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ABSTRACT
The cp6 theory is investigated using a modified version of the 

Gell-Mann and Low renormalization group. Tricritical and critical properties 
in /or near/ three dimensions are discussed.

АННОТАЦИЯ

Исследовалась модель с помощью модифицированной ренормализацион- 
ной группы Гэлл-Манн и Ло. Обсуждаются критические и трикритические свойства 
модели при числе измерений три /или около трех/.

KIVONAT

A módosított Gell-Mann és Low féle renormalizációs csoport segítsé
gével megvizsgáljuk a cp6-os elméletet. Tárgyaljuk a kritikus és trikritikus 
tulajdonságait a modellnek 3 /vagy 3-hoz közeli/ dimenzióban.



I. Introduction

Since Wilson's outstanding work /1974/ renormalization 

group technique has been widely used both in high energy 

physics and statistical mechanics. This method among others 

gave new insight into the problems of phase transitions/ 

anomalous dimensions/ asymptotic freedom etc. The term 

renormalization group is not new in physics and the best 

would be to speake of the revival of this approach. Renormal

ization group was succesfully used in quantum electrodynam

ics by Gell-Mann and Low /1954/ to describe ultraviolet 

and infrared properties of different vertex functions, 

Callan-Symanzik equation /197о / is also one of the

possible formulations of the renormalization group. So, 

renormalization group is neither new nor unique. Each of 

the above mentioned methods applied to the same problems/ 

gave the same results. But while the Gell-Mann and Low 

theory is tightly connected with perturbation theory /and 

the same is valid for the Callan-Symanzik equation/ the 

advantage of the Wilson's method is that in principle it 

can be formulated independently of the perturbation theory 

and in special cases concrete calculations can be performed 

without any reference to perturbation theory. Besides the



2

above mentioned methods there are others which can also 
deal with the problems of critical phenomena, such as 
Migdal's and Poljakov's bootstrap model /1968/, Abraham's 
and Tsuneto's sceleton graph expansion etc. In this paper 
we would like to further investigate the method first 
used by Sólyom /1973/. This method may be called as 
the combination of the Gell-Mann and Low and the Wilson 
method. In this context the following fact is very impor
tant. In the Wilson's case the underlying physics is quite 
clear, while in the Gell-Mann and Low approach one can not 
say that /at least not if statistical mechanical problems 
are investigated/. On the other hand, in our opinion, from 
mathematical point of view the latter method is much more 
tractable, since all the mathematics is contained in the 
Lie equations, characteristic of any continuous group. The 
advantages of both methods are contained in Sólyom's for
mulation of the renormalization group. More precisely it 
means that in this variant the cut-off transformation of 
Kadanoff is explicite, the mathematics is in the Lie equa
tions and the method is applicable to any renormalizable 
theory. At least the applications so far, such as to the 
X -ray absorbtion /Sólyom, 1974/, Kondo-problem /Sólyom, 
1974/, one-dimensional electron systems /Menyhárd, Sólyom,

1973, Sólyom, 1973/, the calculation of anomalous dimensions 
/Forgács, 1974/, static critical phenomena /Forgács,
Sólyom, Zawadowski, 1976, referred to it in the following 
as FSZ,/ and dynamical critical phenomena /Greet, Zawadowski, 
1975/ are consistent with this statement. The results in 
the case of the above listed applications were equivalent
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to those obtained by different methods. However all these 
problems are so-called logarithmic that is if we let the 
physical cut-off in momentum space tend to infinity always 
logarithmic divergencies would appeare. The relevant infra
red divergencies are also of logarithmic form. It would be 
good to know the limits of the applicability of this method, 
since it is extremely simple and physically very clear, 
so if known exactly to what problems it can be applied, 
much work could be spared.

