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ABSTRACT

This study is concerned with the construction of a mathematical base for a 
general theory of logics. This general theory of logics is a frame in which 
different kinds of logics or complex systems of logics can be constructed, 
investigated, interrelated, etc.
The known alternatives of classical and nonclassical logics do fit into this 
frame. This frame is developed completely inside universal algebra, that is 
the objects treated in our general theory of logics, as well as their stand­
ard properties /e.g. completeness, reducibility, etc./ are completely algeb­
raic. To illustrate the general methodology the following tree of logics is 
constructed /grown from the "root" logic/s typeless logic, logic of type t 
and the hierarchy of logics with built-in shorthands /e.g. variable symbols/.
The commonly used alternative of classical first-order logic is a node of 
this tree.

РЕЗЮМЕ

В данной работе разрабатывается математический аппарат, являющийся основой 
для разработки общей теории логик. Общая теория логик позволяет исследовать 
и создать разные логики. Она охватывает как классические, так и неклассические 
логики. Она состоит с одной стороны из некоторого скелета логики, а с другой - 
из методов, позволяющих построить на основе скелета желаемую логику. В работе 
предложен такой скелет логики, разработанный при помощи методов в теории уни­
версальных алгебр. Для иллюстрации методов, позволяющих синтезировать логики, 
построены бестиповая логика, логика типа t и вложенная логика типа t. Послед­
ние составляют бесконечную иерархию логик. Одна из них совпадает с классической 
логикой первого порядка. Разработанные методы позволяют исследовать логические 
свойства, такие,например,как компактность, полнота, интерполяционные свойства 
как чисто алгебраические.

KIVONAT

Ebben a tanulmányban megkonstruáljuk azt a matematikai bázist, amelyen ki­
fej lesz the tövé válik a logikák általános elmélete.
A logikák általános elmélete egy olyan keret, melyen belül különböző logikák 
és kapcsolataik vizsgálhatók, konstruálhatok, stb. Ebbe az általános keret­
be beillenek pl. a klasszikus és nem klasszikus logikák egyaránt. Ez a keret 
áll egyrészt valamilyen logika-vázból és olyan módszerekből, melyekkel a váz­
ból kialakítható valamilyen kivánt logika. A tanulmány ezt a vázat adja meg 
univerzális algebrai eszközökkel.
A módszerek illusztrálására megkonstruáljuk a tipusfüggetlen, a t-tipusu és 
a beépitett t-tipusu logikákat. Az utóbbiak tulajdonképpen egy végtelen logi­
kahierarchiát alkotnak. Ezek egyike a szokásos klasszikus elsőrendű logiká­
val megegyezik. Ez a közelitésmód lehetővé teszi, hogy logikai tulajdonságo­
kat tisztán algebrai tulajdonságokként kezeljünk /pl. kompaktság, teljesség, 
interpolációs tulajdonságok, stb./.
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I. INTRODUCTION

A general frame is introduced in which logics can be con­
structed as purely universal-algebraic systems. Some basic 
concepts are developed in this general frame, such as the 
completeness of a calculus or the reducibility of a logic 
to another, etc. Then these general tools are applied to 
construct different versions of classical first order logic, 
and to study their interrelationships. To this end the 
theory of cylindric algebras is applied. The interaction 
between mathematical logic and algebra, is bidirectional 
since we use our typeless logic to prove that SIP Lf (MISÍP Lf
where Lf is the class of locally finite cylindric al­
gebras. (As far as we know this is a new result. Later we 
also found a purely algebraic proof of this inequality, 
however the logical proof is far much more straightfor­
ward .)

Each logic discussed is constructed as a purely algebraic 
system, and its algebraic properties are Investigated. We 
tired to concentrate on those algebraic properties which 
are of essential logical importance. For example from some 
of these properties different kinds of interpolation pro­
perties of the logics can be derived. Strong emphasys is 
taken on the naturalness (in the universal algebraic sense) 
of the constructions and the properties.
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To the commonly used version of classical first order logic 
an equivalent logic is constructed with a much more harmonic 
algebraic structure. Moreover this logic is shown to be re­
cursively reducible to a logic with an even more clear cut 
structure and even more smooth behaviour. (We have named 
this logic typeless logic.) The investigations of the re­
lations between typeless logic and the commonly used first 
order logic give a better understanding of the structure 
of substitution and questions related to variable symbols.

A methodology is also hinted how to dig to the core of a 
logic through repeated reductions, in other to grow a 
rich, structured tree of logics from this core. This grow­
ing of a tree can be controlled by adequacy criterias to 
a system of problem domains.

Now we discuss some technicalities about how to read this 
paper. We use the notations of the book of Henkin-Monk- 
-Tarski [1]. Since this notation is generally accepted in 
the literature of algebraic logic we simply sum it up in 
a list at the end of the article and in the main test do 
not introduce the individual notations before using them.

The results and concepts of the theory of cylindric algeb­
ras used in this paper are summed up in Section III. with­
out proof.



11. DEFINITION OF A GENERAL CONCEPT OF LOGIC

2.0. As it is known, the aim of a logic is to enable its 
user to formulate statements about certain phenomena 
and to represent the relation between the statements 
and the phenomena by truthvalues. To fulfill this task 
logic should have a language and some tool- to inter­
relate the elements of the language and the phenomena 
under consideration.

