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ABSTRACT
The motion of a spinless particle with electric charge e around 

a magnetic charge g is considered in the quasiclassical approximation. It is 
shown that the requirement of spherical symmetry leads to the Dirac quantiza
tion condition eg = j hn with an arbitrary integer n. For odd values of n 
the total angular momentum is half integer multiple of Ti.

АННОТАЦИЯ

Рассматривается движение бесспиновой частицы заряда е вокруг маг
нитного заряда д в квазиклассическом приближении. Показано, что требование

1 1сферической симметрии приводит к условию квантования Дирака — eg = hn где 
п произвольное целое число. Когда п нечетно полный момент импульса системы 
равен полуцелому значению h.

KIVONAT
Spinnélküli е töltésű tömegpont mozgását vizsgáljuk g nagyságú mág

neses töltés terében félklasszikus közelítésben. Megmutatjuk, hogy a gömb
szimmetriát megkövetelve az eg = hn Dirac-féle kvantumfeltételre jutunk, 
ahol n tetszőleges egész szám. Amikor n páratlan, a rendszer teljes impulzus- 
momentuma a h félegészszerese.



Dirac^^ showed that in quantum mechanics the peaceful coexistence
of a magnetic charge g and an electric charge e is possible only if the
product of the charges is quantized according to the rule ^ eg = ^ tin.
Recently it has been widely recognized that when n is odd the total angular
momentum is equal to a half integer value of ft in spite of the fact that
the system is described by some one component wave function, i.e. does not

(2-4 )have spin degrees of freedom v '. On the other hand, doubts have been 
expressed^5 as to whether odd values of n are actually allowed or not.
The decision depends on a rather involved integrability condition of the 
Lie-algebra of three complicated operators with angular momentum commutation 
r u l e s T h e  answer is a ffirmative^^, i.e. the original quantization 
condition of Dirac with an arbitrary integer n has been justified. Neverthe
less, the study of the problem in the quasiclassical limit seems instructive. On 
this level no mathematical subtilities arise but, instead, physical assump
tions become crucial.

In order to concentrate on the angular momentum quantization a kind 
of spherical pendulum will be considered instead of a free electron, moving 
in the field of a magnetic monopolé. It differs from the ordinary spherical 
pendulum in that the moving point mass m possesses an electric charge e (O)
while the center of the pendulum has a magnetic charge g. As it is known'1 , 
in this case a constant angular momentum of the magnitude ^ о = ^ eg acts 
along the radius. We assume that it points toward the center.

The classical free motion of this "magnetic spherical pendulum" is 
completely determined by the conservation of the total angular momentum J 
/Fig.l/ which must satisfy the condition

J > 5' d)

Since ia = Jcosa, the angle a is constant during the motion. The mass point  ̂ / 2 therefore, moves along the circle of radius CP = rsina = r /1 - 7—t . The4 J ̂
magnitude of the orbital angular momentum is L = mrv and the relation

1 1 2  1 2  1 2  Lsina + ~ acosa = J gives E = ■=■ mv = ---~ (J - т о ).z  ̂ о—  ̂ 4
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Let us introduce a Z axis through the center. The relation

J > (2)

is obviously satisfied. When |JZ | = the orbit crosses the Z axis. When |Jz|>^o the 
Z axis intersects the plane of the orbit inside the circle, while for |j z |< ĉr 
the intersection occurs outside. In this latter case the azimuthal angle cp 
does not perform complete revolution but rather oscillates within an interval 
less than it. The ordinary spherical pendulum does not possess this type of 
free motion, since it moves always on main circles.

All these features of the motion are incorporated into the angular 
part of the Hamiltonian given in^1  ̂ which up to a constant term can be written
as

j2< « ' W  - p2„ - Z H l
Ф

sin 9
a 2 ö a2 2 9 , a2
2 Sec а'Рф + —  ^  2 + T (3)

Here Ф,Р.„ and d,P4 are canonically conjugate pairs. We take this expression Ф о 2 1for the Hamiltonian, assuming that the moment of inertia mr = — . Computing
9 from (3) as a Hamiltonian through the canonical equations one can explicitely
verify that the motion it describes is indeed identical to that discussed
above. Therefore, (3) can be taken for the Hamiltonian of the magnetic spherical
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pendulum. For future use we notice that = ~ J ' r = & xmflz “ \ \ can
be expressed through the canonical variables as

a.

