TK 42.839

KFKI-70-33 RPT

L. M. Kovács

05

HECTIC-II, COMPUTER PROGRAM FOR HEAT TRANSFER ANALYSIS OF GAS OR LIQUID COOLED REACTORS

Hungarian Academy of Sciences

CENTRAL RESEARCH INSTITUTE FOR PHYSICS

BUDAPEST

HECTIC-II. COMPUTER PROGRAM FOR HEAT TRANSFER ANALYSIS OF GAS OR LIQUID COOLED REACTORS

L.M. Kovács

Central Research Institute for Physics, Budapest Hungary

I. INTRODUCTION

AL VELL BROLD

Many computer programs have been developed during the last few years for the analysis of heat transfer in rod bundles; important examples are HECTIC [1, 2], MANTA [3], HAMBO [4, 5] and COBRA [6, 7, 8]. Of these, HECTIC and MANTA apply to single phase liquids only, while the HAMBO and COBRA programs have been extended to two-phase liquids as well. An excellent survey on existing computer programs and on programs under development has been given by Todreas and Wilson [9].

The purpose of the present paper is to show how the HECTIC-II code developed for an IBM 7090 computer is adapted to ICL-1905 computers in FORTRAN language. HECTIC-II calculates the pressure drop along the coolant channels, axial flow rates, heat transfer rates, rod surface and coolant temperatures in gas - cooled or single - phase liquid-cooled reactors.

The main features of the code can be summarized as follows:

- a/ A typical "lumping" procedure is used in preparing input data. First, a symmetry is chosen to reduce a multirod fuel bundle to a minimum symmetry sector. Second, this selected sector is arbitrarily divided into parts, each part containing subchannels and heated surfaces;
- b/ The program is founded on the basic principle of energy balance. Energy balance is obtained as a set of ordinary differential equations, which is solved by an nth order Adams difference method;
- c/ The code is extremely flexible. It can be used to analyse heat transfer
 of subchannels with widely varying geometries;

- d/ Turbulent heat and momentum exchange between subchannels are considered;
- e/ The code solves steady-state thermal-hydraulic problems only, and it can be applied correctly only when there is turbulent subsonic flow in the system being considered;
- f/ A comparison of analyses and data reported in the literature shows that the lumped parameter or finite difference type of analyses that are used by HECTIC-II can yield fairly accurate predictions of canning temperatures [10], however, the coolant mixing predictions suggested by Kattchee and Reynolds are not very satisfactory [11].

Program's history: The original HECTIC computer program was developed for gas-cooled nuclear reactors only [1]. The second version of HECTIC is suitable for heat transfer analysis of liquid-cooled reactors, too [2, 12]. Subsequently developed HECTIC versions incorporate many important modifications [13, 14, 15].

II. GENERAL DESCRIPTION OF THE CODE

1. Fundamental equations

a/ Fluid flow calculation

HECTIC-II divides the total coolant flow through prescribed subchannels on the assumption that the pressure drops along all subchannels are identical. Friction, drag against spacers, acceleration, and turbulent momentum eddy exchange between adjacent subchannels are considered in the calculations. The equation for pressure drop in each subchannel is obtained from a momentum analysis on the fluid in a flow tube, and is

$$\Delta P_{k} = \left(P_{in} - P_{out}\right)_{k} = \frac{\rho_{av} v_{k}^{2}}{2g_{c}} \left\{ 4 \cdot f_{k} \frac{L_{k}}{D_{k}} + \frac{A_{fs,k}}{A_{c,k}} \cdot C_{DS} + 2\left(\frac{\rho_{av}}{\rho_{out}} - \frac{\rho_{av}}{\rho_{in}}\right) + \sum_{i=1}^{N} \left[\mu \cdot YEDM \cdot \frac{\left(\frac{\varepsilon_{i}}{v} + \frac{\varepsilon_{k}}{v}\right)}{2g_{c}} \cdot C_{i,k} \frac{L_{k}}{R_{c,k}} \left\{v_{k} - v_{i}\right\}\right]$$