Definition 2.1.: By a logic we understand a pair "f', К У
where ̂  is a wordalgebra* and К ^  3(cr £  , that is

К is a set of homomorphisms defined on ^  .
To substitute the set К with a unique homomorphism 
we need the following operation:

Definition 2.2.: If G is a set of functions whith a com­
mon domain, that is (VfeG) Drj = D , then we define
the product of G as ТГ& = <C <C f* У - _ (see fig.l.)-j-efcr

We now introduce some concepts related to the concept of 
logic:

к А ТГК

- 3 -

a /
The definition of word algebra is given in Section 2.5.
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The set F is called language, its elements are called 
formulas. The elements of К are called interpreting func­
tions , these render meanings to the elements of the lan­
guage. For all p e. К and q>eF̂  kkpl^is the truthvalue 
of the formula ip according to the interpreting func­
tion z. If all interpreting functions render the sajne 
value to qp £ F , that is к(ф) - k(lp) , then we 
say that ip and ip are synonymous or semantically equi­
valent. The semantic equivalence of the logic 's ^ , К У

i° —  - d |°is к and is denoted by —  , that is — ~K . The tau­
tological formulaalgebra is ^/. , its elements are the 
synonym classes. 0̂1 is a formulaalgebra of the logic

К У if there is an L s К such that = L(X .
The illustration of these concepts can be seen in fig.

2.

- 5 -

2.1. Interpretations
To make more convenient the use of logic, we can render
"labels" to the interpreting functions, which serve to
identify the interpreting functions. These labels are
called interpretations or models. That is, vie can pick

Many class M with a functions h e К , with range К 
and consider the elements of M as interpretations, which 
label the interpreting functions through h. Let m^M, 
now (̂ф)р,(т) is called the truthvalue of the formula 
(p in the interpretation m.



Fig. 2.



2.2. Theories of a logic3 relations between logics
The set of theories of the logic < ^ , К > is *•
{ (TTL)0 : L& K i. So in this approach the theories are 
special congruence. More intuitively a theory of

^  К ) is the semantical equivalence of a logic
< [_ у , where L — K. If given theory R we often
identify it with the logic ^ f U {L— К : R’iTTL) } .
That is certain congruences are theories and certain 
logics are theories too.

L is axiomatisable in 4 f , K >  iff L - { R K  : f’2(IL), 
We note that
a) L is axiomatisable in a logic iff < ̂ ( L is a

theory of that logic.
b) The theories (as congruences) form a closed-set sys-

2rtem. Given a subset G of r the smallest theory con­
taining G is the theory generated by G.

L is recursively axiomatisable in <C ̂ , К ̂  if there
ir­is a recursive subset G of r such that

L = { -feK : f If the logic = is a . theory
of Lz Ä <. K2/> , then L, is reducible to \~z j if
moreover K2 is recursively axiomatisable in then
L2 is recursively reducible to L, . Reducibility is

a close relation between logics: If |_2 is reducible to
i A then any logic which is a theory of L2 is a theory

of L4 too. That is if a theorem states something about
all the theories of a logic than a proof of this theorem
for La is also a proof of it to L2 . So if we prove the

- 7 -



reducibility of L,, to Lz then all such proofs about 
LA become superfluous. Theorems of this kind are e.g.: 

the compactness theorem, the Löwenheim-Skolem th., the 
ultraproduct-th., and also the completeness theorem can 
be reformulated in such a form.

2.3. Shorthands
There is another means to make the use of a logic 
more convenient (the first one was the use of interpre­
tations). We can introduce shorthands for the formulas, 
that is instead of the elements of F we can use their 
names. Of course, just as it was the case with the inter­
pretations, different purposes may require different 
kinds of shorthands for the same logic.
N will usually stand for the set of the choosen names 
(or shorthands) and Ih e N F stand for the func­
tion "is a name of" (or is a shorthand for).

For example well known shorthands are:

(ifVij/) Ih ~i('7CfM тф) ) ( qV\iy) IH j and

Ih TilfjT for any F7

The illustration of the concepts discussed in this sec­
tion can be seen on fig.3-

- 8 -
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2.4. Logics with built-in shorthands
The shorthands can be used to define a new logic from 
the old one by replacing the formulas by their short­
hands. In this case we require that

1/ At least one formula in each synonym-class should 
have a name. That is =  ( lb N) * F ,

2/ A word algebra Tt can be defined on N such that
(=*” H *  Tt - ¥/s.

That is we project the structure of the language j 
to the set of names N but during the projection we con­
centrate only on the semantic equivalence classes.

New we define the new logic as the pair

< ft, t H i -  : t K i  >  .

Intuitively speaking no radical change happened, this 
is still basically the same logic, the only difference 
is that now-we have the shorthands built in. To see the 
importance of this step let us suppose that we have a 
logic <  ̂  К >  with a theory <C L where
L с  к.

Let us choose shorthands N for the logic < ^  L ) 
which relies on the special properties of L Now build-
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ing in the shorthands N we also build in the structure 
of L that is the logic { f°ll- : У compared
to the logic < ̂  L У  has the special structure of 
L built in.

One of the central aims of this paper is to investigate 
this process. The theory of the above processes have 
great importance in artificial intelligence related to the 
representation problem. See for example [2], [3]. More 
generally these questions seem to play ал important 
role in the foundations of the theory of adequacy of 
languages.

In the following we give an example of these processes 
worked out to the case of classical first order logics. 
During this we arrive at different logics each of which 
has its special advantages. In the same time a frame is 
worked out in which logics can be constructed according 
to arbitrarily choosen purposes.

Now we show an example of the fact that a general theory 
of logics can be developed in the framework outlined so 
far. Different new disciplines (e.g. artificial intel­
ligence) are calling for such a general theory of logics, 
on the other hand the special theory of logics are elabo­
rated enough to give birth to such a general theory which 
is not at all trivial.
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In the following section we give a result from the gen­
eral theory of logics as an example. We also apply this 
result in section 4.4.

2.5. On compactness and complete calculuses in general theory 
of logics
One of our basic tool in the algebraic investigation of 
logics is the well-known universal algebraic concept 
"word-algebra" or "absolutely free algebra".

