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ABSTRACT

Penetration of galactic cosmic rays into the solar system is.investi­
gated by considering the time reversed propagation process. Reformulated trans­
port equation is set up and equations of moments are deduced. By applying the 
simplest approximation, the force-field solution is reproduced. Discussed are 
two effects pointed out to cause deviations /in opposite directions/ from the 
force-field solution. The resulting radial anisotropy is estimated, too.

АННОТАЦИЯ

Исследуется проникнование галактических космических лучей в солнеч­
ную систему с помощью прослеживания время-обращенного процесса распростране­
ния частиц. Составляется уравнение транспорта и выводятся уравнения момен­
тов. При самом простом приближении получается решение силового поля. Обсужда­
ются два эффекта, которые дают отклонение в разные стороны от решения силового 
поля. Оценивается значение возникшей анизотропии.

KIVONAT

A részecsketerjedés idő-tükrözött folyamatának nyomonkövetésével 
vizsgáljuk a galaktikus kozmikus sugárzás behatolását a naprendszerbe.
A transzport-egyenlet felirása után momentum-egyenleteket vezetünk le. A leg­
egyszerűbb közelítés az ismert erőtér-megoldást adja. Két hatás tárgyalunk, 
amelyek eltérést okoznak - ellenkező irányban - az erőtér megoldástól. Becslést 
adunk a fellépő anizotrópia mértékére is.



1. INTRODUCTION
The steady-state transport of cosmic rays in the solar 

system is governed by the equation /Parker 1965, Gleeson and 
Axford 1967/

div(V*F - к grad F) = -Ц- div V- (p3F) /1/
3p p

where V(r) is the solar wind speed; к(г,р) is the diffusion 
coefficient; p is the cosmic ray momentum; and F(r,p) is the 
mean distribution function /averaged over pitch angle/ in 
term of momentum. Eq. /1/ has been extensively studied under 
the assumption of spherical symmetry and separable diffusion 
coefficient. Gleeson and Axford /1968/ have found a simple 
approximate solution known as force-field solution. Gleeson 
and Urch /1973/ studied the validity of the force-field ap­
proximation by solving /1/ numerically. Analytic solutions 
of /1/ have also been obtained for a wide class of к /see Webb 
and Gleeson 1973, 1977/.

In this work, we endeavour to directly exploit Liouville's 
theorem stating that distribution function is conserved on 
trajectories of motion. To obtain the galactic momentum lp*l 
distribution of particles of detected momentum, p, the time 
reversed motion should be inspected i.e. antiparticles of mo­
mentum, p will be released from the site of observation. The 
distribution of their momentum at the exit from the modulation 
region, G(p*) yields

F(p) G(p*) Fg (p*) dp* / 2 /

with Fg denoting the unmodulated galactic distribution.

The two approaches to obtain F are obviously equivalent
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thus the same mathematical difficulties emerge in both cases. 
Although, in some cases being clumsier than tackling Eg. /1/, 
the technique of time-reversal to be presented here also has 
some attractive features

/i/ using it may appear advantageous if we ask what part 
of the galactic spectrum is observed at the earth at momentum, 
p, or if Monte-Carlo calculation is made /in the latter case 
it is ensured that only particles reaching the earth should 
be considered/.

/ii/ Approximate equations of moments can be deduced which 
enable the moments of G(p*) to be estimated in a simple way.

2. TRANSPORT EQUATION, EQUATIONS OF MOMENTS
The transport equation for particles released from 

r with momentum, p , in random directions is

+ div [-к•grad g/p -V(g/p)]=6(p-pQ )•63(r-rQ) /3/

with
g(R,p) = О

i.e. free escape is allowed at the boundary of the modulating 
region /t=R/. g(rQ ,po ,r,p) /rQ and pQ appearing here as para­
meters only/ is the particle density, while p stands for 
adiabatic deceleration /Parker 1965/

p = íj div V /4/

Note that at time-reversal the solar wind velocity reverses, 
too. Now, the distribution of momentum at the exit, G(ro ,po ,p), 
can be evaluated from

either •dV or к •grad (9 IP)dF /5/

/integrating over the volume/ surface of the solar cavity/ 
and hence G yields the modulated spectrum /Eq.2./.
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For comparison the main features of the two approaches 
are summarized below

solar wind: 
boundary cond.:

route to F :

