to a few neighbours 
only. It is useful to transform eqn. /12.19/ by Fourier trans
formation into

/12.19/

/ 12 . 20 /
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where q is the wave vector perpendicular to the chain 
directions and* N is the number of chains.

For particular values of the bare coupling constants 
this equation can have a solution where the q and x de
pendences are separable, i.e. all the interchain couplings 
are enhanced in the same way as the intrachain coupling.
This can happen for long range bare interchain interaction 
only /Gorkov and Dzyaloshinsky 1974/ and this situation is 
not very interesting physically.

In the more physical situation when the unrenormalized 
interchain interaction is of short range, the q and x 
dependences are not separable. The shape of с^Д<Д changes 
in the course of renormalization when the cutoff is scaled 
down /the temperature is decreased/. In that region where 

is negative and renormalization leads to a 
strengthening of the attractive interaction, a dip develops 
in С|Д<̂ ) at some value сд of the perpendicular wave 
vector. The position of сд is approximately determined 
by the minimum of the Fourier transform of the bare coupling. 
The depth of this dip decreases with decreasing temperature 
and diverges at a temperature T c , which is the transition 
temperature. Near ĉ 0 and Tc the solution of eqn. /12.20/ 
can be written in the form /Gorkov and Dzyaloshinsky 1974, 
Mihály and Sólyom 1976/
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Кг(к)
~  н- Кг(:

/ 12 .21/

where ve (x) decreases with decreasing temperature and 
vanishes at Tc . in the parquet approximation к1 (*=T /E0) = 
- U  T /Tc while if next corrections are also considered, 

this form is somewhat modified.

Assuming that the bare interchain coupling is attractive 
and acts between nearest neighbour chains only, for the
bare coupling (x-<) is a combination of cosine curves 
with its minimum at <̂ 0 = О . The singularity in the in
variant coupling will appear at <̂0^0 . This means that at 
the phase transition point all the far distant neighbours 
are equally strongly coupled attractively. If, however, the 
coupling between the nearest neighbour chains is repulsive, 
the cosine functions in have their minima at
c ^ f ± £ ( t^) i.e. at the zone boundary of the Brillouin 
zone. At the fixed point the couplings between the chains 
are alternatively repulsive or attractive.

In order to determine what kind of phase transitions 
can take place in this system the temperature dependence 
of the response functions has to be studied. Mihály and
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Sólyom /1976/ investigated the charge-density wave, spin- 
-density wave and singlet-superconductor responses. Lee et 
al. /1977/ extended these investigations to the triplet- 
superconductor and excitonic responses and interchain Cooper 
pairing. These temperature dependent response functions can 
be obtained by the analytic continuation to the upper half
plane of the correlation functions

VT

/12.22/

where for the charge-density wave response M (Л ̂  û )

/12.23/

for the spin-density wave response V (k, ĉ, )

/12.24/

for the singlet-superconductor response Л s С к, ^ )

/12.25/



217

for the triplet-superconductor response A^ ( u  <̂ , CO,

( k. 't) ' rk 2- c >(, ыL о > k-pt ^P1 ' /
/12.26/

for the excitonic response X ( ^ <V'

(к'т| - Я  2- Ч  Ы  c „ 4 k «. ыL p
/12.27/

for the interchain Cooper pairing A  ̂  (к, u)̂ )

C * Ы c>и
/12.28/

p and к in these expressions are momenta parallel to the 
chain direction and q is the perpendicular momentum.
The density responses are most singular for Ic - 2 ,
whereas the pairing responses for k=0 . In what follows к 
will be fixed at these values, and со will be kept as
variables.

Similarly as in the 1-d model, the response functions 
do not obey Lie equations if the cutoff is used as a scaling 
parameter. It can be assumed, however, using the perturba- 
tional expression for the response functions, that auxiliary
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quantities R ~ x-dR/dU x - u>/e o can be defined that
satisfy the scaling equations. The Lie equations for the 
appropriately normalized auxiliary quantities are obtained 
from the perturbational expressions in the following form:

d  bv ^ x^
cl X

/12.29/

cL ^  ( ^ , * 1

ck 1T«r.■  ̂Z 4ZV) -1-"-
<v

/12.30/

c l  A s (  x

a= = * t + ^ W l ]  +...]

