
F 5o
j ^ K F K I-7 6 -1 1

L. V A R G A

THE ABSTRACTIONS OF MACHINE DEPENDENT
PROGRAM FORMS

JS /fi f fPRgj

1 kOíVTVtXR̂ M
Ч^ЦглтО ■

EHungarian ‘Academy of Sciences

C E N T R A L
R E S E A R C H
I N S T I T U T E F O R
P H Y S I C S

B U D A P E S T

2017

KFKI-76-11

THE ABSTRACTIONS OF MACHINE DEPENDENT PROGRAM FORMS*

L. Varga
Central Research Institute for Physics, M.T.C. Division

H-1525 Budapest, Box 49

*Presented at the colloqium of Institut für Informatik, Universität
Stuttgart, 1975

ISBN 963 371 111 8

ABSTRACT

The Vienna Definition Language /VDL/ may be used for defining the
common, machine independent structure and meaning of machine dependent prog
ram forms. In this paper an abstraction of a subclass of the relocatable
binary forms is specified by a structured model of an abstract linkage
editor, which can be regarded as a proposed standard. The structured model
is given in VDL and its correctness is proven.

АННОТАЦИЯ
Венский язык определения семантики/VDL/ можно использовать для

определения общих, машино-независимых характеристик машино-зависимых форм
программ. В данной статье определено машино-независимая абстракция класса
перемещаемых двоимных форм с помощю структурного алгоритма абстрактной
программы редактора связи. Это еще можно изпользовать, как стандарт опре
деленных типов перемешаемых двоимных форм. Мы задаем доказательство правиль
ности данной структурной модели.

KIVONAT

A Bécsi Definiciós Nyelv megfelelő módosítással felhasználható a
géptől függő programformák géptől független közös jellemzőinek definiálá
sára. Ebben a tanulmányban az áthelyezhető bináris formák egy osztályának
géptől független absztrakcióját definiáljuk egy absztrakt szerkesztőprogram
strukturált algoritmusával. Ez bizonyos tipusu áthelyezhető bináris formák
szabványaként is számításba jöhet. A tanulmány tartalmazza a megadott
strukturált modell helyességének a bizonyítását is.

1. INTRODUCTION

The program forms, according to their intended purpose, can be
grouped into three categories:

- source language forms,
- internal program forms,
- machine code forms.

Their concrete representations are known as machine dependent program
forms.

The source program form has to serve the programmer’s comfort.
For this reason most programming languages are problem oriented. The
problem oriented programming languages contain only a few machine
dependent elements. Therefore they can be easily defined in a machine
independent way. On the other hand, machine oriented languages have a
lot of machine dependent elements. Therefore these languages in gene
ral are specified in terms of concrete computers.

The internal program forms are created by translators or other
system’s programs for further processing. Such program forms are for
example the wellknown relocatable binary or the absolute binary forms.
The specifications of these program forms are also given in terms of
concrete computers.

The machine code forms are created for direct execution or in
terpretation. They have the most machine dependent characteristics,
and they are defined in a- machine dependent way.

One can give an abstraction of a concrete program form of a given
computer. On the other hand, it is also possible to study abstractions
of subclasses of one of the three program forms mentioned above. For
example, there can be constructed an abstract model of the assembly

2

languages of different machines. This type of abstraction contains the
common, machine independent structure and meaning of the elements of a
given subclass. We intend to discuss the abstraction in this sense.

The importance of this kind of abstraction is supported by the
followings:

1. The abstraction - like that of the high level languages -
makes the standardization of machine dependent program forms also
possible. In this case a concrete program form can be respected as an
implementation of the standard form.

2. The standardization of the program forms facilitates the
development of translators and other system programs in a machine in
dependent fashion, down to the lowest possible level. Such a system
program can be easily implemented on different computers.

3. The abstraction is of great importance when teaching system
programming. It helps the student to grasp the common features of similar
program forms.

The operational meaning of a program can be formally defined in
two wellknown ways:

- by an interpreter,
- by a translator.

