m m ®& <« > N

BURGER
CSORNVEI
MATYUS
PETER
SZABO
VEGH
ZOBOR

/X >/[-3cTVY

KFKI-1978-17

PROCESS-24K
AN EFFICIENT PROCESS CONTROL SYSTEM

‘Hungarian ‘Academy ofSciences

CENTRAL
RESEARCH

INSTITUTE FOR
PHYSICS

BUDAPEST

PROCESS-2AK
AN EFFICIENT PROCESS CONTROL SYSTEM

by

L. Borger, Z. Csornyei*, A. Matyus#, J. Péter,

G. Szabo6, E. Végh, E. Zobor
Central Research Institute for Physics
H-1525 Budapest P.O.B. 49 Hungary

«
Computer and Automation Institute, Budapest

HU ISSN 0368 5330
ISBN 963 371 386 2

Abstract

PROCESS-24K is an efficient real-time control system - for the R-10, R-12
and MITRA-15 computers. This system provides

data acquisition to about 2000 analogue or digital variables,
high level communication for up to 4 technological operators,
loggings of different types,

alarm analysis,

adaptive control of a process.

The usual measurement and control problems listed above are solved by table
controlled tasks of the system and the user has only to specify their operation
by filling out these tables. This is done by means of the PROCESS high-level
process control language and its compiler generates the appropriate tables.
The structure of the control tables, the operation of the different programs,
and the performance of the system will be treated in detail; moreover the
problems of the system generation are also discussed. The most important fea-
tures of PROCESS-24K are summarized in the Appendices.

Résumé

Notre reportage décrit le PROCESS-24K, Systeme temps réel de contr6le des
processus industriels & grande puissance, pour les ordinateurs R-10, R-12 et
MITRA-15. Ce systeme assure la possibilité de

traiter environ 2000 variables analogiques ou numeriques,
informer max. 4 opérateurs technologiques & haut niveau,
remplir différents journaux,

analyser des alarmes, et

contréler un processus industriel d'une maniere adaptive.

Ces problémes usuels dans la technique de mesure et de contréle sont resoulus
par les taches du systeme, doént l'operation 1l'utilisateur ne doit spécifier
qu'en remplant des tablaux de contréle a4 l'aide d'un langage & haut niveau
pour le contréle de processus industriels, PROCESS. Les structures des tableaux
de contréle, les operations des programmes différents et la puissance du
systeme seront traitées en détail, ensuit les questions de la génération du
Systeme seront aussi discutées. Les caracteristiques les plus importantes du
PROCESS-24K sont assemblées A I'Appendice.

0sszefoglalas

Riportunk ismerteti a PROCESS-24K hatékony folyamatirdnyité rendszert, amely
az R-10, R-12 és MITRA-15 szamitégéphez hasznalhaté. Ez a rendszer lehet§sé-
get biztosit

kb. 2000 analég vagy digitalis valtozé kezelésére,

max. 4 technolégus operator szadméara magasszinti kommunikaciora,
kildnbdz8 naplozéasok elldtdsara,

alarm analizisre és

egy folyamat adaptiv vezérlésére.

A felsorolt szok&sos mérési és irdnyitdsi feladatokat a rendszer tédblédzat ve-
zérelt taszkjai oldjdk meg és a felhasznalénak csupéan ezek mikodését kell spe-
cifikdlnia a vezérlé tédblédzatok kitdltésével. Ehhez a rendszer a PROCESS ma-
gasszinti folyamatirdnyité nyelvet realizalja és ennek fordité programja gene-
ralja a megfelel6 tabldzatokat. Részletesen targyalni fogjuk a vezérlé tabla-
zatok szerkezetét, az egyes programok miikédését és a rendszer teljesit6képes-
ségét, tovabbad a rendszer generalds kérdései is ismertetésre kerilnek. A
PROCESS-24K rendszer legfontosabb sajdtossdgait a Fluggelék tartalmazza.

AHHOTALNA

CoobueHne ONUCbIBAET BbICOKOI(M®MEKTUBHYD CUCTEMY YMNpaB/ieHWA TeXHONOoru-
yecknumun npouyeccamn PROCESS-24K, kKoTopas MOXeT NpuMeHATbcA Ha 3BM-ax Twuna
R-10, R-12 u MITRA-15. Cuctema ob6ecneuymBaeT BO3MOXHOCThb:

- 0xBaTbiBaTb npumepHo 2000 aHanoroBbiX W LWUGPPOBLIX MapaMeTpPOB»

- KOMMYHWKALMWIO Ha BbLICOKOM YpOBHE MaKCuUMalibHO C 4-mMf onepatopamwu
TEXHONOTMYeCcKOro npouecca»

- COCTaBneHMa pasNN4YHbIX MNPOTOKONOB W [AHEBHWKOB»

- aHanmsa anapmoB»

YKa3aHHble Bblle (YHKUMKM cbopa faHHbIX W ynpaBieHUSs NPOLECCOM BbIMNOMHA-
I0TCA pa3inyHbiMu Tabnuuamun. [Ona onpejeneHns 3ajay CUCTeMbl AOCTATOYHO 3aNONHUTL
3T Ta6auuybl. YT0o6bl 06NErYMTbL 3Ty 3ajadyy CUCTeMa OCHaleHa CUMBOMMYECKUM HA3bl-
koM PROCESS, opueHTMpOBaHHbIM ANA peweHus 3apay cbopa [aHHbIX U ynpaBieHuUs
npoueccom. B coobuweHWn feTanbHO OMNWUCLIBAKOTCA COCTaB W XapakKTep ynpaBnswOWUX Ccy6-
nporpamMamu Tabnuy, QYHKUMM OTAENbHbLIX cyb6bnporpamm, MOLWHOCTb CUCTEMbl ynpaBne-
HMa PROCESS-24K 1 Bonpocbl reHepauuMm ee Ha OBM. BaxHelilnme XapaKTepUCTUKM CU-
cTeMbl fatTcad B [pUNoXeHUu.

Acknowledgement

The development of the PROCESS-24K was based on the
PROCESS-8K system. Throughout the development the
authors of this report have got a considerable help
from the coworkers of the Computer and Automation
Institute of the Hungarian Academy of Sciences where
the PROCESS-8K system was constructed.

It is a pleasure for the authors to express their
gratitude for this help and to thank Mr. S.Keresztély,
the chief designer of the PROCESS-8K system, for his
valuable advice and continuous encouragement during
the development work.

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

CHAPTER 5.

CHAPTER 6.

CHAPTER 7.

CONTENTS

INTRODUCTION

GENERAL DESCRIPTION

2.1.
2.2. System architecture
2.3. Throughput of the system

Hardware configuration

OPERATING SYSTEM

Core management
Input/output transfer
Background organization
Error recovery procedures

W W w w w
a B~ W N

Computer operator interface

DATA ACQUISITION LAYER

Data base structure

The PROCESS language

Measurement organization

Organization of the primary data processing
Automatic display functions

System log functions

Technological operator interface /OPER program/

F N N N N O TS
N o N W N e

DATA ANALYSIS LAYER

Description of the binary logic trees
Description of the time relations
Representation of the Alarm Trees
Method of Analysis

Presentation of the result

[S2 BN S 2 BN &2 BN) BN |
a B~ W N

ADAPTIVE CONTROL LAYER

6.1. Troubleshot measurements
6.2. Reconfiguration of the cyclic tasks

SYSTEM GENERATION

7.1. Description of the real-time environment
Loading of the real-time tasks
Loading o f the COMLOG programs
Specification of the post-mortem log

Page

10

13

13
16
19
20
21

23

24
28
33
37
40
41
45

50

51
53
54
57
60

64

64
65

66

66
67
67
68

REFERENCES

Appendix 1.

Appendix 2.

Appendix 3.

Appendix 4.

Appendix 5.

7.5. Specification of the data presentation
7.6. Loading of the alarm library

ADDRESSES IN THE R-10 CONFIGURATION

MONITOR MODULES OFTHE OPERATING SYSTEM

SUBROUTINES IN THEPRIMARY DATA PROCESSING

PMTASK POST-MORTEMLOG GENERATOR TASK

OPERATOR COMMANDS

Page

69

69

70

73

74

76

79

01

CHAPTER 1.

INTRODUCTION

In the early 70s the utilization of digital computers for industrial process
control increased dramatically and this in turn initiated a great development
in industrial real-time programming. Although in the early stages the assembly
coding predominated the industrial application area, now various types of real-
time languages are used at almost every installation. The main reasons for this
lie in the growing size and complexity of the problems and in the drastic
decrease in the price of the computing hardware |I].

Two tendencies in the use of high level real-time languages in the industrial
environment can be observed. One of these trends is in favour of existing widely
accepted high level languages,and provides real-time extensions to them. The
others prefer new problem oriented languages which allow the user of an in-
dustrial computer to develop his system easily without having a detailed
knowledge of the used computing means.

Universal high level languages, which are completed with real-time extensions,
are FORTRAN |2| and BASIC |3|. In these languages the extensions are in the
form of subroutines called by a CALL statement. The extensions are needed to

solve the following problems

starting of a program with a given delay,
starting of a program at a given time,
waiting for a given interval,
initiating/terminating a program when a given condition is fulfilled,
- handling of a real-time peripherals /A/D converters, digital
input/output, etc./
- handling of different types of files.

The most serious problems arise in the input/output organization where there
is often a strong interaction between the machine independent language and the
configuration dependent operating systems, so the 1/O operations are not al

ways compatible on different machines.

A considerable number of problem oriented languages have been developed re-
cently, e.g.: INDAC |4|, PROCOL |5|, LTR |6]|, PEARL |7|, CORAL |8]|, etc. It is
generally required that these languages

should need only a short learning time from the process engineers,
should not need the user to have any knowledge of the internal
structure of the computer, of number representation, of timing, etc.f

should provide efficient restart procedures and diagnostic.aids,
should give the possibility of on-line modification.

With such languages the program writing time and errors are reduced since

the real-time problems are solved by the language. The debugging and the prog-
ram modification are quite simple and well documented. The language efficiency
is considerably good, about 1,3-1,5 compared to assembly programming.

More simplified types of problem oriented languages are the so called format
defined languages e.g. BICEPS |9|. In these systems the user has only to fill
in standardized forms. The main advantage of these languages is in their sim-
plicity. The standardised form may prevent the user from forgetting some im-
portant poiits in the description of this problem. On the other hand these
programs are not directly transportable to another computer though the required
effort for the transcription is generally not too great. Using a high level
language, it is almost unavoidable that some parts of the application software
be written in assembly language |11].

There are three reasons for using assembly coding

special machine instructions are sometimes needed to directly drive
the hardware,

for possible re-entrance /although CORAL 66 for example provides
re-entrance as well/,

when a program path is very frequently used, the time minimalization
is critical.

For these reasons, the possibility of inserting assembly segments in a high
level language is highly recommended. The experience of real-time programming
in an industrial environment has proved that a problem is better solved by a
process man, who knows the process well but has a very limit knowledge of prog-
ramming, rather than by an experienced programmer, who may not understand the
process. This fact has initiated the development of simple but effective oper-
ating systems, which are not general purpose systems but rather process ori-
ented ones 1101. In general a process oriented operating system incorporates
the compiler of a given high level language and tries to simplify the prog-

ramming in every possible way.

Nuclear power generation is an industrial area where computers are used for a
long run. There is no uniform opinion on the role of the computers in nuclear
power plants at present. In Canada process computers have been used in plant
control for several years |l12]|, whereas the situation in the USA is that no
control functions are permitted and process computers are used only in data
acquisition and operator information systems 1131. The practice in England lies
somewhere between these two experiences. Process computers provide automatic

data reduction and eliminate manual data logging, moreover, they interlock some
plant operation when the proper conditions are not fulfilled |14, 15|. Instead

of direct digital control, the sequence control of the operator's activity is
preferred.

Until now in Hungary two Hungarian made small computers have been used in pro-
cess control: the TPA-i which is program compatible with PDP-8 and R-10 - the
licensed version of the French MITRA-15.For the R-10 computer two process
control systems were originally developed: a process oriented operating system
/PROCESS-8K 116, 17, 28, 29|/ incorporating the PROCESS problem oriented
language, and a format defined language /PROCESS-16K 118|/ which operates

in the Process Control Monitor operating system |19].

In the Central Research Institute for Physics, Budapest, several industrial
computer applications have been developed and installed successfully. The first
installation of this type was the block monitor system completed in 1975 of the
Danube Thermal Power Plant 120|. Since this time a number of other similar in-
stallations have been completed and at present there are others under construc-
tion. In the early 70s a research project was launched, the aim of which was
of establish a closed-loop computer control system on the WWR-SM* research
reactor of our Institute. This project was supported by the State Office for
Technical Development and by the National Atomic Energy Commission.

The PROCESS-24K process oriented operating system, incorporating the PROCESS
problem oriented language, has been designed in connection with this project.
The configuration is based on a R-10 computer of the VIDEOTON Computer Factory.
In the first step of the project /1976/ the PROCESS-8K system was used. This
needs only 8K words core memory.

