
ГК IS&OSb

KFKI-1977-91

I. M O N T V A Y

THE SU(3)-PROPERTIES OF SEMILEPTONIC AND 
NONLEPTONIC DECAYS OF MESONS

Hungarian ‘Academy o f Sciences

CENTRAL 
RESEARCH 
INSTITUTE FOR 
PHYSICS

BUDAPEST





KFKI-1977-91

THE SU(3)-PROPERTIES OF SEMILEPTONIC AND 
NONLEPTONIC DECAYS OF MESONS

I. Montvay
High Energy Physics Department 

Central Research Institute for Physics 
H-1525 Budapest, P.О-Box 49, Hungary

Submitted to Nuclear Physics B.

HU ISSN 0368 5330
ISBN 963 371 336 6



ABSTRACT
SU(З)-rules analogous to the Okubo-Zweig-Iizuka rule for strong 

decays are given for semileptonic and nonleptonic decays of strange and 
charmed mesons. In particular, relations among two- and three-body weak decays 
are derived. In the case of nonleptonic decays the relations depend on the 
colour structure of currents.

АННОТАЦИЯ
Рассматриваются SU(3)-правила для полулептонных и нелептонных рас

падов странных и очарованных мезонов аналогичные правили Окубо-Цвейг-Изука 
для сильных распадов. В частности, выводятся соотношения между двух- и трех
частичными слабыми распадами. В случае нелептонных распадов эти соотношения 
зависят от цветовой структуры токов.

KIVONAT

Az erős bomlásokra vonatkozó Okubo-Zweig-Iizuka szabállyal analóg 
SU(3)-szabályokat vezetünk le a ritka és a bájos mezonok szemileptonos és 
nemleptonos bomlásaira. A két- és három-test gyenge bomlások között össze
függéseket származtatunk. A nemleptonos bomlások esetében az összefüggések 
érzékenyek az áramok szin-szerkezetére.



The SU (3) -propert les of semi leptonic and 
nonleptonic decays of mesons.

I.Montvay
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Abstract: SU (l)-rules analogous to the Okubo-Zweig- 
-Iizuka rule for strong decays are given for semi- 
leptonic and nonleptonic decays of strange and charmed 
mesons. In particular, relations among two- and three- 
-body weak decays are derived. In the case of nonleptonic 
decays the relations depend on the colour structure 
of currents.





After the recent discovery of charmed D- and F-mesons 
[l,2] an increasing amount of informations is accumulated 
also on the weak decays of these particles [З-З] . The facts 
known at present are generally consistent with the Glashow, 
Iliopoulos, Maiani (GIm ) scheme [b] for the weak currents.
From the point of view of unified gauge theories it is of 
great interest, however, to verify the charm interpretation 
in detail.

Due to their large mass the D- and F-mesons have a rather 
large number of decay channels. The branching ratios into 
the different channels can give valuable informations on the 
decay mechanism. SU(3) -relations following from the SU(3) 
transformation properties of the currents were derived 
previously by Kingsley, Treiman, Wilczek and Zee [У] • More 
restrictive relations for nonleptonic decays follow from 
20-plet dominance /analogous to octet dominance in K-meson 
decays/ Jj-Hj . In the present paper I shall investigate 
the consequences of SU (3) symmetry for the weak decays of 
D- and F-mesons assuming a generalization of Okubo-Zweig- 
-Iizuka (ozi) rule [12J which can be naturally incorporated 
in a large class of quark models. For definiteness, I shall 
consider the quark model with phenomenological quark con
finement described in detail previously £l3,l̂ ] . The obtained 
relations are, however, more generally valid than the model 
itself. /Examples of similar quark models are given e.g. 
in Refs. [3 5-19! ./

In Section II. the SU(3)-structure of weak amplitudes is 
given in general. The Fiertz-transformation properties of 
the current x current effective Hamiltonian for nonleptonic 
decays are taken into account emphasizing the role of colour 
degrees of freedom. Specific relations for the two- and 
three-body decays are considered in Section III. and IV., 
respectively. /For details see also the Appendix./ The 
relations are first tested in both cases for the well known 
K-meson decays. In Section V. the conclusions are briefly 
summarized.

I_. I n t го du г t ion
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II. SU(3)-structure of the weak decay amplitudes of mesons.

