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ABSTRACT

If In space there is matter, the Einstein equations of general
relativity can be solved for special cases only. However, if the gravitational
field has several symmetries, the problem becomes simpler. Supposing that the
Killing equation has six linearly independent solutions, that the operators
Gﬂ = KK3 formed of these solutions behave as generators of an S0/4/ group,
and that the Killing vectors fill a three-dimensional space /"hyperspherical
symmetry'/, the Robertson-Walker metric with kK = + 1 is obtained. Using
this metric tensor the Einstein equations become ordinary differential equa-
tions, they can be integrated for viscous dust /supposing e certain run of
viscous coefficient/, and, for Hookean elastic media, the solution can be
traced back to an elliptic integral.

The viscous dust solutions may have cosmological importance and the
elastic solutions may be used to write down Schwarzschild interiors.

AHHOTALWA

PeweHne ypaBHeHWIi JiiHWTERHa obweir Teopunm OTHOCUTENIbHOCTU B MNPUCYT-
CTBMM MaTepuyM BO3MOXHO TO/IbKO A1 chneuuvasbHbiX cnydaeB. Ecnm xe ans npocTpaH-
CTBa UMeeTCs CUMMETPUS OMpefesieHHOro nopsaka, To npo6nema ynpowaeTcsa. [Jonyc-
Kasi, 4TO ONA ypaBHeHuss KunnuHra mmeeTcs 6 NIMHENHbIX HEe3aBUCUMbIX PEeWeHwuin, TOo

COCTaBJfIEHHbIE U3 HUX OMepaTopsl = Kp3p BeayT cebs Kak reHepaTopbl rpynmbl

S0/4/, v BeKTOpbl KuinuHra obpasywT 3-ex MepHoe MNpoCcTpaHCTBO /''runepcpepuye-
ckas cummeTpua'/, nonydaem cnydaih k=+1 npocTpaHcTBa PobGepTcoHa-Bankepa. Wc-
Nnonb3ysl 3TOT METPUYECKUi TEH30p, YpaBHEHUS SWHWTENHA CTaHOBATCHA OO6blYHbIMU
andipepeHunanbHbIMN YpaBHEHNAMN, W MOFYT OblTb peleHbl 18 BA3KUX XMAKOCTel 6e3
JaBneHua /Hapagy C onpefeneHHbMU YCNOBUAMW, TMPUHATHIMA ANA BHYTPEHHEro Koad-
puumeHTa TpeHunsa/, ANS cnydas xe uieasnbHOro ynpyroro Tefla peleHuem sasnsietcs
3NAUNTUYECKNA WUHTEerpa.

PeweHns s BA3KUX XUOAKOCTEW MOryT MNpeAcTaB/isasTb KOCMOSIOFMYECKUA WH-
TEepec, pelWeHnUs xe, cofepxalue ynpyrvue maTepuasbl, BO3MOXHO MOTyT MpeacTaB/ifaTb
co6oii BHyTpeHHe peleHus lsapuwnnbga.

KIVONAT

Az altalanos relativitaselmélet Einstein-egyenleteinek megoldasa
anyag jelenlétében csak specialis esetekre lehetséges. Ha azonban a térnek
bizonyos szamu szimmetridja van, a probléma egyszeribbé valik. Feltételezve,
hogy a Killing-egyenletnek 6 linearisan figgetlen megoldasa van, az ezekbdl

képzett Ga s-Kg3 operatorok S0/4/ csoport generatoraiként viselkednek,

és a Killing-vektorok 3 dimenzids teret feszitenek ki /'hipergbmbszimmetria" 4
a Robertson-Walker terek k = +1 esetét kapjuk. E metrikus tenzort hasznal-
va az Einstein-egyenletek kozonséges differencialegyenletek lesznek, és nyo-
masmentes viszkézus fTolyadékra /a bels6 suarlddasi egyltthatéra tett bizo-
nyos Teltételezés mellett/ megoldhatok, idealis rugalmas test esetén pedig a
megoldas egy elliptikus integral.