/12.31/

<k ^  C^,*) {
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/12.32/
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^  ^  А**' Ц ,  *)
<A ír vr i X  ^ W I f W ) + . . .

4

/12.34/

where f (<̂'j depends on the arrangements of the chains. For 
a two-dimensional square lattice of the chains -f Ц' | - Cos (<^*a ) + 
+ c°s(^a) , where cx is the distance between the chains.
It is easily seen in the perturbational series that except 
for N -ч (k, <̂ w) / all other response functions involve a 
function in the chain index, i.e. except for N(k( u\J all 
other response functions are independent of q . The inter
chain correlation exists for charge-density fluctuations 
only, for all other perturbations the chains are effectively 
decoupled. Thus it is expected that if a phase transition 
occurs in this system, it will be to a charge-density wave 
state. The analysis of the Lie equations for the response 
functions confirms that in fact only the charge-density wave 
response function develops a true singularity, i.e. only the 
charge-density wave state can be stabilized by the inter-
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Chain backward scattering. This can easily be understood 
since we have neglected the spin-exchange between the chains 
which would favour a three-dimensional spin ordering and we 
have also neglected the tunnelling of Cooper pairs from one 
chain to the other, which would stabilize a three-dimensional 
superconducting state.

Lee et al. /1977/ studied the behaviour of the 
as well as the uniform response functions. A strong inter
chain backward scattering can couple the Ц lcF charge-density 
waves on different chains and could explain the observation 
of strong Цкр correlations /Pouget et al. 1976, Kagoshima 
et al". 1976/. The interchain interactions are, however, 
weak and become stronger near the three-dimensional ordering 
only. In this situation the MtF correlation should be a 
harmonic of the 2_lcF charge-density correlation. This is 
not in agreement with the experimental facts according to 
which the ^^F correlations are observed at high tempera
tures already, where the 2Л Р correlations are still very 
weak. No generally accepted theory exists as yet to explain 
the *î F correlations.

Using different methods, Klemm and Gutfreund /1976/ 
studied the same model and arrived at essentially the same 
conclusions. The Hamiltonian was transformed to a bosonized 
form using the fermion-boson transformation /see eqns.
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/5.54/ - /5.55//. The intrachain interactions are taken into 
account exactly by using the Luther-Emery solution and its 
extension to general values of the intrachain backward 
scattering. The effect of interchain backward scattering is 
considered in mean field approximation. They found that a 
nearest neighbour interchain backward scattering gives rise 
to a phase transition at finite temperatures into a charge- 
-density wave state. This occurs for those values of the 
intrachain interactions for which the charge-density wave 
response function of a single chain is divergent at T=0.

12.3. Simultaneous treatment of backward and forward 
scattering

As we have seen, a real three-dimensional ordering can 
take place only if the interchain backward scattering is 
present in the system. More precisely the phase transition 
to the charge-density wave state occurs if the interchain 
backward scattering is renormalized to a strong coupling 
fixed point and no transition occurs if the backward scatte
ring goes to zero in the renormalization procedure. The 
domains of attraction of the two fixed points are very 
simply obtained if the forward scattering is neglected. The 
two fixed points are -O i . e.  <^ТЦ)=0 and ( \ - l-iruy
what means that q a*(̂ ) is singular for some value of q.
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The first fixed point is reached if the unrenormalized 
<̂ ЛЦ) is positive for all q and the strong coupling 

fixed point is reached if the unrenormalized <̂ л Ц) is 
negative for some values of q . Assuming strong intra
chain and weak nearest neighbour interchain interactions, 
the condition for the occurrence of a phase transition is 
an attractive intrachain backward scattering. Here we will 
consider the effect of interchain forward scattering on the 
domain of attraction of the fixed points.

