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ABSTRACT

Explicite expressions describing the semi-diurnal variation of 
cosmic ray intensity are obtained in the frame of the convection-diffusion 
theory. Convection-diffusion equations are extended by introducing a symmetric 
traceless tensor accounting for the second harmonics of the cosmic ray angular 
distribution. Starting from the statistical Boltzmann equation a new transport 
equation is deduced which relates the second harmonics of angular distribu­
tion to the gradients of cosmic ray streaming. Thus, compared to models used 
hitherto, a more quantitative calculation is carried out. Expressing the 
free space anisotropy in terms of geographical coordinates the predicted 
diurnal and semi-diurnal variations are given. Results are essentially in 
agreement with those of Quenby and Lietti but also differences arise as a 
result of the bending and divergence of thé large-scale interplanetary 
magnetic field. Arguments are brought forward that a sunward stream along 
the interplanetary magnetic field lines gives rise to a distribution of the 
pitch angle type where there is an excess of particles of large pitch angles.

АННОТАЦИЯ

На основании конвекционной диффузионной теории мы получили явные 
результаты для полусуточного изменения интенсивности космического излучения. 
Конвекционная диффузионная теория была расширена введением симметричного без- 
шпурного тензора, который содержит вторые гармоники углового распределения 
космического излучения. Исходя из статического уравнения Больцмана, получим 
новое уравнение переноса, которое устанавливает связь между вторыми гармони­
ками углового распределения и градиентом токов космического излучения. Были 
проведены более квантитативные, по сравнению с предыдущими, исследования. 
Выражая анизотропию космического излучения географическими координатами, за­
даем теоретически предсказанные суточные и полусуточные изменения. Получен­
ные результаты, по существу, совпадают с результатами Quenby и Lietti, хотя 
из-за дивергенции и кривизны межпланетного магнитного поля имеются определен­
ные расхождения. Показываем на то, что ток текущий в направлении Солнца по 
силовым линиям приводит к распределению типа "pitch-угол".

KIVONAT

A konvekciós diffúziós elméletből explicit eredményeket kapunk a 
kozmikus sugárzás félnapos intenzitás-változására. A konvekciós diffúziós 
elméletet kibővitjük, bevezetve egy szimmetrikus spurtalan tenzort, amely a 
kozmikus sugárzás szögeloszlásának második harmonikusait tartalmazza. A 
statisztikus Boltzmann-egyenletből kiindulva egy uj transzport egyenletet 
nyerünk, amely kapcsolatot teremt a szögeloszlás második harmonikusai és a 
kozmikus sugárzási áramok gradiense között. Az eddigiekhez képest kvantita­
tívabb vizsgálat történt. A kozmikus sugárzás anitzotrópiáját földrajzi 
koordinátákkal kifejezve megadjuk az elméletileg jósolt napos és félnapos 
változást. A kapott eredmények lényegében egyezők Quenby és Lietti eredménye­
ivel, bár a bolygóközi mágneses tér divergenciája és görbültsége miatt bizo­
nyos eltérések adódnak. Rámutatunk arra, hogy az erővonalak mentén a Nap felé 
folyó áram egy "pitch-szög" tipusu eloszláshoz vezet.



INTRODUCTION

Having entered the solar system the galactic cosmic radiation 
is subject to solar modulation which reduces its intensity and changes 
its angular distribution by introducing a solar bound anisotropy as well.
Due to the rotation of the earth, the anisotropic directional distribution man­
ifests itself in diurnal, semi-diurnal, etc. cosmic ray intensity variations. 
Among these, the first daily harmonic gets satisfactory explanation by the 
convection diffusion theory developed by Parker /1964/ and Gleeson and 
Axford /1967/. The semi-diurnal variation, however, is caused by the second 
and higher harmonics of the free space cosmic ray distribution thus, in 
contrast to the first daily harmonic, it cannot be treated by convection- 
diffusion equations involving particle density and current density only 
/the latter corresponding to the first harmonic of cosmic ray distribution/.

