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ABSTRACT

The problem of the transformation properties of hadronic currents in
the infinite momentum frame is iInvestigated. A general method is given to deal
with the problem, which is based upon the concept of group contraction. The
two-dimensional aspects of the IMF description are studied in detail, and the
current matrix elements in a three-dimensional Poincaré covariant theory are
reduced to those of a two-dimensional one. It is explicitly shown that the
covariance group of the two-dimensional theory may either be a "non-relativistic
/Galilei/ group, or a "relativistic" /Poincaré/ one depending on the value of
a parameter reminiscent of the light velocity in the three-dimensional theory.
The value of this parameter cannot be determined by kinematical arguments.

Our results offer a natural generalization of models which assume the Galilean
symmetry in the infinite momentum frame.

AHHOTALWA

N3yuyeHa npo6Gnema TpaHCHOPMALMOHHLIX CBOWCTB afpPOHHLIX TOKOB B CUCTEMe
KoopAuHaT 6ecKoHeuyHoro umnysbca. [peasioxeH o6wuii MeTod, OCHOBaHHbLIA Ha KOHUen-
UMM CTATMBaHUS rpynnsl, A48 ABYXMEPHOro BapuaHTa onucaHuss B 3Toli cucTeme. [loka-
3aHO, U4TO rpynna KoBapuaHTHOCTU [ABYXMEpPHOI Teopuum MoxeT O6bTb Kak [anuneesckas,
Tak 1 lNyaHkape B 3aBUCMMOCTU OT 3Hauells HEKOTOPOro napameTpa. BenuumHy aToro
napamMeTpa HEBO3MOXHO OMNpeAe/sMTb Ha OCHOBE KUHEeMaTUYeCKUX aprymMeHToB. Hawun pe-
3ynbTaTh JalwT BO3MOXHOCTb €CTecCTBeHHO 0606WWTb MOAENW OCHOBaHHbLe Ha ranuieeBCKoii
CYMMETPUM B CUCTEME KoopAaMHAT G6GEeCKOHEeUYHOro MMNyJsbca.

KIVONAT

A hadronaramok végtelen impulzusu koordinatarendszerbeli transzforma-
cios tulajdonsagainak problémajat vizsgaljuk. A kérdés targyalasara altalanos
moédszert adunk, amely a csoportkontrakcidé koncepcidjara épul. A végtelen impul-
zusu leiras kétdimenzids aspektusait tanulmanyozzuk, és a haromdimenzidés, Poin-
caré-kovarians elméletekben fellépd aram matrix-elemeket kétdimenzidos elmélet
matrixelemeire redukaljuk. Részletesen megmutatjuk, hogy a kétdimenzids elmélet
kovariancia-csoportja lehet akar nem relativisztikus /Galilei-/, akar relativisz-
tikus /Poincaré-/ csoport, attdél fuggbéen, hogy mennyi egy - a haromdimenziéds
elméletbeli fénysebességgel rokon jelentésl - paraméter értéke. Ez a paraméter-
érték nem hatarozhaté meg kinematikai vizsgalatokkal. Eredményeink természetes
altalanositasat teszik lehetévé azoknak a modelleknek, amelyek a végtelen impul-
zusu koordinatarendszerben a Galilei-szimmetriat tételezték fel.



1. INTRODUCTION

In this paper we are going to describe a detailed programme for the
derivation of the transformation properties of local interaction currents in
theinfinite momentum frame /IMF/. Taking the infinite momentum limit /IML/ of
the current matrix elements has been a standard method for the calculation of
various dynamical quantities, but little attention has been paid to the question
of what happens to the group-theoretical structure of the Poincaré covariant
theory in this limit. Even less effort has been made to explicitly using the
group-theoretical properties in the IMF,although this would certainly increase
the power of the infinite momentum methods. Nevertheless, it is clear from the
early papers on this subject, that in the IML the Poincaré symmetry group cont-
racts into an "iso-Poincaré group”™ [I] /a Poincaré group isomorphic with the
symmetry group in the ordinary reference frame /ORF//, or into some of its
subgroups [2,33. Since the mathematical procedure of group contraction is am-
biguous £4], the actual symmetry group in the IMF must be chosen on physical
grounds.

The only contraction scheme, which so far seems to have been applied
is the one, which results in a Galilei subgroup of the Poincaré group. This
seems to fit with the IML of the old-fashioned perturbation series [5,6]. It
seems to be justified also by the observed scaling behaviour in deep-inelastic
scattering [7]- On the other hand, we argued in a recent paper [3], that the
old-fashioned perturbation series iIn the IML is not necessarily interpreted
as the perturbation series for a non-relativistic theory in three dimensions
/in two space + one time dimensions/. Alternatively, it can also be iInterpreted
as the non-covariant perturbation series for a "relativistic theory" in three
dimensions. This observation inspired us to a systematic investigation of the
transformation properties of local iInteraction currents in the IMF. By exploring
the detailed structure of such physical quantities like current matrix elements,
we hope to find new approximations, and new models of physical processes, when
the various contraction schemes are used in the IML.

In what follows we give a detailed derivation of the transformation
properties of "transverse'" currents [7] in the IMF. Our method will be based
upon the contraction of the Poincaré group representations defined on the ma-
trix elements of the currents. The crucial steps of the method are, Tfirstly,



the contraction of the Poincare group, and secondly, the "contraction”™ of
the representation space by means of appropriately defined integrals of the
matrix elements. Only after performing both parts of the programme we can
deduce the transformation properties of the "current” in the IMF. In Sect. 1II.
we summarize some notions and concepts needed in the subsequent parts of the
paper, and formulate our programme Tfor the deduction of the transformation
properties we are looking for. In Sect. Ill. we describe the contraction
schemes of the Poincaré group which we shall be interested in. In Sect. IV.
we construct the representation spaces for the groups obtained in the course
of the contraction. In Sect. V. the new current operators are deduced, and
their properties are discussed in detail in Sect. VI. A short summary of the

paper is given and remarks concerning possible applications are made in Sect.VIIl.