Conventional
particle
outward
F(R,p)=Fg (p)

solve /1/

Time-reversed
anti-particle
inward
g(R,p)=0;
g(p0 )=«* * 3(?-í0 )
solve /3/, then 
g+G /5/, G+F /2/

It should be emphasized that the two routes are equi­
valent and Equations /1/ and /3/ can be transformed to the 
same form, however, with different boundary conditions.

2.1 Equations of moments.

Let it be assumed that the usual conditions of the force- 
-field approximation are met, i.e. the diffusion coefficient 
is separable and diffusion plays the dominant role in particle 
propagation

<(r,p) = к ^ г ) -<2 (p) *3 and (V- r ) / к << 1 /6/

3 being particle speed/speed of light. Similarly as in force- 
-field approximation /see Gleeson and Urch 1973/, introduce 
ф with

P*
■ <' 3 '
— ---- dp# = ф? Р*=р*(р,Ф). /7/

P'P ^

Instead of having, as in force-field approximation, unique 
values, p* and ф will have distributions, G(p*) and н(ф), 
respectively. From Eq. /7/ it follows

Н(Ф) = G(p*)----El—
к2(р*)3*

/8/
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By exploiting conditions /7/, the convective term of E q . /3/ 
can be neglected and equations can be deduced for the moments 
of the distribution Н(ф) /in detail will be published else­
where /

div(-K^ grad<cf)n>) = 2<фП div V, /9/

where
<фп>

oo’
H (ф) • ф • dф . 

о
All the relations obtained so far are valid, under the assump­
tion made, in general and are not restricted to spherical 
symmetry. Now, in order to be able to carry out calculations, 
we apply Eq. /9/ for spherically symmetric case and evaluate 
the mean value of ф. It is found that

R
< ф> .У1*П. dr' = ф (r)

3Kl(r') °
/Ю/

Фо denoting the well-known modulation parameter. This clearly 
shows: what force-field approximation contains is replacing 
the convolution /2/ with the value of the galactic distribu­
tion taken ap p* corresponding to the mean of ф, i.e.

F(r,p)
*
Н(Ф) -Рд(р*(р,Ф))йф Ф  Ед(р*(р,<ф(г)>)) 

о
/ 11 /

In what follows the applicability of this approximation will 
be examined. 3

3. STUDY OF THE FORCE-FIELD APPROXIMATION
The force-field solution is approximate in two ways:

/i/ the accuracy of the approximation /11/ depends on the 
shape of the galactic spectrum, F .
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/ii/ Convective term has been neglected in E q . /3/. Includ­
ing it will result in modifying E q . /9/ and cause a shift of 
the mean value of <f>.

In order to estimate the resulting deviations from both 
effects , we turn to the Taylor-expansion of F around the for­
ce field solution /i.e. around ф=фо /

9F
F-F ff

ff Эф <ф-ф >r Y0 . 1 ^ f f  
2 Эф2

< ( Ф~Ф ) > + . . .
О

/ 12 /

F^£ denoting the force-field solution.

3.1 The effect of spectral shape.
2The value of <(Ф_Фо ) > can easily be evaluated from 

Eq. /9/

*2 " |<(Ф-Ф0)2>
Rf .ÍZ.

y2<
dx x2 V

9 к.
1 о

/13/

Ф2 gives an immediate estimation for the width of the distri­
bution of loss of momentum /Ар ~ рДф/<23/. The results obta­
ined in this way are in general agreement of those of Urch 
and Gleeson /1973/ who made numerical investigations. Adopt­
ing the parameters used by Urch and Gleeson /1972/, we have 

-2Ф2=0.025 M . This implies that the distribution is relatively 
narrow at solar minimum when M is large, and it is broad at 
solar maximum.