Definition 2.3•: The definition of the word-algebra is: 
First we fix a t-type algebra which can be thought
of as a "pre-word-algebra":

a/ the universe W is the set of all n-typles of the ele-

W = ( X U Í M ) U  (XUDbi)x(XUDoO U (XUDot)x ((XUDbfcKx'l’Doi)).

b/ for all fe Do-t

Now, the absolutely free algebra or word algebra of type

ments of XUtVi that, is:

in the case ~ 0
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Definition 2.4.: A set 6 — 1 ff, , is called a-------------------
defining relation.

n (b) a.Definition 2.5.; I о/t is the class of homomorphisms 
over the class of t-type algebras Л, with generators I 
and with def. relation S:

- Í SA, g' = S } in case

0 we omit the superscript:

= i;,a

Theorem 2.1. ; Let <C ^  4Í be an arbitrary logic,
that is is an arbitrary class of algebras. If SÍP Л  

x.
is a variety then the compactness theorem is valid for
<  & П ri,A >.

To prove the theorem we need the following five purely 
algebraic lemmas. From now on „A is an arbitrary class of 
similar t-type algebras and S is an arbitrary defining 
relation.

A class of algebras is called variety, if it can be defined 
by a set of equations. There is a universal algebraic re­
sult, that Jt is a variety iff IHISPJt = Л  .
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Lemma 2.1. : ( 7Г )° - Cr Jt

Proof: <чх/У̂ >е (ТГт; Л) ó-fj- (̂х) = (̂(у) iff

(V Жв3 ^ L ( of <5r̂ e э 5) ̂  <*,y>fc cj ]
iff (V Re Cff$ ) L( ̂ / R e ISA S)=» <M >e R J

iff <x,i4>̂  Cr̂  -A

Lemma 2.2.: For all <̂e SIP A there is a G G 1̂ Л  

such that n л
$-OTG)

Proof: Since ê С ь) $рд there exists a J index set 
and -f €. for which ~|—
If i stands for the isomorphism, for all j J we have 
£■ • i <= (j. 6 and since (Vx̂ ír̂ ) Cb ̂U)= D (we have:

} - nrty-i-} • jejj )° .
Lemma 2.3.: For all set I and congruence R

£• /R 6 SP A iff (3L=^A)(¥L)=R

Proof: 1/ 3̂ t/R ЬРЛ (3b=r(A)(TL)°-R

R*e ЗЬ-(3^ ,3yR)c Ct SPA since ^ í-i/r e S/PA.
By this Lemma 2.2. gives (3 1_С 1̂.-Л) (TTL)°=f{

This with the fact that, for all equivalence relation r ,
, -к \0 0 ,( r / * Г completes the proof of 1/ .

4

*
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2/ (TTL)0- R - *  &  /R e SIPJt

"*• fTL 6 3 W ( S It,PL ^ rt),
since for all c^L, A  we have ^í(-t/(]fj_)e 6 S P A

Now ( TTL) = R completes the proof of 2/.

(S') (bi
Lemma 2.4.: Cr_. A  = CrT, Sir Ait

(b) m
Proof: < x,y> P Cr^ Sn A  iff (from Lemma 2.1.)

(V y.e iff (from Lemma 2.2.)

(VGS I ^ A )  <X,y>e(lTG) iff (from Lemma 2.1.) < X,y>£ Gr̂  A

Leimna 2.5.: Cr̂ . A  = Cr^ (HIS>fP A

Proof: is well known and can be found in [1]

The proof of theorem 2.1.:

Let us suppose that SIPA = IHIS/P A  , and К = A  .
Let I be an arbitrary set and =  ^  R 6 Gr Sr^ . Since
Згц/= * Sr^A e S P A  we have that 3 ^  € PISP A.
This, by the hypothesis, gives that 6 S P A
and so by Lemma 2.3. (3L^ K) (ТГ1_)°- R that is R is a theory 
of К . This means that the set Í Re Ccr 3̂ . • R 2 ~ J
coincides with the set of theories ( on < Зг^, К У') . Since 
it is well known [1] that the set of congruences con­
taining a fixed congruence is an inductive closed-set 
system, we have proved the co?npactness th. for this logic.
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We note that the above theorem states e.g. the compact­
ness of the propositional logic since the latter has 
the form: <  St-ц , ÍK 0^ >̂ .

Now we turn our attention to the calculuses of a logic 
defined in such a general setting.
By a calculus of a logic we understand an algorythm 
listing elements of the tautological equivalence =■ .A 
calculus is complete if it lists all the elements of — .

Now we outline a general method to obtain complete cal­
culuses for logics of the form < V' У

where 1/ is a variety with a recursively given set of 
defining equations.

Now it is easy to see that —  ~ Т/ (for %

see the list of definitions.) Let £  be the set of 
equations defining IT . The set of variable symbols oc- 
curing in L is disjoint from I (and all the other 
sets used). We consider the elements of I as constant 
symbols. Note that the equations in S consist exclusi­
vely of symbols in I and Dot. Let our algorythm start 
from the equations £ U S  and use the usual equation 
rewriting rules see e.g. [41. By the well known equa- 
tional completeness theorem of universal algebra, (see 
also [4]) this algorythm is a complete calculus , that is 
it lists all the pairs in s
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Note that this approach simplifies the logical complete­
ness considerations since the equational completeness 
theorem cited above has a very simple and straightfor­
ward proof.

In case of a compact logic by a complete calculus all 
the consequences of a recursively enumerable set of 
synonim-pairs сел be listed.

For example the completeness of the propositional cal­
culus can be proved in this manner in very few steps 
[5] (since the va.riety of Boolean algebras can be de­
fined by three equations).
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III. SOME PROPERTIES AND CLASSES OF CYLINDRIC ALGEBRAS

3.0. During the investigations of the kinds of logics we are 
going to introduce the theory of cylindric algebras will 
be applied.

A structure is an algebra if all of its relations are 
functions everywhere defined on A*

We fix a type Í which shall be used through out the 
paper:

t - t <л,з>, <-rlz>,<3i,2>/<=4i,i>-

From now on we restrict our discussion to algebras of 
type i .