Using different approaches, several authors /Quenby and Lietti 
1968, Subramanion and Sarabhai 1967/ have pointed out that the semi-diurnal 
variation arises as a result of the change of the cosmic ray density 
gradient, i.e. as a result of the second space derivative of cosmic ray 
density. Spiralling around the interplanetary magnetic field lines, particles 
perform several turns until, being scattered. Thus the flux of particles 
arriving at the earth from a specific direction reflects cosmic ray density 
at the guiding centre of particle trajectory belonging to the given 
direction. Provided that the cosmic ray density is higher both above and
below the ecliptic plane than in the plane itself i.e. a non-zero second 
derivative of cosmic ray density exists /which, sometimes, is referred to 
as bi-directional gradient/ a semi-diurnal variation of cosmic ray intensity 
results with intensity maxima at about 3 and 15 hr. local time corresponding 
to-the directions lying in the ecliptic plane perpendicularly to the 
interplanetary magnetic field lines. With increasing rigidity particles get 
farther from the ecliptic plane giving rise to an increasing semi-diurnal
wave.
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In the present work the semi-diurnal variation is derived in 
terms of the convection-diffusion model. In order to achieve this, 
convection-diffusion theory will be extended to include the second harmonics 
of the cosmic ray angular distribution, too. Starting from the statistical 
Boltzmann equation, an additional transport equation will be obtained 
which brings the second harmonics of the distribution into relation with 
the cosmic ray stream suggesting that second harmonics are generated by 
the gradients of the stream. Different components of cosmic ray streams 
will be considered to generate second harmonics in this indirect way. 
Finally, expressing the free space anisotropy in terms of geographical 
coordinates explicite expressions of the resulting diurnal and semi-diurnal 
variations will be given.

2. GENERAL EQUATIONS

In its usual form, the convection-diffusion theory considers 
the cosmic ray density and net particle flux. The latter, being a vector, 
is responsible for the anisotropy and results in.a sinusoidal daily wave. 
However, it cannot give rise to semi-diurnal variation which is produced 
by the second /and higher/ moments of the cosmic ray distribution.
In this section, we introduce a symmetric traceless tensor accounting for 
the second harmonics of the cosmic ray distribution and establish a new 
transport equation. It will be found tl\at, as expected, the convection 
diffusion equations remain virtually unaltered their change due to the 
newly introduced tensor being negligible at least in cases where the 
angular distribution is not far from isotropy. On the other hand, th,e new 
transport equation establishes a connection between the second harmonics 
and the cosmic ray flow. It will turn out that, like the cosmic ray flow, 
the quadrupole moment of the distribution can also be devided into 
convective and diffusive terms.

2.1 Moments of the cosmic ray distribution

When investigating cosmic ray distribution, one starts from the 
statistical Boltzmann equation

Э f Э 
Э t Эх (x±f) Эр, (PК £> - g f ) coll III

where f(x^,p^,t) is the distribution function, x^ and p^(i=l,2,3) represent 
the coordinates and the components of momentum, respectively. The electromag­
netic Lorentz force is responsible for p. while the right hand side term
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account for the change of f due to scattering in the irregular magnetic 
field. Double indices indicate sums throughout the paper.

In order to obtain moments of the Boltzmann equation, the method 
developed by Gleeson and Axford /1967/ is used but also the second harmonics 
of the distribution are included i.e. f is assumed to be of form

f(xjL,pi,t) = ^ ( x ±,p,t) + ^ L\x±,p,t)e + ef (2}xifp,t)e /2 /

where f«, and f^2  ̂ are scalar, vector and tensor, respectively, f^2^
being symmetric and traceless. i (l) and f ̂ 2  ̂ are independent of the
direction of the momentum the dependence on wich appears in the unit vector,
e, pointing in the momentum's direction. In order to avoid ambiguities 
( 2)f v ' is defined to be symmetric and traceless. Obviously, an antisymmetric

term would give no contribution to f. On the other hand, the countribution
of a unit tensor is direction independent so it can be absorbed into f ^ \
The expansion used here is identical to that in spherical harmonics which
is succesfully applied for nearly isotropic distribution. The components
of and f^2  ̂ are uniquely related to spherical harmonics of the first

(2)and second order, respectively. The tensor £ , has five independent
components corresponding to the five special harmonics of second order.

