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ABSTRACT

The Karlsson-Zeiger three-body equations work exclusively with 
half-off-shell scattering amplitudes as two-body input. The half-off-shell 
phases, themselves, can be calculated by solving Sobel's non-linear differen­
tial equations. Present paper proposes an explicit form for the half-shell 
phase in terms of the on-shell phase functions, i.e. just the solution to 
the Sobel equation, in any partial wave.

АННОТАЦИЯ

Трехчастичные уравнения Карлсона-Зейгера работают исключительно с 
двухчастичными амплитудами рассеяния частично вне массовой поверхности. Реше­
нием нелинейного уравнения Собеля можно получить эти фазовые сдвиги. В настоя­
щей работе выведено явное выражение для фазовых сдвигов частично вне массовой 
поверхности через фазовые функции на массовой поверхности.

KIVONAT

A háromtest-szórási probléma Karlsson és Zeiger által újonnan fel­
állított integrálegyenletei a két.test inputot kizárólag félig-off-shell 
amplitúdók formájában tartalmazzák. A félig off-shell fázistolások a Sobel 
által korábban felállított fázisegyenletek megoldásából nyerhetők. Jelen cikk 
explicit és exakt megoldást ad Sobel nem-lineáris differenciálegyenletei 
számára.



1 TWO-BODY INPUT TO THREE-PARTICLE PROBLEMS

Barring three- and many-body forces, the N-particle dynamics is 
governed by the elementary interaction through the two-particle transitionОmatrix t(kN-ie). Concerning case N=3, as far as only the Faddeev-equations 
[l] were available, knowledge of all the off-the-energy shell matrix elements 
t(k2, k^; к ) was considered to be necessary to supply the two-body input 
for the three-particle theory. Calculation of the completely off-shell two- 
-particle scattering amplitudes in terms of the potential V(r) consists in 
solving integral equations of the Schwinger-Lippmann type. The partial wave 
t-matrix elements satisfy the equation [2]

(k2 'ki;k0) V «/‘k2'kl)
2p
. 2

’ 2 V Jl(k2'q)tii(4'kl;ko)Jq ------ 5---- 5----- - dqk2 -о
/1 .1/

with the notation
OO

V^(k,q) = --|r2jJi(kr)V(r)jji(qr)dr . /1.2/
(2П) 0

When solving eq. /1.1/, one has to face, in fact, double integrations. The 
early modifications of the Faddeev-equations [з] require invariably the comp­
letely off-shell two-body input for the three-particle problem. Only recently, 
Karlsson and Zeiger [4] succeeded in transforming the three-body Faddeev 
equations in such a way that the new system of.integral equations involves 
as two-body input exclusively the half-off-shell amplitudes tCk^k^k^) (for 
all momenta k2 and k^) and the bound state vertex functions.

Whether the Karlsson-Zeiger equations come up to essential simplifi­
cations in the three-body calculations depends critically on the easy availa­
bility of the half-shell scattering amplitudes. A simple recourse to eqs.
/1.1/ - /1.2/ for case k^k^ would not offer significant time saving on the 
computer in comparison to the conventional calculations. Nevertheless, there 
is also a more promising approach to the half-shell amplitudes. Within the 
framework of the variable phase approach [5,6] as developed by Calogero and 
coworkers, Sobel derived [7,8] non-linear differential equations for the two- 
-particle half-off-shell phase functions in any partial wave working with the
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on-shell phase functions as input. Sobel's phase equation reads for the 
special case of S-waves as

..(211)/ чdA^ ''(a)
^ ---- = - v(a) sin [kĵ a + 6o(k1,a)]

{k.,1 sin(k2a) + k^1 cosfk^a + 6Q (k^,a)] A^zxl^(a)-1 ( 211),

/1.3/

Here, function A(211)(a) is defined by the identity
i60(kl'a) .(211)/ ч _ .a/. . ,2.
! Ло (a) = fco(k2' kl; kl> /1.4/

with ta denoting the transition matrix due to the potential Va(r) which is 
obtained by cutting off V(r) at r=a. The input to eq. /1.3/ is the conven­
tional S-wave phase function 6Q (k,a) that satisfies the on-shell phase equa­
tion [б]

dó (к,a) , -
— 2__--- = V(r) sin [ka + óQ (k,a)] /1.5/

The pair of equations /1.3/ and /1.5/ should be compared to eqs. /1.1/ - /1.2/ 
applied to the case kQ=k1 . In order to solve integral equation /1.1/ at 
given values of k^ and k2 , one has first to integrate eq. /1.2/ once through 
for each value of parameter q in the range q=(0,°°) while to provide, at fixed 
k^ and k2 , complete input to Sobel's equation, a single integration of eq. 
/1.5/ over the range a=(0,”) will do.

Focussing attention to the phase approach, present paper proposes 
an explicit solution to the Sobel equation for any partial wave.