2. FORMULATION OF THE IMF PROBLEM

In general, we shall be engaged in the properties of a scalar current
s(x) = s(x°, x , x™), but the methods to be presented can easily be adapted
to the case of more complicated quantities, such as vector and tensor currents.
We shall assume that we are given all states, 0, of a physical system, the
physical observables being the matrix elements of s(x) between such states:

f(x) = f(x°, x», x3) = (0B, s(x)0a). /.17

On the set of states 0 a unitary, irreducible representation of the Poincaré
group 1is given:

Uca,A)0 = 0" , 111,21

U(al,Al1)U(a2 ,A2)0 = U(az2,n2)(n(al,;n)0) =UCa” + a2,1112)0.

The relation between matrix elementsf given in two different Lorentz reference
frames, comes from the principle of relativistic covariance, which says:

U@,A)0p, s(x)u(a,A)0a) * (0g, s(xA + a)0pn) - /11.3/
-4
The relations /11.1-3/ can be converted into a representation of the Poincaré
group on all functions f(x), which are all matrix elements of s(x) between the
states O:
T(a,A)f(x) = f(xA + a), /11.4/

or, in the infinitesimal form:



MYVFG) = -i[x” 2 £ / /N.57
. ,
PAF(X) = -i—— F(X). /11.6/
1C)¢

This representation corresponds to a scalar current and the relations
/11.4-6/ are to be compared with the usual operator relations:

U_1(a,A)s(x)U(a,A) = s(xA + a), /11.4%/
sl = -1 [xy- - XV—— 1s () /11.5%/
L ] L 3xv 9xy J
/7 s(xX) —i—-—— s . /n.6"7/
3xy

The detailed properties, like unitarity, etc., of the representation /11.4-6/
depend very much on the operator s(x). These properties will not be important
in this paper. But we shall need the following properties of the functions

f(X):

i. They are infinitely differentiable with respect to any of the variables;

ii. Series like
T(e 1aGk)F(x) =7 J(ia)n Gfx) /11.7/
n=o
converge, being any of the infinitesimal generators. These properties assu-

re that infinitesimal and finite group elements can be used on an equal footing.

We shall split the representation space to "transitivity sets" pro-
ceeding in the following manner. We consider two arbitrary, but fixed physical
states 0, 0Og, and define the set of functions f ( x?(a,A)) of x by

fa6 (x;(@"N)) = (OR" s(xA + a)0a)" /.87

where all functions of the set are listed by means of all elements (a,A) of
the Poincaré group. Due to the properties i. and ii. described above, all
functions of such a set can be represented by Taylor series, the infinitesimal



relations /11.5,6/ being specifically applied to the function

fae() = (V  s(x)0a)- /11.9/

It is the consequence of relativistic covariance that the same set /11.8/

arises from the functions

f"R&x;@,A) 2 (0" s + a)o"), y11.10/

where 0~ = U(a",A")0a, 0"g= U(a",A")0g, and (a",A") is fixed.
The relation between the functions /11.8/ and /11.10/ is as TfTollows:

g (x;(@s”n) =
/11.11/
= T(a",")fag(x;(a",n")_1(a,n(a",n")),
for every (a,A). The corresponding representations of the Poincaré group can
also be simply related:

T" IvAj« LA
(@A o @A) /11.12/

for every (a,/1) and (a-"”"). Especially, if we choose a Z-boost, exp(-i£N3),
for (a",A"), the primed functions f~g and operators T" give the description
of the physical system, in comparison with the unprimed ones, fag and T,
respectively, in a moving reference frame. In the limit we obtain the

description in the IMF.

In order to be able to specify the symmetry properties of the theory
in the IMF one must discuss the following problems:

Problem 1 .: We are to describe the group arising from the limit

/11.13/

Problem Il1.: We must calculate all the functions

lim T(e"UN3) T(eiCN3(a,A)e"UN 3)FalR(x)
/11.14/

- faB(x "-(a,A)J;



Problem 111.: Finally, we must interpret the functions

> (x; (@Q,AX) as the matrix elements of an IMF current s (X) between states
0°°, all having well-defined transformation properties with respect to the
group (a@,A)ca.

Problem 1. is, actually, a contraction problem for the Poincaré group.
It has several solutions, the limit gives either the Poincaré group itself,
or one of its subgroups [4]- /Strictly speaking, these groups are isomorphic
to the original Poincaré group or its subgroups./ Contraction into the Poincaré
group has been described in ref. 1., and into some of its subgroups in ref.
3. No a priori reason can be given for choosing one or another solution of
the contraction problem. Only some physical hints may inspire one to make a
definite choice. In this paper we look for such solutions of Problem 1. that
/11.13/ leads to contraction of the Poincaré group into certain subgroups.
This choice 1is motivated by refs. 2. and 7. The subgroups will be Galilei and
Poincaré subgroups which transform two '"space"™ coordinates and a non-relati-
vistic or relativistic "time"coordinate, respectively. /In what follows we
use the terminology of ref. 3. and call 3-Poincaré group the one described
by the formulas /11.4-6/, its contractions will be called 2-Galilei and 2-
-Poincaré groups, respectively./ After coming to this decision on Problem I.
it is clear, that the four-dimensional homogeneous space x of the 3-Poincaré

tranformations is to be reduced to some three-dimensional one. One may hope
to achieve this by integrating the function fag(i(a,/1)) over one of their

variables and reformulating Problems 11. and IlIl. in terms of these integrated
functions. For a convenient choice of the integration variable we change x°
and x» by T and £:

(x3-x°), T = (X°+x3), /11.15/

and, for the functions f~g(x°, x , x3;(a,A)) we use the notation
g"R(Xx,x ,M(a,m) =g (x;(a,A)). We shall be interested in the functions
P P 00

JL

gae(T"-.;(@™n)) = 97B(,(a,A))dC /11.16/

in the IMF, that is, for ° We must evaluate the functions

g"b (t ,x *"(&™),) = lim IT(e“ICN3)T(eiCN3(a ,A)e"I5N3)g X)di /11,177
M -L r->oo J
n -

and deduce the transformation rules in the IMF for the 'transverse'" current

s(x)dC.