Although the performance of the PROCESS-8K would have been sufficient to meet
the requirements of the project, the PROCESS-24K system has been developed in
order to provide a system which is able to be used in Nuclear Power Plants and
in similar fast and dangerous installation. Throughout the development the
essential, very -progressive characteristics of the PROCESS-8K systemXX have
been retained in order to maintain the upward compatibility with the smaller

PROCESS-8K system

A tank type light water moderated research reactor with 5 MV thermal power,
the primary and secondary coolant circuits are coupled via two heat exchangers,

the energy is absorbed in a cooling tower.

XX
These progressive characteristics are: the incorporated PROCESS language,
the on-line loading/modificating properties of the system, the very efficient
monitor, logging subsystem, etc.

This means that every applicationeprogram of the PROCESS-8K can be used without
any modification in the PROCESS-24K system.

The most

significant advantages of the PROCESS-24K compared to the PROCESS-8K

are the following:

1/

2/

3/

4/

5/

6/

7/

The generated data base is core resident instead of disc resident.
This feature results a great increase in the processing speed.

The PROCESS language is completed by internal functions and it is
possible to call external functions as well.

Assembly coding is also permitted, and assembly modules can be linked
to tasks written in the PROCESS language.

Alarm analysis - providing a deeper insight into the actual process -
is an inherent part of the system.

Under normal operating <conditions of a plant, the goal of the
computer control system is some kind of optimization. In anomalious
situations, however, the aim of the control is dictated by safety
aspects, i.e. some high priority emergency algorithms have to enter
and other optimization tasks must stop operating. PROCESS-24K
provides a framework for realizing such a reconfiguration.

Strong emphasis has been laid upon man-machine communication to help
the operator in unexpected situations. This goal is achieved within
the possibilities of alphanumeric displays on the screen of which
the operator can call

alarm lists,
alarm trees,
technological logs

or he can initiate a dialogue.

PROCESS-24K provides automatically refreshed data presentation on
lamps, numerical indicators or on any other type of digital display
equipment.

The price of the advantages listed above is the 24 Kword core memory, but now

- when the price of the memory is decreased considerably - it seems to be not

too serious.

CHAPTER 2.

GENERAL DESCRIPTION

2.1. Hardware configuration

PROCESS-24K needs the following hardware

R-10, R-12 or MITRA-15 central processor with 48 Kbyte operating
memory and with floating point arithmetic unit
fixed head disc with 800 Kbyte capacity /DISCMOM -EC-5060 or

SAGEM FEX-3/

real-time clock

console typewriter

two alphanumeric display units /VT-340/
tape reader and punch

real-time measuring system with

1-4 integrating A/D converters /71921/

1-64 32-line analogue multiplexers /71912/13/
1-16 8x16 bit digital inputs /71950/51/
1-16 8x16 bit digital outputs /71960/61/
1-16 16x8 bit polarized relay output /71970/

The following units can be handled by PROCESS-24K,

line printer IVT-343/
magnetic tape units
additional alphanumeric display units.

N W kDN

but they are optional

logging typewriters /Console 260/ or matrix printers /DZM-160/

The hardware configuration can be seen in Fig. 1. Since PROCESS-24K is a
multiprogrammed system and the individual programs use different interrupt

priority, the following levels are required. /see next page/

In Appendix 1 we summarize all constraints against
DVA words/. Each entity is selectable by a jumper in

unit, so this constraint is not a very serious one.

the hardware /addresses,
the corresponding hardware

IT level Program name Peripheral

o} BACKGROUND _
1 COMLOG -
2 OPER 74.880+
3 ALARM -
4 NIXI -
5 PULT -
6 ASR CONSOLE
7 MPX DISPLAY
8 LPT PRINTER
10 CLA TYPEWRITER
11 ALDYS 74.880
13 PTP TAPE PUNCH
14 PTR TAPE READER
15 ANAL -
16 MT MAGN. TAPE
17 FELD -
18 MEAS 74.880
19 RELE -
21 HWIT 74.880
24 TIMER CLOCK
26 DISK DISC
30 PWUP -
31 PWDOWN -

74.880 is an interrupt collector card which gathers 16
individual interrupt request lines into one interrupt
priority level.

2.2. System architecture
It is usual to divide process control software into two main categories, viz.

system programs /operating system, high level languages and different
programming aids/
application programs /each of which is unique in every application/.

In our opinion this approach reflects the general attitude of the computer
system's suppliers, so it corresponds to the boundary of the responsibility
instead of to the logical structure of such a system. Vernel |21]| suggests

three categories:

*4
r*
»

Hardware configuration for PROCESS-24K.

data logging layer
data analysis layer
adaptive control and optimization layer.

In our description we have basically followed this treatment but we shall also
use a fourth layer namely the operating layer, because there are tasks con-
nected with the computer that are not directly related to the actual process
/le.g. different handlers/. Consequently, PROCESS-24K is composed of four
layers [/see Fig. 2./:

operating layer, which consists of the monitor modules, peripheral
handlers, swapping control, background organization, buffer system,
error recovery procedures and the computer operator interface;

data acquisition and control layer, which contains timing, measurement
organization, primary data processing /scaling, validity checking,
filtering, etc./, data base organization, control algorithms, data
logging and the technological operator interface;

data analysis layer, which means trend analysis, alarm analysis,
description of cause-consequence charts, alarm tree library,alarm
presentation;

adaptive control and optimization layer, which represents tasks con-
cerned with providing new configuration for the actual data acquisition
and control layer.

These layers are built on each other hierarchically. In general there are
connections only between the neighbouring layers; for this reason every layer
has its specific interface system. Every layer has special dependence on the
actual process and it is weaker in the lower layers than in the upper ones.
While for example the operating layer does not depend on the actual process
and is determined by the central processor and its peripherals the adaptive
control layer is defined mostly by the controlled process and is not connected
very closely with the computing hardware.

From an information processing point of view this system provides two images
of the outer world /i.e. the controlled process/. The data acquisition layer
up-dates cyclically a data base which is a more or less unstructed picture
of the process, containing every measured item of information without any
deduction /except for validity checking/. The data analysis layer generates
a structured picture of the process so this image depends not only on the
measured quantities but on the ordering principle too. Consequently this pic-
ture is more abstract and condensed than the former one; at this level the
process is described by state matrices.

Fig. 2.

Structure of PROCESS-24K.

PROCESS-24K, being a general real-time system, contains only the process in-
dependent part of a control system and all of the software aids by which a
specific installation can be constructed, for this reason the lower layers
are much richer and polished, than the upper ones.

The structure of the core memory and of the disc can be seen in Fig. 3. and
Fig. 4. respectively.The abbrevations used will be defined in CHAPTERS 3.

and 4.

10

Monitor modules

and tables 2.5 Kwords

Handlers and

core resident 3.1 Kwords

tasks

Primary data

processing 2,8 Kwords

Data analysis 3.1 Kwords

Swapping

area 2.5 Kwords

Data base 6 Kwords

Buffers Kwords
24 Kwords

Fig. 3.

Core memory map.

2.3. Throughput of the system

The performance of PROCESS-24K was analysed in a system with 70 analogue
variables and with 11 measurements/sec information rate. It was found that
the updating of one analogue variable needs 5-6 ms of CPU time. This time

includes

control of multiplexors and A/D converters,

converting the measured quantity into a floating point number»
scaling,

comparison against alarm limits,

exponential filtering,

storing in the data base,

housekeeping of the data acquisition layer.

Permanent area

Application area

610 sectors

number of groups)

(N=

Libraries

11

Monitor
overlay programs

Image of
the core memory

System library

Buffer and
swapping area

Block
descriptions

NOMB
table

MEAS
table

NAME
table

Post-mortem
log area

User library
Comlog library

Alarm library

Image of the
data base

Fig. 4.

Disc map.

85 sectors

80 sectors

370 sectors

75 sectors

12xN sectors

6XN sectors

N sectors

64 or 128 sectors

max. 128 sectors

Depends on the
configuration,
typically: 150-200
sectors

48 sectors

12

The real-time measuring hardware of the R-10 computer uses slow A/D converters
of integrating type with a considerably good noise suppression /120 dB at

50 Hz/. The maximum data rate of this converter is 30 measurements/sec.
PROCESS-24K can control 4 A/D converters at the same time, so a maximum of
120 measurements/sec can be acheaved. This maximum information rate needs
120x6 = 720 ms, or 72% CPU time.

The overhead of the system /i.e. timing and refreshing the digital outputs
every second/ is 1,5-2%.

Consequently, in the case of the maximum information rate, about 25% of the
CPU time is available for operator communication and data analysis which
seems to be a reasonably good value. The main characteristics of PROCESS-24K
are given in Table 1.

Max. number of variables 2304
Max. number of measurements 1920
Max. information rate Imeas./sec/ 120

Max. number of self-holding digital

outputs /bit/ 2048
Max. number of refreshed outputs /bit/ 512
Floating point representation with
length of mantissa /bit/ 24
length of exponent /bit/ 7
sign bit
Time resolution /ms/ 50
Max. number of post-mortem samples 256
Max. number of alarms 640

Table 1.

Main characteristics of PROCESS-24K.

determined by the controlled A/D converters

13

CHAPTER 3.

OPERATING SYSTEM

Due to the rather small core memory most of the operating system is disc res-
ident and a given part is loaded into the core memory when it is needed. Nat-
urally the most often used programs are always core resident. We will discuss
the operating system in the following way:

core management
- input/output transfer and control of the peripherals
- control of the background programs

error recovery procedures

computer operator interface.

The services of the executing system are accessible by a special supervisor
call /CSV/ instruction. With this instruction one of 34 monitor modules can
be called. These modules are re-entrant so they can be called at any time and
from any interrupt level. The monitor modules are summarized in Appendix 2.

3.1. Core management

The core management of the PROCESS system has already been described in detail
122, 231, therefore here we only summarize the basic concepts.

Two activities fall within the category of core management namely:

buffer system,
overlay technique.

The buffer system uses buffers of fixed length. There are mini /10 bytes/,
midi /32 bytes/ and maxi /256 bytes/ buffers. AIll of the buffers form a common
buffer area at the end of the core memory; the starting address of this area

is ZC. Every buffer is determined by its ZC relative starting address. In order
to reach the buffers from any program easily, every program contains in its
data area, at a fixed location the address of ZC. In such a way any buffer

can be reached by indirect indexed addressing.

Buffers can be chained to each other using their first location /see Fig. 5./.
When a buffer has a chained buffer, its first location contains the ZC relative

address of the next one, otherwise it is zero.

14

Fig. B

Chaining in the buffer system.

The service of the buffer system is reached by 4 supervisor modules, three

of them reserve a mini-, midi- or a maxi buffer /MINI, MIDI, MAXI/ respectively
while the fourth releases a buffer /FREE/. When a program reaches an EXIT
instruction, or it is aborted due to an error, all of its reserved buffers

are freed automatically. The monitor checks the number of the buffers allocated
to a user program and if it is greater than a predetermined value, the user
program is aborted and its buffers are released.

The applied overlay technique is very simple but highly effective. It
presumes

every section using overlay procedure is not longer than 256 byte
/i.e. 1 disc sector/

when a program runs, only one of its sections is in the core
when a program waits for the execution of an I/O transfer, none
of its sections is in the core

sections are not written back to the disc, common variables must
be stored in the core resident root of the program

from every section it is obligatory to return to its calling
section but the EXIT instruction can be executed in any

section /see Fig. 6./.

These constraints are sometimes rather strict but the primary aim is to occupy
as small memory space as possible. In such a way the overlay sections run in
maxi buffers which results a very simple solution.

15

Fig. 6.

Overlay technique in the PROCESS syetem.

Every section must begin with the page relative starting address in its first

word IFig. 7.1.

0

Local data
segmens

Program
segmens

Fig. 7.

Structure of an overlay section.

Four monitor modules form an interface between the programs and the operating

system, which can

16

call an overlay section /CLS/,
return from a section IRTS/,
finish the running IEXIT/,
wait for an action IZWAT/.

Each of these modules releases the buffer where the module was called.

3.2. Input/output transfer

The handling of all conventional peripherals is quite the same as in other
R-10 /MITRA/ operating systems |24, 25|. The operating system distinguishes
logical and physical peripherals. Every program uses logical peripherals
while the actual data transfer is carried out through a physical one assigned
to the given logical peripheral. This solution is very flexible since if, for
example an error occurs in a peripheral unit, the computer operator can assign
very easily another one, to replace the faulty equipment.

The logical peripherals are the following /Table 2./:

Computer console is a typewriter by which the computer operator can instruct
the system, and where the errors of the computing hardware and the program-
ming errors are reported.

Operator console is an interface for the technological operator. The system
can handle 4 operator consoles in the same time but they are not identical.
Through 0Cl the operator can maintain the complete communication with the
system /see 4.7./ while by the other 3 consoles only interrogating is possible
Listing output produces different types of lists.

