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ABSTRACT

The relaxation times necessary to establish chemical equilibrium
among different hadrons in hot, dense hadronic matter are investigated in a
statistical model. Consequences for heavy ion collisions are exploited in the
framework of a simple reaction model. The possibility of Bose-Einstein pion
condensation around the break up time of the nuclear fireball is pointed out.

AHHOTALINA

B cTaTucTuyeckoih Mogennm usyyakTca BpeMs pefakcauuum [Ns YCTaHOBJ/IEHUSA
XMMMWUECKOTO PaBHOBECUS MeXAy PpasfiMYHbIMKW afpoHamMu B FopsiyeM, MNJOTHOM afpOHHOM
Beuw,ecTBe. PaccmaTpbiBalTCs CNEACTBUU AN MPOLECCOB CTONKHOBEHWUS TSXKebIX WMOHOB
B paMKax NpocToii Mojenu peakuuu. Bo3HMKaeT BO3MOXHOCTb KOHAeHcauun Bose-OiiHLW-
TeliHa NWOHOB Ha KOHUY pacnaja sifepHoro daliep6ona.

KIVONAT

Forr6 és srd anyagban a kulénbézé hadronok kozoétti kémiai egyensuly
bedllasdahoz szikséges relaxacios id6ket vizsgaljuk egy statisztikus modellben
A nehéz ion Utkodzésekre vonatkozé kovetkezményeket egy egyszerd modell kereté
ben hasznaljuk ki. Ramutatunk a Bose-Einstein pion kondenzaci6 lehet6ségére
a maganyag-tizgolyé szétesése korali pillanatban.



I. INTRODUCTION

In most models for energetic heavy ion reactions it is
assumed that during the reaction a hot and dense matter is formed
from all or a part of nucleons of the target and projectile

12,3/ For some time in this hot hadron matter there

nuclei.
are interactions between the constituent particles, but as the
time goes on this fireball explodes and develops into a system
of non-interacting fast moving fragments. In the first part of
the life of the fireball the energy concentration is enough for

the production of pions and resonances, therefore different sorts

of hadrons coexist. Even if thermal distribution is /at least



approximately/ assumed for the kinetic energies of hadrons it is
an interesting question to answer whether the time is enough for
establishing chemical equilibrium between the concentrations of
different hadrons. /Speaking of hadrons we always have in mind

also hadronic resonances produced abundantly at high enough energies./

The main purpose of this paper is to clarify this situation by
determining the relaxation times necessary to establish the chemical
equilibrium for the different hadrons. In Section Il. and 1Il. the
relativistic statistical equations are given for the chemical
equilibrium and for the time development of systems not being in
chemical equilibrium. In Section IV. the concept of the statistical
approach is incorporated into a simple heavy ion reaction model.

The discussion of the results is contained in Section V.
I1. EQUILIBRIUM MIXTURES

Before starting our considerations concerning hadro-chemical
reactions we collect in this Section a few remarks about equilibrium
mixtures of relativistic ideal gases. The equations of state of an
equilibrium mixture of relativistic ideal gases in the Boltzmann

limit are the following ¥/ :

Here we use /as in all what follows/ the system of units where

t_ Boltzmann » A - The index ~ denotes the different



components of the mixture with mass /below we shall have
~A

'C» 3IT,N§Jk,e"tc./- p— | is the inverse temperature,”

is the partial pressure of the component i and Ve is its

/number/ density. The total relativistic energy density is denoted

by £/ including the contribution of rest masses/, is the

energy density of the component b and is its absolute activity

/fugacity/. The conditions of the chemical equilibrium can be

formulated in terms of the quantities Ac® /c. f. Sections I1IIl.-1V ./.