So, before going into more detail we introduce notations 
for algebras of type i . If Vi is an algebra of type
£ then:

By a structure of type t£ ̂i-0 we understand a pair
t(jL = 'C A , Op У where A is the universe of the

,-ЛМstructure and Up is a function with domain I.
For any I the value Qp (g) is a i(g) -ary
relation on A.
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q f % )  =
_ eei)

0® \ l )  d
(ЧЮ

Op0 ^  '
(-et)

<4

< ( = , )  á
,(ci)

We usually omit the index (Ч/О

Let us introduce the dimension-sensitivity function A  

Г ы )  i Í . . £  * X 3

MO

Since vie devote ourselves to algebras of type t , we 
set

and we call the word algebra generated by X,Л

3.1. Some important classes of I -type algebras

The variety of cylindric algebras (CA), ([1],1.1.1.) 
Let us introduce the following shorthands:

X ~f~ у = — (- x • - Cj)
0 i y-y
A “  -  0
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Now we can define CA the class of cylindric algebras: 
For any {. -type algebra

Щ

CA if for all X,y,fce A and ir̂ n e CO the 
following equations hold:

(CO) is a Boolean algebra, that
is a) X- cj - cj' X

b) x-ly+z,) = (x-yH- i x z )

c) X- A ~ X

Note that the symbols +, 0, and 1 are only 
shorthands for expressions and are not operation 
symbols of the algebra ‘tX

(Cl) 0-0=0 
(C2) СгХ-Х - X
(C3) qiX'Cty) = qx qcj
(c4) qCj x - c,x
(C5) d* * 4
(c6) ^  dá,a - cjd^-d^)
(C7) 1*3 Ct(d-x) -сД^-х) =0

The class of locally finite cylindric algebras (Lf),
([1], 1.11.1.)

Lf = { Х Х е С Л  • (V x M )  I / f ^ x U  со j .
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The class of full cyllndrlc set algebras (Th), ([1],
1.1.5.)

The full cylindric set algebra Induced by the set
A is defined by:

( X,Y) 

c ^ ( X )

d ?
4

The operations 
rated in fig.4.

= Xf!Y

* V x
= l № A '■ (3x&X)(V̂ üjvU1) ̂ }

i i i 4 ' 3
lXt) j (At>and cl;; are illust-

TH « { <ГД : A *  0 }

The class of cylindric set algebras ($a), ([!]* 1.1.5.)

1U - -STÍL
Note, that, as it is easily seen, any cylindric set al­
gebra is the subalgebra of exactly one full cylindric 
set algebra.
The class of locally independently-finite cylindric set 
algebras ( eCu* )> ([5])
Let цеД is an independently-finite element

/ЛЧг\
(in the followings i-finite element), if | Д a 1^ со 
and Óea iff (32:£a)(Vi^a)ó-=£; (see fig.5.)■4, -V

<£xr * { WailLf •' (V dM ) a is i-finite j .
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со

Fig. 5.
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The class oGr plays a central role in our algebraic 
investigations of logics. We gave a more detailed ac­
count of this, and also of the algebraic behaviour of 
oGr in [ 6 ].

The variety of representable cylindric algebras (Цц, ),
([13, 1.1.13.)
(Jüc, * SfP K l

3.2. Some basic properties of the classes introduced so far

Lemma 3.1.: (Rí. is variety. This was proved in [7]
Lemma 3.2.: Rl - IHISP Lf . For proof see [8]
Lemma 3-3.: M* Lf ^ (HIÄIP Lf . Is proved in this paper.

As far as we know this is the first proof 
of this inegality

Lemma 3.4.: 5)(P Lf = 5»IP . Was proved in [5]. Our results
in logic are based on this equality .

Summing up the relations between classes of cylindric al­
gebras:

<Lo- ^  Lf- П
4P Jjr- SP Lf a SP Жа. SP ТЯ - &
HAP Xjt -  MSP Lf = MSP T U  - MSP Ik - i&

The connections between the different classes of cylindric

algebras can be seen on fig.6.
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J - closure E * £ simple cylindric algebras with

S - closure the trivial cylindric algebraj
ц_(| _ ĉ osure Ш ‘i  Í <£a ■ M l*ii
SIP- closure1—1 Tfi 1 - Tfi4 Ы  >i£A ■ M1 > i  1

LJ variety
О  non-variety

Fig.б .
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IV. TYPELESS LOGIC

4.0. In the followings I is ал arbitrary but fixed set.

Definition 4.1.; The typeless logic of index set I is 
the pair < &  , ^ hr > .

We introduce the notation for the class of interpreting 
functions of this logic: hr .

Now we fix the class of interpretations with which we use 
this logic:

M 1 = I 'M  ' De C I  } .

is the class of structures the relation symbols of 
which are from the set I .  We note that for other purposes 
other classes of interpretations might suit better, e.g. 
the class of structures with proper relations. (A relation 

у over A is proper if there is no q, such that

r ‘ ^ A )  #The labelling function гъе К is defined as fol­
lows:

Definition 4.2.: For any cŐíeM , £ Xm(3+j such
that for all ^ 1

3) = íófeA : C3n€0o)<^. t Sft>e C|p^( §) j .

Intuitively speaking f t  correlates with each formula
/ \the set of evaluations (a subset of n ) which 

satisfie in the interpretation L0l .
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Theorem 4,1.; together with fi form a class of inter­
pretations for the typeless logic of index set I, that
is

-ft* li1 - K ‘

Proof: 1) -it it —  К . We know that fu. and it
is easy to see that for any рбI the element

г U ! (3<г) fi'l''be0p(̂ )5is i-finite. Since
L* Г generates K* 3r_ we have ЗД Л  I
I* fe Xtr

This complets the proof of 1).

2) It, M1 - K* . Let oCtr = K 1. To ĉ- we con­
struct an M1 such that ft, = a

j n  a
&== ^  e oGr , According to the note following 
the definition of гЖ(ь there is a unique A 
such that Now we define a structure

on A: for all p£ I we pick an со
Ш  , л 'such that Д С[Ц)^=П and then we fixО

Op (g) = Now we show that
= ̂  . For all I :

(O)/’A  (g) * Í 6£°A '■ t 3m̂ co)tn'| 6 e Op (g) J =

- JU "A --te* 6 ■■ 9 Ф

from the def.ofd from <&£ Jor and
and

And since öó" S  implies that ( a é ff&nn (з(г )
is for any K 1 there is an9we have: _ . That

such that "Ада- and so fc* 3
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Now we start to investigate the algebraic properties of 
typeless logic.
We prove that the semantic equivalence of typeless logic 
is the free congruence over djr , the tautological for­
mulaalgebra is the free algebra over cLr and the class 
of formulaalgebras is SfPXr .