Quantization requires knowledge öf a solution of the Hamilton-Jacobi
equation. Introducing new canonical variables and P by x = cosd, P„=-P /l-x^/ . -v x c x
we can rewrite (3) as' '

J2 (x,P .Pj = Ф
x cp' l-x‘

+ (l-x2)P2 p + si lz2 + °1.1+x cp 4 1+x 4 (4)

We seek the solution 3(х,ф) of the Hamilton-Jacobi equation

T2 / as as ч 2 J (x' ai' a^ = J = const*

in the form S = P m  + K(x) where P = const. Substituting this into (4),
dK ^ ^solving for ^  and integrating we get

K<*> - i * (5)
2 i-y

where

R(x) = a + bx + cx2 (6)

with
a = 4(J2 - PI + Рфа - § а2) 

b - 2а(а - 2Рф) 

с = -4J2

The motion in х is an oscillation between the limits xm^n and xmax 
which are the roots of the equation R(x) = 0. The inequalities (1) and (2) 
are just all conditions under which R(x) = О has solutions in the interval 
-1 < x < 1.

The formula (5) can be transformed into
1

x-1
1

x+1
К (x) = 2J A iL

/R(y) (Jz + !)2 A *L
Jk '(у )

(Jz - 2-\‘ 
2 )

__§2L___
/R"(y)

(7)
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х/where R'and R" are also expressions of the form ' (6) with

b ' = b + 2c 
c' = a + b + c

b" = b - 2c 
c " = a - b + c .

The integration of (7) gives

2c'—— +b' 2c"~— +b"
К (x) = -J arcsin — x4~ + -̂ |j„ + i a|arcsin ---— ---- - | |j„"0 | arcsin2 Z 2 /-Е 2 1 Z 2 ^Д~

where Д - 4ac-b .

Let us denote the argument of the arcsin functions by ф (x) , ф ’ (x) , ф" (x) 
respectively. It is straightforward to verify that

ф(х ) = ф'(х . ) = ф"(х , ) = -1

ф(х . ) = ф'(х ) = ф"(х ) = +1.min' Y 4 max' r 4 max'

This means that the change of all three arcsin functions during the full period 
of the x motion is equal to 2n in magnitude. Taking into account the sign, 
we have for the full change of K(x) the expression

ДК = 2tt [j + |(|JZ + |a|-|Jz - |о|Д. (8)

Let us now turn to the quantization. The method of Einstein,
(9-11) xx/Brillouin and Keller will be adopted 4 '. According to this procedure

the expression E 6 Prd^r is to be quantized where the summation is over 
the degrees of freedom. The contours are taken on an extended configuration 
space /"invariant torus"/, consisting in general of several sheets chosen 
in such a way as to make the momentum a single valued vector space. All the 
possible contours are divided into classes so that contours within a class 
can be continuously deformed into each other. Then the quantization condi
tion is applied to an arbitrarily selected contour from each class. A 
characteristic feature of this procedure is that in general quantum states

x/ The prime does not imply differentiation. (12)xx/ The E.B.K. method has recently been employed in4 '
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cannot be identified with appropriately selected classical motions. Rather, 
to each quantum state there corresponds a whole family of classical orbits, 
and the magnetic spherical pendulum is a simple but striking example of this.

