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ABSTRACT
We relate here the geometric formulation of Hamilton's Princinb 

presented in our previous paper [ij to the usual one in terms of a Lagranqian 
.nation. The exact conditions for their equivalence are obtained and?a method
evtpnd^H f°r const^ Cti°n of a Lagrangian function. The formalism isextended to spin particles and a local Lagrangian is constructed in this case 
also. However, this function cannot be extended to a global Sn!?

АННОТАЦИЯ
Связываются различные способы определения принципа Гамилтона: гео­

метрический, введенной в предыдущей статье [l} и обыкновенный, в виде функ­
ции Лагранжа. Выводятся точные условия их эквивалентности и показывается ме­
тод построения функции Лагранжа. Формальность распространяется и на частицы 
со спином. Однако, построенную в этих условиях, локальную функцию Лагранжа 
нельзя глобально определить.

KIVONAT
Kapcsolatot létesítettünk Hamilton elvének előző cikkünkben [l] 

bevezetett geometriai és szokásos Lagrange-függvényes megfogalmazása között. 
Pontos feltételeket kapunk azok ekvivalenciájára és módszert mutatunk a 
Lagrange-függvény konstrukciójára. A formalizmus kiterjeszthető a spines ré­
szecskékre is. Az ekkor konstruált lokális Lagrange-függvény azonban nem 
globalizálható.



1. INTRODUCTION
In our previous paper [lQ we have presented a geometrical framework 

which made us possible to treat Hamilton's Principle in a coordinate-free man­
ner .

A mechanical system was charecterized by its evolution space, E, and 
Lagrange-form, a. The equations of motion are expressed as

gf- (?) (t) E Ker a /1.1/

where g denotes the lifted to E of the motion-curve g lying in configuration 
space, Q.

In classical case, when a Lagrangian function L is given, one can 
introduce a A field of 1-forms called the system's Cartan-form, in terms of 
which the Euler-Lagrange-equations take the form:

gf- (g)(t) e Ker dA /1.2. /

Comparing 1.1 and 1.2 we said that a system given by (E,a) has a 
local variational description if there exists at least locally /i.e. defined 
on a local chart/ a A field of 1-forms for which a = dA

The necessary and sufficient condition for the existence of such a 
A is da = 0 referred to by Souriau [2] as Maxwell's Principle.

Our most interesting result was to prove that although the equations 
of motion of a spin particle can be expressed in terms of a Lagrange-form a [l] 
satisfying da = 0, there cannot exist a globally defined A with dA = a.

However, the definition of the Cartan -form given in [l] was rather 
"ad hoc" and valid only in classical case. Also, it was not entirely clear what 
the above result means in terms of a Lagrangian function.
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We propose here a slightly different framework which can easily be 
extended to include spin particles as well.

We shall study the world lines in QxR; the role of the evolution space 
will be played by a subset F of T(QxR). L will be substituted by a homogen­
ized Lagrangian, a. Then we can state that there is a unique way to geometrize 
the problem, namely by using the field of 1-forms A=da /d denotes the operation 
of "vertical differentitation", see Klein [з] , [4] or Godbillon [5] /. This Л 
can be projected onto E; its imageXcoincides with the Cartan-form introduced in 
[l]. Using Klein's results we can establish the necessary and sufficient condi­
tions for the possibility to recover a Lagrangian function from a field of 
1-forms X defined on the evolution space. In local coordinates this sounds:
X must be of the form aa dqa + b dt /a =l,..n/ dnd

v % a a + Э- b = О / 3 = l,..n/ /1.3./

must hold. In this case L has the local form:

L (q,v,t) = aa va + b /1.4./

In this framework the generalized solutions of the variational problem 
will be constant dimensional submanifolds of F called evolution leaves. Their

I OOprojections on space-time are C curves satisfying the Lagrange-equations. 
These leaves can be set in one-to-one correspondence with the evolution curves 
of E.

Hence our results obtained in [l] mean really that there cannot exist 
any globally defined Lagrangian function for the spin particle;nevertheless, 
condition 1.3 is satisfied and we can construct a local Lagrangian function in 
this case as well.

2. GENERAL THEORY
We give here a short outline of a geometrical framework slightly 

differing of that presented in Щ . This is a kind of synthesis of the ideas 
of Souriau [2] and Klein p] , £4] .

