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ABSTRACT
The earlier renormalization group treatment of a one-dimensional 

Fermi gas model is extended to a system of weakly coupled chains. The coupling 
is a Coulomb type interaction between electrons on different chains, no 
interchain hopping is allowed. This system may have a phase transition to a 
charge density wave state. The charge density waves on the neighbouring chains 
are in phase or opposite phase depending on the sign of the interchain coupling. 
No phase transition to a superconducting or antiferromagnetic phase is obtained 
in the present approximation.

АННОТАЦИЯ

Обобщен метод группы ренормировок, разработанный для исследования 
модели одномерного газа фермионов, для изучения слабо-связанных нитей. Связь 
осуществляется кулоновским взаимодействием электронов, однако перескок 
электронов не допускается. В такой системе может иметь место фазовый пере
ход в диэлектрическое состояние. Волна плотности заряда на соседних нитях 
имеет одинаковую или противоположенную фазу в зависимости от знака связи 
между нитями. В исследованном приближении не возникает фазовый переход ни в 
сверхпроводящее ни в антиферромагнитное состояния.

KIVONAT
Az egydimenziós fermion gáz modellre kidolgozott renormálási csopor

tos tárgyalást általánosítjuk a gyengén csatolt láncok esetére. A csatolás 
a különböző láncokon levő elektronok közötti Coulomb tipusu csatolás, az 
elektronok láncok közötti átugrása nincs megengedve. A rendszerben lehetséges 
egy fázisátalakulás egy sürüséghulIámmal rendelkező állapotba. A sürüség- 
hullám a szomszédos láncokon azonos vagy ellentétes fázisban van, a láncok 
közötti csatolás előjelétől függően. Az adott közelítésben sem szupravezető, 
sem antiferromágneses állapotba való átmenet nem adódik.



1. INTRODUCTION

The recent interest in the behaviour of quasi one-dimensional systems 
is due to a large extent to the discovery of high conductivity of some TCNQ 
salts'*’. These salts undergo a phase transition to an insulating state at 
low temperatures. This transition could be interpreted as a Peierls transi
tion, although the situation is not cleared up yet. Similar behaviour has

2been observed in KCP .

The Peierls transition is a typically one-dimensional effect. The 
abovementioned systems are in fact formed of one-dimensional chains of atoms, 
the interchain distance being much larger than the distance between atoms in 
the same chain. Therefore at first sight the interchain coupling can be 
neglected and the system can be considered as strictly one-dimensional.

There were many attempts to account for the behaviour of these
systems starting basically from two different models. In one approach^  ̂ the
electron-phonon coupling is considered either in mean field approximation
or the fluctuations are also taken into account by using the Ginzburg-Landau
functional. In another approach only the electron-electron interaction is
studied and the electron-phonon interaction is treated as an effective
electron-electron coupling. Both electron-electron and electron-ion interac-

11 12tions were considered simultaneously by Levin et al. ' There is a wide 
variety of mathematical methods which have been applied and exact results 
have been obtained in special cases only'*'0 .

Since it is known that there is no phase transition at any finite 
temperature in strictly one-dimensional systems with short range interaction, 
the experimental findigs can be accounted for only if interchain coupling 
is also considered. Indeed, almost all of the abovementioned approaches were ex
tended to the quasi-one-dimensional case. Considering the electron-phonon 
system it is natural to assume that the electronic spectrum is one-dimen
sional, the phonon spectrum is, however, nearly isotropically three-dimen
sional and therefore induces a three-dimensional coupling. Such a system was 
studied by Rice and Strässler'*"'*, Gutfreund et a l ^  and Bjelis et al^"’. Another
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possible extension is to suppose a nonplanar Fermi surface'*'®. The work by 
5 17Lee et al was extended by Dieterich to investigate a system of weakly 

coupled linear chains.

The problem of electron-electron interaction has also been extended
I О

to include interchain couplings. Gorkov and Dzyaloshinsky considered both
Coulomb type interaction and hopping between the chains. The exact solution
of Luther and Emery10 was used by Klemm and Gutfreund1  ̂ to calculate the
effect of interchain coupling in mean field approximation. Another approximate

20treatment of the interchain coupling was given by Schuster extending the 
equation of motion method.