The charged hadronic weak current in the GIM scheme jjbJ 
can he written as

л /

where ХЛ'5" denotes Dirac-matrices, (̂,= u.|d(ó|c
is the quark field operator /colour indices are suppressed 
for the moment/, and the k x k matrix is given by

О cê >© О ^

о о о о
о о о о

° }

/2/

/© is the Cahibbo angle./ The effective current x current 
weak interaction Hamiltonian density is

'fi, U) +■
L Л

/3/



3
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The effective interaction is the low energy limit of some 
gauge theory coupling mediated by the charged intermediate 
boson W— .

In the present paper we shall consider only the leading 
charm-changing terms in Р^.(з) proportional to cos ©' Оin the semileptonic case and to cos 0 in the non- 
leptonic case.

Semileptonic decays.

The semileptonic interaction comes from the coupling of the 
hadronic and leptonic currents. Graphically the leading 
charm-changing piece /proportional to cos О  / is represented 
by Figure 1. In the quark model of Refs. [jL 3,1 ̂  the simplest
quark graph /the so called "direct term"/ contributing to 
the semileptonic decays is depicted in Figure 2. /for instance, 
in the case of D°-meson decay/ [2oj . The Feynman-rules for 
the calculation of quark graphs |l3,l^ are briefly sum
marized in Table I. In what follows I shall only consider 
the /flavour/ SU (3) structure coming from the usual meson 
-matrix part of the wave function

where G is the Fermi coupling constant and denotes
the charged leptonic weak current containi ng e-̂  j y - and 'Г- 
like leptons:



- I, -

У

Ik  i t
f <*><& D °

+-x 7d.~- 1 D +

K + K° f v

ъ ° ъ ~ F" Ы

/5/

Here, for definiteness, the pseudoscalar mesons are taken,
hence 1C' 7 ' 7 ■>7 c and the mixing an§ie (jp-p
belongs to the pseudoscalar nonet. /The mixing of the charmed 
quark stateV^is neglected liere./ The momentum dependent part 

X ( f i  of the wave function |l3,l^J will not be 
specified here, /it will be assumed, however, that the SU(3j 
breaking effects coming from the quark mass matrix M are to 
a good approximation compensated by the SU(3)-breaking in 
the meson wave functions like it lias been shown for strong 
meson decays in Ref. И - /

From Table I. it follows that the SU(3)-structure of the 
amplitude corresponding to the graphs like in Figure 2.
is [20] :

2- Ti- j  и(х) Я (^№) ... Mотг( L J .

/6/



Неге - д - ( means a summation over the permutations 
( TC(4), 3U(iU , ,  тг(ч)} of the numbers £l,2,...,m^
/ 'УЬ is the number of hadrons in the final state/. The 
trace over internal symmetry indices in Eq. (б) is already
reduced to /flavour/ SU (3) by the relations following f 
Eqs. (2,5)

rom

1 иЯ>©
MX

и (7t+) 1- M (f5] 4- Eм и Cd+)J.

i i i

н (в о) Я ( р 5 -  м (р ~/

M ( D +) M ( f 5  =  ,
M ( F +) H ( f /  •

/8/

Erom these relations it follows that the matrix M (i) 
specifying the "initial" SU (3) quantum numbers of the 
n-hadron state is given by Eq.^5) if

/9/



6

The factors С^ГтГб)] in ihe amplitude (б) depend 
on the momenta and spin indices /only the dependence on the 
permutation " К О ) is explicitly indicated/. SU(3) symmetry 
means that does not depend on internal symmetry indices.
The matrices M in Eq.(6) stand for the j ’**1 out
going pseudoscalar meson with SU (3) quantum number ^ : . In
the case of resonances in the final state ~r is, of course, 
replaced by C>̂  D ... K *  /for vector mesons/,

CT= A a ) f\z y . . /for tensor mesons / etc.

As far as the SU^3) coupling scheme ■ is concerned Eq.(ó) 
is obviously the generalization of the OZI-rule to semileptonic 
decays. Graphically it means that it is always possible "to 
draw a continuous quark line" among the mesons /and the 
diagram obtained is always connected/. In the quark model 
the graph in Figure 2. is, however, only the simplest /"direct"/ 
one, therefore in principle the other graphs may spoil the 
behaviour given by Eq.(б) . The essential point is that a 
large class of graphs have the same SU (3) -structure as the 
"direct" one and, according to the success of the OZI-rule 
for hadronic couplings, these graphs dominate. Among the more 
complicated graphs belonging to this class there are the 
"indirect terms" when one /or more/ ofthe pairs of internal 
quark lines makes up a /resonating/ internal hadron line.
/The pole terms coming from such indirect graphs seem, in 
fact, to dominate in the form factors for ^ £ 0, or 
decays/. Examples of such indirect terms are depicted in 
Figure 3. Other kinds of terms having the same SU (3) structure 
like Eq.^6] are the ones with internal gluon lines, because 
the /coloured/ gluons are flavour singlets. In what follows 
we take Eq. (б) with some unspecified momentum and spin 
dependent part to be the SU(3) -property of semileptonic
decays.
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Nonleptonic decays.