Listing log is used for typing different types of logs.

Backing memory provides a large backing store /typically magnetic tape/.
Synchronous connection is planed to maintain a data link with other computers
Elementary input is a data input into the system.

Elementary output is a data output of the system.

System disc is an area of the disc dedicated to the users. User programs

can communicate only with this given area, they have no access to the whole
area of the disc.

17

l!]ﬂﬁ]g;irty IOapbeerIating Function Mode
0 M: CC Computer console alphanum.
1 M: OC 1 1. Operator console alphanum.
2 M:0C2 2. Operator console alphanum.
3 M:0C3 3. Operator console alphanum.
4 M: 0C4 4. Operator console alphanum.
5 M:LO Listing output alphanum.
6 M: LL Listing log alph anurn.
7 M: MBG Backing memory bin.,alphanum.
8 M: CLS Synchr.connection bin.,alphanum.
9 M:EI Elementary input bin.,alphanum.
10 M: EO Elementary output bin.,alphanum.
11 M:SY System disc binary

Table 2.

Logical peripherals.

At physical peripheral's level# PROCESS-24K has handlers for the following

equipment:

fixed head disc /IDSK/,
magnetic tape unit IMT/,
paper tape reader /IPTR/,
paper tape punch /IPTP/,
asynchronous data line /CLA/ for logging typewriter,
Teletype IASR/,
alphanumeric display multiplexor / MPX/ ,
line printer /LPT/,
- synchronous data link /CLS/.

These handlers are special programs at different interrupt levels. The assign-
ment of logical and physical peripherals can be seen in Table 3.

In this system there are four monitor modules organizing the input/output data

transfer, viz.

18

- ZIO - input/output communication

- ZTYP - combined output transfer with input

- 2WAT - waiting for the execution of an I/O transfer
- ZDIO - disc transfer.

The parameters of each module has to be given in a control block /CB/ and
due to the intensive swapping used, it is obligatory to put both the CB and
the actual data buffer into the buffer area.

Operating Standard Other peripherals
label assignment can be used

M: CC ASR -

M: OC MPX CLA, ASR, NO

M: LO LPT CLA, ASR, MPX,

PTP, MT, CLS, NO

M:LL CLA LTP, ASR, MPX
PTP, MT, CLS, NO

M:MBG MT NO

M: CLS CLS NO

M:EI PTR ASR, NO

M:EO PTP ASR, NO

M: SY DSK -
Table 3.

Assignment of logical and physical peripherals.

With a control block the transfer of max. 256 bytes can be specified except
for the M:SY peripheral, where this amount can be much longer. If more then
256 bytes has to be sent/received, a chain of CB-s can be used.

Only one dedicated area of the disc /System disc, M:SY/ can be reached by the
ZIO module. It is obvious that the system programs have to reach the whole
disc available, for this purpose the ZDIO module can be used. This module was
developed exclusively for system programs, its wuse is forbidden to users.

19

3.3. Background organization

At maximum data rate PROCESS-24K has about 20-25% free CPU time /see Section
2.3. / which is a very nice amount for background programs. In this context a
background program is a code whose time relations are insignificant, its
execution is not urgent. There are two types of background programs:

codes connected to the real-time tasks, called COMLOG /COMputing
or LOG producing/ programs,

utility programs, having no direct connections with

process control.

Clearly, the former group is more important from a system operation point of
view, therefore the system handles them with a higher priority. Both type

of programs run at the lowest interrupt level. If two background programs
request running concurrently, the scheduler will choose that one which has
real-time relations, otherwise it will decide on a first-in-first-out base.

COMLOG programs can be initiated by other real-time programs but some of them
can be started by the technological operator as well, in contrast utility
programs can be called only by the operator. The space in the core memory
available for background computing is 5 Kbytes. When a program is longer than
this swapping area, it has to be partitioned. A partition of a program
can call its continuation by the M:LOAD monitor module. The partitions can
communicate with each other at the end of the swapping area because the
M:LOAD module loads only the actual length of the called program i.e. it does
not use more territory than necessary.

The swapping of the background programs has already been discussed in detail
in the literature |12, 13].

The background programming is supported by 2 monitor modules:
BIBL - gives the starting sector and the actual length /in sectors/

of a file determined by its 6-character long name and a flag
byte specifying the library

81 - system library
01 - user library, executable program
02 - user library, assembler source
04 - user library, logsheet source
08 - user library, PROCESS source
10 - user library, generating data
40 - alarm tree library
LOAD loads a program determined by its starting sector and length

into the swapping area.

20

The system library contains the usual service programs for editing(compiling,

loading, mapping as follows:

- text editor (/TEXTE)

compilers:
assembler &BSATR
PROCESS compiler *AUTOC
logsheet compiler 'LOGTR
loaders:
assembler loader +BSALD
task loader .TASLK
COMLOG loader =COMLK
PROCESS loader @LINK
logsheet loader " LOGNL
memory and disc dump MDMAP
post-mortem log dump PMLIST
system generator $GENES
alarm tree generator ALGEN
refreshed output generator TDIGO
mapping the actual groups GRSN

mapping the variable of a group CHSN

The actual functions of these programs will be discussed in Chapter 7. The

length of the system library is 380 sectors, the length of the user and

COMLOG library are determined at the system generation.

3.4. Error recovery procedures
In a real-time system an error may happen at any time and it is
to maintain the primary function of the system. For this reason

system contains procedures to avoid

errors caused by the environment,
faults, generated by the programs.

The environmental errors may be caused

either by the power supply,
or by the computing hardware.

When the electric power fails, the CPU generates an interrupt at

highly important
the operating

level 31,

which results a master clear. When the power returns, the CPU generates an
interrupt at level 30, by which a PWUP is initiated. This program

21

indicates in a flag /FL:UP/ that this running is not an initial
program loading /IPL/ but a recovery procedure,

calls a DBOOT program which loads the image of the core, from the disc,

afterwards the STARTER program is initiated.

This STARTER determines whether it is an IPL phase or an error recovery. In
the latter case the data base and the time registers of the system are not
written over, so the system continues its operation. At the end of this
starting procedure a message it typed out at the computer console, registering
the time of the power failure.

The error of the computing hardware can be catastrophic or may only cause

a degradation in the system performance. When a fundamental part of the
hardware goes wrong /central processor, disc/, not too much can be done; the
CPU halts and a light on the front panel of the computer indicates the type
of error /e.g. memory parity error, disc error/. When a peripheral unit goes
wrong, the computer operator can either replace the erroneous equipment with
a spare part or can assign its function to another unit. For this purpose
the operating system measures the time of every data transfer and if this
time is longer than 2 minutes, it sends a time-out message to the computer
console.

It is more difficult to avoid a programming error. The R-10 computer has two
operating modes: master- and slave mode. In the slave mode a program uses
only a subset of the operation repertoir of the computer, in this case the
use of the "most dangerous” instructions is forbidden. User programs can use
the computer only in slave mode. When a user program

uses forbidden instruction,
wants to write into the system memory area,
uses a non existent instruction

the CPU refuses to execute the given operation and calls the monitor module
@ /System Trap/. This module

aborts the erroneous program

types out an "abort report"™ on the computer console.

3.5. Computer operator interface

When the computer operator wants to instruct the operating system, he has to
cause an interrupt at level 5, by pressing a pushbutton either on the front
panel of the CPU or on the computer console. In this case, the system types
out the actual time and waits for the instruction, which can be one of the

following:

22

CALL with this instruction a utility program either from the

system library or from the user library can be loaded
into the background area and then started.
ASSIGN this instruction assigns a physical peripheral
‘ logical one.

to a

Y:BG - aborts the running background program.

TIME CORRECTION - changes the actual date /day, hour, minute/

in the system.

All these communications are carried out through the computer console.

23

CHAPTER 4.

DATA ACQUISITION LAYER

The fundamental functions of this layer are to reflect the actual process in
the data base of the system, to produce proper answers to every change in

the "outer world" and to inform the technological operators about the present
situation. At this level the problems of each process are very simiLar to each
other so a general solution to these problems can be given and the user has
to fit this solution to his actual environment. For example, every process
control system needs measuring of the process, so the general solution to
this problem is to organize and to carry out these measurements but the user
has

to specify the cycle of a given measurement,
to allocate an input route for it,
to specify the gain of amplifier etc.

For this reason PROCESS-24K has table controlled subsystems: measuring, data
processing, displaying, logging and the user has to specify their operation
only. This specification is performed by filling out control tables of the par-
ticular subsystem by means of special utility programs.

Since PROCESS-24K is a measurement oriented system, its real-time tasks are
organized according to the measuring cycle time of these tasks. AIll measuring
and/or control tasks with the same cycle time form a group. Each group is
represented by its Group NumBer /GNB/. PROCESS-24K can contain a maximum of
48 groups, numbered from d to 47.

Each group may contain max. 48 variables. In a group every variable is repre-
sented by a Block NumBer /BNB/, so each variable can be identified by a
4-decimal identity number /GNB, BNB/. For the operator's convenience a max.
6-character long mnemonic is associated with every identity code so a variable
can be called by its name instead of a 4-decimal long number.

Since PROCESS-24K can contain max. 48 groups and each group has max. 48 varia-
bles, this system can handle max. 48x48 = 2304 variables.

24

4.1. Data base structure
Each variable has

an actual value

a flag byte reflecting the actual state of the measurement
/e.g. invalid, overlimit, etc./, and

auxiliary information /e.g. name, dimension, absolute values
of different type/.

All of this information forms the data base of the system. Whereas the first
two parts have to be up-dated in every measuring cycle, the third part is
constant. For this reason rapid access is needed to the first two p~rts, but
as the constant part is needed only occasionally, the first two parts are
stored in the core memory, the constant part is on the disc.

The core resident data base reflects the group structure of the PROCESS
system. Each group has a 256-byte long page in the operating memory where the

values and the flags of its variables are stored. The structure of the core
resident data base of a group is given in Fig. 8.

Header 16

Rags

Values 192 bytes

Fig. 8.

Data base structure of a group.

25

This page is divided into 3 parts, namely

a group header
a flag field
a value field.

The group header contains the following information

the group number,

the measuring cycle time,

the identity code of the coupled COMLOG program

[if there is any/,

data for the post-mortem log /starting sector, actual
pointer etc./,

data of the loaded blocks.

The flag field consists of 48 flag bytes. Each byte reflects the present
state of a variable, the meaning of the individual bits are the following:

operating bit - if this bit is zero, the given variable
is not measured/controlled

analysis bit - this bit is reserved for the data analysis
layer in order to reflect, e.g. if a given

variable is used in the alarm analysis or not
digital control bit - if this bit is zero, control functions with
this variable are not carried out, only meas-
urement tasks
competency bit - this bit reflects whether the system needs

a competence checking when the operator tries

to alter, e.g. limits of the variable /see 4.7.1.
lower limit - it specifies the overlimit, if this bit is

one, the lower alarm limit is passed
validity bits - with the following structure

00 - valid

10 - invalid measurement at the first

time

11 - invalid

01 - take it as wvalid
overlimit bit - if this bit is one,the variable passed its

upper or lower alarm limit, specified by bit 4.

The structure of the flag byte is given in Fig. 9.

26

O123 A5 6 7

operating Y —" overlimit
analysis validity
digital control lower limit

competency

Fig. 9.

Flag byte structure.

The value field can store up to 48 four-byte long values. The structure of
an analogue variable is given in Fig. 10. In this floating point representation
a N number in the

Tc nc
0,6909 x 10 < N < 0,7231 x 10

range can be represented with a 6 digit accuracy, and the value of a variable
is given with the expression

K= tmx 16c°4

In the case of a digital variable, only the first 2 bytes of the value are
used, the content of the following 2 bytes are insignificant.

PROCESS-24K contains a 48-page long data base in the core, moreover the image

of this area is on the disc with the initial values and flags of the variables.
At the IPL phase this disc area is also loaded into the core with the initial

quantities in order to define the starting state of the control system.

The disc resident auxiliary part of the data base form two tables /NAME and
NOMB/ on the disc. The NAME table serves for associating an identity number
/GNB, BNB/ to a mnemonic name of a variable. A 8 byte-long item of this table
is given in Fig. 11.

27

sign bit i

exponent normalized mantissa

binary point
Fig. 10.

The structure of an analogue variable.

Mnemonic Identity code

N A M E GNB BNB

Fig. 11.

NAME table element.

A special supervisor module /NAME/ has access to this table, by which an
identity code can be associated with a given mnemonic.For the operator's
convenience, there is an operator command to call the identity code /see
Appendix 5./ of any variable.

28

The NOMB table is organized according to the identity codes instead of the
mnemonics.Every element of that table is 32 bytes long and stores

the mnemonic code /6 bytes/,

the dimension /6 bytes/,

the type /analogue or digital/
absolute alarm and validity limits

of the given variable. The structure of a NOMB table element is given in

Fig. 14. Each group has 6 sectors on the disc for storing its NOMB table. This
information is used exclusively in the man-machine communication /operator's
communication, log generation/ of the system.