,/1/

This equation is solved by the subroutine SOLVE.

b/ Power calculations

. dan 14 +

Assuming axial power distribution, a relative power fraction is specified for each surface. The total power distribution on the j^{th} surface can be written in the form

$$P_{i}(x) = PF_{i} \cdot NF_{i}(x) \cdot K$$

c/ Surface temperature calculations

The heat transfer calculations cover four basic heat transfer modes:

/2/

Anna 107 Berrist

131

- 1. Surface-to-coolant convection;
- 2. Intersurface radiation exchange;
- 3. Intersurface conduction;
- 4. Surface-to-environment heat loss.

For steady-state conditions, the total power generation per unit length at each point on the jth surface must be equal to the heat transfer by all mentioned modes; thus:

$$q'_{j} = \sum_{i=1}^{N} h_{i}b_{i,j}(t_{j}-t_{i}) + \sum_{\ell=1}^{M} \left[\sigma \cdot_{\text{REF}_{j,\ell}} \cdot P_{j}(T_{j}^{2}+T_{1}^{2}) \cdot (T_{j}+T_{1}) \right].$$

$$(t_j-t_e) + \sum_{l=i}^{M} \kappa_{j,l}(t_j-t_e) + GA_j(t_j-t_a)$$

This is solved by the subroutine SOLVE.

The fluid and surface temperatures are calculated as a function of distance downstream from the inlet. The coolant temperature in the first length step is given as an input, but for subsequent length steps the coolant temperature is calculated from the differential equation of coolant temperature rise /see below/.

d/ Coolant temperature calculations

The differential equation for the coolant temperature rise is

$$W_{i} C_{p} \frac{dt_{i}}{dx} = \sum_{j=1}^{M} h_{i} b_{i,j} (t_{j} - t_{i}) + YEDH \cdot C_{p} \cdot \mu \sum_{k=1}^{N} \left(\frac{c_{i}}{v} + \frac{c_{k}}{v} \right) - C_{i,k} \cdot (t_{k} - t_{i})$$
 (4)

The set of simultaneous differential equations is solved by a sophisticated integration procedure.

2. Special features of HECTIC-II

In the HECTIC-II program the axial mesh size is automatically selected to ensure a prescribed accuracy of results obtained by the Adams predictor--corrector difference method. The reactor core is divided into a number of axial sections, each section constituting a separate problem. It is supposed that the inlet temperatures for each subchannel are equal to the outlet temperatures of the previous section.

III. USER'S MANUAL

1. Input preparation

Input data are punched on paper tape or on cards. The expression "card" will be used for one record /i.e. one line/ of the paper tape.

Identification card: FORMAT /15A8/

words.

The headings provide information for the user and machine operator. This card should follow the DATA card and precede only the first problem of a problem block.

Paramater card: FORMAT /111, 1F10.6, 4110, 10X, 1011/-

Char.1 : C

The amount of data to be loaded for the problem is spec - ified /one digit/ according to the following schedule:

Digit Option and Cords. Read PFJ, GAJ, and EMJ cards. 2 Read EMJ cards only. 3 Read GAJ cards only. 4 Read PFJ cards only. 5 Read normalized flux cards and inlet fluid temperatures. Read the two operating input cards only. 6 7 Read the two input constants cards only. C must always be zero for the first problem. In subsequent problems having a value of C other than zero, the input data are values retained from the previous problem and the necessary new data. char. 2 to 11: Problem number, and the second states and a second state and the second states and the second s char.12 to 21: N, Number of subchannels. char.22 to 31: M, Number of surfaces. N and M integers must be loaded with the unit digit in the last column of the respective field, the remainder of the field being left blank. The code can handle up to 30 subchannels and 24 surfaces, for which it requires a memory capacity of 32 K char.32 to 41: ITO, Inlet temperature options. These are specified by a one--digit integer in column 41, and offer the following choices:

