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ABSTRACT

The aim of this paper is to introduce classical first order logics as
interrelated purely algebraic constructions. To this end a special class
of universal algebras, namely the class of locally independently finite

cylindric algebras, is defined. Some of its basic properties are inves-
tigated.

The constructions of first order logics are based on this class, and
the investigations of the logical properties are purely algebraic argu-
ments based on the properties of this class of algebras.

The paper contains the material of the lectures of the authors delivered
on the ™"Logical semester - 1973" organized by the International S. Banach
Center of Mathematics in Warsaw.

PE3IOME

Uenbio gaHHO pa6oTbl SIBNSIETCS UYMCTO anrebpanyeckoe MOCTPOEHWE JIOTUKU Mep-
BOro nopsigka. [ns 3Toro onpegensieTcs HOBHIA Knacc anrebp B pamMkax Teopuu
yHUBepcanbHbiX anreép, a UMeHHO, JI0Ka/lbHO-HEe3aBUCKMMO KOHEeUYHbIli Kiacc UUINH-
Apuyeckux anre6p. lccrnefoBaHbl €ero OCHOBHble XapaKTepucTuKu. Ha 6ase aToro
NIOKa/IbHO-HEe3aBUCUMOIro KOHEUHOro K/acca anre6p MnocTpoeHa sioruka nepBoro
nopsinka. Ee OCHOBHbIE /lOFMYECKMe CBOICTBa Wcc/iefoBaHbl YMCTO anrebpanvyeckm—
MW MeTofaMM, OCHOBaHHLIMM Ha XapaKTepucTUKax BbllleyKa3aHHOro Kacca anreop.

JaHHaa paboTa cofepxuT maTepuan fekumin, NpoyuMTaHHbIX aBTopamm Ha "‘CemuHa-
pe no normke - 1973, opraHusoBaHHOM MexayHapofHbiM MaTemaTnyeckum LeHTpoM
mv. CT. baHaxa B Bapuwase.

K1VONAT

A tanulmany célja az els6rendd predikdtumkalkulus tisztan algebrai fel-
épitése. Ehhez az univerzalis algebrak egy specialis algebraosztalyat
definialjuk, nevezetesen a lokalisan fuggetlenul véges cilindrikus al-
gebradk osztalyat. Megadjuk ennek az algebraosztalynak néhany fontos tu-
lajdonsagat. Megkonstrualjuk az els6rendl predikatumkalkulust ezen al-
gebraosztaly segitségével.

A predikatumkalkulus logikai tulajdonsagait ezen algebraosztalyra bizo-
nyitott tételek segitségével tisztan algebrai utdén vizsgaljuk.

Ez a tanulmadny a szerz6k az S. Banach Nemzetkdzi Matematikai Koézpont al-
tal szervezett '"'Logical semester - 1973"-on tartott elfadasainak anyagat
tartalmazza.
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LIST OF DEFINITIONS

the empty set
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Do f domain of the function or relation T

Rg T range of T

x, X x-th value of fT: = X - "X

<C-1f60/"MA way °F defining functions: <-fW~™ * 1i<x,fW>--"eAi

<60). Y | Yid] ie a function defined on the ordinal aC
that is: <60y.,V i k* * 1 7<4 ]

xifF f domain-restricted toX: Xj-F = 1<00;Bs>1 xX€éX J

B. power of A to B: n -p™/11

Sb A class of subsets of A:5b/) ~ IV i X&/4J

r*q composition of r and q: £<b@>: (Bc)(<C,opF=£<

riq relative product of r and q: KO- I<g/b>: GO(CIAER
the equivalence-relation induced by the 4unc™10r4 :
iT AiISDo r, then r*A 1s the r-image of A:
[*A 4 iy: cBim) <*,y>fcr]

r if a£ Do r, then rjta iIs the r-image of a:

Ira = {ym <Q,y>e”J = [* faj

'ihc  x-th projection -fundion pjK(-0" fw
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3C
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subaig*bra of generated by X, that is: @\/
is the least (by £:) element of the set

f08&gW : X3

N iIs subalgebra of

IS homomorphic to
N iIs 1somorphic to M
class of homomorphisms on /&
set of homomorphisms from )X, onto <f0
set of homomorphisms from XX into |£||
set of congruence-relations on 4/0
is defined only if f is a homomorphism on ﬂ , and
then there is a unique C& such that ,
now: b« Cﬁ
direct product of the algebras 1 according to
the i1ndexing 1
class of algebras isomorphilcl: to the elements of K:
IC 3 . e KI
class of algebras homomorphic to the elements of K:
wied R  eK]
class of subalgebras of the elements of K:
SC W }
free congruence over K with 1 generators and with
defining relation S:
CifKd /T 1R &% = IR, ISKJ
free algebra over K with 1 generators and with defi

ning relation S:

Vi? K
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" ) n ) where T is the defining relation:

- S~MK J 1<S, an> : Shi(
substitution operation in 4% » j for i:
X * ofHdif #0 X )
iIs defined 1if and ' 1s a finite trans-

formation of o , and then §O’J is the unary

operation defined as followed:

it iIs the canonical represen-
tation of £I ( *o; /16 bl ) , if X is
any element of A, and 1f TO __,TfB. are iIn this
order the first k ordinals in co4 (A v/ U % w»w)y
then
(A d w0 ,08) AQ©
X " 4 R ¥ v,

a way of defining finite transformations:

u a*|4 Un u! j

class of dII’GCt prOdUC'ls {rom 10
PK.* 1 [(PIX : lib atHrmu o€l (Vti)) U Ki



1. ALGEBRAIC NOTIONS

A function with range consisting of positive iIntegers 1is

called a type. that is t is a type if Rg t S (.ah) .

A structure of type i€ rgp 1s a function 4% having the

following properties:

Do& * | UlA
CVjel) DyS % x , and

¥+0

The last property serves only purposes of convenience and
has nothing to do with the essence of the concept struc-

ture.

For example:
The triple < co> 1s a structure of type , Where
+ and — are the usual function and relation on c©o . This
follow-a from the fact that the series have been defined as
ordinal functions:

<+,” uo> A <2,u/>} , Since Z- {o,l\ ,

in this case and 1 - {<0tS> <A2>1- <3,72>.

German letters stand for structures and the corresponding

capital latin letter stands for the universe of the struc-

ture, that is O~ A



A structure 1is called algebra, if all 1ts relations are

functions defined on 1ts universe.

Now we Ffix a type which shall be used thoroughout the

paper:

1 - 1 <->,17, <\17, <[> ;

We shall discuss only algebras of type i

Any L -type algebra Ol can be defined in the following

manner:

W* <l M, mf | W

We shall use the next symbols for operators of £ -type al-

gebras :
i ()
QF * -M)
*a3. = C;)

<a'd df>

We usually omit the index ($0

Let us introduce the dimension-sensitivity function L\

x> . 2(
£27x IV fy - Ry S
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One of our basic tool will be the well-known universal al-

gebraic concept "word-algebra"” or "absolutely free algebra™.

The definition of the word-algebra 1is:

We define as the t-type algebra for which

a/ the universe W i1s the set of all n-tuples of the ele-

ments of XU Doi: , that i1s:

(XUDtro U (Xuptfewxupst) U (XUDd)*((MOd)*(XUOo® U
b/ for all 5Kk Dot
* < ST <H/me™ x* (gH>>
in the case "bQ)~4.m0

w 46w

$r is the absolutely free algebra or word algebra of

type t generated by X.

Ve

Since we devote ourselves to algebras of type | , we set

)

and we call the word algebra generated by X.



I1. SOME IMPORTANT CLASSES OF ~-TYPE ALGEBRAS

1/ The veriety of cylindric algebras (ca) .I[i1, 1.1.1)

Let us introduce the following shorthands:

Xty = —-<-y)
0

\' 1 -0

Now we can define CA the class of cylindric algebras:

For any C-type algebra '{/i
(%€ cA if for all

equations hold:

and

the fTollowing

7 |.|.||\A ,A> IS a Boolean algebra, that is

a. / x-y = y*

b. /7 x*(y+tz) = x*y + x*z

C./ X*1 =X
(&) cMo = 0
@ CIX*X = X
(%) cr(x.c{y) = c.x-"y
© chcjx = Corx
) du = 1
©5) iIM"4.n dfv =
(ti) "]

(@-*X) * ci(@ “-x) =0
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2/ The claee of locally finite cylindric algebras (Lf),

(tH. LIi.D)
If= Tl m WD | 1 Ku j

3/ The class of full cvlindric set algebras (rh),( [1],

1.1.5)

The Tull cylindric set algebra induced by the set A is:

h s \ ~ 1K ne® Shb~Ar > -

=< n/ »4 Juy - n No

where
N X - AX
Bx - i GeA: BXMecodi) I = B
o<n 4 {0e"h : 4-4: i (See fig-2.)