2 . THE HALF-SHELL VS. ON-SHELL RELATIONSHIP

An integral representation of the S-wave half-shell phase function 
follows from relationship /1.4/ as [7]

, (211) (a) = sinó (211)(a) =

sin(k2r) V(r) u^(k,r)dr.
/2 .1 /

Here, wave function ua(r) denotes the particular physical solution to the 
cut-off problem Va(r), introduced as
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Va(r) = V (г) , H=a,
= О , r>a, /2.2/

and is specified by the boundary condition

ua (k,r) sin[kr + 6a(k)]. /2.3/

The quantity 6a(k) = 6Q(k,a) is the phase function for potential V(r), i.e. 
the phase shift accumulated by potential Va(r). Owing to the cut-off, asymp­
totic condition /2.3/ can be recast, so as to refer to finite distances, as

ua(k,r) = sin[kr + 6Q (k,a)3 , r >_ a . /2.4/

Starting from the cut-off point r=a, wave function ua(k,r) can be continued 
to the inner region r<a where it coincides but normalization with the physical 
wave function uQ(k,r) of problem V(r) which solution, in turn, is uniquely 
fixed by phase function 6Q(k,r). That wave function vs. phase function rela­
tionship is obtained by a standard procedure of the phase approach [б] through 
parametrizing the wave function by some functions cQ(r) and ы0(г) as follows

uQ(k,r) = c0(r) sin ü)Q (r) , 

du (k,r)
— ^ --- = cQ(r)k cos wQ (r) .

/2.5/

/ 2 . 6 /

A straightforward elimination of cq establishes the relationship between uq 
and which can be written in the particular .way

u'(r) sin(kr) - к u (r)cos(kr)
tan [ы (r) - kr] = — ---- -------------------------  /2.7 /

u'(r) cos(kr) + к u (r)sin(kr)

The r.h.s. of this equation is easily recognized as the well known expression
of the tangent of the phase function 6Q(k,r). Hence, meaning of parameter
и (r) is recovered as o'

шо (к,г) = kr + 6Q (k,r) , mod(n) . /2 .8 /

Furthermore, by comparing eq. /2.6/ with the first derivative of eq. /2.5/, a 
differential equation is obtained for the parameter c (r) as

d £ n c ( r )  d 6  (r) о ' _ о ' '

dr dr cotg wQ (r) , /2.9/



- 4 -

Solution of this equation
r

^q ' \ p) cotg шо(р) dp
cQ(k,r) = ero

/2 .10/

involves the free parameter r that determines normalization of the waveо
function. Equations /2.5/ through /2.10/, valid for wave function uQ (r) 
throughout the range (0,°°), also hold for wave function ua(r) in the restric­
ted range r=(0,a). As regards ua(r), integration constant ra is fixed by 
boundary condition /2.4/ which combines with eqs. /2.5/, /2.8/ and /2.10/ to 
yield

ra = a . /2.11/

According to the above argument, the properly normalized solution to the cut- 
-off problem, due for insertion in eq. /2.1/, is given for the inner region 
by

-j ^ ' }(p) cotg ioo (p) dp
ua(k,r) = e r sin wQ(r) , r<a. /2.12/

On account of eq. /2.1/, the integral representation of the half-off-shell 
phase function for partial wave £=0 in terms of the on-shell phase function 
rather than the wave function is given by

sln«<211>(,) - о 4 '

1

a

-|бо ,)(р) cotg шо<р) dp
{sin(k2r) V(r) e r sin ш (r)}dr f /2.13/

where abbreviation ш (r) is to be understood in terms of eq. /2.8/. At the 
same time, eq. /2.13/ furnishes the sought-for explicit solution for Sobel's 
phase equation /1.3/. Differentiation of e.q. /2.13/ with respect tó the 
variable a, with due regard of its double appearence on the r.h.s., reproduces 
eq. /1.3/ as it, indeed, should do.
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3 . GENERALIZATION TO HIGHER PARTIAL WAVES

Extension of the method just developed to cases SL>О is straightfor­
ward although not quite trivial. An integral representation of the half-off- 
-shell phase function is given [5] by the equation

(211)
sin6* V(r) u*(ki,r)dr /3.1/

where the wave function is subject to the boundary condition

ua(k,r) -*• sin[kr - ij + őa(k)] . /3.2/
If->-00

Here again, superscript a refers to the cut-off problem Va(r). Consequently, 
the asymptotic boundary condition /3.2/ can be recast so as to refer to any 
finite value of the variable r beyond the cut-off point r=a. To do so, one 
has to consider that wave function ua(r)s (i) should satisfy for r>a the force 
free partial wave equation; (ii) should imply 6a as the phase shift in the 
&th partial wave; (iii) should reproduce the asymptotical behaviour fixed by 
eq. /3.2/. The expression

ua(k,r) = cos6a(k) j£(kr) - sin6a(k) n£(kr) , r => a , /3.3/

is easily seen to fulfil requirements (i) through (iii), by considering the 
properties of the Riccati-Bessel functions involved.

