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ABSTRACT

The incoherent scattering of light by a volume of gas can be
treated by classical methods in a straight forward manner. Certain dif-
ficulties are pointed out in the wave mechanical treatment
problem and a solution of the difficulty is proposed.

of the same

AHHOTAUMA

HeKorepeHTHoe paccedHne cCBeTa B ra3ax MOXEeT ObITb paccynTaHo npo-
CTbIM o6pa30M Knaccnmyeckumm metogamu. [loka3biBawTCcA TPyAHOCTKN, BO3HUKaWne
npn paccMoTpeHunn aTon Hp06ﬂeMH B CBETe BOJIHOBOIA MEXaHUKU WU npegnaraeTtcsd

mMeToda AONnA YyCTpaHEeHUA 3TUuX prAHOCTEﬁ-

KIVONAT

A fény inkoherens szorédsa gazokban a klasszikus médszerekkel
egyszerlen szamolhatd. Megmutatjuk ennek a problémanak hullammechanikai
targyalasaban fellép6 nehézségeket és javaslatot teszink azok megoldaséara.



INTRODUCTION

The passage of a beam of light through an optical medium can be
treated classically supposing the atoms of the medium to be point oscil-
lators. The incident beam produces thus forced oscillations. Each atom is
thus under the influence of the field of the primary wave and that of the
fields produced by the oscillators. Interference between the primary field
and that of the oscillators produces the field of the refracted beam.

More precisely if the atoms are sufficiently regularly distrib-
uted and their distances are very small as compared with the wave length
X of the incident beam then we obtain as the result of the interaction
thus described the beams which are also obtained from classical optics.

If the atoms are irregularly distributed as e.g. iIn the case of a gas -
then the radiation of the field produced by the atoms has an incoherent
component spreading into all directions which is caused by the density
fluctuations; the latter process is the Rayleigh scattering. The intensity
of the scattered radiation depends on the measure of the density fluctua-
tions and thus this intensity can be made use of to determine the number
of scattering centres thus to determine Loschmidt®s number L.

It is an interesting problem how the scattering of the radiation
by an ensemble of atoms can be treated iIn accord with wave mechanics. The
difficulty arises if we suppose /as this was elaborated in more detail in
a previous publication/ that the atoms of a gas inside a container are
bound to spread about uniformly over the region of the container. Regard-
ing wave mechanical treatment of the problem we have thus to expect that
the superposition of the /spread out/ wave function of the atoms of the
gas produces density fluctuations which are equivalent to those which arise
from the random positions of point atoms. The scattering of the incident
beam in the wave mechanical picture is thus obtained as the scattering on
a continuous medium the density of which shows fluctuations more or less
equivalent to the density fluctuations of a gas expected from the classical
picture based on the kinetic theory of gases.

The problem is, however, by no means trivial. So as to show the
problematics we give first a short account of the classical theory of
Rayleigh scattering using a method developed by us in an earlier publica-



tion”™ . We give this derivation firstly because it leads to the correct
results in a comparatively simple manner but also because this method can
be employed successfully in the wave mechanical treatment of the problem.

CLASSICAL THEORY OF RAYLEIGH SCATTERING

Consider a volume of gas containing N atoms. Suppose an elec-
tromagnetic plane wave with electrical field strengths

E(r,t) = Ercos (k r - oot + () /v

to fall upon it. An atom in a position r” at the time t* will have an
induced dipole moment

nrjt*) =ke’cos k r° - oot" + ) /2/
where H is the polarizability of the atom* and
6h = - @

the phase shift between the incident field and the forced oscillation de-
pends on the frequency @ and also on the nature of the atoms.

The radiation field of the atom in a point r at t has an
electrical field strength which is in a good approximation

sy(s*Eq 38
E(r=;r,t) 3 m cos(ks™~ oot™ + ()
S A2
s=r -r" t*'=t - s/c /3/
If the N atoms of the gas are placed in points r*=r ~ , r™,_.._.r/N?
then the total field in a point r at t can be written
N
E(rot) = | E(r(n);(.,© 4/
n=1

In the expression /4/ we have taken into account only the action of the
outer field upon the atoms of the gas. In. an exact treatment it would be
necessary to take into consideration also the action of the radiation fields
of the N atoms upon each of the atoms.