Digit	Option
0	All inlet temperatures are set equal to TIN by the code.
1	Inlet temperatures are those given in the data sheet for the
	one-dimensional array TINI/I/.
2	Inlet temperatures for each passage of the program are set equal
	to the outlet temperatures of the previous problem, provided
	N is equal in both problems.
char.42 to 51:	NFQ, Normalized flux option. This option permits the following program choices:

Digit Option

0

1

The axial flux distributions on all surfaces of the problem are identical; only 21 values are needed in the ENFJX/J,K/ array. The axial flux distributions are not identical on all surfaces; M x 21 values are needed in the ENFJX/J,K/ array.

char.62 to 71: NOPT, Print option. Columns 62 to 71 are used to indicate which data are to be printed. A digit 1 punched in the columns listed below causes the corresponding data to be printed out. Options not requested must be identified by O /they cannot be left blank/.

Column	Data
62	Input data /on the two input constants cards and the two operat-
	ing input data cards/.
63	All one-dimensional arrays of input.
64	All two-dimensional arrays of input.
65	Computed quantities associated with each flow subchannel.
66	Normalized heat fluxes as a function of axial position.
67	Temperature. /If a zero is used in this column, temperature
	calculations are not carried out./
68	Zero for all problems.
69	Zero for all problems.
70	Monitor print of flow-rate iterations.
71	Monitor print of temperature iterations.
	的关于,我们不是我们会教育,我们们还是你的教育学校,我们就知道,你们还是这些人的人们。"

Input constants. FORMAT /1 F 11.0, 6 F 10.0/

Card 1.	GMW	Gas molecular weight /left blank or set as zero for liquid coolant/.
	EF	Exponent of Reynolds number in the friction factor equation

- 5 -

$$f = CF \cdot (R_e)^{-EF} \cdot YF$$
 /5/

Coefficient in the friction factor equation. Exponent of Reynolds number in the Stanton number equation

$$St = CH \cdot (R_{o})^{-EH} \cdot YST$$
 /6/

CH

CF

EH

Coefficient in the Stanton number equation /nominally 0.023 $P_r^{-2/3/l}$

B1, B2

Constants in the specific heat equation

$$C_p = B_1 + B_2 \cdot t$$
 /7/

Card 2.

B3, B4 Constants in the viscosity equation

$$\mu = B3 + B4 \cdot t$$
 /8/

DLIQ

Liquid density /left blank or set as zero for gaveous coolant/.

Operating Inputs. FORMAT /1 F 11.0, 6 F 10.0/

Card	1.	TIN	Mixed-mean coolant temperature at inlet.	
		KW	Total power generated in all surfaces of th	e selected
			sector	
•		W	Total coolant flow in selected sector.	
		P	Inlet pressure.	
		LF	Friction length of each subchannel.	
		LH	Heated length of each subchannel.	
		TA	Ambient temperature.	60
Card	2.	CDS	Spacer drag coefficient in the equation for	spacer
			drag force	

$$F_{sk} = A_{fsk} \cdot \frac{\rho_{av} (v_k)^2}{2g_c} \cdot CDS$$
 /9/

YF Friction factor adjusting factor.
YEDM Momentum eddy diffusivity adjusting factor.
YST Stanton number adjusting factor. By setting YST = 0, all heat transfer to the fluid is ignored. This artifice allows calculation of steady-state surface temperatures when the sole mechanisms of heat dissipation are conduction and radiation /to ambient sink/.
YEDH Heat eddy diffusivity adjusting factor.

- 6 -

ERMAX

Maximum calculation error permitted in the Adams predictor-corrector scheme.