A viszkézus fTolyadékmegoldasoknak kozmolégiai érdekessége lehet, a
rugalmas anyagot tartalmazé megoldasok pedig esetleg belsé Schwarzschild-meg-
oldasok lehetnek.



1. INTRODUCTION

In the presence of matter the Einstein-equations of general relativ-
ity can be solved for special cases only. However, if the gravitational field
has sufficiently high symmetry, the equations can often be integrated iIn ana-
lytical form.

IT the gravitational field possesses six Killing vectors K», the
operators

ga = 3p /1.1/

constitute the S0/4/ group, and the quantity K~ 1is a matrix of rank 3 with
the indices A,y, the metric tensor has the well known Robertson-Walker form
with Kk = + 1. This symmetry may be termed "hyperspherical™.

The ™'S0/4/ symmetric"” solutions may be useful as models of the Universe
or homogeneous interior solutions of spherically symmetric exterior fields.
/E_g. the elliptic Friedmann solution iss

a. / Universe solution with p = 0;
b. /7 one of the interior Schwarzschild solutions, corresponding to
homogeneous incoherent fluid./

This paper contains some S0/4/ symmetric solutions for several types
of energy-momentum tensor. In Sect. 2 we investigate the meaning of the notion
of ''S0/4/ symmetry with three-dimensional transitivity'”. The well-known cases
of the vacuum and electrovac problems are contained in Sects 3 and 4. Section
5 deals with the case of massless non-charged scalar meson fields Sect. 6 con-
tains some new solutions for viscous fluid. Finally, in Sects. 7 and 8 we deal
with elastic and visco-elastic media and give some solutions for these cases.

2. S0/4/ SYMMETRY WITH THREE-DIMENSIONAL TRANSITIVITY

IT space-time has a symmetry, the Killing equation



has a solution. In the case of more than one symmetry there exists a
set of the linearly independent Killing vectors, namely, if the number of
linearly independent vectors is N, then

®0; R <N /2.2/

in any point of space-time if and only if the scalars tﬁt» are zeros. We

may define the generators as in eq. /1.1/ and their commutators
kaJkb - ReIkR1 5pY - . = QaB /2.3/

Here ¢ is scalar. But it is well known that QﬂB( is again a Killing
vector, thus it can be written in the following forms

Ag'l = l;_ABrk a /2.4/

CAB -s are constants with antisymmetry in the indices A ,B. They are struc-
ture constants of a Lie-algebra [1] -

In the case of S0/4/ symmetry there are six linearly independent
Killing vectors, and, introducing new notation in the indices:

Gab = Edaerr) ao h+3" i =1,2,3 /2.5/
the commutators are the following:
Pa87Cydf — ®ByCas * Cas®By ~ CayCBs ~ OB&Cay
y =0, a. /2.6/

The Killing vectors stretch a subspace in which the symmetry trans-
formations can mix the coordinates. The number of this subspace /hypersurface
of transitivity/ is equal to the rank of the matrix:

»», aw n - N- ,2=7"

For SO/4/ symmetry the rank is 3 or 4. In the following we will deal
with the case of three-dimensional transitivity only.

The egs. /1.1/, /2.3/, /2.6/ are partial differential equations for
the K* -s, and these equations can be solved. The coordinate system can be
chosen such that:



K (O, sinx2sinx3, ctgx]:cosx%sinxﬁ, ctgxls‘iﬁ %o%zcosx'%’)

K3 - (O, sinxzcosxg, ctg% cosxzcosx3, ctgxlsi‘n'lxzsinx:’j

(©, cosx2, - ctgwlsi‘nxz, 0)

(©, 0, sinx3, ctgx2cosx3)

D (0o, 0, cosx3, - ctgx2sinx3)

Kg = (0, 0, 0, 1)

0 < x1<TT, 20<x <ir, 0<x3<2ir /2 .87
The forms /2.8/ are preserved by the following transformations:

XN = X3 x° = $(x°); 1 =1,2,3. /2.9/

Now the eq. /2.1/ for g~ can be solved. We obtain /Zafter a special choice
of x°/s

ds2 = a2(x°)|"Ndxo02 + dxI12 + sin2x1(dx22 + sin2x2dx3 )j~ /2.10/

This is a Robertson-Walker line element /with k=+1/.

