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ABSTRACT

Penetration of galactic cosmic rays into the solar system is.investi
gated by considering the time reversed propagation process. Reformulated trans
port equation is set up and equations of moments are deduced. By applying the 
simplest approximation, the force-field solution is reproduced. Discussed are 
two effects pointed out to cause deviations /in opposite directions/ from the 
force-field solution. The resulting radial anisotropy is estimated, too.

АННОТАЦИЯ

Исследуется проникнование галактических космических лучей в солнеч
ную систему с помощью прослеживания время-обращенного процесса распростране
ния частиц. Составляется уравнение транспорта и выводятся уравнения момен
тов. При самом простом приближении получается решение силового поля. Обсужда
ются два эффекта, которые дают отклонение в разные стороны от решения силового 
поля. Оценивается значение возникшей анизотропии.

KIVONAT

A részecsketerjedés idő-tükrözött folyamatának nyomonkövetésével 
vizsgáljuk a galaktikus kozmikus sugárzás behatolását a naprendszerbe.
A transzport-egyenlet felirása után momentum-egyenleteket vezetünk le. A leg
egyszerűbb közelítés az ismert erőtér-megoldást adja. Két hatás tárgyalunk, 
amelyek eltérést okoznak - ellenkező irányban - az erőtér megoldástól. Becslést 
adunk a fellépő anizotrópia mértékére is.



1. INTRODUCTION
The steady-state transport of cosmic rays in the solar 

system is governed by the equation /Parker 1965, Gleeson and 
Axford 1967/

div(V*F - к grad F) = -Ц- div V- (p3F) /1/
3p p

where V(r) is the solar wind speed; к(г,р) is the diffusion 
coefficient; p is the cosmic ray momentum; and F(r,p) is the 
mean distribution function /averaged over pitch angle/ in 
term of momentum. Eq. /1/ has been extensively studied under 
the assumption of spherical symmetry and separable diffusion 
coefficient. Gleeson and Axford /1968/ have found a simple 
approximate solution known as force-field solution. Gleeson 
and Urch /1973/ studied the validity of the force-field ap
proximation by solving /1/ numerically. Analytic solutions 
of /1/ have also been obtained for a wide class of к /see Webb 
and Gleeson 1973, 1977/.

In this work, we endeavour to directly exploit Liouville's 
theorem stating that distribution function is conserved on 
trajectories of motion. To obtain the galactic momentum lp*l 
distribution of particles of detected momentum, p, the time 
reversed motion should be inspected i.e. antiparticles of mo
mentum, p will be released from the site of observation. The 
distribution of their momentum at the exit from the modulation 
region, G(p*) yields

F(p) G(p*) Fg (p*) dp* / 2 /

with Fg denoting the unmodulated galactic distribution.

The two approaches to obtain F are obviously equivalent
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thus the same mathematical difficulties emerge in both cases. 
Although, in some cases being clumsier than tackling Eg. /1/, 
the technique of time-reversal to be presented here also has 
some attractive features

/i/ using it may appear advantageous if we ask what part 
of the galactic spectrum is observed at the earth at momentum, 
p, or if Monte-Carlo calculation is made /in the latter case 
it is ensured that only particles reaching the earth should 
be considered/.

/ii/ Approximate equations of moments can be deduced which 
enable the moments of G(p*) to be estimated in a simple way.

2. TRANSPORT EQUATION, EQUATIONS OF MOMENTS
The transport equation for particles released from 

r with momentum, p , in random directions is

+ div [-к•grad g/p -V(g/p)]=6(p-pQ )•63(r-rQ) /3/

with
g(R,p) = О

i.e. free escape is allowed at the boundary of the modulating 
region /t=R/. g(rQ ,po ,r,p) /rQ and pQ appearing here as para
meters only/ is the particle density, while p stands for 
adiabatic deceleration /Parker 1965/

p = íj div V /4/

Note that at time-reversal the solar wind velocity reverses, 
too. Now, the distribution of momentum at the exit, G(ro ,po ,p), 
can be evaluated from

either •dV or к •grad (9 IP)dF /5/

/integrating over the volume/ surface of the solar cavity/ 
and hence G yields the modulated spectrum /Eq.2./.
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For comparison the main features of the two approaches 
are summarized below

solar wind: 
boundary cond.:

route to F :