The usual particle number density, U,. and net flux, S, can easily 
be obtained by using the form of the distribution function (Eq.2) and 
integrating over the direction of the momentum

и(х±,р,0 = I fp2dft = 4TTp2f(°) /За/

Sj(xi,p.t) = I Vjfp2df2 = p2v f /3b/

where 
and у

d £2 represents integrating over the direction of the momentum 
is the particle velocity.

In an analogous way, let us define a symmetric traceless tensor,

Qjk' as
Í г

Qjk(xi'p 't) = J (vjvk - ¥ V fp‘d£2 =
8u
15 P2v 2 ^ > /3 cl
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Qjk may be referred to as the quadrupole moment of the cosmic ray distribu­
tion. Obviously, the semi-diurnal variations is connected with Q.,.3 к

2.2 Scattering mean free paths

The collision term on the right hand side of the Boltzmann equation 
can be evaluated using the method developed by Gleeson and Axford /1967/. 
First, a Lorentz transformation leading into the frame moving with the 
solar wind is carried out then after having considered the effect of an 
inelastic scattering of cosmic ray particles on magnetic field inhomogenities 
carried by the solar wind results are transformed back into the fixed frame. 
In the convection-diffusion model a relaxation time approximation is used 
i.e. scattering is characterized with a mean free path X, to travel by 
particles until being isotropised. Here, we adopt a model of subsequent 
independent scatterings. Having travelled a mean distance, £, particles are 
deflected with an angle ф. The scattering need not be isotropic but it 
is described with a deflection angle distribution о(ф) i.e. the scattering 
process is absorbed into а(ф). Then, it is found that rates at which the 
first and second harmonics of the anisotropy decay may be different.
The calculation yields the mean free paths

^ost. o(i/j)sin̂ d̂  /4а/

3.( ^os íi). а (ф) sinijjdijj / 4b /

where X^ and X a r e  the mean free paths belonging to the first and 
second harmonics of the anisotropy, respectively.

In the real physical case, diffusion cannot be treated as the 
result of subsequent separated scatterings but the power spectrum of the 
irregular magnetic field is of importance /Jokipii 1966, Quenby 1973/.
Yet, formulae /4a,b/ remain applicable at high rigidities where the deflec­
tion in a coherent region of the irregular field is small. In this case 
Ä. and ф become the mean size of a coherent region and the deflection of 
particles from their ideal unperturbed trajectories in that region, 
respectively.
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It can easily be seen that = Ü for isotropic scattering
(i.e. о(ф) = const). At high rigidities, however, а(ф) is expected to be 
strongly peaked at ф=0. In this case, it follows

1
A2

1
i

ТГ
■

о

3  ̂l+cosi'j lzcosi о(ф)з1пф<зф V 3^ /5/

since 1+c o s(Jj % 2 can be taken in the integral. This result implies that 
higher harmonics describing smaller details of the distribution decay faster.

2.3 Transport equations

At this stage, our aim is to obtain equations connecting the 
quantities U, S, and Q. To achieve this, the moments of the Boltzmann 
equation (Eq.l) are to be considered. Investigating steady state conditions 
time derivatives can be ignored, furthermore, because of the high conductivity 
of the solar wind plasma

E = - i (V x B) /6/

can be substituted (V being the solar wind velocity and E and В being 
electric and magnetic field strength, respectively. Then, assuming nearly 
isotropic distribution (i.e. > > I f^l , I P I) and neglecting higher order
terms of V/v calculation yields the equations

/7a/

ZeA.
---- e . Вpc isr s

Э
Э?

kr + ZeA2
Pc (V e. В\ iq ksr s + Ó e kr isq x

эи
Эх . 1

/Vb/

/7с/
Г 4 Q +-EV _Э_ Г—  — ( д л ívv - 6 1 + V s + v s  - s л Т_wrq 5 Эр (_3v Эр Vp / у Г q 3 rá) r q  q r  3 t t rr

к Ü !Эх . ik + Е1 J_3 Эр D V
эи
Эх, + V,
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where Ze is the electric charge of the particle and е ^ к represents the 
antisymmetric unit tensor.