The Ricci tensor has four nontrivial components, for example Rqo,
Ro1 RII" R12° T3ie EMnstein equations have the following forms

(T =2
_ 2. o _ %
KToo = - 3
TO1 =X T12 2.1z

We shall now investigate the cases of vacuum, electrovac, massless noncharged
scalar meson field, viscous fluid, Hookean elastic medium and Kelvin-Voigt
viscoelastic systems. In the following we require that the characteristic
components of T.v /for example pressure, velocity, vector potential, etc./
also have vanishing Lie derivatives along the Kfﬁ fields.



3. VACUUM CASE

This well known case is dealt with for the sake of completeness
only. = 0, and the solution of eq. /2.11/ is

a(x°) = J"jcos ~x° /3.1/
If A > 0, solution with SO/4/ symmetry does not exist.
An observer, lying at x7=0, feels time pass according to
dt = a(x°)dx°. /3.2/

This time is a physical quantity, the coordinate x° has no physical meaning
In the following Sections 'time" means this "t" quantity. From the eqgs.
/3.1 and 3.2/s

a(t) = cht. /3.3/

4. ELECTROVAC CASE

The electrovac solution with S0/4/ symmetry does not exist. Namely

for the electrovac case

P 1 pQ
TUV = Fyp Fv 4' 9yvFpa F
Fyv Av'y “ Ay;v /4.1
- _ - Yy _ a
But the Lie derivative of A must vanish along Kpg|, thus
Al = 0; A° = A°(x°> I = 1,2,3; Fyv /4.2/
using the vectors of eq. /2.8/. This is the vacuum case.
5. NONCHARGED SCALAR MESON FIELD
In this case ]
Tyy  Ayary - A(@»n@PeT2dR) g /5.1/

and < 1is real. The symmetry condition is the following:



T nKAI = ° D = OCX°) 5.2/

Let us confine ourselves to the case m = X = 0, where the Einstein
equations have the following forms:

2 u
+ §_ + 1 =0
az2 a
2
2(-1-2 + DD - Kp2 /5.3/

Their solution is the following:

a = aO /cos2x°

s _ - 5 /731 I+sin2x
N No -2k “nl-sin2x /5.4/

The a/t/, p/t/ functions cannot be constructed in analytical form. But, when
already a/aQ<< 1, integration is possible:

r3 2/ “11/3
a “ lai- 3a0 _
44 .rr*. v /*l" a(t"<ao
°c J =2F ag- /acé)l—a4 /5.5/

This result shows that there is collapse with singularity at a finite t.

6. THE FLUID PROBLEM

The fluid energy-momentum tensor has a more complicated structure
than that of the meson or electromagnetic field. The general form for the
Newtonian viscous fluid is the following [V}(O03}, M :

TW = RUvaJr\(/p_nlmP;rf\hyv_Wy ;V+u »y+UyU PUV- p+UVUPUy; p\Jl q 1 Uv+q U D :
Updp= -1

" *
hyv ™ WV v qpuP= 0. /76 .1/
/The epithet "Newtonian" dees not mean the character of graviational field
but the linearity of the energy-momentum tensor in the derivatives of velocity
UP is a vector field, representing the average velocity of matter; h”v Iis
the projection tensor of the observer, comoving with matter /it projects into
the observer®s three-dimensional space/; P 1is the density of the rest energy
p is the pressure: g~ 1is the energy flux /e.g,. thermal/ observed by the



comoving observer; n and n" are the usual coefficients of viscosity./

Of course, there are further equations, namely the equations of
thermal conduction and entropy production, and the equations of state.
However, Tfirst it is convenient to deal with the restrictions for the energy
momentum tensor which are the consequences of the symmetries. All charac-
teristic quantities must have vanishing Lie derivatives along the Killing
vector fields.