One dimensional arrays. FORMAT /1 F 11.0, 6 F 10.0/

Card	1.ºle onw	ENFJX/J,	K/ Normalized local axial heat flux in the j th sur-
			face for the K^{th} axial printing point, $1 \le K \le 21$
			/In HECTIC-II the total length of subchannels in each
			problem is divided in to 20 equal parts; that is why
			there are 21 printing points in the program./
Card	2.	TINI/I/	Inlet coolant temperature of the ith subchannel.
Card	3.	PFJ/J/	Power fraction of the jth surface. The total of the
			power fractions must add up to unity.
Card	4.	GAJ/J/	Conductance between the jth surface and environment.
Card	5.	EMJ/J/	Emissivity of the j th surface.
			The value must be in the range from zero to unity.
Card	6.	AI/I/	Flow area of the i th subchannel.

Two-dimensional arrays. FORMAT /1 F 11.0, 6 F 10.0/

In two-dimensional arrays the first index denotes the row. The arrays are written in the program according to rows.

Card 1.	CAYJL/J,	L/ Intersurface conductances. This is a two-dimensional
formet.	yorna ni badnino	M x M array giving the thermal conductance between the j^{th} and l^{th} surfaces.
Card 2.	FJL/J,L/	Radiation view factors.
mrfac	tion in the jth	This is a two-dimensional M x M array giving the radiation view factor between the j^{th} and l^{th} sur-
		faces. Note that the sum of the numbers in each row must be unity.
Card 3.	BIJ/I,J/	Partial subchannel perimeters.
in anter	nardodus ^{na} t s	This is a two-dimensional N x M array giving the wetted perimeter between the i^{th} subchannel and the j^{th} surface.
Card 4.	CIK/I,K/	Mixing geometry factors.
	zonnent	This is a two-dimensional N x N array; the value of CIK is defined by the ratio perimeter of interface between subchannels $CIK/I, K/ = \frac{1}{n} \frac{and k}{k}$
		and k normal to interface.

End-of-data card: At the end of each set of data for a HECTIC-II problem, a card is written to indicate the end of input information. The card must have an integer 8 in column 1 if another problem is to follow,or an integer 9 in column 1 if there are no more problems.

2. Code output

The output of HECTIC-II is self-explanatory for those who are familiar with its algorithm. Therefore, a brief summary of output results is sufficient. First, all input data are reproduced in the output.

The output data comprise the heat generation rates, surface temperatures, and coolant temperatures at the 21 printing points of the lumped subchannels and surfaces.

The group of calculated data resulting from flow calculations includes the following quantities:

PAS	Coolant subchannel index $/i \leq 30/$
WI	Flow rate in the i th subchannel
DI	Equivalent /hydraulic/ diameter of the ith subchannel
REI	Reynolds number in the i th subchannel
FFI	Fanning friction factor in the i th subchannel
STI	Stanton number in the i th subchannel
HI	Convection heat transfer coefficient in the ith subchannel
ESI	The ratio eddy diffusivity /kinematic viscosity in the ith
nee betwe	subchannel.

The remaining calculated output values are printed in array format. They are

QPJ/J/	Absolute heat generation rate distributi	on in	the j th surface
	versus x/L_h^{i} for each surface j		
TSJ/J/	Surface temperature distribution in the	jth	surface versus
	x/L _h for each surface j	AT NET	Card 3, E
TGI/I/	Coolant temperature distribution in the	ith	subchannel versus
	x/L _h for each subchannel i.		

Additional useful information is printed out in a separate group as follows

TMM	Mixed-mean outlet temperature
PA	Total ambient loss to the ambient environment
PDROP	Pressure drop in each subchannel
NGTN	Number of coolant temperature modes employed
ERROR	Calculated coolant temperature error
EMACH	Calculated maximum Mach number.

- 8 -

3. <u>Machine requirements</u>

HECTIC-II program is written for ICL 1905 computers. The code requires a memory capacity of 32,000 words. The running time is determined by the complexity of the problem and the desired options, and is about 2-20 minutes, depending on actual number of surfaces and subchannels. The maximum number of surfaces and subchannels are: M = 24, N = 30, respectively.

