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ABSTRACT

This study is concerned with the construction of a mathematical base for a
general theory of logics. This general theory of logics is a frame in which
different kinds of logics or complex systems of logics can be constructed,

investigated, interrelated, etc.

The known alternatives of classical and nonclassical logics do fit into this
frame. This frame is developed completely inside universal algebra, that is
the objects treated in our general theory of logics, as well as their stand-
ard properties /e.g. completeness, reducibility, etc./ are completely algeb-
raic. To illustrate the general methodology the following tree of logics is
constructed /grown from the "root" logic/s typeless logic, logic of type t
and the hierarchy of logics with built-in shorthands /e.g. variable symbols/.

The commonly used alternative of classical first-order logic is a node of
this tree.

PE3IOME

B paHHoOli paboTe paspabaTbiBaeTCHA MaTemMaTUYECKUd annapar, SABAAKWWIACA OCHOBOW

Ana pa3paboTkyn obweil Teopum norvk. O6was Teopus NOrMK MNO3BONAAET WUccnefosaTb

U co3paTb pas3Hble slormkv. OHa oxBaThiBaeT KaK KlacCuyeckue, TaK UM HeKlaccudeckue
norvkn. OHa COCTOMT C OJHOI CTOpPOHb M3 HEKOTOPOro CcKeneTa NOrMkn, a Cc Apyron -
M3 MeTOAOB, MO3BOMISAKWMX MOCTPOMTb Ha OCHOBE CKefleTa Xefiaemyw /Ioruky. B pa6oTe
npeasioxeH TaKol cKeneT NOrvkv, paspaboTaHHbii Npy MOMOWW METOAOB B TEOPUU YHU-
BepcasibHbiIX anrebp. [Ana wnnwcTpaunn MeToAoB, MO3BONAKWNX CUHTE3MPOBaTb JIOMUKU,
NOCTpPOEeHs 6GecTunoBasa siorvka, Jorvka Tuna t M BfOXeHHas fnorvka Tuna t. MNocnep-
HMe COCTaBNANT O6eCKOHeYHYl nepapxui Nornk. OgHa M3 HUX coBnagaeT C K/lacCuyecko
NIOrMKOI NepBOro nopsigka. Pa3paboTaHHbie MeToAp MO3BOMSAKWT MCCNefoBaTb /IOrMYeckue
CBOIiCTBa, TaKue,Hanpumep,KaK KOMMNaKTHOCTb, MOMIHOTa, WHTEPnONsUMOHHbE CBOWCTBa
KakK 4MCTO asrebpanyeckue.

KIVONAT

Ebben a tanulmanyban megkonstrualjuk azt a matematikai bazist, amelyen ki-
fej leszthetové valik a logikak altalanos elmélete.

A logikak altalanos elmélete egy olyan keret, melyen belil kilénb6z6 logikak
és kapcsolataik vizsgalhatok, konstrualhatok, stb. Ebbe az altalanos keret-
be beillenek pl. a klasszikus és nem klasszikus logikdk egyarant. Ez a keret
all egyrészt valamilyen logika-vazbol és olyan médszerekbdl, melyekkel a vaz-
b6l kialakithatd valamilyen kivant logika. A tanulmany ezt a vazat adja meg
univerzalis algebrai eszkodzokkel.

A modszerek illusztraldsara megkonstrualjuk a tipusfiggetlen, a t-tipusu és

a beépitett t-tipusu logikakat. Az utdbbiak tulajdonképpen egy végtelen logi-
kahierarchiat alkotnak. Ezek egyike a szokasos klasszikus els6rend(i logika-
val megegyezik. Ez a kozelitésmod lehetévé teszi, hogy logikai tulajdonsago-
kat tisztan algebrai tulajdonsagokként kezeljunk /pl. kompaktsag, teljesség,
interpolacids tulajdonsagok, stb./.
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INTRODUCT ION

A general frame 1s introduced in which logics can be con-
structed as purely universal-algebraic systems. Some basic
concepts are developed iIn this general frame, such as the
completeness of a calculus or the reducibility of a logic
to another, etc. Then these general tools are applied to
construct different versions of classical first order logic,
and to study their interrelationships. To this end the
theory of cylindric algebras is applied. The iInteraction
between mathematical logic and algebra, is bidirectional
since we use our typeless logic to prove that SIP Lf QISP Lf
where Lf is the class of locally finite cylindric al-
gebras. (As far as we know this is a new result. Later we
also found a purely algebraic proof of this i1nequality,
however the logical proof is far much more straightfor-

ward .)

Each logic discussed is constructed as a purely algebraic
system, and its algebraic properties are Investigated. We
tired to concentrate on those algebraic properties which
are of essential logical importance. For example from some
of these properties different kinds of interpolation pro-
perties of the logics can be derived. Strong emphasys 1is
taken on the naturalness (in the universal algebraic sense)

of the constructions and the properties.



To the commonly used version of classical first order logic
an equivalent logic i1s constructed with a much more harmonic
algebraic structure. Moreover this logic Is shown to be re-
cursively reducible to a logic with an even more clear cut
structure and even more smooth behaviour. (We have named
this logic typeless logic.) The investigations of the re-
lations between typeless logic and the commonly used first
order logic give a better understanding of the structure

of substitution and questions related to variable symbols.

A methodology is also hinted how to dig to the core of a
logic through repeated reductions, in other to grow a

rich, structured tree of logics from this core. This grow-
ing of a tree can be controlled by adequacy criterias to

a system of problem domains.

Now we discuss some technicalities about how to read this
paper. We use the notations of the book of Henkin-Monk-
-Tarski [1]. Since this notation is generally accepted 1in
the literature of algebraic logic we simply sum it up in
a list at the end of the article and iIn the main test do

not introduce the individual notations before using them.