Thus we obtain:

P =p(x?), p = p(x?), n = n(x?), n° = n"(x%);

ul= 0, U°

u°(x°3 =1 ;
ql=0, g° = g°(x®) /6.2/

But, because of the orthogonality of Up and qgp, qp=0: this means
that the temperature T is also the function of the x° coordinate only pi},
P?3« Thus the equation of thermal conduction is unnecessary.

IT matter contains conserved particles, the equation of particle
number conservation is valid:

(nup) 0 /6.3/
where n is the particle number density. This equation can be integrated:

/6.4/

N being the total number of particles.

If matter consists of one component, the specific entropy s Iis
a function of n and T only. The equation of entropy production can be
obtained from the contracted Bianchi identity by contraction with UP:

TpO;au = 0. /6.5/

/The procedure is the same as that described in Ref. 5 but the influence of
the bulk viscosity has been calculated too./ The obtained equation is the
following:

nTs = 9(n"+ § M”"3 76.67
a

It is necessary to know even the form of the following equations
of state:



p =p(n,T), (n"+F n)=](n,T), s = s(n,T). /6.7/

The equation p=p/n,T/ can be obtained from the First Law of Thermodynamics./

First we deal with the perfect fluid. The viscosity coefficients
are zeros, thus the specific entropy is constant. It is sufficient to give
only one equation of state, e.g. in the form

p=p (n,sQ). /6 .8/

This is a well known case. If p=0, the Friedmannian dust solution
is obtained.

a
a = j- (I+cosx®)
t = 20 (X°+sinx®) /6.9/

It can be seen that there are alternating expansions and collapses
with constant maximal radius and constant finite time OF period.

We now come to the viscous fluid. However, the general case is a
hopeless matter. Since the interesting effect is the viscosity, it Is sup-
posed that

p = A = O. /6 .10/

In the Einstein equations one combination of the viscosity coefficients ap-
pears only: /3n"+2n/=d>0. 1f we suppose that its dependence from n and T
is the following:

d(n,T) = const.n "™ = D/a /6.11/

then the Einstein equations can be integrated in analytical form. /Eq. /6.11/
means that the viscosity coefficient is inversely proportional to the average
distance between two neighbouring particles. Evidently the real situation is
far more complicated, but it is reasonable to assume that the viscosity in-
creases with increasing density./

The Einstein- and entropy-production equations are:

£ az
a a2 -l
2 2
- KPa E=-CD
a
2

61"

Ts ="y-Da. /6.12/



The solutions have six different forms corresponding to the cases
E=2;E*2;E<2. The functions as/x°/, p/x°/, t/x°/ can be seen in Table
1. If E * 2, the "universe"” expands to infinity. If E < 2, collapses and
expansions alternate /ut in the final stages of collapses, pressure in-
creases rapidly, thus the condition p = 0 becomes wrong for the real Universe/.
The maximal radius and the time of cycle increase monotonously. This behav-
iour agrees with Tolman®"s result, deduced from the entropy, increase ony |13J.
Going back iIn time it can be seen that the "Universe" has existed for finite
time.

The calculation of temperature is a difficult problem. For entropy
we are not able to use the ideal gas formula because the viscous interaction
shows that the gas is not ideal. We must also take the radiation entropy into
account. Nevertheless, if we use the ideal gas or radiation approach for
entropy, it can be seen that temperature remains finite, except for the
singular states, and its average value increases with time. /A further dis-
cussion can be found in the Appendix. /

The case /n"+2/3n/=clihst, p=0 has been investigated by Heller,
Klimek and Suszycki [3] for the Robertson-Walker metric with k=0 and arbitrary
X . Of course, these solutions show different characters from ours because
of the condition Kk = O rather than the different density-dependence of the
viscosity coefficient. Their radiation-filled solutions are also different
from our solutions because of the presence of the radiation pressure

Ip = P/3/.