Definition 4.3.: The semantical equivalence of the type­
less logic of index set I : = =• (TK^)°

Definition 4.4.: The class of typeless formulaalgebras:

^ (F)- I is an arbitrary set, 1C 3

Theorem 4.2.: a) HI >1

S
' C

b) %-j-Is

c) CS-F
) ”-n II $

Proof: a) = (ITÍ̂ö(jLr)0 by Lemma 2.1.

b) follows from a)

c) 1/ ‘'<=■ SPJJr. According to the definition of
for any '-(Aß there is an I and

L - űOr such that HJÍ- Sr£/^^o . From 
this and Lemma 2.3. follows that L(Xe 5iP oCr.
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2) ^   ̂ — 5(P cLs . For any °̂ r
there is a set I such that Щ- V  ХК . (e.g.
$г ^ 4% . ) By Lemma 2.3. this implies
that (3LSl^c6r)^-3^/^othat is XX̂ - ̂ Г^

We note that the same is true for the propositional logic 
if we replaceYby For the algebraic purposes
the definition of Jfa is not algebraic enough. So we 
try to replace it with more algebraic classes. E.g. the 
fact that the tautological formulaalgebra of the proposi­
tional logic is the free Boolean algebra is more algebraic 
as our Theorem 4.2. since the dass of Boole algebras is a 
variety. In the followings we succeed in replacing Jjt 
by Lf as well as iföt , both having purely algebraic def­
initions. (The presently known algebraic definition of’ fa 
is more complicated than that of Jixr , however it has the 
advantage that fa is a variety and a set of equations 
is known for it.)

Theorem 4.3.: a) s  ~ Cr

b) Ц/ J  - S- If

c) ?'F) * Ж  If♦

Proof: by Lemma 3.4. and Lemma 2.4.

Theorem 4.4.: a) 35 = Ĉ . fa

b) %/j - ^  fa
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Proof; by Lemma 3,2, and Lemma 2.5. and Theorem 4.3.

We remark that this theorem does not generalise part c) 
of theorem 4.3. This generalisation ( $IP (&= IRsl )

is easily seen to be equivalent with the equality
SIP If - HSIP If .

In the Section 4.4. the compactness theorem is shown to 
fail to the typeless logic from which -SIP If ^ IHISIP If 
immediately follow-s by Theorem 2.1. So the generalisa­
tion of part c) of Theorem 4.3. fails. However Section
4.4. does also contain an important positive result as 
well, Theorem 4.4. b) is used to show that typeless logic 
has various forms of the "interpolation property" (this 
has e.g. definition-theoretical corollaries).

4.1. Calculuses for typeless logic

According to the definition in 2.5. a calculus of <Síj.,K̂ )> 
lists the set . It is easy to find such a calculus by
using that and a system of equations defining
Яь is known [1]. Thus starting from the equations defin­
ing Qju and by using the usual transformations on equa-

Itions an algorithm can deduce any element of s . The
calculus can also lists the consequences of any finite set 
of formulas. The correspondence —  = can be
a tool not only to construct new calculuses but also to 
check calculuses to be complete.
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We have to check that the relation listed by the cal­
culus is a congruence and contains the equations defin­
ing &l .

4.2. Shorthands for typeless logic

We remind the reader that in Sectio-n 2.3* we discussed 
the use of shorthands and. fixed some definitions. For the 
typeless logic of index set I we can introduce the usual 
shorthands, e.g. Vt~*, \  etc. However we cannot intro­
duce shorthands for substitutions that is variables. We 
would like to have:

^ ( i H s V ' 4 1 »  " 1 ie“A '■ (3me“ M < V  '4v  (s):i

We can not define this because CO .

4.3. Examples

1/ Let I = { and for each n.eu; the structure $1 ’’ 

^  < (O, í<  § >í < QA r .,Qfí> b inLu '• >

It is easy to see that for any k;n € to

(30...3k §) =^60 iff k > f l
tv

From this example it follows that

2/ We would like to produce a formula such that

{'b£tÚ(jú: 4|<'b03 » where 4% = Ĉl of the

ÁSl/J\$/s<) = u>

i
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example 1/. We shall see that у = 3^(Д,(30(5»Д 

has just the required thruthvalue in 0̂1 ■

Fig.7. illustrates the above examples.

4.4. Some properties of typeless logic

Theorem 4.5.: The compactness theorem holds for the type­
less logic off I = 0

Proof: 1/ Let 1*0 and
Consider the set of formulas

2  á I  3i S r .. i

We shall see that 2 has no models, and in the 
same time any finite subset 9 of 2  has models.

А/ Let 9 be a finite subset of Í  , and ti the greatest 
integer such that J 0 /If there is no such number 
then and so obviously has a model./

Now we construct a model ‘{X for 9

A = ш

C £ %  -  Í i<?A : (3 0 0 ) J

and for any ^  ̂  e I 
bitrary.

the relation 0pa\j) is ar-
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ЧХ is easily seen to be a model of 9:

a) У  3 1s) - №  = %  

because
tolet 4е со arbitrary and "a" be the union of the 

set е-пЛ (that is "a" is the greatest of the
first n coordinates of "s".)

' У  *  У ?1 “ d 80 4e V ^ s >

b) Let 0< к é n  now

У  ад  - №
соbecause for any 6€ to the sequence

В/ Let Vi be any interpretation of the logic < , 1̂ <hr У
Л Щ  лIf Op (§) is a relation of n arguments, then

V § h y 3 w S ) . S o  If П  is a model of 3 ^  ,
that is then - -1Щ) ,

and therefore 'Pi, (3 ie) = 0 > so is not a modelc(X о j
of .