We use the latter method. Assuming that the meaning of the machine code
form is given, the meaning of the rest of the program forms can be de
fined by means of translators. For example, according to the systems
existing in practice, for an assembly language we can construct two
abstract translators, namely an

- abstract assembler, and an
- abstract linkage editor.

The abstract linkage editor deduces the semantics of the abstract
relocatable binary form to the semantics of the abstract machine code.

The abstract assembler defines how the abstract assembly form

- з -

can be translated into abstract relocatable binary form.

The meaning of abstract machine code form can be defined by an
abstract interpreter. But the semantics of the machine code form may
be defined on a number of different levels. On the lowest level the
meaning of a machine code form is an algorithm for computing values
resulting from the execution of the program on its input data. On higher
level, however, these activities involve functions, which are executed
by the operating system. Thus the abstraction of the machine code form
leads to the abstractions of algorithms existing in operating systems.

The abstract models - like the formal definitions of high level
languages - can be specified using the Vienna Definition Language,
which can be extended as so it is suitable for the formal description
of all the systems programs.

From the machine dependent program forms, a formal description
of a certain family of assembly languages was given in [A-] . In this
paper an abstraction of a subclass of the relocatable binary forms is
specified by an abstract linkage editor, which can be regarded as a
proposed standard. This standard specifies, first of all, the common
characteristics of linkage editors existing on mini computers.

A structured model of the abstract linkage editor is given
using three decision levels. The abstract syntax and semantics of the
relocatable binary program segment and statement are specified on the
first, second and third decision level respectively.

An excellent tutorial treatment of linkers and loaders can be
found in [5]. The present paper is supported by these results.

For the discussion of the Vienna Definition Language see for
instance [1], [2], [3] .

2 . ABSTRACT LINKAGE EDITOR

The linkage editor is responsible for linking the relocatable
binary segments together to form a complete program and transforming
it into absolute binary or machine code form. These two functions can
be specified separately or together. In the first case linking is
carried out after translation but before load time. This method is
called indirect loading. Linking can be carried out along with the
loading too. This method is known as direct loading. Only indirect
loading will be discussed here.

As it is known, a linking process can be accomplished in one
or two passes. From theoretical standpoint the one and two pass linkers
are equivalent. Only the abstraction of a one pass linkage editor is
described here.

It is supposed, that the modules of the program are loaded in
the main memory one by one without gaps, and each module occupies a
continguous area.

Definition 0.1. The state of an abstract linkage editor is determined
by the following VDL object:

is-state = (<s-input:is-r/b-library>,
<s-output:is-bin-program>,
<s-table:is-G-table>,
<s-basis:is-integer>,
<s-rest:is-stmt-list>,
<s-control:is-control>)

where the immediate components are further detailed by definitions
0.2-0.5.

Axiom 0.1. The r/b-library is a set of r/b segments, where each
r/b-segment can be selected by its name:

is-r/b-library = ({ < s :is-r/b-segment>Iis-segment-name(s)})

- 5 -

Axiom 0.2. A binary program is an ordered, set of statements. Each
statement specifies the deposition of an absolute value to an absolute
address. The value is an integer. In terms of VDLs

is-bin-program = is-abs-stmt-list
is-abs-stmt = (<s-address:is-integer>,

<s-value:is-intege r>)

Axiom 0.3. The r/b segments communicate with each other by global
names.

Definition 0.2. The G-table contains an entry for each global name.
An entry specifies the value of the corresponding global name. The
value of a name may be definite or indefinite. The definite value is
an integer.

is-G-table = (í<Cs: is-value> I is-global-name(s)})
is-value = is-integer v is-undefined
is-global-name = is-name

Definition 0.3« A global name having a definite value is called
predefinite name. Let be

predefined(n) = is-integer(n(s-table(£))),

whe re

is-narne(n) = TRUE.

A global name having an undefined value is called postdefinite
name. Let be

.postdefined(n) = is-undefined(n(s-table(£))),

where

is-name(n) .= TRUE.

- 6 -

Axiom 0.4. The basis is an address in the main memory, from which the
current r/b-segment is to be loaded. It is an integer:

is-integer(s-basis(§)) = TRUE.

