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Pe3tme

PacueT CTaTMYeCKMX M ANHAMUYECKMX NApamMeTPOB MArHUTHLIX Lu-
NNHOPUYECKUX [OMEHOB SIBNSETCA [0OBOMbHO TPY[AHbIM, BCNeACTBUE
CNOXHO BbipaxaeMmoi 3HepruM pasmarHuumBaHusi. Bo MHOrux cnyua-
X pacyeTh MOryT ObiTb OOMEryeHs, €CNN W3BECTHH BENUYMHbI Ha-
NPAXEHHOCTM MOAS ANS CNy4yas [OMEHOB, (opMa KOTOphX onpefde-
NSETCA 3aBUCUMOCTB r=r + Z r =cos(ke) , U 3aMUCaHHbE C UX
NOMOLBI YPABHEHWS DaBHOBECUA, Pe3yNbTaTamu peweHuss KOTOphX
ABNAKNTCA Xenaembie napameTps ny3bipbKOB(AOMEHOB) -rn,v N T.A.

KI1VONAT

Hengeralaku magneses domének statikus és dinamikus paraméte-
reinek szamitisa igen nehézkes a lemdgnesez6 energia bonyolult
kifejezése kovetkeztében. Szamos esetben a szarnitasok kdénnyeb-
ben elvégezhet6k a falra hatd térerdsségek ismeretében. Az

r = rO +1 r.= cos(ncp) Osszefiggés altal meghatarozott ala-
ku doménok ~esetére ismertetjuk a tgrerossegek kifejezéseit es
a veluk felirhaté egyensulyi egyenleteket/ melyek a kivant bu-

borékparamétereket - rn» stb. -eredményezik.



ABSTRACT

The computation of the static and dynamic parameters
of cylindrical magnetic domains is rather difficult due to
the complex expression of the demagnetising energy. The
fields acting on the wall of a cylindrical magnetic domain
are discussed for the domain shape defined by
r= r. +X rm-cO5my> . Results have shown that both the
demagnetising field and the wall energy field vary ,by the
function cos(ny>) along the perimeter of the wall. Using
the expressions of the fields acting on the domain wall,
the stability condition iIs determined by the balance of
the fields, which yields such parameters as rn, v, etc.
Results are presented In a number of cases using this

wall field formulation method.

INTRODUCT ION

Since Thiele [1] ,[Z] introduced his theory of
cylindrical magnetic domains there are now essentially

two methods for describing the behaviour of "magnetic



bubbles™
Thielels method where the bubble endeavours to reach
the minimum energy state and after computing every
energy term the minimalization of the total energy results
in such parameters as rO, rn, v, etc. ;
the second method being the balance of the forces or
fields acting on the wall yields the main parameters by
which a bubble is characterised.
This latter method iIntroduced by Bobeck[3] is restricted
to the circular cylindrical case only. In the caze of
general cylindrical shape this method has only been worked
out for the computer study of bubble domains[4]e
Assuming small deviations from the circular cylindrical
shape we can derive the analytical forms of the wall fTields
thereby enabling to be calculated the bubble parameters
without the need for a computer. Not only is this
computing method descriptive, it Is sometimes simple
than the first one.
In the following we show how the wall fields can
be determined and we apply them iIn order to evaluate

some characteristic bubble parameters.

THE COMPUTATION OF WAIL FIELDS

The following fields must be taken iInto account

when computing the stability of a bubble iIn an infinite



platelet:

He

Hd

Hw

Hv

the external magnetic field which i1d directed
parallel to the wall and tends to decrease the
volume of the bubble

the demagnetising field originating from the
magnetic free charges on the surface of the
platelet. Its parallel component to the wall
that tends to increase the volume of the bubble
must be taken Into consideration.

the wall energy field which tends to decrease
the bubble volume at every point normal to the
wall.

the viscose damping / force / fTield opposing

the normal movement of the wall.

These fTields are computed by the following formulas:

where Hz I3 the external magnetic field component lying

in the plane of the wall normal to the surface.

where

(1)
MS iIs the saturation magnetisation of the magnetic
platelet
h iIs the thickness of the platelet
o the 1independent variable of the cylindrical
coordinate system
o] the meanings of these variables are shown iIn Pig.
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@
where O the wall energy density
1 the characteristic length /7 1 = 6W/4 Mg /

r the radius of curvature of the wall at the

angle X

©)
where /J. the mobility of a plane wall

vn the normal velocity component of the moving

plane wall

rQo)

Pig- 1
Interpretation of the parameters used in the

expression of the demagnetising field

Among these fields the demagnetising field(l) gives rise

to difficulties because the integral iIn (1) is not
elementary even in the case of a circular cylindrical
shape. To solve this problem we supposed small perturbation

from the circular cylindrical shape, iIn accordance with,™
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Thiele [I] , and the shape as described in the following
way i

r=r0 v ~ r~cos ny @)

n=/]

Substituting (4 into (1) and @ we get the formulas:

H 6 W o)
2 M5 To['l - (02- 'O -p> COS ny>|
A2
Ha +2 -VF . @
Yo
where °
= <+~ = < ocof8
y o o
A2 = 21 1 Lcos no( + COS(nmn+nv?) - cos n(<+f)cOS
G;f\ O n f
COS no( COS u\ @

These formulas are then transformed so that the fields
existing only i1n the noncircular case would be separated.