The quantity CL. is the /spin and isospin/ degeneracy of the
particle state with index "t : where ~ and
X, are the spin and the isospin, respectively. The functions

and X introduced in Eq. (2.1) are defined as

(2.2)
fw= 1-. Sii!
KT M
where k~Cx") is the modified Bessel-function of index * . As it
can be seen from Eq. (2.1) is the average energy per
particle for the component t measured in the unit on
In the non-relativistic limit N <=0 one can use
the asymptotic expansionS/
yc
KI_W - -e W K (2.3)
This gives 37 n
\ -
AS
f -
fu e IV )



The Boltzmann limit corresponds to the case of small occupa-
tion numbers of states in quantum gases. The quantum corrections
to Egq. (2.1 can be determined from the corresponding equations of
state for relativistic quantum ideal gases. We note, however, that
such equations are not unique as their form depends on the conven-
tion for the quantum counting of states. The usual "box quantiza-
tion" /i.e. periodic boundary conditions/ gives the equations of

state”™ /for simplicity, in the case of a single boson component/:

) _31*
3y
(2.9
. n>) o :
The functions 'xﬁ, are difined like
r- K W |
For fermions vk has to be replaced by
| M

Another convention for state counting based on the Newton-
Wigner localization gives instead of Eq. (2.5 the equations of
state which can be easily obtained from the partition function

in Ref. ’/
nH A

NA A
NF (i)
(2. 8)

fm= Wi
dfaji)



The functions are known

x (%)

namely

S ft A

For fermions we have again

instead of (x/*(x) The functions

denoted in” by /
T [Ak, « +
bu)
32
Ul(*) = (2x) X

from the non-relativistic case * ,

(2.9)

(2.10)

IDfx.) and 'II6C*0/the latter

are defined as

44

K,w (xtf-)]

. 6. 1)

K,U)4-3-<iw

AW O+ KW (X ti)

It can be easily seen that in the Boltzmann limit, when in Eqgs.
(2.5-6) or (2.8-9) the i~ h terms dominate both Egs. (2.5) and
(2.8) are reduced to Eq. (2.1) The two forms coincide also in the
non-relativistic case »00 hence the non-uniqueness is

reflected only by the relativistic

I11. HADRON REACTIONS

In this Section we consider

hadrons /nucleons, pions, J\

thermal equilibrium.

a reasonably high rate of

-resonance, " -
The temperature will

resonance production i.e.

part of the quantum corrections.

IN NON-EQUILIBRIUM MIXTURES

high temperature mixtures of

resonance stc./ in
be taken high enough for

of hadronic



reactions transforming different hadron states into each other.
/This situation is similar to ordinary chemical reactions therefore
the name "hadro-chemical reactions" is appropriate for it./ Actually,
this means temperatures in the range T Qi 50-150 MeV. The lower
limit is fixed hy the resonance production threshold wheareas the
higher limit corresponds roughly to the Hagedorn-temperature rJa' A
Near "I the rapid /exponential/ rise of the resonance state
density implies the dominance of highly excited, highly degenerate
hadron states resulting in a phase-transition-like phenomenon
/Imaximal temperature in the statistical bootstrap model® or a
second order phase transition from hadronic matter to "quark-soup"
in the quark modell™ /. In the present paper we do not consider the
r Sk'Vv region restricting ourselves only to the lowest
resonances /we hope, however, to return to this interesting problem

in a future publication/.

As it was stated above we assume thermal equilibrium with
hadro-chemical reactions still going on. that is no chemical
equilibrium. Our main interest will be just to study different
reaction rates and the time development of the densities of different
hadrons. Such an approach is legitimate if thermal equilibrium sets
in earlier than chemical equilibrium, i.e. among the collisions
establishing equilibrium the elastic ones dominate. It can be seen
from the equations below that, at least at large baryon number
densities /relevant in heavy ion collisions/ and if the momentum
distribution is already near to the thermal distribution, this is
indeed the case. The reason is the large increase of nucleon-nucleon
elastic cross-sections with decreasing energy below 1 GeV/c

laboratory momentum.



Mathematically, we approximate the hadron gas by a multi-
component, relativistic ideal Boltzmann-gas /the thermal equilibrium
equations of which are given by Eq. (2.1)/. Implied by this assump-
tion is that the gas is sufficiently dilute such that it makes
sense to speak about individual collisions with the same cross-sec-
tions as measured in hadron scattering experiments. However, this
assumption can hardly be fulfilled in situations occuring in heavy
ion collisions. In spite of that we believe that one can obtain at
least order of magnitude estimates based on this extrapolation.

Such estimates may be useful also for the construction of a correct
/relativistic, quantum, .../ theory of the processes in high density

hadronic matter.