We often omit the superscript (@) that is for example

we write instead of D%) -

Tild 1<€g : A+0 1

4/ The claaa of cylindric aet algebrae C3tar), (b, 1.1.5)

S Tt
114.1 Lemma: /B off =N
Proof. TjfeS™*n._W6 implies that T ® - ~ "B , and

this implies that A* & A



Fig.

Fig.
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114.1C Corollaiy: (V&3(1) 3 b) f that is any cylind-

ric set algebra is the subalgebra of exactly one fTull

cylindric set algebra. A

5/ The class of locally independently-finite cylindric set
algebras @) t ([2D

Let \D(. CfCA is an i1ndependently-finite element
(in the followings 1- finite element), I1f 1 <U) and

6eq B (3s.%9) (ViMa) . (See 39-3)
dj~ {oekants : (af) a B i 3

As for as we know we have defined first this notion iIn [23.

6/ The variety of representable cylindric algebras &), ([I3,
1.1.13)

See the connection between the classes introduced so far

in fig. 4.

7/ Some basic properties of the classes iIntroduced so far

117.1L: Qt is variety. This was proved in [3] ,

117.2L: HISIPLf _For proof see [4J.

117.3L: N L-f. Is proved in this paper. As far as we
know this is the first proof of this inegality.

117.4L: $P Lf° Was proved in (23. Our results in logic

are based on this equality.
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J - closure E §J £ simple cylindrlc algebras with
————— > § — closure the trivial cylindric algebra}
- closure I 4 :MI-a
> SIP- closure TFiZ *{«Eee MI>11

() variety
O

non-variety

Fig. 4.b.
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I111. PROPERTIES OF THE CLASS JIx -

111.1 Lemma: 5xdy - aly A

111.2 Lemma: (VOt'&"C) ("'3™) MoGa = , that i1s there 1is
a greatest locally i1-finite subalgebra of any

cylindric set algebra.

Proof: Follows from the fact that for arbitrary *tX6™a/
the set of 1-finite elements iIs closed under the

operations A

2d = Ai(tix - 0]
111.3 Theorem: a./ (MeaAl-Ff S [TXLVLI*Z)
b./ N
Proof: a./ Let XX&Jjr and 47— .T114.1C). For any

/Ma-0 implies that 6eq iff GzeokKvt~d)\~oad. ,

and this holds iff (“fcheq )and 80 Jla=0
implies that 0=0 or 0*"6

b./ We define an algebra <a such that 4 M /]Lf
and [ZdxX\~Z and $C4~-Let X-"i"eZ

iffvy O}Yyfand bl 4d rill . 1t
follow-s from this definition that
and d{jc~d implies by [I] .2.1.5 that Lf .
Since IC ie not i-finite, XXr . Now we show

that IZctW |-l =
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We define a property on the elements of A. It
can be proved by induction, that all elements of
A have this property. However since this proof 1is
long but mechanical, we omit 1t. To complete the
proof we show that this implies that 17A IOCI

(] n

Y 18 good <&p (GBnEu?)(.3aF= 4- b e Hj6éQ&INoHUjU

where cf(@) iIs the set of the duals of the binary

sequences 1in a, that is

dial! {(/mzZ maxta)(MiiK)U*o tl x-i) . (bee -fe.5.)

It can be proved hy induction that all the ele-
ments of A are good. Now let gE”{JI| good. Since
y is good, there exists an "a" and "n". From AC]=O
follow-s that QC*.C* y-y , and so either a=0

or a=2, . This implies that or y-

111.3. Corollary: dir PA. n If

Proof: The algebra constructed iIn the proof of the second
part of the above theorem is an element of «MLfbok-.
We note that this can be proved without the second
part of the above theorem because it iIs easy to con-

struct an algebra such that %€ and

Ve

\KHUZA
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bbUUW—uw H1V-f

A line ending with xxxx stands for all the sequences
starting with that line and having

infinitely many
zeros.

The ending ooooo has the same meaning but with

finitely many zeros.

Fig- 5
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111.4. Corollary: Lf = | <tj:

Proof: There exists an [ such that |ZO"(X,I>M A

is simple & lar'Oil-JL

111.5. Corollary: For all WXL

»e/ {Jkclxr XX is simple

b./ «X 1s directly indecompos-
able*/

c./ iIX*ckr is subdirectly indecom-
posable*”

d. /A xr is weekly subdirectly in-
decomposable*”

Proof: b./ foHowes from [1j 2.4.14

a./ c./ d./ follows from [I] 2.4.43

Now we define a natural correspondence between the locally
i-finite algebras (Mr) and the structures. By this corres-

pondence dxf can serve as a basic tool for investigating

structures and their interrelationships.