The nonleptonic decays are given by the product of two 
hadronic currents in the effective Hamiltonian in Eq. (3) .
For later purposes it is convenient to introduce a graphical 
notation also for the Fiertz-transformed four-quark couplings. 
In the case of the leading f t. €. с&ъ le ) charm changing
nonleptonic interaction the notation is explained by Fig.k.

For the nonleptonic decays the set of /direct/ quark graphs 
can he devided into two essentially different classes |_2o] • 
The"excliange-type" graph is illustrated in the case of D° 
decay in Figure 5. The special case is possible only
for D° decay. It can be called "exchange annihilation" as the 
quarks (cu.) in D° are annihilating by the exchange of a W+ 
boson. The "emission-type" graph is shown in the case of F+ 
decay in Figure 6. The case О /"emission annihilation"/
is possible only for F+ when the quarks in F+ annihilate
each other by the emission of a W+.

From the Feynman-rules in Table I it follows that the SU(3)- 
-structure of the amplitude corresponding to the sum of 
emission and exchange graphs is 2̂oj :

I - - " ' "C  SL ^

■T- [ м  M  Í Л
The SU(3)- matrix M (i) is the same here as in Eq.(6) and it 
is given by Eqs. {9,5) . The amplitudes CL /for the

'"■A ̂  9
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emission graph/ and ''4t̂  /for the exchange graph/
depend on the momenta and spins.

The generalization of the OZI-rule for nonleptonic decays 
is given by Eq. (id) . The "indirect" terms and gluon exchange 
terms have the same SU (3) -structure as Eq. (ló) , only the 
momentum and spin dependent parts are different.

Fiertz transformation.

It can be seen from Figures **-6. that the exchange and 
emission graphs for nonleptonic decays are connected by a 
Fiertz-transformation. After Fiertz-transformation the graph 
in Figure 5, for instance, goes over into Figure 7.

Let us first forget about the colour of quarks. In this case 
the Fiertz-transformation of the leading charm-changing 
piece of the current x current Hamiltonian in Eq. (3) is:

/ Ц /

It can be seen from here that the structure of the Fiertz- 
-transformed exchange graph is exactly the same as the 
emission graph the only difference being in the SU(3) 
quantum numbers of quarks participating in the weak interaction. 
That is, in the SU (3) -symmetric limit the momentum and spin 
dependent part of the exchange graph is the same as that of 
the emission graph:

'(r lr  [  M ̂  M (x) P\ M (x+jj =

= cî   ̂ £ M (£) и A j Ti- £ и (V°) и j
/12/



о

Here the SU (з) transformation corresponding to Eq.(ll) 
was performed on the right hand side, hence instead of 
Eq. (9) we have

/13/

From the explicit form of the SU (**) -matrices in Eq.(5jand 
Eqs ,i (9^13) it follows

X  [ M (x) H j  v  l  M R j  -1  . (m

X f R ’’1 и  И й " 1 «  № Ч ] = Х { М ( 9 н ,,1} т ^ п п г ;)й ^ «

The index i is equal to u for D°, d for I)+ and for 
F+ decay. Comparing the second relation in Eq.^lV) with 
Eq.(l2J we obtain:

I =  a
Ч 2- /15/

If the quarks would obey nose-statistics instead of Fermi— 
-statistics jj 5 ,21-25  ̂ tliere would be an additional negative 
sign in Eq. jllj ,therefore instead of Eq.(l5) it would give

a
/16/

Up to now the quarks were assuemd to be colourless . /for 
a recent review on со bur see Ref. J/!<J • In QCD with coloured
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quarks the Fiertz-transf ormát ion in Eq.^ll) is replaced by

The colour indices are denoted here by greek letters and A l  
stands for the Gell-Mann SU (3) - matrices. EQ. .̂7) shows 
that the colour "spoils" the simple relations following from 
the similarity of the Fiertz-transformed interaction to the 
original one. It seems hard to imagine that a relation like 
Eq. (15) can be derived in generality unless some specific 
dynamical assumptions are made.