4.2. The PROCESS language

It was mentioned in the introduction of CHAPTER 4 that PROCESS-24K has table-
controlled subsystems and the user only has to specify their operation, more-
over this specification is done by filling out various types of control table.
The generation of these control tables is carried out by a system program

/' @LINK/, which loads into the system the information produced by the
PROCESS compiler. A fundamental feature of this loader is its real-time oper-
ation, i.e. it loads a program into a running system without interferring with
the real-time tasks. The PROCESS compiler translates the PROCESS high-level
language into the control tables. In this section we summarize the main char-
acteristics of this language. The user is interested, above all, in the follo-
wing :

where he has to measure a given variable,
what he has to do with the measured quantity,
which control valve must be activated at a given time.

He is uninterested in the inner structure of the PROCESS-24K, in the operation
of the different routines, in the content of the control tables. One thing is
important for him, to write down his problem as simply as possible. In the
construction of the PROCESS language the user's viewpoint was taken to be fun-
damental. For this reason the basic concept for the user is a channel. There
are two types of channels, viz. a measurement with its processing or a control
action. AIl tasks of a given channel will be considered as channel program.
The compiler breaks the channel program into blocks and generates data for
the different control tables. At a given time only one channel program can be
translated or loaded into the system.

29

A channel program is a series of statements. Every statement must be written
into a new line and in order to facilitate program writing the programmer can
use coding sheets.

First let us look over which operands can be used in the instructions. In the
PROCESS language two types of constant are permitted, namely integer and real
numbers. Both types can be represented either in decimal or in hexadecimal form
and it is the compiler who decides which form must be used in a given context.
Every variable has a symbolic name which is a max. 6 alphanumeric character
long string starting with a letter. Each instruction can have a label of the
same type.

There is no necessity to declare the type of a variable. If a variable is al-
ready used in the loaded program, it is stored there, if not, the loader will
assign a space for it. The type of variable is also determined by the compiler
on the basis of its occurence. Variables and numbers, connected to each other
by the four rules of arithmetic form an expression. The use of parentheses is
not permitted; the expressions are interpreted from the left to the right. The
length of an expression is limited only by the length of the line. The type
of expression is also defined by the compiler.

A PROCESS statement can be

either declarative,
or executable instruction.

Every declarative statement begins with the slash character, i.e. /e

There are only 6 statements of this type; /BEGIN, / STRT,/VALUE, /ANAL, /GUARD, /END.
The first five can be used only at the beginning of a channel program while
the last indicates the end of a program.

The /BEGIN statement must be the first instruction of a program. In this
statement the user can specify

the names of the channel and of its variable,
the initial value of the variable,
the dimension of the variable.

This statement gives information for the NAME and NOMB tables.

The initial data base is determined by the /VALUE, /ANAL,/GUARD statements.
The /VALUE declaration gives a starting value to the variable. The argument
of the statement is a 4-digit hexadecimal number /in the case of digital
variables/ or a 6-character decimal number /in the case of analogue variables/.

30

The analysis and the competency bits of the flag can be set by the ./JANAL and the
/GUARD statements respectively.

All of the former three declarations can.be omitted, in this case the initial
values are zero.

The /STRT statement defines where the channel program is initiated from. This
can be

the input of an A/D converter,
a digital input, or
another channel program.

The /STRT statement determines the information for the MEAS table.

There are two types of executable statements. In the first set, the order

of the execution is predetermined; the compiler generates from these statements
the fixed format blocks of the PROC table. The order of the statements corre-
sponds to the wusual order of the operations in the process control problems
and equals the sequence of the instructions in the fixed format blocks. This
order is given in Fig. 12 /The instruction set of the PROCESS language is
summarized in Appendix 3./

The /BEGIN, /STRT and the first executable statement determine the type
of block generated by the compiler.

In the second set, the order of the statements is free from the viewpoint
of the language, these instructions form the free format blocks. The language
has

arithmetic,

logical,

data moving,

branching,

control,

function generator,

program transfer instructions.

In the arithmetic subset of the statements there are addition”®subtraction,
multiplication, division and power functions. Every instruction has four
types because the operands are the content of the E, A accumulators and

a parameter,
- the variable of the given block,
the variable of another block,
or a value stored at a given address.

31

Fig. 12.

Order of the execution in the fixed format channel programs.

32

The data moving instructions serve for loading the value of a variable into
the accumulators, or storing in a variable. These statements have the same

types as the ones listed formerly.

The branching instructions realize conditional and unconditional jumps,
subroutine call and return from subroutine.

In the control subset there is every commonly used control operation. The
PID algorithm is realized by the PID statement having in the operand the
proportional -, the integrating -, the differentiating time constant, moreover
the set point value. Time modulated digital output is generated by the BP

statement, while the BIT and DA60 statements provide digital and analogue out-

put, respectively.

Every channel program can be activated/inactivated by the ON, OFF statements
having the name of the channel as operand.

A rather large subset of the executable statements is formed by the logical
instructions. These operations provide access to the bits either of the system,
or of the group variables; they can handle not only single bits but also a
group of bits. Some statements move a group of bits within the accumulator or
into a selected variable. This bit transfer can be coupled to the generation
of the complement too. In addition to complementing there are 3 logical in-
structions: NAND, NOR and G/K operation. The last of these compares the number
of ones in a series of bits to a constant and the logical value of this com-
parison is stored in the accumulator. In logical problems it is very useful

to jump if the logical value of some bit/s/ is false or true, this conditional
branching is realized by the BRUO and BRUI statements.

PROCESS-24K has different function generators as well. Because this language
is measurement and control oriented, this set is not the same as usual, e.g.
in FORTRAN. There are exponential-, natural logarithm, square-, square root
extension-, integer-, absolute value function generators, but there is no sine
or cosine function for they are not frequently used in calculating a control
signal. Instead of these there are special function as RANGE which generates
(/16)* for evaluating the multiplying constant of a measuring range or
FLOAT which converts a logical variable into a real number which is usual for
calculating the output of a digital/analogue converter. Naturally there is a
possibility to define external functions too, so the user can also produce
new function generators. Every generator gets the variable, and provides the
new value in the E, A accumulators.

In this paper we do not seek for completeness, our only endeavour was to
present the main features of the PROCESS language. A short description of the
instructions is given in Appendix 3. Program examples can be seen in

Fig. 13.

33

1 a
2 * PREAfiliRE MEASUREMENT
*
o
5 PPR1 /BEGIN 1,A, ATT * DFFFINITIDN OF THE VARIABLE
6 /STRT AD10,13,100 * INPUT SPECIFICATION
7 SCALE 5.115,-1.023 * LINEAR TRANSFORMATION
fi VALIA 0.5,5 * validity checking
9 LIM. 1.6,0.05,(1,2) * AL ARM CHECKINS
10 EILT 0 * EXP, FILTERING
" /END
12 9

1 * 7 DECADE LOGARITHMIC CURRENT MEASUREMENT
2 * FOR IONIZATION chamber
3 - IN THE RANGE 0,0001 +« 1000 MTKROAMP
4 PLUX3 /BEGIN 1,A, MIKAWP
5 ISTRT PLX3 a STARTED BY FLX3 MEASUREMENT
6 3ETN FLX3
7 EXTR3 57,14 * REPRESENTS 1 MIKROAMP',
6 DIVS 6,204 A 100/(7 X LN10)
9 EXP A EXPONENTIAL FUNCTION
10 3TORN FLUX3 A sToRe INTO DATA BASE
11 /END
12 a
Fig. 13.
PROCESS program examples.
4.3. Measurement organization
Measurements are initiated either by the timer, or by an interruption. In this

section only the timer controlled, periodical measurements are discussed, the
interrupt initiated actions will be treated in Section 6.1.

The measuring subsystem has a base time, T, which has to be an integer multiple
of 50 ms. In general 1 sec is preferred. PROCESS-24K can handle 8 different

measuring periods with

v =21T /i =0, 1, ..., 7/

cycle times.

The groups with the same cycle time form a measuring chain. When the measure-
ment of a group is finished, the system searches for another group with the
smallest cycle time to measure. If this subsystem has no more groups to be
measured, it waits for the next initiation.

34

Competence Type 2 bytes

Mnemonic 6 bytes

Dimension 6 bytes

Absolute
alarm and 16 bytes
validity limits

Reserve 2 bytes

Fig. 14.

NOMB table element.

In every group the measurements are organized into chains according to the
source of the information. There are 5 chains, one digital and four analogue
ones because the A/D controller can handle 4 A/D converters at the same time.
The measurements of these five chains are executed parallely which saves a
considerable amount of time.

Each measurement is specified by a 6-byte long description. This description
is given in Figs. 15. and 16. for analogue and for digital measurements
respectively.

Every group has a 256-byte long MEAS table containing max. 40 measurement
descriptions and a header which stores the following information:

group number,

post-mortem data,

5 pointer pairs, indicating the first and the last
element of each measuring chain.

where

oP -
ADC -

AMP -

CHN -
CNV -
CAD -

35

operating bit

address of the A/D controller
address of the multiplexor

last specification, this bit instructs
the A/D controller to execute the
measurements specified
measurement, if this bit is zero, then
the specified action is only a test
instead of measurement
amplification, it specifies the gain
desired (1, 100, 250, 1000) of the
amplifier

channel address in the multiplexor
address of the A/D converter
chain address for the next block
description

Fig. 15.

Measurement description of the analogue channels.

36

where OP operating bit
INC - address of the digital input controller
CHN - channel address
CAD - chain address for the next block
description

Fig. 16.

Measurement description of the digital channels.

The MEAS tables are stored on the disc, and the measuring subsystem loads the
appropriate table into the core when it is needed and operates according to

its control. The operation is driven by the interrupt of the A/D controller,
indicating the execution of the A/D conversion.

The result of a measurement is either a 12-bit long pattern in the case of
analogue channels, or a 16-bit long pattern in the case of digital channels.
Moreover each measurement is specified by a 3-bit long status word which indi-
cates

- whether the execution of the measurement was erroneous or not,
- whether there is an overflow in the A/D converter or not,
- the type /analogue or digital/ of the measurement.

When the measurements of a group are completed, this rough information is
passed to the primary data processing subsystem.

37

When designing a measuring subsystem, it has to be kept in mind that the
actual information rate must always be smaller then the available throughput
of the A/D converters.

4.4, Organization of the primary data processing

The primary data processing subsystem updates the data base and executes the
specified control functions on the basis of the measured rough information.
This subsystem is initiated by the measuring subsystem when the measurement
of a group is completed.

The organization of the primary data handling is very similar to that of the
measuring subsystem, its operation is controlled by the so called PROC tables.

The description of the primary data processing, like the measurement description,

is block oriented. Every variable in a group has one or more blocks in the
PROC table of the group. The length of a block is 32 bytes. There are two
types of blocks, namely

fixed format,
free format blocks.

The fixed format blocks serve for evaluating the value of a variable from

the measured rough information. In this block type the order of the actions
are predetermined e.g. if somebody wishes to perform validity checking, this
has to be done before executing an alarm limit cheking. The actions needed
are stored in an Instruction Word /IW/, whose every bit corresponds to a
given action; the order of execution is given in the order of the bits of this
word. Moreover there are actions which can only be used by themselves, e.g.
one can prescribe either a linear transformation, or a linearization with a
predetermined characteristic but both can not be used together. The parameters
of the actions are stored in the block.

In the free format blocks the order of the instructions are not predetermined,
an instruction is represented by a code following its parameter/s/, so they
are instructions of variable length.

The structure of the blocks is given in Fig. 17.
If the processing of a variable can not be described in one block a further

block can be chained to the given block by the CAD word. In a PROC table
there is room for 80 blocks which, in general, is sufficient.

38

CAD 2 bytes
W 2 bytes

/codes/

26 bytes
Parameters

where CAD =chaining address
IW =instruction word

Fig. 17.

Block structure of primary processing.

The primary processing is executed by an interpretative processor i.e. this
subsystem interprets either the instruction word /fixed format/ or the operation
codes /free format/ of a given block and calls the proper subroutine with the
parameters stored in the block. The available subroutines are summarized in

Appendix 3.

The compiler of the PROCESS high-level language fills up the appropriate MEAS
and PROC tables. /See Section 4.2./

If a problem can not be described in the PROCESS language, assembler program-
ming is also permitted in the primary processing level. Every group can have
an assembler task which is executed after the interpretative processing. Each

task consists of 3 parts:

a task header,
a task data segment,
a task program segment.

39

The task header is 16 bytes long and contains the following information:

a semaphore byte, reflecting the state of the task
/i.e.: ‘inactive, waiting etc./

starting address

4 working cells for supervisor modules

a 6-byte long task name.

Since a primary processing task runs at a high priority level it must be a
short program) thus the max. length of a task is limited to 256 bytes
/1 sector/. The structure of a task is given in Fig. 18.