It can be seen that equations /7а-Ь/ are equivalent to the usual3 r ZeAiconvection diffusion equations. —т—  6 . + ---- e. В is the inverse3 g /u\vXl ir pc lsr sJdiffusion tensor and - Í V gives the convective streaming. S can
be explicitely expressed from equation /7Ь/ and is found to consist of 
convective and diffusive terms. The situation is closely analogous in the 
case of equation /7с/, as it will be presently shown. For, in a shorthand 
notation equation /7с/ can be written as

D., ikqr [<Q - Q rq rq
(conv > ] - 'ik / 8 /

where

ikqr
5

vA, 6 , 6, +iq kr
Ze A .
---- (6 , e, В + 5, e . Вpc l ig ksr s kr isq s /8а/

0‘r v)= - ¥  á - U  &  i ^ W v x - L «
■Prq 5 Эр *4 3v Эр (^2 J (vrvq 3 ^rqj + Vr~q '‘"'r' q 3"t^t“rqiS +S V -4v,S.6

/ 8b /

as. э s,
jik Эх. Эх.к 1

2 Ü t  .
3 3xfc ik + EL ±  ±  (v Ü L  +v эи_3 Эр 2 I i Эх к Эх. —V Ü - 63 t3xt ik

On the basis of /8/

Qik
(conv)

uik D~v J ikqr rq

/8с/

/9/

Oik°nV  ̂ is connected with solar wind velocity and arises as a result of 
the motion of the scattering media, thus it may be regarded as being the 
convective part of Q., . On the other hand, the second term on the right 
hand side of /9/ may be called diffusive since it is produced by gradients 
of the cosmic ray particle density and current density. The tensor

containing the mean free path A2 corresponds to the diffusion tensor.
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The reference system appropriate for inverting Is chosen so
that the x axis points in the direction of the magnetic field, and axes у 
and z are perpendicular to the x axis and to each other, too. Then, calcula­
tion yields

where К = ZeX2/pc = X2/R, R being the gyroradius in the large-scale 
magnetic field. These results show that, like in the case of diffusive 
streaming, the diffusion is unaffected by the magnetic field in the direc­
tion of the field and is restricted in perpendicular directions.

Since solar wind velocity is small with respect to particle velocities 
(V/v 10 ), terms resulting in effects of the order of (V/v) cannot be
observed experimentally. Ignoring such terms equation /7с/ reduces to

Qik /На/

where
3S
Эх_

2 1ft3 Эх . őqr /11Ь/
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3.  SECOND HARMONICS OF THE FREE SPACE ANISOTROPY

Inspection of equations /11а,b/ shows that second harmonics of 
the anisotropy are produced by spatial gradients of the cosmic ray flow.
In this section, first, the corotation, the most dominant of the cosmic 
ray streamings will be investigated and found to give rise to negligible 
semi-diurnal variation. The corotation apart, additional cosmic ray flows 
arise as a result of the solar zenith angle density gradient. These flows 
will turn out to produce the second harmonics of the cosmic ray anisotropy.

3.1 The effect of corotation

It has been shown by several authors /Parker 1964, for second order 
effects, see Somogyi 1972/ that the rotating interplanetary magnetic field 
gives rise to a rigid corotation of cosmic radiation. Thus, the corotational 
stream is

S = ü±i v<Cor> U = /12/

where у is the negative exponent of the cosmic ray energy spectrum, fi is 
the angular velocity vector of the sun and r is the radial vector pointing 
to the earth from the sun. /vcor % 400 km/sec/. Substituting Eq. /12/ into 
Eq. /lib/, we arrive at

J* = £±2 (vcor 3U_ + / o r  9 U \  /13/
lk 3 V x Эх. к Эх. /4 к 1

2which gives rise to a semi-diurnal amplitude of the order of (V/v) . Thus, 
corotation produces no observable semi-diurnal variation.