Once the use of the S-matrix for individual collisions is
allowed /at least approximately/ the situation is not as bad as
one would think at the first sight. Namely, taking into account
resonances means to include an essential part of the interaction

11,12/

among hadrons This is supported by the experimentally

131 . Accord-

verified "duality" property of quasi-two-body reactions
ing to duality the non-diffractive scattering amplitude /dominant
in the energy range relevant in nearly equilibrium hadron gases/

can be approximated /in the average/ by the sum of the direct

channel resonance contributions. A basic assumption of the statistical

bootstrop model is, in fact, that the strongly interacting hadron
gas is statistically equivalent to a free /i.e. ideal/ gas of the

resonances 9/ .

In the present Section the general form of the equations

governing hadro-chemical reactions will be derived under the above



assumptions. Here only the simplest situations will be considered.

The specific particles and reactions relevant in heavy ion collisions

will be dealt with in the next Section.

First let us consider a gas consisting of a single sort of
neutral ground state hadrons /called " -meson"/ and a single sort
of neutral resonances /called " (@ -meson"/. The only reactions
considered /besides elastic scattering/ are the formation and decay

of the -resonance:

(n-=2,3,...) . (3*0

The total width of <& will be denoted by T and tbe probability
of its Y -pion decay by 'Wiv . For this latter we have thé

normalization condition

0]
X - w;
=X (3.2)
The summation over -n here is, in fact, not infinite as multipion
decays for YL > [YAN ["WA are kinematically forbidden / and
'YWIr denote the masses of ® - and 7I -mesons, respectively/.

The total width of the (83 -meson isM N N3N

Q@
[ - Z(-F')«

rr

(3.3)



where Ip is the four-momentum of (3 and - )eee) are the
four-momenta of the decay product pions. The partial width
gives the U -pion decay probability like

b= ot (3.4)
We use invariant normalization of states, hence the invariant

amplitude T*. is defined by

< f , - s f f - f i - (305)

where 5 is the S—operator.

We always assume that thermal equilibrium is established
faster than chemical equilibrium. /This is due to the dominantly
elastic character of the average collisions in the gas./ In the
present Section we also keep the temperature fixed. The normalized

momentum distribution of particles in thermal equilibrium is the

following:
3 3 A
= [(ax) Q ,J (0% e (3.6)
Here, and in what follows, the four-momenta will be specified in
the rest system of the gas, therefore e.g. 4p0 is the energy in
this system. /The function was defined in Eq. (2.2)./

The number of Q —r'frJC decays in unit time and volume s 15 1(
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Similarly, the number of the reversed processes is /assuming

time-reversal invariance/:

In equilibrium these numbers are equal for every 1. hence the

densities satisfy:

(3.9

Comparing to Eq. /2.1) , as we have put now N. the condition

of chemical equilibrium /in the absence of any conserved quantum

numbers/ is:

At=li £3 >J0)
/INote that for additively conserved quantum numbers, like e<?0
baryon number (& , the condition of chemical equilibrium is
A ¢ A T v
Outside chemical equilibrium the 33— and Tr—densities

are changing in time. From Eqs. (3.7_s) it follows easily that

cUgfc) .
cit -V O)r . erl’n\{ *(tf ,IS’YKpan QaIF
(3.11)
o tler JSiafi 3>

W.
K;Kp) Q~rp)
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The other simple case we consider in this Section Is that
of a single component gas /called again "pton" gas/, where particle

creation is possible due to scattering processes like

2.TC

The general case 'YYIXI<r?>'TITIE witli 'YK > A will not he
considered here for simplicity,, /The previous case contains, in

fact, also such kind of processes through resonance intermediate

states./
The scattering cross-section of the process —y dl Ar is
given bylh/:
y) 3 A
fi.n)
-VIf2 0
where 7 is the centre of mass energy squared: i~ijin) ,
and the function X®|*Cn) is given as
(3.1«)
The invariant scattering amplitude X is defined in analogy
with Eq. (3.5).
The number of scattering processes J&/C /N TG- in

. . . . Lol
the pion gas in unit time and volume is :
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sVurf

(3.15)

The reversed process goes like

-Cu”™Y Yc . (3.16)