Our model for the system of weakly coupled linear chains falls 
into this last category, where only electron-electron interaction is considered. 
The approximation scheme corresponds to an extension of the treatment by

■I О
Gorkov and Dzyaloshinsky taking into account, however, not only the parquet
diagrams but next to leading logarithmic corrections as well. This can be
achieved by using the renormalization group method as developed by Menyhárd 

7 8and Sólyom ' for the strictly one-dimensional case. In this treatment, 
however, only the Coulomb type interaction will be considered. No hopping 
will be allowed between the chains.

In Section 2 we describe our model and define the generalized 
susceptibilities in terms of which the behaviour of the system will be inves
tigated. The renormalization group treatment of the model is briefly presented 
in Section 3, and the Lie equations of the group are solved in Section 4. A 
self-consistent solution is obtained which shows a phase transition to a 
charge density wave state. The results are discussed in Section 5.

2. THE MODEL

The system to be considered consists of a set of weakly interacting 
linear chains, which are strictly one-dimensional. The electrons can travel 
along the chains only and no interchain hopping is permitted. Therefore the 
electrons will be labelled by an index i which refers to the ith chain. The 
coupling between the chains is due to a three-dimensional Coulomb type 
electron-electron interaction. It can also be considered as a phonon or 
polaron mediated effective coupling between electrons on different chains.

The Hamiltonian of such a system can be written generally in the form

H HI
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/3/

where С., (C., ) is the creation /annihilation/ operator of an electronlka lka' c
on the l chain with momentum к and spin a, (k^,k2,k3) is the coupling
constant and L is the length of the chains. All the momenta in these expres
sions have components along the chains only and the kinetic energy of the 
electrons depends also only on this parallel momentum component.

Instead of this quite general form of interaction we will use a more 
restricted form by assuming that the interaction cannot transfer electrons 
from one chain to another and also spin exchange processes will be neglected. 
This amounts to taking i=m and j=£. Supposing furthermore that the interac
tion is important only for electrons around the Fermi surface within an energy 
range of width 2wD and taking into account the one-dimensional character of the 
energy spectrum, the electrons can be classified into two classes. The group 
of electrons with momentum around +k_ and the other group consisting of

Г
electrons with momentum around -k„ will be distinguished by denoting the

Г
corresponding operators by a^ and b^, respectively. Two types of interaction 
will be considered, with and without exchange of electrons between the two 
groups. The corresponding momentum transfer parallel to the chain direction 
is nearly 2kp or 0.

Under these assumptions the interaction part of the Hamiltonian can 
be written - by a straightforward generalisation of the Hamiltonian of Ref.
7 - in the form

int
1
L ij klfk2,k3 (gii3 3 ikla ЬЗк2е a3k3ß bik1+k2-k3a + 

aß

+ g2ij aik3a bjk2ß bjk3ß aik3+k2~k3a^' ^ ^

where g... and g .. are the coupling constants of the backward and forwardJ- X 3 z 13
scattering, respectively. They depend on the distance between the chains 
i and j. These interactions are shown diagrammatically in Fig. 1, where the 
continuous and dotted lines denote the two types of electrons. Fig. 2. shows 
some other possible interaction processes which are neglected in this treat
ment. They include the Umklapp processes and spin exchange scattering.
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In order to investigate the possible phase transitions in this 
system the temperature dependence of three generalized susceptibilities was 
studied. The appearance of charge density waves, spin density waves and Cooper 
pairs is related to the divergence in the charge density, spin density and 
Cooper pair fluctuations, respectively. The temperature dependent response 
functions can be obtained in turn by the analytic continuation to the upper 
a) halfplane of the correlation functions

1/T
, iw x iq(R.-R )

N(k,q,w ) = - dxe Z e 3 •
‘ ii

/5/

. < Т^{ Z
T a

c+ (t) c. _ (t) z ^ c + J0(o)c. , fi(o)} >,2tt ipav ' rp+ka4 . 2n jp'3 7 jp'-k3v3

1/T

X(k,q,wv ) = -
iu)4iT iq(R.-R^) 

Z <
ij

dxe v E e 1 3
/ 6 /

• < Tt { } 2^ Cip+^t  ̂ С1 р + к + ^  , 2^ Cjp'+^°^ Cjp'-ki^°^} >7

1/T
C id) T c .

д(ш ) = - dxe v Z < T { C. . (t) С, I(t) .4 v7 J x J 2i ip+v 7 i-p+v 7

[ |E'c+ ,.(o ) C+ ,,(o )} > .J 2тг :-p'tv dp »

/7/

Here ш =2irvT, к denotes the momentum component parallel to the chains, and
q is the perpendicular component. The vector R. is also perpendicular to the■L thdirection of the chains and gives the position of the i chain.