W _______________________________
The polarization K is ment to be the effective polarization which is af-

fected by the known depolarization effects of the ensemble of atoms. We
shall return to these questions in another publication.



If we consider the radiation energy from a gas we can neglect
the effect of this interaction upon itself except in the region of the
primary beam and of those secondary beams which we expect from classical
optics. As can be seen as the result of the more detailed analysis the
self-interaction is responsible for the extinction of the part of the
primary beam which otherwise would come out of the medium and for the
production of the refracted and reflected beams. The latter considerations
are, however, unimportant for our purposes.

So as to obtain the fluctuations of intensity of the radiation
field let us divide the volume of the gas into M >> N cells 6r™m
m=1,2,..,M. The cells should be so small that most of them contain no
atom about, N cells contain one atom and those which contain more than
one atom should be negligible in number.

Using this subdivision we can write in place of /4/

M
E(r,t) = ~"E”~, " r,t), /5/
m=1
where
C} if the m-th cell contains an atom
if the m-th cell is empty.
r is the, coordinate vector of the atom inside 63r . Introducing a

density distribution p(r*) so that
Np(r®) 63r = 6n(r-) /6/

is the approximate number of atoms in 63r" then the sum /5/ can be re-
placed by an integral and we have

E(r,t) =N J p(r*)E(r®; r,t) d3r». /7/
Since the total number of atoms is N we have
pr-(r")d3r- /7a/

Relation /7/ gives the intensity of the secondary radiation which were to
be expected if the gas could be taken to have a continuous density p (r°).
/The action of the secondary field upon the atoms is neglected in /7//.

We can introduce the probability concept if we take p(r*) to
be a probability density. We can thus suppose the em to be stochastic
variables thus we suppose



1 with a probability NpQrL“)6_rrn

e = 181

"t 1-Np(r)6 r

The generating function of the distribution /8/ can be written
Lm () = (1-Np(rm)63rm + ev Np(rm)63rm),

thus the logarithmic generating function neglecting higher order terms
MLIJ ™ = Nin Lm(v) = Np(r.)(ev-l). /9/

Taking the em to be independent stochastic variables we see from /5/
that E(r,t) can be taken as a linear combination of these variables.

The distribution P(r,t;E) is thus the folding of the distribu-
tions Pm(r,t; ) of the probability that radiation emerging from the
m-th cell should contribute an amount E~ to the field strength E. Using
the ordinary rules of folding we obtain for the logarithmic generating
functions M(E; v)

M(E,v) = | Mm (VE(rm ; rfr)). /1O /
Thus with the help of /9/ and replacing the sum by an integral

M(E;V) Ir) (e—¢*"£m" - ) <Br- 111/
The above generating function contains three parameters v = VvV, v/, V};
derivations into v~ give the moments of the components E~ of E . We

have thus

<E> nlp (r)E (r*; r,t) d3 r- /12,

Comparing /12/ and /7/ we see that the expected value of the stochastic
ensemble /5/ is equal to the value of the field strength emitted by a
smoothed out distribution with density Np(r? . Since E(r-;r,t) varies
harmonically with r* the right hand side of /12/ vanishes for most values
of r /exceptions are the directions of the various optical beams/. We
have thus

<E> 0 /in most directions/ /13/



In the regions where /13/ is valid, we have thus

<E2>

<(6E)2> = (vj M)v=o

thus

<E2>

N p (r")E2(r;r,t)d3r". /14/

From /3/ and /14/ we find
? Nk2 E 2
<€ > = —--I- a(n), /15/
where
d3r-

a(r) = p(r*)cos™k r* - cotl + @
IE-r*~I

the average value of the cos is In very good approximation, therefore

r*)d3ar"
a(r) =\ PCro) 716/
Ir - r
We can write
1
4;( <e 2> Ir ] H I I

where IR 1is the intensity of the scattered radiation. Note, that <E2>
does not depend noticeably on the time; this does not contradict the fact,
that the electric vector of the radiation field oscillates with the fre-
quency w . Indeed, extending our calculation we find, e.g.

thus the time derivative of E has an expected value which is in accord
with the fact the actual E value oscillates harmonically With the fre-
quency w and only the expected value <E2> - obtained by averaging over
the various configurations of the atoms - is constant in time.

