

BUDAPEST

KFKI-73-68

ON THE RECOMMENDED VALUES OF (n, 2n) CROSS SECTIONS

1

L. Jéki

Central Research Institute for Physics, Budapest, Hungary Nuclear Physics Department

ABSTRACT

The cross section data of /n, 2n/ reactions predicted by different empirical formulae are compared with each other and with the experimental data. The predictions from the Ádám-Jéki formula with refitted parameters show an improved agreement with the measured cross section values.

PESIOME

В работе обобщены эмпирические формулы, служащие для расчета сечения реакций /n,2n/. Вычисленные значения сечений сравниваются с экспериментальны-, ми данными. Показано, что применением видоизмененных параметров, значения сечений, вычисляемые с помощью формул Адам - Йеки, хорошо совпадают с измеренными значениями.

KIVONAT

Összehasonlitjuk az /n,2n/ reakciók hatáskeresztmetszetének számitására szolgáló empirikus formulákat, a számitott hatáskeresztmetszet-értékeket összehasonlitjuk a kisérleti adatokkal. Megállapitjuk, hogy a módosított paramétereket használva az Ádám-Jéki formulával számitható hatáskeresztmetszetek jól egyeznek a mért értékekkel.

The (n,2n) reaction cross sections are of interest in many fields of applied physics concerned with neutron energies from 10 to 15 MeV. These cross sections are usually evaluated from activation analytical data. The available experimental values show unfortunately a very large spread owing to the limitations of activation analysis and in many cases to poor knowledge of the level scheme involved. There are still a number of nuclei for which the cross section data need to be determined in addition to these more or less known from the reported experiments. The latest edition of World Request List for Neutron Data Measurements /WRENDA/ [1] specifies more than 30 nuclei with reaction cross sections which would be of interest to know for experiments in dosimetry, activation analysis, neutron yield monitor, breeder reactor design or for the study of cross section systematics. In a more recent publication $\begin{bmatrix} 2 \end{bmatrix}$ again more than 30 nuclei /most of them not included in the WRENDA specification/ are listed. Apart from the applications cited above, the (n,2n) cross sections have to be known also for the design of fusion reactors.

Csikai and Pető [4] have shown an N-Z dependence to exist in the values of the (n,2n) cross sections. At energies exceeding the threshold energy for reaction by the same energy i.e. at constant excess energy, the cross section versus N-Z plots yield a straight line if N or Z is constant, the cross section varies linearly with /N-Z/. This dependence permits also unknown cross sections to be evaluated. The values of cross sections estimated by making use of this N-Z systematics were published by Bődy and Csikai [3] along with cross section values predicted by other formulae. These formulae include the expression referred to by the authors as the Ádám-Jéki phenomenological formula [5].

$$\sigma_{emp} = \left[1 - C_1 \cdot f(A) \cdot exp\left(-C_2 \cdot \frac{N-Z}{A}\right)\right] \cdot C_3$$
$$f(A) = \left(A^{\frac{1}{3}} + 1\right)^2$$

The Ádám-Jéki expression has been originally formulated in order to show the non-existence of the shell effect observed by several workers. The three parameters of the equation were fitted to 35 experimental data. Later an attempt was made to use this formula for the prediction of unknown cross sections. For this reason a new fit was made with the use of more than 120 experimental points and also the application limits of the parameters were evaluated [6] as

	°1	°2	c3 mbarn
$N \leq 28 \\ 28 < N \leq 50 \\ 50 < N \leq 82 \\ 82 < N$	0.085	20.0	550
	0.06	8.45	1900
	0.06	9.5	2600
	0.15	14.0	3500

Bődy and Csikai [3] have found in their comparison that the Ádám--Jéki formula gives usually an overestimate of the cross section as compared with the experimental values and that the deviation from the experiment is not symmetrical around O /Fig. 1 broken line/. Their calculation showed a much better agreement for the predictions obtained with the Pearlstein formula [7] /Fig. 1 dotted line/. The predictions from the Ádám-Jéki formula with the refitted parameters [6] show an improved agreement and the deviations become symmetrical around O. These predictions were compared with the experimental data referred to in [3] and the result is shown in Fig. 1 by a solid line. It is apparent from the figure that both the Pearlstein and the Ádám-Jéki expressions show symmetrical distributions of the deviations around O while the former gives a slightly underestimated, the later a slightly overestimated cross section as compared with experiment.