2/ The logic < '5y l ^ J j coincides with the 
logic of type 0 (that is with the usual theory of iden­
tity) and so is well known to be compact.

ч %
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Corollary 4.1.: SP Lf + fH|S>P Lf (and so of course
SP Sjt * WIS>P <Lr )

Proof: Follows directly from theorem 2.1. and theorem
4.5.

This result is made more interesting by the fact (see 
[1] 2.6.52) that tha smallest universal class containing 
Lf coincides with H5>P Lf . That is 5P Lf is not even 
universal. (This however does not mean that 5>P Lf 

would not be elementary see 2.6.53. [1]) The above corol­
lary also implies that the smallest free class of algeb­
ras containing Lf is not a variety (and is hot even 
universal) by theorem 1 of [9].

A class of algebras is free it is containins free algeb­
ras for arbitrary defining relations. Malcev proves that 
the property of being free coincides with the property 
of being closed for SP .(See [9])

The above one is a logical proof for 5>P Lf ^  (HISP Lf , 

we have also found a purely algebraic proof for this fact 
which is however somewhat more involved.

This algebraic proof can be found in the Appendix.

Now we turn our attention to the interpolation (and de­
finition theoretic) properties of typeless logic.



First we define the interpolation property for logics 
with cylindric formulaalgebras.

Defini tion 4.5.;

Let L * < , К > be a logic with &r/= £ ^  •
Let and у  be two formulas of L and к the set
of symbols from I occuring in tf , and 3 the same set 
for ip .
That is:

. ф, ip €
q> € 
яр £

к Ш  &  1

Let ap be a consequence of tp that is ^ яр 
L satisfies the interpolation property (IP) if:
We can find a formula X whith symbols common in ф 
and яр that is X^ 
such that:
a) strong IP: é- X ^ ap

b) normal IP:
There is a finite set of natural numbers {^ — u>
for which

i X  á \ \ v >

c) weak IP:
There is a finite ( •  •, &  со for which

V V 4  x  6 a<, \  V
see fig.8.

-  36 -
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э
Fig. 8.



L has the restricted interpolation property (RIP) 
if it satisfies the conditions of IP for every disjoin; 
d and V .

We remark that since in the case of typeless logic the 
set I is the set of relation symbols, if L is any 
theory of a typeless logic then the various forms of the 
IP implie the corresponding forms of Robinsont general 
consistency result in the theory of definition, (see [10]) 
They also implie the congruence extension property which 
has some nice proof theoretic consequences concerning the 
independence of certain theories, but we do not investi­
gate this line here.

Theorem 4.6.:

a) Typeless logic has the weak IP, and the normal RIP but 
it does not have the normal IP.

b) Any typeless theory, all models of which have the same 
finite cardinality, has the normal IP.

Proof: The proof is based on the corresponding results 
on free cylindric algebras (see [11]) and on Theorem 
4.4.b) in this paper.

Some open problems:
Does typeless logic have the strong RIP?
Does any typeless theory with fixed finite cardinality 
of models the strong IP or at least the strong RIP?

-  38 -
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(These problems are strongly related to the correspond­
ing problems in the theory of CA-s.)

V. THE FIRST ORDER LOGIC OF TYPE t

5.0. Throughout this Section i £ ̂ '(io4'i) that is t is a type 
and I is its domain or index set.

We remind the reader that defining relations and related 
concepts were discussed in Section 2.5. Sometimes we use 
t as if it were a defining relation, in that case the 
superscript (t) stand for the superscript :

<.£C0'"t(§)3). That is t is used to stand for the dimen­
sion restricting defining relation induced*by t.

Definition ,5.1. ; By the (first order) logic of^type t 
we understand the cuple

<  % ,  r / W y  .

Theorem 5.1.; The logic of type t is a recursively axio- 
matisable theory of the typeless logic of index set I.

Proof: The set of axioms Í j defines
rrft)dCr in the logic of index set I. It is easily seen
that this set is recursive if I is recursive.

We could introduce a new class of interpretations, e.g. 
the structures of type t, but the old ones will do for



- 40

our purposes. We introduce the shorthand for the
class of interpreting functions: ^
stands for the semantical equivalence of the logic of 
type t, that is ~ (tTtĈ )0

Now we prove that the semantical equivalence of the logic 
of type t is the t-dimension restricted free congruence 
over the veriety CA, and the tautological formulaalgebra 
is the t-diemnsion restricted free algebra over CA.

The quasiveriety generated by the formulaalgebras with 
type is also shown to coincide with the class of type­
less formulaalgebras. We shall see that the above theorem 
gives a logical importance to Lf saying that Lf is 
just the class of formulaalgebras of the classical first 
order logic.

Theorem 5.2.: a) =. = Cr^ CJ1
b) З Ц ' s/1 CA
c) The class cf formulaalgebras Is identical

with Lf , that is L| = I * 1 is arbitrary and
there is a t such that íf̂Jdr J .

Proof: a) s I (irr/̂ M-)

by def, 4by Lemma 2.1.
чby Lemma 2.4., Lemma 3.4,

because t is dimension restrictior
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b) follows from a)
c/1) Any formulaalgebra 4% is the homomorphic 

image of some tautological formulaalgebra Str/=+ .
Since %/г^ * Sr^C/l é Lf ) the formulaalgebra <(X 
is also a locally finite cylindric algebra ([1], 2.3.3.)

c/2) Let d S Lf , then there is a t and I such
that 3 ^  Lf )? . Now there is a X?(Srj- ,<&)
such that cje l̂tt)Lf ^  oCtr . By Lemma 2.2. there is

L — ÍJli)U  for which = (TTL)' . Now o& s & 1/c° '

4f) (

an
Sj-j.0 that is c# is a formulaalgebra. 3

5.1. Shorthands for the logic of type t

Now we can introduce a shorthand for substitutions: To do 
this for any ^&I we introduce notations n and y:

h - and i\ = n+1 + Z t; .
i'O *

Let II— be the smallest relation, for which:

a) for any $el and

b) if holds, then for any sequence x,y

X cC cj If- X |2> if

(that is, the relation If- is "context-free")



с) II— is transitive
(that is the relation ||— is a "derivation-rule”)

It is easy to see, that II- is a function. So choosing 
N such that !b*N — itj holds, ll— is a
correct "is a name of"-function.
The following theorem states, that H~ "gives just 
that meaning" to the formula which is in
accordance with our intuition concerning the variables.