These models are not suitable to accurately describe the details of
the real Universe because of the arbitrary choice of viscous coefficient and
the condition p = 0. But, if it is necessary, the Einstein equations and the
entropy equation can be integrated numerically.

7. THE CASE OF ELASTICITY

Rayner constructed the field equations for Hookean elastic medium;
the energy-momentum tensor being the following [loj :

.~ pa
Tow  Puly = b Coy  Gipa - hpa>

hyy = Gyyr + Ugu\V- /1.1/



Table 1
E <2
E o

a X X
a = 2 (1+cosQx®) Q

12 g-Ex° ifl+-j(1+cosQx®) -EQsinQx°( I+cpsQx®) +

<a.
4
+ Q2sin2Qx° (1+cosQx®)
E o
t=-m|e2 + JcosQx® + QsinQx®) " § “ §]e
E=2
2 o

6 xl +2x +2 -2xN

ox 2
= K2 feX (° - 2 x° +2) - 2).

E > 2
E x°
= K2 (chQx® - 1) e2 QH /T 7 7
r I -2 -3
= _’:%1 e-Ex N+ J (chQx® - 1) + EQshQx0 (chQx® - 1) +
<K

Q2sh2Qx°(chQx°-1)"4j

= K2 jefx® { ¥ no*> - QshQx® «§)m (! ~ 9| -

Exo
a = K2 (chQx°+l1) e2

2+ E
t = k2 ie”rX° + A Ch QX° " QshQXx° E 2
p=- 3y* + 1+ 2(1+f JchQx® + EQshQx +
<K4(I+cth°¥ 2 ( Icho

,0
v ch2ox® +~ sh2oxej

a=age T+q)Xx°
a + Qx°
t=aQ (] Q)1 <= 1

- (+2q)x°
P=- Ed+ag) e
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Introducing the quantity:

va<X: hip hoXon\p° /7.2/

the quantities cuvKx and h°yv four conditions:

coT

a. / Their Lie derivatives vanish along the vector field
b./ They are orthogonal to up,
c./ They are symmetric in all indices,

d. / Cab=CPV=a kX=b 1s a matr;* of rank 6 and h°pv is a positive
semi-definite matrix of rank 3.

If the elastic medium is isotropic /has no macroscopic crystallic

structure/, the tensor CpvxX "as simple form:
CpvKX ~ VAIv A kX+ p”™ pkKA vX + A pxXh vic® /7.3/
where, because of condition a./
V,pup = P,puP = 0. /7.4/

Dealing with isotropic matter and stipulating the symmetry conditions for
the quantities p,p,v, uP, h°pv the following results are obtained:

p = p(x°); p,v areconstants;

1 0 0~
2 0 sinzx1
h pv = A 0 0 sin2x1sin2x2 0
0 0 0 0
A is constant. /7.5/

The non-trivial components of the Einstein equations have the fol-
lowing forms:

-2
(1+A202) +(A - Q2)a2 + 2] - =0 /7.6.a/
a
2
-3(1+™-) - Xa2 = kPa2 /7.6 b/
a

92 = - g3vize /7.6 c/
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The eq. /7.6 .a/ cannot be solved in analytical form. Its solution
is the following:

a
X - }</ST(l«V) a2 - "~-Q2)*4)"1 da /7-7-a/

°E ( [ ——————— ’-1
t = a Wca - (1+A2Q2)a2 - 1(X-Q2)a4 da /7.7.b/

and the right-hand sides cannot be expressed using elementary functions.