Before concluding this section we make an iImportant remark concern-
ing the solutions of Problem Il. In general, the solution of Problem II.
yields different representation spaces and, therefore, different representa-
tions of the group (ajA)”, if fag(x) is changed to some f~g(x), f~g(x) being
the matrix element of s(xX) between the states U(&,A)0a» and U(a,A)O0g, with

(a,A) fixed. Problem 11. for the function f~~(x) would mean the calculation
of
lim T(e"1eN3)T(eiCN3(a,A)e"UN 3)T(a,A)fa6(x). /11.18/
Mo

Since (a,) is a fixed element of the 3-Poincaré group, in the limit £°°
it becomes, in general, a foreign object from the point of view of the cont-
racted group (a,/l)or.

Finally, for the reader®"s convenience, we write down here the action
of the 3-Poincaré generators on the functions 9ag(x)!

MI-N2)9(x) _ X 29C)
X 3¢

(M1+N2)g(x) =2i (™ - - X )ax)
X oT

_45=4.19
wz-NDgeo EFED
M2+N)900 = T J 1 oy,
6X
/11.19/
n3 900 = 1632 = - 10 gYg(x
9x X
N3 g(x) = i.EC—3 - 7= )g(x), !
4 oT
-2i-n . - = i
©0+p3)g(x) |3tg(x) (P8 P3)9(x) la:gOO ;

P g(x) = -i-"-g(x).
En ax

~ %



3. CONTRACTIONS OF THE 3~POINCARE GROUP

In order to make this paper self-contained as much as possible we
give a short summary of those contractions of the 3-Poincaré group which we

are interested iIn. /For more details see also ref.3./

The two-dimensional Galilean description in the IMF stems from the
following connection between the generators of spacetime transformations in
the limiting and ordinary reference frames, 0 and 0", respectively |2,3]:

= Him {e"s5U(S)(M* + N*) U-1(0 }, /111.1.a/
£

S2 = -Xlim {e-~"U(O(M®™ - N") U_1(B)}, /111 .1.b/

M3 = Lim {U(G) M"U_1(0 1}, /111 .1.¢c/

HG = lim {eCU(O(P™ + P3) U-1(0}, /IH_1_.d/

= Xlim {e"sU(O(P; - P3) U_1(0}, /111.1 e/

lim {e Cu(c) N"U-1(£)} = Hm TU)M" + N*) U 1(C) = 0, JIH_1.¥/

lim TUCC)(M*™ - N") U_1(C)} = O. /111 .1.9/

The symbol u(f) denotes a z-boost, U(£) = el””, X is an arbitrary positive

number. These relations give a mapping of the 3-Poincaré algebra

frit nj] " _fj' NjJ - ieljkMk—

[''m "jJ = leijkNk- /111.2/
p;i -
onto the 2-Galilei algebra, its elements being , P, (= 1,2), MM, HG

and S



isi ,S.1 =0, Q13 » S = Ie.s.Ss_,
1>5i - Pil = 0. e .pJ =0
1
[>i M HG] = 1Pi, & i - Pj] - iy06ij' /111.3/
[M3 s HG] =0, M3 pi] = i/\pj,
osi ~ = IM3 ,yd = ¢gi *nj - G .9 =o
The mapping /111.1/ can also be expressed as follows:
|
HG g © © © p6 + p3
p1 0 1 0o O of
/111 .4 o/

P2 0O 0 10 pz
f, © 0 0 n pg-p3
S1 X 0 0 0 O O M2 + NT
52 0O-n 0O O O O Mi - N2
M3 0O 0 1 0 O O M3

) ég% /111.4. 0/
0 0 0 0 e-« 0 0 N3
0 o 0 O 0O0e'« O M2 - NT
0 0O 0 0O 0O 0 e-* MI + N2

This is obviously a contraction of the 3-Poincaré algebra [4]. Now the question
arises if other contractions of the 3-Poincaré algebra may also be of interest.
As i1t was shown in ref. 3. it is natural to consider, for example, the follow-
ing contraction:



1 5 _

K1 aXc2 M2+ N

K2 0-X 0 O 0 1 P
aXc2

/111.5.a/
M3 —1im M3
£2m
0 0 0 oe 0 0 N3
0 0 0 0 0 -e“5 0 W2 - Ni
a:

0 0000 0 & Ui+ N2

hP §jx 0 0 A°2 P6 + P3

o1 0 10 0 oi

- 00 10 . /111.5.b/

--4-0 0 X
Y 4x5 P> - p3

The "infinite momentum limit" character of this mapping becomes more obvious
if one rewrites /111.5/ in terms of z-boostss

Lim {UE)[Xe CQM™N™) - — ——eC(M"-N")] U_1(0> ; /111.6.a/

- 4Xc2

lim {UB)[- e“CM"-N") + g2 SCUND] U_1(0) /111.6./
(o]

lim {U0 @I eC (PMPT + Xc2e C(PM-Ppl U_1(O)} ; /11.6./

lim §i(C) [ - eC(P™P") + Xe~~"-P")] U X(0> ; /11 6.

