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ABSTRACT

The aim of this paper is to introduce classical first order logics as 
interrelated purely algebraic constructions. To this end a special class 
of universal algebras, namely the class of locally independently finite 
cylindric algebras, is defined. Some of its basic properties are inves­
tigated.
The constructions of first order logics are based on this class, and 
the investigations of the logical properties are purely algebraic argu­
ments based on the properties of this class of algebras.
The paper contains the material of the lectures of the authors delivered 
on the "Logical semester - 1973" organized by the International S. Banach 
Center of Mathematics in Warsaw.

РЕЗЮМЕ

Целью данной работы является чисто алгебраическое построение логики пер­
вого порядка. Для этого определяется новый класс алгебр в рамках теории 
универсальных алгебр, а именно, локально-независимо конечный класс цилин­
дрических алгебр. Исследованы его основные характеристики. На базе этого 
локально-независимого конечного класса алгебр построена логика первого 
порядка. Ее основные логические свойства исследованы чисто алгебраически­
ми методами, основанными на характеристиках вышеуказанного класса алгебр.
Данная работа содержит материал лекций, прочитанных авторами на "Семина­
ре по логике - 1973", организованном Международным Математическим Центром 
им. Ст. Банаха в Варшаве.

KIVONAT

A tanulmány célja az elsőrendű predikátumkalkulus tisztán algebrai fel­
építése. Ehhez az univerzális algebrák egy speciális algebraosztályát 
definiáljuk, nevezetesen a lokálisan függetlenül véges cilindrikus al­
gebrák osztályát. Megadjuk ennek az algebraosztálynak néhány fontos tu­
lajdonságát. Megkonstruáljuk az elsőrendű predikátumkalkulust ezen al­
gebraosztály segítségével.
A predikátumkalkulus logikai tulajdonságait ezen algebraosztályra bizo­
nyított tételek segítségével tisztán algebrai utón vizsgáljuk.
Ez a tanulmány a szerzők az S. Banach Nemzetközi Matematikai Központ ál­
tal szervezett "Logical semester - 1973"-on tartott előadásainak anyagát 
tartalmazza.
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LIST OF DEFINITIONS

0 the empty set
1 á íol
2 i iO,H

со = iq i, Z j i
Do f domain of the function or relation f
Rg f range of f
fx , fx x-th value of f: = fX - ^(x)
<C-f60/̂ A way °f defining functions: < - f W ^  ' í<x,fW>--^eAi 
<6 . ,  ie a function defined on the ordinal oCо) 'Ч / "УГ\<.сП J

that is: <ó0y..., V ' i k *  ' 1 ^<4 J
x i f  f domain-restricted to X: xj-f = í <oo; -f 6<»> > í x éX J
B. power of A to В: ^ -pß^/ll
Sb A class of subsets of A: 5b/) ~ ÍV í X&/4J
r*q composition of r and q: £<b(a>: (3c)(<C,q>f-•<£.< 6 ty) }
r|q relative product of r and q: rfo - l<q/b>: (3c)(<Qfi7£lr&

г*

the equivalence-relation induced by the 4ипс̂ 10,г 4 : 
if A iS Do r, then r*A is the r-image of A:
Г*А 4 iy: C'BjüM )  <*,y>fcr]

jtif a £ Do r, then r a is the r-image of a:
Ir^a * {y ■ <Q,y>e^J = Г* faj

'ihc x-th projection -fundion p jK (-0' f W
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subáig*bra of generated by X, that is: @ĝ / 
is the least (by £= ) element of the set
ío&gW : XSr53

ХК&св ^  is subalgebra of
■а 4 «ér is homomorphic to
xi* & ^  is isomorphic to M

зьссс/ й)
ЗИЛ,«#)
a<a
f  «а

class of homomorphisms on Ôt
set of homomorphisms from XX, onto <fó

set of homomorphisms from XX into Д
set of congruence-relations on 4%
is defined only if f is a homomorphism on cCi , and
then there is a unique c& such that ,
now: 1 * XX -  cfó

PU-•iel 1 direct product of the algebras according to1/
the indexing I

IK class of algebras isomorphic to the elements of K:
IlC si : <Üs|e Kl

NI te class of algebras homomorphic to the elements of K:
»nieá ífá : |e KJ

SIC class of subalgebras of the elements of K:
SIC- W : }

c f к free congruence over К with I generators and with 
defining relation S:
Cif Ksf Л i Re &-% = SCR , IS К J

к free algebra over К with I generators and with defi 
ning relation S:

V i?  К



л ( 0  1 ^  cl ЛТ) - чUj- t\ " ^ ) where T is the defining relation:
Sr® к - S ^ K  J  1<S, ад> : SbI(

4>. substitution operation in 4% » j for i:
i X * o f H d i f  •WÖ X )
íjjf̂  is defined if and Г is a finite trans-