The basic point is to work with world lines in QxR rather then with 
motion in configuration space, Q, time being a fixed exterior parameter. This 
approach is natural in relativity and turns out to be useful in this context 
as well. Now we carry over our entire apparatus to this context.



2.1 Motions

To the motions in Q correspond the world lines parametrized by an 
arbitrary parameter x. In local coordinates a world line is

h : T - -* h(x) = (g(x), t(x)) e QxR /2.1.1./

it is required that t >0 / the dot denotes the derivative of t by x /.

2.2 The Hamiltonian Action

A change in parametrization shows that the Hamiltonian action has
the form

0(g) = L[g(x), 2Íil t(x)] t(x) dx /2.2.1./
L t(x)

If x = (q,t) is a local chart for QxR, then the corresponding 
natural chart of T(QxR) will be denoted by (x,x) = (q,t,q,t).

Define F: = {(x,x)e T(QxR) s t> О } and introduce the 
homogenized Lagrangian ■£ as:

Л : F6(q,t,q,t) + L(q, 3 , t ) t /2.2.2/
t

£ is homogenous of order 1 in x ; using <£> the hamiltonian
action is

0(g) = X  (h,h)dx 12.2.3.1

2.3 States

in [1] we have identified the states of the system with the points 
of E. The points of F can be thought of as states as well; two points of F 
represent the same state and are called hence physically equivalent if their 
first coordinates coincide and second coordinates are proportional.

• • *

Define П : F +E as n(q,t,q,t) = ( q,3,t)
t

then two points of F are physically equivalent if they are mapped to the 
same points of e by П .
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Let h be a curve in QxR parametrized by x. Then define

hT(x) : = (h(x), h(x)) /2.З.1./

to be the lifted if h to F according to x. By changing the parameter we 
get an entire family of curves in F, which cover a 2 -dimensional submanifold 
lying in F. In particular, to the motion curves corresponds a system of two 
dimensional submanifolds with the property that through every point of F passes 
exactly one such submanifold called evolution leaf. П sets up a 1-to-l 
correspondence between these leaves and the evolution curves of E. Hence the 
system's evolution can be described alternatively by the evolution leaves of 
F .

2.4 The Cartan-form

The "geometrization " of the problem -which turned out to be useful 
in [l] - is based on the following lemma:

Lemma: Let us given an ■£ : F R function which is homogenous of order 1 
in A . Then there exists a unique field of 1-forms Л on F which satisfies

£ (h (x), h(x)) dx

In local coordinates this Л is given as

/2.4.1./

Л = dX = Э‘Л  dxaa /2.4.2. /

the "vertical derivative" of Л>
/for the definition of d see Klein, [з] , [4] or Godbillon [5]] ;

Э •<& denotes a
3c&
3$a

One verifies at once that Л is homogenous of order O, semibasic, 
and d -closed, i.e. d Л =0. Klein has shown in [з] that these conditions 
are also sufficient for Л to be locally, i.e. on a local chart, of the form 
d <£. In local coordinates if Л is given as

Л = A dx01 , then =6 = A i a /2.4.3./a a

The above defined Л can easily be related to the Cartan-form X 
introduced in [lj'
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Definition: An a p-form on F is said to be projectable onto E iff there 
exists a unique 0 p-form on E for which a= ü*(ß)

One shows that a semi-basic 1-form on F is projectable if it is homogenous 
of order О ; consequently our Л defined in 2.4.2. is projectable.

In local coordinates we get

/ 9L гг ч j ex (L - Э4 )‘П dt /2.4.4./
9v

Thus its image under П is exactly Л , the Cartan-form introduced 
in [l]. Conversely, if we are given a X field of 1-forms on E, we can pull 
it back to F. If X = aadqa + b dt is a semi-basic 1-form on E, then its 
pulled -back is

H*(X)= (aa'IT) dg01 + (Ь*Б) dt /2.4.5./

One verifies that d (П*(Х))= О iff

va3* a + Э-b = О /0 = 1,■..n/ /2.4.7./p а____ p___________
It this case the local Lagrangian function is given as

L(q,v,t) = аауа + k /2.4.8./

These last two formulae will be very important, for they not only 
express the necessary and sufficient conditions under which a local Lagrangian 
function can be recovered, but they give even its explicit form.