4xC
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In /111. 5,6/ the letters X, and c denote arbitrary positive numbers. This
contraction is closely related with the previous one, as it can be seen from
the following commutators:

Ki - K21 _ _jgr m3- '3 . ki = dei K
C
Mo - p5y = O [Pf = on = O
[M3 , Hp] = O, M3 . o = ie"_Ps_ ,
= iP,, D4 . = 1-%x 0, H
K - Hp] pj] c2 N
D *HP] = [V *P£] = [P, Mgl = > - Ki—l = 0.

This is a 2-Poincaré algebra, its elements being the generators of inhomoge-
neous Lorentz transformations of two spacelike and one timelike coordinates.
The parameter c plays the same mathematical role as .light velocity does in
the usual 3+1 dimensional case. When c goes to infinity the algebra /111.7/
contracts into the non-relativistic one /111.3./.

In the definitions /Ill. 4,5/ we have an arbitrary positive number
X which, in contrast with the parameter c, does not appear at all in the com-
mutators /111.3/ and /111.7/. Obviously, for the different values of X the
mappings /111.4/ and /111.5/ yield different /but isomorphic/ 2-Galilei and
2-Pioncaré subalgebras of the 3-Poincaré algebra, respectively. We are going
to assume that 3-Poincaré covariant theories become 2-Poincaré covariant ones
in the IMF with some given value of the parameter c. Its value is to be deter-
mined phenomenologically. For the 2-Galilei covariant case c°°. It seems
natural to postulate, on the other hand, that all contractions corresponding
to the various values of X are physically equivalent, that is, none of the
predictions of the theory in the IMF must depend on X.

For a comparison with Susskind®s treatment of the 2-Galilei symmetry
in the IMF we mention that he chooses X=I, but preserves the N3 generator
[2,3\ < Thus the symmetry group in the IMF becomes a 2-Galilei group extended
with dilatations. Since the dilatations correspond to changing the value of
X, dilatation invariance of the theory corresponds just to the postulate we
formulated above. Our formulation has the advantage that it can be generalized
without difficulty to the 2-Poincaré case, while the N3 generator cannot be
added to the 2-Poincaré generators to form a closed algebra.
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There are, obviously, Tfurther ambiguities in choosing the matrices
on the right hand side of /111.4/ and /111.5/. Let us denote by A any of the
matrices in /lll_.4_a,b./ /or /111.5.a,b//. The algebra /111.3/ /or /111.7//
remains unchanged if A1AA2 is substituted for A, where A2 is any 3-Poincaré
transformation of the generators M;V, P; , and A. is any 2-Galilei /gr 2-Poin-
caré/ transformation of the generators S, M, H , P /or, , M3, H , PM/.
We shall require that the IMF theory be independent of the choice of A™ and
A2 . Various choices for A™ correspond to various frames of reference for the
IMF theory, which we are going to assume to be covariant with respect to coor-
dinate transformations by 2-Galilei /or, 2-Poincaré/ matrices. Therefore, in
what follows, we take A™ = 1. Similar independence on A2 should also be requi-
red, but this is slightly spoiled by the integration of the matrix elements
over C. We come back to this point in the next section.

4. THE REPRESENTATION SPACES IN THE IMF

In this section we deal with the solution of Problem Il. and construct
those functions which form the representation spaces for the contracted groups.
This task, in its original form /11.14/ means the calculation of such limits:

Ilim T(e-1”N3 t,x ,c) = Te~", x ,r;e?), /\WV. .1/
Lim 7( IR 9 o )

Iim
Moo
and we need much more detailed properties of the current matrix elements than

we have used so far. To overcome this problem one may use Susskind®s proposal [2]
for integrating over the variable 5 and calculating by means of the rule

00

Tim galR (Tte-~, x , eMNdE = lim e"~jgaR (te , X ,c)d£, /1V_.2/

- 00

but then one faces the problem that the factor e makes zero the functions
we are looking for. One may use certain "physical” arguments [A to eliminate
the factor e ™ from /1V.2/ and may conclude, that in the IMF the correspondence

00 co

9a3(7/ x "0 dC =5lgae ((°» X /1.3

- 00 co

is valid. One must notice, however, that /1V.3/ is part of the mapping

00 00

galR(x; (@"A))d~? (a »A)oo)yd” /iv.3"/

- 00 - co

we have to specify when we solve Problem 11. It is this mapping which really
determines the symmetry properties of the theory in the IMF.
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As a first step towards specifying the mapping /1V.3"/ we deal with
integrals of the following type;

GgaB (x)dC " /.4

where G is an arbitrary polynomial of the 3-Poincaré generators /11.19/.
In practice, /1V.4/ means such expressions:

1
D(T" *+! jpf rk ~T gal (T" x"c) dc " /1V.5/

where k,1 =0, 1, 2, ..., and b is some polynomial of its arguments. In order
to obtain tractable formulas we must assume that the derivatives with respect
to T, and x are interchangeable with the integral in /IV.5/. This means, that
the integr;f

n, &
C - xgR®® /iv.6/
must exist for every k, 1=0, 1, 2, ..., . Then it follows that
k 3 _
- 0, if c 1 + <. /\N.7/
5 g3 () '

In general, this condition is not fulfilled even if the function ng ) is
a matrix element of the current s(x) between normalizable states Oa, 0g.
Since the variable C was arbitrarily chosen as an integration variable, the
strong asymptotic behaviour /IV.7/ must be required also for the dependences
on X and x . But this class of functions is mapped onto itself by Fourier
transformation, therefore, if

gaR = lgaf$ elXq d4x-" /1Vv.8/

00

then i1t follows that

@2)n gak (@ o /iv.9/
for any n=0, 1, 2, ..., if |2 <. If, especially, gag (X) is a matrix element
of s(x) between normalizable superpositions of momentum eigenstates, the con-
dition /IV.9/ means, 1in general, that the form factor F((k-k") ) = <k"]s(o)]|k>

decreases faster than any inverse power of (k-k*) , if |J(k-k") | *~=. If we
do not want such an unduly restricted th<ory, we must accept that, in general,
the integrals /1V.5/ diverge, and we must decide on the meaning we are going
to attribute to them. This 1is, in fact, i reformulation of the problem of the

mapping /iv.3/.