It is the aim of this paper to try to give an answer 
to the above question. For this reason we will very briefly 
describe the method /an extensive discussion of this method 
and also a comparison of it with the traditional Gell-Mann 
and Low theory is given in FSZ/, then apply it to a re- 
normalizable, but not purely logarithmic problem /the 
theory in d-3 dimension/. As a result we will obtain correct 
tricritical indices /correct to the calculated order/.
Then we will investigate ordinary critical phenomena at 
de3, and will see how the problem of strong coupling mani
fests itself in this approach. We will see, when comparing 
the results obtained by this method with those of the tradi
tional Gell-Mann and Low theory, that neither analytical 
method is better then the other or neither method is worse 
then the other in describing critical phenomena at d»3. 
Nothing more definite can be said because of the strong 
coupling region.
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2. The modified Gell-Mann and Low renormalization group

Let us assume that the Hamiltonian describes a
renorma1izable theory. Let

tl - ' K  » u lnt

where
/2.1/

oc
у /2.2/

Here C\ are operators constructed out of the basic fields 
of the theory, are the coupling constants. We associate
with each 0  ̂ a vertex function I  ̂ s

' V  < I o k I /2.3/

In field theory < ? denotes vacuum expectation value, in 
statistical mechanics it is the statistical average. The 
Г  ̂ are defined in such a way that in the zeroeth order 

of the perturbation theory all are equal to unity. If there 
are П basic fields in the theory, there will be n prop
agators G,/GJil ■ ■ • C-n‘ Introducing a cut-off A  in mo

mentum space, we assume the following invariance properties 
to be valid:

Gs л )* G s (p) mp, /  л I

*4 ' A
/2.6/

Here m. are the renormalized masses /mass renormali
zation is performed on mass shell; see below for a specific 
model/
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£(zs Zh) is a product of a certain number of -Z”5 and 
one . The explicite form of the ^  function is
constructed in such a way that the following relations hold:

G*s(fz, nQ̂j.k A)̂
Zt rt П G ^ U  /П  •

Q  } - le. t x"where * ; Л.о is the number of the incoming lines
s-1 1

in the ^-th vertex. Note that the 2 SlZ^ factors can 
be expressed by I  ̂ and Q ^  from equations /2.4/ and /2.5/, 

so the ^ function can also be written in terms of ZS,Zk • 
What do the invariance equations mean? They mean /if they 
are valid/ that for the matrix elements of the S-matrix 
of the field theory /in statistical mechanics the analogue 
of the S matrix is the partition function/

<9 5
с) л 5/| ^ s .

L-I Зек̂  5c/ - = о /2.8/

where the changes are consistent with /2,6/. It is
assumed that the *LjZk factors are functions only of 
and , but are independent of the momenta and masses.
We can prove the validity of these transformations only a 
posteriory by the help of the perturbation theory. In all 
the so far applications it turned out that the transfor
mations /2,4/ - /2.6/along with /2.7/ could be built up 
explicitely.

Introducing dimensionless coupling constants, and di
mensionless functions C-\= —Ci / G ó are the bare prop- 
agators/,after eliminating the 'Z factors, equations /2.4 - 

2.6/ can be cast into differential form:
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A can be any of the 0/5 Гь functions. Неге И/ - V, • v *fn'/■> p J  ̂ / -J
Г _ ✓yO

X- / are dimensionless coupling constants,
C/f(v, Ugj are called invariant coupling constants, /defined
later for a specific model/, the transformations /2.4 -2.6/ 
leave them invariant.

The equations /2.9/ are the Lie equations of the renormali
zation group. These equations do not determine uniquely the 
A functions. /Bogoljubov and Shirkov, 1973/ In the general 
solution arbitrary functions of several variables appear. 
Therefore what one can do is calculating the right hand sides 
by the help of perturbation theory and then solving the equa
tions; in this way improving the results of the perturbational 
calculat ions.