The results and concepts of the theory of cylindric algeb-
ras used iIn this paper are summed up iIn Section I11l1. with-

out proof.



11. DEFINITION OF A GENERAL CONCEPT OF LOGIC

2.0.

al

As 1t 1s known, the aim of a logic iIs to enable its
user to formulate statements about certain phenomena
and to represent the relation between the statements
and the phenomena by truthvalues. To fulfill this task
logic should have a language and some tool- to inter-
relate the elements of the language and the phenomena

under consideration.

Definition 2.1.: By a logic we understand a pair '"F,K y
where * is a wordalgebra* and K ~ 3o £ , that is

K is a set of homomorphisms defined on
To substitute the set K with a unique homomorphism

we need the following operation:

Definition 2.2.: If G is a set of functions whith a com-
mon domain, that is (VfeG) Drj = D , then we define
the product of G as Tr& = <C<Cf"):’iefr _ (see fig.l.)

We now iIntroduce some concepts related to the concept of
logic:

K A TIK

The definition of word algebra is given in Section 2.5.
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2.1.

The set F is called language, 1ts elements are called
formulas. The elements of K are called interpreting func-
tions , these render meanings to the elements of the lan-
guage. For all peK and oe™™ kkpl~is the truthvalue
of the formula 1 according to the interpreting func-
tion z. ITf all interpreting functions render the sajre
value to PEF , that 1s k(@) - k{p) , then we

say that ®p and 1p are synonymous or semantically equi-

valent. The semantic equivalence of the logic " ™ ,K Y
_ 1°

is Kk and is denoted by — , that is ~9¢ | The tau-
tological formulaalgebra is /. , 1ts elements are the
synonym classes. 7“0l is a formulaalgebra of the logic
KY if there is an L s K such that = (X
The 1llustration of these concepts can be seen iIn fig.

2.

Interpretations

To make more convenient the use of logic, we can render
"labels™ to the interpreting functions, which serve to
identify the interpreting functions. These labels are
called interpretations or models. That is, We can pick
any class M with a functions he MK‘ , with range K
and consider the elements of M as interpretations, which
label the interpreting functions through h. Let m™M,
now @Mp,(T) 1is called the truthvalue of the fTormula

@ in the interpretation m.



Fig. 2.



2.2. Theories of a logic3 relations between logics

The set of theories of the logic < ™ ,K > is $
{dMW)O: L& K i. SO In this approach the theories are
special congruence. More iIntuitively a theory of

N KD is the semantical equivalence of a logic
< Ly , where L — K. If given theory R we often
identify it with the logic Nf U{L-K :R”ITIL) }
That is certain congruences are theories and certain

logics are theories too.

L is axiomatisable in 4 T ,K> fF L-{RK :f2(IL),

We note that

a) L 1s axiomatisable in a logic iff <~ (L iIs a
theory of that logic.

b) The theories (as congruences) form a closed-set sys-
tem. Given a subset G of 2l: the smallest theory con-

taining G iIs the theory generated by G.

L is recursively axiomatisable 1n <N KN it there
IS a recursive subset G of ﬁ’ such that
L= {®€K :f IT the logic = is a .theory
of LzA < K2/, then L, is reducible to \~z j if
moreover K2 1is recursively axiomatisable in then
L2 i1s recursively reducible to L, . Reducibility is
a close relation between logics: If |2 1is reducible to
IA then any logic which is a theory of L2 is a theory
of L4 too. That is if a theorem states something about
all the theories of a logic than a proof of this theorem

for La is also a proof of it to L2 . So if we prove the



2.3.

reducibility of L, to Lz then all such proofs about
LA become superfluous. Theorems of this kind are e.g.:

the compactness theorem, the Lowenheim-Skolem th., the

ultraproduct-th., and also the completeness theorem can

be reformulated iIn such a form.

Shorthands

There is another means to make the use of a logic

more convenient (the first one was the use of interpre-
tations). We can introduce shorthands for the formulas,
that 1s instead of the elements of F we can use their
names. OF course, just as It was the case with the inter-
pretations, different purposes may require different
kinds of shorthands for the same logic.

N will usually stand for the set of the choosen names

(or shorthands) and 1h e NF stand for the func-

tion "is a name of"" (or is a shorthand for).

For example well known shorthands are:

(i) Th ~iCOMTE) ) (gAiy) IH j and

Ih TilgT for any F

The i1llustration of the concepts discussed in this sec-

tion can be seen on fig.3-



"°3,c

Pig. 3.



- 10 -

2.4_ Logics with built-in shorthands
The shorthands can be used to define a new logic from
the old one by replacing the formulas by their short-

hands. In this case we require that

1/ At least one formula In each synonym-class should

have a name. That is = (lb N) * F,

2/ A word algebra Tt can be defined on N such that
(=*"H* Tt - ¥/s
That is we project the structure of the language j
to the set of names N but during the projection we con-

centrate only on the semantic equivalence classes.

New we define the new logic as the pair

< ft, t Hi- D tK1 >

Intuitively speaking no radical change happened, this
is still basically the same logic, the only difference
Is that non-we have the shorthands built In. To see the
importance of this step let us suppose that we have a
logic <N K> with a theory < L where

L c K.

Let us choose shorthands N for the logic < ™ L)

which relies on the special properties of L Now build-
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ing in the shorthands N we also build in the structure
of L that is the logic { Il : Yy compared
to the logic </ LY has the special structure of

L built in.

One of the central aims of this paper iIs to investigate
this process. The theory of the above processes have
great importance in artificial intelligence related to the
representation problem. See for example [2], [3]. More
generally these questions seem to play an important

role in the foundations of the theory of adequacy of

languages.