.
Semaphore Start,address

Y _ Header
Working cells /16 bytes/

I

in A Task name

CSl

X

% Data segment
Program segment

K

Fig. 18.

Structure of a primary processing task.

When the primary processing of a group is finished the processing subsystem can
initiate a COMLOG program which will run in the background. The length of this
program is not limited but due to its lowest priority level, it is executed
rather slowly.

40

The description of the primary processing of the groups are stored on the
disc and the proper area is loaded into the core when the primary processing
subsystem begins to work on the rough information of a given group. This disc
area consists of 12 sectors, namely

sectors for fixed format block descriptions

sector for the primary processing task

5
5 sectors for free format block descriptions
1
1 sector for external functions.

In order to save time the processing subsystem checks whether the needed area
is in the core and it swaps with the disc only when a new area is called.

4.5, Automatic display functions

In a control room a considerable amount of different data presentation are

needed, e.g. mimic displays, annunciators of different type, numeric indicators

INixiel/, etc. For this reason PROCESS-24K provides an automatic data display
every second. The displayed variables can be either analogue or digital. In

the case of an analogue variable the display subsystem converts the value of
the variable into a 4-digit long decimal number and presents this information
in BCD code whereas with the digital variables no transformation is carried

out. The displayed variables are sent to the digital output of the computer,
these digital outputs can directly drive relays or lamps.

The display subsystem is controlled by a core resident TDIGO table. This
table has 32 elements, so this subsystem can handle max. 32 variables, i.e.
it can display 32 x 16 = 512 bits.

The structure of the TDIGO table makes indirect addressing possible, i.e. it
not the content of a variable itself that is displayed but this content is
regarded as an identity code of another variable, and this variable will be
displayed. In this way operators can call variables to be displayed by using
thumbwheel switches or other selecting devices. A TDIGO table element is
given in Fig. 19.

The abbreviations used in Fig. 19. are

IDC - identity code of the variable in BCD code

| - indirect address, if
1 =0, IDC specifies the variable to be displayed
1=1/ IDC specifies a digital variablfe storing

the identity code of the variable to be
displayed.

41

ADDR - address of the digital output line

T - type of variable /T =0 digital, T =1 analogue/

\Y - variable decimal point, if
V=1 the position of the decimal point is fixed
V =o0

the position of the decimal point is moving,
it is specified by TPNT and P

TPNT - identity code of the variable storing the decimal
point and the sign of the displayed analogue variable
P - indicates whether the upper or the lower byte is

used in the decimal point representing variable.

The TDIGO service program is designed to fulfil the TDIGO table of
PROCESS-24K.

4.6. System log functions

For the purpose of the further analysis and for the documentation of the

events of the controlled process, it is necessary to produce different types

of logs. The logging subsystem provides the following logs:
event log,

plant log,
post-mortem log.

ADDR *6 bytes

< 4
-

TPNT

Fig. 19.

TDIGO table element.

The event log registers every important event that happens during the oper-
ation /such as alarms, operator's interventions etc./ with its date. This log
is typed out automatically when such an event accurs. This log is generated

by the man-machine communication subsystem /see Section 4.7.1./ and by the

data analysis layer /see Chapter 5./.

The plant log registers the value of a set of predetermined variables cycli-
cally /in general, hourly/ but the operator can ask for an extra log at any
time /see 4.7.1./. The generation of these logs is carried out by using the
so called LOG-SHEET negatives. This negative contains

the text to be typed out,
the identity code /GNB, BNB/ of the variables nested
by separation marks.

This generation is done by the LOG generator program which fills out the
LOG-SHEET negative with the actual values and sends it to a log. A computing
background program can be initiated in order to calculate variables for the
logging subsystem. An example log is given in Fig. 20.

Both the computing and the logging subprograms are initiated by the COML
COMLOG scheduler running at the first priority level, which operates on the
basis of the IT1T table /see Fig. 21.1.

A plant log can be initiated

at a given date, or cyclically by the timer,
by the execution of a given group,
or by the operator /lextra log/.

The LOG generator program operates by using the IT1T table which stores every
necessary item of data for this subsystem. There is room for 32 elements in
the table, the structure of an element is shown in Fig. 21.

The post-mortem log stores a time series of data preceeding and following an
emergency trip. This log is a cyclic buffer on the disc where the values of a
set of variables are stored periodically. The max. length of this buffer is
128 sectors, each sector can store up to 48 variables. It is evident that if
e.g. 256 samples are stored in this dedicated area, there is room for only
24 variables.

This cyclic buffer is generated by an empty group /having no variables/ with a
special primary processing task called PMTASK. This task collects the actual
values of the specified variables into the value- and flag-field of the empty
group; these fields are subsequently stored on the disc as a post-mortem sample.
The PMTASK task is given in Appendix 4.

43

*

*it** PROCESS - uzemi NAPLO IDOPONTi 27. 14,00 *

** TELJESITmeNY MERESEK (Mw)
QlPRl «,1064 NSE1 ,00000

** RUDALLASQK (CM)

RUDO 38,575 RUDI 51,571 RUD2 51,072
RUD3 «1,0150

** homerseklet MERESEK (CELSIUS FOK)
TPR1 46,731 TPR2 4,2165 TSE1 25,267
T3E2 4,1291

** V[ZFORGALOM MERESEK (TONNA/ORA)

QPRI 786,73 (3GT1 *, 00000 Qsz1 ,00000
Q3EL 407,40

n

** SZIVATTYU ARAM MERESEk (A)

IPSO -,09590 IPS1 65,961 1P92 ,15383
IPS3 63,464 IPR1 -,03346
ISSO 82,645 1SS1 75,714 1SS2 81,614

1SS3 *,33515

** NYOMAS PERESEK (ATT)

PPR1 *1,4146 PSE1 *,70273

** VIZS7TINT MERESEK (CM)

MRT1 502,15 MGT1 *6,1689 MRT2 506,28
MET1 *-127,87 MSEI 179,62 MAT 1 281,12

MAT?2 254,90

** HUZAT MERESEK (VOMM)
HARI *9,0451 HFR1 *3,5555 HGT1 *33,623
HMK 1 6,2726 HFT1 9.1192 H8Z1 *9,1942

*

** RADIOAKTIV AEROSOL KONCENTRACIO (PICOCURIE/LITER)
RSKI 2,3025 RSK2 1.4440
*

** RADIOAKTIV gaz KONCENTRACIO (NANOCURIE/LITER)
RSK3 26,147

Fig. 20.

Plant log generated by the COMLOG program.

The oldest sample is always overwritten in the cyclic buffer under normal
circumstances. When the man-machine subsystem indicates an emergency signal
/see Section 4.7.3./, the PMLIST service program is initiated. This permits
the overwriting of only half of the cyclic buffer after which the sample
collection is inhibited. This solution provides the same amount of data
preceeding and following the emergency signal. Using the PMLIST service
program the content of the post-mortem log can be dumped either by the line-
printer or by the paper tape punch; following this the data collection into
the cyclic buffer is again activated. The same service program can also be
used for listing the paper tape dumped.

44

CYCLE
FIRST DATE
LAST DATE
RESERVE
TYPE COM LENGTH
COMSTART. SECTOR

OP CODE LOG LENGTH
LOG. START SECTOR

16 bytes

where CYCLE - repetition time (hour, minute)
TYPE - specifies whether this entity is
a computing program, or
a logsheet, or both
OP.CODE - indicates the logical peripheral
demanded

Fig. 21.

IT1IT table element.

45

4.7. Technological operator interface /OPER program/

The task of the technological operator inter face is to ensure the communication
between the technological operators and the computer. In other words, this
interface is the part of the system which gives possibilities for the operators
to obtain detailed or general information about the whole actual process in a
suitably short time. During operation the operator must have the right in
certain cases to alter the parameters belonging to the individual variables.
These changes are also made through the technological operator interface. This
interface is realized by a program called OPER.

This program can serve four technological operators at the same time. Four
operators means four terminal devices independent of each other, which can be
displays, typewriters, teletypes, etc. Each of the operators may initiate com-
munication by producing an interrupt i.e. operating a pushbutton or turning

a key etc. The four operators do not have equal rights. One of the operators
/the so called "chief" operator/ has the sole right to change any parameter
whereas the other three /called "assisting"™ operators/, can only put questions.

We describe the communication between the system and the "chief operator” in
Section 4.7.1. In 4.7.2. we point out all differences between the "chief"
operator and the assistant operators, and finally we describe the other func-
tions of the OPER program in 4.7.3.

4.7.1. "Chief"_operatorcommunication

The communication between the operator/X/ and the computer is developed in
such a way that the operator talking with the system needs to type as few

as possible. The program understands the operator's command from the initial
letter. These one-letter orders are formed into complete sentences by the
system, so the whole written communication is always simple, clear and easy
to understand. If the operator produces interrupt the system writes the colon
character indicating that the program is waiting for a one-letter command. If
for example, the letter "C" is typed the computer completes it to "CHANNEL
NAME:". This "C" meant that the operator wanted to choose one variable to ask
about, and the program waits for the NAME of the variable. The following
letters are accepted by the system after the colon. /The first letters are
completed by the program./:

=1 Operator means always the "chief" operator in this Section.

:ALARM ACCEPTED
:CHANNEL NAME
:EXTRA LOG SHEET
:LIST OF CHANNELS
:NAME OF CHANNEL
:TIME

The variables are designated by their 6-letter MNEMONIC names. If the oper-
ator does not know the mnemonic name of a variable he can ask from the system
by its identity code. After selecting a variable, the operator may choose
which parameter or parameters of the variable he would like to see. For
example, let this parameter be the lower alarm limit of the selected variable
The operator pushes down the letter "L", which is completed to "LOWER ALARM
LIMIT" and the lower alarm limit is written out. In the same manner the
operator can ask the upper alarm limit, last measured value, factors of PID
control etc. of the selected variable. Striking down the letter "P" the
program lists out the so called primary information of the given variable i.e
measured value, upper alarm limit, lower alarm limit, validity limits, dig-
ital control, operating control.

Let us again look at the example. After writing out the lower alarm limit

of the given variable the program waits again for a character. Typing the
character " . " the system terminates the communication printing out the
actual date and time. If the operator wants to alter a parameter, in our
example the lower alarm limit, he types the letter "C" /completed to "CHANGE
TO"/ and gives the new value of the parameter to the system. Figure 22. shows
the whole communication of the example.

:CHANNEL NAME: ABCDEF LOWER ALARM LIMIT
123.400 CGRAD CHANGE TO 125720

08.14.30

Fig. 22.

A communication example.

The underlined letters are typed by the operator. Writing out the actual date
and time always means that the system accepted the new value /the new lower

alarm limit in the example/ and the whole communication /Fig. 22./ appears in
the event log at the same time, i.e. change made by the operator can also be
read in the event log /see Section 4.6./.

47

In the case of operator faults /non existent command letter, non existent
mnemonic name, wrong new value etc./ the program starts again giving a new
" . ", A wrong number may mean a typing error or, in the example, that the
new lower alarm limit exceeds the predefined absolute lower alarm limit

/see 4.1. /.

If a very important parameter or variable is concerned the program may check
whether the operator has permission or the right to make the change. The
authority is represented to the system by a bit of a digital input. This bit
is set by a suitable tool, e.g. pushbutton, key,switch, etc. If permission is
given /authority bit = 1/ the operator may alter any parameter. If there is
no permission /authority bit = 0/ and the changing of a parameter needs com-
petency checking, then the system, instead of completing the letter "C" to
"CHANGE TO", writes out "UNAUTHORIZED ATTEMPT TO INTERVENE" and this message
is also duplicated in the event log. The OPER program distinguishes three
types of parameters. For changing certain very important parameter types, e.g.
scale factors of the linear transformation of the variable, the program always
checks the authority bit. For certain less important parameter types /e.g.
lower alarm limit, validity 1limit, etc./ the program looks at the flag byte
of the selected variable, where the competency bit /see 4.2./ shows whether
the authority bit has to be checked or not. For not very important parameter
types /e.g. operating control, digital control/, no checking is made at all.

In addition to parameters of a certain variable the operator can ask for total
lists of the variables over limit/not valid, or variables not permitted. The
operator may start an extra log as well, /see 4.6./.

Hardware error messages concerning one measuring channel /overflow, invalid
measured value/ are sent to the chief operator. The operator has to accept

this alarm message. If he forgets it, a warning message /"UNACCEPTED ALARM"/
is generated after each new operator communication.

The operator commands are listed in Appendix 5. where the underlined char-
acters are pushed down by the operator.

It is to be noted that changing the DIGITAL CONTROL of a variable to YES
involves the setting of the OPERATING CONTROL to YES, and changing the
OPERATING CONTROL to NO involves the setting of the DIGITAL CONTROL to NO
/see Section 4.1./.