Symbols and definitions

The unit system used for HECTIC computations follows in general the normally accepted engineering system.

-	pounds	program
=	inches and feet	
=	hours and seconds	
=	^O Fahrenheit.	
	I I II	 pounds inches and feet hours and seconds ^oFahrenheit.

Acknowledgement

Author is indebted to J. Vigassy for his helpful remarks and for many clarifying discussions.

References

1.10

- W.C. Reynolds, D.W. Thompson and C.R. Fisher: HECTIC an IBM-704 Computer program for heat transfer analysis of gas-cooled reactors. /1961/ Report No. AGN-TM-381.
- [2] N. Kattchee, W.C. Reynolds: HECTIC-II an IBM 7090 FORTRAN computer program for heat transfer analysis of gas or liquid cooled reactor passages. /1962/ Report No. IDO-28595.
- [3] S.F. Armour, D.L. Smith: MANTA mixing analyzed nodal thermal--hydraulic analyses. /1965/ Report No. GEAP-4805.
- [4] R.W. Bowring: HAMBO A computer programme for subchannel analysis of the hydraulic and burnout characteristics of rod clusters. Part 1: General description. /1967/ Report No. AEEW-R-524.
- [5] R.W. Bowring: HAMBO A computer programme for subchannel analysis of the hydraulic and burnout characteristics of rod clusters. Part 2: The equations. /1968/ Report No. AEEW-R-582.
- [6] D.S. Rowe: Cross flow mixing between parallel flow channels during boiling. Part 1. COBRA - computer program for coolant boiling in rod arrays. /1967/ Report No. BNWL-371. Part 1.

- [7] D.S. Rowe, C.W. Angle: Cross flow mixing between parallel flow channels during boiling.Part 2. Measurement of flow and enthalpy in two parallel channels. /1967/ Report No. BNWL-371. Part 2.
- [8] D.S. Rowe: Cross flow mixing between parallel flow channels during boiling. Part 3. Effect of spacers on mixing between two channels. /1969/ Report No. BNWL-371. Part 3.
- [9] N.E, Todreas, L.W. Wilson: Coolant mixing in sodium cooled fast reactor fuel bundles./1968/ Report No. WASH-1069.
- [10] Rolf Andersen, C.B. Moyer: Study of a proposed heat transfer experiment with a multirod element./1966/ Risõ Report No. 124.
- [11] Carl B. Moyer: Coolant mixing in multirod fuel bundles. /1966/ Risõ Report No. 125.
- [12] N. Kattchee, W.C. Reynolds: HECTIC-II -- an IBM 7090 FORTRAN computer program for heat transfer analysis of gas or liquid cooled reactor passages. /1965/ Report No. IDO-28595 /Rev. 12-1-65/.
- [13] Robert A. Cushman: Modifications to HECTIC-II -- an IBM 7090 FORTRAN computer program for heat transfer analysis of gas or liquid cooled reactors. /1966/ Report No. AE-RTV-561.
- [14] Lars Ingesson: Heat transfer between subchannels in a rod bundle. /1969/ Report No. AE-RL-1125.
- [15] Ivar Devold: Turbulent mixing in subchannel analysis. /1968/ Report No. AE-S-390.

Anthor is indebted to J. Vigasay for his helpful remarks an

References

- W.C. Reynolds, D.W. Thompson and C.R. Fisher: BECTIC an ISM-104 computer program for heat transfer analysis of gas-cooled reactors. (1951) Report No. AGN-TM-381.
- [2] N. Kattchae, W.C. Reynolds: HECTIC-II an IBM 7090 FORTRAN computer program for heat transfer analysis of gas or liquid dooled reactor passages. [1952] Report No. IDO-28595.
 - [3] S.F. Armour, D.L. Smith: MANTA Mixing analyzed modal thermal--hydraulid analyzes. /1965/ Raport No. GEAP-4805.
- [4] R.W. Bowring: MAMBO A computer programme for subbhannel analysis of the hydraulio and burnout characteristics of rod clusters. Part 1: General description. /1967/ Report No. ABBW-8-524.
- [5] R.W. Bowring: HAMBO A computer programme for subchannel analysis of the hydraulic and burnout characteristics of rod clusters. Earc 2: The equations. /1968/ Report No. AEEW-E-582.
 - [6] D.S. Rower Cross flow mixing between parallel flow channels during bolling. Part 1, COBRA - computer program for coolant bolling in rod arrays. /1957/ Report No. BNWL-371. Part 1.