The singularity in N and x will first appear at к=2кр and therefore 
only this special value will be considered. The frequency variable will be 
fixed for similar reasons to io=0 after analytic continuation. The remaining 
variables are the temperature and the perpendicular momentum component q. 
Depending on whether the divergence shows up first at q=0 or at a finite 
q=Q /probably at the zone boundary/ the ordering between the chains will be 
in phase or in opposite phase.
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3. RENORMALIZATION GROUP TREATMENT

The interacting Fermi gas model of a single one-dimensional chain
7 8has been previously studied by Menyhárd and Sólyom ' using the renormaliza

tion group approach. It was shown that this method enables us to consider 
successively leading and next to leading logarithmic corrections, the first 
order renormalization being equivalent to the parquet approximation. The 
second order renormalization led to the disappearance of the unphysical pole 
of the parquet approximation and gave qualitatively good results fox* the 
low temperature behaviour of the system.

18The parquet approximation has been used by Gorkov and Dzyaloshinsky 
to study the behaviour of a system of weakly coupled chains. They have shown 
that in this approximation without interchain hopping there are two possible 
solutions of the problem. One is the so-called "standing pole", the other 
is the "moving pole" solution. The first one is a straightforward generaliza
tion of the solution of the parquet equations for the strictly one-dimensional 
case. Since the pole in this latter case is an artifact of the approximation 
and disappears in second order renormalization, it is expected that the 
physical case will correspond to a "moving pole" solution. Because we consi
der part of the non-parquet diagrams as well, the physical picture which 
arises from this calculation is different and we hope that it gives a better 
insight into the physics of quasi one-dimensional systems.

Similarly to Ref. 7, the renormalization of the coupling constants 
g ^ j  and g2ij is determined from the requirement that the dimensionless Green's 
function d and the dimensionless vertices .. K , . defined by the relationsJ.1J/ Z l J ,

G = G^°) d. / 8 /

(ij£m) 
1 aßyS g . , . Г . . . 6 бох 6 . . Ó .  ^lxj lxj ay ßo x£ jm g2ij r2ij 6ctő 6ßy 6im 6j£'

/9/

be multiplicatively renormalizable under a scaling of the cut-off energy 
Шр. Denoting by x any energy-like variable, such as ш, vk or T (kß=l), it is 
supposed that

g2ij> * Zd < S7 ’ glij' g2ij>' / 10 /

^  ( ^  ' gii3 ' g2ij} " ZIij \ i j ( ^  ' 91±j» g2ij> / 11/
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r2ij ( J  ' 9íij' g2ij) Z2ij 1 2ij ( 9lij' g2ij> / 12 /

-2g' = g. , . Z Z. . . yli;j 1ÍD lij /13/

-2g l . . = g~. . Z Z_ . ..42ij ^21] 2i] /14/

These relations have been checked in perturbation theory up to second 
order and it is easy to show that they can be satisfied with multiplicative 
factors Z, Z-Qj an<l Z2ij depend on the scaling factor w^/cOp and the
bare coupling constants but do not depend on x. The new couplings are called 
invariant couplings. The Lie equations of the group are the differential 
forms of these scaling equations.

Introducing the dimensionless couplings by the definition

Ylij
Ilii2nv 2ij = g21i2ttv /15/

where v is the E’ermi velocity, the Lie equations for the invariant couplings 
can be written - after a straightforward perturbational calculation of the 
Green's function and vertex - in the form

£ Ylik Ylkj + Ylij <Y2ij " Y2ii> + rlij[YIii(Y2ij-Y2LL) +

+ 2
r2ik Y2ik /16/

3Y 2 i i = Ylij,(1 + У ш ) + 2 £ Y Í^(Y2
r lik' 21 j Y2k j ̂ + /17/

where £ = ilnfui^/Wp). The second order terms on the right hand sides of 
eqs. /16/ and /17/ are the same as in the analogous equations derived by 
Gorkov and Dzyaloshinsky for the vertex in parquet approximation. The 
additional third order terms in our equations come from the next to leading 
logarithmic corrections. It should also be mentioned that only in parquet 
approximation are the invariant coupling and vertex equal. In our approxima
tion the invariant coupling contains also corrections from self-onoigy dingi'.
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The invariant couplings as defined here have no temperature depen
dence. We can, however, formally replace f, = i.n(<Op/wD) by £ = £n(T/<oD) and 
define a temperature dependent invariant coupling. The reason is that when 
the temperature dependence of the response functions is studied, the argument 
of the invariant coupling, /oiR should be replaced by T / in the appropri
ate Lie equation. It is in this sense that we will speak about the temperature 
dependence of the invariant coupl ng.