As a first step Lee et al. /1977/ studied the problem 
of two coupled chains in the lowest order of the renorma
lization group approach. Denoting by and
(’X-i.L) the coupling constants of the intrachain back

ward and forward scattering for the two chains / ^ is the
chain index/ and by and ^  the coupling constants
of the interchain backward and forward scattering, respec
tively, the Lie equations /12.17/ - /12.18/ for the renor
malized couplings have the form

/12.35/

/12.36/
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/12.37/
d w L 1

x

/12.38/

For two equivalent chains / and <̂lX are inde
pendent of the chain index ”X / the renormalization group 
equations have two fixed points:

u. *i/ ĉ, - О , \л/л = 0  , and ^2. have non-univer-
sal values at the fixed point,

ii / - 0° , K * U + ~  , - l e j t  + 2 - w t ^ i .  -

with +!«.*] = { ,

A better theory, taking into account higher order 
corrections in the Lie equations, may modify the value of 
the strong-coupling fixed point. The important feature is 
that as in the single chain problem, or in the problem with 
interchain backward scattering alone, there are two diffe
rent regimes, one which is scaled onto a fixed point with
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forward scattering only /Tomonaga chains coupled by inter
chain forward scattering/ and the other which is scaled 
onto the strong-coupling fixed point.

The domain of attraction of the strong-coupling fixed 
point in the single chain problem is .In the case
of two coupled chains this domain is larger. In addition 
to the region <̂ ,<0, the regions

a / > О and - 1 ^  + 2-vu/̂ < О

and

Ы  > О , <3,- -»-bi/i > О and ^

scale also onto the strong-coupling fixed point. The effect 
of forward scattering is that it can renormalize the origi
nally repulsive intrachain backward scattering to attractive 
couplings. Similar conclusions can be drawn for two coupled 
inequivalent chains. The response functions of the two-chain 
problem have been studied by Klemm et al. /1977/.

The analytic treatment of the N-chain problem is not 
possible. It can be expected, however, that the forward 
scattering has similar effect and the strong-coupling 
attractive fixed point can be reached even from repulsive 
initial couplings. This was verified by Lee et al. /1977/ 
by solving the scaling equations /12.17/ -/12.18/ numeri
cally. They found that starting even from a repulsive <5 -
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-function interaction, the coupling constants scale onto 
the strong-coupling attractive fixed point. This behaviour 
was also noticed by Menyhárd /1977а/ and Obukhov /1977/.
Lee et al. calculated the response functions by a numeri
cal integration of the Lie equation. It may happen that*
the spin-density wave response function is more strongly 
enhanced than the charge-density wave response function 
over a large temperature range, but the true singularity 
develops in the charge-density wave response function only. 
This confirms that near the fixed point the forward scatte
ring can be neglected compared to the backward scattering 
and our earlier analysis of the possible phase transitions 
is true, but the approach to the fixed point is strongly 
influenced by the forward scattering.

12.4. Crossover from 1-d to 3-d behaviour

The treatments mentioned until now have concentrated 
on what states are stabilized for a given set of coupling 
constants. Menyhárd /1977b/ looked at the problem of quasi- 
-one-dimensional systems from a different point of view.
She assumed a weak interchain coupling - weak compared with 
the intrachain couplings, |Z and 1 2  k, >y\

and studied how the behaviour of the system changes from 
a 1-d like behaviour to a 3-d behaviour as the tempera-
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tűre is decreased. In the approximation mentioned above 
and assuming further that does not contribute
essentially to the renormalization, the Lie equations 
/12.17/ - /12.18/ for the invariant couplings have the 
form

 ̂ Г \ Ч I \
ĉ x * (_ ir-vTp ^ ttot. СЗг>л) **"

2TlUp-  ̂̂ ,7v> + *3*-» ~ ^1») **" •• ■ I , ^
/12.39/

d  x
- О

/12.40/

d x X
J_ г. 
ttvf -f Ztt \Tr I

^ 2 - »  _ 
<d>t x

4 t
2тгхУр ^ 1XX и г

l< icL̂ 1

/-12.41/

/12.42/

In the second and third terms of the right hand side of
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eqn. /12.39/ we can recognize the coupling constant combi
nation which appears in the Lie equation determining the 
the charge-density response function of a single chain 
/ see eqn ./4.52//. Denoting by this response function
and by the auxiliary function

m" ^  141
= ^  * ~ z r * = T /c

/12.43/

/12.39/ can be solved in the form

(o| --
C6̂)

4 - (o)
<3,; щ  u

/12.44/
(.«Iwhere djH is the bare coupling and the Fourier

transform is defined by

< ^ U  e.