G3. The theory

Let our Hamiltonian be in dimensional space

/It is actually the Hamiltonian devided by  ̂/ , where k is
the Boltzmann constant, I is the temperature./ This corresponds

/2.1о/

to

/3.2/
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in the previous section, but actually all the propagators 
are equal and we call it G . Let us perform mass renormal
ization in such a way that

t - m z- О  / з . з /

The statistical mechanical analogue of m  is the coherence 
length у , namely

m = f /3.4/

It means m  disappears on the critical line. The equations 
corresponding to /2,4 - 2.6/, expressed via dimensionless 
quantities, are

i } ~ I

^G

Here

c;̂ ( Лг' 7? "Л, 4 4  (''/ч,, U6) ,

Г} С л 1 ы ‘ ('fr-UvWj /7 6fr- Ч /

~‘, = u "t i  -  t i  /4L -?</ т //|г 1/ '
( Л , tu,,т )“*(£)

Ч  - 4 с М
Л' 
4<J~<o

/3.5/
/З.б/
/3.7/
/3.8/
/3.9/

3.1о/

are dimensionless coupling constants. For simplicity we choose 
the external momenta of the vertex functions in such a way that 
they depend only on a single external momenta variable. We 
now try to determine the Z-L factors to first order in the
coupling constants. The invariant coupling constants C^j^G )

~  ~ ~z гare Ц, and U b with A replaced by either & or ^  .
Since finally we will be interested in the tricritical /or
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critical /behaviour of the modell we will need the contri

or . /The relevance of the above modell to the tri-
critical phenomena is described for example in the work of 
Riedel and Wegner /1972//, This corresponds to approaching 
the tricritical point in the Halperin-Hohenberg space 
/Stanley, 1971/ either from the direction parallel to the 
critical line or from the direction perpendicular to this line. 
The Halperin-Hohenberg space now is spanned by /Т! , к and
K, . The meaning of V4 will be given below. In the case 

of ordinary critical phenomena it was possible to approach
г г ithe m zk=C point both from the direction n^C and also from the 

direction k-0 in the Halperin-Hohenberg plane. /Spanned by 
rrz and k /. The method was symmetrical in the />2 and k 

variables and we could start the calculation in any of the 
two limits. In the present case this symmetry is violated and
we will have to work with k = C, m  + Q t that is we can not

■ г lapproach the k=m.^C point from the direction parallel to
г l

Гп. — o , The reason for that is that if ^  — G and we have
U  L, and in our Hamiltonian then in d=3 unwanted infra-

red divergencies would appear and we can not get rid of them.
To determine the factors up to first order in the

coupling constants we need only the contribution of the

xThis is most easily seen if we consider the graph in 
figure 1. This graph will give contribution to the d function.
The analytic expression for this graph is

If CLP is finite anc/ /7?^ then this integral is infrared
divergent.

bution of the perturbationa1 expressions in the limit к
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graphs in figure a. /We do not have to calculate the d 
function, since because of the mass renormalization /3.3/ 
it does not give any contribution in the first order./
Since now fc — Q t the analytic expressions for the graphs 
a and b are proportional to In , and for the graphs
c and d to —  . Note that we keep all infrared diver-no
gent contributions. ~he cross in figure 2 means that since 
in the graph calculation the Î  vertex always appears with 
the coupling constant Uut Ur J O- -1—  /to first order 
in U q,/, therefore instead of у  we can introduce this 
combination as a coupling constant. We call this new coup
ling constant Ŷ  . The analytic expressions for 7  and 
Г q are

Г = it uc lu. — ' - y Í *-г {— )' -11 /ЗЛ1/
1 Ч Э Ю  ж 1 °  / I 2- JZrJ  ̂L 4 ( / I /  4 ,

Г -it  3^ r2 -L /, J m l _ ^4tN ,f j Jj t- / m ) .7 /3 12/

From the point of view of our theory the introduction of 
Ŷ  is crucial. If we use the original coupling constants 
and try to determine the factors in the equations /3.5 - 
3.7/ it turns out that there are no such ^  /depending only 
on and %  / with which we can satisfy these equa
tions. If instead of we write /3.8/ for , the equa
tions can be shown to be valid and the ZL factors are