Eqs. /16/ and /17/ form an infinite set of equations which is gener
ally unsoluble. Even if the bare coupling is limited to nearest neighbour 
chains, the renormalization procedure generates an effective coupling between 
chains at arbitrary distance, and it becomes impossible to follow the change 
of all the couplings. It is expected, however, that near Tc, where the three- 
dimensional ordering sets in, the range of the effective coupling goes to 
infinity and the invariant coupling becomes independent from the distance.
With this assumption we can get a self-consistent solution of the problem, 
as it will be shown.

Assuming that the invariant couplings are independent of the distance,
Y, . . = у, and у... = у., eqs. /16/ and /17/ simplify to' lij '1 2i] 2 1 r

3Y
-g-jr = 2N(y  ̂ + y J + ...) /18/

or

2N

/19/

/ 20 /

where N is the number of chains. This shows that in this special case the 
coupling constant of backward scattering is renormalized much stronger 
than that of the forward scattering. Even in a less extreme case eqs. /16/ 
and /17/ show that starting 'from a weak coupling case, the backward scattering 
renormalization is stronger because mediated couplings via a third chain will 
also contribute.

We will therefore assume that the forward scattering can be neglected 
compared to the backward scattering and the Lie equation for the invariant 
coupling Yj^j can be written as
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/21/

It is more convenient to work in Fourier space with

- i q ^ - R j )
/ 22 /

where the vector q is perpendicular to the chain direction. In the Fourier 
transformed form the Lie equation reads

The aim of the renormalization group treatment is to study the response 
functions N, x and A of eqs. /5/ - /7/, using their expressions in terms of 
the invariant coupling. Similarly to the strictly one-dimensional case, Lie 
equations can be derived for the auxiliary quantities N, x and A only, which 
are related to the response functions by

A straightforward perturbational calculation of the response functions

/23/

/24/

x(q,C) = 2ttv ^ /25/

/26/

leads, after having neglected the forward scattering Y2ij' to t*le following 
Lie equations:

/27/

l^ X -lar У /28/
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= 2 5 1 Yi(q') + 2 ^ 1  Yi(q') + ... /29/
q' q' ■

Knowing the temperature dependence of the invariant coupling, the 
integration of these equations gives the temperature dependence of the 
response functions.

4. SELF-CONSISTENT SOLUTION
First the invariant coupling has to be determined from eq. /23/.

We will try to find a solution for Y^Cq) supposing a form Y^Cq^Jfiq). It is 
expected physically that the range of the interaction and therefore the q 
dependence of the invariant coupling varies with temperature in the course 
of renormalization. This means that both J and f(q) have to depend on £•
The Lie equation /23/ can be separated into two equations

3J(C)
~ 5 T ~ = 2J3(C)^ E f2(q4) + J ( 0 h ( 0 ,

Ч'
/30/

= 2J(0f2(q,0 - h(0f(q,0, /31/

where h(£) is an arbitrary functions of £. Without loss of generality the 
terms with h(£) can be neglected. They correspond in fact to a renormaliza
tion of J and f(q).
Introducing the quantities

j ' ( 0 = j ( 0 g ( e )  and f'(q*0- f(g»0/g(e) /32/

where g ( 0  is related to h(£) by

1 dglH = 
W )  d? -h(C) /33/

these quantities obey equations

< 4 4 0<15 2J'3(C) i I f'2(qU),
N q'

3f*(q.O
5t 2J'(f:)f'2(q,C),

/34/

/35/

and Y^(q) = J'f'(q), So we will work with eq. /34/ and /35/, neglecting the 
prime on J and f(q).
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These equations can be written in a more convenient form if a new 
function a(£) is introduced by the definition

= -2J (О  . /36/

Then we get from eqs. /34/ and /35/

d J M  = -j2 (a)i j f2(q»ci),
q

3f(q>a)3a =-f2(q,a).