48

4.7.2. "Assistant"_ogerator®*s_communication

As mentioned in the introductory part of 4.7. in addition to the "main" oper-
ator whose communication possibilities are discussed in 4.7.1. the system
can supply another three so called "assistant” operators. These operators

can make inquiries about the same things and in the same manner as the
"chief" operator. The most important difference between them is that the
assistant operators are not allowed to produce any changes. The program

- after answering a parameter of a variable asked by an "assistant" oper-
ator - stops the communication, writing out the actual date and time whereas
in the case of the "chief" operator the program again awaits a character

/" ¢ " or "C"/. The other difference is that on the peripherals of the
"assistant" operators there is no alarm message, so after " : " the letter
"A" is illegal. The last difference is that the extra-log appears on the
corresponding assistant operator's peripheral as opposed to the command of
the "chief" operator the extra-log is typed out on the listing log peripheral.

4.7.3. Q7 her_functions_of_the_OPER program

As described, all four operators signal their wish to communicate with the
system by an interrupt. The four interrupts are collected into a 16-bit in-
terrupt-collector. The technological operator interface i.e. the OPER program

handles this 16-bit interrupt collector. Figure 23. illustrates the bit-
pattern of the 16-bit interrupt-collector of the OPER program.

0123 A56 789 101 12131415

PM 0P4 0P3 OP2 OR

COM Operators

Fig. 23.

Bit pattern of the 16-bit IT collector for the OPER program.

49

Bits 12-15 represents the IT-s from the operators /bit 15 = chief operator/'.
An IT coming in at bit 1-7 causes the start of a COM program whose parameter

is just the number of the bit, i.e. a number from 1 to 7. This COM program
may do seven different things, e.g. counting, listing, etc. according to the
IT number.

An interrupt on bit 8 is reserved for the post-mortem log request /see
Section 4.6./. Before starting the post-mortem dumping program the system
clears the way to it in the background by aborting the running background
program - if there is any.

Bits 10 and 11 initiate predetermined messages on the Operator Console. This
can serve for the automatic recording of any external event.

50

CHAPTER 5.

DATA ANALYSIS LAYER

Data analysis means a transformation of the primary data base /gained from
the measurements, and described as a disordered set of data by the data acqui-
sition layer/, into a secondary data base having a well ordered form. The
principles of ordering - which constitute the basis of the transformation -
are the logical connection among the various measured variables. These con-
nections which have to be specified by the user are a priori information about
the process and are built into PROCESS-24K's library in advance. These logical
relations have to be described in the form of binary logic trees.

The ordering principles built in PROCESS-24K serve the purpose of the alarm
analysis. Alarm occurs if the actual value of a measured analogue signal
passes a prescribed upper/lower limit, or a digital input indicates an ab-
normal event. The various logical connections among the alarms /the nodes of
the alarm trees/(their possible causes and their consequences form the basis
of the transformation of the primary data base. The resulting secondary data
base is well-ordered in respect of alarm analysis, and - being the result of
a Boolean-type transformation - contains only logical variables. /These are
the so-called "deduced alarms"”./ Some of the deduced alarms, which have a
great importance, are presented to the operator, and may be utilized for
reconfiguration of the cyclic tasks /see Section 6.2./.

The duties of the data analysis layer are distributed among three programs
running on three different IT levels:

ANAL is the name of the core resident task having a high /15/ priority,
which performs the analysis;

ALDYS - a lower priority /11/ task carries out the presentation

of the alarms;

ALGEN - a special background program - serves the generation

and modifications of the so-called "alarm library", in which

the binary "alarm trees" are stored for the ANAL program.

Fig. 24. shows the organization of the information flow among these programs.
All three programs have to be replaced if the purpose of the analysis changes.

51

Fig. 24.

Organization of the information flow
in the data analysis layer.

5.1. Description of the binary logic trees

The logic trees are described as a list in the library. The terminal nodes

of the trees are the elements originating from the primary data base: the alarms,
and their logical connections are represented by the nodes on the higher

levels. The node on the top of a tree is the root, which represents the re-
sult, i.e. the deduction from the analysis. In the course of examination,

the nodes of a tree have to be examined systematically so that each node is
visited only once. Analysis must start at the terminal nodes and process to

the higher levels. The most appropriate method is the so-called End Order
Traversal /EOT/ 126, which contains the following three steps:

52

traverse the right subtree
traverse the left subtree

visit the root.

For example the endorder for the nodes of a tree given in Fig. 25. is:

J-H-F-G-E-C-D-B-A

Fig. 25.

Example of endorder traverse.

The position of the nodes on the tree is characterized by two numbers:

the scanning pointer /SP/ points to the next node in traversal,
the Node Number /NNB/ is an index which indicates the

position and the level of the node on the tree, as shown in an
example in Fig. 26. INNB is a binary number whose length shows
the level of the node. The last figure of NNB on the left subtree

is a 0, on the right subtree is a 1./

1000 1001
Fig. 26.

Example to the position indexing.

A process variable may belong to several nodes on different trees. Moreover,
if there are subtrees identical with each other either in a larger logical
connection, or in different trees. It is possible to separate them into inde-
pendent trees whose roots are applied as terminal nodes on other trees. In
this way, the trees may be coupled to each other through their nodes.

5.2. Description of the time relations

The nodes of a given tree - the alarms - represent logical connections among
data originating from process variables which

are measured in different measuring groups, with different
cycle time, or
may change with very different time constants.

Hence, it seemed necessary to assign a relative time to each node of the trees.
The time is related to the occurence of the alarm which belongs to the variable,
either measured with the shortest cycle time or having the minimum time constant.

54

5.3. Representation of the Alarm Trees

The library of the data analysis layer is separated into two main parts:

library of alarms to be analysed, T:ASW
library of trees, T:TREE
5.3.1. Library_of_alarms - T:ASW

Each alarm, participating in the analysis has a double word in the T:ASW table

which contains its main data. The structure of this double word is given in
Fig. 27.

where ASW - Alarm Status Word
TNB - Tree NumBer-identity number
of the first tree which conta-
ins the alarm, as a node.
IDC - identity code of the alarm.

Fig. 27.

Structure of the ASW double word.

The alarm according to its origin, may be

analogue,
digital,
deduced alarm.

55

If the value of a measured analogue variable passes its trip level, an analogue
alarm occurs. It is possible to specify two limits: upper and lower, for the
same analogue variable, therefore two different analogue alarms may be attached
to one analogue signal.The identity code of an analogue alarm refers directly
to the identity code of the analogue variable which it originates from; namely
in the case of the lower alarm limit being exceeded they are the same, in the
case of the upper alarm limit the identity code of the alarm equals the identity
code of the variable plus &8000.

The origin of a digital alarm is a change in a bit of a digital input. A dig-
ital input contains 16 bits and has only one identity code in data acquisition
layer. This single code is not enough for identification of the possible 16
alarms /events/ which it may represent. Therefore in this case the ASW double
word is a special one which contains a pointer to the adequate element of a
table - T:LOG - storing the address of each bit's own ASW double word.

/Fig. 28./

T!LOG

Fig. 28.

ASW double word for digital inputs.

56

The identity codes /IDC/ belonging to the bits of the digital inputs and to
deduced alarms have to be defined in the course of the generation of the alarm
library, but &8000 > 1DC > &4000 is obligatory for these codes.

The data base defined by the data analysis layer is a logical data base, so
it is necessary to define the alarm's logical value. The logical value of an
analogue alarm will be equal to one if the analogue variable concerned is in
the alarm state.

The logical value of a digital alarm is the value of the bit in the digital
input from which it originates. The result of a Boolean equation determines
the logical value of a deduced alarm.

The logical value of the alarms is represented in the ASW byte. Within ASW,
every bit is interpreted individually and several of them have to be determined
in the course of the generation /see Chapter 7./.

__1-if acknowledge

IS necessary
validity

Lif valid information

Jconcerning the
presentations of

logical value the alarm

Fig. 29.

Bit pattern of the ASW byte.

57

The validity bit defines an alarm as not valid, if the value of the variable
to which it belongs is not valid, or if its measurement is not operating.

One ASW double word belongs to each alarm even if an alarm takes place on
several trees.

The size of T:ASW is 10 sectors on the disc; this is enough room for 640

different alarms. Supposing that an alarm is coupled to two alarm trees - as
an average - the size of the T:ASW is enough for 1280 nodes on the alarm
trees .

5.3.2. Library_of_the_Binary_Tress - T:TREE

The second part of the alarm library contains the description of the trees.
Every tree has a general administration /6 words/, and several node administra-
tions /4 words/.

The general administration contains several working cells, - necessary in
course of the analysis - and a pointer to the first node of the traversal.

The structure of the node administration is given in Fig. 30.

The logical connection represented by the node, is noted in the NSW - Node
Status Word given in Fig. 31.

The max. size of an alarm tree is 2 sectors on the disc, i.e. the max. number
of nodes on a tree in 62.

The size of the T:TREE part of the alarm library has to be defined in the
course of the system's generation.

Filling up the above library with the necessary information is quite a diffi-
cult task. For this reason a system program, ALGEN, has been constructed as
a tool to help this work. Its function will be described in Chapter 7.

5.4. Method of Analysis

The analysis is performed by a high priority real time task: ANAL. ANAL may
be initiated:

a/ by the data acquisition layer, with a minibuffer, containing
the identity code of the alarm, which has to be analysed;
b/ by the timer, without a minibuffer.

58

NSW 1D
SP
NNB CTNB
A: ASW

where
NSW - Node Status Word
TD - Time Difference (see 5.2.)
SP -Scanning Pointer (pointer to the next node)
NNB -Node NumBer-position index (see 5.1.)
CTNB - Coupled Tree NumBer-if there is none
CTNB = 8.FF
A ASW - Address of ASW

Fig. 30.

Structure of the node administration.

0 alarm (input event)
1 - NOT

0 - AND

1 - OR

= = O °

Fig. 31.

Bit pattern of Node Status Word.

59

The structure of the initiating minibuffer is given in Fig. 32.:

where
CAD - chaining address
TYP -Type of alarm :upper (lower limit

exceeding, digital variable, etc.)
ANAL- if =1, it has to be analysed

if =0, it has to present (send to ALDYS) only.

Fig. 32.

The initiating minibuffer for ANAL.

al/ Tasks of ANAL intiated by a mini are:

1. To evaluate the new logical value of the alarm into the Alarm
Status Word.

2. To scan the alarm tree/s/ containing the alarm as a node. If there

is a CTNB, different from &FF on the analysed node, the number of the

coupled tree has to be written into the Tree Waiting List /TWL/. If

the scanned node has a larger TD /Time Difference/ than the TD belonging

to the node by which the analysis was initiated, the further scanning
has to be delayed. In this case, the identity number of the tree has
to be written on the Suspending List. /SL/

3. To analyse the next tree from TWL.

60

b/ Tasks of ANAL, initiated by the Timer are:

1. To decrement the waiting time on every item of the SL.
2. To continue the analysis if a tree whose waiting time becomes

zero occurs in the SL.

If the content of the initiating minibuffer is a digital input variable,
ANAL compares its new value to the previous one, and determines the identity
code of the alarm, represented by the bit/s/ having been changed. This alarm
will be considered, as an initiating alarm. At the end of an analysis the
ANAL program informs the operator about the event and in certain cases it

initiates the adaptive control layer.

5.5. Presentation of the results

The presentation of alarms in PROCESS-24K is made by the task ALDYS, and
appears on two peripherals.

al Every alarm is logged - completed with the time of its occurrence -
in the event log on the M:LL peripheral,

b/ An alarm display serves for presentation of alarms chosen by the
operator. This choice is made by interrupt requests connected to
an IT collector of 16 bit length. The bit pattern is the following:

Y

bits, for the choice of function
L- acknowledge

1-----turn over pages backward

.......... turn over pages forward

Fig. 33.

Bit pattern of IT collector initiating ALDYS.

61

8 bits serve for the choice of the function. At present only two of them are

used:

8 bit: alarm list request
9 bit: request for the picture of the alarm trees.

The information for both functions originates from ANAL, and it has to be
stored on the disc, and displayed when requested by the operator.

The ALDYS is initiated either by the ANAL program, or by the operator, causing
interrupt. The ANAL program sends a minibuffer in the case of each alarm
occurence. The structure of this buffer is as follows:

TYP GNB
BNB FNK

where
TYP - type of alarm-as in the mini,initiating
ANAL, but completed by one bit:
; I:O if the alarm has to acknowledged
bit 11 _, . .
I =1 if acknowledge is not necessary
GNB ,BNB - identity code

FNK=00 - the information is addressed into alarm
list
Fig. 34.

Starting buffer for ALDYS, containing a single alarm.

62

In this case an alarm message is sent to the event log, and if it has to be
acknowledged its identity code will be written into the alarm list on the
disc, and into an "acknowledge stack".

The alarm remains on the alarm list as long as it exists. /When an alarm si-
tuation is over, a buffer with similar structure is sent from ANAL./ The same
remains in acknowledge stack for as long as it remains unacknowledged. The

maximum length of this stack is 12 elements. If it becomes full an error mes-
sage appears in the event log thereby indicating the absence of the operator.

