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ABSTRACT

Explicite expressions describing the semi-diurnal variation of
cosmic ray intensity are obtained in the frame of the convection-diffusion
theory. Convection-diffusion equations are extended by introducing a symmetric
traceless tensor accounting for the second harmonics of the cosmic ray angular
distribution. Starting from the statistical Boltzmann equation a new transport
equation is deduced which relates the second harmonics of angular distribu-
tion to the gradients of cosmic ray streaming. Thus, compared to models used
hitherto, a more quantitative calculation is carried out. Expressing the
free space anisotropy in terms of geographical coordinates the predicted
diurnal and semi-diurnal variations are given. Results are essentially in
agreement with those of Quenby and Lietti but also differences arise as a
result of the bending and divergence of thé large-scale interplanetary
magnetic field. Arguments are brought forward that a sunward stream along
the interplanetary magnetic field lines gives rise to a distribution of the
pitch angle type where there is an excess of particles of large pitch angles.

AHHOTALNA

Ha ocHoBaHWMW KOHBEKLUWOHHOW AUPHYIMOHHOW Teopun Mbl MNOAYUUIU ABHbIE
pe3ynbTaTh And No/AyCYTOYHOro M3MEHEeHUS UHTEHCUBHOCTU KOCMWUYECKOro MU3NYy4YeHUs .
KoHBeKUNOHHas guppy3noHHas Teopuss Oblna pacuumpeHa BBeLEHUEM CUMMETPUYHOIo 6e3-
WNYPHOro TeH30pa, KOTOpLI COAEPXUT BTOpbE FapMOHWKW YI/10BOFO pacnpefesieHuns
KOCMMUYECKOIro u3nyyeHus. lcxoasa M3 craTuyecKoro ypaBHeHUsA bonbumaHa, Mnonyyum
HOBOE YypaBHEHMe TrepeHoca, KOTOpOoe ycCTaHaB/iMBaeT CBA3b MexAy BTOPbMUA TFapMOHWU-
KaMy yrnoBOro pacnpefgeneHvs M rpagMeHToM TOKOB KOCMUYECKOro usnyyeHusa. bbin
npoBefeHbl 60Mee KBaHTUTATMBHbE, MO CpPaBHEHUW C Npeablaywnmu, UCCefoBaHus .
Bbipaxas aHU30TpPONuMi KOCMUYECKOro W3Ny4YeHUs reorpapuyeckMMm KoopauHatamu, 3a-
LaemM TeopeTUYecCcKW npefckKasaHHble CYTOYHble U MONYCYTOYHble U3MeHeHus . [lonyyeH-
Hble pe3ynbTaThl, N0 CYylecTBY, coBnajaiwnT C pe3ynbTaTtamym Quenby u Lietti, xoTA
M3-3a AMBEpPreHunMnm u KPUBU3HbI MEXN/IaHETHOro MarHUTHOro MoJiIA MMEKWTCHA onpefeneH-
Hble pacxoxieHus. [loka3biBaem Ha TO, 4YTO TOK TeKkywWwuin B HanpaBsieHunm ConHua no
CUNOBbLIM JIMHUAM NPUBOAUT K pacnpegeneHutw Tuna “‘pitch-yron'.

KIVONAT

A konvekcids diffuzios elméletb6l explicit eredményeket kapunk a
kozmikus sugarzas félnapos intenzitas-valtozasara. A konvekciods diffuziods
elméletet kibévitjuk, bevezetve egy szimmetrikus spurtalan tenzort, amely a
kozmikus sugarzas szogeloszlasanak masodik harmonikusait tartalmazza. A
statisztikus Boltzmann-egyenletb6l kiindulva egy uj transzport egyenletet
nyeriunk, amely kapcsolatot teremt a szoégeloszlas masodik harmonikusai és a
kozmikus sugarzasi &aramok gradiense kozott. Az eddigiekhez képest kvantita-
tivabb vizsgalat tortént. A kozmikus sugarzas anitzotropiajat foldrajzi
koordinatakkal kifejezve megadjuk az elméletileg josolt napos és félnapos
valtozast. A kapott eredmények lényegében egyez6k Quenby és Lietti eredménye-
ivel, bar a bolygdkoézi magneses tér divergenciaja és gorbiltsége miatt bizo-
nyos eltérések addédnak. Ramutatunk arra, hogy az er6vonalak mentén a Nap felé
folyd aram egy "pitch-sz6g"™ tipusu eloszlashoz vezet.