3•2 The effect of zenith angle density gradient

At higher heliolatitudes, particles are to travel shorter distances
along the bent interplanetary magnetic field lines so a solar zenith angle
density gradient is produced /Quenby and Lietti 1968/. Here, and in what
follows, it is assumed that the regular spiralling motion of particles is
dominant with respect to the diffusion i.e. R < < A, R being the gyroradius.
Zenith angle density gradient will produce two kinds of cosmic ray streaming
/Parker 1965/ /i/ particle streaming perpendicular both to the density
gradient and the interplanetary magnetic field. This streaming is connected

Rv Эиwith the regular spiralling motion and its magnitude is 9 being
the zenit angle, and r being the distance from the sun. /ii/ In the 
direction opposite to the density gradient, a diffusive stream will flow
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I

t

*

with a magnitude of R2 v Эи 
ЗЛ1г ЭЭ*

/iii/ Quenby and Hashim /1969/ have pointed out that, cosmic ray flow of 
type /ii/ is directed toward the ecliptic plane both below and above the 
plane /provided that the ecliptic plane is the plane of symmetry/ thus 
conservation of number of particles demands an outward flow along the 
magnetic field lines, the magnitude of which is given by

S ii -
3r cosip

2 2VC_ Э U - , v
X 9q 2 r n 3rcos^

э2и
ЭЭ2

/14/

ip being the garden hose angle, /ip = 45 at the orbit of the earth/ n is a 
numerical factor that is determined by the dependence of the mean free path,

ß
Л^, on the distance from the sun. Assuming Л a r

П =
4-ß

1+x
dx

/we note that n=0.12 for ß=0 and n=0.22 for ß=2 /

The first two of the three cosmic ray streams mentioned above 
actually vanish in the plane of symmetry, yet they have an important role 
in generating second harmonics.

The reference system appropriate to the calculations is chosen so 
that the x axis points in the direction of the interplanetary field, the z 
axis points to the zenith ángle direction and the у axis is perpendicular 
both to the x and z axes, /see Figure 1./

Obviously, the second harmonics of the cosmic ray anisotropy are 
given by the ratio of elements of £^2  ̂ to 1*» /see Eg.2/. Using equations 
/10a-f, 11a,b/ and considering the three cosmic ray streamings mentioned 
above calculation yields

A =
f(2)
XX 15Qxx _ ^2 

2v 2U “ Л1 2r
1
U

2Э U 
2ЭЭ

+ X 2-sin ф 3Sn
vU /15а/

В
f (2)

= =f(o) О / 15b /
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f(2)
vv f 1 + M 02 -2 _ . 2 , R Э и  л 2-sin ф 3Sii /15с/
f*» \ 2 xl) 2r2U ЭЭ2 2 2r vU

f (2)ZZ
( - S - V

\ R2 92U % 2-sin2t(j 
' 2r2U 9Ö2 2 2r

3S«
vU

/ 15d /

f(2) 
JIZl =f(0) 0 /15е/

f(2)
=flo) 0 /15 f /

where S„ is the cosmic ray stream in the direction of the magnetic field 
/see Eq./14//. Terms containing S„ arise as a result of the divergence of 
interplanetary magnetic field lines while terms in C and D containing no 
X2 |X^ are produced by stream of type /i/. Obviously, positive A,C and D 
values result in intensity maxima from the x,y and z directions, respectively.

At high rigidities X9=Xn/3 can be taken /see Eq. /5//.2 z i
Furthermore, assuming X a r i.e. 6=2 the results /15a-f/ reduce to

A

C

D

В

- 0.44

0.72 —  
2r

-0.28 

E = F =

2
2

О

1
U

1
u

32U
9Ö2

э2и
ээ2

1
и

2э и290

/16а/

/16Ь/

/16с/

/16d /

In order to compare the present results with those of Quenby and 
Lietti /1968/ we note that their results can be rewritten in the tensor 
form used here as

C A /17а/

D - A = О / 17b/

В E F О /17с/
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Comparing the results Д б а -d/ and /17а-с/, it can be seen that, 
with minor differences, the results of the two models are basically in 
agreement.