In the following we give an example of these processes

worked out to the case of classical first order logics.
During this we arrive at different logics each of which
has 1ts special advantages. In the same time a frame 1is
worked out in which logics can be constructed according

to arbitrarily choosen purposes.

Now we show an example of the fact that a general theory
of logics can be developed in the framework outlined so
far. Different new disciplines (e.g. artificial intel-
ligence) are calling for such a general theory of logics,
on the other hand the special theory of logics are elabo-
rated enough to give birth to such a general theory which

is not at all trivial.
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In the following section we give a result from the gen-
eral theory of logics as an example. We also apply this

result in section 4.4.

On compactness and complete calculuses In general theory
of logics

One of our basic tool In the algebraic iInvestigation of
logics i1s the well-known universal algebraic concept

"word-algebra™ or "absolutely free algebra™.

Definition 2.3=: The definition of the word-algebra is:
First we fix a t-type algebra which can be thought

of as a "'pre-word-algebra':

a/ the universe W i1s the set of all n-typles of the ele-
ments of XUtVi that, 1Is:

W = (XUIM)U (XUDbi)X(XUDoO U (XUDot)x ((XUDbficKx™ I Toi)).

b/ for all £ Do-t

in the case ~0

Now, the absolutely free algebra or word algebra of type
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Definition_2.4.: A set 6 — 1ff,, is called a

defining relation.

Definition 2.5.; l?ﬁD&k is the class of homomorphisms

over the class of t-type algebras /I, with generators |1

and with def. relation S:

- 1 SA, g°=S } 1In case

O we omit the superscript:

Theorem 2.1. ; Let <C ~Noal be an arbitrary logic,

that is is an arbitrary class of algebras. If SIP/]
X

iIs a variety then the compactness theorem is valid for
< & >

n w,A "~
To prove the theorem we need the following five purely
algebraic lemmas. From now on ,A is an arbitrary class of

similar t-type algebras and S 1s an arbitrary defining

relation.

A class of algebras i1s called variety, if it can be defined
by a set of equations. There i1s a universal algebraic re-
sult, that Jt is a variety iff IHISPIt =/
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lema2.1. @ (M Y- X

Proof: «ax/yY>e (ITT; 1) oF "R=0¢) iff

 XB3 ™ L(dfsre 3 5N < yifcg ]
iff VR CHS )L(N/RelSA S>> M>RJ
iff <X, 14N Cr-A

Lemma 2.2.: For all <e SIPA there isa GG I

auch that n n
s0G)

Proofz Since e Cp $pa there exists a J Index st
ad € for which ~|-

IT 1 stads for the 1somorphisn, for all §j J we hawe
mei <@ 6 ad since (WM U)=D ¢e hae:

y-nrty-i-} -jejj y .
Lemma 2.3.: For all st 1 ad congruence R N
f« R 6 SPA i(BL="A) (¥L)=
Proof: 1/ 3R  bPJl QGo=r(d(ML)°-R

R*e 3b-(3" ,3yR)c CtSPA since ~mnr € SPA
By this Lema 2.2. gives (@G 1C 1) (b=

This with the fact tet, for all equivalence relation r,
(r'K))*I'O copletes the proof of 1/ .
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2/ JLOo-R -* & MR e SIPIt

"~ FTL6 3 W (S It,PL~ rt),

since for all c~L, A we have "T@(ff)x 6 SPA

Now (TTL) = R completes the proof of 2/.

Lemma 2.4.: .. A = CrT, Sir A
It

©® m
Proof: < x,y>P Cr™ Sn A iff (from Lemma 2.1.)

Vye iff (from Lemma 2.2.)

(VGS 17A) <X,ye(ITG) iFF (From Lemma 2.1.) <X,y>E G™ A

Leimna 2.5.: ™. A = Cr™ Sk A

Proof: is well known and can be found in [1]

The proof of theorem 2.1.:

Let us suppose that SIPA= HSPA , and K = A L
Let I be an arbitrary set and = ~ R 6 CGrSr™ . Since
3ry/= *Sr~"A e SPA we have that 37 € PISP A.

This, by the hypothesis, gives that 6 SPA

and so by Lemma 2.3. (3L”K) (TL)>-R that is R is a theory
of K . This means that the set | Rear3*. « R2 ~ J
coincides with the set of theories (on< 3rM,KY) . Since

it is well known [1] that the set of congruences con-
taining a fixed congruence is an iInductive closed-set

system, we have proved the co?npactness th. for this logic.
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We note that the above theorem states e.g. the compact-
ness of the propositional logic since the latter has

the form: < SH| , IK o~ ~

Now we turn our attention to the calculuses of a logic
defined 1In such a general setting.

By a calculus of a logic we understand an algorythm
listing elements of the tautological equivalence =ma A

calculus 1s complete if it lists all the elements of — .

Now we outline a general method to obtain complete cal-
culuses for logics of the form < V.Y
where 1/ IS a variety with a recursively given set of

defining equations.

Now it Is easy to see that - ~ T/ (for %

see the list of definitions.) Let £ be the set of
equations defining IT . The set of variable symbols oc-
curing in L is disjoint from I (and all the other
sets used). We consider the elements of I as constant
symbols. Note that the equations iIn S consist exclusi-
vely of symbols in I and Dot. Let our algorythm start
from the equations £US and use the usual equation
rewriting rules see e.g. [41. By the well known equa-
tional completeness theorem of universal algebra, (see
also [4]) this algorythm is a complete calculus , that is

it lists all the pairs In s
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Note that this approach simplifies the logical complete-
ness considerations since the equational completeness
theorem cited above has a very simple and straightfor-

ward proof.