The condition for chemical equilibrium is given, of course, again
by Eq. (3.9), and the change of the pion density in time is

determined by the equation

dv~fce) 1
- £ (n-A)
dt
(3.17)
N N e r a g B o fiO
The notation No is used here for Q jfO in
Eq. (2.2 when the mass n™/E is replaced by \fé . In deriving

Eq. (3.17) from Eqs. (3.15-16) the foilowing identity has to be
used:

f d w

y Ufav e

(3.18)
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The appearance of the factor in the integral of
the right hand side of Eq. 3.17) is remarkable. For large c.m.
energy ft the function (fi) behaves according to

. . -
Eqg. \2»lij like 'v 6

.A's the cross-sections do not
rise appreciably, this means that the Integral is cut off

A
exponentially for P . Therefore, scattering

processes with centre of mass energies much larger than the average

thermal energy are unimportant in hadro-chemical reactions /at least

when the momentum distribution is nearly thermal/. This leads e.cj.
to the dominance of elastic N-N scattering in the temperature

range 50-150 MeV we are considering.

In the following Section equations like Egs. (3.n) and (3.17)
will be adapted to the physical situation in a simple heavy ion
collision model. A numerical study of the time development of the

solutions will also be performed there.

IV. TIE HEAVY ION REACTION MODEL

The main purpose of this paper is the investigation of time
development of the compressed and hot nuclear matter. For the
description of the nuclear reaction mechanism part of the heavy
ion collision process a very simple model is used. Only central
collisions between heavy ions of equal masses are considered. The
exact treatment of the problem is naturally impossible. The model
presented here contains crude approximations but it is believed

to describe the main properties of the reaction.

The reaction is described as the collision of two inter-

penetrating spheres originally filled with cold nucleon gas. The
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assumptions of the model are summarized as follows:
a/ The target and projectile nuclei having ~ N
nucleons originally are represented by moving spheres of volumes
/constant in time/» Their sum is denoted by \/0-=\/*+
Before the collision the number density of the cold nucleons -900
is uniform within the two spheres, thus
As the reaction proceeds the two spheres begin to overlap. The
overlap volume is denoted by y w . It is assumed that nucleons
outside v (t) /the "collision zone"/ are not influenced, thus
retain the original A 0o density. The cold nucleons within the
collision zone are assumed to have a spatially uniform time
dependent density “00(b) in the whole volume y w
b/ As the spheres representing the target and projectile
nuclei begin to overlap the nucleons in Vijjt- begin to collide
with each other. There are elastic scatterings as well as At -
resonance production. The scattered out nucleons and produced A-b
are considered as the constituents of a hot gas cloud at rest in
the c.m. system and with given temperature and volume Vt,) .
The overlap of volume with the volumes of nuclei is denoted.
by Vijp-t + In the first period of the reaction
. The particles of the cloud collide with each
other and with the fast moving cold nucleons, too. During the
collisions resonances are also produced, hence the hot gas consists
of nucleons (N) , A -resonances C&) , Tr -mesons (Tc) and
(® -mesons ((?) .Denoting the "cold" nucleons in the original
nuclei by N O the list of different "inelastic" /from the point
of view of the model/ processes we take into account is the
following:

NonO - NO MO-

- =>NA (4.1)
Ao "~ N X
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c/ The hot gas cloud is described as a multicomponent ideal
relativistic Boltzmann gas. However, the interaction between the
particles is accounted for to a large extent by allowing the pro-

duction of resonances /c.f. previous Section/. The gas is assumed

to be in thermal but not in a chemical equilibrium. /This corresponds

to the assumed predominance of elastic collisions./ The time evolu-
tion of the densities of different particles are described in terms
of statistical equations of type given in the previous Section
taking into account the effect of changing volumes. The time
dependence of the temperature of the gas is determined from an
equation expressing energy conservation.

d/ At the moment "than of maximum overlap of the colliding
spheres (4n~rnr)y n fo*") e "-t) the gas
decouples from the incident nuclei and the volume Gt) of
the spherical gas cloud begins its adiabatic expansion. For the
approximate description of the expansion the time dependence of
the radius of the sphere is borrowed from a simple hydro-

dynamic model 17/ :

The kinetic energy of the hydrodynamic flow is
subtracted from the total thermic energy. The densities and
temperature are kept spatially constant within also in the

expansion period.