The refractive index of the medium is obtained from classical con-
siderations as

n=1+ 2dH p (@) -



Taking the average density
p = N/V /V volume of the gas/

we have

Vv /18/

From /15/ /17/ and /18/ we find

(n-1) Vva(r) 1 -
\l\/l 1 _____ with IO = Tn tO /19/

thus the ratio of the incident intensity and the scattered intensity leads
to the determination of N/V the density of atoms.

THE WAVE MECHANICAL TREATMENT OF THE SCATTERED RADIATION

The wave mechanical treatment of the problem starts necessarily
with the determination of the wave function representing the ensemble of
N atoms enclosed into a container. Let us consider for the sake of sim-
plicity H-atoms thus we can write for the wave function y (r™ , c”™)
where

K = 1,2

The upper index 1 vreferring to the proton as the upper index 2 to
electron. The three dimensional electron density is thus obtained

o = | | viea- E@)sr-rr2)) de@dg @ 720/
k=1

An electromagnetic field of the form /1/ can be introduced as a perturba-
tion into the 2N body wave equation. A simple calculation shows that
this perturbation produces current densities in the electron cloud which
densities can be attributed to a continuous electric polarization of den-
sity t(r*,t)p(r7). Thus the radiation is such as if we had atoms distrib-
uted with an average density p(r"). The problem of the wave mechanical
interpretation of the Rayleigh scattering reduces to show that p(r®) be-
haves just as the fluctuating density of an ensemble of N atoms.



THE CHOICE OF THE WAVE FUNCTION

When looking for the wave function of the ensemble of N atoms
we can start from a solution ¢ @” , r~, 1B of the H-equation with ap-
propriate boundary condition. Since ¢ must be anti symmetric in any pair
of variables r~1} Ej™ respectively r"2! EJ2™ we can write e.g.

o (E(1), E(2) = det okr /21/
where

Okr = il2)) k" = 1/2,...N
It is a standing wave enclosed in the box then the wave function

¢ thus obtained represents very nearly constant electron density and thus
the system behaves rather like a crystal than a gas and no noticeable in-
coherent scattered intensity is to be expected.

The fact that the rather symmetrical wave function /21/ does not
lead to the observed behaviour of the gas draws attention to the fact -
which we have pointed out already in a previous publication - namely that
a physical system containing several bodies can be represented mathemati-
cally by a large number of wave functions which, however, lead to very
different expected behaviours of the physical system.

The wave function which describes adequately a many body problem
has to be chosen carefully so as to give results in agreement with observa-
tions. The method of how to select the wave function in actual case is not
known. It seems to us that this selection can be carried out with the help
of a kind of correspondence principle. That the selections thus obtained
are not arbitrary and the selections can be seen if we find that the same
wave Tfunction can be used to interpret different phenomena.

When choosing the wave function of the N atom ensemble we have
to remark that according to the classical theory of the gas the atoms have
a thermal distribution of well-known form and that the latter is verified
directly by experiment. The wave function describing the ensemble must
therefore contain somehow the thermal distribution.

Let us write p(K,r~, rn) TFor the wave function representing
a standing wave with wave vector K inside the container. If the container
is a cube with sides L , then the components of K are integral multiples
of L. The electron density in the standing wave Iis



P =e oK. r@. D1 dr @

itselt a harmonically oscillating function of the coordinate.

The wave function
oK, r@ , r(@) = det okn

describes thus rather a regular lattice of H-atoms than a gas containing
N atoms. We can, however, consider an ensemble where the atoms /considered
classically/ have wave vectors , K ,... K” _ The wave functions be-
longing to different wave vectors are very nearly orthogonal therefore we

obtain the normalized wave function

0<£ (1), E(2)> l ¢cm:; e i@
n-1
which corresponds to a system of atoms with wave vector n=1,2,_..N.
The electron density can thus be written

N
PM® =1lpCK ., .
n=1
Considering the wave functions as discrete points in the momentum space,
we can write

P(r) = 1 emp(K(M?(®

N
I
m=1
where the sum is to be extended over all wave vectors giving standing

waves. The factors em are zero with N exceptions, the N standing waves
corresponding to the atomic states.

Supposing that the standing waves are selected at random from the
possible states we can take /as in the classical case/ the to be in-
dependent stochastic variables and the probability P(r;p) to find a density
p 1in a point r has a logarithmic generating function.
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