In case of a compact logic by a complete calculus all
the consequences of a  recursively enumerable set of

synonim-pairs cen be listed.

For example the completeness of the propositional cal-
culus can be proved In this manner In very few steps
[5] (since the va.riety of Boolean algebras can be de-

fined by three equations).



I11. SOME PROPERTIES AND CLASSES OF CYLINDRIC ALGEBRAS

3.0. During the iInvestigations of the kinds of logics we are
going to introduce the theory of cylindric algebras will

be applied.

By a structure of type t£%0 we understand a pailr
grL= TA,O0p Y where A i1s the universe of the
structure and UﬁﬂM is a function with domain 1.
For any I the value Qp (@ is a 1(g) -ary

relation on A.

A structure i1s an algebra i1t all of i1ts relations are

functions everywhere defined on A*

We fix a type [ which shall be used through out the

paper:

t - t<n,3>, <rlz>,<31,2>/<=41,1>-

From now on we restrict our discussion to algebras of

type 1 .

So, before going into more detail we introduce notations

for algebras of type 1 . If Vi is an algebra of type
£  then:
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_eei)
qf% ) =
Clo)
O® \I1) d
(-et)
Op0 ' <4
(ci)
<(=,) &

We usually omit the index (4/0

. . . oo . MO
Let us iIntroduce the dimension-sensitivity function A

FCel)id I . £ *X 3

Since vie devote ourselves to algebras of type t , we

set

and we call I the word algebra generated by X,

3.1. Some important classes of 1 -type algebras

The variety of cylindric algebras (CA), ([1].1-1.1.)

Let us i1ntroduce the following shorthands:
XFy = —(x=-
0O 1 y-y
A« -0
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Now we can define CA the class of cylindric algebras:

For any { -type algebra

CA if for all Xy, feA and i ne the

following equations hold:

€0

cn
©
(3
()

()
@)
(&)

iIs a Boolean algebra, that
is a Xg- gX
b) x-ly+z,) = (x-yH-ix2z)

C) XA ~ X

Note that the symbols +, 0, and 1 are only
shorthands for expressions and are not operation

symbols of the algebra X

0-0=0
XX - X
qixX"Cty) = gx qcj
oCJ X - C,X
d* * 4
A dia - cjdh-dn)
1*3 a(d-x) -cA™-x) =0

The class of locally finite cylindric algebras (LT),

([11,

Lf

1.11.1.)

£AXeCh o (VxN) 1/F°xU 0 j
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The class of full cyllndrlc set algebras (Th), ([1],

1.1.5.)

The full cylindric set algebra Induced by the set
A 1s defined by:

(X)Y) = Xxfry
*V X
crx) = INeABYVHUD™  }
d ? i 114" 3
4
_ 9] j, & _
The operations and d;; are illust-

rated in fig.4.
T™H « {40 : A* 0}
The class of cylindric set algebras ($a), ([!'1* 1.1.5.)

U - -STIL

Note, that, as i1t is easily seen, any cylindric set al-
gebra is the subalgebra of exactly one full cylindric
set algebra.

The class of locally independently-finite cylindric set

algebras (e )> ([BD

Let uel is an independently-finite element
AW\
(in the followings 1-finite element), 1If |4 al™

and Oea iff @:£a) (Vita)OgrEsy (see fig.5.)

S * { WailLf ¢ (VdM) a is i-Ffinite j
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The class oGr plays a central role in our algebraic
investigations of logics. We gave a more detailed ac-

count of this, and also of the algebraic behaviour of

oG in [6].

The variety of representable cylindric algebras (4, ),

(13, 1.1.13.)
a* SPKI

Some basic properties of the classes introduced so far

Lemma 3.1.: @. is variety. This was proved in [7]

Lemma 3.2.: R| - e f . For proof see [8]

Lemma 3-3.: M*LF ~ @HAIP LF . Is proved in this paper.
As far as we know this iIs the first proof
of this i1negality

Lemma 3.4.: SXPtf; 5P -Was proved in [5]- Our results

in logic are based on this equality .

Summing up the relations between classes of cylindric al-

gebras:

do ~ £
4P §- SPlfa SPha. SPTH- &
HAP Xjt - MPLF=MsPTU - MPlk - K

The connections between the different classes of cylindric

algebras can be seen on fig.6.
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J - closure E * £ simple cylindric algebras with
S - closure the trivial cylindric algebraj
Y_ chosure Wi <€ M i

» SIP- closure Tl- Tdbl >ifEAmMDBi 1l

LJ variety

@) non-variety

Fig-6.



IV. TYPELESS LOGIC

4.0. In the followings 1 1s an arbitrary but fixed set.

Definition 4.1.; The typeless logic of iIndex set 1 is

the pair < & ,” hr >

We iIntroduce the notation for the class of interpreting

functions of this logic: hr

Now we fix the class of iInterpretations with which we use

this logic:

iIs the class of structures the relation symbols of
which are from the set |I. We note that for other purposes
other classes of iInterpretations might suit better, e.g.

the class of structures with proper relations. (A relation

\Y/ over A is proper if there is no g, such that
r <~ A) #
The labelling function Trbe K is defined as fol-
lows:
Definition 4.2.: For any dieM , £ Xm(3+j such

that for all ~1

3) = T6fA : C3nElm)<~. tStee CIpA(8) j

Intuitively speaking ft correlates with each formula
the set of evaluations fa subset of n )which

satisfie in the interpretation Ol
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Theorem 4,1_; together with fi form a class of inter-

pretations for the typeless logic of index set I,

1S

that

ft*lil - K°

Proof: 1) it it — K . We know that fu. and 1t

iIs easy to see that for any p6l the element

ru 1@ aTep®sis i-finite. Since

L* I generates K* 3r_ we have
340 n [
™~ £ Xtr

This complets the proof of 1).