First we review briefly the familiar case of the ordinary spherical 
pendulum /а=0/. The contour integrals which are to be quantized are с^Р^Ф 
and <j>Pxdx. For the first we have

^ P̂ dcp = hm. (9)

Since P^ is a constant of motion this leads to

Рф = hm. (10)

For the second integral we have to take into account the oscillatory 
behaviour of the coordinate x. According to^"^, the quantum condition has to 
be assumed in the form

|pxdx = h(fc + -|)f

where a is the so called "caustic index". In the present case it must be 
taken equal to 2, corresponding to the fact, that the velocity becomes zero 
twice within a period. Therefore

<j>Pxdx = h A  + §)•

Now, since P„ = , the contour integral is equal to ДК.X о X о X
Putting in (8) a— 0, we have

J = h(f + (11)

The kinematical conditions (l) and (2) imply l > О and |m| <l.SL= ij-i 
is the total angular momentum quantum number in the sense, that the correct 
/поп-semiclassical/ value of the angular momentum is A (Я+1). Since A (£+1)=
=£+  ̂ + O(^) we see that the quasiclassical method gives correct results in 
the limit of large quantum numbers.

Let us turn now to the case of о > 0. Equation (10) remains true 
but instead of (11) we get

J + Í (|JZ + Ia H JZ " 2a|) = + (12)

Again, the total angular momentum quantum number j must be identified
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with |kj - Using this notation, (12) can be written as

J = < £ - Jjjtl z

a - 1 a
2 ti

if

if

if

JZ - " 2
a a
2 - JZ - 2

Si v
It may be seen that for a general value of о/ft the quantization has 

violated rotation symmetry. Indeed, let us select a particular value A for
j such that A > . For some arbitrary Л we have a quantum state in which the
Z 2 1 a

total angular momentum quantum number is j=£ ~ 2 ti’ ^  sys -̂eIn -*-s ^ N a 
tionally invariant we must have for Jz = -A also a state with the same total 
angular momentum j as before. But this is possible only if for the arbitrary 
1 an integer l' can always be found such that the relation Я - j = £' + 'J^ 
holds. This requires 0 /ft to be equal to an integer n which is just the Dirac 
quantization condition. If this condition is fulfilled the quantum states 
can be arranged in multiplets with a given j and Jz = m - ^ running from -j 
to +j. Within such a multiplet Я does not remain constant. This reflects 
the fact that the canonical angular momentum |[r x p]| is not an integral of 
motion.

For odd /even/ values of n j is half integer /integer/. The kinema- 
tical conditions can be written as j > ^, j > |m - ^|. States, violating 
these inequalities, must not be taken into account.

We see that it is the spherical symmetry which plays the role of the 
quantization condition for 0. Without this requirement not included authoma- 
tically into the E.B.K. quantization conditions the total angular momentum 
j would have remained unquantized.

Let us now remember that on many of the classical orbits ф oscillates 
within a range smaller than it. One might suppose that for these orbits modified 
quantization condition with the caustic index a=2 should be used. However, 
the configuration space must be cut into sheets and, 
accordingly, a nonzero caustic index has to be chosen only if otherwise the 
momentum would not be a single valued function of the coordinates. This is 
certainly not the case for a conserved momentum like P . We, therefore, have 
to retain the quantization condition of P^ in the form of (9) but stress on 
the difference between the contour of integration in (9) and the orbits in 
the actual motion.
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We note finally that the possibility for j to take half integer 
values can also be expected on purely physical grounds on the basis of the 
physical completeness of quantum mechanics. The point is that the magnetic 
spherical pendulum can be imagined without involving magnetic monopoles.
To this end we assume that the rigid rod,' keeping the point mass at the 
constant distance from the center, is made from a ferromagnetic material which 
is magnetized. We retain the idealizations /the proper degrees of freedom 
of the rod can be ignored/ usually made. Now, since the electrons are half 
spin particles, -j a can take the value hn with an arbitrary integer and 
the quantum number j can be both integer and half-integer. If quantum mechanics 
is physically complete it must cover all these cases. But the Hamiltonian 
(3) is independent of the way the pendulum is realized. Therefore, the real 
existence of half spin electrons ensures that in the Dirac quantization condi
tion n may be an arbitrary integer.

The author is indebted to A. Frenkel and J. Kuti for critical reading 
of the manuscript.
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