2 1 -It U / Л1 -  A><p I ' I /  л 7 , , ,
•* ' л * -  И Р * ч ( л )  -'J, / З Л З /

7,4 « ,it л а й  , a  - jail r  \° ^/1г Gj L'1(a) 7  /3.14/
In the language of Riedel /1972/ it means that the proper 
scaling field besides rri is not <7 but ^ /Riedel and 
Wegner 1972/.
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After having determined the Z.'L factors the Lie equations
r\ pfor I'* and U can be set up. They are

d  — J -L JllHL t y * 7
СЧ  У 4 L Я & 32 0 й г * 4Л /г3- -J /3.15/

- jL t,« r 4* J-Z + 3/V « Л7УУ 7
^  Y G /  6 / З Л 6 /

2
Here </ - — г / £=3-d /VVe are performing the calculation
in 3-d dimension in order to get a non-trivial fix point for

4? /.
Before analyzing the above equations let us write down 

the expressions for , I and also the equations correspond
ing to /3.15/ and /3.16/ in the traditional Gell-Mann and Low 

theory. We do not want to describe this method here, since it 
can be found in many places /for example Bogoljubov and 
Shirkov, 1973; in connection with critical phenomena see also 
the work of Di Castro /1972/ and FSZ./, Let us mention only 
that in this approach the exact invariance property of the 
perturbation series is used to introduce multiplicative factors, 
which permit a suitable normalization for the Green's functions 
and vertex functions. Because of this normalization the vertex 
functions are not those given by /3.11/ and /3.12/. Denoting 
the normalized vertex functions by ' ̂ and / & , they can
be written as

1 4 + A’ ~ // = -/ ■+ ---- U / ,
H J i o /  6

$ t  /V ~
4* 4  ( * * - < ) .

16 * *
an*..3/v (7 /. ~ -vvt/v■ ~ / ~ ,)

; 1 3 '  “ T i “  У  I У  ' У

/з.17/ 

/3.18/
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Here — mГ а“ ' ^ ~  < V  j Ít 5 6/ь ,

cj-'t ^  -tci- G
и ч a ̂  ч , <Л, = °C /

and Д  is connected with the normalization of /
'X'
Г  , In the above we adopted the normalization

and

/\($ч)'Гл (9ч)-1 /3.19/

Details concerning the normalization problem can be found 
in FSZ, Note that the and ГТ (L = written in terms
of the appropriate variables differ only in the coefficients 
of the 4 -point contributions, but this is true only in first 
order. In higher order calculation the coefficients in front 
of the logarithms also may be different /see FSZ/. In the case 
of the Gell-Mann and Low theory for the Lie equations of the

ГУinvariant coupling constants one needs ' i, and ' G /and not 
and /. The Lie equations now are

а к й(ч) /I ^ ^ЫЧ У
о/ йе* (5)

Ы У

;í-
Ь V i

J- t и *  <Рм/ 7

L t U

6 V

Vd'O - *■ , I4 w<? J

/3.20/

/3.21/1 Ü * ■ L,<?

Let us anal ize equations /3.15/, /3.16/ and /3.2о/, /3.21/.
See also figure 3.

A. The case - <3 Equations /3.15/,/3. 16/ and /3.2о/,
/3.21/ have the following fix point

* 4 <f О ii
L,i - ------ t /3'22/ 

corresponding to У ( у ) c' • *f we solve the above equa
tions around this fix point it turns outj that

К ( S) = C, S ‘ Г /3.23/
L ( s) = сл S  ̂r u * /3.24/

with
/ / 3 ( t/v)
^  - ЗГ ’ - ^ 7 /3-25/
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In /3.23/ and /3.24/ £ ' is either ^  or V^" , L is

/» peither U c' or U G" and 5 is either у or t( . Since w  <0 
the fix point /3.22/ can be stable only if c ( = 0, But К 
/the bare or 1'̂ /, therefore с , «  К  , so C , - C  implies