Conventional
particle
outward
F(R,p)=Fg (p)

solve /1/

Time-reversed
anti-particle
inward
g(R,p)=0;
g(p0 )=«* * 3(?-í0 )
solve /3/, then 
g+G /5/, G+F /2/

It should be emphasized that the two routes are equi
valent and Equations /1/ and /3/ can be transformed to the 
same form, however, with different boundary conditions.

2.1 Equations of moments.

Let it be assumed that the usual conditions of the force- 
-field approximation are met, i.e. the diffusion coefficient 
is separable and diffusion plays the dominant role in particle 
propagation

<(r,p) = к ^ г ) -<2 (p) *3 and (V- r ) / к << 1 /6/

3 being particle speed/speed of light. Similarly as in force- 
-field approximation /see Gleeson and Urch 1973/, introduce 
ф with

P*
■ <' 3 '
— ---- dp# = ф? Р*=р*(р,Ф). /7/

P'P ^

Instead of having, as in force-field approximation, unique 
values, p* and ф will have distributions, G(p*) and н(ф), 
respectively. From Eq. /7/ it follows

Н(Ф) = G(p*)----El—
к2(р*)3*

/8/
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By exploiting conditions /7/, the convective term of E q . /3/ 
can be neglected and equations can be deduced for the moments 
of the distribution Н(ф) /in detail will be published else
where /

div(-K^ grad<cf)n>) = 2<фП div V, /9/

where
<фп>

oo’
H (ф) • ф • dф . 

о
All the relations obtained so far are valid, under the assump
tion made, in general and are not restricted to spherical 
symmetry. Now, in order to be able to carry out calculations, 
we apply Eq. /9/ for spherically symmetric case and evaluate 
the mean value of ф. It is found that

R
< ф> .У1*П. dr' = ф (r)

3Kl(r') °
/Ю/

Фо denoting the well-known modulation parameter. This clearly 
shows: what force-field approximation contains is replacing 
the convolution /2/ with the value of the galactic distribu
tion taken ap p* corresponding to the mean of ф, i.e.

F(r,p)
*
Н(Ф) -Рд(р*(р,Ф))йф Ф  Ед(р*(р,<ф(г)>)) 

о
/ 11 /

In what follows the applicability of this approximation will 
be examined. 3

3. STUDY OF THE FORCE-FIELD APPROXIMATION
The force-field solution is approximate in two ways:

/i/ the accuracy of the approximation /11/ depends on the 
shape of the galactic spectrum, F .
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/ii/ Convective term has been neglected in E q . /3/. Includ
ing it will result in modifying E q . /9/ and cause a shift of 
the mean value of <f>.

In order to estimate the resulting deviations from both 
effects , we turn to the Taylor-expansion of F around the for
ce field solution /i.e. around ф=фо /

9F
F-F ff

ff Эф <ф-ф >r Y0 . 1 ^ f f  
2 Эф2

< ( Ф~Ф ) > + . . .
О

/ 12 /

F^£ denoting the force-field solution.

3.1 The effect of spectral shape.
2The value of <(Ф_Фо ) > can easily be evaluated from 

Eq. /9/

*2 " |<(Ф-Ф0)2>
Rf .ÍZ.

y2<
dx x2 V

9 к.
1 о

/13/

Ф2 gives an immediate estimation for the width of the distri
bution of loss of momentum /Ар ~ рДф/<23/. The results obta
ined in this way are in general agreement of those of Urch 
and Gleeson /1973/ who made numerical investigations. Adopt
ing the parameters used by Urch and Gleeson /1972/, we have 

-2Ф2=0.025 M . This implies that the distribution is relatively 
narrow at solar minimum when M is large, and it is broad at 
solar maximum.