INTRODUCTION

Having entered the solar system the galactic cosmic radiation
is subject to solar modulation which reduces its intensity and changes
its angular distribution by introducing a solar bound anisotropy as well.
Due to the rotation of the earth, the anisotropic directional distribution man-
ifests itself in diurnal, semi-diurnal, etc. cosmic ray intensity variations.
Among these, the first daily harmonic gets satisfactory explanation by the
convection diffusion theory developed by Parker /1964/ and Gleeson and
Axford /1967/. The semi-diurnal variation, however, 1is caused by the second
and higher harmonics of the free space cosmic ray distribution thus, in
contrast to the first daily harmonic, it cannot be treated by convection-
diffusion equations involving particle density and current density only
/the latter corresponding to the first harmonic of cosmic ray distribution/.

Using different approaches, several authors /Quenby and Lietti
1968, Subramanion and Sarabhai 1967/ have pointed out that the semi-diurnal
variation arises as a result of the change of the cosmic ray density
gradient, i.e. as a result of the second space derivative of cosmic ray
density. Spiralling around the interplanetary magnetic field lines, particles
perform several turns until, being scattered. Thus the flux of particles
arriving at the earth from a specific direction reflects cosmic ray density
at the guiding centre of particle trajectory belonging to the given
direction. Provided that the cosmic ray density is higher both above and

below the ecliptic plane than in the plane itself i.e. a non-zero second
derivative of cosmic ray density exists /which, sometimes, is referred to

as bi-directional gradient/ a semi-diurnal variation of cosmic ray intensity
results with intensity maxima at about 3 and 15 hr. local time corresponding
to-the directions lying in the ecliptic plane perpendicularly to the
interplanetary magnetic field lines. With increasing rigidity particles get
farther from the ecliptic plane giving rise to an increasing semi-diurnal

wave.



In the present work the semi-diurnal variation is derived in
terms of the convection-diffusion model. In order to achieve this,
convection-diffusion theory will be extended to include the second harmonics
of the cosmic ray angular distribution, too. Starting from the statistical
Boltzmann equation, an additional transport equation will be obtained
which brings the second harmonics of the distribution into relation with
the cosmic ray stream suggesting that second harmonics are generated by
the gradients of the stream. Different components of cosmic ray streams
will be considered to generate second harmonics in this indirect way.
Finally, expressing the free space anisotropy in terms of geographical
coordinates explicite expressions of the resulting diurnal and semi-diurnal
variations will be given.

2. GENERAL EQUATIONS

In its usual form, the convection-diffusion theory considers
the cosmic ray density and net particle flux. The latter, being a vector,
is responsible for the anisotropy and results in.a sinusoidal daily wave.
However, it cannot give rise to semi-diurnal variation which is produced
by the second /and higher/ moments of the cosmic ray distribution.
In this section, we introduce a symmetric traceless tensor accounting for
the second harmonics of the cosmic ray distribution and establish a new
transport equation. It will be found tlN\at, as expected, the convection
diffusion equations remain virtually unaltered their change due to the
newly introduced tensor being negligible at least in cases where the
angular distribution is not far from isotropy. On the other hand, th,e new
transport equation establishes a connection between the second harmonics
and the cosmic ray flow. It will turn out that, like the cosmic ray flow,
the quadrupole moment of the distribution can also be devided into

convective and diffusive terms.

2.1 Moments of the cosmic ray distribution

When investigating cosmic ray distribution, one starts from the
statistical Boltzmann equation

of 3
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where f(x™,p”N,t) is the distribution function, x» and p~(i=l1,2,3) represent
the coordinates and the components of momentum, respectively. The electromag-
netic Lorentz force is responsible for p. while the right hand side term



account Tfor the change of f due to scattering in the irregular magnetic
field. Double indices indicate sums throughout the paper.