With special®attention to the purpose of describing functions in
the IMF we define /1V.5/ as follows:

D (t, - g ©O dC
/1Vv._10/
(t,
for k=0, 1=0, and zero otherwise. The quantity g~ (t, is the canonical
distribution theoretical value of the integral of gdﬁ
gaB (b 2 gab (X, **).
First of all, it follows from this definition, that
lim T(e-1”™N3)gae (X, x%, ar = gag (O, xN). /10.a/

£

This is the function in the IMF which corresponds to the unit element of the
group (afj)”, independently of the actual group contraction scheme we want
to choose. /Notice that in /1V.10.a/ we arrived at a function of only two
variables./

In order to construct the other functions of a transitivity set one
must calculate the action of the generators of the group (ajA)” on gan™(0,x )
In the 2-Galilei case we proceed by using /11.17/, /11.19/, /111.1/,

/111.10/ and obtain:

sigaR o, - O i=1, 2,
M3gaR ©, X) = i(ngi' ~ xl o 9aB (C* *)- /W .11/
_jgaz O - hi1x gas © XX)’
Hog., . C 1 soT g ©. xJ -

By means of these relations one can easily construct all the functions
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"R (T, x » (a,A)d = gal (O, x™;(1,L)) = gai (#"t’ )_(_LR +_IJ_), /1Vv._.12/

where (£, L) denotes a general, six-parameter element of the 2-Galilei group.
Its homogeneous part L = (R, v ) involves rotations and Galilei boosts in the
two-dimensional plane x = (x1, x2). Its inhomogeneous part $=(£ , ) cor-

-J. r
responds to "time"™ and space translations. Altogether the transformation ru-
le is

t ,x)D)E, L =€ +1 ,xR+tv + 1), /1V .13/
° =X ° z L

The functions /1V.12/ depend on the two variables x , and look like the

functions of the variables (to, XI)

x (A L)) (, xx}(l, L)) 71V _14/

for zero value of the non-relativistic "time" t . It follows from the const-
ruction of the functions /1V.14/ that a scalar representation of the 2-Gali-
lei group can be defined on all of them by the rule:

TG(*\ L")FR (rQ, xjC*, L)) = % (0. x*; (%, L"), L))
/1VvV_15/
B £°e «=,+ U- £F e+ v ; + F;>

This procedure can also be repeated when (a,h)m is the 2-Poincaré group.
Equations /1V.11/ remain unchanged in the case of MR and P , and the action

of the generators L(I = (Kl’ K—Z) , HP on gﬂg @, xl) reads as Tfollows:
K g, O, x )=-i1 -i-y x - g ©, x ),
-JL «B -X 2NN JF 5r ae 4
/1V._16/
HPg R (0O, X ) = -i — — g R (O, X ).
«P -X 21 X * +
Instead of eq. /1V.12/ now the functions
oz &G x5 @ Ma)=gP O, x ; @ M) =g I+ a) /\w.17/

appear, where (a@,/1) denotes a general element of the 2-Poincaré group, the
symbol /1 being also used for the 3x3 matrix of the homogeneous 2-Lorentz
transformations, and the three-vector a=(aQ,a”) refers to the translations
of the 1+2 dimensional Minkowski spacetime x = (t,x ). In /I1V_.17/ the follow-
ing notations are also used: o
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x = (0, x ), a= (- a,a)-
2A
Again, the two-variable functions /1V._.17/ can be provided with "time depen-
dence" by means of the definition:

p (£, x ;(@,M) =eltH gPB (O, x ;(a,A)). /1v.18/

On the functions /1V_18/ it is easy to give the action of the 2-Poincaré

group:

TP(a",A") fPE£ = BBRCG (@7 .17 (a,M) =

/1V._19/
= fPg (X1" + a"; (a,n).

Only the last point, Problem I1l1., of our programme remains, nhamely
to convert the equations /1V.15/ and /1V.19/ into transformation rules for
the transverse current s(x)dE£ in the IMF. For this purpose, in the next
section we investigate the limit of the matrix elements between momentum
eigenstates. The discussion will be performed in the 2-Poincaré case, its
connection with the 2-Galilei case will briefly be touched.

We finish this section with a discussion of the freedom in choosing
the matrix A2, mentioned in the previous section. Let us assume, that A2
corresponds to a 3-Lorentz group element N2 . /Obviously, the unit matrix was
used in place of A2 in the present section./ In this case our procedure for
solving the contraction problem gets modified by that both in Problems 1.

and 11. the z-boost exp(-1£N3) must be changed to /2e 4“1 Thg calcula-

tions described in the present section must be repeated using the variables

(™, x5 £ = (t, x_,O(A)
N +

instead of the ones (t, X , c). Especially, the variable £" must be integra-
ted over in order to be able to define the limit Only under this supple
mentary condition can one postulate that in the IMF physics be independent
of AN,

5. THE MATRIX ELEMENTS BETWEEN MOMENTUM EIGENSTATES

In this section we solve Problem Il1l. and convert egs. /1V.15/ and
/1V_19/ into operator relations similar to eqs. /11.4-6/. For this end we

investigate the IML of the matrix elements between momentum eigenstates:
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<p IsC)lp> = - =Ur elx( F(m™, w, (p-p")2), NV
Qin4
where p2=m2, p*"2=m"2 . The right hand side of /V_.1/ follows from the transfor-
mation properties of the scalar current s(x) and the spinless states |m,p>,
[m*,p">. The current s(x), is Hermitian, s(xX) = s+(x), therefore

F*(m*, m, (p-p")2) = F(m, m*, (p-p")2)/ N2/

where the asterisk denotes complex conjugation.