/12.45/

Thus characterizes the interchain /transverse/ coup
ling. The mean field transition temperature is obtained from 
the pole of eqn. /12.44/. It gives a crude approximation 
for the ordering temperature, it indicates, however, that
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Tc depends strongly on the interchain couplings as well 
as on the fluctuations within the chains. Above Tc , but 
close to it, the system behaves like a real three-dimensio
nal system. Far above Tc the denominator in /12.44/ is 
near to unity, Ц, x) « Ц) К(ы (*) r i.e. the singu
larity of seems to be at x=0, the system behaves
effectively as a 1-d system. Inbetween a crossover tempe
rature can be defined, where the renormalized interchain 
and intrachain coupling constants become of the same order 
of magnitude. Above this Xross the system shows 1-d fluc
tuations without correlation between the chains, below T cr, 
the 3-d nature of the system becomes perceptible.

12.5. The effect of interchain hopping

The interchain scattering of electrons is only one 
mechanism which can couple the chains in quasi-l-d systems. 
The other mechanism is a direct hopping /tunnelling/ of 
electrons from one chain to the other. The Hamiltonian 
describing the hopping is

H  = ^  4: Cl cl(v ^ > V. * yu. it <x •VIt H /12.46/

It gives rise to a change in the energy spectrum, which 
in the case of ^ £F can be written as
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£ ( U , - £p - \rF (IU( - uF | -+- \хДсу J ̂

/12.47/

where U and are the momentum components parallel and
perpendicular, respectively, to the chain direction. In the 
nearest neighbour tight binding approximation for a square 
lattice with lattice constant a

= 2-^ [tos Ц- cx| 4- cosfe^cx)].

/12.48/

In the absence of hopping /t=0/ the Fermi surface is 
flat. The hopping will distort this flat surface and the 
curvature is proportional to the rate of hopping. At a tempe
rature T the electrons which are in a range of width T 
around the Fermi surface will contribute essentially to the 
scattering. If the distortion of the Fermi surface is within 
this range, in a first approximation the hopping will play 
no role. It becomes important only if the distortion of the 
Fermi surface is larger than the thermal smearing, in which 
case the 1-d character of the system is lost and a 3-d 
behaviour is obtained.
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The renormalization group treatment is again very 
suitable for the study of this crossover. Looking first at 
the elementary bubbles of the parquet diagrams, the Cooper- 
-pair diagram is not sensitive to the hopping as it was 
noticed by Dzyaloshinsky and Kac /1968/, and in the loga
rithmic approximation the same result is obtained as for 
the 1-d case /see eqn. /3.1//. The zero-sound channel 
with external momentum lc = 2 Wp is, however, modified and 
instead of eqn. /3.2/ the integral can be approximated by

2тг vF (v. и

/12.49/

In the finite temperature formalism ю  is replaced by T .

In the renormalization group treatment the cutoff 
is scaled down until a fixed point or singularity is reached. 
In the case of a 3-d system of coupled chains this singu
larity occurs at a finite value of the scaled cutoff and 
the corresponding temperature determines the critical tempe
rature T^. Considering now a system in which interchain 
scattering and interchain hopping are present simultaneously, 
the contribution of the diagrams in the high temperature 
region T > -t is the same as for =-0 and the scaling 
equations /12.17/ - /12.18/ can be used. If the critical
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temperature obtained from these equations satisfies "̂"c. ^
the hopping does not contribute to the 3-d ordering and 
our earlier analysis in § 12.2 and 12.3 is valid. Only 
charge-density wave state can arise in this system. If, 
however, no singularity occurs until the scaled cutoff 
reaches a value of the order of t , the behaviour changes 
dramatically. Once the cutoff is smaller than t , the zero 
-sound channel is not logarithmic any more and only the 
Cooper-pair diagrams give contribution to the Lie equations 
as it is the case in real three-dimensionál.systems. The 
scaling equations are easily obtained and they have the 
form

ck
ct X

JL

d  x

X Í ТГлГр V  V- ^  v /

/12.50/

x Í Z-rvTp  ̂ ^  V  +  Y  I " I .

/12.51/

These equations are equivalent to the parquet equations of 
Gorkov and Dzyaloshinsky /1974/. They were also obtained by 
Prigodin and Firsov /1977/. When solving the problem with 

tc < -b , the scaling has to be performed in two steps. 
First we have to use eqns. /12.17/ - /12.18/ until the new
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cutoff is scaled to t , the couplings take on the value 
O/Eo) and . Then, starting with

these values, eqns. /12.50/ - /12.51/ have to be used in 
the further scaling. The procedure is somewhat similar to 
the two-cutoff problem discussed in § 1 1.2 .