('ÖÚformation of co , and then Sy is the unary 
operation defined as followed:
if is the canonical represen­
tation of £T ( *oo ; / l0< ы ) , if X is
any element of A, and if ТГ0 ... ,TTfert1 are in this 
order the first k ordinals in co4 ( A  L/ Ü %  v> )y 
then
(Ä d w«0 Л,да) A (0)

x " 4  "'4. \•• v,
{\A/ ^ y } a way of defining finite transformations:

u : а*|4'Цп ч! j

(PIC class of direct produc-is {rom Ю

PK * I  [ (PlX : lib arbi-bnru one 1 (Vtíí)Ú^Kii€l a
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I. ALGEBRAIC NOTIONS

A function with range consisting of positive integers is 
called a type. that is t is a type if Rg t S  (.ал/i) .

A structure of type i€ roj is a function 4% having the 
following properties:

Do 4% * I  U1Й ,
CVjel) ‘O y S  tl% x , and

Vit + 0
The last property serves only purposes of convenience and 
has nothing to do with the essence of the concept struc­
ture.

For example:
The triple < co> is a structure of type , where
+ and — are the usual function and relation on со . This 
follow-a from the fact that the series have been defined as 
ordinal functions:
<+,^ uo> Ä <2,u/>} , Since Z- { o , l \  ,

in this case and i  -  {<otS>, <A,2.>1 - <3,^2> .

German letters stand for structures and the corresponding 
capital latin letter stands for the universe of the struc­
ture, that is L0 ^~  A •
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A structure is called algebra, if all its relations are 
functions defined on its universe.

Now we fix a type which shall be used thoroughout the 
paper:

I - Í <->,17, < \ l 7 ,  < ^ Д >  ;

We shall discuss only algebras of type Í  .

Any L -type algebra O l can be defined in the following 
manner:

VL* <ч1. M  ■iXj ЧК,Л > ' ' d; » -у

We shall use the next symbols for operators of £  -type al­
gebras :

■ил i -(tt)
<0C7 * - M)

*a3. = С;1Й)

< a 'd d f >

We usually omit the index ($0 .

Let us introduce the dimension-sensitivity function L\ :
/*> Л Г . . íCO x гA X - t -г : С x ^ X J



One of our basic tool will be the well-known universal al­

gebraic concept "word-algebra" or "absolutely free algebra".

The definition of the word-algebra is:

- 6 -

We define as the t-type algebra for which

a/ the universe W is the set of all n-tuples of the ele­

ments of XU Doi: , that is:
(XUDtrO U (XUDtftWXUDöt) U  ( X U D d ) * ( ( M 0 d ) * ( X U 0 o ®  U  

b/ for all 5 k Dot

* < Sí <**/'•'» x*(gH>> 

in the case 'bQ)~4.m O

щ  4§ 6 w  .

$r is the absolutely free algebra or word algebra of

type t generated by X.

Since we devote ourselves to algebras of type Í , we set

)

and we call the word algebra generated by X.
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1/ The veriety of cylindric algebras (ca) .Í[i1 , 1.1.l)

Let us introduce the following shorthands:

x+y = — (.-<• -y')
0

\ i  - 0

Now we can define CA the class of cylindric algebras: 
For any C-type algebra '{Л ,

Í% € CA if for all and the following
equations hold:

И  Щ\ A ,A > is a Boolean algebra, that is
a. / x-y = у * x
b. / x*(y+z) = x*y + x*z
C./ X*1 = X

(Cl) c^o = 0
(C2) cix*x = x
(C3) с^(х.с{у) = c.x-^y
(C4) c^cjx = с- сгх
(C5) du = 1
(C6) i^á.n dJfv = ( d y  d^)
( t i) i * j (d- • x) • ci (d- ‘ -x) = 0
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2/ The claee of locally finite cylindric algebras (Lf),
(tH. l.li.i)
Lf = Í ЧХеСЛ ■ (VytA) | Л  I < ш j

3/ The class of full cvlindric set algebras (rh),( [l], 
1.1.5)
The full cylindric set algebra induced by the set A is:

h s Г\ ^  f ̂  n(̂  S b ^  >  -
= <  n  / » 4  / u-y ' n  №

where
^  X - A4X
.(A)CtA x - i ófe°A : (3«X)(Vjeco4 ü) J 
0<Л 4 { 0е"Д : 4-4: i

(Sec i.) 

(See -fig - 2.)

We often omit the superscript (a) that is for example
(Д)we write instead of Dt-j •

Til d 1<£д : A + 0  i

4/ The claaa of cylindric aet algebrae C3taT), ( Ы ,  1.1.5)

S  Tt

II4.1 Lemma: /ИВ iff = ^
Proof. TjfeS^n.W6 implies that T ® - ^  "B , and 

this implies that A* & A
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Fig. 1.