Definition 0.A-. The statements of the r/b-segment, which contain post-
definite names are stored in a VDL list waiting for the value of the
names. The component s-rest(f) containes these statements.

Definition 0.5. The component s-control(|) contains the control tree
during the translation.

Definition 0.6. The initial state of the abstract linkage editor
consits of the following objects:

a) The r/b-library contains all the r/b-segments to be processed.
b) is-<>(s-output(^o)) = TRUE.
c) The G-table contains all the root names (see definition 1.2) of

the program as postdefinite names, that is if

n 6 s-table(fo) ,

then
postdefined(n) = TRUE.

d) The component s-basis(^) contains the address of a memory area
available for the program.

e) is-<>(s-rest(fo)) = TRUE
f) s-control(fo) = link-program

Decision leve 1 1 ,
Syntactic definition
Axiom 1.1. The r/b-program is a connected set of r/b-segments. The
connections are estabilished by global names. An r/b-segment contains
at most two kinds of global names:

- entry name,
external name

- 7 -

Accordingly, an r/b-segment has three components:

- a list of entry names,
- a list of external names,
- a code part.

In terms of VDL:

is-r/b-program = ({<s:i s-r/b-segmentM is-segment-name(s)})
is-r/b-segment = (<s-entries:is-entry-name-list>,

<s-externals:is-external-name-list>,
<s-code-part:is-code-part>)

is-entry-name = is-name
is-external-name = is-name

Axioms 1.2, 1.3» 1.4 (see below) are postulated.

Definition 1.1, If

is-r/b-program(p) = TRUE, t̂ fe p, t2 fcp, (t^tg)

and

(3i)(3 j)(elem(i)(s-externals(t1)) = elem(j)(s-entries (t2)))

where

and

lé i á length(s-exte rnals(t̂))

1 — 3 — length(s-entries(t2)) ,

then wa say that t̂ refers to t^ by n and write

h " ‘■‘г •
where

n = elem(i)(s-externals(t^)).

- 8 -

Definition 1.2. If

is-r/b-program(p) = TRUE, fe p,

and there exists at least one n such that

n = elem(i)(s-entries(tj) ,

where

i*£ length(s-entries(t^))

but there exists no t^ and j pair for which t^ £ p and

elem(i)(s-entries(t1)) = e lem(j) (s-externals(t^)) ,

then the name n is called root-name and the r/b-segment t̂ is said to
be a master segment:

is-root-name(n) = TRUE ,
is-master(tj) = TRUE.

Definition 1.3« If

is-r/b-program(p) = TRUE,

and

t
n
-->

ti €p, i=l ,2,... ,k,

then we say that there exists a reference path from t to t, in p, orI К
t, is accessable from t,. It is written as follows: к --------------- 1

t 1 - -> * t, к

Axiom 1.2. If

is-r/b-program(p) = TRUE, t^£ p,
length(s-externals(t^)) ^ 0
n = elem(i)(s-externals(t)),

' (
where

1̂ - i ̂ length(s-externals(t^)) ,

then there exists just one t? ep, where t -n> t

- 9 -

Axiom 1.3. If

is-r/b-program(p) = TRUE,/
than

(3t e p)(is -master(t) = TRUE)

Axiom 1 .4-. If

is-r/b-program(p) = TRUE, t fcp,

and

is-rnaster(t) = FALSE,

then

(3 m)(m— > *t) ,

where

is-master(m) = TRUE.

The orem 1.1. If

is-r/b-program(p) = TRUE, t £p,

then

s-entries(t) / < >

Proof. If is-master(t) = TRUE, then the statement follows from Defi
nition 1.2. Otherwise, Axiom 1.4. states that there exists a t* which
refers to t and therefore s-entries(t) /<>.

Semantic definition

Definition 1.4. Let

postdef(x), /is-G-table(x) = TRUE/

be a function such that if

n = postdef(s-table(£))

then

10

postdefined(n) = TRUE

wheneve г

(s{is-undefined(s(s-table(|)))} / 0 ,

and

pos tdef(s-table(f)) = NIL

otherwise.

Informally, the function postdef applied to the G-table furnishes
a postdefinite name, whenever such a name exists, and furnishes the
object NIL otherwise.