Let "a" be an i-finite element of the cylindric set al-

gebra XX e The relation belonging to "a" is:

@4 1o 1

X These well known universal algebraic notions can be found

in I~
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The i1mportance of r(a) follows from the fact that

iff xr/faa) 6 € r@
This fact 1i1s i1llustrated in fig. 6.

We define p as a mapping of Mr into the class of

structures such as: if ifeolxT ( 114.ic), then

p(Ui) ~ {<ft,B <a)ing)> ; acAi

The correctness of this definition follows from the 114.1C

corollary.

We define q as a mapping of the class of structures into
Mr suchas, if M is an arbitrarystructure and t

stands for the type of then
qfo) - S |

I11.6 Remark: a./ ?p » that 1s 4dxp is the identity

transformation on Mr

b./ pc correlates with any structure
a structure with the same universe and all

the relations, elementarily definable 1in

. A

Summing up the relations between OIXr and the other classes
of cylindric algebras:
air "Ss i-F N A -
dir = Ne f* SiPXt* SI?1 * &
Kfi» Air - Miplf - HSPSa - Pt - &
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Fig.

6.
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IV. THE DEFINITION OF LOGIC

As 1t is known, the aim of a logic iIs to enable 1i1ts user
to formulate statements about certain phenomena and to rep-
resent the relation between the statements and the pheno-
mena by truthvalues. To fulfill this task logic should have
a language and some tool to interrelate the elements of

the language and the phenomena under consideration.

IV.1 Definition: By a logic we understand a pair t

where Y is a word-algebra and K- 3@’

To substitute the set K with a unique homomorphism we

need the following operation:

1V.2 Definition: If G is a aet of functions whith a common

domain, that iIs Do-Fn D
, then i1re- a < <-U_~

/see fig. 7./

We now iIntroduce some concepts related to the concept

of logic™ K * 1r1C.

The set F is called language. 1ts elements are called for-

mulas . The elements of K are celled interpreting functions,
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these render meanings to the elements of the language. For
all and iIs the truthvalue of the for-
mula o> according to the interpreting function b . For all
TibK 9 " 7 The algebra rf3i is called the truth-
value algebra belonging to ~ . IT all iInterpreting functions
render the same value to LY ™ F , that is k(f}- key) ; then
we say that ~ and \W/ are synonymous. The semantic equi-
valence of the logic |C> iIs I . Two formulas are
semantically equivalent iff they are synonymous. % Is
the tautological formulaalgebra, its elements are the syno-
nym classes. HX 1s a formulaalgebra of the logic <V>lc>

if there 1iIs an L - K such that ~ N

Fig.-8. shows the concepts introduced above.

Interpretations

To make more convenient the use of logic, we can render "la-
bels” to the interpreting functions, which serve to identify
the interpreting functions. These labels are called inter-
pretations. That is, we can pick any class M with a func-.
tion MK , and consider the elements of M as interpreta-
tions, which label the interpreting functions through h. Let
N, now N iIs the truthvalue of the formula ~ 1In
the interpretation m. 3§ * 3 . The algebra is

the truthvalue algebra of the interpretation m.



Fig-8.
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Theories of a logic, relatione between logics

The set of theories of the logic <K > is: {CIMD: L Icl

More intuitively a theory of < is the semantical
equivalence of a logic L> ,where L£ 1C _1f given
theory R we often identify it with the logic < [, JJiL~

. R=JTL)}> . That is certain congruences are theories and

certain logics are theories too.

L is axiomatisable in &> L-i-feK- £ 2 ARD)°i .

We note that

a. / L is axiomatisable in a logic iff IS a

theory of that logic.

b. / The theories /ae congruences/ form a closed-set sys-
2
tem. Given a subset G of F the smallest theory con-

taining G is the theory generated by G.

L is recursively axiomatisable In < if there is a re-
cursive subset G of V such that L- £ — e IT the
logic is a theory of K 10~ then is
reducible to ; 1T moreover K*_ is recursively axiomatis-

able iIn L/ then™is recursively reducible to L”. Reducibility
iIs a close relation between logics: If iIs reducible to
L/y then any logic which is a theory of Lz 1is a theory of
L too. That is i1f a theorem states something about all the
theories of a logic than a proof of this theorem for is

also a proof of It to . So 1T we prove the reducibility
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of* to , then all such proof* to L] become superfluous.
Theorems of this kind are the compactness theorem, the
Léveinheim-Skolem th., the ultraproduct-th., and also the

completeness theorem can be reformulated iIn euch a form.