/37/

/38/

The solution of eq. /38/ can be written in the form

f(q,a) 1
w(q)+a(c) ' /39/

where w(q) is independent of E, and is determined by the bare couplings. Let 
us suppose that the dimensionless bare coupling Y°(q) has a minimum at q=Q 
/if there are several local minima we take the absolute minimum/ and denote 
the minimum value by Jq (Jq = Y°(0))- Then the bare coupling can be written 
as

о
w(q)+l /40/

It follows from the above choice of Jq that w(Q)=0 and w(q)>0 
around q=Q. Comparing this form with eq. /39/ and keeping in mind that 
the renormalization procedure starts from the bare value of the coupling 
at £=0, the boundary conditions for the solution of the Lie equations are 
given as

JU=0) = Jq/ a(£=0) = 1. /41/

Starting from any bare coupling, i.e. knowing JQ and w(q) and 
using eq. /39/ for f(q,a), eq. /37/ can be solved to obtain J in 
terms of a. Once the dependence of J on a is known, the dependence of a on 
C and thereby the dependence of J on £ can also be obtained from eq. /36/.

Looking at eqs. /36/ - /38/ the following general remarks can be 
made. If Jq is positive, which implies that (w(q)+l) 1 is also positive, since 
Jq is the minimum value of Y^(q)# the renormalization procedure leads to a 
decrease of both J and f(q) as a function of £ as £ goes from zero to negative 
values /as the temperature decreases/. Our assumption that the coupling 
constant of the backward scattering is strongly enhanced is not valid.
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In this case, however, the parquet approximation gives good results, since 
the coupling is small. This situation is not interesting physically since at 
low temperatures it leads to a decoupling of the chains.

The physically more interesting case is when Jq < 0. We have to 
distinguish two regions in q space, the region where (w(q)+l)  ̂ > 0, i.e. 
the region around the minimum at q=Q, and the other region where (w(q) + l) ‘*'<0.
In the first region the renormalization procedure leads to an increase of 
f(q,C) with decreasing temperature, while in the other region f(q,£) decreases 
in absolute value. Since J itself decreases in absolute value during the 
renormalization, a divergence in the invariant coupling or a strong enhancement, 
which may lead to a phase transition, can only be expected for q near to Q.

We will now consider some special cases for the bare couplings, 
i.e. for w(q). A mathematically particularly simple and physically meaningful 
form for w(q) is

w(q) = 
к̂

/42/

This corresponds to a bare coupling which decreases with distance /for a 
one-dimensional array of the chains this falling-off is exponential/. The 
solution for J(a) is j

if d*2Г

i « 0id( f " 1)_1 (“d/2‘1 - D
J(a) = <

1+J I..ina O 2

/43/

if d=2

where

_ /кач d Г ddx
d  (5i) i /44/

d is the dimensionality of the lattice formed by the chains /d=2 for a real 
three-dimensional system/ and a is the lattice constant.

The invariant coupling = Jf(q) can be obtained from eqs. /43/ 
and /39/ in terms of a. In order to determine the dependence on £ we use eq. 
/36/. The relation between a and £ is obtained in the form
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= <
1 г  1- “ 2 L s ;  -

- • * О  -l— n

Ida
d/ 2-1 d/2-1 . -i ot -1

d/2-1 Jdj2 + Id

]
where

c = i (-L2 VJО

12 + I2Äna + Cc

f  ^

+ 5 for d^2

for d=2

/45/

/46/

For J <0 the renormalization leads to a decrease of a from a =1 о о
to a=0, which is reached at 5=5 . The corresponding temperature is denoted 
by Tc,

£c = £n(Tc/u>D) Tc = uD exp i ~ f Id) • /4^/
О

Tc is the transition temperature in this model. When a reaches zero, f(q)
becomes infinity at q=0. It is true that at the same time J decreases in
absolute value, but the invariant coupling Y^(q) = Jf(q) itself is divergent
at 5=5 • This is easily seen if we write eq. /43/ for J in terms of 5“? in c c
the form

J =
-2« - E c> « a  a  -d '2 '

/48/

and therefore

Yi(q) =
1 - 2 ( 5 - 0 « ,  1 »d '2 ^  «

/49/
’c' d d a

From eq. /45/ it is seen that for a < < 1

5-5 = < a £n ac
d/2

for d > 2 

for d = 2 

for d < 2

/50/

d/2and therefore a 1 goes linearly with 5~Cc or faster and near 5C we can write

Yi(q) “ c q2
/51/
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)

2 2where к ( Q  = к et(£). This shows that the invariant coupling diverges at Tc 
and its range, which is given by the inverse of k (£), goes to infinity.