Depending on the initial conditions, ^'b ̂ ivm- or
_  4- will diverge first. These are just the

combinations which appear in the Lie equations /12.29/ - 
/12.34/ for the singlet- and triplet-superconductor res
ponses, respectively. Accordingly the system will have a 
superconducting phase transition with singlet or triplet 
Cooper pairs.

Horovitz /1976/ and later Prigodin and Firsov /1977/ 
pointed out that in contrast to the situation discussed in 
connection with eqn. /12.49/, the zero-sound channel is not 
sensitive to the hopping if the dispersion relation has the 
symmetry property

eU.<t) - £ f = - [ £ (Л-*., ]

/12.52/

for a particular value of (ко, ) and the zero sound 
bubble is calculated with these external momenta. The 
nearest neighbour tight binding approximation /12.48/ satis-
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fies this relation with k0=2kf and <̂e J  )
Since the zero-sound channel is again logarithmic for all 
temperatures, the scaling equations are the same as for -t - о 
and the charge-density wave response function with wave 
vector (k0(^e) is singular. In the ordered phase the 
charge-density waves on the neighbouring chains are in 
opposite phase.

Klemm and Gutfreund /1976/ approached the problem of
3-d ordering due to interchain hopping in a different way.
As a first step they studied the effect of interchain 
hopping in a perturbational calculation, i.e. the response 
functions were calculated with strictly one-dimensional 
energy spectrum to fourth order in the hopping Hamiltonian. 
The interchain couplings and were neglec
ted. They concluded from this calculation that the most 
important contribution to the response functions comes from 
the "pair self-avoiding random walk" processes. The hopping 
of an electron creates a disturbance which propagates 
along the chain with the velocity characteristic for the 
spin-density modes of the bosonized Hamiltonian. This dis
turbance causes another particle - electron or hole, depen
ding on whether the transition is to a superconducting or 
density wave state - to hop to the same adjacent chain.
This second hopping takes place before the first particle 
could propagate to another chain. The important processes 
are those in which the pairs never return to the same chain.
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The response functions were then calculated in a 
pair approximation, considering the propagation of pairs 
between the chains, by the use of the bosonization trans
formation. After a rather lengthy calculation they found 
that a superconducting or density-wave state appears, 
depending on whether <^-2с^>о or c^-2^  < о 
This demarcation between the superconducting and density- 
-wave state is the same as for the single chain problem. 
Thus one can say that the effect of interchain hopping is 
to stabilize at a finite temperature that state which would 
be obtained as a ground state of the single chain problem.

Further clarification is necessary for > О where
both the singlet- and triplet-superconductor responses and 
the charge-density and spin-density wave responses are 
singular for - 2^г > О and ^,-2<̂  < о , respectively.
This region was studied by Suzumura and Fukuyama /1977/ 
in greater detail. In a mean field theory of the pair 
hopping they found that the critical temperature of trip- 
let-superconductivity is higher than that of singlet- 
-superconductivity , if ~ 2 > О . Similarly, for

с̂л- 2.^1< 0  the critical temperature of the spin-density 
wave state lies higher than that of the charge-density wave 
state. The results are summarized in fig. 35, where we 
indicated the type of ordering when the coupling between
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the chains is due to interchain hopping only. This phase 
diagram is very similar to the one shown in fig. 13, 
obtained for a strictly one-dimensional system.

Fig. 35. Type of ordered state for a system of 
chains, with intrachain backward and 
forward scattering, coupled by inter
chain hopping.

12.6. Quasi-l-d fermion model with strong on-site inter
action

The 1-d fermion model with strong on-site inter
action has been considered in § 11.4. This model can also 
be extended to a set of coupled chains by assigning a chain
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index X to the creation and annihilation operators

H = u Z cx.„ c** c>4. 4 -

+ Í7r LC,li* f»;«' ^ c »;«. +■

■x>’ iff- ^  i «Г ^ ^ , 4  ^
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4- 4  Zs , С с  C r%i,r »i<r »'iff' Сл'<,' , / 1 2 . 4 6 /
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where z. is the number of nearest neighbour chains.