An example of dynamical assumptions in the connection with 
colour is made in the geometrodynamics approach of Preparata 
[«] , namely that colour contributions are unimportant /or simply 
not there/. In this case the second term of the Fiertz - 
transformed expression /containing / cannot contribute
as the colour trace over the quark loops gives zero. Therefore, 
the form in Eq. (ll) is essentially restored, only with an 
extra factor ^  . This leads to

45
/18/

In the following Sections we shall investigate also the 
experimental consequences of Eqs. (15,16,18).



111. Two-body decays.

Symmetry breaking kinematics.

The SU ()j is in general a good symmetry for the amplitudes 
/e.g. for the coupling constants in the case of strong 
decays of resonances/ but substantial symmetry breaking 
effects come from the kinematics of the decay due to the 
large mass splittings among pseudoscalar mesons. The usual 
procedure for the verification of SU (3) - relations is 
therefore to take the symmetry breaking phase space /and 
centrifugal barrier/ effects into account by the physical 
values of masses.

In the case of two-body decays of a pseudoscalar meson into 
two pseudoscalar mesons ) the decay width is given
by the dimensionless coupling constant Q like

where w is the value of the c.m. momentum. If is the

TP

/19/

mass of the decaying particle and •, .are the
masses of the decay products, respectively, then

/20/
For the decay of a pseudoscalar into a vector and a

the corresponding expression is:
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Г  - 1Q 1VP 1̂ V? 1
Ю -

/21/
There is, of coarse, some ambiguity here in choosing 
in the denominator instead of some other mass. This choice 
corresponds to the simplest form of the transition amplitude

Finally, for the decay into two vectors {У-?\Y\fj we have

dAT
VV I '---2L t

/22/
/Similar formulae can he written down also for other kinds 
of decays containing, for instance, tensor mesons etc./
In what follows I shall assume the SU(3) relations for the 
dimensionless coupling constants like ^ ? T  ) ^v'P anc* '

For two-body /nonleptonic/ decay amplitudes into two pseudoscalars 
) V and k c L  in Eq.(lo) can not depend on the permu

tation TCX») as the only variables are the masses which 
are degenerate (t.G. /|r>4( - in the symmetric case /assumed
for the_ amplitudes/. Below, the notations CLpp ) ■>
and ЛЦ>р will be used for and ,
respectively. For quasi two-body decays into two__vector mesons 
the same quantities are Ct^ ) K v  > a n  and ^V[/ * -*-n 
case of quasi two-body decays into a pseudoscalar and a 
vector meson the amplitudes belonging to the two permutations 
may be different /as ф- even in the symmetric case/,
therefore the corresponding notations will be CL CL fi-n _  —  у  %  ?v 1 vp/
ÍL CL CL, , L  and iv
\ ? ) ?V ) I > 1/  l/p '
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К — т 2 ТЕ decays .

First it is natural to test the symmetry relations for 
K-meson decays, when the SU (3)- symmetry is, in fact, 
reduced to SU(2) /isospin/. The derivation of SU(2)- 
rules for the strangeness changing decays is completely 
analogous to the charm changing case, therefore, it is 
not necessary to repeat again the arguments of the previous 
Section. The SU(2) quark rule is given by Eq. (6) and Eq.(lO) 
for the semileptonic and nonleptonic decays, respectively. 
Instead of Eq.(9) the initial quantum numbers of the hadronic 
states are given by

)

/23/
The relations are replaced by

tin.
/24/

where t — tb for K+ decay and i ~ < X for K° decay.

The K—?2'Jt: amplitudes following from 
best displayed by the generating functions

are

Q  Cif̂ s) -
о о /X  X  4 ^ [ 4j,?) + Ä  Д  f V  °тр)

/25/



-  l ' l  -

The calculation of the decay widths from here goes via 
the substitution

A / \ - ' 9 í k w v *-
(rt+ + n_4.1l„)! /26/

There are altogether 3 К — ?■ 2ot decays, hence for the 2 ratios 
we have 3 complex parameters /say: a.r r / & ?? , &pp /йрр , t ?p / a  7  
therefore in QCD there are no symmetry relations among these 
decays. In the case of colourless quarks Eq.^15) or Eq; (\б) 
holds for fémion and boson quarks, respectively. In the first 
case the only /complex/ parameter for the ratios of decay 
widths is Cl?p /Slt'PP •

Г  ( 7cV°) 9  ^  7t ̂

Г ( Ks_VJt 9(^5 ̂ °я°)
Г ( 9 f Í

^ O . o o u  ± 0.00003] ^

{o.45G±o.oo£j _

/27/

The measured values are given in the curly brackets. They are 
reproduced by ls>p /сЦрр I С* О. О 5̂  , therefore the
annihilation diagram is dominating.