The behaviour of the model for d=l is shown in Fig. 3. Starting 
from an exponentially falling-off attractive interchain coupling, the renor
malization leads to an increase of the range of the coupling and finally at 
Tc the effective interchain coupling becomes independent of the distance 
between the chains. It should be mentioned here that Y ^ j  itself does not
diverge, it is only y1(q=0)= £ у,-• which is divergent.I i l l ]

This tendency manifests itself under more general conditions as 
well. As it was mentioned already, an enhancement of the invariant coupling 
can be expected in that region of q space where y^(q) is negative. It follows 
from our definition of J and w(q) that in this region w(q)>0. y°(q) has a 
minimum at q=Q and here w(Q)=0. In the same way as above it is easily seen 
that a is renormalized down to zero and the invariant coupling diverges at 
q=Q when the temperature is scaled down to T .

To illustrate this behaviour, we consider now the cases where the 
bare couplings are attractive or repulsive nearest neighbour couplings. The 
intrachain coupling is neglected for the moment. Fig. 4. and 5. show the 
bare couplings in real space and in Fourier space for d=l and also schemat
ically the invariant coupling ne>ar C=Cc- For attractive nearest neighbour 
coupling the minimum of Y°(q) is at q=0. The renormalization leads to a 
long range attractive coupling between the chains. On the other hand in the 
case of repulsive nearest neighbour coupling the minimum of y^(q) is at the 
zone boundary Q = + тг/а. The divergence of the invariant coupling appears 
at this value of q, and this leads to a long range alternating coupling 
between the chains.

The intrachain coupling can be taken into account very easily since it only 
means an additional constant in y°(q). If the intrachain coupling is repulsive 

> 0) and larger than the sum of the first neighbour interchain couplings, 
/j(q) is always positive and the Invariant coupling decreases. For attractive 
intrachain coupling the above described consideration holds and the type of 
ordering is determined by the nearest neighbour coupling.

Knowing the behaviour of the invariant couplings we turn to the 
indy of the response functions. Near the transition point 1/N Y y^(q) can

• ■ 241 • neglected compared to y.(q) near q--Q and compared to 1/N Xyt(q). We see
q 1! hen l ore from eqs. 12 11 - /29 / that the behaviour of \(0) and Л will be

similar, while N(Q) will behave differently.
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It follows from these equations and from eq. /30/ that

3tny _ ЭЛпД _ 1 /r„ ,
3J Э J J 1 1

from which we get

X(5) « Ä (C) - J(C) /53/

It was shown that the renormalization leads to a decrease of J(£) when 
5 goes to £c, so x and A are not singular. The response function x(£) and 
A(£) can also be obtained using the definitions of x(£) and A(£) in eqs. /24/ 
and /25/. Combining the equations

Э х Ш  cc 3A(C) e J( n  

and eq. /36/, we get

X(£) « A(5) « <*(£)

/54/

/55/

Since a(£) is renormalized down to zero when £ goes to £c x(£) and A(£) 
are non-singular, indicating that the transition is not of magnetic or 
superconducting type.

On the other hand the density-density response function obeys the
equation

3fcnN(qf&>. = 4J(5)f(q,£) + 2J2(C)i T. f2(q,4) + •••
q' /56/

2
f(q,5)

3f(q,S) , 1 9J(Q
H  J(C) И . . . = ^tnj(^)f2(q,C) + . . .

From this we get

N(q,E) « j(C)f2(q,C) /57/

and the response function itself is

N(q,0 « f(q,5) /58/
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As we have seen f(q,C) diverges at q=Q and this is an indication 
of the formation of charge density waves with perpendicular momentum Q, the 
parallel momentum component being 2К? . If Q-0, the charge density waves on the 
neighbouring chains will be in phase, while if Q is at the zone boundary, 
the charge density waves are in opposite phase on the neighbouring chains.

5. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the behaviour of a system of 
weakly coupled linear chains. It is supposed that the coupling is due to electron- 
-electron interaction. The interchain hopping of electrons is not allowed and 
therefore the electronic spectrum is strictly one-dimensional. The second order 
renormalization of the renormalization group approach is applied to study 
the temperature dependence of the invariant coupling and the character of 
the three-dimensional ordering. The most important results of the calcula
tion is the possibility of the occurrence of a charge density wave state.
According to our results no magnetic or superconducting ordering is allowed 
in this model.