2 It M1 - K*. Let cr=K1.To & we con-

struct an M1 such that fjt,n: a

&== N e oGr , According to the note following

the definition of K(b there iIs a unique A

such that Now we define a structure

on A: for all pf£l we pick an co

Il
such that [ (6[L|,n)’\:l'| and then we fix
Oop @ =

=N

Now we show that
For all |

A (@ * 166°A B3 O)IN'] 6 € Op(o)/(g)J =

-JU "A—€ 6 [ 90
from the def.ofd from <& Jor and
and
And since &0'S implies that (a é fRM @G )
we have: That 1s for any K1 there 1s an

such that "Am- and so Tc* 3
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Now we start to investigate the algebraic properties of
typeless logic.

We prove that the semantic equivalence of typeless logic
is the free congruence over djr , the tautological for-
mulaalgebra is the free algebra over clr and the class

of formulaalgebras is STPXr

Definition 4.3.: The semantical equivalence of the type-

less logic of index set 1 : = = (TKM)°

Definition 4.4.: The class of typeless formulaalgebras:

A O I I1s an arbitrary set, 3
Theorem 4.2.: @) T W O

b) Y%-j-Is

D) CEE:LF - B
Proof: a) =TGN0 by Lemma 2.1.

b) follows from a)

c 1/ “<aSPJJr. According to the definition of
for any " there is an I and

L - (@Or such that HJII- SE/~0 . From

this and Lemma 2.3. follows that Q% 5iP oCr.



- 29 -

2) N N"—HPds . For any Ny
there i1s a set I such that lW-V XK . (e.g-
$r ~ 4% . ) By Lemma 2.3. this implies
that (BLSINc6r)N-3N/~dhat is XX~ NN

We note that the same is true for the propositional logic
1T we replaceYby For the algebraic purposes
the definition of JRa i1Is not algebraic enough. So we
try to replace i1t with more algebraic classes. E.g. the
fact that the tautological formulaalgebra of the proposi-
tional logic i1s the free Boolean algebra is more algebraic
as our Theorem 4.2. since the dass of Boole algebras i1s a
variety. In the followings we succeed in replacing Jt

by Lf as well as ikt , both having purely algebraic def-
initions. (The presently known algebraic definition of’fa
is more complicated than that of J¢ , however it has the
advantage that fa 1is a variety and a set of equations

iIs known for 1iIt.)

Theorem 4.3.: a) s ~ Cr
b) U/J - S If

o *
c) "D )K‘rf

Proof: by Lemma 3.4. and Lemma 2.4.

Theorem 4.4.: a) FH = C\. fa

b %/j - ~ fa
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Proof; by Lemma 3,2, and Lemma 2.5. and Theorem 4.3.

We remark that this theorem does not generalise part ©)
of theorem 4.3. This generalisation ( $IPC&= RI )
is easily seen to be equivalent with the equality

SIP If - HSIP IF .

In the Section 4.4. the compactness theorem iIs shown to
fail to the typeless logic from which -SIP If ~ HSP If
immediately follow-s by Theorem 2.1. So the generalisa-
tion of part c¢) of Theorem 4.3. fails. However Section
4.4. does also contain an Important positive result as
well, Theorem 4.4. b) is used to show that typeless logic
has various forms of the "interpolation property"” (this

has e.g. definition-theoretical corollaries).

Calculuses for typeless logic

According to the definition in 2.5. a calculus of <Sij.,KY)>
lists the set . It 1s easy to find such a calculus by
using that and a system of equations defining

Ab is known [1]. Thus starting from the equations defin-
ing Qu and by using the usual transformations on equa-
tions an algorithm can deduce any element of sl . The
calculus can also lists the consequences of any finite set
of formulas. The correspondence — = can be

a tool not only to construct new calculuses but also to

check calculuses to be complete.
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We have to check that the relation listed by the cal-
culus 1s a congruence and contains the equations defin-

ing &l

Shorthands for typeless logic

We remind the reader that in Sectio-n 2.3* we discussed
the use of shorthands ad. fixed some definitions. For the
typeless logic of index set I we can introduce the usual
shorthands, e.g. Vt*, \ etc. However we cannot intro-
duce shorthands for substitutions that is variables. We

would like to have:

ANCiHsV"41» " 1igA B @Bme“M < V A 6):i

We can not define this because Co

Examples

1/ Llet 1 ={ and for each neu; the structure $1 ~
A < (O, |,< §>I< QAr.Qfi>bihu * >

It i1s easy to see that for any k;n € t

(30.3k§) =60 iff k>Fl

tv

From this example it follows that ASI/AN$/s = v

2/ We would like to produce a formula such that

{"bEt(§u: 4]<"03 » where 4% = ~Cl of the
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example 1/. We shall see that y = 3"(4,B0(G1

has just the required thruthvalue in “0Olm

Fig.-7. illustrates the above examples.

4.4. Some properties of typeless logic

Theorem 4.5.: The compactness theorem holds for the type-
less logic df | =0

Proof: 1/ Let 1*0 and

Consider the set of formulas

2 &l aSr.. i

We shall see that 2 has no models, and in the

same time any finite subset 9 of 2 has models.
A/ Let 9 be a Ffinite subset of 1 , and 1 the greatest
integer such that J O /If there is no such number

then and so obviously has a model./

Now we construct a model X for 9

A=uwuw
CE% - | 1<?A: (300) J
and for any ~ el the relation Opa\j) 1is ar-

bitrary.
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UX iIs easily seen to be a model of 9:

a Y 31ls) - N =%

because

to
let 4e © arbitrary and "a" be the union of the
set e/l (that 1s "a" 1Is the greatest of the

first n coordinates of 's".)