In Table 1 the values predicted from the N-Z systematics [3], the Pearlstein formula [7] and the refitted Ádám-Jéki formula [6] are listed in columns 1, 2 and 3 respectively. The experimental data available to date do not permit the confidence limits for the three formulae to be established. The maximum deviations arise for the nuclei far from the stability line but for these species the experimental data are scarce.

The cross sections for Mo(n,2n) and Nb(n,2n) reactions required for the design of fusion reactors as calculated from the above formulae [8] are compared in Fig. 2 with the most recent measurements reported by D.S.Mather et al. [9]. It is of interest to note that the Ádám-Jéki and the Pearlstein predictions agree very well with experimental data.

	BŐDY-CSIKAI	PEARLSTEIN	ÁDÁM-JÉKI
42 _{C2}	290	129	201
43 _{C2}	595	566	475
44 _{Ca}	470	398	545
46 _{Ca}	740	670	619
47 _{mi}	380	502	394
48 _{mi}	320	338	367
49 _{mi}	520	877	607
50 _{mi}	665	505	542
51,	565	507	168
53	303	951	1049
54 cm	890	76.4	1196
57 _n	1120	224	1186
58 n	900	834	1003
Fe 60	1060	121	250
61	408	296	359
62	780	802	457
64	900	627	808
67	1095	773	1188
Zn 68	1000	1047	914
^{oo} Zn	1120	730	1013
⁷² Ge	788	640	840
^{/3} Ge	1010	1240	1054
^{/4} Ge	1100	991	1131
// _{Se}	1135	1476	931
⁷⁸ Se	1085	965	990
⁸⁰ Se	1200	1169	1234
82 _{Kr}	795	849	834
83 _{Kr}	1130	1371	1044
84 _{Kr}	1280	1052	1081
86 _{Kr}	2010	1247	1296

	BŐDY-CSIKAI	PEARLSTEIN	ÁDÁM-JÉKI
87 _{Sr}	1525	1298	937
88 _{Sr}	1465	854	921
91 _{Zr}	1160	1366	1351
92 _{Zr}	1235	1491	1517
94 _{Zr}	1350	1449	1763
93 _{Nb}	1080	1281	1295
94 _{Mo}	865	1148	1037
95 _{Mo}	980	1382	1207
96 _{MO}	1125	1337	1369
97 _{MO}	1295	1519	1476
98 _{MO}	1370	1485	1631
99 _{Ru}	940	1374	1031
100 _{Ru}	960	1275	1217
101 _{Ru}	1120	1522	1341
102 _{Ru}	1225	1441	1495
104 _{Pd}	945	1226	1070
105 _{Pd}	1275	1517	1214
106 _{Pd}	1430	1410	1358
108 _{Pd}	1740	1538	1591
109 _{Ag}	1440	1506	1421
¹¹¹ Cd	1260	1630	1334 .
112 _{Cd}	1590	1526	1468
¹¹³ Cd	1370	1723	1531
¹¹⁴ Cd	1450	1639	1668
115 _{Sn}	1565	1611	1223
116 _{Sn}	1560	1489	1347
117 _{Sn}	1530	1719	1428
118 _{Sn}	1465	1596	1553
119 _{Sn}	1480	1800	1597
120 _{Sn}	1495	1685	1726