The physical picture which arises from our calculation is as follows. 
Starting from a short range interchain coupling far from the transition point, 
an effective coupling develops between the chains as the temperature is 
lowered and the range of the effective interaction increases. At the transi
tion temperature all the chains are equally coupled independent of the distance 
between them, i.e. the range of the interaction diverges at Tc - In our approxima
tion the interchain coupling itself does not diverge, it is only its Fourier 
transform which diverges at a given value of the perpendicular momentum.

Instead of giving a full solution of the second order renormaliza
tion equations, a self-consistent solution has been found supposing that the 
backward scattering is strongly enhanced due to the renormalization and the 
small momentum transfer interaction remains small relative to the backward 
scattering. Due to this assumption only the asymptotic behaviour of the system 
near T^ can be studied. The exact trajectories in the space of couplings 
cannot be determined to a given set of bare couplings. Nevertheless the 
following general conclusions can be drawn. Supposing first neighbour coupling 
only and assuming that the interchain coupling with large momentum transfer 
is stronger than the small momentum transfer interaction, an attractive coupling 
between the chains leads to the formation of charge density waves which are 
in the same phase for all the chains. On the other band a repulsive interac
tion gives rise to a situation where the phase of the charge density waves 
on the neighbouring chains are shifted by и. A strong interchain repulsion 
can modify the situation and above a critical strength no phase transition
w i 11 occur.
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The numerical values for the temperature dependence of the coherence 
length perpendicular to the chains and of the response functions should not be 
taken seriously, since the dimensionless coupling constants tend to unity and 
the higher order corrections are not negligible. We feel that this self- 
-consistent solution is physically acceptable and clearly shows how the ordered 
phase sets in.

Our results can be compared to the calculations of Gorkov and 
Dzyaloshinsky^ and that of Klemm and Gutfreund^ who have treated the same 
model but in a different approximation. Gorkov and Dzyaloshinsky have used 
the parquet approximation, which corresponds to taking the second order terms 
only in eqs. /16/ and /17/. They have found that the interchain coupling is a 
relevant perturbation and the one-dimensional fixed point solution is not 
stable. Their solution for the system of weakly coupled chains shows up a 
Peierls type transition if no interchain hopping is taken into account. With 
interchain hopping superconducting state is also possible. Similar result 
has been obtained by Klemm and Gutfreund. They have treated the intrachain 
coupling exactly and the interchain coupling as small perturbation in mean 
field approximation. The conclusion is that the nearest neighbour interchain 
electron-electron scattering gives rise to a phase transition of the charge 
density wave type. Superconducting type phase transition can only occur if 
hopping is also considered. These results are in agreement with our finding, 
that in our approximation as well, only charge density wave state can appear 
if the motion of electrons is restricted to a single chain.

Our starting Hamiltonian is a straightforward generalization of the 
strictly one-dimensional Fermi gas model^. Another generalization has been

2itreated by Menyhárd assigning a new component index to the electons. This 
component index can be interpreted as a chain index thus it is of some interest 
to compare the results. In Ref. 21 the interaction between electrons having 
different component indices is constant and of o(^/n), where n is the number 
of components. In our language this means that the interchain coupling is of 
infinite range. For temperatures near Tc a procedure which starts from a 
bare coupling which is already of infinite range is justified. In agreement 
with our results, taking only the type of interaction shown on Fig. l.b of 
Ref. 21 a CDW type phase transition is obtained in the n-*-°° limit.
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FIGURE CAPTIONS

Fig. 1. Diagrammatic representation of the large momentum transfer g^^ and
small momentum transfer g_.. interactions. The dotted /solid/ lines2ij
correspond to electrons with momentum around -кр (+kp).

Fig. 2. Diagrammatic representation of interchain hopping and Umklapp processes.

Fig. 3. Schematic representation of the bare and renormalized couplings in 
real and Fourier space for exponentially decreasing interchain 
interaction.

Fig. 4. Schematic representation of the bare and renormalized couplings in
real and Fourier space for attractive nearest neighbour interaction.

Fig. 5. Schematic representation of the bare and renormalized couplings in 
real and Fourier space for repulsive nearest neighbour interaction.
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