Shorthands

There i1s another means to make the use of a logic N

more convenient /the other one was the use of interpreta-
tions/. We can introduce shorthands for the formulas, that
iIs instead of the elements of F we can use their names. Of
course, jJust as i1t was the case with the iInterpretations,
different purposes may require different kinds of shorthands
for the same logic. The definition of shorthands goes as
follows: We define a relation h on finite sequences. We do
this by listing elements of h in the form c/hR , where U
and are given sequences /or ehernes of sequences/, and
then saying that h is the smallest relation for which if
°L$, b S are arbitrary sequences /the empty sequence inc-
luded/ and cl-~ , then ccijb *Now we define ) as

the smallest transitive relation containing (-.1f d F@
and F we say that o( 1is the name of the formula 3.
The set of names is N~ IFAF and we say that the definition

of 1h 1i1s correct 1f NJ F' 1a a function. This can be

X More precisely, for any sequence we state:

»>t1G V-< Oy
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also a tool of forming new logics:

we pick a 3= N such that IF3-F and define an algebra
on B such that \)rcS~~f < Now the new logic is

/of course care should be taken for
0& to be a word-algebra./ We call this a logic with
built In shorthands. Of course this logic is recursively
reducible to the original one since bj IF Is a recursive

function. For example well known shorthands are:

AR/ h I < 4/» , and VEFI5j1

for any ~p-éF.
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V. TYPELESS LOGIC
Before i1ntroducing typeless logic we have to introduce the
following auxiliary concepts:

In the followings | 1s an arbitrary but fixed set, and

iIs an arbitrary class of similar algebras.

£
V.1l Definition: A set S*= ®\ is called a defining rela-
tion.*/ K
V.2 Definition: gt is the class of homomorphisms over <t

with I generators and with def. relation

-

s ol l - SA, 925}

in case S = 0 we omit the superscript:

J4

ifk - m A d
V.3 Definition: The typelesa logic of index set 1 is the
pair < ST/ jAx> - «

We introduce the shorthand for the class of iInterpreting

Ve

functions of this logic: Axr .

Now we Ffix the class of interpretations with which we use
this logic:

Hr- { ~a m b-0cTOW |

K We know that by calling S defining relation instead of a
set of defining relations we have broken the tradition.
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Thie is the class of structures the relation symbols of
which are from the set I. We note that for other purposes
other classes of interpretations might said better, e.g.
the class of structures with proper relations« /A rela-

tion "r" over A i1s proper If there is no "g' such that

r =q x A./
The labelling function is as follows:
V.4 Definition: For any Yan(srr/o™ ) such that
for all r
hw ( O X ; i A
V.5 Theorem: together with h form a class of iInterpra-

tations to the typeless logic of i1.s. I, that
ia k*M[= k1

Proof: 1./ . We know that n and it
IS easy to see that for any the ele-
ment is 1-finite. Since

1 generates 1y 3g- we have (CAN roge

This complete the proof of 1./*/

VRBeyond completing the proof we got that the labelling h
coincide with our natural correspondence g between the
structures and the.Jjr algebras that is: |1 - N($1)



2/ KW- Ic « Let 3~ - . To g we con-
struct an ®¢ H 1 such that h"~3
oB"3 Sv.t/0" . According to 114.1G there 1is
a unique A such that Now we define a
structure e*a on A: for all p6i we pick
an nfc?  such that n'&)c[(é —f,t and then we
Fix Xy~ i<*cym;\-r>: Now we show that

FA/_,;Q- For ell ;

bad *
- e(@n,6m) Thbe "NKb™ N» 9™\, r,>"<\IH>1"
AN
s' y /
because the def. of {1 because ,E460(XI'
and
And since *0I"™™4 end implies that "poft*tym1 14 °)
we have: 3

That is for any "KL there is an ®[eN such that
My,-9 end so h* Mo A

Now we start to iInvestigate the algebraic properties of
typeless logic. We prove that the semantical equivalence
coincides with the free congruence over CLy and so the
tautological formulaalgebra is the free algebra over X
To this we need the following five purely algebraic lem-
mas. From now on.nd is an arbitrary class of similar

algebras and S i1s an arbitrary defining relation.