Physical or Mathematical Symbol	FORTRAN Symbol	Units	Definitions and Remarks
1			4. A second seco
Ac	A	inch ²	total free flow area
Ac, i; AI	AI/I/	inch ²	free flow area in i th subchannel
A _{fsi} ; AFSI	AFSI/I/	inch ²	total frontal area of spacers in the i th subchannel
^B 1; ^B 2; ^B 3; ^B 4	B1;B2;B3;B4;	108	empirical constants in specific heat, and viscosity equation
b _i	PERI/I/	inch	total wetted perimeter of ith subchannel
b _{i,j;} BIJ	BIJ/I,J/	inch	wetted perimeter between i th subchannel and j th surface
C _{D,s}	CDS	- BAREALS	spacer drag coefficient, average for whole problem
CF; EF	CF; EF		constants in friction factor equation
CH; EH	CH; EH	· · · · · · · · · · · · · · · · · · ·	constants in Stanton number equation
C _{ik} ; CIK	CIK/I,K/	Benlinsterlat	mixing geometry factor
Cp	СР	Btu/lb _M / ^O F	average specific heat at constant pressure
D _i ; DI	DI/I/	inch	hydraulic /equivalent/ diameter of i th sub- channel
dik	E_TIN	inch	common perimeter of ith and kth subchannel
εj; EM _j	EMJ/J/	-	emissivity of j th surface

4

0

EEMX

- 11

1

1.	2		4.
ERMAX	ERMAX	° _F	maximum error permitted in mean temper- ature of coolant at outlet
ERROR	ERROR	° _F	maximum calculated coolant temperature error at outlet
fi	FFI/I/	120 <u>0</u> 001	Fanning friction factor in i th sub- channel
F _{jl} ; FJL	FJL/J,L/	ru su - rik	radiation view factor between the j th and 1 th surfaces
Fsk		lb _F	spacer drag force
GA _j ; GAJ	GAJ/J/	Btu/hr/ft/ ⁰ F	conductance between j th surface and ambient environment
g _c	Cal Ta	32.2 ft.lb _M /sec ² .lb _F	constant in Newton's Law
h _i ; HI	HCI/I/	Btu/ ⁰ F/hr/ft ²	heat transfer coefficient in i th sub- channel
k	1. BIG OA	Btu/ ⁰ F/hr/ft	conductivity .
K _{jl}	CAYJL/J,L/	Btu/ [°] F/hr/ft	intersurface conductance
KW	KW	kw	total power input
L _f ; LF	ELF	inch	friction length of each subchannel
L _h ; LH	ELH	inch	heated length of each subchannel
m	GMW	lb/lb _{mol}	molecular weight
M	EMACH		calculated Mach number
M	M		number of surfaces in problem /M < 24/
N	N	ourse	number of subchannels in problem $/N \leq 30/$