The second case /Bose-quarks/ was proposed to explain the 
ЛТ=  ̂  rule ^15,21-26^ resulting in the relations

where o^is—?■ Jc у means the two-body phase-
space (vr/S-K in Eq.(l9)^ belonging to a number 
of TC mesons in the final state (ot^ 4-) — , o) .



/28/

P ( K ^ > 7 U V 0)=-0 ,

_  9(K's 7̂I°7X°) = 0 5-05'
V {\<ŝ n+Ti) <> Cf̂ s-?TÍjf) ^

/As it can be seen from Eq. (27) these relations hold also 
for CLpp= О in the previous case. The smallness of 
I CLpp / gUpp I shows how good is =  Jp • /

The data can also be fitted by the geometrodynamics value 
of b  in Eq. (lij) where I a pp / °~pp I turns out to be 

0.025.

Two-body decays of charmed mesons.

The generating function analogous to Eq. 2̂5̂  for two-body 
nonleptonic decays of the D- and F-mesons can be obtained 
from Eq. (id) using the expressions in Eq. (l4) . The result is:

C(D“)= K tc1" h r > +  /р ) 4 У ' \  f i  i f y f  К )  '

+ Í?\ ' 7 S  ’
С(3)7 =  Е ° т г + (ОррГ &рт) , /29/

6  (F+) = " ^ ° K + (^p+ 3 Tf)+ а рр) + а тр+ ̂ тр) .

For the pseudoscalar nonet the octet-singlet mixing was neglected
A .here, that is was taken /the same will be used

also in the rest of this paper/. The amplitudes <Xppj..()
entering in these expressions are related to the ones in
Eq. (25) by SU -symmetry / SU (>i) may, however, be badly
broken/. To obtain the decay widths from here the same
recipe has to be applied as in Eq. (2b) /extended, of course,•V' *— _ ofrom IT , 7JU ) TC to the whole set of pseudoscalar mesons/.
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The ratios of the decay widths for the 8 different two-body 
channels in Eq. (29) are given by 3 complex parameters /s ay:

1 ^?p j  therefore there must be
some relations. The following ones are independent from the 
values of the parameters:

r ( F ^ i f V ) = o  ,

“ q(

if the b-amplitudes are related to the a-amplitudes by some 
of the Eqs. (l 5) , (ló) or (l8) , then there are, of course, 
much more relations. The parameter free ones are collected 
in the Appendix in the first and last cases. /The rather 
unconventional case of Bose-quarks in Eq. (ló) is left to 
the interested reader as a simple exercise./

Quasi two-body decays of charmed mesons.

Similar relations can also be derived for quasi two-body 
nonleptonic decays producing /in general/ two resonances in 
the final state. In the present paper only vector mesons will 
be considered but the generalization to other kinds of 
resonances is straightforward . The generating functions in 
this case are /with =1jthat is ideal mixing for the
vector-meson mixing angle/:
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g (xp)= k V  + y* v  í v V *  V ) +
+ 1?*°'TC“c: (V ~  ̂ p )  +■ "F <« a.(K¥^pi/)f Í V lpZty
+ K Ф t vp +■ к Í^V V /l"Vp) +
+ *'\°k ( V  ^ ) ^ r ° c o ^ f í vv C ) +  * * 4  í ,  i 
C(B+V  K ' v  ( s v  Hr) * Í V + U + *  V  ía« + M )
с и - Г К * * -  + v ) + ?v á , (V  v ) p
t- ̂ 9 ° ‘g, (®vp_ a pi/)p x+<b^  Í V +• а р /  + 9+^ c Í V * ap V - a/ +■ 

+  ̂ + Ф  +- 9+| 7 5  (rafv+-avp-i-Q. ^  + K ^ K *  + f 4 h , +  a w )  i

± ф * { г  5 W  + ? + Ф  a vn •

/31/

For the ratios of the 8 vector-vector decays there are again 
3 complex parameters, wheareas for the ratio of 18 
pseudoscalar-vector decays there are 8 complex parameters.
In the case of independent b- and а-type amplitudes the 
following parameter-free relations hold:

TC f V  ( ? V ) = °  ,

Г С г У У у )  9 [ ^  . , n n

H F t v V  9 ^ ? " ^  /32/
The parameter free relations in the case of Eq.(l5^ or Eq.(l8j 
are also listed in the Appendix.
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IV. Three-body decays.