V.6 Lemma: (T LI@1 )° - N
Proof: <*,<3>6 (IFI'"W/0 iff (VgEV"%I) gUbgtj)iff

tif (\clz 3r) Kg&e$ARg  ~><xi Xg]iff
4 (Vr€ GQUK&I/IE RAEY ?S)N <dfber] fff
@ < pélrn- A
V.7 Lemma: For all ¢gé there is a G —F}-"Jb
such that g°- (Tey
Proof: Since 9"ffF SIP , there exists an J index set
and for which g*Eff P fé If i
stands for the i1somorphism, forNgll we have
tj-i* ge ﬂ=®vt , a® since (V*6F)Do /g\;(/)'3 ,
we have: g¢gT )° A

V.8 Lemma: For all set I and congruence R
Xr/a t sip 4 4fF 1 3 g -n) (/Y-K

Proof: 1./ Sg/~feSiP™M /N (dL™ Q.nANay”™4
K*e&1lEX(K,/K™>elrbpA sini:e
By this V.7 gives T3L""174) (ir04f1*)D.

This with the fact that for all equivalence-

relation r, (r*)O* r° completes the proof of

1./7.

2./ (31CE£N) ar/I)°R "~ V r6

31U 3(U(&B:P 6*3~ Since for all -&Y,

I* LU-eX we have *4/.r 6 ~PnA



Now (TOO- R completes the proof of

2.7 A
V.9 Lemma: C N1 =Cr? £P&
Proof:
<x,ynafoPA # i~ fM )4 39 iff 4
r Z " /
because V.6 because V.7 because V.6
A

V.10 Lemma: Or-A - - W MFP <t

Proof: Can be found in til A

V.11 Definition: The semantical equivalence of the typeless

logic of index set I: = * ((BECEHC A

V.12 Theorem: - - O’

Proof: Qjdo (Tiipco e by V.6. A

V.13 Corollary: ydi  “ 3rr <Ar

V.14 Definition: The class of typeless formulaalgebras:

f{ M- : 1 is an arbitrary set, i

V.15 Theorem: ? () - SP «Or
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Proof: 1./ » — SPal. According to the definition
of for any there is an |
and LE£ lc«ir such that 4#= e From

this and V.8 follows that A4JE

2./ N "~ SPcixr. FOr any chf there is
a set 1 such that " ‘M. /e.g. %V 4
By V.8. this implies that (3L&
that is VIC-?N9

7/

We have proved so far that the semantic equivalence of the
typeless logic is the free congruence over odr , the tau-
tological formulaalgebra is the free algebra over olxr and

the class of formulaalgebras is 9$jF<Ar,

We note that the same i1s time for the propositional logic
if we replace o by . For the algebraic purpo-
ses the definition of ¢/r 1is not algebraic enough. So we
try to replace i1t with more algebraic classes. E.g. the
fact that the tautological formulaalgebra of the proposi-
tional logic is the free Boolean algebra is more algebraic
as our V.13, since the class ofBoole algebras is avariety.
In the followings we succeed inreplacing <¥¢ by Lfas well
as , both having purely algebraic definitions. /The
presently known algebraic definition of i1Is more compli-
cated than that of , however i1t has the advantage that

IS a variety and a set of equations is known for i1t./



V.16 Theorem:

a./ B or L-F
b./ 3HI/c - 1]

c./ <) * N 1LF

Proof: by 117 .4 and V.® A

V.17 Corollary: a./ - ‘Kd

b./ iU 3%

Proof: by 117.2 and V.10 and V.16 A

Remark: The corollary V.17 does not generalize part c./

of V.16. This generalization

easily seen to be equivalent with the equality

WypP Li } which however fails, as will be

seen later.

V.18 Theorem:

Let Bl; - be an arbitrary logic, that

is /A is an arbitrary class of algebras /not
necessarily of type i , howevere we do not take
care about this iIn the notation/. If $P\b
IS a variety then the compactness theorem 1is

valid for <3~ £/ >

Proof: Let us suppose that 6P-/1 - ,and KG-1ITml: .