Fig. 2.
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II4.1C Corollaiy: (\/$ьЗ(л) (З! Б) f that is any cylind-
ric set algebra is the subalgebra of exactly one full 
cylindric set algebra. A

5/ The class of locally independently-finite cylindric set 
algebras (ohr) t ( [2])

Let JGx. qfc A is an independently-finite element 
(in the followings i- finite element), if 1Л  <U) and
6eq 1$  (3s.̂ a) (ViMa) . (See З'9-З.)

djj ̂ { °(Хб Жа,П Lf : (Vatfi) a 15 i-fnite- 3
As for as we know we have defined first this notion in [23. 

6/ The variety of representable cylindric algebras (Re') , ([l3,
1.1.13)

See the connection between the classes introduced so far 
in fig. 4.

7/ Some basic properties of the classes introduced so far 
II7.1L: Qt is variety. This was proved in [ 3]  ,

II7.2L: (HISIP Lf . For proof see [4J.
II7.3L: ^ L-f. Is proved in this paper. As far as we

know this is the first proof of this inegality.
II7.4L: $P Lf ‘  Was proved in (23. Our results in logic

are based on this equality.
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A

Fig. 3.



12 -

Fig. 4.a.



- 15 -

CA

----- >

>

О
о

J - closure

§ - closure 
(HI - closure 

SIP- closure 

variety 

non-variety

E ‘j £ simple cylindrlc algebras with 

the trivial cylindric algebra}

Ш  4 : M l - a  
TfiZ *{«£•• Ml>ii

Fig. 4.b.
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III. PROPERTIES OF THE CLASS Ллх -

111.1 Lemma: 5>djy -  aUy A

111.2 Lemma: (V'Ot'&'̂ cC) ("З^) По(хг = , that is there is
a greatest locally i-finite subalgebra of any 
cylindric set algebra.

Proof: Follows from the fact that for arbitrary *tX6^a/ 
the set of i-finite elements is closed under the 
operations A

2d •• Aí(tíx - o j

111.3 Theorem: a./ ('̂ fe'̂ aAL-f Si [TxLVLl * Z )

b./ ^

Proof: a./ Let XX&Jjjr and 4 ^ — . ÍII4.1C4). For any
/^a-0 implies that 6eq iff GzeoKVt^d)\~%d. , 

and this holds iff (^fc^eq ) and 80 Ла=0 
implies that 0=0 or 0*^6

b./ We define an algebra <a such that 4 M t/]Lf 
and [ZdxX\~Z and $ C 4 ^ - L e t  Jc -^ i^e Z  : 

iffV 0 } f and Ы  4 d r i l l  . It 
follow-s from this definition that 
and d{ jc~ d- implies by [l] .2.1.5 that Lf .

Since ic ie not i-finite, Xxr . Now we show
that I Z c t W l - l  ■



- 15 -

We define a property on the elements of A. It 
can be proved by induction, that all elements of 
A have this property. However since this proof is 
long but mechanical, we omit it. To complete the 
proof we show that this implies that I 7A LÖC I .

of n
У Í8 good <ё=ф (3n£u?)(.3a£= <4 - Ъ • tlj 6 éQ&l^oHüjU

where cf(a) is the set of the duals of the binary 
sequences in a, that is
d ia l !  {(/'■Z ■ axta)(M iiK )U*o tfl x - i )  . ( bee -fe. 5.)

It can be proved hy induction that all the ele­
ments of A are good. Now let cj€ ^ { J l good. Since 
у is good, there exists an "a" and "n". From Acj=0 
follow-s that QjĈ . C^ у- у , and so either a=0 

or а=̂ 2, . This implies that or y-

III.3. Corollary: d ir Ф Ä .  n If
Proof: The algebra constructed in the proof of the second

part of the above theorem is an element of « M L f b o k - .  
We note that this can be proved without the second 
part of the above theorem because it is easy to con­
struct an algebra such that %X€ and

\KHJU>Z.Á
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a

ÜW^v/Vsí vV v'n/s*

ы. .U U W—u w ■' 1 V -rf-W.

A line ending with xxxx stands for all the sequences 
starting with that line and having infinitely many 
zeros. The ending ooooo has the same meaning but with 

finitely many zeros.

Fig. 5
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III.4. Corollary: Lf =£ I <bf
Proof: There exists an [_{- such that IZolL(X,l>M A  

is simple (<=̂  I Ccr 'Ő íl-JL

III.5. Corollary: For all ЧУ1& Ж<ъ f\

»•/ '{Jkclxr XX is simple

b./ <(X is directly indecompos­
able*/
is subdirectly indecom­
posable*^
is weekly subdirectly in­
decomposable*^

c./ iX^ckr 

d . /^ Ш х г

Proof: b./ f о Howes from [ij 2.4.14

a./ c./ d./ follows from [l] 2.4.43

Now we define a natural correspondence between the locally 
i-finite algebras (.Mr) and the structures. By this corres­
pondence dxf can serve as a basic tool for investigating 
structures and their interrelationships.