2.5 Calculus of variations

Our investigations in fl] were based on the heuristic idea that 
calculus of variations can be thougth of as differential calculus on an 
infinite-dimensional manifold. We will keep in mind this idea also now; the 
geometrical framework will be slightly different.

Let us choose two points in space-time, x-̂  = (q^,t^) and x2 =( q2,t2) 
and consider the C°° curves joining these points /denote their set again /. 
The manifold-structure on 9 is defined by introducing a Banach-space structure 
on its tangent space. One of the basic postulates of classical mechanics is 
the absolute status of time; this property will be reflected by the requirement 
that time be not varied. Hence we define the tangent space of (P at a curve 
h to be the set of all C°° vectorfields along h which can be extended onto
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a neighbourhood of h, vanish at the end-point's and have О time-component, 
i.e. have the local form (Y^,0 ).

In order to calculate the stationary curves a very similar treatement 
as in [l} is applied. Finally we get: the directional derivative of Q by 
an element Y of the tangent space at a point g.

Y(a)(g)
■ \

d A(.,Y) 

hT

/2.5.1./

where Y denotes again the lifted of the vector field Y to F; in local 
coordinates

Э Y6XaPY = (Y,Y) with Y01

/see Klein [з] /.

Now, the corresponding form of the Du Bois-Reymond lemma assures

/2.5.2. /

that

Y(ö) (g) = о iff dA (h ,Y) = О V YeThJ> /2.5.3./

Note that because time is not varied, this does not mean that

, nevertheless a similar linehT (x) e Ker dJlhT(T) 
of thought as in [lj can be applied:

Hy : = {X 6 TyT(QxR) : dA(X,Y)= О VYe TyT(QxR) of the form

< V ' Yq'0)1 /2.5.4 ./

then one verifies that g is a stationary curve if

hT(x)e.Hh(T) /2.5.5./

/ h C0= (g(t)/t(t))/.

Suppose Hy has constant dimension for every у 6 F; one verifies 
then that if X, Z € Ĥ , then their Lie Bracket, [x,Z^ belongs also to H^; 
hence we can apply the corresponding theorem of fiber spaces /see Souriau 
[2] / and get:
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Proposition: Through every point of F passes exactly one leaf, whose tangent 
space coincides there with the H- subspace ordered to this point : we call 
these leaves the leaves belonging to Л /or d Л/.

One verifies, that if we start with L, then codim H equals to rang 
of the matrix |8^ l | ; the problem will be called to be a regular one if
this rang is n ; the leaves are then twodimensional submanifolds of F. We 
shall consider them as the generalized solutions of the variational problem. 
By a straightforward calculation one verifies, that

Theorem: Suppose the problem is regular; then the leaves belonging to ddX
oohave the following property: their projections onto QxR are C -curves satisfy­

ing the Lagrange-equations.

2.6 Relation to symplectic mechanics

We see that the two-form ddX plays a fundamental role similar to 
that of a in [l]. This is the consequence of the following.

Proposition: I :-dd<& can be projected onto E and
d I = 0, d£ = 0.

if Л = П*(А), then£ = n*(d\)

The fundamental result of Klein in £4] states, that if £ can be 
projected on E, and d£ = 0, d£ = О both are valid, then there exists a local 
<f> with £ = dd£. The most general <&is given as -+ k<& + daf xa where f is а 
function on QxR alone, /here we recognize the well-known gauge transformation/. 
In terms of L this means:

L ■+ kL + 9f a . 9f --- v +---
9qa 9t

Conversely, if we are given a pair (E,o), we may pull a back to F 
and define so a [ ; da = 0 iff d£ = 0. Our local variational principle pro­
posed in [l} states the existence of a locally defined A with dA = a ; as 
we have just seen, this does not mean automatically the existence of a 
Lagrangian function. In order to decide whether this stronger requirement has 
to be made or not, we have to study the spin particle, for in classical cases 
the problem is solved.
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3. VA RIATIONAL FORMALISM FOR SPIN PARICLES
After this general framework we are ready to turn to the construction

of a variational formalism for the spin particles. Remember, that in this case 
2E = T(Q)x R x S , and the Lagrange-form is given as

a = { (mdv - E dt)A(dq-vdt) + <B,dq x dq>} + 

+ d(p<s,B>dt) - A<s,ds x ds>}
/3.1./

/ the scalar product in 3-space/
Here the first curly bracket is the Lagrange-form of a particle moving in 
electromagnetic field; in what follows we shall study only the second one 
representing the spin-interaction.