2It is interesting to note that the ratio Ф2/Ф0 is mini
mal if K^ar. Thus a lower limit can be set for ф2

Ф2^ф2/I 2•ln(R/r) 

ff

/14/

The derivatives of F can be obtained by using relation /7/.
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Hence we arrive at

F-F ff Э 2 InF
F = {■ ff
ff 9 lnp' + (-

9 InF ff
91np )•(

91nF,;, 9 Э1пк9
-1+0 ™ *9 lnp 9 lnp )>

ф2
(K„ß)

/15/

Since the spectrum steeply decreases with increasing momentum, 
the effect discussed here tends to result in higher cosmic 
ray density than predicted from force-field approximation.
/Note that 9InF/91np=-2 + (9 Inj/9lnp), j being the differential 
intensity in term of kinetic energy/.

Figure 1. shows the correction from this effect for both 
electrons and protons for the year 1970.

3.2 The effect of convection.

To demonstrate the role of convection a qualitative pic
ture can be drawn. The average effect of diffusion is 
r*dr/dt^K. Combining this with inward convection and adiabat
ic deceleration, we have

2 div-V*^3 dp
3 • к - V /16/

implying that, if the condition Vr/K<l is not met, convection 
forces particles to spend longer time in the modulating region 
leading to larger loss of momentum. At low energies this ef
fect, because of their lower speed, is stronger for protons 
than electrons giving rise to the exclusion of low energy 
galactic protons from the inner solar system. /Here, we brief
ly mention that, for convection dominant propagation of

3 2solar particles, Eq. /16/ immadiately gives p r V=const. rep
roducing the results of Fisk and Axford /1969/ and Gleeson 
/1971//.

Inclusion of convection results in the modified form of 
Eg. /9/
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С

div[-K^ дгасЗ<фП>] + дгас!<фп> = у div У<фп /17/

leading to

<ф> = Фо + Ф1 ЗФ?
♦ i ’ * 7

/18/

It should be noted, however, that Eqs. /17/ and /18/ are 
approximative only as far as the change of is ignored in
the convective term of /17/. Nevertheless, /18/ gives useful 
estimation

F-F ff
ff

91nFff *2
31np (k 2B)2

/19/

The convection, as also expected from /16/, gives rise to 
lower intensity than predicted from force-field. This is shown 
in Figure 1, too.

3.3. Combined effect, anisotropy.

The total effect of spectral shape and convection is on 
the basis of /15/ and /19/:

—  =(F-F ) If .  ̂У...F  ̂ ff;/ ff 91np +(y+2)(y-l+(l-fT)+
9 1пк, 
9 lnp (к2е)

/ 20 /

For larger AF/F, /20/ is extended by putting AF/F=>lnF/F^.
The ratio of F to Fff is shown in Figure 1. together with 
that obtained from the numerical solution of Gleeson and Urch 
/1973/. Values of у are determined as the negative exponent

Э1п jT Eo+2T
E +T о

У 9 InT / 21 /
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Fig.1.: Magnitude of modifying effects: /а/ increasing effect 
of spectral shape /dashed line/ and /b/ decreasing effect of 
convection /dotted line/. Full line shows the resulting ratio 
of cosmic ray intensity to that obtained from force-field. 
Solid line /G.U./ indicates the ratio obtained by numerical 
investigation of Gleeson and Urch /1973/.

Inspection of Fig.l shows that the predicted ratios de
scribe the general character of those obtained by Gleeson and 
Urch /1973/, although the present calculation seems to over
estimate the deviations from unity.

Anisotropy. In the present model, in contrast to the force- 
-field solution, gradients of Ф2 and give rise to radial 
streaming, too. The calculated anisotropy

К r ~ ~ 3k±'k2 ’Fff(F-Fff ) * g r a d ( ^ 2)/с 1221

is directed outward if F>Fff/ and inward if F<Ff f • Its ampli
tude, however, remains below 0.03 per cent.

4. SUMMARY
A technique based on time-reversal and determining the 

moments of energy loss has been presented. Deviations from 
force-field solution are qualitatively well described. To
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achieve quantitative agreement further refinement and consi^ 
dering higher moments are needed.
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