Let "a" be an i-finite element of the cylindric set al­
gebra XX • The relation belonging to "a" is:

r(a) 4 í(uÁa)a)i Ó 1

X These well known universal algebraic notions can be found
in [ll •
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The importance of r(a) follows from the fact that

iff (xr/fa ci)i 6 € r(a)

This fact is illustrated in fig. 6.

We define p as a mapping of M r into the class of 
structures such as: if 'ifeolxT ( I14.ic), then

p(Űí) ~ { < ft, в < a) inq)> ; ac A i

The correctness of this definition follows from the II4.1C 
corollary.

We define q as a mapping of the class of structures into
Mr such as, if M  is an arbitrary structure and t

stands for the type of then

qfó) - 5 i

III.6 Remark: a./ ? p » that is <pc p is the identity
transformation on M r

b./ p c correlates with any structure
a structure with the same universe and all 
the relations, elementarily definable in

. A
Summing up the relations between olxr and the other classes 
of cylindric algebras:

air '5s i-f П  Ä -
dir =  № l-f *  SiPXt “  SI? 1  * &

Kfi» Air - Mlbp If -  HlSPSa - Ш>Р t. -  &
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Fig. 6.
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IV. THE DEFINITION OF LOGIC

As it is known, the aim of a logic is to enable its user 
to formulate statements about certain phenomena and to rep­
resent the relation between the statements and the pheno­
mena by truthvalues. To fulfill this task logic should have 
a language and some tool to interrelate the elements of 
the language and the phenomena under consideration.

IV.1 Definition: By a logic we understand a pair t

where У  is a word-algebra and К - 3(cr ̂  A

To substitute the set К with a unique homomorphism we 
need the following operation:

IV.2 Definition: If G is a aet of functions whith a common
domain, that is Do-f л D

, then ire- á <  <-Ц_^

/see fig. 7./

We now introduce some concepts related to the concept 
of logic * к * 1Г1С.

The set F is called language. its elements are called for­
mulas . The elements of К are celled interpreting functions,
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Fig. 7.
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these render meanings to the elements of the language. For 
all and is the truthvalue of the for­
mula q> according to the interpreting function Ъ . For all 
Tib К  9 ' Z* The algebra rjß i is called the truth-
value algebra belonging to ^  . If all interpreting functions 
render the same value to Lf(Y ^  F , that is k(f}- key) ; then 
we say that ^ and \|/ are synonymous. The semantic equi­
valence of the logic |c> is lc° . Two formulas are 
semantically equivalent iff they are synonymous. %  is 
the tautological formulaalgebra, its elements are the syno­
nym classes. HX is a formulaalgebra of the logic <V>lc> 
if there is an L - К such that ~  ^  *

Fig.8. shows the concepts introduced above.

Interpretations

To make more convenient the use of logic, we can render "la­
bels” to the interpreting functions, which serve to identify 
the interpreting functions. These labels are called inter­
pretations. That is, we can pick any class M with a func-. 
tion MK , and consider the elements of M as interpreta­
tions, which label the interpreting functions through h. Let 

И , now  ̂ is the truthvalue of the formula ^  in
the interpretation m. jß  * ß  . The algebra is
the truthvalue algebra of the interpretation m.



Fig.8.

i
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Theories of a logic, relatione between logics

The set of theories of the logic < Í K >  is: { СТГ00 : L^lcl • 
More intuitively a theory of < is the semantical
equivalence of a logic L> , where L £  1C .If given 
theory R we often identify it with the logic < Í ,  JJi L^ 

: R=(JTL ) }>  . That is certain congruences are theories and 
certain logics are theories too.

L is axiomatisable in <'-r==̂> L- i - f eK- f  2  (lFL)°i .
We note that

a. / L is axiomatisable in a logic iff is a
theory of that logic.

b. / The theories /ae congruences/ form a closed-set sys-
2

tem. Given a subset G of F the smallest theory con­
taining G is the theory generated by G.

L is recursively axiomatisable in < if there is a re­
cursive subset G of V  such that L- -f — • If the
logic is a theory of К ÍQ^^then is
reducible to ; if moreover K̂ _ is recursively axiomatis­
able in L/j then^is recursively reducible to L^. Reducibility 
is a close relation between logics: If is reducible to 
L/j then any logic which is a theory of Lz is a theory of 
L̂ i too. That is if a theorem states something about all the 
theories of a logic than a proof of this theorem for is 
also a proof of it to . So if we prove the reducibility
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of* to , then all such proof* to Lj  become superfluous. 
Theorems of this kind are the compactness theorem, the 
Lőveinheim-Skolem th., the ultraproduct-th., and also the 
completeness theorem can be reformulated in euch a form.