The matrix elements with all possible values of p and p* play the
role of basis functions in the function space of all matrix elements of s(X)
between arbitrary physical states. The functions /V_.1/ have the important
property that they can be grouped into transitivity sets, as defined in Sect.
Il1. We shall exploit this in the following manner. We enumerate all matrix
elements <p"|s(X)|p>, with arbitrary four-momenta p and p*, by writing

<m®,p IsC)Im,p> = <m™,p U 1(A)sOCOUCA) m,p> =

/N .3/

= T(A)<m®,p"Is(xX)[m,p>,

A A -
where p and p are some fixed four-momenta,

P = (p+"Ex" PN/ P* = (Pj/ E™O " N-41

and A is the 3-Lorentz transformations

A = exj(-i) {Aare ~(M2 + N) - Aaz2e - N2) + aWm~ =
N.5/
_ _ A " “«
ZK 2 ale™” M2"ND) + ZKCZ 02e5(M1+N2)}

We shall investigate the IMF image of the transitivity sets represented by
- - 2 n *
/V.3/ for arbitrary fixed A >0, ¢ >0, p and pwhen the parameters a",
a2, run over the ranges
R <®, < a2 < <, (O] < 2MN. /N.6/
All matrix elements of s(x) between momentum eigenstates are o?tained, if all
these sets are taken for every

4
0 <p << 0 <p* < =, 0% p" < = N1/

A
while p £ 0 is fixed.
NE
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Applying the contraction prescription /111. 5,6/ to the 3-Lorentz
transformations /V. 5,6/ one obtains

Ilim (e-1?N3 /1 eiCN3) = N1 = exp(-i){a-™ + a2kK2 + a™~}. /V.8/
£2m

That is, the elements of the above transitivity sets are enumerated by means
of the elements of the 2-Lorentz group in the IMF. The second step towards

the description of the transitivity sets in the IMF is the calculation of
the following quantity:

T(eltH ) lim T(e iCN3) <m", p* s(X)|m, p> dE =

/V .9/
~73-expi[t(h-h") + xM(EM-£7)] F(m™.m,(p-p")2)6(p -p) =

@ny:

= féé (t,x ).

The right hand side of /V.9/ can be found by applying the prescriptions of
the previous section to the function /V.1/, and by introducing the notations

A 1l a 2a 2A
h =31 P+ + Ac P Bz gy + %o /V.10/

If, furthermore, we introduce x = (t, x ), kK = (h, £ ), k"= (h",£")»

A A A n n A
t(h-h") + x+(£J - £7) = x(k-k"), then we may write for the transitivity sets
in the IMF: +

T TAA, (t,x ) AF(mT ,m;(p-p ")2)6(p - pT)- /N L/
~ PP N

ZZH)B

In eq. /V.11/ we have the typical exponential expi xﬂ(ﬁ—ﬁ') multiplied by a
function of the momenta, which is a constant for the whole transitivity set.
The next task is to express this function in terms of 2-lLorentz invariants.
The 3-Lorentz invariants are automatically 2-Lorentz invariants, thus, in
fact, we must only deal with 6(p - p )-

The 2-Lorentz transformations leave iInvariant the quantities

* nn 1 AA A
o= kR, kk* = hh" - £ £° /N.12/
c 1 C LN

and we know from the mass-shell conditions, that

o=n2tgt, k2 = m? 4 oy %P /v.13/
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where

h=Xp - i y* = yp" - /N.14/
e LA - 4Xc

Obviously, y and y" are 2-Lorentz invariant. From /V.10/ and /V.14/ we have

2Xp =y +—-jh =y+ i A? cosh- /

N .15/

A | 2
2Ap* pT+ —i h"=p* + - /t'z COSH% /
- c

which is already written in terms of IMF quantitites, but is still not mani-
festly invariant. To find |nvar|ant forms for cosh— and cosh— we introduce
an auxiliary three-momentum q, which has space- components qJ_paraIIeI with

£ /for simplicity we may choose both of them in the y-direction/:

]|

q = (©, o, (—="2)17™2). /V.16/

The momentum q is spacelike from the point of view of the 2-Lorentz group,
AA

q <0. By a étraightforward calculation one obtains:

Al-2 -11/2
cosh— = %é&é

0/ *
’ N .17/

AN

kk* gk*

coshE coshE = 4 =sinh ¢ "
P P / n-2
and we define
sinhE 50, S|nh6 1 O. Iv.181

Now we can deduce from egs. /V.8-18/ the following result:

The matrix elements of the "transverse"™ scalar current s(x)df£ between all
momentum eigenstates |m,p>, |m",p"> correspond to the matrix elements of a
set of "current operators”™ s(x;q) between all momentum eigenstates |[m,y,k>,
Im*,y", k">, Kk =m + yc , k"2 =m" +y" c , -°RK°°, -°°y"<<=°. The states
Im,y,k> are basis functions for the representation of the 2-Poincaré group:

UCa, Ay, k> = '@y A /N.197

The set of operators s(x;q) is list iby u ,ns of the spacelike momenta
q= & c(g2 + g2)1/2,~ ), g2 + q2 = 0. The 2-Poincaré transformations act on
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s (x;q) according to the rule:
U l@,1) sx;:;q) ua,n) = sxA + a;N "g). /V .20/

The matrix elements of s(x;q) between the above momentum eigenstates read
as follows:

<m®,y" ;K" IsG;e) Imy ke =
/N .21/

= (2M)3 el-"- f(m,my",y;(k"-k)2; gk*, gk, q2),
where

f(m",m; y",y; (k"-kK)2 ; qgk*", gk, q2) =
/IN.22/

= 41IF(m",m; (k"-k) 2 - (y "-y)2c2)6 (yI™/k™ cosh™ - y"- YK "2" cosh” ),

1/2
@k)H*
coshE = 2 2 sinh— > 0,

q K
/V .23/
K K" k*

%

cosh—= cosh- sinh= , sinh= > 0.
[ [ ¢ [
YK2K " 2 /-g2k* 2’

The correspondence between the matrix elements belonging to a transitivity
set in the ordinary reference frame and those iIn the IMF is the following:

<m®,y";k" Is(x; ) |m,y;k> = jjy lim [T(e 1”N3 N1 el” 3),
/N.24/
xTe " Ns HE[rc €4+ At g anngy Tee TA3) < Lpt IsCO Im.podE -
In /V.24/ the 3-Lcrentz transformation /1 is given by /V.5,6/, the integral

over 5 is to be evaluated by the rule described in Sect.1V. The momenta k,k",q
and the 2-Lorentz invariants y,y" are to be calculated by using /vV.8,10,14-18/,
n n

- n
and K = Ik, K = JIK*, g = Jiq-
6. MISCELLANEOUS RESULTS AND DISCUSSION

In this section we discuss certain features of the results presented
in the previous sections.



-20-

a. The operators s(Xx;q) are not Hermitian, s+ cj)E sV , that is,
<mtytikTIsOaa)ImLyske ¢ <mlysklsOaa)mtLy Tk
This is the consequence of the non-symmetric role of the momenta k and k-

in /V.23/. Indeed, in /V.17/ the alternative choice a \Tb' would also be
* i-
possible, when the definitions

n- 21 1/2
cosh% = , . 1112: sinh— > 0,
6 /;,2
0+ NI
n N n A
K K" q, K - —_
coshE cosh—- = ;sinhgﬁ, sinhl1> 0
/ K2E£"2 SV Qﬁi&
arise, and we have
2R =y 152 cosh@ 2ApN = y* + i N1~ cosh™ . N2/

c
This choice would obviously yield some operators s(x;q), different from
s(x;q), their matrix elements being
m,ys;Kkls(x;g)mT,y*k®> =
/NV1.3/

= (@2M3 el-"- ~ HYf(m,m";y,y";(k-k")2 , gk, gk*, q2),

where
411F(m,m" ; (k-k )2 - (y—y')2c2)6(y+E/52Acosh— - y" - —/K "2 cosh™ )=

/NI .4/
= f(m,m";y,y";(k-k")2 , gk, gk~, g2).

and cosh?:, cosé? are gixeqxby formulas like /VI.1l/ except that k, k* and g

must be substituted for k, k" and q, respectively. The comparison of egs.
/V1_.1-4/ and /V.21-23/ shows, together with /V.2/, that

<m®,y";k"|Is(x;q)Im,y;k>*=<m,y;;k]s(x;q)m",y,;;k*> ,
that is,

s(x:q) = s+(x;q) ® s(x;q)

b. The presence of the auxiliary momentum g in s(X;cp 1iIs the most surpris-
ing result of the previous sections, and needs some explanation. We stress,
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that it is related with the remark we made in Sect. 1l. concerning the IML

of the transitivity sets. Namely, that while the two sets (Oa, s(xXA + a)o™)

and (0~, s(xA + a)0g) are the same in the ordinary reference frame, if

0~ = u(a,A)0a, 0~ = u(a,A)0g, they may be completely different in the IMF. i
Indeed, it iIs easy to see, that the operators s(x;q) with various q are related
with the various choices of the fixed transverse momentum p /c.f./VvV.7// for
the transitivity sets <m",p"|s(xXA+a)|m,p> . Similarly, the matrix elements
/V.21/ of s(x;q) form a one-parameter set from the point of view of g, since

they depend only upon — ~ — , and are independent of the angle between
(-g2)1/2
and K .
qx “X

c. It is an obvious arbitrariness in the definition of the operators s(x;q)
that gz < 0 was chosen. There is no a priori reason for this ghoice, q2 > 0
would also be possible. It seems to us, that, /at least for q > 0/, an alter-
native form of IMF physics emerges in this case. We are going to discuss it in
more details in a forthcoming paper. We only mention here, that for c*, that

is, in the "nonrelativistic"” limit, eq, /V.21/ yields

Iim <m®,p";k"[s(x,q)Im,p;k> =

C-l-oo

22y 52 2

o] m’ +k? m-+K
= @n expi{t(——-- = - —————— ) + x (K" - K )}, /V1.5/
2p-*

, 2U0E(m™,m; - (5J'L - 5X)2)6(p-p')/

if p>0, p*> 0. /The variables m, m*, vy, vy", K , K", g and a2 are kept fixed,
when the limit ¢* is evaluated./ The right haaé s?ée éf eq- @VI-S/ coincides
with Susskind®s result in the Galilean case of contraction [7] . Therefore, the
results presented in Sect. V. can be considered as the "relativistic"” genera-
lization of the Galilean matrix elements. /A more complete discussion of the
limit ¢*° when either of p and y" 1is negative will be discussed elsewhere./

d. In the contraction schemes we had the parameter X > 0, which was postu-
lated to be arbitrary. From this a specific scaling property of the matrix
elements follows. Namely,

<m® ,p ";k" Is(x;q) Im,p k> = X*<m®, k™ [Is(x"q) |r,p” ;k1> /VI.6e/

if the following set of relations fulfills!
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n n N
<mTL,y"iKTIs(x;aQ)Im,yik> = <wtL,yTrkTle(xN;q) [T,y k>,