In order to obtain moments of the Boltzmann equation, the method
developed by Gleeson and Axford /1967/ is used but also the second harmonics

of the distribution are included i.e. T is assumed to be of form

f(xaLpi, ) = M(xX%,p, ) + "Axz,p,t)e + ef @}xifp,t)e /2/
where T, and 2~ are scalar, vector and tensor, respectively, fr2n
being symmetric and traceless. i() and ™27 are independent of the

direction of the momentum the dependence on wich appears in the unit vector,
e, pointing in the momentum®s direction. In order to avoid ambiguities

st) is defined to be symmetric and traceless. Obviously, an antisymmetric
term would give no contribution to f. On the other hand, the countribution
of a unit tensor is direction independent so it can be absorbed into £~ \
The expansion used here is identical to that in spherical harmonics which
is succesfully applied for nearly isotropic distribution. The components
of and f2” are uniquely related to spherical harmonics of the first
and second order, respectively. The tensor £(2), has five independent
components corresponding to the five special harmonics of second order.

The usual particle number density, U,. and net flux, S, can easily
be obtained by using the form of the distribution function (Eq.-2) and
integrating over the direction of the momentum

n(xz,p,0 =1 fp2dft = 4TTp2F(°) /3a/
Sy(xi,p.t) = 1 Vjfp2adf2 = p2v f /3b/
where d 2 represents integrating over the direction of the momentum

and y is the particle velocity.

In an analogous way, let us define a symmetric traceless tensor,

Qjk™ as
] r _ 8u
Qikxip™® = J(vivk - ¥ Vv 927 15 PAN D /3cl



Qjk may be referred to as the quadrupole moment of the cosmic ray distribu-
tion. Obviously, the semi-diurnal variations is connected with Qg"
K

2.2 Scattering mean free paths

The collision term on the right hand side of the Boltzmann equation
can be evaluated using the method developed by Gleeson and Axford /1967/.
First, a Lorentz transformation leading into the frame moving with the
solar wind is carried out then after having considered the effect of an
inelastic scattering of cosmic ray particles on magnetic field inhomogenities
carried by the solar wind results are transformed back into the fixed frame.
In the convection-diffusion model a relaxation time approximation is used
i.e. scattering is characterized with a mean free path X, to travel by
particles until being isotropised. Here, we adopt a model of subsequent
independent scatterings. Having travelled a mean distance, £, particles are
deflected with an angle ¢. The scattering need not be isotropic but it
is described with a deflection angle distribution o(p) i.e. the scattering
process 1is absorbed into a(®). Then, it is found that rates at which the
first and second harmonics of the anisotropy decay may be different.
The calculation yields the mean free paths

rost. o(i/f)sindr /4a/

3( 7os ). a(®) sinijjdijj /4b/

where X~ and X ar e the mean free paths belonging to the first and

second harmonics of the anisotropy, respectively.

In the real physical case, diffusion cannot be treated as the
result of subsequent separated scatterings but the power spectrum of the
irregular magnetic field is of importance /Jokipii 1966, Quenby 1973/.

Yet, formulae /4a,b/ remain applicable at high rigidities where the deflec-
tion in a coherent region of the irregular field is small. In this case

A and ¢ become the mean size of a coherent region and the deflection of
particles from their ideal unperturbed trajectories in that region,

respectively.



It can easily be seen that = U for isotropic scattering
(i.e. o(d) = const). At high rigidities, however, a(p) is expected to be
strongly peaked at ¢$=0. In this case, it follows

T
i % . 3 N I+cosi"j lzcosi o(h)3lngp<zp V 3» 5/
2
o]
since l+cos@ % 2 can be taken in the integral. This result implies that

higher harmonics describing smaller details of the distribution decay faster.