"y *y 71 “d 80 4e V N s >

b) Let 0< Kén now
Y apg -

because for any 6€ b the sequence

B/ Let Vi be any interpretation of the logic < ,ry

n
Ir C.[)-Ipm@) iIs a relation of n arguments, then

V8hy3wS).So If T is a model of 3~ ,
that is then -4 ,

and therefore 'FZQ<(30|Je):O > SO is not a model
of

2/ The logic < "5y I ~J j coincides with the
logic of type 0 (that is with the usual theory of i1den-

tity) and so is well known to be compact.

W%
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Corollary 4.1.: SP Lf + P ULf (@ad so of course
SPSjit * WsP<lr )

Proof: Follows directly from theorem 2.1. and theorem

4.5.

This result is made more interesting by the fact (see

[1] 2 6 52) that tha smallest universal class containing

Lf coincides with HPLf . That i1s 5P Lf IS not even

universal. (This however does not mean that 5P Lf

would not be elementary see 2.6.53. [1]) The above corol-
lary also implies that the smallest free class of algeb-

ras containing Lf 1s not a variety (ad is hot even

universal) by theorem 1 of [9]-

A class of algebras i1s free it is containins free algeb-
ras for arbitrary defining relations. Malcev proves that
the property of being free coincides with the property
of being closed for SP  .(See [9])

The above one is a logical proof for S5PLf * (HSP Lf,
we have also found a purely algebraic proof for this fact
which i1s however somewhat more involved.

This algebraic proof can be found iIn the Appendix.

Now we turn our attention to the interpolation (and de-

finition theoretic) properties of typeless logic.
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First we define the interpolation property for logics

with cylindric formulaalgebras.

Defini tion 4.5.;

Let L *< K> be a logic with &/=£ N e
Let and y be two formulas of L and k the set

of symbols from I occuring in tf , and 3 the same set

for 11p .
That 1s:
-¢, Ip €
P €
o £
KW & 1
Let ap be a consequence of 1t that is N oap

L satisfties the interpolation property (IP) if:
We can find a formula X whith symbols common in ¢
and ap that 1is XN

such that:

a) strong IP: & X ~ ap

b) normal IP:
There i1s a finite set of natural numbers {* -

for which

i X a4 \\v>

c) weak IP:

There i1s a finite (= < & oo for which

V.V 4 x 6 as \ V
see Ti1g.8.



Fig. 8.
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L has the restricted interpolation property (RIP)
1T 1t satisfies the conditions of IP for every disjoin;

d and V

We remark that since in the case of typeless logic the
set | i1s the set of relation symbols, if L IS any
theory of a typeless logic then the various forms of the
IP implie the corresponding forms of Robinsont general
consistency result in the theory of definition, (see [10])
They also implie the congruence extension property which
has some nice proof theoretic consequences concerning the
independence of certain theories, but we do not iInvesti-

gate this line here.

Theorem 4.6.:

a) Typeless logic has the weak IP, and the normal RIP but

it does not have the normal IP.

b) Any typeless theory, all models of which have the same

finite cardinality, has the normal IP.

Proof: The proof is based on the corresponding results
on free cylindric algebras (see [11]) and on Theorem

4_4_b) 1In this paper.

Some open problems:
Does typeless logic have the strong RIP?
Does any typeless theory with fixed finite cardinality

of models the strong IP or at least the strong RIP?
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(These problems are strongly related to the correspond-

ing problems in the theory of CA-s.)

V. THE FIRST ORDER LOGIC OF TYPE t

5.0. Throughout this Section 1 £ @! 1) that is t Is a type

and 1 1s i1ts domain or iIndex set.

We remind the reader that defining relations and related
concepts were discussed In Section 2.5. Sometimes we use
t as 1T 1t were a defining relation, in that case the
superscript () stand for the superscript

<A0"tw®)3). That Is t i1s used to stand for the dimen-

sion restricting defining relation induced*by t.

Definition ,5.1. ; By the (first order) logic of*type t

we understand the cuple

< %, r / Wy

Theorem 5.1.; The logic of type t is a recursively axio-

matisable theory of the typeless logic of index set I.

Proof: The set of axioms I j defines
mfdCr in the logic of Index set I. It iIs easily seen

that this set is recursive if | IS recursive.

We could introduce a new class of iInterpretations, e.g.

the structures of type t, but the old ones will do for
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our purposes. We introduce the shorthand for the
class of interpreting functions: N
stands for the semantical equivalence of the logic of

type t, that 1is ~ (ECHO

Now we prove that the semantical equivalence of the logic
of type t is the t-dimension restricted free congruence
over the veriety CA, and the tautological formulaalgebra

iIs the t-diemnsion restricted free algebra over CA.

The quasiveriety generated by the formulaalgebras with
type i1s also shown to coincide with the class of type-
less formulaalgebras. We shall see that the above theorem
gives a logical importance to Lf saying that Lf is
just the class of formulaalgebras of the classical first

order logic.

Theorem 5.2.: &) = = Cr~ C11
) 31 " s/1CA
¢c) The class cf formulaalgebras Is i1dentical

with LF, that is L =1 * 1 1s arbitrary and

there is a t such that marJd .