Shorthands

There is another means to make the use of a logic ^  
more convenient /the other one was the use of interpreta­
tions/. We can introduce shorthands for the formulas, that 
is instead of the elements of F we can use their names. Of 
course, just as it was the case with the interpretations, 
different purposes may require different kinds of shorthands 
for the same logic. The definition of shorthands goes as 
follows: We define a relation h on finite sequences. We do 
this by listing elements of h in the form c/hß , where U 
and are given sequences /or ehernes of sequences/, and 
then saying that h is the smallest relation for which if 
°L$ , ъ  s  are arbitrary sequences /the empty sequence inc­
luded/ and сП-^  , then ĉ cfjb *^Now we define )f~ as
the smallest transitive relation containing (-.If d II- (3 
and F we say that o( is the name of the formula |3 . 
The set of names is N ~ IF^F and we say that the definition 
of Ih is correct if N'j IF" ia a function. This can be

More precisely, for any sequence we state:
>• t>rC> V~ < ̂0y

x
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also a tool of forming new logics:

we pick а ß — N such that IF ß - F and define an algebra 
on В such that \)rcS ~^f • Now the new logic is

/of course care should be taken for 
o& to be a word-algebra./ We call this a logic with 
built in shorthands. Of course this logic is recursively 
reducible to the original one since bj IF is a recursive 
function. For example well known shorthands are:

(lf\fv/) h  y)l" <. 4/ »  , and VtFl5j1
for any ^ д -éF.
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V. TYPELESS LOGIC

Before introducing typeless logic we have to introduce the 
following auxiliary concepts:

In the followings I is an arbitrary but fixed set, and 
is an arbitrary class of similar algebras.

£
V.l Definition: A set S^= fr̂. is called a defining rela­

tion.*/ к

V.2 Definition: sft is the class of homomorphisms over <ft

with I generators and with def. relation
s: rr,wl i Í •• SA, 9" 25}
in case S = О we omit the superscript:

i f k  - Гг A  á
V.3 Definition: The typelesa logic of index set I is the

pair < 5гТ/ Vj-Áxr > - к

We introduce the shorthand for the class of interpreting 
functions of this logic: Áxr .

Now we fix the class of interpretations with which we use 
this logic:

нг -- { ~a ■ Db-ос-тош i

K We know that by calling S defining relation instead of a 
set of defining relations we have broken the tradition.
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Thie is the class of structures the relation symbols of 
which are from the set I. We note that for other purposes 
other classes of interpretations might said better, e.g. 
the class of structures with proper relations« /А rela­
tion "r" over A is proper if there is no "q" such that 
r = q x A./

The labelling function is as follows:

V.4 Definition: For any %яп($гг/о(̂  ) such that
for all Г
h w ( д х ;  i A

V.5 Theorem: together with h form a class of interpra-
tations to the typeless logic of i.s. I, that
ia k* M [ = k'1

Proof: 1./ . We know that 11 and it
is easy to see that for any the ele­
ment is i-finite. Since

I generates fy* 3tj- we have Ĉ t7~'

This complete the proof of 1./*/

Vßeyond completing the proof we got that the labelling h 
coincide with our natural correspondence q between the 
structures and the.Jjr algebras that is: I - ̂ ($1)



2*/ К И —  ÍC • Let 3^ -  . То g we con­
struct an Ф Н 1 such that h^ ~ <3 .
ов'З Svj.tc/o' . According to II4.1G there is 
a unique A such that Now we define a
structure •a  on A: for all дбi we pick

i&) . 4 ’an nfctt? such that Д C[(<£) -ft and then we
fix X’J(y~ i<*cy■;\-r> : Now we show that
h ,,~9 • For ell ;

Л / i ,

ЬаФ *
- • (Зп,био ) т Ь е ' й к Ы ^  Й » 9 ^ \ ^ г.,г„>'<\Дн->1̂

^ J ys' /
because the def. of '{,1 because ,£4бо(хГ

and

And since *01̂ *-4 end implies that ^p9fĉ tn,n̂ I  i°̂ j ")
we have: <3
That is for any o\̂  К L there is an Ф'[е И such that
Irby,-9 end so h* M1 2 A

Now we start to investigate the algebraic properties of 
typeless logic. We prove that the semantical equivalence 
coincides with the free congruence over cLy and so the 
tautological formulaalgebra is the free algebra over °̂ cr 

To this we need the following five purely algebraic lem­
mas. From now оп.лЯ is an arbitrary class of similar 
algebras and S is an arbitrary defining relation.
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V.6 Lemma: ( T ÍJ(í>Vl )° - <$t

Proof: <*,<з>б (IFÍ^^/Ó iff (Vg£V^%í) gUbgtj)iff

tff (Vgfc Íz Згг) Kg*&re $>Ä & gö ̂  ̂ ><xü Xg]iff 
4  (\/r€ Gr %Ж&г//£ R>A<£ r ?S)^ <xtf>é-r] fff 