2.3 Transport equations

At this stage, our aim is to obtain equations connecting the
quantities U, S, and Q. To achieve this, the moments of the Boltzmann
equation (Egq.l) are to be considered. Investigating steady state conditions
time derivatives can be ignored, furthermore, because of the high conductivity
of the solar wind plasma

E=-1i (VxB) /6/

can be substituted (V being the solar wind velocity and E and B being
electric and magnetic field strength, respectively. Then, assuming nearly
isotropic distribution (i.e. > > 1™ ,IP ) and neglecting higher order
terms of V/v calculation yields the equations

/7a/
ZeA.
3 au
“pc” Cisr Bs 3? X4 b/
+ZeA2 Gl/ )
kr pc \ qeksrBs * Okreisq
/7c/
r 4
% +—%¥ 2 an ivv - 6,} +Vs +vs - s.n T
Wrq 3p E:Sv“ap y T q 3 ra rg qr 3ttrr

Vp /

K LJ?»! ik+E31%pDV > V.



where Ze is the electric charge of the particle and e ™ K represents the
antisymmetric unit tensor.

It can be seen that equations /7a-b/ are equivalent to the usual
convection diffusion equations. —%— ré_ + E?él e. B is the inverse
diffusion tensor and - 3 9 {U\V%I gi&gs tR& co%&gctfee streaming. S can
be explicitely expressed from equation /7b/ and is found to consist of
convective and diffusive terms. The situation is closely analogous in the
case of equation /7c/, as it will be presently shown. For, in a shorthand

notation equation /7c/ can be written as

(conv
leqr [@rq - qu >]- "ik 181
where
5 ZeA .
ikgr VA, 6iq6kr * “pc iBigeksrBs * 5kreiqus /8a/

0;5 V): - ¥5 @p’ﬂlgv &p {%ﬁ\W(Vqu- L3 «~rqj + Vr§qts“¥q_§yt§tﬁrqi

/8b/
as. 3s, . .
j. S ame i TEEE £ (v UL v oo v -6
ik 3%( 3x1 3 3xt ik 3 9 2 i Ox K 39X~ 3 t3xt ik
/8c/
On the basis of /8/
(conv)
Qik uik Dikqr Jrq 79/

Oik°nV” is connected with solar wind velocity and arises as a result of
the motion of the scattering media, thus it may be regarded as being the
convective part of Q., . On the other hand, the second term on the right
hand side of /9/ may be called diffusive since it is produced by gradients
of the cosmic ray particle density and current density. The tensor

containing the mean free path A2 corresponds to the diffusion tensor.



The reference system appropriate for

inverting
that the x axis points

in the direction of the magnetic field,

and z are perpendicular to the x axis and to each other, too. Then, calcula-
tion vyields

Is chosen so

and axes y

where K = ZeX2/pc =

X2/R, R being the gyroradius
magnetic TFfield.

These results show that, like
streaming, the diffusion

tion of the field and

in the large-scale

in the case of diffusive
is unaffected by the magnetic field

in the direc-
is restricted

in perpendicular directions.
Since solar wind velocity

10 ), terms resulting
observed experimentally.

is small with respect to particle velocities
in effects of the order of (V/v) cannot be
Ignoring such terms equation /7c/ reduces to

/v

Qik /Ha/

where

5 2Mt
x 3 Ox . oqr /11b/



3. SECOND HARMONICS OF THE FREE SPACE ANISOTROPY

Inspection of equations /l1lla,b/ shows that second harmonics of
the anisotropy are produced by spatial gradients of the cosmic ray flow.
In this section, Tfirst, the corotation, the most dominant of the cosmic
ray streamings will be investigated and found to give rise to negligible
semi-diurnal variation. The corotation apart, additional cosmic ray flows
arise as a result of the solar zenith angle density gradient. These flows

will turn out to produce the second harmonics of the cosmic ray anisotropy.