2It is interesting to note that the ratio Ф2/Ф0 is mini­
mal if K^ar. Thus a lower limit can be set for ф2

Ф2^ф2/I 2•ln(R/r) 

ff

/14/

The derivatives of F can be obtained by using relation /7/.
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Hence we arrive at

F-F ff Э 2 InF
F = {■ ff
ff 9 lnp' + (-

9 InF ff
91np )•(

91nF,;, 9 Э1пк9
-1+0 ™ *9 lnp 9 lnp )>

ф2
(K„ß)

/15/

Since the spectrum steeply decreases with increasing momentum, 
the effect discussed here tends to result in higher cosmic 
ray density than predicted from force-field approximation.
/Note that 9InF/91np=-2 + (9 Inj/9lnp), j being the differential 
intensity in term of kinetic energy/.

Figure 1. shows the correction from this effect for both 
electrons and protons for the year 1970.

3.2 The effect of convection.

To demonstrate the role of convection a qualitative pic­
ture can be drawn. The average effect of diffusion is 
r*dr/dt^K. Combining this with inward convection and adiabat­
ic deceleration, we have

2 div-V*^3 dp
3 • к - V /16/

implying that, if the condition Vr/K<l is not met, convection 
forces particles to spend longer time in the modulating region 
leading to larger loss of momentum. At low energies this ef­
fect, because of their lower speed, is stronger for protons 
than electrons giving rise to the exclusion of low energy 
galactic protons from the inner solar system. /Here, we brief­
ly mention that, for convection dominant propagation of

3 2solar particles, Eq. /16/ immadiately gives p r V=const. rep­
roducing the results of Fisk and Axford /1969/ and Gleeson 
/1971//.

Inclusion of convection results in the modified form of 
Eg. /9/
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С

div[-K^ дгасЗ<фП>] + дгас!<фп> = у div У<фп /17/

leading to

<ф> = Фо + Ф1 ЗФ?
♦ i ’ * 7

/18/

It should be noted, however, that Eqs. /17/ and /18/ are 
approximative only as far as the change of is ignored in
the convective term of /17/. Nevertheless, /18/ gives useful 
estimation

F-F ff
ff

91nFff *2
31np (k 2B)2

/19/

The convection, as also expected from /16/, gives rise to 
lower intensity than predicted from force-field. This is shown 
in Figure 1, too.

3.3. Combined effect, anisotropy.

The total effect of spectral shape and convection is on 
the basis of /15/ and /19/:

—  =(F-F ) If .  ̂У...F  ̂ ff;/ ff 91np +(y+2)(y-l+(l-fT)+
9 1пк, 
9 lnp (к2е)

/ 20 /

For larger AF/F, /20/ is extended by putting AF/F=>lnF/F^.
The ratio of F to Fff is shown in Figure 1. together with 
that obtained from the numerical solution of Gleeson and Urch 
/1973/. Values of у are determined as the negative exponent

Э1п jT Eo+2T
E +T о

У 9 InT / 21 /
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Fig.1.: Magnitude of modifying effects: /а/ increasing effect 
of spectral shape /dashed line/ and /b/ decreasing effect of 
convection /dotted line/. Full line shows the resulting ratio 
of cosmic ray intensity to that obtained from force-field. 
Solid line /G.U./ indicates the ratio obtained by numerical 
investigation of Gleeson and Urch /1973/.

Inspection of Fig.l shows that the predicted ratios de­
scribe the general character of those obtained by Gleeson and 
Urch /1973/, although the present calculation seems to over­
estimate the deviations from unity.

Anisotropy. In the present model, in contrast to the force- 
-field solution, gradients of Ф2 and give rise to radial 
streaming, too. The calculated anisotropy

К r ~ ~ 3k±'k2 ’Fff(F-Fff ) * g r a d ( ^ 2)/с 1221

is directed outward if F>Fff/ and inward if F<Ff f • Its ampli­
tude, however, remains below 0.03 per cent.

4. SUMMARY
A technique based on time-reversal and determining the 

moments of energy loss has been presented. Deviations from 
force-field solution are qualitatively well described. To
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achieve quantitative agreement further refinement and consi^ 
dering higher moments are needed.
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