(ff <*,y> é- Сг^-Л- A
V.7 Lemma: For all gé there is a G — Fj-^'Jb

such that g°- (ГГбУ

Proof: Since 9^ ff SIP , there exists an J index set
and for which g*£ff P  f; If i

№ *
stands for the isomorphism, for all we have

(S>) ^
t j - i *  ge ff v t , aî  since (V*6FL)Do g(/)' 3 ,
we have: g1̂  )° A

V.8 Lemma: For all set I and congruence R
Жг/я t síp 4  -iff 1 3 q -л) (гг/_У- к

Proof: 1./ Sg/^feSíP^l ^  (dL ̂  Q.л А ^ а У ^ Я

К*е&1£Х(Ж,/к'>е1гь р А  sini:e
By this V.7 gives f3L^" 174) (ir04fi*)D.

This with the fact that for all equivalence- 
relation r, (r*)0* r° completes the proof of 
1./.

2./ (31С£Л) ar/J)°-R ^  V r 6

=3 l U  3(U( &Е# JP 6*3^ Since for all -&У , 

l* Ц-еЖ we have *4/.r 6 ^ РлА
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A

completes the proof of
2./

V.9 Lemma: С Л  = Cr? £>Р &

Proof:

<x,ynafbPA ,# i ^ f M ) 4 3>«9' iff 4
r  Z '  /because V.6 because V.7 because V.6

A
V.IO Lemma: Crr -A - Cfj- M^fP <ft

Proof: Can be found in til A

V.ll Definition: The semantical equivalence of the typeless
logic of index set I: = * (Б(С^)С A

V.12 Theorem: -  - Cr
Proof: Ctj-cLo- (Tíípĉ o ")e by V.6. A

V.13 Corollary: ydi “ 3rr <Ar

V.14 Definition: The class of typeless formulaalgebras:

f { ÍVfj- : I is an arbitrary set, fC1" i

A

V.15 Theorem: ? CF) - S P  «Or
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Proof: 1./ ^ — S P ĉ aT. According to the definition
of for any there is an I
and L £ 1с«Лг such that 4#= • From
this and V.8 follows that 4JÍ£

2./ ^  ^ —  SPcixr. F0r any chf there is
a set 1 such that ^ ‘й .  /e.g. % V  ./
By V.8. this implies that (3L& = 3t̂-/ *0
that is V lC -? №)

We have proved so far that the semantic equivalence of the 
typeless logic is the free congruence over oZtr , the tau­
tological formulaalgebra is the free algebra over olxr and 
the class of formulaalgebras is $)jF <Ar ,

We note that the same is time for the propositional logic
if we replace oUr by . For the algebraic purpo­
ses the definition of c/r is not algebraic enough. So we 
try to replace it with more algebraic classes. E.g. the 
fact that the tautological formulaalgebra of the proposi­
tional logic is the free Boolean algebra is more algebraic 
as our V.13, since the class of Boole algebras is a variety.
In the followings we succeed in replacing <=(xr by Lf as well
as , both having purely algebraic definitions. /The
presently known algebraic definition of is more compli­
cated than that of , however it has the advantage that 

is a variety and a set of equations is known for it./
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V.16 Theorem: a./ _L
Or L-f

b./ 35-Г/̂ с - li
c./ <г№) * № 1 Lf

Proof: by II7 .4 and V.■ 9 A

V.17 Corollary: a./ - ‘Kd

b./ ^ i U  --‘ 3*

Proof: by 117.2 and V.10 and V.16 A

Remark: The corollary V.17 does not generalize part c./ 
of V.16. This generalization
easily seen to be equivalent with the equality 

ШУР Li } which however fails, as will be 
seen later.

V.18 Theorem: Let <ЗгГ; -сЯ,̂  be an arbitrary logic, that
is лЯ is an arbitrary class of algebras /not 
necessarily of type i , howevere we do not take 
care about this in the notation/. If $lP Jb 
is a variety then the compactness theorem is 
valid for < 3^ £ Д >

Proof: Let us suppose that бР-Л - , and IC-- ГГлЛ: .
Let I be an arbitrary set and £ *==" f?é Gr .
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Since •3fr^<= 4 Р Л ,  we have that
ь MlStP VI . This, hy the hypothe sis, gives 

that 3ij-fa b SIP \ft , and so by V.8 (3LC K') (([(.У*- ̂  f 
that is R is a theory of . This means
that the set 1<3£(сгЗг£: R3=}coincides with the set 
of theories ( on < Jrx ,K>)« Since it is well known 
l_l] that the set of congriences containing a fixed 
congruence is an inductive closed-set system, we 
have proved the compactness th. for this logic. ^

We note that the above theorem states e.g. the 
compactness of the propositional logic since the 
latter has the form: lj {<  O ^ /Z ^ i У ~

Remark: It follows from the above theorem that the hypthe- 
sis that S.P Lj is a variety implies the compactness of 
the typeless logic. However the compactness theorem holds 
for the typeless logic < iff 1=0, for, as it
easily seen, the set of formulas { S ) ̂  j 3* $ 3«. V  ’ J
has no model, while every finite subset of it has. As a 
corollary we get, that'Jf’JP^f is not a variety.