The maximum length of the alarm list is 58 elements, but there is room for
only 12 rows on the screen of the display. A page pointer points to the momen-
tary first displayed element of the list. If the list has more than 12 items,
it is necessary to page by the use of bits 5 and 6 of the IT collector.

Picture of the Alarm Trees

If at the accomplishment of the analysis of a tree a deduced alarm to be
presented is found by ANAL, a mini and a midibuffer are filled in. The content
of the mini is given in Fig. 35.

The midibuffer contains the identity codes of the alarms on different nodes,
in order of sequence. The first in order has the Node NumBer /NNB/ equal to 1,
hence this alarm is on the root. The alarms are enumerated in order of increa-
sing NNB.

Pictures have to be stored on the disc, and displayed only if the 9th bit of
the IT collector is activated. Hencethere is a "Picture List" on the disc
where the PNB of pictures and a discaddress are stored. The disc address
assigns an area with 32 words length, where the whole content of midi /sent
by ANAL/ is stored.

The maximum number of elements of the picture list is 60. The selection of
the required picture is possible through bits 5 and 6 of the IT collector.

The alarm tree, which may be displayed on the screen,has a maximum of 15 nodes
/4 levels/, and this fits the size of the midibuffers too. In the case of a
larger tree, the picture descriptionis sent in a chain of midis by the ANAL,
and is stored on chained territorieson the disc.

where TYP - type of the picture
&40 - new picture
&20 -already presented, but it has to
modify
00 - erase, the picture has to be
cancelled
PNB - picture identity code
FNK -&01 -presentation of tree

Fig. 35.

Starting buffer for ALDYS in the case of tree presentation.

64

CHAPTER 6 .

ADAPTIVE CONTROL LAYER

In the life of a plant there are different phases where the conditions of

the operation and the goal of the control are quite different. For example
during a start-up period the goal of the control is to reach a predetermined
working point according to a given trajectory while during normal operation
the goal is to stabilize the operation in the vicinity of this working point.
Moreover in an emergency state quite different variables are important from
those in a normal operating condition. For this reason if a control system
has to operate in a wide range of states of a plant, there must be a reconfi-
guration layer which adapts the control system to the changing conditions.

In the PROCESS-24K system this adaptation can be initiated either

by interruptions of the outer world, or
by software means if e.g. the data analysis layer
indicates an abnormal status.

These two initiations are not identical. By hardware interruptions the
actually operating groups remain working further but new groups also measure

and control in the system. This extra measurement and/or control happens only
once, it is like a snapshot of the plant.

On the other hand by software means the cyclic measurement and/or control
tasks can be rearranged, in this way reconfiguration of the complete real-
time system is done.

6.1. Troubleshot measurements

Hardware interruption can initiate single measuring and/or control groups.
These interrupt requests are handled by an IT collector card /74.880/ which
initiates the HWIT program. This program distinguishes 8 different interrupts
/Bits 0-7 of the interrupt collector/ and starts the measurement of the group
belonging to the given interruption as if it were the timer. The assignment
of a group to a given interrupt is stored in the THWIT table. This table is
8 bytes long, the byte O corresponds to interrupt 0, etc./ the content of the
byte is the Group NumBer /GNB/ of the group. If there is no group connected
to an interruption, the content of the corresponding byte is &80. In order
to initiate the measurements very rapidly, the HWIT program works at level
21 and its initiation has priority over the cyclic starts in the measurement
subsystem.

65

6.2. Reconfiguration of the cyclic tasks

In different operating states of a plant, different measurement/control actions
are needed. For this reason the HWIT program can change the periodic real-time
tasks of the system. The timer initiates the measuring subsystem by using a
TCIK table and the HWIT program can overwrite this table. Every element of

this table corresponds to a given cycle time and the content of a given element
is the group number /GNB/ of the first measuring group with this cycle time.

When the HWIT program is started by another program /i.e. alarm analysis
program/, the MsSTRT monitor module is used with the initiating minibuffer
given in Fig. 36.

where CAD - chaining address
| - correponds to i in the 21T cycle
time equation (0T7)
GNB - group number of the new group

Fig. 36.

Initiating minibuffer for the reconfiguration.

66

CHAPTER 7.

SYSTEM GENERATION

As a general process control system PROCESS-24K is empty, if somebody wishes
to use it, he has to specify

- the real-time environment,
the measuring groups and their respective cycle times,
the real-time tasks,
the automatically displayed variables,
the required log-sheets,
the alarm trees used in the analysis.

Each of these problems is supported by a program of the system library and
here we summarize their operations. With these system programs the user can
generate his own PROCESS system fitting his unique problem.

Every source program is stored on the disc in order to save time. For this
reason every source information of the user has to be loaded into the disc
initially. The /TEXTE interactive text editor program loads the disc, but
before loading, it also provides a syntactical analysis of the information
and it rejects every erroneous statement. In this way only syntactically
correct programs can be loaded to the disc. Before loading the user has to
specify the type of source program, i.e. assembly, PROCESS language, log-sheet
negative or generation information. This checking increases considerably
the processing speed of the background system generator processors.

7.1. Description of the real-time environment

Before loading real-time tasks into the system one has to specify the symbolic
names and the physical addresses of the input/output devices of the real-time
measuring subsystem.. This information is stored on the disc in the RTDATA file
and, for example, the PROCESS compiler uses this data during the compilation.
In the system programs for naming real-time peripherals only those symbols

can be used which were defined in this phase and are stored in the RTDATA file.

As we have seen in Section 2.2. the structure of the disc depends also on the
number of groups used. For this reason in this defining phase the user has to
specify

67

- the symbolic neunes of the groups
either the cycle time or the initiating interrupt
request of each group
the post-mortem data /number of samples, cycle time/.

This information determines the structure of the disc moreover the content
of the different control tables /T:CIK, T:HWIT/. For this reason this data
is stored on the disc in the GRDATA file and used during the starting phase
of the actual PROCESS system for evaluating different system constants,
furthermore, the use of this information results in the generation of the
structure of the disc. After specifying the RTDATA information one has a
system with an empty user library with no real-time tasks, but the timing
of the system already meets the requirements of the user andthe disc is
formed for the later operation. This system specification is carried out by
the $GENES program.

7.2. Loading of the real-time tasks

Real-time tasks can be written either in PROCESS-, or in assembly language.

If the PROCESS high level language is used, the XxAUTOC compiler generates the
object code from the source program. This compiler can generate a list of the
compilation by indicating the erroneous statements in order to facilitate the
error analysis. The loading of a correct program is done by the @LINK loader.
This loader calls the compiler, so it needs the source program and the name
of the group where the given program has to be loaded. In the case of assembly
programming the &BSATR assembler produces the object code from the source
program. The object code is stored temporarily in the user library and the
assembly task is loaded from here to the wanted group by the .TASLK loader.
With this loader one can also delete or replace a given task. In addition,
external functions can also be loaded. AIl these loadings are carried out in
a working system, so the system can be built or altered during its operation.
When a real-time program is loaded, it is in an inactive state so it does not
operate, therefore the technological operator has to activate every real-time
task.

7.3. Loading of the COMLOG programs

The COMLOG programs /see Section 3.3./ form the COMLOG library. This library
consists of two types of files: computing programs and log-sheet negatives.
The computing program written in assembly language is compiled by the $BSATR
assembler and is stored temporarily in the user library. From here the object
program is loaded into the COMLOG library by the +BSALD loader.

68

The source log-sheet is checked by the 'LOGTR compiler which gives a compilation
list and if a fault occurs, indicates the number of the erroneous line and

the type of the error. The "LOGNL loader loads the correct log-sheet negative
into the COMLOG library. This loader calls the 'LOGTR compiler and indicates

to it that the generated log-sheet negative has to be loaded into the COMLOG
library.

Apart from loading, +BSALD and "LOGNL can also replace the old file in the
COMLOG library by a new one.

In order to link the computing program and the logsheet with each other and with
the starting conditions the =COMLK linking program fills in the IT1T table,
which controls the background activity of the system. With this program the

ITIT table can be modified, i.e. the computing program and the log-sheet can

be replaced, the starting conditions can be changed.

7.4. Specification of the post-mortem log

In order to generate a post-mortem log, the user has to specify

the number of samples and the timing of the cyclic buffer
of this log,
the actual variables chosen for this log.

The former is done during the specification of the real-time environment
because it has consequences affecting the structure of the disc. For this
reason an empty group has to be defined in the GRDATA information and a
post-mortem disc area must be linked to this group with the necessary sampling
rate.

The variables of the cyclic buffer are collected by a PMTASK real-time task
connected to the defined empty group. This task contains a table which stores
the identity codes of the variables selected for the post-mortem log. The user
has to fill in this table in the source program of the PMTASK /see Appendix 4./
with the identity codes of the variables. It is possible to name the variables
with their mnemonics instead of the identity codes, using the DATA,S directive
of the &BSATR assembler. When this program is ready, it has to be linked to
the empty post-mortem group by the .TASLK loader /see Section 7.2./.

69

7.5. Specification of the data presentation

The automatic data display function of the system is controlled by the TDIGO
table /see Section 4.5./ and there is a system program, TDIGO, by which the
user can modify the content of this table. This program enables the user

to request a list of the TDIGO table,
to change its content.

To specify the TDIGO table the user has to know the mnemonics of the variables
to be displayed and the symbolic names of the desired outputs. The TDIGO
program provides conversion into physical addresses. In order to reduce the
used CPU time, the user must feed the information into the system by a paper
tape. The tape is checked while it is being read, and if an error occurs, the
program indicates error on the Console, where the user can correct on-line
the erroneous statement. The program uses the M:El peripheral as input and
the M:LO peripheral prints out the lists.

7.6. Loading of the alarm library

ALGEN /Alarm Generator/ enables the user to load the alarm library with
the necessary data, in the course of a conversation on the Operator Console.

The functions of the program are the following:

- to initiate the library, i.e. to perform the necessary clearing
of the library's territory on the disc, before the first loading;
to fill in the T:LOG and T:ASW tables by asking the identity
codes of the different alarms/events belonging to each bit of
the digital variables;
to assemble the data of the alarm trees, and to load them into
the T:TREE area of the library;
to give an opportunity for the deletion or the modification
of the digital variables and the alarm trees, moreover, for the
modification of several nodes of a given tree;

- to handle the catalogue of the alarm library, and - according to
the user's command - to print out its content on the M:LO
peripheral.

In the case of nodes belonging to several trees, it is the program's duty to
produce /or delete/ the necessary couplings among the nodes of different trees.

Informations about the presentation of digital and deduced alarms, the need for
operator's acknowledgement and the delay times defined to the nodes, will be

requested from the user and loaded into the library as well.

10.

11.

12.

70

REFERENCES

P.Elter, R.Roessler: Real-time languages and operating systems.
Preprints of IFAC Conf. on Digital Computer
Applications to Process Control. 1977. pp. 1-12
The Hague. North-Holland Publ.Co.

Instrument Society of America: Industrial Computer System.
FORTRAN 1972.

Purdue Europe Real-Time Basic Committee: Report on Real-Time
Extensions and Implementation of Real-Time
BASIC. First report. 1975.

Digital Equipment Corporation: INDAC-8 Software

P.Hugdt, M.,Ritout: PROCOL: un nouveau language de programation
temps reel sur MITRA 15.
Automatisme pp. 290-296. No. 5. Mai. 1974,

RTL MITRA. Manual de référence. 1976.
Compagnie International pour 1'Inforirtatique
No. 5569/u/FR

K.H.Timmesfeld et el.: PEARL - a proposal for a process - and
experiment automation real-time language. 1973
Karlsruhe. Report KFK-PDV 1.

P.M.Woodward, P.R.Wetherall, B.Gorman: Official Definition of
CORAL 66. 1973.
HMSO publication SBN 11 470221-7.

BICEPS - Basic Industrial Control Engineering System.
GE Software for the THAC 4000-1972.

A.D.Heher: Some features of a real-time BASIC executive.
Software Practice and Experience. No.6. 1976.

R.Green, N.Estcourt: The use of high level languages in real-time
systems.
Proc. of the Conference on "Software for
Control" pp.68-74 . 1973. IEE publ. No. 102.,
London.

T.B.Mahood: Computer control of the Bruce Nuclear Power Station.
Proc. of the 2nd Conference on "Trends in
on-line Computer control systems", pp. 81-92.
1975. IEE publ. No. 127, London.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

71

T.E.Dy Liacco: Digital computer applications in the control of

electric power systems. Preprints of the IFAC Conf.
on "Digital Computer Applications to Process Control",
pp. 733-741. 1977. The Hague. North-Holland Publ.Co.

N.T.C. McAffer: The computer instrumentation of the Prototype Fast

R.Anderson,

Kovécs B.K.

Reactor. Seminar on the application of on-line computers.
OECD ENEA OLC/14. pp. 351-379. Norway. 1968.

J.A.Robertson: System software for the control and
protection programs of a nuclear power reactor.
Proc. of the International Computing Symposium,
pp. 145-151. 1975.

North-Holland Publ. Co.