3.1 The effect of corotation

It has been shown by several authors /Parker 1964, for second order
effects, see Somogyi 1972/ that the rotating interplanetary magnetic Tfield
gives rise to a rigid corotation of cosmic radiation. Thus, the corotational
stream is

S = Uxi v<Cor> U = /127

where y is the negative exponent of the cosmic ray energy spectrum, fi is
the angular velocity vector of the sun and r is the radial vector pointing
to the earth from the sun. /vcor % 400 km/sec/. Substituting Eq. 712/ into
Eq. /lib/, we arrive at

J* = £42 (cor 3U_ + /or 9U\ /13/
1k 3 nx %K K %1/
2
which gives rise to a semi-diurnal amplitude of the order of (V/v) . Thus,
corotation produces no observable semi-diurnal variation.

32 The effect of zenith angle density gradient

At higher heliolatitudes, particles are to travel shorter distances
along the bent interplanetary magnetic field lines so a solar zenith angle
density gradient is produced /Quenby and Lietti 1968/. Here, and in what
follows, it is assumed that the regular spiralling motion of particles is
dominant with respect to the diffusion i.e. R < < A, R being the gyroradius.
Zenith angle density gradient will produce two kinds of cosmic ray streaming
/Parker 1965/ /i/ particle streaming perpendicular both to the density
gradient and the interplanetary magnetic field. This streaming is connected
with the regular spiralling motion and its magnitude is Rv. 9 being
the zenit angle, and r being the distance from the sun. /ii/ In the
direction opposite to the density gradient, a diffusive stream will flow



R2v om

with a magnitude of 31r 0o~

/iii/ Quenby and Hashim /1969/ have pointed out that, cosmic ray flow of
type /ii/ is directed toward the ecliptic plane both below and above the
plane /provided that the ecliptic plane is the plane of symmetry/ thus
conservation of number of particles demands an outward flow along the
magnetic field lines, the magnitude of which is given by

2

W 32U - \Y azn

Sii - - 7 A /14/
ar ip X 92 r n 3rcos 392

p being the garden hose angle, / = 45 at the orbit of the earth/ n is a
numerical factor that is determined by the depen%ence of the mean free path,
”», on the distance from the sun. Assuming /1 a r

4-R
n = dx
1+x

/we note that n=0.12 for R=0 and n=0.22 for R=2/

The first two of the three cosmic ray streams mentioned above
actually vanish in the plane of symmetry, yet they have an important role
in generating second harmonics.

The reference system appropriate to the calculations is chosen so
that the x axis points in the direction of the interplanetary field, the z
axis points to the zenith angle direction and the y axis is perpendicular
both to the x and z axes, /see Figure 1./

Obviously, the second harmonics of the cosmic ray anisotropy are
given by the ratio of elements of £/2” to 1™ /see Eg.2/. Using equations
/10a-f, 1la,b/ and considering the three cosmic ray streamings mentioned
above calculation yields

Q@ A 2 _
A = XX 15Qxx _ "2 6 ) + X 2-sin ¢ %ﬁ? /15a/
2v2u = ni 2r 9
()
B = =0 /15b/

f©
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() -

vV f1l+ 92 5%
> N2 xI) 2r2u 29332
42> \ R2 92U

(-S-V=-2rau 902

()
.q&s =0
()

flo  ©°

where S,, is the cosmic ray stream in the

/see Eq./14//. Terms containing S,, arise
interplanetary magnetic field
X2 |X~ are produced by stream of type /i/

values result in

lines while terms
. Obviously,
intensity maxima from the x,y and z directions,

2
n 2-sin~d 3Sa
U /15c/
2 2r
% 2-sin2 35« /15d/
2 or vu
/15e/
/15f/

direction of the magnetic field
as a result of the divergence of
in C and D containing no
positive A,C and D

At high rigiditieszxg=X9/3 can be taken /see Eq. /5//.

Furthermore, assuming X a r i.e.
A - 0.44 oo
902
2
c o072 -, L M
2r 332
1 32VI
D -0.28
90
B E=F =0

In order to compare the present
/1968/ we note

form used here as

Lietti

C A
D-A=0
B E F )

6=2 the results

that their results can be rewritten

/15a-f/ reduce to

/16a/

/16b/

/16c/

/16d/

results with those of Quenby and

in the tensor

/17a/

/17b/

/17c/

respectively.
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Comparing the results [J6a-d/ and /l17a-c/, it can be seen that,
with minor differences, the results of the two models are basically in
agreement.