There are two simpler special cases. If X<Q , there is a static

solution:
= X+a20Q2
Q2- X
_ g Xx+302-A 778/
P 1+A202

This solution is unstable against small perturbations in ™"a".

2
If X =q , the solution can be obtained in analytical form:

(1+cosBx®)

= /1+A2Q2 /7.9/

t N (X°+isinBx®)
There is collapse, similarly to the Friedmannian dust solution, but the
time-scale is divided by B = /ita2q2".

We do not investigate the general formulae /7.7/ in detail because
the "ideal elastic Universe"™ cannot describe the properties of the real
Universe. One rough approach for the motion a = a/t/ can be seen in
Appendix B.

We remark that Rayner®s Tfirst condition for seems to us an
excessively strong one. It can be seen that in the S0/4/ symmetric cases, if

CpvKX 7as van”™s™hin9 Lie derivatives along up, the elastic coefficients
must be constants. However, in the classical theory of elasticity, these
coefficients may be chosen as /almost/ optional functions of p, T, etc.

/p is time-dependent in our case/. Moreover, even the relativistic causality
condition says the following only [lo]:

p/p < 1, (2p+v)/p < 1. /7.10/

It seems that one- could drop the condition that the Lie derivative
of CyVaK vanishes along uP.



8. ONE VISCO-ELASTIC CASE

In classical continuum mechanics one class of visco-elastic systems
/the Kelvin-Voigt system/ can be written down by addition of the viscous and
elastic stress tensors [l . The relativistic counterpart of this case /if
we neglect the influence of the thermal flux gP on matter/ has the follow-
ing energy-momentum tensor QI2] :

TW = pU U % C ,pa\ghpa po - n'UP;IPhW—

+U UPU +U UPU

NQy sy Uysy PUYURY, 5 yip) F AUV Ay /8.17

IT we assume that the viscous coefficients are the same functions
as in Sect. 6, for the S0/4/ symmetric case we obtain the following equations

(1+A2Q2) + 2] - ~ + (X-Q2) a2 /8.2 .a/
a
0 2
-3(1+ f) - Xa* = kpa . /8 .2 .b/
Si
nTs /8.2 .c/

/Here we assumed that the elastic compression is adiabatic./ The third equa-
tion can be integrated segarately again. Eq. /8 .2.a/ can be integrated in
analytical form if X = Q ; the solutions then are obtained by performing
substitutions

x© = BX ew

E B—lEneW

t =Bty

B = /1+a2q2 /8.3/

as the solutions of Table 1, and eq. /8.2b/ gives p writing a(X°J into
it. These solutions do not diEfer substantially from the solutions of Table 1
The more general cases X FQ can be solved only numerically. Since tne
visco-elastic model does not describe the behaviour of Universe, we do not
intend to investigate this case further.

The elastic and visco-elastic solutions might have some importance
only if we regard them as internal solutions, in which case we ought to fit
them with external spherical solutions at certain boundaries. Further in-
vestigations are necessary with regard to this problem.



13

ACKNOWLEDGEMENTS

I would like to thank Drs. M. Heller, Gy. Pal and A. Sebestyén
for detailed and illuminating discussions.



14

APPENDIX A

THE VISCOSITY COEFFICIENTS

The run of function 0N = n/n,T/ is different in each case for
fluids and gases. Fluid viscosity decreases with increasing temperature, Iits
density-dependence can only be measured with great difficulty because
of the practical incompressibility of fluids.