For three-body decays it would be in principle possible to 
compare the probability distributions in the Dalitz-plot, 
but the direct comparison of decay widths is not possible due 
to the differences in the Dalitz-plot shapes resulting from 
the SU (3) -breaking mass differences. A possibility for the 
estimate of decay width ratios is to approximate the amplitudes 
by constant /average/ values. In this case only the ratios of 
the Dalitz-plot areas matter. This approximation will be used 
in the present Section.

K-»3X decays.

In the case of К — r JJZ decay SU(3) is reduced to SU(2)/isospin /. 
The relations following from Eqs. (lO, 2 3 , are given by the 
generating functions like for K-r25T decays in Eq.^25):

To obtain the decay widths from here /for constant amplitudes/ 
the substitution in Eq. (26) has to be performed. is now
the relativistic phase-space integral /equal to the area 
of the Dalitz-plot/:

/33/

/ 3V
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/р is the four-momentum of the decaying particle./

There are 2 relations following from Eqs. ^33,2bj , namely

r(K'l_ ^ 7 i V % )

o ( № V )  \ Г  с 7—    у - = - О . З о 5  f o . 3 o d t O . o r t9 ( K ^ Ä V )  4 1 1
o f ^ ^ r r V b i 0) 3 , Оо Г. 7v L ___ -- $ « 18з ] \ t * ±0.oyl
9  (К;

/35/
These are expressing the absence of I=3 components in the 
final state. The measured ratios /in curly brackets/ are in 
excellent agreement with the theoretical values.

Similarly to the K->-2'Jt case, the approximately valid

Г(K - T t V O  _ 9 C * ^ * V * j 3 = <c2. {Wto.oK
9 <<■**'***>

/36/

follows for Bose-quarks from Eq. ̂ lőj or, in the case of 
colourless fermion quarks, if only the annihilation amplitude 

^ 3  is Present.

Three-body decays of the charmed mesons.

The generating functions for three-body nonleptonic decays 
of the D-and F-mesons can be obtained from Eqs. Î0,l̂ ) :



t- K^rc*7t°^ fa2,<-t(J j - T < V V _ (43+4 ( +QR ) + ^  ^  i?' 4 5 t“

+■ k V ^  (^£V - 4 u r a^) +■ P Q<*+V +^ q*«+’3 «Jt

+■ ><4 °7 <f Í4,- U  + 1?:" ^ ,4 ," V :2V 3 i ) +%|-/'|r fí.^i) i

C(b+)= ^ V ( a ^ y t  R V r f a ^ ^ - K V ^ K + C ) ^

tí?'^+7 ®  ( ^ < - 2 4 ,- « * i - y  ' g  < W  <»„+ i ) ;

№ * )  =  d t V t t  QOB f ^ v  2̂ - .  +- T c W  (4 *3  + a * i  b ^ t ? )  t-

f T t V eí?°^o3f 4 ^ Q 2i) + i ^ W ^ - r ^ -  4i) +
■»- 7 7 & (3a° ^  ~  V )  ̂ +7 2' f  - í3q°3- ? %  - v )  -
- K ^ ° 7  ̂  (A*.*- ̂ +-4-,) +  ̂ У т §  K - ^ i ^ V 3^ .

/37/

The amplitudes 0.O3 } ̂ a 5— ) 4-f appearing here are related 
to the ones for K-meson decay in Eq. (ЪЪ^ by SU . It is 
important to note that the channels are understood here as 
the "direct" three-hody ones, without the resonances /quasi 
two-body channels/.
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In the genaral case ^b^=a^ the following parameter-free 
relations follow from Eqs. 37,26 :

r V - > i 7 W )  _ qtV - W y )  I  =  0 M 9  

Г ( C %  к ' Л * )  ^ ’ ;
riF4̂ - TtV-7t7 = p(FU-:llV<) j _ =  o,X5Í. , 

T ( F ^ T * t V J  4
T(d %  \ < т с +- п ° ) _ 9 ( У - > F t c t FJ i  =  о д ^ 9

г f o t ^ K V v )  4 ;
Г (Fir K +i?V°) _ 3,^ J c
r c b " _ r W ?) f f o v F V ’ő *  ' Л 8/

Calculating the Dalitz-plot area the masses =1863 MeV,
'»''V = 1868 MeV, =2030 MeV jj5-5j were used.

These relations are expected to hold somewhat less rigurously 
than the corresponding ones for K— r 3jr decays (35) . The 
reasons are that SU (3) can Ъе broken more seÄously than SU(2) 
/the mass differences are more important/) therefore the 
approximation of the amplitudes by constants /in the larger 
Dalitz-plot area/ is less good and finally the subtraction 
of the resonance /quasi two-bodv/ contributions is by no 
means unambiguous.