Proof: a) s 1 (irr/"\W)

by def, by Lemma 2.1. 4

Yy
by Lemma 2.4., Lemma 3.4,

because t is dimension restrictior
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b) follows from a)

c/1) Any formulaalgebra 4% is the homomorphic

image of some tautological formulaalgebra Str/=+

Since %/r~ * Sr~C/1 é Lf ) the formulaalgebra <X

i1s also a locally finite cylindric algebra ([1], 2.3.3.)

c/2) Let d S LFf ,then there is a t and 1 such

that 3~ LF ) . Now there is a X?(Srj- ,<&)

such that ¢ge bwLf » 4D ( dctr . By Lemma 2.2. there 1is

an L — Dy for which =" .Now 0& s &1/ *

SJ-3J-0 that 1s c# is a formulaalgebra.

Shorthands for the logic of type t

3

To do

Now we can introduce a shorthand for substitutions:
this for any "&l we introduce notations n and y:
h - and N=n+l1+27Z €t
10 *

Let B be the smallest relation, for which:

a) for any $el and

b) 1f holds, then for any sequence X,y

XcCd IE XPpif

(that 1s, the relation H 1Is "context-free')



c F iIs transitive

(that 1s the relation }F iIs a "'derivation-rule™)

It 1s easy to see, that I+ 1is a function. So choosing
N such that Ib*N — 19 holds, [ iIs a
correct "iIs a name of'"-function.

The following theorem states, that H~ "'gives just

that meaning"” to the formula which i1s 1n

accordance with our intuition concerning the variables.

Theorem 5-3.: (ft™* HH ="N46A M \X Qa @}

Proof: The proof is easy and is similar to that of ex-

ample 2)

We remark, that the above theorem can also be proved as an
immediate corollary of 111.2.2L of [5] which sais: for any

<tedjyfxE> and one-one-transformation jk on W

\Oirnm- V =

It 1s easily seen, that

d<sVI4 “ Wnrw 55

and by this the theorem follows from the lemma.

Since HH i1s a "text-function', it would be possible (and
perhaps more convenient) to define I by tools used in
mathematical linguistic (in the present case, e.g. by a

context-free grammar).
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As 1t was mentioned in Section 2.4., we can define a
new logic by appropriately choosing a subset of the

names of the formulas. We shall choose the word algebra

generated by P , Where P* 1 O~_., te&l 1.
* %s-4
Now iIs a set of sequences and b 1s everywhere

ft
defined 1in HQ and also b #® = Tr31/ moreover
\t

b £ ,%) -

The 1 -type logic with built-in substitution

Definition 3-2.: We define the 't -type logic with bui It-

in substitution as the pair

4 * < Sr iI\\ ) =F Kt 3 >

It 1s easily seen that this is a logic indeed.

We define a labeling function for the logic . The
interpretations are the structures of type 1 , we de-
note their class by . The labeling function Kk is

defined as follows:

for all U M 1, Kyt %r]( ) such that for
all 8el

m
{ I'Iv>e

For the connection between the t -type logic and the t~

type logic with built-in substitution see fig.9-
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Fig- 2o



Theorem 5.4.: For all 1 -type structure 4%, N
and so
k* M, - fH e fe*k.
t 4 ( :
Proof: Ibe 3fe(#i], and e %ym@G& ,<€0)
implies that fip> (~°H 4 Xan( )<n) -

Because (VSel) (fo II) S\ ~ the fun©-
tions K and |’rﬁ4>[lg(r? Ih) are identical.

Theorem 5.5.r The logic L iIs recursively equivalent

with < 51 (K> that i1s there i1s a recursive function K

from into -~ and another function from
I into D such that for any -type 4%
1 4-

KM - vy K und 41 = K °N

Proof: The proof iIs easy.

We remark, that the above theorem states that the logic

L. coincides with the classical first order logic of
type t , and so the logic <3, Y also coincides
with the classical logic of type t 1if we use the appro-
priate shorthands. So we proved that classical first order
logic is recursively reducible to typeless logic or iIn
other words is a recursively axiomatisable theory of
typeless logic. The advantage of < /'’ to clas-

sical logic i1s that we can use <3r ( "> on tiro levels
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one is the level of shorthands ( ) where we have all
the ease of expression we have 1In IE:tlassical logic, and
the other level i1s the level of M. which makes the al-
gebraic properties much more translucent and clear cut

then that of L™ as it is shown in the followings.

Let ~ and stand for the semantical equivalence
and class of interpreting functions of L  respectively.

Now we Fix some defining relations on $rp

Rt * D* U Ht where

* [<j . .94 -- _ieco'uny,,.i
2 150 ‘26 1 1 13°¢° U&l’l"4J J
H, - K = .. V y ../ > I i iW). lei
t 4-i b~ 4<41 5% V/IV3 /—UM 5 sel 11D 1/'19'0]
Theorem 5.6.: oi?(hr = N

Proof: The proof can be found In [5].

Theorem 5.7.: a) CIZ(R’) CA
S™M*1CA

> 4 /%

c) The class of the formulaalgebras of clas-

sical first order logic is LF
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Proof: & ( FI ~W mCfW- GALFf -C~CA
b) follow-s from a)

o) I | Induces an isomorphism between 3p /,
and and the correspondance )k~ is in

accordance with this i1somorphism.

We remark, that about the necessity of the i1nconvenient

set R iIs proved in [5], that

Cr CA

and that for any ( ® -type) variety 'Tl, ~ f COIT

To check the completeness of a calculus of we have
to check that the calculus lists the equations of CA and
the equalities In . If Instead of we have
< , K> then checking the equalities 1 AN 85
suffices (and of course CA). (Of course we have to check
that the relation listed by the calculus is a congruence.)
To produce a complete calculus the algorithm could start
from the equations of CA and the equalities in R. (or

* 8 respectively) and use the equation trans-

formation rules just as iIn the case of the typeless logic.