The division of the process into an initial "ignition period"
/when nucleons are scattered out from the original cold nuclei and
the hot gas is constrained to the overlap and a subsequent
"expansion period" when cold nucleons are already ignored is, of
course, somewhat artificial. In reality the two processes go over
into each other smoothly and there is some overlapping period. Our
strategy is to consider the two dominant processes separately for

simplifying things.
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Coll in« Mioso idons oHOo obtains Tor |Ilit; disHoriplion oC

heavy ion collision process Mio foil owing so( of equations:

<&o ft) v, ft)

dt '‘Oj oc
vl ft) Vo 4 cL )

Vv N Y
, " Coop
V., cl Vo "L M

L f
TNl 4w ft) +Vijtia -Dft) 40
- V4 dt V X "X
* Sff1"™  sojy  J,ft) r. Voptf) J ft) jf+) _
Voo do CK'ON = Ya ft) ci0 cL " Noote
4 A 1)) .
oUQJP «W »
NNy ftft 0 Ni-f) -N>M)
inapg | NON-~ BLOT (#.3)
:'J'4yy.oop,+AU M "
db dt WA ft) clo do 100

eVt ) Vo caom—
\Bft) i-M

-\ C AMmr
'< W A d«Q«fp V ~rpl n'



17 -

)I-1) nM N

d*Q NGB T, NL
M
_JL avi) nio_
ot vis  dt T T eh@g
1
ant) iK No \ -
") *,?21r

J1N,0) _ n [ Arft) N

ami$) cu "

) 4 yNe o
iy
/V« AKMH no 1

_d'm ld,QB) d~U» Tiy,r
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the cinisurvalion ol energy vyields:

dl, _[ 2 A

/L dw _di«)
dt L ;. M, b|F1'(2 I; r "PTINL(t) ~Jt ~SF
+ §- '"*¥*e see + L . (1) Z

Sti  dt VW M

The definition of symbols in these equations are the following:

'O(r) : number density of cold, fast moving nucleons in the

projecti le and target spheres of volume Vo

"\.0N ). ft) ~ It) 2 ft); number densities of hot nucleons, A6 ,
N I “£s 1 TcC i 9 '

pious
and n in the ~ fej gas volume;
do= M~Ad. Adn ,d”: degeneracies of the components;
} , dx -3 ,d?- 3]
|b« -jjrj : with T being the temperature of the gas and the

Boltzmann constant;

Ep ft) : the kinetic energy of the hydrodynamic flow connected

with the expansion of the gas sphere in the decaying

phase of the reaction;



19

(94

N KP the average energy of a particle in units of its mass;
TO) - derivative of with respect of its argument;
* L
the single particle
partition function;
K » the Bessel function with imaginary argument;
H.av average number of pions originating in the decay of
probability of the Jlb pion decay of a (p ;
. A
c*,00 = Z (IOI’M * - Z A N
MM NA'
BH- 2
Nmmr—
Co,Njt ~ 7 i "vfH w iwH-n’a

cNoo- z (aojNWVa Ni)|7vH *)A :

™IN f--

cyou = N TN ) INg) )
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T f
Cm,0* ~ 1[\jc~ -IFrm-~rx4qa/fatVv)
ovi, L.N3
03 J
C”™oo = 1
Ca,ON = ~ JTAK -~"Am)\n/fal*4i 1

Ca, kNtt CKj *NjT ~

E&IN<“ CN,Nk 4

KblY Kbl'

Ce&<Bjc e CM><Mc- >
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1H/

mass

02- o
enerpV in lhe No+Wo eel lisioil
r
2 . -
energy in the collision
ra— [ 2 z rr\n i NO; Il isi
wosn (N i ol energy in 1lhe collision
[* r i,” degeneracy 1linn’s 1lhe widlh of A resonance
[?-cl N degeneracy 1liHies 1lle wi(1lh at ) resonance }
cr % b +O )“aleil lafed at enerpx "
AT 1
M A , N, i i 1~
M T paleil laled at elierpy BN )
4 1opp-Pprtdv y-ypp3T”)
CTAUgIV £6" \ «alemlaled at e lie I py- =T,
(if >pft> ~ vy
alowlaled at eHerpy T S
Gz_*u/\ +%p.> ppx,_> an
A 8 . fo.ny alen laled at etiergy y\p.
The numerical values ol Ilie cress sections were taken from
VO« 2 yR @& vV - A A f" ui,h A being the target
numhe r;
y & the overlap of flic target and projectile spheres;
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VLT ) : Mio overlap volume of Iho hoi. ga» with the fast moving
2P
large Il and pro,joe lile spheres;