Definition 1.5. Let

segment-name(x), /is-name(x) = TRUE/

be a function such that

is-segment-name(segment-name(x)) = TRUE

and

(3 i)(e lem(i)(s-entries(t)) = x) ,

where

t = segment-name(x)(s-input(f)).

Informally, the function segment-name applied to a global name x
furnishes the name of the segment that contains x as an entry name.

Assumption 1.1. Let us supposes that the macro

process-segment(t). /is-r/b-segment(t) = TRUE/

executes the following processes in due succesion:

a) Each entry name of t gets value using the value s-basis(^). At the
same time the entry name in question becomes predefinite in the
G-ta’ble.

b) Those external names of t which have no corresponding element in the

G-table, are entered as postdefinite names into the G-table.
c) The code part of the r/b-segment t is translated into an appropriate

absolute binary form using the value s-basis(|).
d) The basis value of the next r/b-segment is calculated.

Axiom 1.5. Linking r/b-segments together to create a complete binary
program means the application of the macro

process-segment(t)

to each r/b-segment of the given r/b-program in arbitrary order.

Theorem 1.2. The following program links the r/b-segments together,
and forms a complete binary program, which is defined by the initial
state .

link-program =
postdef(s-table(I)) = NIL -> null
T link-program;

process-segment(a) ;
a:next-segment(b);

b;next-postdef-name

next-postdef-name =
PASS:postdef(s-table(|))

next-segment(n) =
PASS:segment-name(n)(s-input(^))

Proof. Let us prove that the control tree is reduced to the instruction
null if and only if the linking procedure has been finished.

If condition: let us suppose that all the r/b-segments of the
given r/b-program have been processed by the macro

process-segment

Then all the names of the r/b-program have been entered to the G-table
either as a root name or as an entry name or as an external name.

12

The root names become predefinite as a result of processing the
master segments.

The entry names were set predefinite in the G-table by definition.

From Axiom 1 .4-. it follows, that each external name is defined as
an entry name in another r/b-segment of the given program. Thus pro
cessing this r/b-segment made the external name in question predefinite.

Hence, when all the r/b-segments of a given program have been
processed, the G-table contains only predefinite names and the control
tree is reduced to the instruction null.

Only if condition: let us suppose that the control tree has been
reduced to the instruction null. Then the G-table does not contain any
postdefinite name. But in accordance with definition 0.6/c, when starting
the process, the component s - t a b l e (d o e s contain postdefinite names,
that is the root names of the program.

Now let us consider the algorithm to be proven.

1. Clearly, the instruction next-postdef-name always furnishes a post-
definite name if the G-table contains such a name at all.

2. The instruction next-segment always selects that r/b-segment, which
defines the value of the name furnished by the instruction next-
-postdef-name.

3. Finally, the instruction process-segment is always carried out.

This procedure is repeated until the G-table does contain any
postdefinite name. Hence, when the G-table does not contain any post-
definite name, all the master segments must have been processed. But
in this case, all the segments accessable from one of the master
segments also must have been processed. Since all the segments of the
program are accessable from at least 'one master segment, all the segments
of the program also must have been processed. This completes the proof.

13 -

Decision level 2,

Syntactic definition

Axiom 2.1. The code part of the r/b-segment consists of:

- a set of label definition statements, which specify the values
of the entry names defined within the segment,

- an ordered set of load statements, which specify the data to
be loaded and their memory addresses,

- the length of the segment in memory.

Formally:

is-code-part = (<s-labe1-def:is-label-def>,
<s-code-def:is-stmt-list>,
<s-length:is-intege r>)

is-label-def = ({<s:is-integer>|is-name(s)})

Semantic definition
Assumption 2.1. Let

process-stmt(t) , /is-stmt(t) = TRUE/

be a macro, which processes the load statement t in the following way:

a) The load statement, that does not contain any postdefinite name is
translated into an ppropriate load statement of absolute binary form
using the values of the predefinite names and the actual basis.

b) The load statement, that contains postdefinite names is preserved
for a later process /see definition O.A-./ transforming it into an
intermediate form, such a way, that it does not contain anymore the
actual basis as unknown parameter.

u,
Lemma 2.1. Let be

is-data-list(l) = TRUE

then the

н -

process-data-list(l) =
length(l) = 0 — » null
T — » process-data-list(tail(. l)) ;

proces s-data(head(l))

algorithm executes the instruction process-data exactly once for each
element of list 1.