We thereby obtain

6L

Hw ~ Hwo +AHw ~"2 M, , cos"'r— 8)

Ha - Hdo + nHa -* O/ (fit"+ 8 - yo)df
+1 1245 aC°e (8N ©

Expressions (8 and (9 show that iIn perturbing the
circular shape by rncos (wy?) , the additional wall fields
vary also by the function cos (hip).

The values of some Bn which depend only on rQ and h are
plotted in Fig. 2 . It can be seen In the figure that

there 1s no large difference among the Bn values in the

range of the optimum device conditions / 0,5 <a <0,7 /.



Fig. 2
The dependence of Bn versua a

STABILITY CALCULATIONS OF BUBBLE WITH MEANS OF WALL FIELDS

Disposing of the fields acting on the wall in the form
of Fourier expansions, the stability condition can be
formulated: The fields acting on the wall of the bubble
must result in a zero resultant field. This formulation
is valid for the moving case too, If the damping field is
also taken i1nto account. This formulation of the stability
has the following advantages *

1. r 1is determined by the fields iIndependent of *f
2. translation / velocity / is determined by the fields

depending on cos T
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3. bubble deformation is determined by the fields
depending on cos 2> , cos 3y , cos 4N ...

The first statement is trivial, the validity of the

others can be proved by integrating the fields along

the perimeter into any direction

2" ft 0 if n=I translation
Jj cos ny> cosy dy (i0)
(o0 ifnNi deformation
Case a. Homogeneous external magnetic field, zero

coercivity and isotropic wall energy density.
In this case bubbles with noncircular shape cannot exist
as shown by the sign of and Hw» The diameter of the
bubble can be computed using the expressions of Hd™, HWQ,

that 1s from eguation (D
Hdo+|‘No+He:0 HD
or by equation (12) derived by Thiele [T]

KEHX1T- 0 @a2)

Case b. Homogeneous magnetic field, .nonzero coercivity
and i1sotropic wall energy density.

We will not examine the trivial case when there 1iIs no

3hape deformation, and the bubble changes only its

diameter. The stability condition for the deformed state:

n
H +(»2 -V W OrO rO) (13)



This expression shows that the deformation / in the sense
of the ratio of the axes / is the largest where n=2.
For this case from (13)

Ar H

2 <
rno- 41l VZ1 10 s
0 sW T B2

Case c. Homogeneous external magnetic field gradient,
Zero coercivity

There are two forces or fields acting on the moving

bubble i1f we ignore the fields of the static stability

state / He, Hwo, H*o /. The TfTield originated from the

field gradient and the viscose damping field have the

folloving dependence along the perimeter of the walls

Hgrad = H.rocosT

4_
Hy = pV -coscq
We see that there is no field which tends to deform the

bubble. From the stability condition

Hgrad Hv
we get

v. {n-210 a5)
Case d. Homogeneous external magnetic field gradient,

nonzero coercivity.

The fields acting on the bubble are

Vad = H4 -CO3f



4
H. = — -v-cos
if -£<°f
hc 4 * h? 7ry syr
b HO if - 2>F>2

Asouming the bubble is sufficiently rigid so there iIs no
shape deformation and integrating the fields along the

perimeter yields_the velocity of the bubble
ar

H rdy «J H'*rocoBy7 - -utcoa® - |Hccoa”|-red™>= O (16)
which results in

T . jJ$-2-r0 - |=HO) an
IT we do not assume the rigidity of the bubble we get

the same result. We can take HQ into consideration by

its Fourier expansion
Hc (P)= b. Hc (cos™ + "cas(3<hH)+ ~coe(5™>)+ .... (@)
and(10) shows that only the cosy term computing the

translation condition has to be taken iInto consideration,

so from the balance of fields
T H(cosf)= K*rQCOs® — Hcd4cos”™ -iv "CosiP = O

we get the same velocity as In (17)-
In the case of iInhomogeneous field gradient, the field
gradient must be expanded iInto Fourier serie and the

computational procedure can be done iIn the same way.
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Case e. Homogeneous field gradient, nonzero
coercovity, anisotropic wall energy density.
Della Torre [B has shown that In the case of anisotropic

wall energy density the bubble boundary has the following

dependence
r = rQ + r2*cos 2y - &

for those conditions given in his paper.

We will show that in this case also It is easy to
calculate the dynamic parameters of the bubble by means
of the fields. If the fTield gradient iIs extended along

the easy direction then the balance of the fields

(20)
where /3 1s the angle between the tangent line of the
perimeter and the normal of radius r
(20) yields

€1)
and with the same procedure for the motion along the

hard direction

@2)

which results are iIn agreement with those of Wanao [6]-
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CONCLUSIONS

It i1s concluded that for the calculation of the
static and dynamic parameters of magnetic bubbles this
wall field formulation method can also be used resulting

in simplicity of computation in the dynamidccases c,d,e.
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