Theorem 5-3.: ( ft̂ ° IH =  ̂46 A ■' \ X  Qa (g) }

Proof: The proof is easy and is similar to that of ex­
ample 2)

Since IH is a "text-function", it would be possible (and 
perhaps more convenient) to define II-  by tools used in 
mathematical linguistic (in the present case, e.g. by a 
context-free grammar).

We remark, that the above theorem can also be proved as an 
immediate corollary of III.2.2L of [5] which sais: for any 
<&edjyf xb£> and one-one-transformation jk on U> :

Vo ЧгЛ/Hi* V VVn>=C V"; $

It is easily seen, that , s

d-<svVl4 “ Vv-w-w §/э‘
and by this the theorem follows from the lemma.
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As it was mentioned in Section 2.4., we can define a
new logic by appropriately choosing a subset of the
names of the formulas. We shall choose the word algebra
generated by P , where P* i oV- ...V, : e&I i .

* %s,-4

Now is a set of sequences and lb is everywhere
ftdefined in HrD and also lb frD = Try moreover 

\ vt 1
lb £ , % )  .

3.2. The i -type logic with built-in substitution

Definition 3-2.: We define the "t -type logic with bui lt- 
in substitution as the pair

ц  * < Sr i \\  (f+ )  •• F  Kt 3 >

It is easily seen that this is a logic indeed.

We define a labeling function for the logic . The
interpretations are the structures of type i , we de­
note their class by . The labeling function k is
defined as follows:

for all Ш М 1 , kbjt £ %яг]( ) such that for
all §e I

{
m

Л  >eV
For the connection between the t -type logic and the t~ 
type logic with built-in substitution see fig.9-
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Fig. Q̂ •

P



Theorem 5.4.: For all i -type structure 4%, ^
and so

k* M, - ( f H  •• fe*K. ]t 4

Proof: Ibe 3fe($rjj, and ll̂ e %jm(5^ , <£д")
implies that frp > ( ^ ° H  4 Хяп ( ) <£д ) .

Because (VSeI) (fo II") S \  ^  .the fun°-
tions к and írn4 [hn° Ih) are identical. Ж  R > Ж

Theorem 5.5.г The logic Ц_ is recursively equivalent
with < 5ij ( K^> that is there is a recursive function к
from into ír,- and another function from
lrr into írD such that for any -type 4%1 4-

k,M  - у  к und 4Л = кл ° ̂

Proof: The proof is easy.

We remark, that the above theorem states that the logic 
Ц. coincides with the classical first order logic of 

type t , and so the logic < Stj- , У also coincides 
with the classical logic of type t if we use the appro­
priate shorthands. So we proved that classical first order 
logic is recursively reducible to typeless logic or in 
other words is a recursively axiomatisable theory of 
typeless logic. The advantage of < /" to clas­
sical logic is that we can use <C 3tr ( >̂ on tiro levels
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one is the level of shorthands ( ) where we have allpt
the ease of expression we have in classical logic, and 
the other level is the level of ftj. which makes the al­
gebraic properties much more translucent and clear cut 
then that of L  ̂ as it is shown in the followings.

Let ^  and stand for the semantical equivalence
and class of interpreting functions of Ц_ respectively. 
Now we fix some defining relations on $rp .

Ri ' D* U Ht where

D * Í < i  v. . 9Ч - -Ч- Q6I  . ie co'Unr..,i,,4 J } * 1 5 *o 4 (§h  1 * 4 5 1  1 3 0)1

H, - K  =  . =  .A V v Ч  ...V/ >  5 §el i í Wü). leio]
-t 4 - i b ^  4(<)4 1 5 <ь V /I 3 1 Л-щи

Theorem 0?t)5.6.: k (hr = ^

Proof: The proof can be found in [5].

Theorem 5.7.: a)

>) 4 / %

(R,)Ct̂ CA 
S *̂1 CA

c) The class of the formulaalgebras of clas­
sical first order logic is Lf .
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Proof: a) ( F I ^ W  ■ C f W -  G^Lf - C ^ C A

b) follow-s from a)

c) ||- Induces an isomorphism between Srp /,
and and the correspondance ) k^ is in
accordance with this isomorphism.

Ctr CA

and that for any ( ■{ -type) variety "IT, ^  f  Ct̂  IT

To check the completeness of a calculus of we have
to check that the calculus lists the equations of CA and 
the equalities in . If instead of we have
< , K* > , then checking the equalities i ^ ^ , § ' 5

suffices (and of course CA). (Of course we have to check 
that the relation listed by the calculus is a congruence.) 
To produce a complete calculus the algorithm could start 
from the equations of CA and the equalities in R̂. (or 

* § respectively) and use the equation trans­
formation rules just as in the case of the typeless logic.

We remark, that about the necessity of the inconvenient 
set R̂  is proved in [5 ], that

3€/ (H )
ch is not an independent algebra over CA with gener­

ators I (in the sense of [11]) while сд is.



5.3. Interpolation properties in some Interesting logics

Now we sum up the interpolation properties of four im­
portant kinds of logics:
1/ typeless logic,
2 / typeless theories with fixed finite modelcardinalities 
3/ first order logic with substitution in general and 
4/ the usual logic of type -t >

Of the above four kinds of logics the properties of the 
usual logic of type t are well known, but in the light 
of our theorem 5 .2 . and 5 .5 . their proof is more straigh 
forward.