VA ft) : < volume of Ilhe hot pga»;
ANcrnrO . the time at which the maximal overlap of tarpgol
and pro.jee file spheres ocoour; "bl MR 1(,*r™' xe

speed of the two spheres.

13 |,A M+AA

According to assumption d-}, the time dependence of volume V 4)

is given as follows:

Vbt w 1y 2

* . M
V -, K A
g ft(ftO f
The radius of the 1l1sentropically expanding sphere of uniform
densi ty has the tim«; dependence
1*42
M

The kinetic energy associated with this hydrodynamic flow is *

z
mh

11lyi”r ~ 30t 4/7tX > ft. 10)

where ETot is the total energy content of the gas sphere which
can he transformed into kinetic energy, and
o Vit
\Y (°r"Aw? | e

e-.N)
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The kinetic equations were integrated numerically by Runge-
Kutta method. The initial values of the densities and of the
temperature were determined by expansion of the equations for small

"t values and by the prescription that the time derivative of
the temperature should be zero at T7=-0 . The densities multiplied
by the corresponding volumes yielded the number of different
particles as a function of time. They are displayed in Pigs. 1-2.
The chemical potentials for all the particles were also

calculated on the basis of the expression valid for Boltzmann gases

Ao o« (k.12)

Q fp)

In order to check the consistency of the Boltzmann gas assumption
the functions 3X*) and (pi') as given by Eq. (2.11)  were

determinedj too.

According to assumption d/ the development of the reaction is
described by a somewhat different mechanism in the formation /or
"ignition"/ period and in the subsequent explosion period. This
change in the reaction dynamics is emphasised in the Figures by
inserting gaps between the two parts of the curves /which are
calculated, of course, continuously/. The dotted curves in the
second part of the Figures show the development of the system in
the constant volume case: Vj, — noA .

The continuation by an arrow connects these curves with the corres-
ponding equilibrium values /attained practically in all cases

before m~ 8-lo n /
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V. imSUbTS AND DIS (JUSS ION

The anal ysis oi' llie fcaciitm mode |

Figure b shows thai, while the pions play a negligible role
at  r » AOO MeV/nucleon bombarding energy, they have to be
taken into account from about E”"_= 800 MeV/nucl.eon. Above the
energy of about 2 GeV/nucleon the highly excited nucleon and meson
states become presumably more and more important. Their excitation

may lead to a maximum temperature.

The inspection of Figs. 1-2 shows that the A resonances
and pions are produced mainly in the "lgnition period" of the reac-
tion and their sum does not change appreciably during the explosion
period. The ratio of pions to A for to <8 -mesons/, however,
varies strongly during the expansion. This ratio - if it were

possible to measure it - would give the break up time of the fire-

bal 1.

The greatest part of the fast moving cold nucleons /especially
in the tX-fti case/ suffers scattering for the time the spheres inter-
penetrated each other completely. This suggests that in central
collisions of heavy ions of equal masses all the nucleons participate
in some way in the formation of the fireball. Peripheral collisions
or unequal mass nuclei are clearly less advantageous from this point

of view.

On Figs. 1 and 2 it can be seen, that even before the complete
overlap of the spheres the density of "gas" exceeds that of the "cold

nucleons" . Besides, the cross sections are larger for the "cold
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nucleon" - "gas" scattering becouse of the lower energy. These
facts show, that the collisions of the "cold nucleons”" with the
constituents of the hot gas play an important role in the "ignition"

of the fireball.