The viscosity coefficient of gases can be calculated theoretically
when the mean free path is much greater than the molecular diameter. In this

case
27 2 /irk T1A2 n -
A= 2T 2 -1 7%*1/
ar T d 1CT

Here dQ is the molecular diameter and C is Sutherland"s correction para-
meter 116 1. n does not depend explicitly on particle density [JLSI . But now
the gas is approximately an ideal one because the free path is great by com-
parison with the molecular Size. Thus the specific entropy of monatomic gas
is approximately equal to the followings

s =sqg + "~k Inl- - ) /A2/

where sq depends neither on density nor on temperature. For adiabatic pro-
cesses /e.g. for the whole Universe, if the viscous interaction is weak/

/A.3/

Writing this formula into eq. /A.1/ and dealing with a sufficiently high
temperature /T>>C; e.g. C = 123,6 °K for air/ we gets

n = const /A 4/

If the radiative entropy dominates the gas entropy, T % 1/a [s])

therefore
n= const JA.5/
/a

Thus the supposition n ~ 1/a is an approach which is valid for
monatomic gas, at high temperature and moderate density, if the gas entropy
dominates the radiative entropy, and it is valid only for such time interval
during which the entropy increase is relatively small /e.g. for a few cycles
in the case E<<1/. Of course, the exact function n=h/n,T/ for all n and
T is unknown even approximately.
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APPENDIX B

AN APPROACH FOR THE a/t/ FUNCTIONS OF ELASTIC UNIVERSES

The integral /7.7a/ cannot be expressed by elementary functions but
we can carry out a rough approach, preserving the mean features of function
a/t/. Let us write the integral in the following form:

/ada
/Efa} a >0
= a +aa+ R; a
K = ](Q2-X); B2 = 1 + A202.

The equation f/a/=0 has zero, one, two or three non-negative real
solutions a™ according to the values of a and 3. The condition that KF
must be non-negative, means that generally 'a" moves between two extremal
values only /of course these may be zero and infinite too/. Thus function
f/a/ can be reduced to components, some of which cannot vanish at the possible

values of "a".

It Is easy to see that the eq. f/a/=0 cannot have two positive so-
lutions between which KFf 1is positive. Thus there is no oscillation between
two Finite radii. The remaining cases are:

a. / f/a/=P2/a/</a-a-, where P2/a/ is a quadratic function of a,
which does not change sign at the possible values of a.

b. s f/a/=P_j/a/, P3/a/ behaves similarly.

The approach will be the following: If the maximal possible value
of a is finite, we substitute a constant '"average™ value for P/a/ in the in-
tegral . If the "maximal' possible value is infinite, we keep the term a2 in
P2 and a in P3. Thus we can integrate and obtain some different cases.
/Before listing cases it is necessary to note that if an a/t/ function is a
solution of eq. /7.6 .a/, then a*/t/ = a/-t/ is a solution too, because the
equation contains second time-derivative and square of Ffirst derivative only.
Thus the motion is reversible./

Case 1. K * O. Motion exists for C > 0 only. There is one and only
one aQ, at which

3(a0) = 0; a >0 /B.21
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t = (arc sino-0/1-62)

1B.31

Case 1l1. K = 0. This case can be integrated in analytical form,
and this solution was written down in Sect. 7.

Case Il11. K > 0. We introduce the following new quantities:

L= /K ; c 5 IB.A/

2 B3

Case Ill.a. When C < it is possible motion between a

minimal £ > £+ and infinity:

a- E£ef2y t. /B.5/

Case I11l.b. If 0 <C < —Z— B there i1Is another Qossible motion
——————————— 3/3 L

too, motion between O and £ < £+:

t3 Ei(arc sin® -a/1-a2).

d=a |B.6/
Case Ill.c, If C = 2B /3/3 L, there are both of these motions.
If at an arbitrary moment a > 5+. the motion happens
according to Case Ill.a., if a < £+, it happens accord-
ing to Case Ill.b. In both cases £ = 5+. If a = £+,
we get the static solution, mentioned in Sect. 7.

2 8°

Case I111.d. If C > — , radius monotonously grows with time:

a velt /B .7/

It can be seen that there are four different types of motion:
Expansion from singular state followed by collapse back; expansion from
singular state to infinity /or inversely/; contraction from infinity and
expansion to infinity; static /unstable/ state.
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