Emery /1976b/ and Fowler /1978/ studied this model by 
taking over results from the literature on the Heisenberg 
model. They conclude that 1Л < О  allows charge-density 
wave or superconducting state only, whereas for \A>0 trans
verse or longitudinal spin-density wave state can be formed, 
as in the single chain problem. It follows from the relation 
ship between the spin operators and the fermion operators 
which is valid for Ы. < О and is given in eqns. /11.61/, 
/11.62/ and /11.65/, that ordering in the z-direction corres 
ponds to the formation of a charge-density wave, whereas 
ordering in the x or у direction corresponds to super
conductivity in the fermion problem. Without interchain 
hopping the chains are coupled by the z. compo
nents of the spin, only charge-density wave state can be 
stabilized, in agreement with the discussion in § 12.2. 
Taking into account the interchain hopping superconductivity 
could be favoured.
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§ 13. CONCLUDING REMARKS

In this paper we have reviewed the properties of the 
1-d Fermi gas model. We have seen that depending on the 
values of the coupling constants, the behaviour of the 
system can be quite different. Coulomb coupling between 
the chains favours the appearance of charge-density wave 
state. If the coupling between the chains is dominantly 
due to interchain hopping, the type of order that occurs is 
the same as the type of order that would set in at 
in a single chain. The corresponding phase diagram is given 
in § 8.1. The question concerning the application of these 
results to real systems is what the values of the couplings 
could be. Unfortunately the answer to this question is 
rather controversial. As an example we will consider 
TTF - TCNQ /tetrathiafulvalene - tetracyanoquinodimethane/ 
which is a typical representative of quasi - 1-d conductors 
and on which extensive study has been made.

There are two different schools advocating quite diffe
rent descriptions. The Pennsylvania group /Heeger and Garito 
1975/ believe that the on-site Coulomb interaction is 
reduced by screening and due to the strong polarizability 
of molecules to such a small value that its effect is minor
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compared to that of the electron-phonon interaction. They 
try to understand the properties of TTF - TCNQ on the 
basis of a Fröhlich Hamiltonian neglecting completely the 
electron-electron interaction.

Contrary to this view the IBM group /Torrance, Tomkiewicz 
and Silverman 1977/ claim that the effective Coulomb inter
action is comparable or larger than the bandwidth and is 
more important than the electron-phonon coupling. This asser
tion is based on the interpretation of the optical absorption 
spectrum /Torrance, Scott and Kaufman 1975/, of the enhance
ment of the magnetic susceptibility, of the enhancement of 
the NMR relaxation rate T^  ̂ /Jerome and Weger 1977/ 
and of the scattering /Pouget et al. 1976 and
Kagoshima et al. 1976/ discussed in § 4.3. The latter can 
be observed only if the Coulomb interaction is strongly 
repulsive.

Other charge transfer salts have different ratio of 
the effective Coulomb interaction to the bandwidth.
In NMP - TCNQ /N-methyl-phenazinium-tetracyanoquinodimethane/ 
Epstein et al. /1972/ found t u = 2.1 * 10  ̂ eV and 
U = 0.17 eV, thus U/4tl(«2, whereas in HMTSF - TCNQ 
/hexamethylene - tetraselenofulvalene-tetracyanoquinodi- 
methane/ U/4t(1 is considerably smaller than unity
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/Jerome and Weger 1977/. It is interesting to attempt to 
situate the various systems in the space of couplings as 
Jerome and Weger /1977/ did and to interpret all the 
properties in an interacting Fermi gas model. It seems 
that if we do so, many of the physically most interesting 
systems fall into the strong coupling regime where the 
results described in this paper are not easily applicable.

The Fermi gas model as presented here is an interes
ting one in its own right apart from its possible rele
vance to real systems. As a model system is shows parti
cular dimensionality effects. It is an interesting theo
retical problem how to get a good description of its 
behaviour. Furthermore, as it has been emphasized in this 
review, this model is related to a large number of other 
models. Though in most of the cases the relationship is 
approximate only and it is hard to estimate to what extent 
results obtained for one model can be extended to the 
others, it is hoped that further study of the related 
models will contribute to a better understanding of the 
behaviour of the Fermi gas model.
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