/ - C  . On the other hand we argued that h) is a scaling 
field, therefore the fix point /3,22/, together with ft - О 
is the tricritical fix point. /The tricritical fix point is 
the one, where nV- A - C  /

Let us see how to calculate tricritical indeces in this 
formalism. As an example we will calculate the tricritical £ 
indece, the definition of which is

*?
d  /at the tricritical point/ ■"— ' h. /3,26/

k -»о
Being at the tricritical point means К  ~ О  and we have a
purely logarithmic problem. As it was shown in FSZ in such a 
case

Лею. L ( m  ~D; k.) — ю\ L. k-oj /3.27/
о m^>0

This means we can use the expression /3.22/ for for the
determination of ^ *

To find the o| function we calculate the right hand side 
of the corresponding Lie equation to second order in L , 
that is we calculate the contribution of the graph in figure
4, The solution of the Lie equation is

where
о/ ~  C&)t-> о

/3.28/

r- /3.29/
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From the definition of ю and 5 we finally get

L 1 67 (З Ы  + I Z )x /3.30/
This result is in agreement with earlier calculations /Stephen 
and MeCauley, 1973/. Since in the result only S and 
appear it is clear that both the cut-off scaling version of the 
multiplicative renormalization group and the Gell-Mann and Low 
theory give the same result. This is an other confirmation of 
the equivalence of the two methods in the case of logarithmic 
problems. Corrections to the above scaling behaviour can be 
obtained in the way similar to that described in detail in FSZ.

B. The tricritical region with К Ф 0 .
Let us see what happens if К has a small positive value. In 
this case the trajectories in figure 3 will be nearly parallel 
to K - O , to same value of S and then will bend and tend to 
another fix point. Unless the n (~ ̂  °r 4 /  term in equa
tions /3.15/, /3.16/ and /3.26/, /3.21/ can be neglected in 
comparison to the lS' term we will have the same behaviour as 
before. For that we need /in d=3/

«  LR /3.31/

For the bare coupling constants К and L the condition /3.31/ 
means that in the lowest order

L « 1
/3.32/

This is the same relation used by Stephen et al, /1975/,
but here /3.32/ is the trivial consequence of the Lie equations
and we do not have to start with this condition. If
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iC с ‘/г /Ь ~ we get the border-line between the tricritical and 
critical regions /figure 3/ with the crossover exponent ^  
/Amit and De Dominicis, 1973; Riedel and Wegner, 1972/.

C. Critical phenomenal at d=3.
When /3.32/ is replaced by

“ Й  <<A > jL<<1 /3.33/
we are out of the tricritical region, but still may use per
turbation theory to construct the right hand sides of the Lie 
equations. However we lose the logarithmic nature of the 
problem and simultaneously see that the fix point now is out
side of the weak coupling region. The right-hand sides of the 
Lie equations calculated to any finite order in perturbation 
theory can be used only in a very narrow region of the 'S4 
variable /Wohrer and Brezin, 1976/. The dashed trajectories 
are just qualitative lines and show only the trend of the 
changes. The same is valid for the trajectories on the L - O  
line since in this case also an C(<) fix point would occur 
in the lowest order. So, in the critical domain in the case 
d=3, the Lie equations are valid only in a very narrow region 
and we can not trace the behaviour of the system up to the 
critical point.