The parameter-free relations following from Eqs.(l5) or (l8) 
expressing the b-type amplitudes by the а-type ones are 
also given in the Appendix.



Semi lop tonic decays.

The SU (3) -properties of the semileptonic decays are given 
by Eq. (6) . I n the case of a single hadron /in general a 
resonance/ we have a three-body decay and the approximation 
of constant amplitudes /here constant  ̂ and
form-factors/ may be taken in order to get an estimate for 
the branching ratios.

In the generating functions only 1 or 2 pseudoscalar mesons 
will be written out. The resonance nonets can, of course, also 
be included without further ado. The results are:

/39/
For ki* decay /taking the average of electronic and 
muonic widths/ if follows:

rfl<L-̂ 3Tfaj) e 1 p f Х д л . £l9j?to.o4j

Г ( к ^ 9 (kiГety<?(
/40/

in excellent agreement with the experimental number /in curly 
brackets/. The corresponding relations for the charmed mesons are



r f t U  К ' Л £) P  (X1 —у К  £ )

cX d U k T ^ )
c ̂ ,999 )

n  n i  ,
r t t i U F t ^ )  b ^ i v U v ^ j )

P ( F2*4 Я = V f Ч А )  = q W o  
г ( b % l ? 4 +-gt) 3?(t>^i?”e4) /'■'/

Note that the hadronic final state in П+ semileptonic decay 
is obtained from D° semileptonic decajf by an isospin 
transformation, therefore the full semileptonic widths of 
D+ and D° are equal /by SU (2) -symmetry/.
From Eq. (39) it is straightforward to obtain the relations 
for resonance and for two pseudoscalar meson production, too.

V. Conclusions.

in the present paper the derivation of the SU (3) -relations 
for mesonic weak decays is based on the following assumptions:

i/

i : /

Hi/

the validity of the GIM - current for weak interactions 
[6J /only the dominant parts, i.e. the cosG term 
for semileptonic and the cos“ О  term for non- 
leptonic decays, were considered/;
SU(з) -symmetry for amplitudes and /usual/ SU(3)-breaking 
phase space factors; /for three-body decays the 
estimates of branching ratios were1 given for constant 
amplitudes on the Dalitz-plot/;
the validity of SU ̂ 3)-coup J ing rule analogous to the 
OZI-rule in strong decays Jj iTj , which can be easily 
incorporated into a quite general class of quark 
models Jl3-19| .



The actual framework explicitly considered is the quark 
model with phenomenological quark confinement [o-1'З 
applied previously to calculate form factors and the strong 
decays of resonances. In this model the simplest quark 
diagrams /"direct terms"/ for die weak decays [20J have the 
same SU(3)-structure as a large class of graphs containing 
also internal hadron lines /"" ind irect terms" including 
the pole contributions^ and/or internal gluon lines. In 
the spirit of the OZI-rule this class of diagrams dominates, 
determining the SU (3) coupling scheme among the hadrons in 
the final state.

The internal symmetry relations obtained were tested first 
for the well known case of K-meson decays. The two relations 
in Eq. (35) for K-y37 V are very well satisfied. The amazing 
accuracy is due to the fact that only isospin symmetry is 
involved in these relations, and besides, the phase space 
for K-* 3"K is rather small, therefore the constant amplitude 
approximation is good. Although not surprising /as they 
express the absence of 1=3 in the final state/, these 
relations also shed new light on the quark rule generally 
known as OZI-rule. /in this respect note also the 
relation given below which can be one of the best places 
for checking the accuracy of this quark rule./

As far as the charmed meson decays are concerned the experimental 
verification of the relations in Eqs . ̂ 30,32,38) would give 
strong support to the first one among the above three assump
tions /GIM-current/ as the SU(3) symmetry of hadron couplings 
and the OZI-rule is well established.

A very interesting feature, in my opinion, is tfye possibility 
to investigate the effects of quark colour in nonleptonic 
decays. In general there are two sets of amplitudes /a-and 
Ъ-type/. For colourless quarks /or if coloured gluon exchange 
is negligible/ the two sets are connected by some of the



relations in Eq. [15,16,18]. These produce a number of 
additional SU (5] -relations among nonleptonie chajnnels/see 
e.g. in the Appendix/. More generally, the connection of the 
a-and b-type amplitudes depends on the Eiertz-transformation 
properties of the effective current x current nonleptonie 
interaction and this gives a handle to investigate the colour 
properties of the weak current.