Nagashima et al. /1971/ have suggested that the observed second 
harmonics of the free space anisotropy could be interpreted as a pitch angle 
distribution around the interplanetary field. In tensor form, this means

C = D /18a/

В = E = F = О /18b/

Inspection of Eq.s. /15a-f/ shows that this could be the case if 
equation /14/ did not hold, in contrary, a sunward streaming existed along 
the magnetic field lines. The existence of such a sunward streaming has been 
suggested recently by Dyer et al /1973/. /Although, comparison of /15с/ 
and /15d/ shows that C cannot be exactly equal to D yet, C=D can hold 
approximately if the term containing S„ is dominant.

4 .  DIURNAL AND SEMI -DIURNAL  VARIATIONS

Due to the rotation of the earth, the anistropic free space cosmic 
ray angular distribution manifests itself in intensity variations in 
earth based measurements. Variations caused by the second harmonics of free 
space anisotropy will be investigated in this section. Here, we consider 
free space variations only and atmospherical and geomagnetical effects 
will not be taken into account. Variations resulting from the first harmonics 
of the anisotropy are given elsewhere /c.f. Somogyi 1972/ and will be 
disregarded here.

When calculating numerical results the figures given by Quenby 
and Lietti /1968/ will be adopted, i.e. jj = 0.001 P % at the orbit
of the earth /Р being rigidity in GV/, ty=45°, /ф being the garden hose 
angle/, and A^ar /i.e. 8=2 and n=0,22/ will be assumed /see. Eq. /14//.
As high rigidities are of interest will be taken. /see Eq. / 5 / /

The following notations will be used:

X - is the declination of the axis of the earth. /х=23.5°/
Л - geographical latitude of the asymptotical arrival direction 

of cosmic ray particles observed.
t - solar time. t=0 at midnight and t=180° at noon.
a - time defined by the position of the earth on i.ts

orbit: a=0 on December, 21 st and a=360° in a year.
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4.1 Annual and semi-annual variations

Because of the 23.5° declination of the axis of the earth, 
the second harmonics of the cosmic ray anisotropy cause a semi-annual 
variation. Calculation gives

= -sinx cosx (l-3sin2A) (Ecos (а-ф)-Fsin(a-^))
2 /19/

-sin2x —— 3s^-n-- cos2(а-ф)-Bsin2(а-ф))

Using equations /16a-d/ at the equator at 20 GV rigidity the
annual variation turns out to be non existing /E=F=0/, while a semi-annual

-4variation of amplitude about 0.18.10 is to be expected with intensity 
maxima on May, 5th and November, 5th.

4.2 Diurnal variation

Transforming the second harmonics of the free space anisotropy 
into geographical coordinates a diurnal variation is obtained:

Aj
J sinAcosA j^(A+C-2D) sinxcosxcos (t+a)

+ sinX (A-С) cos (t-a+2t(j) +2Bsin (t-а+2ф)] /20/

1-cosx sinx --- 2 ~^ (A-C) cos (t+3a-2ijj) - 2Bsin (t+3a-24»)]

(2cosx~l) (l+cosx) j^Ecos(t+4»)+Fsin(t+i|»)]

- (2cosx+l) (l-cosx) |^Ecos(t+2a-iJj)-Fsin(t+2a-i(;)]

Combining this with results /16a-d/, the amplitude of the diurnal 
variation turns out to have annual modulation with maximal amplitude being 
0.8xl0-3 at A=45° and P=20GV. Figure 2. shows the diurnal harmonics dial 
for the present results and for those of Quenby and Lietti /1968/. The 
results obtained from the two models are slightly different.
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4.3 Semi-diurnal Variation

The second harmonics of the free space anisotropy results in a 
semi-diurnal variation of

M  = со|_Л j~ ^1+cos^ (̂a -c )c o s2 (t+ф) + 2Bsin2 (t+ф)^

2
- sl2~ X (a +C-2D)c o s2(t+a)

_ (1-cosxj |̂ (A-c) cos2 (t+2a-iJ/)-2Bsin2(t+2a- ■Ф) / 21/

- sinx(l+cosx) Ecos(2t+a+^)+Fsin(2t+a+i|j)"j

+ sinx(l-cosx) ̂ Ecos(2t+3a-ii))-Fsin(2t+3a-iJj) ^

Inspection of this result shows that each of the five independent 
components of the quadrupole moment of the cosmic ray directional distribu­
tion manifests itself in semi-diurnal variation. Because of their different 
seasonal variations, in principle at least, there is a possibility to determine 
them separately.