Calculuses for typeless logic
*

By a complete calculus we understand an algorithm which lists 
the semantical equivalence of the logic in consideration. That

r-
is a calculus of <УгГ/1С > lists the set г . It is easy to 
find such a calculus by using that and a system of
equations defining >Ял is known [l]. Thus starting from the
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equations defining and by using the usual transformations 
on equations an algorithm can deduce any element of — L .
This calculus can also lists the consequences of any finite
set of formulas, however we know that there exist a re­
cursive infinite set of formulas, the consequences of 
which cannot be listed by this calculus.
/For example: £ 3/1 ̂  ] ./
The correspondence ~ Cfj- (fib can be a tool not only to con­
struct new calculuses but also to check calculuses to be 
complete. */we note that the completeness of the propositional 
calculus for instance can be proved in this manner in very 
few steps [2^ /since the variety of Boolean algebras can be 
defined by three equations/.

Shorthands for typelees logic

We remind the reader that at the end of the chapter "def. 
of logic" we discussed the use of shorthands and fixed some 
definitions. For the typeless logic of index set I we can 
introduce the usual shorthands, e.g. \/г , etc. However 
we cannot introduce shorthands for substitutions that is 
variables. We would like to have:

V L( ^ ^ v ' *  *6ê  1 C3m6w>) < v -•/4 .

* We have to check that the relation listed by the calculus 
is a congruence and contains the equations defining .
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We can not define this because A Z'* /̂- ~(0 . However if
we substitute, in the definition of typelees logic, K C with 
k * where ^ ( g 4) = \ л Л  ' 1, for
all gfei , than we get a modified version of typeless logic 
in which shorthands for substitution can be introduced, 
but unfortunately we lose with this the nice algebraic pro­
perties of the typelese logic.

Examples

-1./ Let , and for each ofio the structure ({ŐL :
> ■

jO l - J

It is easy to see that for any g) * cu
iff к > П . (SwJFrom this example it follows that Д  (g/2) = to .

2./ We would like to produce a formula Cf* such that
h J f ' ) ' S/ ^ Л ,  where $ L  of the example 1./.
We shall see that if * 32(^,(В0(§Л^) Ä*jA\)hBa just the 
required truthvalue in ÔL /see fig.9./



Fig. 9.
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VI. THE FIRST ORDER LOGIC OF TYPE t

Throughout thie chapter ieVioM), that ie t ie a type and I 
is ita domain or index aet.

We remind the reader that defining relations and related 
concepta were discussed at the beginning of the chapter on 
typeleas logic. Sometimes we use t as if it were a defining 
relation, in that case the superscript t stands for the 
superscript U < % ,  §>: S&I, ie оЛ "L1 ̂  . That is t is used to 
stand for the dimension restricting defining relation induced 
by t.

VI.1 Definition: By the /first order/ logic of type t we un­
derstand the cuple < f . A

VI.2 Theorem: The logic of type t is a recursively axiomatis-
able theory of the typeless logic of index set I.

Proof: The set of axioms i 3^ '■ gf-I, ié 3 defines
in the logic of index set I. It is easily 

seen that this set is recursive if I is recursive.

We could introduce a new class of interpretations, e.g. 
the structures of type t, but the old ones will do for 
our purposes. We introduce the shorthand for the class 
of interpreting functions: ==̂  stands
for the semantical equivalence of the logic of type t, 
that is =4 = (TK4 )°.
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—  л (ö л *VI.3 Theorem: —  ̂ = û . СД

Proof

by def. by V.6 by V.9., because t is dimen-
II7.4 eion restriction ^

VI.4 Corollary: 3Í X ®  СЛ 1

Now we have that the semantical equivalence is the t-dimen- 
sion restricted free congruence over the variety CA, and the 
tautological formulaalgebra is the t-dimension restricted 
free algebra over CA.

VI.5 Theorem: The class of formulaalgebras is identical with 
Lf, that is Lf * 1 ^ / a i f  : I is arbitrary 
and there is a t such that L - j

Proof: 1./ Any formulaalgebra V t is the homomorphic image 
of some tautological formulaalgebra ^ l /щ  «
Since = € Lf ,the formulaalgebra
V i is also a locally finite cylindric algebra.