Let I be an arbitrary set and £ *¥?¢é Gr
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Since «3fr*<= 4PN, we have that

b MIStP VI . This, hy the hypothesis, gives
that 3ijfab P\ , and so by V.8 (3LCK) (@~ f

that 1s R iIs a theory of . This means
that the set 1<3E(cr3rf :R3=}coincides with the set
of theories (on <Jx ,K>)« Since it is well known
1] that the set of congriences containing a fixed
congruence 1is an inductive closed-set system, we

have proved the compactness th. for this logic. ~

We note that the above theorem states e.g. the
compactness of the propositional logic since the
latter has the form: j {< ONZMN Y ~
Remark: 1t follows from the above theorem that the hypthe-
sis that S.PLJ is a variety implies the compactness of
the typeless logic. However the compactness theorem holds
for the typeless logic < iff 1=0, for, as it
easily seen, the set of formulas { SHN J3*$ 3V *J
has no model, while every finite subset of i1t has. As a
corollary we get, that"JFJPf Is not a variety.
Calculuses for typeless logic
By a complete calculus we understand an algorithm which lists
the semantical equivalence of the logic iIn consideration. That
is a calculus of <YrF/:ICF> lists the set r . It iIs easy to

find such a calculus by using that and a system of

equations defining > is known [I]. Thus starting from the
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equations defining and by using the usual transformations
on equations an algorithm can deduce any element of — L .
This calculus can also lists the consequences of any finite

set of formulas, however we know that there exist a re-
cursive iInfinite set of formulas, the consequences of

which cannot be listed by this calculus.

/For example: £3/1 7 1 ./

The correspondence ~ CiJ- (fib can be a tool not only to con-
struct new calculuses but also to check calculuses to be
complete. */we note that the completeness of the propositional
calculus for iInstance can be proved in this manner iIn very
few steps [2™ /since the variety of Boolean algebras can be

defined by three equations/.

Shorthands for typelees logic

We remind the reader that at the end of the chapter ™"def.
of logic” we discussed the use of shorthands and fixed some
definitions. For the typeless logic of iIndex set I we can
introduce the usual shorthands, e.g. M , etc. However
we cannot introduce shorthands for substitutions that is

variables. We would like to have:

VI~ ~ vt 2N 1 camews)  <v —e/4 .

* We have to check that the relation listed by the calculus

IS a congruence and contains the equations defining .
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we can not define this because A Z* 7/- ~(0. However 1if
we substitute, In the definition of typelees logic, KC with
k* where ~(gd=\nn - 1, for
all gfei , than we get a modified version of typeless logic
in which shorthands for substitution can be iIntroduced,

but unfortunately we lose with this the nice algebraic pro-

perties of the typelese logic.

Examples
-1./ Let , and for each ofio the structure ({OL
> ||
jOl - J
It Is easy to see that for any g * a
iff k>1

(SwJd
From this example it follows that [ @2)= 10 .

2./ We would like to produce a formula & such that
hdf' ) 'Y ~N, where $L of the example 1./.
We shall see that if*32(",(BO(§/1") A*jA\)hBa just the
required truthvalue in (L /see fig.9./



Fig. 9.



VI. THE FIRST ORDER LOGIC OF TYPE t

Throughout thie chapter i1eVioM), that i1e t 1e a type and I

is ita domain or iIndex aet.

We remind the reader that defining relations and related
concepta were discussed at the beginning of the chapter on
typeleas logic. Sometimes we use t as If It were a defining
relation, iIn that case the superscript t stands for the
superscript U< % , §>:S&l,ieo/1 L1~ . That is t is used to
stand for the dimension restricting defining relation induced

by t.

VI.1 Definition: By the /first order/ logic of type t we un-

derstand the cuple < f . A

V1.2 Theorem: The logic of type t is a recursively axiomatis-

able theory of the typeless logic of iIndex set |I.

Proof: The set of axioms | 37 -, ié 3 defines
in the logic of index set I. It is easily

seen that this set is recursive 1f | 1Is recursive.

We could introduce a new class of interpretations, e.g.
the structures of type t, but the old ones will do for
our purposes. We introduce the shorthand for the class
of interpreting functions: =" stands
for the semantical equivalence of the logic of type t,

that is =4 = (TK4)°.
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V1.3 Theorem: -~ = (A (OC?EI,*
Proof
by def. by V.6 by V.9., because t is dimen-
117.4 eion restriction N
V1.4 Corollary: 31 X ® Cf 1

Now we have that the semantical equivalence is the t-dimen-

sion restricted free congruence over the variety CA, and the

tautological formulaalgebra is the t-dimension restricted

free algebra over CA.

V1.5 Theorem:

The class of formulaalgebras is identical with

Lf, that is LF* 1 ™ /a if - 1 is arbitrary

and there is a t such that L - j

Proof: 1./ Any formulaalgebra Vt is the homomorphic image

of some tautological formulaalgebra "I/ «
Since = €LF ,the formulaalgebra

Vi iIs also a locally finite cylindric algebra.