Proof« This results from the definition of the functions "head" and "tail".

The orem 2.1, The following program executes the process specified by
assumption 1.1.:

process-segmentCt) =
process-code-part(s-code-partCt));

process-externals(.s-externals(t)) .
process-entriesC s-entries(t),s-code-part(t))

process-entriesCltt) =
length(l) = 0 — > null
T — > process-entriesCtail(l),t);

set-table(head(l),head(l)(s-labe1-def(t))

set-table(n,v) =
s-table :/i(s-table();-<Гп :у >)

process-externalsCl) =
length(l) = 0 — » null
T — > process-externals(tail(l));

process-ext(he ad(l))

process-ext(n) =
is-integer(n.s-table(^)) — > null
T — » set-table(n,undefined)

' л/undefinede is-undefined/

process-code-part(t) =
update-basis(s-length(t));

process-stmt-list(l);
delete-rest;

l;pass(s-code-def(t)^-\s-rest(f))

15 -

pass(t) =
PASS:t

de le te-rest =
s-rest:< >

process-stmt-list(l) =
length(l) = 0 — » null
T — fr process-stmt-list(tail(l))

process-stmt(head(l))

update-basis(v) = ,
s-basis:s-basis(I)+v

Proof. Let is-r/b-segment(t)=TRUE. By lemma 2.1 clearly the macro

process-entries(s-entries(t),s-code-part(t))

executes the statement
в

set-table(n,n(s-label-def(s-code -part(t)))

for each entry name n defined by t. Therefore the assumption 1.1./a
is realized.

Similarly by lemma 2.1. the macro statement

process-externals(s-exte rnals(t))

realizes assumption 1.1./b.

Obviously the assumption 1.1./с could have been reduced directly
from lemma 2.1., assumption 2.1./a and assumption 2.1./b taking into
consideration the algorithm of

process-stmt-list(s-code-def(s-соde-part(t))r>s-rest(£))

Clearly the assumption 1.1,/d is realized by

update-basis(s-length(s-code-part(t))).

Finally, we have to proof, that the order in which the statements
are given is proper. Obviously the order of the execution of the state
ments

- 16 -

process-entries
process-externals

is arbitrary. But the statement process-entries uses the actual basis
value and therefore its execution has to precede the execution of
statement process-code-part. Similarly, the execution of process-stmt-
-list also has to precede the execution of statement update-basis#

Decision level 3.

Syntactic definition

Axiom 3.1» A load statement of the r/b-segraent contains an address and
a data component:

is-stmt = (<s-address:is-address>,
<s-dataJ is-data>)

where

a) An address may be an absolute address or a relative address.The latter
is an expression which contains the segment basis as a parameter:

is-address = (<s-type:is-type>,
<s-value:is-value>)

is-type = is-abs v is-b-rel
is-value = is-integer v is-expression

b) A data, which is to be loaded may be
- an absolute value,
- an expression containing the segment basis as parameter,
- an expression containing an external name as parameter,
- an expression containing an external name and the segment basis

as parameters.

Formally:

is-data = (< s-type:is-d-type>
<s-value:is-d-expression>)

is-d-type = is-abs v is-b-rel v is-ext-rel v is-b-ext
is-d-expression = (<s-basis:is-name>,

<;s-expression:is-expression>) v is-expression

17 -

Semantic definition

Definition 3.1» Let

dalculate(n,e)

be a function, that calculates the value of the expression e using the
value n of a global name.

* Definition 3.2. Let
evaluate(b,e)

, be a function, that substitutes the actual basis value b for the ex
pression e. (The result may be an integer or an expression which con
tains a global name as parameter.)