As spin can be thought of as an inner degree of freedeom, it seems
to be natural to treat it together with configuration space; we will simply2substitute Q by QxS . A local Lagrangian function would be then an L defined2on a local chart of T(QxS )x R. To L would correspond a homogenized <й accord­
ing to the formula

a(q,s,t,q,s,t) : =

which yields the Cartan-form

L(q,s,^ , t) t 
t t

Л = ^4 dqa +
3qa

M  d t +  ^4 dsa
3t Э '-S

/3.2./

/3.3./

the exterior derivative of this must coincide with the pulled back to F of the2system's Lagrange-form. The evolution space would be T(QxS )x R. Our original2E was merely t (q ) x R x S , but this does not matter as a can be trivially 
extended to T(QxS2) x R as it has no ds component.

In order to find a variational formalism for the spin particle we have 
only to find an additional term the spin part of a, aSpin .

The pulled-back of the spin -part to F is simply

n*(agpin) = d(y<s,b>dt) - A<s,ds x ds> /3.4./

/ A's the proper angular - ys the proper magnetic momentum; see [l] or [2];
A,у real constants/
Thus we have to solve the equation

dd<fcspin = П (ösPin) /3.5./
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Our most intersting result in [l] was that there cannot exist a 
globally defined 9 field of 1-forms with d© = a . ; 3.5 shows then that 
this means really that no global Lagrangian, function can exist. In order to 
construct a local Lagrangian we must find first a local potential for the spin- 
part of a. The magnetic field-spin - interaction part is itself a total differ­
ential, hence a /global/ potential for it:

. = у <s,B> dtspin
Let us study now the second term. Let's introduce the atlas of S

2 2consisting of charts F and F_ : R S :

/3.6./ 
2

F+ (s) 2s
1 + s

/a = 1,2 ; s = (s1,s2) /

F+ S
/3.7./

= + 1 - M
1 +|s|

One verifies at once that on these charts the form

(2) = + 2 X gl ds2 - g2 dsl
AsPin " 1 + (s1)2 + (s2)2

/23is a potential for a Spin • The results of 2.4 can be then applied : 2.4.7 is 
verified, hence by 2.4.8 the corresponding local Lagrangian functions:

Jl)
spinLili- (s,s) y<s,B>

L < 2!spin (s,s) + 2 A 
1+ I s 2

/3.9./

/3.10./

Summing up, the local Lagrangian function for spin particle is given in the 
above coordinates as

L(q,s,v,s,t)
mv + <A,q' V(q)} + {y<s,B> +

1+ s
Г 2 ’ 1 1-2 "f-s s + s s /3.11./

with gauge transformation

3f ckL
3q

3f
at

3f
3sa

2/here f is any real function on QxS xR /.
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From 3.10 we see at once that none of these local Lagrangians can be 
extended onto the entire evolution space. This can be demonstrated by observ­
ing, that

S1 = °/ s2 ■” °°' sl = s2 ' á2 = 0
s^ =0, s2 **■ 00» = 0 , s2 = О

2both tend to the same point of T S /namely to the О -tangent vector at the 
lower resp. upper pole/, but L tends in the first case to + 1, in the second 
case to 0. Hence L cannot have a limit.

In this case the rang of Э ' *Laß is 2n+2 , H is four-dimensional, the У 2leaves belonging to L are thus four-dimensional submanifolds of T(QxS xR). Their 
projections onto QxS xR are C°° curves satisfying the Thomas-equations / [ÍJ , [2] /.

4. CONCLUSION

We have shown that even the spin particle has a local Lagrangian 
function. Thus we are lead to the following modification of our local varia­
tional principle:

Definition: A mechanical system given by (E,a) is said to have a local varia­
tional description if there exists a X field of 1-forms with the following 
properties:

- i. / dX = o
- -ii./ X is semi-basic
- iii./ the pulled-back of X to F is d-closed: d(n*(A)= 0.

Under these conditions there exists a Lagrangian function L on each 
local chart of E and the system's Lagrange-form is the projection of dd«£ onto E.

The necessary and sufficient condition for (E,a) to have a local 
variational description is

i./ do = О /Maxwell's Principle/
- ii. / d(nxa)= О

The local variational principle states that these conditions are
verified for any mechanical system.
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