It is interesting to note that the preliminary data known 
at present seem to indicate that D(-— =*• К ТГ + and D+— *- К ° т + 
occur at roughly the same rates. According to Eq.(29) this 
means that neither b= -a /boson-quarks/ nore the dominance 
of the annihilation process ( Ctpp ̂  ^p^so] work for 
D-meson decays. This is in sharp contrast to what we learned 
from K-meson decays. If more data will be available it will 
be very informative to know which part of the nonleptonie 
amplitudes /if any/ is dominating.

In principle it is possible to extend the results of the present 
paper also to multiparticle channels. The estimatesbased on 
the approximation of constant amplitudes may be very useful 
in this case. As an example, the relation for Kg/j decays 
/obtained from Eq. (б] with constant amplitudes/ £27^:

Г (K-^ tcV

seems to work well within the experimental errors. /(Э denotes 
here the four-body relativistic phase space integral./ Similar 
relations hold also for charmed mesons. In general, also the 
multiparticle production aspects of the weak decays /average 
multiplicities, inclusive distributions etc.Qioj/may be 
investigated along these lines.
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Appendix.

In this appendix the additional parameter-free relations 
resulting from the Fiertz-transformation properties of 
nonleptonic current-current interaction are collected.
Two cases are considered:

i/ colourless /fermion/ quarks, when Eq.(l5) , i.e.
b=a holds;

ii/ coloured quarks in the geometrodynamics approach jl8j 
when Eq. (l8) , i.e. Q, is valid. Otherwise the
same notations and assumptions are made as in the text.

Two-body decays, b=a.

г fa*-*- к’ тг̂ )
Г (Ft,■ К4?”)

ГГг>°-Г< у)

Г (Fi-■ х+7')
roccuТГ<)
г (pü-x4̂

_  9  Ст>% к- X 4)
9 Cf u k ' y 1)

_ № =̂ £ L „ o .m

3 =  0.6?9

r e D % k - ^ )  ^  =

Г(ъ “-УТ?тс°) ^ (рС ь-^ктс!) X  = о. oqfőí

Two-body decays, b=--̂ -a.
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Quasi two-body decays
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involving vector mesons,b=a.
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Quasi two-body decays involving vector mesons,

Г feU
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p f e V i ? * V )  -i2_____ L' J __O.OOOKG>

P(-F -h
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Three-body decays, b=a.
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T a b i n  I .

Feynman rules for L'irst ordor weak i nt.eraction quark graphs 
/single quark loop for semi1eptonin and two quark loops 
for nunleptonic decays/.

I / Label the internal quark line four-momenta taking into 
account four-momentum conservation.

2/ Write a factor

where
k. = four-momentum of some of the quark lines 
p. = number of quark lines 
ПК = number of BS vertices /open circles/ 

Tí-£...j = trace over STJ and Dirac-indiees
b ♦

3/ For incoming mesons

in the 
quark loop 
with index

=mx(p,k*£)

where M is the internal symmetry matrix of 
X  is the momentum dependent part of its BS

the meson and 
wave-function.

'л/ For outgoing mesons

Ж
p I “МХ(р,К~2)

444 K-p
Twhere M=M and %  are the conjugate wave functions.
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5/

where M is the quark /effective/ mass matrix.

6/

^2 (T iít&u (pin pQut)

This assures overall four-momentum conservation.

7/

О - - - • - - - О  - Г А( Г Л )
for the local current operator •  (r a) with Dirac-part Г and internal symmetry part /\



Figure 1. The leading semileptonic coupling for charm decay. 
The intermediate vector boson coupling (a.) is 
equivalent at low energies to the four-fermion 
coupling (b).

> n hadrons

Figure 2. The simplest /"direct"/ quark graph contributing 
to the semileptonic decay of l)°.
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Figure 3. Examples of indirect terms to semileptonic D~ decay 
J CBZSZSZSZ33 is an internal hadron line/.

a ) b.)
Figure h . The leading nonleptonic coupling for charm decay. 
The four-fermion coupling can be given in two equivalent 
forms /a and b/ connected by a Fiertz-transformation.

n2 hadrons (n2 1̂)

Figure 5. "Exchange" quark graph for D° nonleptonic decay.



n2 hadrons ((̂ >1)

a

a

Figure 7. The "exchange" quark graph after Fiertz-transformation.

Figure 6. "Emission" quark graph for F+ nonleptonic decay.
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