Theorem 3.1« The process specified by assumption 2.1./a and 2.1./b
is realized by the following algorithm:

process-stmt(t) =
process-data(s-data(t),a);

a:process-address(s-address(t))

process-address(t) =
is-abs(s-type(t)) — ► PASS:s-value(t)
T — ► PASS:evaluate(s-basis($) ,s-value(t))

process-data(t,a)
is-abs(s-type(t))— » translate(a.s-value(t))
is-b-rel(s-type(t)) — *

translate(a.evaluate(s-basis(f),s-value(t)))
is-ext-rel(s-type(t)) — *

process-exp(a.s-basis.s-value(t),s-exp.s-value(t))
T— ► process-exp(a.s-basis.s-value(t),

evaluate(s-basis()?),s-exp.s-value(t))

translate(a.v) =
s-output: s-output(f) r\}*.0 (< s-address: a>,

<s-valu6: v>)

18 -

process-exp(a,n,e) =
is-integer(n.s-table(|)) — p

translate(a,calculate(n.s-table(f),e)
T — > set-rest(c,d);

c:pass-address(a),
d:pass-data(n,e)

set-rast(c,d) =
s-rest: s-rest(̂)о</д0(< s-address: c>,<s-data: d>)>

pass-address(a) =
PASS:yu.0(<s-type : abs>,<s-value : a>)

/abs в is-sibs/

pass-data(n,e) =
P A S S : (<s-type:ext-re1>,

<s-value: ̂ (<s-basis:n>,<s-expression: e>)>)
/ext-ra 1 é- is-a"xt-ra 1/

Proof. Lat is-strat(t) = T. By definition 3.1 the macro

process-address(s-address(t))

passes the "a" absolute address of the value to be loaded to the macro

process-data(s-data(t),a).

If one of the followings holds:

- an absolute value is to be loaded,
- an basis relative value is to be loaded,
- a predefinite name relative value is to be loaded,
- a relative value calculated by using a predefinite name

and the actual basis is to be loaded,

the statement translate is activated by process-data. Obviously the
actual parameters of the statement translate have appropriate values.

If the data expression has a postdefinite name as a parameter,
the statement set-rest is executed. It is easy to see that appropriate
parameters are passed to it by pass-address and pass-data. Similarly
the correctness of the statements translate and set-rest also obvious.

19 -

3. ELEMENTARY OBJECTS AND PRIMITIVE FUNCTIONS

Tha abstract model contains several objects which are not defined
further. These are regarded as elementary objects. The elementary
objects of our abstract model meet the following predicates:

is-segment-name
is-globa1-name
is-integer
is-expression
is-undefined
is-abs
is-b-rel
is-ext-re1
is-b-ext

The abstract model does contains some undefined functions too.
They are called primitive functions of the abstract model. These are

postdef(x)
segment-narae(x)
calculate(x,y)
evaluate(x,y)

The specification of these elementary objects and functions stands
outside the scope of an abstraction. They are to be specified when a
concrete relocatable binary form is deduced from this abstract model.

The primitive functions "calculate" and "evaluate" can not be
specified without the specification of the elementary objects, while
the functions "postdef" and "segment name" can be realized by a search
algorithm. However, a search algorithm is closely connected to the
concrete realization of the program form and therefore they are not
discussed here.

20

4. REFERENCES

[1] Lee, A.N,: Computer semantics.
Van Nostrand Reinhold Co, (1972)

[2] Neuhold, E.J.: The formal description of programming languages.
IBM System Journal 10, (1971)

[3] Wegner, P.j The Vienna definition language.
Computing Surveys (1972)

[A] Dömölki, В.: Simple abstract assembler model.
Mathematical foundations of computer sciences.
Proceedings of symposium and summer school, Strbske
Pleso, 1973.

[5] Presser, L., White, J.R.: Linkers and loaders.
Computing Surveys (1 972)

i

é

к

с /7 /7

• I

f

Kiadja a Központi Fizikai Kutató Intézet
Felelős kiadó: Sándory Mihály igazgató
Szakmai lektor: Lőcs Gyula
Nyelvi lektor : Lőcs Gyula
Példányszám: 310 Törzsszám: 76-110
Készült a KFKI sokszorosító üzemében
Budapest, 1975. február hó