2./ Let <& Lf , then there is a t and 1 such

that A . Now there is a (6 /06>
such that *» [f LF oLr. By V.7 there
is an L— frvxr for which oc amn) . Now

N > that is © is 8 for~
mulaalgebra. A
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So the quasivariety generated by the formulaalgebras with
type is the class of typelese formulaalgebras. We shall
see that the above theorem gives a logical importance to

Lf saying that LT i1s just the class of formulaalgebras of

classical fTirst order logic.

Shorthands for the logic of type t

Now we can introduce a shorthand for substitutions: for any

It 1S easy to see that this definition iIs correct.

V1.6 Theorem: ( (bXgv" *{ 6t A \>enr J

Proof: The proof is easy and is similar to that of

example 2./ A

Remark: The above theorem can also be proved as an Immediate

corollary of 1112.2L of 2] which sais: for any

It is easily seen, that hit" ~ n/t/1 W, }

and by this the theorem follows from the lemma.



A3 i1t was mentioned at the end of chap. IV, we can define

a new logic by appropriately choosing a subset of the

names of the formulae. We shall choose the wordalgebra

generated by P, where - i N-A T
Now iIs a set of sequences and Ib is everywhere defined
in £ and also | , moreover Ib€ 34r@p)3%3)

Vlaogicj
V1.6. Definition: We define the t-typexwith built in sub-

stitution as the pair
4- < Kp , 1ip 1 (folH K4 i1 >

It 1s easily seen that this is a logic indeed.

We define a labeling function for the logic L. The 1in-
terpretations are the structures of type t, we denote
their class by M*. So the labeling function Kk is defined

as for all 3iciru(3p faCA)  such that for all

ksv.\n )"sHA mdt \ e < i.

VI.7. Theorem: For all t-type structure YX, |’—pj (*° Ih)* Kk
and so = {ip I1™°Ib)
(See Kg, J10.)

Proof: (be~criffp ;5cc) and %m(G.f ZA) implies that

£ Because tylX fc

* k..,Uu, .. Jthe fTunctions and V
& My Vhya? 1
are identical. A



Fig.

42

10.
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V1«8. Theorem: The logic i1s recursively equivalent with

<&Tl K,> that is there is a recursive func
tion k from into i and another 3
from Xj into 4r such that for any t-

type U4X

&rﬁgﬁ K and hi~ ~A° A

/see Tig. 10./

Proof: The proof is easy. A

Remark:

The above theorem states that the logic Lx>coin—
cides with the classical fTirst order logic of
type t, and so the logic JI5j, > also coincides
with the classical logic of type t If we use the
appropriate shorthands! So we proved that clas-
sical first order logic is recursively reducible
to typeless logic or in other words is a recursi-
vely axiomatisable theory of typeless logic. The
advantage of X*>  to classical logic 1is
that we can use on two levels: one 1is
the level of shorthands (™ ) where we have all
the ease of expression we have in classical logic
and the other level is the level of Tij. which
makes the algebraic properties much more trans-

lucent and clear cut then that of as it iIs

shown 1n the followings.



Let and stand for the semantical equivalence
and class of interpreting functions of Lt respectively.

Now we TFix dome defining relatione on I =

a
R * 'Stl'l'd_l{o'i%eto’\

He={<3 ;/y%vb-\l_ﬁ 11 xASA’XV<V,\)ﬂ— Y-p > 1Selg <0

VI.9. Theorem: 1 » Xt

Proof: The proof can be found in |2 ] A

Y JIA

N
CA

Proof: W—APQW «sJ l_rf—CIZ CA ,&

VI.11. Corollary: i " 3"‘ (A A

=0

r
VI1.10. Theorem: %"t cG

V1.12. Theorem: The class of the formulaalgebras of clas-

sical first order logic is LT.

Proof: I induces an isomorphism between ~ and

3rx and the correspondence 4eu/Rti accor”

dance with this isomorphism. A

Remark: About the necessity of the iInconvenient set Rt

it is proved in [2], that
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G'Jl g,

c/cn
T O
and that for any /|- type/ variety 0/ ~ A~ 1/,
To check the completeness of a calculus of we have to

check that the calculus lists the equations of CA and

the equalities in R |If iInstead of we have < 3rf

then checking the equalities G$"S suffices /and

of course CA/. /0Of course we have to check that the rela-
tion listed by the calculus i1s a congruence./ To produce

a complete calculus the algorithm could start from the
equations of CA and the equalities in Rt /or res-
pectively/ and use the equation transformation rules just as

in the case of the typeless logic.
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