¥ H
( )Ch iIs not an iIndependent algebra over CA with gener-
ators I (in the sense of [11]) while cAa IS.
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Interpolation properties

in some Interesting logics

Now we sum up the interpolation properties of four Im-

portant kinds of logics:

1/ typeless

logic,

2/ typeless theories with fixed finite modelcardinalities

3/ Tirst order logic with substitution in general and

4/ the usual

logic of type &

Of the above four kinds of logics the properties of the

usual logic of type

of our theorem 5 2 .

forward.

strong
IP normal

weak

strong
HP normal

weak

Theorem 5.8.:

typeless
logic

t are well known,

and 5 5

theories of

typeless log. of

but

log.

with finite type
characterist. b
? +
+ +
+ +
? +
+ +
+ +

in the light

. their proof is more straigh

any first
order

logic with
substitution

+

+

Proof: the proof iIs based on the algebraic results of
[11] ad our results on the formulaalgebras. The second
and the fourth column needs however some explanation:
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The typeless theories with fixed finite model cardinality
are cylindric algebras of finite characteristicse and
for any logic with substitution if the formulaalgebras
are CA-s then they are also dimension restricted ac-

cording to [1] (36p)

In the case of the last two kinds of logics (these with
substitution) the results implie not only Robinsons
definition-theoretic results but also the corresponding

forms of Craig®"s interpolation theorem.
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Algebraic proof of [P LFf ~ HBPLF

In Section 4.4. we gave a logical proof of this purely
algebraic theorem.
But later we succeed to find a purely algebraic proof

also, here i1t follows:

A part of the algebraic proof can be formulated as an
independent universal algebraic theorem which we have

formulated as:

Theorem A.l1.: For any simple algebra €l and any class IC

of algebras:

QUSIPK (f «eilk

Proof: 1/ it 1s well knowmn that — Al K
2/ let U eSP X

There is a sequence < 4 of algebras in K such

that L(X Is i1somorphic to a subalgebra of _telg T

So for any there i1s a homomorphic image (by the
i-th projection function) @B of "X such that

SIC .
Since iIs simple any IS elther i1somorphic

to “C1 or trivial (has only one element) . From this



it follows that 10i is isomorphic to some of the

C’S_l - s and so is a member of SR K

Now we are ready to give an algebraic proof of the fol-

lowing theorem.

Theorem A .2 .: PLFf # IHISIPLF

Proof: By 2.5.24. of [1] there is a simple *(£CN4LF.
Since LfF = SI1 Lf Theorem 3 gives that SIP | f~
However according to 2.6.52. of [1] all simple cilindric

algebras are in LF and so UX& HSP If

Note, that this proof is much more involved than the
logical one, because the results (2.5.24. and 2 .6 .52.

of [1]) the above algebraic proof relies on have rather

complicated proofs themselves.
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LIST OF DEFINITIONS

0 the empty set

1 = 10]

2

L© * jo,t(Z,- J

iV domain of the function or relation ¥

range of F
IXin* x-th value of ! 4x*“ f* *“ *C5
way of defining functions:
- {=x, |U)> : *€ Ai

'T‘I«" is a function defined on the ordinal

that 1is:

<\r n<n-»>1
x{T f domain-restricted to X: Xj¥=I4x>38xeX j
B power of A to B: BFI EJ{—f &
5H class of subsets of A: Sofl - 1B :B£ 43
r°g. composition of r and Q:

™5 " [<b,p> (@Bc)(LC,0t>eh sc< b,c>6 ) }

N o relative product of r and <:
AN T T <a,b>~* X <c/v>ecjh}
f the equivalence-relation induced by f*
of * £ |fH
> if N& Por , then r*N\ is the r-image

of A: r*ad T {y : Bxefi)CX,y>£r}



VX

Zoml-CL/1)
Cecryn
a/t

\*u

1K

MIK
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if a€D0r 3 then ircj is the r-image

of a:

A Y <cty>e ri = k* id3
subalgebra of XX generated by X, that is:
((¢2] X is the least (by S ) element of
the set IXX~ "X « X~} }
n Is subalgebra of
XX is homomorphic to JX
XX is isomorphic to ©
class of homomorphisms on XX
set of homomorphisms from Xk onto
set of homomorphisms from XX into XX
set of congruence-relations on XX
is defined if s B GF XX and than it
denotes the factor-structure
is defined only if f is a homomorphism on XX
and then there i1s a unique such that
£ 3 4 r ( now: FX=
direct product of the algebras ac-
cording to the indexing |
class of algebras i1somorphic to the elements
of K: IK * 1 * <#t=]e K]
class of algebras homomorphic to the elements
of K: MK 1{ & madle \CJ

class of subalgebras of the elements of K:

Sk i <& m Aj



PK class of direct products of the elements of K:
[ K=(<en:13<@ ;311)(%abK &# & w )
4 J K free congruence over K with | generators and
with defining relation S:

O&?K -Ni ReG% s 5" R.IcIt/R6 IS K |

free algebra over K with 1 generators and with

®

defining relation S:

j ,
=S K ]}’Where T is the defining relation:

= J {<gic">:$e|,i<ti($)}

substitution opeljation in 3j for

410y 5 QD D x )

V is defined if "x~L{ and S is a finite trans-

. it .
formation of @ , and then ) is the

unary operation defined as follows:

if 3=4//Mr - -n~ 1S the canonical represen-
tation of J1,VEKY), )N if x is any
element of A, ad. if Tolf— Tr4 are in this order

the first k ordinals in JP"@ KURg/XU % ~
then

oo W' e
a way of defining finite transformations:
CAVV >, suln>illl< aia>: «eANd - iiiil
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