The next step of the argument is continuation of wave function ua(r) 
into the inner region r<a. To this end, ua(r) will be separeted into two r- 
-dependent factors such as an а-independent phase factor and an amplitude 
function that carries the а-dependence implied in boundary condition /3.2/. 
This factorization is conveniently done by the familiar parametrization pro­
cedure of Calogero [б] as

ua(k,r) = ca(r){cos0a(r) jĵ (kr) - sin0a (r) п^(кг)} /3.4/

and

d ua(k,r) 
dr = к cf(r)(cos0j(r) j^Ckr) _ sin0a(r) n£ ' ̂ (kr) } /3.5/

In order to extract physical meaning for parameters 
resolve this system of equations for 0a . Then, one

ca and ©a , one has to 
has the expression
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u®(,)(r) j^íkr) - к ua(r) ji(kr)
tan0*(r) = — ------- f --------- —  — - ---- , /3.6/

u®(,)(r) (kr) - к uj(r) nÄ(kr)

which is seen to be independent of the particular normalization of the wave 
function involved. In view of the proportionality, for r<a, of the physical 
solutions ua(r) and u^(r), eq. /3.6/ proves at once the equivalence

0^(r) = ő£(г), mod(n), r — a . /3.7/

Parameter 0a(r) coincides thus inside the cut-off point with the phase func­
tion of the problem V(r). As regards the other parameter, a differential 
equation can be extracted by combining eqs. /3.4/ and /3.5/ as

d-.An $.®(r) _ d ^(r) __i 
dr - dr TA (r) , r < a. /3.8/

where the notation

b V )  =
sihö.^r). j^(kr) + cos6.A(r) n£(kr) 
cosier) j £ (kr) - sinő^r)' n^(kr)

/3.9/

was introduced. The solution of eq. /3.8/ is given by

r
^ ' Ч р) т^1(р) dp

c*(r) = e rA^a^ /3.10/

involving the constant of integration r^(a) that is responsible for the nor­
malization of wave function ua(r) . Note that boundary condition /3.3/ holds 
at and beyond the cut-off point r=a while the parametrization procedure imp­
lied by eq. /3.4/ through /3.10/ is valid at and inside the cut-off. Therefore, 
by putting just r=a in both equations /3.3/ and /3.4/, condition /3.3/ is 
reworded for incorporation into eq. /3.4/ as

cf(a) = 1 . /3.11/
Hence, r^(a)=a and thus parameter ca is finally fixed for the inner region as

<5»(,)(p) т.-Чр) dP
cf(r) = e r a /3.12/
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Equations /3.1/, /3.4/ and /3.12/ combine now into the explicit expression 
of the half-off-shell phase function in terms of the on-shell phase func­
tion in the i.th partial wave as

2sinő^ (]<2 , k^; k1; a) = 
a

- I :i,(k2r) v (r) cf(ki'r) <M ki,r) dr'

/3.13/

where the notation
Л Л

ai,(k'r) E cos0£(k,r) j £ (kr) - sinő^ (к ,r) n^(kr) /3.14/

for the phase factor was introduced. If one prefers, also potential V(r) can 
be eliminated from formula /3.13/ by means of the phase equation [7]

d<5 £ (k , r ) 
dr i V(r) (k,r). /3.15/

In doing so, the half-shell versus on-shell relationship /3.12/ - /3.14/ for
the phase functions can be reworded as1

2sin6£(k2, kx; k1; a) =

7 „ 4 d6Ä(ki'r) c£(ki'r)
ji(k2r) 3? oA(k1>r) dr, /3.16/

with the notations of eqs. /3.12/ and /3.14/.

Just as in the S-wave case, integral representation /3.13/ of the 
half-shell phase can be converted into a differential equation. Differentiating 
eq. /3.13/ with respect to the cut-off distance a, one has first to calculate 
the derivative of parameter c^ which is worth writing down here /and comparing 
to eq, /3.8//:

d «Ä(a)
da т^(а) cj(r) . /3.17/

With this equation in mind, one obtains in a straightforward way the non-linear 
differential equation for the half-shell phase function:

d sinő£211)(a)
da ~

= Зя(к2а) v (a) ая(к1'а)
d 6A(k1,a)

(a) sin6 i 2 1 1 ) <=> •da /3.18/
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This equation can be cast in new forms in different ways. One can eliminate 
the potential by means of phase equation /3.15/ or, conversely, replace the 
derivative б£'^(а) by means of the potential. Proceeding with the latter 
choice, eq. /3.18/ becomes

d sinSp11) (a) 
da - V(a) oÄ(k1>a)

{к"1 jÄ(k2a) - k11 jCA(klfa) sin6p1;L̂ (a)} , /3.19/

with the notation
Л  Л

K-^(k,r) = sin6^(k,r) j^(kr) + cos6^(k ,r) n^(k,r) , /3.20/

This equation is, however, identical with Sobel's general half-off-shell phase 
equation [8], as it, indeed, should be so.

Summarizing the above considerations, one sees that explicit formulae 
lave been derived for the half-off-shell phase functions in terms of the on- 
-shell phase functions. Simultaneously,,the general Sobel equation has been 
rederived. For this first order differential equation one has thus found the 
exact solution. As regards the two-body input to the Karlsson-Zeiger three- 
-body equations, the half-shell phases are obtained from the half-shell phase 
functions ő(^H)(a) by simply going to the limit a-*00.
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