Throughout the whole calculation the Boltzmann limit was
used for the momentum distribution within the gas. To check the
consistency of this approximation, the Jt—A gquantity

which appears in eq. (2.s) was calculated for each particle type

and for all time steps. As long as X4<'l , so that in calculat-
ing GOO one can neglect the higher order terms besides the
first term in Eq. (2.9) , the Boltzmann limit is a good approxima-

tion. The calculated values of X were less than 0.1 for most of
the time of the reaction. /Large X values appeared only in the
progressed phase of the expansion of the fireball./ The Boltzmann
approximation can be used therefore consistently in the description

of energetic heavy ion reactions.

The chemical equilibrium

The Eigs 1 and 2 show, that the time necessary to reach the
chemical equilibrium is of the same order of magnitude as the total
reaction time. Therefore, although the ratios of particle numbers
of different "chemical products” don’t reach the equilibrium value,

they are not very far from them.

At the time when the number of A -s plus pions plus twice
the number of (@ mesons arrives to a constant level, the thermic
coupling ceases among the constituent particles. This time can be

regarded roughly as the break up time. At this point the density
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in the present model is abou+ 0.21 times the overlap density,

i.e. about half the normal nuclear density.

Is a Bose-Einstein pion condensate formed in, the reaction?

Inspecting the inserts in Figs. 1-2 one can observe a very
interesting point on the plot of the pion chemical potential
versus time. Namely, near the break-up time it reaches the value

Wr = 0,14 GeV i.e. e This is a singular point in

the present description. If the gas mixture were large enough and
it were spending long enough time in this state then it would
correspond to a phase transition implying the creation of a pion
condensate. In ideal quantum gases this is the Bose-Einstein
condensation. At this point pions could be created without energy
investment. It is important to note that this condensate is a hot
one! Its existence is not restricted to near zero temperatures. A
remarkable feature 1is that this condensation /if it occurs/ is just
in the last part of the fireball’s history, therefore, directly
observable. /Events that occur earlier in the fireball’s life are
"washed out" to a large extent from its "memory" by the later
thermal history./ This may provide us with a rather unique tool to

study the properties of dense hot and condensed hadronic matter.

The appearence of the condensate can be understood here as
follows. In the collision many hot pions are produced. At this time
the system can be described approximately as a Boltzmann gas. Dur-
ing the expansion, however, the pions have to cool down but for the
lower temperature there are too many of them in the gas phase. As
the temperature is dropping the "pion consuming” processes /like

& j AfN—-H-N+N J slow down very much. Therefore
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the pions have to he removed hy the formation of a condensate. The
characteristic feature of such a condensation is the clusterisation

of pions in the momentum space. One has to realize, however, that

the intermediate state in the energetic heavy ion reactions has a
short lifetime. Therefore the formation of this new type of pion
condensate /different from the much discussed pion condensation in
cold nuclear matter 2~ 20/, is to he regarded presently more as a
question towards experiments than a firm theoretical prediction.

The question, how strongly this tendency of momentum space clusteriza-

tion of pions will manifest itself in the heavy ion reaction is to

he answered hy further theoretical and experimental investigations.
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FIGUHE CAPTIONS

Figure 1.

The dynamics of the W+1[. heavy ion reaction at 2.1, 1.4, 0.8
and 0.4 GeV/nucleon bombarding energies. The number of particles
and the gas temperature in the overlap region is plotted as a
function of time. The shaded spheres on the top of the Figures
indicate the geometry of the process: the interpenetration and
eventually the expansion of the projectile and target nuclei. The
vertical dashed lines separate the "ignition" part from the
expansion part. The particle numbers and temperature shown by the

dashed branch of the curves correspond to the case, when no

expansion was allowed after the complete overlap of the two spheres,

The arrows at the end of these curves point to the equilibrium

values of the corresponding quantities. The insert in the upper

right part show the chemical potential, and activity, A.a-

for pions as a function of time. The horizontal line marks the
r]C.:' value, where the possibility of Bose-Einstein

pion condensation appears.

Figure 2.

The dynamics of the A* heavy ion reaction at 2.1, 1.4, 0.8

and 0.4 GeV/nucleon bombarding energies. The explanation of the
details is the same as in Fig. 1.

Figure 3.

The pion to nucleon ratio as a function of bombarding energy in

the uuu. and central collisions.
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