Theorem 5.8.:

typeless
logic

theories of 
typeless log. 
with finite 
characterist.

log.
oftype
b

any first 
order 
logic with substitution

strong - ? + +
IP normal - + + +

weak -h + +

strong ? + +

HP normal + + + +
weak + + + +

Proof: the proof is based on the algebraic results of 
[11] and our results on the formulaalgebras. The second 
and the fourth column needs however some explanation:



The typeless theories with fixed finite model cardinality 
are cylindric algebras of finite characteristics• and 
for any logic with substitution if the formulaalgebras 
are CA-s then they are also dimension restricted ac­
cording to [1] (2 3бр)

In the case of the last two kinds of logics (these with 
substitution) the results implie not only Robinsons 
definition-theoretic results but also the corresponding 
forms of Craig's interpolation theorem.

- 4 9  -

«

%



- 50

APPENDIX

Algebraic proof of ДР Lf ^ IHI$>iP Lf

In Section 4.4. we gave a logical proof of this purely 
algebraic theorem.
But later we succeed to find a purely algebraic proof 
also, here it follows:

A part of the algebraic proof can be formulated as ал 
independent universal algebraic theorem which we have 
formulated as:

Theorem A.l.: For any simple algebra ‘Cl and any class 1C 
of algebras:

‘Ő U S I P K  (If « e i l K
Proof: 1/ it is well known that — Äl К

2/ let U  e SP X

There is a sequence < 4 of algebras in К such
that L(X is isomorphic to a subalgebra of IP Tt.-teg

So for any there is a homomorphic image (by the
i-th projection function) бСб- of 'CK. such that

SIC .
Since is simple any is either isomorphic
to 'СЛ or trivial (has only one element) . From this
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it follows that l0 i is isomorphic to some of the 
с*3”. - s and so is a member of S>R К  .'I

Now we are ready to give an algebraic proof of the fol­
lowing theorem.

Theorem A . 2 . : P L f  #  IHISIPLf

Proof: By 2.5.24. of [1] there is a simple *$(.£ СЛ4 Lf . 
Since Lf = SI Lf Theorem 3 gives that SIP |_f •
However according to 2.6.52. of [1] all simple cilindric 
algebras are in Lf and so ЧХ& H S P  If

Note, that this proof is much more involved than the 
logical one, because the results (2.5.24. and 2 .6 .52. 
of [1]) the above algebraic proof relies on have rather 
complicated proofs themselves.
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LIST OF DEFINITIONS

0 the empty set
1 = ÍO]
2

to * io,t(Z,- J
Í V domain of the function or relation -f-

ixii*

range of f
x-th value of -f ! -px “ f* “ 'fC*) 
way of defining functions:

- { <x, |U)> : *€ Ai
. > is a function defined on the ordinalП<<*

x{f

Бл

that is:
< \ r  л < л > 1

f domain-restricted to X: X'j -f = l<x,4x.> •' x.e X j
В Jpower of A to В: Я = {-f •*

5 H class of subsets of A: Sbfl - Í В : В £  Я 3
r° cj. composition of r and q:

Г*£}, ' [ < b,q> (3c)(<C,0t>eh 8c < b,c > 6 ) }
r) q. relative product of r and <1 :

r\(\ Í Í <a,b> * Sk <c/b>ecj/4)}
f the equivalence-relation induced by -f *.

•f * f |fH
Г* if f\ & P0 r , then r* f\ is the r-image 

of A: г*Я Í { у : (3xefí)CX,y>£r}
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Vх if а€ Do г 3 then ir̂ cj is the r-image
of a:

 ̂У : <cty>e ri = K* id3
subalgebra of XX generated by X, that is: 
(bej X is the least (by S  ) element of 
the set Í XX^ ̂ X •• X ^ ß  }

Й ё « ^  Is subalgebra of
•сК*в

&  = 
з& час.

XX is homomorphic to JX 
XX is isomorphic to ^  
class of homomorphisms on XX

Zoml-CL/í)

СсгЧЛ

set of homomorphisms from XJi onto 
set of homomorphisms from XX into XX 
set of congruence-relations on XX.

а/£ is defined if s в Gr XX and than it 
denotes the factor-structure

\ * и is defined only if f is a homomorphism on XX

S  ^

and then there is a unique such that 
-f З Д г ( now: -f*XX = 
direct product of the algebras ac­
cording to the indexing I

IK class of algebras isomorphic to the elements 
of K: IK * í * <#=|e K]

MIK class of algebras homomorphic to the elements
of K: M K  i { &  ■ oá4|e VCJ

s к class of subalgebras of the elements of K:
S k  i i<& ■■ Аkj
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(Р к class of direct products of the elements of K:

4 J к

г  к = {<&■ :1з<‘а ; >й1)(%‘а ь к  & # * £  Щ }

free congruence over К with I  generators and

(Ь)
%  к

with defining relation S:
CrS? К - Л  í  Rfe Gr % S 5 ̂  R, fcI t /R 6 IS К j

Ljb 1

free algebra over К with I generators and with 
defining relation S:

к  á к

j  ,
* S  K 1У where T is the defining relation:
= J { < g i  с ^ > : $ e l ,  i<t i ($) }

t (а) substitution operation in ^  3 j  for -t :
i f f 0 ^ (a)/ .ÍOL) ОТ) \Ó- К 2 C- ( б/-: * X )<*• 1 ^

COL)
V is defined if "(X^L{ and S' is a finite trans­

it)formation of со , and then is the 
unary operation defined as follows: 
if 3~= 4Л*в/Иг - l̂ K-л  ̂ is the canonical represen­
tation of J l , V £ kU), )! if x is any 
element of A, and. if ТГоГ--, TT̂_4 are in this order 
the first k ordinals in uj>̂  ( Д К U Rg/xU %  ̂ 
then

Л  i  6 f; m  xj '  ^ Wo TK_A

a way of defining finite transformations:
-  ^ V V > ,  ■,<<»u}n>ilJl< aia>: «eÄN4 - i i i i1
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