	BŐDY-CSIKAI	PEARLSTEIN	ÁDÁM-JÉKI
122 _{Sn}	1470	1770	1871
123 _{Te}	1290	1795	1504
124 _{Te}	1345	1631	1619
125 _{Te}	1340	1866	1654
126 _{Te}	1495	1730	1773
130 _{Te}	1590	1825	2006
129 _{Xe}	1525	1861	1564
130 _{Xe}	1580	1663	1674
131 _{Xe}	1565	1912	1698
132 _{Xe}	1630	1708	1810
134 _{Ba}	1550	1668	1577
135 _{Ba}	1570	1889	1621
136 _{Ba}	1660	1665	1718
137 _{Ba}	1655	1959	1742
138 _{Ba}	1720	1874	1835
139 _{La}	1730	1846	1735
138 _{Ce}	1520	1635	1479
143 _{Nd}	1720	1983	1488
144 _{Nd}	1800	1970	1705
145 _{Nd}	1775	1940	1810
146 _{Nd}	1845	1804	2008
147 _{Sm}	1580	1996	1300
148 _{Sm}	1625	1980	1522
149 _{Sm}	1585	2056	1640
150 _{Sm}	1645	2019	1847
152 _{Sm}	1790	2050	2127
151 _{Eu}	1675	2023	1599
153 _{Eu}	1885	2038	1918
152 _{Gd}	1790	1970	1334
155 _{Gd}	1785	2114	1788

0

	BÕDY-CSIKAI	PEARLSTEIN	ÁDÁM-JÉKI
156 _{Gd}	1800	2065	1974
157 _{Gd}	1725	2148	2045
158 _{Gd}	1740	2139	2206
159 _{Tb}	1875	2115	2018
156 _{Dy}	1790	1819	1137
158 _{Dy}	1910	2008	1507
161 _{Dy}	2050	2171	1898
162 _{Dy}	2160	2141	2065
163 _{Dy}	2180	2213	2125
164 _{Dy}	2350	2195	2271
164 _{Er}	1995	2070	1649
167 _{Er}	1910	2228	1992
168 _{Er}	1930	2211	2138
168 _{Yb}	1850	2066	1481
171 _{Yb}	1970	2235	1857
172 _{Yb}	1970	2196	2006
173 _{Yb}	1900	2273	2073
174 _{Yb}	1890	2257	2199
177 _{Hf}	1955	2293	1937
178 _{Hf}	1975	2282	2073
179 _{Hf}	2075	2263	2131
180 _{Hf}	2235	2104	2256
183 _W	2180	2353	2010
184 _W	2230	2233	2137
186 _{0s}	2175	2277	1816
187 _{0s}	2130	2364	1883
188 _{0s}	2175	2340	2021
189 _{Os}	2125	2377	2073
190 _{0s}	2185	2331	2204
192 _{Os}	.2190	2253	2362

	BŐDY-CSIKAI	PEARLSTEIN	ÁDÁM-JÉKI
193 _{Ir}	2130	2384	2174
190 _{Pt}	2045	2228	1681
192 _{Pt}	2030	2297	1902
194 _{Pt}	2010	2328	2098
195 _{Pt}	1960	2443	2135
196 _{Pt}	1990	2395	2259
196 _{Hg}	2060	2226	1776
198 _{Hg}	2010	2283	1980
199 _{Hg}	2020	2440	2033
200 _{Hg}	2090	2380	2149
201 _{Hg}	2085	2482	2189
202 _{Hg}	2160	2429	2301
206 _{Pb}	1915	2444	2201
207 _{Pb}	1930	2517	2246
208 _{Pb}	1985	2491	2332

0

8

0)

- 7 -

0

-

-

-

6.1

in.

-

r i

Fig. 2

- 9 -

REFERENCES

- 1 WRENDA 73, IAEA, INDC/SEC/-32/U /March 1973/
- |2| Status of Measurements for the U.S.Nuclear Energy Program, USNDC-5, EANDC/USA/-177/L, INDC/USA/-51/L /February 1973/

1

0

- 3 Z.T.BŐDY and J.CSIKAI, Atomic Energy Review 11, 153 /1973/
- [4] J.CSIKAI and G.PETÕ, Phys. Letters <u>20</u>, 52 /1966/; Acta Phys. Hungarica <u>23</u>, 87 /1967/
- 5 A.ADAM and L.JEKI, Acta Phys. Hungarica 26, 335 /1969/
- 6 L.JÉKI, Report KFKI-71-8 /1971/
- 7 S.PEARLSTEIN, Nuclear Data A3, 327 /1967/
- 8 L.JÉKI and Gy.KLUGE, J.of Nuclear Energy 27, 115 /1973/
- 9 D.S.MATHER, P.F.BAMPTON, R.E.COLES, G.JAMES and P.J.NIND, Report AWRE 0 72/72, EANDC/UK/142-AL /1972/

62.054