: Az R-10 szamitdégép PROCESS-8K programrendszere
/PROCESS-8K system for the R-10 computer./
Informécié Elektronika 1975/3.

B.K. Kovacs: Ein programsystem zur Messwerterfassung und Prozess-

Steuerung fir den Digitalrechner ES 1010.
VIDEOTON Software Nachrichten 1975/2.

PROCESS-16K mérésadatgy(jté rendszer felhaszndaldi kézikdnyv.

/User manual for the PROCESS-16K data acquisition
system/
VIDEOTON Fejlesztési Intézet, Budapest, 1975.

Process Control Monitor. User Manual.

J. Biri, 1J.

P. Vemet,

VIDEOTON VT-201.085.10.01-SW. 1975.

Lukacs, L. Somlai, Gy. Vashegyi: Industrial data
logging system.
1st International Symposium on CAMAC.
Luxembourg, 1974.

M. Lagier, R. Husson: A new architecture for procees

control computers: NARCIS project.
Euromicro. 1976. pp. 34-39.

E.Csdrnyei: Egyszerl overlay és swapping technika R-10-re.
/A simple overlay and swapping technique for R-10/
VIDEOTON Software Tajékoztaté 1975/3-4.

E. CsdOrnyei: Einfache Overlay- und Swapping-Technik fir ES 1010.

VIDEOTON Software Nachrichten 1976/1.

ES-1010 Reference Handbook

MITRA-15.

VIDEOTON VT-201.017.11.01.SW. 1974.

Manual de presentation. 1972.

72

26. D.E.Knuth: The Art of Computer Programming.

Addison-Wesley. Amsterdam. 1968.

27. L. Birger, E. Zobor: On-line alarm analysis

of a WWR-SM research
reactor.

To be presented at the

International
Power Plant Control

Symposium on Nuclear

and Instrumentation.
Cannes, 1978.

28. PROCESS-8K. User Manual.
VIDEOTON v T1-208.020.10.01-SW. 1975.

29. PROCESS-8K.

Operator guide.
VIDEOTON VT-208.021.10.01-SW.1975.

73

Appendix 1.

ADDRESSES IN THE R-10 CONFIGURATION

Interrupt system

IT level DVA word Status address
1 6802 -
2 5003 0231
3 6402 -
4 6202 -
5 6004 .
6 6008 -
7 6100 -
8 6011 -

10 6200 -
11 4103 0431
13 6080 -
14 6040 -
15 6102 -
16 6009 -
17 6082 -
18 4803 0031
19 6042 -
21 4023 0631
24 6403 -
26 6005 -
29 6010 -

Peripheral system

Interface Input address Output address
Display 1C04 and 0024 1E04
Typewriters 002C 000C and 001C
Tape reader 0008 0008

Tape punch 0018 0018

RT clock 0023

RT coupler 1E32 -

74

Appendix 2.

MONITOR MODULES OF THE OPERATING SYSTEM

TRAP - aborts a user program when an error occurs and types out the
cause of the fault

EXIT - instructs the executive that the issuing program
has completed its execution

TASK - instructs the executive to start a given task

HXBN - converts a hexadecimal character string into a
binary number

BNHX - converts a binary number into a 4 character long
hexadecimal string

DCBN - converts a decimal character string into a binary number

BNDC - converts a binary number into a 6 character long
decimal string

DCFL - converts a decimal character string into a
floating point number

FLDC - converts a floating point number into an 8
character long decimal string

CMPA - compares two variables

CMPS - compares two byte strings

BIBL - looks for a given program in the library

LOAD - loads a given program into the swapping area

STRT - initiates an interrupt programwithloading parameters
ABIO - aborts every /O activity oftheissuing IT

level and frees the buffers used

CLS - performs a section call in an overlayed program

RTS - returns to the calling section in an overlayed program

FLAG - reads/writes a given flag in the semaphor field of the
monitor

ADRS - reads a given entity from the address field of the monitor

NAME - reads/writes a given entity in the name table of the system

KEY - displays information on the front panel of the CPU

DATE - provides the actual time

75

GET — provides the actual value and the flag of agiven
variable

PUT - gives a new value to a given variable

PUTF - gives a new flag to a given variable

960 - writes out a digital output

MINI - reserves a mini buffer /10 bytes/

MIDI - reserves a midi buffer /32 bytes/

MAXI - reserves a maxi buffer /256 bytes/

FREE - frees a buffer

ZIo _ performs an input/output action

ZDIO - performs a disc transfer

ZWAT - waits for the execution of a determined I/O action

ZTYP - types out a message and subsequently waits for a reply.

76

Appendix 3.

SUBROUTINES IN THE PRIMARY DATA PROCESSING

1. Fixed format instructions

SCALE linear transformation [AX+B/

LINn performs linearization, where n is a parameter
1 and 7. Three linearizations are built in for
of different types, the remaining 4 are reserves

CONV calls a conversion subroutine written in free format
VALIA validity checking against two absolute limits

VALID validity checking against changing speed

LIMU comparison with a lower limit

LIMUL comparison with a range

FILTn performs an n-th degree exponential filtering

/0 < n < 7/ and stores the value in the data base

2. Free format instructions

Arittrmetic _instruetions

The parameter of these instructions is either the identity code of a

variable, or a constant

SUM addition

EXTR subtraction

MUL multiplication

DIV division

POWER evaluates the Xn function

A22ical_instructions

between
thermocouples

These instructions are always referred to the bits of the A accumulator,

the result remains in the A accumulator

MASK masks the accumulator with a constant or a variable
NAND logical NAND operation between 2 bits
NOR logical NOR operation between 2 bits
EXOR exclusive OR between the accumulator and a variable

ROTn rotates cyclically n steps the A accumulator

right

LDO - loads zero into two bits

LDI1 - loads one into two bits

LDB - loads one bit from a variable

LDBN - loads the negation of one bit from a variable

STB - stores one bit into a variable

STBN - stores the negation of one bit into a variable
CHB - changes two bits with each other

CHBN - complements two bits, afterwards it changes them
GPK - calculates the number of ones on the bit positions

determined by a mask and if this is greater than or
equal to a ¢ constant /O £ ¢ £15/, it stores 1 in the
j-th bit position of the accumulator /0 £ j £ 15/,
otherwise it stores zero in this position.

Data_moving_instructions

SET - loads a variable or a constant into the A, E accumulators
SETUP

loads the upper limit of a variable into the

E, A accumulators

SETLO - loads the lower limit of a variable into the E, A
accumulators

STORE - stores the constant of the A, E accumulators
or a constant into a variable

STT - storing a bit serial starting with the i-th
bit in the A accumulator into a variable starting
with the j-th bit

STTN - similar to the STT operationbut first it

complements the bits before storing.

Branching.instructions

BRU - jump without condition

BRUI - indirect jump

IFAC - jumps if the content of the Eaccumulator is negative

IFVAL - jumps if the variable is invalid

IFLIM - jumps if the variable is in overlimit state

IFLIML - jumps if the variable passes its lower limit

BRUO _ jumps if 2 predetermined bits in the A accumulator
are zeros

BRU1 - jumps if 2 predetermined bits in the A accumulator
are ones

CYCLE - Jjumps if a looping condition is TfTulfilled

78

Control instructions

LIMI limits a variable between 2 values

ON activating a channel

OFF inactivating a channel

BIT transfer of digital output

DAG60 transfer of analogue output through D/A converter
BP time modulated digital output

PID calculates a variable according to a

prescribed PID algorithm

Function generators

These instructions are always referred to the E, A accumulator and the
result also remains there.

SQUARE generates the 2nd power of the variable [y = x2 /

SQRT square root extension /'y = sIx”/

RECIPR generates the reciprocal value ly = 1/x [

INT generates the integer part of the variable

ABS provides the absolute value of the variable

EXP exponential function [/ y =¢e [/

RANGE regards the less significant 4 bits of the A accumulator

as a binary number / 0O < n < 15 / and generates the
/416 /n function

FLOAT converts the content of the A accumulator into
floating point representation

EXFNCn external function calling /In =0 - 4 /.
The user can freely define up to 5 function generators
in every group.

Pro2ram _transfer_instruetions

FIN finishes the execution of a block and the processing
begins to work on the next channel

CCAD transfers the execution to the chained next block,
otherwise the execution of the next channel is started

RET return from subroutine.

©CO~NOU D W NP

0000
0002

0008
0o0ocC
000D
000E
000F

0010
0012
001la
0016
0018

001 A
001C
001E

0020
0022

oora
0026
0028
002A
002C
002F
0030
0032
oo3a
0036
0038
OO03A
003C
NO3E
00ao
ooar
noaa

0006
0020
oosa

BOora

50
ao
ac
aa
31
5a

0101
0300
0302
0303
FFFF

0010
0000

0001
Filoa
151C
arro
F205
8E06
20FF
FI 1C
1510
111E
2207
8E 3a
20FF
171C
oat
111A
2200
1320

79

Appendix 4.

PMTASK POST-MORTEM LOG GENERATOR TASK

* PUT ASK
COoSs

ZC EQU

CHAIN EQU

HAROME EQU
FIN

*

1 LOS
DATA
RES
TEXT

*

*

*

DATA,
DATA,
DATA,
DATA,
DATA

PROGRAMI

DATA
| DATA
K RES

X RES
RES

FIN
IPS
XAX
SOR
LDX
ICX
IBR
LBL
CN A
SOR
STA
LDX
Ibr
LBL
ADM
LEA
STA
LDX
3 TX

START

CIKL

1977,09,06,

S
3
S
§

8.20
f3a

&8000 +5T ART
a
"PML 1ST"

LT3T OF THE DFSIRED VARIABLES!

NPR 1
PPM 1
OPR 1
TPR1

3FFFF * END OF THE

0 A GNB, BNB

L

I *
«CHAIN
=5
fliAZC , X
S8.FF

GNB

* PMPR

o1

K

*7

SAHAROME, y *
s*FF

[

VTK

VT AH

=0

X

pM COUNTER

LIST

80

* miGIT
» M|PUT
* MiPUTP

A580E2CDC22EC02D
A A OO N O AN —"d TN O

NP O o~MaI— IO M~ ~auaNOs
{poono—ionocono—ton O

woILoloansrowo <OLoa<t
S<t<t < TLOLOLOLO LOLO 1O LO O O W
coocolCOococooocoooooo
cCoo oo oo OoOoOoOO

OANNM ¥ILOWOWFr~00DD O —HAONM ¥LO W
DLOLOLO NLOLOLOLO LD O O OO OO WO

67 00
68 PP
PP
69 PP
p
P

10.

11.

81

Appendix 5.

OPERATOR COMMANDS

:ALARM ACCEPTED
DD, HH, MM

-.EXTRA LOG-SHEET
COMLOG NAME: XXXXXX
DD, HH, MM

:TIME
DD, HH, W

:LIST OF CHANNELS NOT PERMITTED:
DD, HH,MM

:LIST OF CHANNELS OVER LIMIT/NOT VALID
DD, HH, MM

:CHANNEL NAME: XXXXXXWORK LIST:
DD, HH,MM

:CHANNEL NAME: XXXXXX PRIMARY
INFORMATIONS:
MEASURED VALUE
UPPER LIMIT
LOWER LIMIT
VALIDITY LIMITS
DIGITAL CONTROL
OPERATING
DD, HH,MM

:CHANNEL NAME: XXXXXX MEASURED VALUE:
DD, HH,MM

:CHANNEL NAME: XXXXXX CHANNEL NUMBER:
DD, HHMM

:CHANNEL NAME: XXXXXX OPERATING:
DD, HH, MM

:CHANNEL NAME: XXXXXX DIGITAL CONTROL:
DD, HH,MM

12.

13.

14.

15.

16.

17.

18.

19.

20.

:CHANNEL NAME:

82

XXXXXX TAKE NEW VALUE

AND USE AS VALID

DD, HH, MM

:CHANNEL NAME:

DD, HH, MV

:CHANNEL NAME:

CONTROL:
DD, HH, MM

:CHANNEL NAME:

DD, HH, MW

:CHANNEL NAME:

DD, HH,MM

.:CHANNEL NAME:

DD, HH,MM

:CHANNEL NAME:

DD, HH, VM

:CHANNEL NAME:

DD, HH, WM

:CHANNEL NAME:

DD, HH,MM

XXXXXX SET-POINT:

XXXXXX FACTORS OF PID

XXXXXX FACTORS OF _SCALE:

XXXXXX LOWER ALARM LIMIT

XXXXXX UPPER ALARM LIMIT

XXXXXX VALIDITY LIMITS:

XXXXXX BIT NO: XX

XXXXXX BIT NO: 16

Kiadja a Kozponti Fizikai Kutaté Intézet
Felel6s kiaddé: Gyimesi Z.

Szakmai lektor: Keresztély Sandor
Nyelvi lektor: Harvey Shenker
Példanyszam: 250 Torzsszam: 78-183
Készult a KFKI sokszorosité Uzemében
Budapest, 1978. februér hé