A n n
<m®,yi; KTIs(xWQ) W ,px; kK*> = <T°,y"; K"Is(X"4:9) I,y ; k1>

the coordinates and momenta, respectively, being related by

q = (0,0, 7-92),

[ /,9 + %c° + ° 0 p (c/m2+ 20% + K*, 0 )
= = K
K (c/m y c Ky ,K{), 1 7] 17 0 KD
k®* = (c™""2 + y"2c2 + k2, k"), k* = (c/C"2 + ¥{2€2 + K"Z, KY),
X X ~X
xn = (t", xx), it~ = . 4y = g,
n n
k{ = k", g = 1" K = JIK, K" = JIK" ,
t = X"t",
. 142 2 2 2% _ 1477 2.2 *2°
XEy+C4r + y“c +kj) y1+c/u1 + yy¢ + ¥ ,
nNe(y" + =/172 + Y,2c2 + K"2)=_y" + i/m"2+ 2c2 + K"2 .
Sy c X ) 1y c y 1 X
e. So far it is not clear how to calculate the matrix elements Tfor vacuum

transitions. We complete eqs. /V.21-23/ by defining

<O Is(x;qQ)m,y,k> = lim <KT",Ky",KK" |s(X;qQ) |m,y;k>.
k+o

It follows, that

<O Is(x;q)Im,y;k> 0.

Evidently, the statement, common in the literature, that the absence of vacuum
transitions indicates the non-relativistic symmetry of the theory in the IMF,
is unjustified.

f. In this paper we iInvestigated the properties of a scalar current in the
IMF. The same arguments can also be used for vector currents, jJ~N(x), apart from
that in place of s(x)dt the quantities
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/N1

(SS9
-

47 ee(JQQCO + J3(X)) + Nc2e ? (A ~ J3(xX)) dE,
and

*& 2000 - J3X) - ~2 e5ox) + j3x)) = /V1.8/
4Xc

are suitable for the transformation into the IMF. As a result, one arrives
at a "vector current” j(x; q) and a "scalar current” s(x;q), corresponding
to /V1.7/ and /V1.8/, respectively.

7 . SUMMARY AND OUTLOOK

In this paper the transformation properties of "semi-integrated”
quantities, such as s(x)dC, in the IMF are systematically derived. Our guide
in the course of the investigation has been, that it is actually a group
contraction problem which must be solved. Having in mind that the group con-
traction is non-unique, we have dealt with a one-parameter family of contrac-
tions. The parameter, denoted by c, distinguishes Galilei and Poincaré type
transformation groups of 2+1 dimensional Euclidean and Minkowski spacetimes,
respectively. The actual value of c seems to be of dynamical origin.

In order to derive the transformation properties of s(X)df in
the IMF we have described the contraction of the 3-Poincaré group together with
the contraction of its representation on the /generalized/ function space of
all matrix elements of s(x)dC. In this function space we introduced "transi-
tivity sets', obtaining thereby a mapping between the basis functions /the
matrix elements between momentum eigenstates/ of this space, and the elements
of the 3-Poincaré group. The contraction of the representation space has been
performed essentially by requiring a similar mapping between the elements
of the contracted group and the basis functions of the contracted space. As a
result, the operators s(x; q) have appeared in the IMF. They are defined via
their matrix elements, /V.21/.

In practical applications one usually needs the IML of one given
matrix element, which can always be considered as the initial element of a
transitivity set /belonging to the unit element of the actual symmetry group/.
Therefore, it is justified to make the identification:

5T N1 2Ne expi y(x°+x3)(p -p )+ X (E"-£ ) F(m",m;(p-p™)2)6(p"-p ) =
T T X X XJ - -

00

N/

<m® ,y ,KIs(x; qQ)lIm,y, k> ,
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if p_ =i ¢+ &  cosh™M)en, = y-(y" + § cosh” )er,

X® + X3 = 2T teC-

Equation /VII1.1/ forms the bridge between the conventional and our methods
for calculating the IML of a matrix element.

The value of our enlarged framework for the IML calculations, and its
physical content can be learned only from applications to explicit problems,
which is out of the scope of this paper. A rather natural idea is, that series
expansion of quantities, calculated in the 2-Poincaré framework, with respect

to powers of reproduces the old results in the zeroth order, and gives
c

corrections” to them in the higher orders. Such a programme will be performed

for deep-inelastic scattering in a separate paper.

ACKNOWLEDGEMENT

The author thanks Drs. W.Lassner, EI. Mihul, K.Szegé and Prof. A.
UhlImann for valuable discussions and remarks.

REFERENCES

[1] H-Bacry, N.P.Chang, Annals of Phys., £7, /1968/ 407.

[2] L-Susskind, Phys. Rev., 165, /1968/ 1535 and 1548.

[3] K.-Téth, Nucl. Phys.B, 92 /1975/ 524.

[4] E.InbnG, E.P.Wigner, Proc. Nat. Acad. Sei. USA, 3V, /1953/ 510.

[5] S-Weinberg, Phys. Rev., 150, /1966/ 1313.

[6] L-Susskind, in 1968 Boulder Lecture Notes in Theoretical Physics,
Ed. K ._Mahanthappa /Gordon and Breach, N.Y., 1969/.

[7] J-Kogut, L_.Susskind, Phys, Reports, 8, /1973/ 75.












Kiadja a Kozponti Fizikai Kutaté Intézet
Felel6s kiad6: Pintér Gyorgy, a KFKI
Részecske és Magfizikai Tudomanyos Tana-
csanak szekciodelnoke

Szakmai lektor: Huszar Miklds

Nyelvi lektor: Perjés Zoltan
Példanyszam: 350 Torzsszam: 76-651
Készult a KFKI sokszorositd lUzemében
Budapest, 1976. julius ho