Nagashima et al. /1971/ have suggested that the observed second
harmonics of the free space anisotropy could be interpreted as a pitch angle

distribution around the interplanetary field. In tensor form, this means
C =D /18a/
B=E =F =0 /18b/

Inspection of Eqg.s. /15a-f/ shows that this could be the case if
equation /14/ did not hold, 1in contrary, a sunward streaming existed along
the magnetic field lines. The existence of such a sunward streaming has been
suggested recently by Dyer et al /1973/. /Although, comparison of /15c/
and /15d/ shows that C cannot be exactly equal to D yet, C=D can hold
approximately if the term containing S,, is dominant.

4. DIURNAL AND SEMI-DIURNAL VARIATIONS

Due to the rotation of the earth, the anistropic free space cosmic
ray angular distribution manifests itself in intensity variations in
earth based measurements. Variations caused by the second harmonics of free
space anisotropy will be investigated in this section. Here, we consider
free space variations only and atmospherical and geomagnetical effects
will not be taken into account. Variations resulting from the first harmonics
of the anisotropy are given elsewhere /c.f. Somogyi 1972/ and will be
disregarded here.

When calculating numerical results the figures given by Quenby
and Lietti 71968/ will be adopted, 1i.e. i1 = 0.001 P % at the orbit
of the earth /P being rigidity in GV/, ty=45°, /p being the garden hose
angle/, and A”ar /i.e. 8=2 and n=0,22/ will be assumed /see. Eq. /14//.
As high rigidities are of interest will be taken. /see Eq. /5//

The following notations will be used:

X - is the declination of the axis of the earth. /x=23.5°/

N - geographical latitude of the asymptotical arrival direction
of cosmic ray particles observed.

t - solar time. t=0 at midnight and t=180° at noon.

a - time defined by the position of the earth on i.ts
orbit: a=0 on December, 21 st and a=360° in a year.
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4.1 Annual and semi-annual variations

Because of the 23.5° declination of the axis of the earth,
the second harmonics of the cosmic ray anisotropy cause a semi-annual
variation. Calculation gives

= -sinx cosx (I-3sin2A) (Ecos (a-h)-Fsin(a-"))

2 /19/
-sin2x — 3s™A-- cos2(a-p)-Bsin2(a-0))

Using equations /l1l6a-d/ at the equator at 20 GV rigidity the
annual variation turns out to be non existing /E=F=0/, while a semi-annual
variation of amplitude about 0.18.10_4 is to be expected with intensity
maxima on May, 5th and November, 5th.

4.2 Diurnal variation

Transforming the second harmonics of the free space anisotropy
into geographical coordinates a diurnal variation is obtained:

A‘JJ- sinAcosA JN(A+C-2D) sinxcosxcos (t+a)

+ sinX (A-C) cos (t-a+2t(j) +2Bsin (t-a+2p)] /20/

sinx 12C9SX  (A-C) cos (t+3a-2ijj) -2Bsin (t+3a_24»)]

(2cosx~1) (1+cosx) jrEcos(t+d»)+Fsin(t+i]»)]

- (2cosx+1) (I-cosx) |"Ecos(t+2a-i1Jj)-Fsin(t+2a-i(;)]

Combining this with results /16a-d/, the amplitude of the diurnal
variation turns out to have annual modulation with maximal amplitude being
0.8x10-3 at A=45° and P=20GV. Figure 2. shows the diurnal harmonics dial
for the present results and for those of Quenby and Lietti /1968/. The
results obtained from the two models are slightly different.
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4.3 Semi-diurnal Variation

The second harmonics of the free space anisotropy results in a
semi-diurnal variation of

M = col_N1 j~ "1+cos” Na -c)cos 2 (t+h) +2Bsin2 (t+pH*

2
sl2~X @+C-2D)cos2(t+a)

(1-cosxj I"(A—) cos2 (t+2a-iJ/)-2Bsin2(t+2a-,,, 721,

sinx(l+cosx) Ecos(2t+at+™)+Fsin(2t+a+i]|j)"]j

+

sinx(l-cosx) "Ecos(t+3a-ii))-Fsin(2t+3a-iJj) "

Inspection of this result shows that each of the five independent
components of the quadrupole moment of the cosmic ray directional distribu-
tion manifests itself in semi-diurnal variation. Because of their different
seasonal variations, in principle at least, there is a possibility to determine
them separately.