4 Conclusions

We investigated the theory near d»3 in the frame
work of two different formulations of the multiplicative re
normalization group. We saw that as in the previous works
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there is no difference between the two versions unless we deal 
with a purely logarithmic problem ( 6 -C), What is new in our 
analysis is that even when the у 4 coupling is considered 
and the theory loses its logarithmic character, the invariance 
equations /3.5/ - /3.9/ still can be constructed with the jz: 

factors depending only on the coupling constants and the ratio 
./Although the ^  factors have been calculated only 

up to first order it is not very difficult to show that the 
above i8 valid also in higher orders./ While in the case of 
logarithmic problems we could compare the two theories numer
ically, it can not be done here, since in order to calculate 

critical indecee in d=3 we have to cross the border-line between 
the weak and strong coupling region and therefore the numerical 
values obtained in such a way for critical indeces should not 
be taken too seriously. /They are as bad or as good as indeces 
obtained by putting £-1 in the calculations around four di
mensions./ However we may conjecture that in all cases /that 
is not only in the case of logarithmic problems/ when we have 
scaling in our theory, with appropriate normalization for the 
vertex functions in the Gell-Mann and Low theory the two methods 
are equivalent. When there is no scaling the cut-off version 
can not be used while the original Gell-Mann and Low theory, 
still works but does not improve the results of the perturba- 

t iona 1 ca leu lat ion. If the scaling is approximate the j r  

factors can be calculated approximately and again there 
is no difference between the two methods /Iche, 1973/.
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Figure captions

2Figure 1.Infrared divergent graph in the case m *0.
Figure 2.Graphs giving contributions to the vertex 
funct ions.
Figure 3.Trajector ies of the Lie equations.Reg ion 1 
is the tricritical region.In region 2 perturbation 
theory still can be used to construct the right hand 
sides of the Lie equations.Region 3 is the strong 
coupling region.The dashed trajectories show only the 
trend of the changes.
Figure 4.The graph giving contribution to the tricritical 
Y) indece in the lowest order.

»

Ф



References

Abrahams E. and Tsuneto T. 1973 Phys.Rev.Lett. 3o, 217
Amit D.3. and De Dominicis C.T. 1973 Phys.Lett. 45A, 193
Bogoljubov N.N. and Shirkov D.V. Introduction to the Theory

of Quantized Fields, Interscience Publ.London,1959
Brezin E., Le Guillon 3.C. and Zinn-Oustin 3. 1973 Phys.Rev.

D8, 434
Callan C.G. l97o Phys.Rev. D2, 1541 
Di Castro C. 1972 Lett. Nuovo Cimento 5, 69 
Forgács G. 1974 Lett. Nuovo Cimento JL2, 845
Forgács G., Sólyom 0. and Zawadowski A., 1976, to be published
Fowler M., Zawadowski A., 1971 Solid St.Commun. 9, 471
Gell-Mann M, and Low F.E. 1954 Phys.Rev. 95, l3oo
Greet G, and Zawadowski A., unpublished
Iche G. 1973 3. Low Temp, Phys. JJ., 215
Menyhárd N., Sólyom 3., 1973 3. Low Temp.Phys. 12, 529
Migdal A.A. 1968 Zh.E.T.F. 55, 964
Poljakov A.M. 1968 Zh.E.T.F. 55, lo25
Riedel E.K., 1972 Phys.Rev.Lett. 28, 675
Stanley H. E,, Introduction to Phase Transitions and Critical 

Phenomena, Oxford, 1971
Stephen M.3., Abrahams E,, Straley 3.P., 1975 Phys.Rev.B12, 256
Sólyom 3., Zawadowski A,, 1974 3,Phys. F. 4, 8o
Sólyom 3. 1973 3. Low Temp. Phys. 12, 547
Sólyom 3. 1974 3.Phys.F. 4, 2269
Symanzik К. l97o Comm. Math, Phys, Jji, 227
Wilson K.G. and Kogut 3, 1974 Phys.Repts. 12C, 75
Wohrer M, and Brezin E., 1976 to be published



Fig. 1



Fig. 2



к

~ 0 ( 1 )

Fig. 3





#■

*

«



Kiadja a Központi Fizikai Kutató Intézet 
Felelős kiadó: Vasvári Béla igazgató 
Szakmai lektor: Sólyom Jenő 
Nyelvi lektor : Sólyom Jenő 
Példányszám: 245 Törzsszám: 77-222 
Készült a KFKI sokszorosító üzemében 
Budapest, 1977. február hó