Using the results of equations /16a-d/, the semi-diurnal variation 
turns out to be nearly constant with times of intensity maxima at about 
3 hr. and 15 hr. local solar time. This result is in agreement both with 
the prediction of the model of Quenby and Lietti /1968/ and with most of 
the experimental results /c.f. Rao and Agrawal 1970, Kargathra and Sarabhai 
1971, Dutt et al 1973/. The amplitude of the semi-diurnal variation, in the 
present model, has a small / % 10 %/ semi-annual variation.

The result obtained from the present model and from those of 
Quenby and Lietti are shown in Figure 3.

The discrepancy between the two models again turns out to be rather
small.
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5.  CONCLUSIONS

In order to describe the semi-diurnal variation the convection- 
diffusion theory has been extended by considering the second moments of 
the cosmic ray angular distribution and those of the statistical Boltzmann 
equation. The quadrupole moment of the directional distribution has been 
represented by a symmetric traceless tensor /Eq.2./ whose elements correspond 
to the five independent spherical harmonics of second order. The main 
features of the calculation can be summarized as follows:

/i/ Different A^ and A^ mean free paths belong to the first and second 
harmonics of the anisotropy, i.e. the rates at which different 
harmonics decay may be different. The quadrupole moment of the cosmic 
ray angular distribution turns out to depend on the A2/A^ ratio /see 
Eqs. 15a-f/. At high rigidities A2=A^/3 is to be expected /Eq.5/.
At low rigidities, however, the quadrupole moment of the anisotropy 
may provide information on the ratio of the two mean free paths, i.e. 
on the nature of the magnetic field irregularities the particles are 
scattered by.

/ii/ The present results are basically in agreement with those of Quenby 
and Lietti /1968/, although quantitative predictions may differ some 
10-20 percents.
There are two marked differences as well:
/а/ By contrast with Quenby's model, a different particle flux is

predicted from the directions along the magnetic field and normal 
to the ecliptic plane, respectively. This, basically, implies the 
fact that the mean square distance from the ecliptic plane is 
larger for particles arriving from the latter direction.

/b/ The interplanetary magnetic field being bent and diverging, the 
second harmonics of the anisotropy depend on the global feature 
of the mean free path, A^, between the sun and the earth.
/see factor n in Eqs /14/ and /15a-f//.

/iii/ Provided cosmic ray density depends on heliolatitude it can readily
be seen that cosmic ray angular distribution does depend on directions 
perpendicular to the magnetic field /i.e. D^C, see Eqs. /15c,d// as it 
should be if the cosmic angular distribution were depending on the 
pitch angle only. The pitch angle distribution is a good approximation 
if the terms produced by the streaming along the magnetic field are 
dominant, i.e. a considerable sunward streaming exists. In fact, there 
is some indication in favour of such an inward streaming along the 
magnetic field /Dyer et al. 1973/.
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Figure 2: Annual change of the expected harmonics dial of diurndl varia­
tion caused by the second harmonics of cosmic ray anistropy for 
(a) model of Quenby and Lietti and (b) present calculations. 
h=4b and P-20 GV are chosen. Numbers indicate months and days.

Figure 1: The reference system used in calculations. Magnetic field lines
are wound on a cone around the rotational axis of the sun. Axis x3 
is chosen to point along the field lines3 axis у lies in the sur­
face of the cone perpendicularly to field lines while axis z3 
points in zenit angle direction normal to the surface of the cone.
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Figure 3: Expected, harmonics dial of semi­
diurnal variation (l\-0°t P=20 GV) 
for (a) model of Quenby and Lietti 
(b) present calculations. The semi­
diurnal amplitude has a slight 
semi-annual variation with maximal 
values February, 5th and August, 6th.
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