Using the results of equations /1l6a-d/, the semi-diurnal variation
turns out to be nearly constant with times of intensity maxima at about
3 hr. and 15 hr. local solar time. This result is in agreement both with
the prediction of the model of Quenby and Lietti /1968/ and with most of
the experimental results /c.f. Rao and Agrawal 1970, Kargathra and Sarabhai
1971, Dutt et al 1973/. The amplitude of the semi-diurnal variation, in the
present model, has a small /% 10 %/ semi-annual variation.

The result obtained from the present model and from those of

Quenby and Lietti are shown in Figure 3.

The discrepancy between the two models again turns out to be rather

small.
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5. CONCLUSIONS

In order to describe the semi-diurnal variation the convection-
diffusion theory has been extended by considering the second moments of
the cosmic ray angular distribution and those of the statistical Boltzmann
equation. The quadrupole moment of the directional distribution has been
represented by a symmetric traceless tensor /Eq.2./ whose elements correspond
to the five independent spherical harmonics of second order. The main
features of the calculation can be summarized as follows:

/i/ Different A and A" mean free paths belong to the first and second
harmonics of the anisotropy, i.e. the rates at which different
harmonics decay may be different. The quadrupole moment of the cosmic
ray angular distribution turns out to depend on the A2/A" ratio /see
Egs. 15a-f/. At high rigidities A2=A"/3 is to be expected /Eq.5/.

At low rigidities, however, the quadrupole moment of the anisotropy
may provide information on the ratio of the two mean free paths, i.e.
on the nature of the magnetic field irregularities the particles are
scattered by.

/ii/ The present results are basically in agreement with those of Quenby
and Lietti /1968/, although quantitative predictions may differ some
10-20 percents.

There are two marked differences as well:

/a/ By contrast with Quenby®"s model, a different particle flux is
predicted from the directions along the magnetic field and normal
to the ecliptic plane, respectively. This, basically, implies the
fact that the mean square distance from the ecliptic plane is
larger for particles arriving from the latter direction.

/b/ The interplanetary magnetic field being bent and diverging, the
second harmonics of the anisotropy depend on the global feature
of the mean free path, A®, between the sun and the earth.

/see factor n in Eqs /14/ and /15a-f//.

/iii/ Provided cosmic ray density depends on heliolatitude it can readily
be seen that cosmic ray angular distribution does depend on directions
perpendicular to the magnetic field /i.e. D*C, see Egs. /15c,d// as it
should be if the cosmic angular distribution were depending on the
pitch angle only. The pitch angle distribution is a good approximation
if the terms produced by the streaming along the magnetic field are
dominant, 1i.e. a considerable sunward streaming exists. In fact, there
is some indication in favour of such an inward streaming along the
magnetic field /Dyer et al. 1973/.
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Figure 1: The reference system used in calculations. Magnetic field lines

are wound on a cone around the rotational axis of the
is chosen to point along the field lines3 axis y lies
face of the cone perpendicularly to field lines while
points in zenit angle direction normal to the surface

sun. Axis x3
in the sur-

axis z3

of the cone.

Figure 2: Annual change of the expected harmonics dial of diurndl varia-
tion caused by the second harmonics of cosmic ray anistropy for
(@ model of Quenby and Lietti and (b) present calculations.
h=4b and P-20 GV are chosen. Numbers indicate months and days.



Figure 3:
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Expected, harmonics dial of semi-
diurnal variation (I\-0°t P=20 GV)
for (@) model of Quenby and Lietti
(b) present calculations. The semi-
diurnal amplitude has a slight
semi-annual variation with maximal
values February, 5th and August, 6th.
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