2./ Let <&e Lf , then there is a t and I such
that ^  . Now there is a (̂ 6 / об-)
such that ^  [f^Lf oLr. By V.7 there
is an L — f^Vxr for which 0C= (TTL) . Now

^  ’ that is ^  is 8 for~ 
mulaalgebra. A
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So the quasivariety generated by the formulaalgebras with 
type is the class of typelese formulaalgebras. We shall 
see that the above theorem gives a logical importance to 
Lf saying that Lf is just the class of formulaalgebras of 
classical first order logic.

Shorthands for the logic of type t

Now we can introduce a shorthand for substitutions: for any Í

Proof: The proof is easy and is similar to that of 
example 2./ A

Remark: The above theorem can also be proved as an immediate

It is easy to see that this definition is correct.

VI.6 Theorem: ( (bXgv^ * { 6t A \ > e ̂  J

corollary of III2.2L of f2] which sais: for any

It is easily seen, that lit"' ~ п/гЛ Щ  }
and by this the theorem follows from the lemma.



Аз it was mentioned at the end of chap. IV, we can define 
a new logic by appropriately choosing a subset of the 
names of the formulae. We shall choose the wordalgebra 
generated by P^, where - i ^4-A '

Now is a set of sequences and lb is everywhere defined 
in £  and also |h* , moreover lb € ЗДг(Згр ) 3*'j- )

V logicj
V 1.6. Definition: We define the t-typex with built in sub­

stitution as the pair
L4 - < Kp , ííp I ( folH K4 i >

It is easily seen that this is a logic indeed.

We define a labeling function for the logic L^. The in­
terpretations are the structures of type t, we denote 
their class by M^. So the labeling function к is defined 
as for all 3íc7rv('3?p f cCA ) such that for all

k-(§v....\л )  ̂ $ bt/\ ■ <bt \ >e <űL i.

VI.7. Theorem: For all t-type structure ЧХ, í-p j  (^° lb) * k
and so = { ítp I ̂ |°lb) :
(See -Kg, Л0.)

Proof: (be^criffp ; 5cc) and %m (Gfj. f ZA ) implies that
£ Because ty lX fc

* k..,Uu,. . \Л. ) the functions and Vlcüí. J l0 uly4 ' 1
are identical. A
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Fig. 10.
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VI«8. Theorem: The logic is recursively equivalent with
<&Tl K,> that is there is a recursive func 
tion к from into frj- and another ß
from Jrj 
type ЧХ :

into 4тг such that for any t-

fe.,,1* A*n° кUlL ь(Л and hüL~ ^ °  ^

/see fig. 10./

Proof: The proof is easy. A

Remark: The above theorem states that the logic L coin-X»
cides with the classical first order logic of 
type t, and so the logic <T 5j, > also coincides
with the classical logic of type t if we use the 
appropriate shorthands! So we proved that clas­
sical first order logic is recursively reducible 
to typeless logic or in other words is a recursi­
vely axiomatisable theory of typeless logic. The 
advantage of )(̂ > to classical logic is
that we can use on two levels: one is
the level of shorthands ( ̂  ) where we have all 
the ease of expression we have in classical logic 
and the other level is the level of Tij. which 
makes the algebraic properties much more trans­
lucent and clear cut then that of as it is 
shown in the followings.
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Let and stand for the semantical equivalence
and class of interpreting functions of Lt respectively. 
Now we fix dome defining relatione on -Ir •

c\
R  * 'stl'геЦ{о' 3eto^
H, = { < =• ; /Wv ■ \J, , 1 x A X  V. УЛ- V/. > 1 SeI ^t V  '-5 b L-/i 1 3 A, V< ̂  \-A  > < 0

VI.9. Theorem: » X1 t:

Proof: The proof can be found in [2 ] A

Г 0 У ЛАVI.10. Theorem: %  c G r CA"t -L

((?.) . vC ^ Hq) s j I г aProof: ( ТГГ̂‘ЧоО - W  ‘ Lf - Ctz CA A

VI.11. Corollary: " 3r ̂ CA A
t

VI.12. Theorem: The class of the formulaalgebras of clas­
sical first order logic is Lf.

Proof: II- induces an isomorphism between ^  ̂  and 
3rx and the correspondence 4еч / Rti accor”
dance with this isomorphism. A

Remark: About the necessity of the inconvenient set Rt 
it is proved in [ 2] ,  that
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(фG, СЛ с„
V  1

^  „ « ОOj СА
с^сл

and that for any / I - type/ variety 0 / ^  ^ 1/,

To check the completeness of a calculus of we have to 
check that the calculus lists the equations of CA and 
the equalities in R^. If instead of we have < 3rr f 
then checking the equalities Ci $' S suffices /and
of course СА/. /Of course we have to check that the rela­
tion listed by the calculus is a congruence./ To produce 
a complete calculus the algorithm could start from the 
equations of CA and the equalities in Rt /or res­
pectively/ and use the equation transformation rules just as 
in the case of the typeless logic.
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