- 12

N

1	2.	3.	4.
NFj/x/	ENFJX/J,K/	54/386 58/35	normalized axial heat flux distribution in j th surface at $x = K$; $1 \le K \le 21$
i	ITO	· (1)250	inlet temperature option
NF	NFQ		normalized flux option
- Million	NOPT	2	print option
PDROP	PDROP	psi	pressure drop in each passage
PAS	PAS/I/		i th coolant subchannel /printout only/
PF; PFJ	PFJ/J/	<u>_</u>	power fraction in j th surface
P _{in}	P.B. REAL	psia	pressure at inlet
Pout	POUT	psia	pressure at outlet
P	PJ/J/	inch	perimeter of j th surface
Pj	QPJP/KX,J/	Btu/hr/ft	absolute local heat flux in j th surface for printing at node point KX
P _j /x/	QPJ/J/	Btu/hr/ft	absolute heat generatio rate distribution in j th surface
q' _{AMB}	PA	KW	total ambient heat loss to the ambient environment
	3.75 ³	4.	Comberger M ^L n service en rotherer
<i>F</i>			$\begin{array}{c} q_{AMB} = \sum \int GA_{j} \cdot (t_{j} - t_{y}) dx \\ j = 1 \circ \end{array} $ (10/
R	artt.	$1545 \cdot \frac{\text{ft.lb}_{\text{F}}}{\text{lb}_{\text{mol}}.\text{R}}}$	universal gas constant
Re	RE/I/	-	Reynolds number in i th subchannel : $Re = \frac{4.W}{b.u}$ /11/

- 13

1.	2.	3.	4.
REFj'l	REFJL/J,L/	<u> </u>	radiation exchange factor
St	STI/I/	1545 TE. Ib.	Stanton number in i th subchannel St = $\frac{h.Ac}{Cp.W}$
t		° _F	temperature /in general/
t _a ; TA	TA	° _F	temperature of ambient environment
ti	TGI/I/	° _F	coolant temperature in i th subchannel
t _i /x/	TGIP/KX,I/	° _F	local coolant temperature in i th subchannel for printing at node point KX
t _{in}	TIN	° _F	coolant temperature at inlet for all subchannels /mixed mean/
tout	TOT	° _F	preliminary estimate of mixed-mean coolant tem- perature at outlet
T _j	TSZJ/J/	° _R	absolute temperature of j th surface
ŧj	TSJP/KX,J/	° _F	local temperature of j th surface for printing at node point KX
t _k .	TGI/K/	° _F	coolant temperature in k th subchannel
T ₁	TSZJ/L/	°R	absolute temperature of 1 th surface
TMM	TMM	° _F	mixed-mean coolant temperature at the outlet
t _{s,j}	TSJ/J/	° _F	average temperature of j th surface
vi	VSI/I/	ft/sec	average velocity in i th subchannel
Vin	-	ft/sec	coolant velocity at inlet
Vout	-	ft/sec	coolant velocity at outlet

- 14 -

1.	2.	3.	4.
W	W	lb _M /hr	total coolant flow rate
Wi	WI/I/	lb _M /hr	flow rate in i th subchannel
x	Х		axial coordinate
YEDH	YEDH		heat eddy diffusivity adjusting factor
YEDM	YEDM		momentum eddy diffusivity adjusting factor
YF	YF		friction adjusting factor
YST	YST		Stanton number adjusting factor
μ	VIS	lb _M /hr/ft	average absolute viscosity
Sav	DAV	lb _M /ft ³	average density: $g = \frac{\text{Pin} \cdot m}{\text{R} \cdot \text{Tin}}$ for a gas /12/ g = constant for a liquid
g	DLIQ	lb _M /ft ³	density of coolant, when a liquid
^µ turb		lb _M /hr/ft	turbulent absolute viscosity $\mu_{turb} = \epsilon \cdot g$ /13/
9 _{in}	DIN	lb _M /ft ³	coolant density at inlet
Sout	DOT	lb _M /ft ³	coolant density at outlet
		ft ² /hr	kinematic viscosity
E		ft ² /hr	eddy diffusivity
^T p,ik	TSI/II	psia	interpassage turbulent shear between the i th and k th subchannels
δ _{ik}	- 2,	inch	distance between the nominal centroids of ith and k th subchannels

- 15

1

1.			
€i/ _v	ESI/I/	1979	eddy diffusivity/kinematic viscosity in i th subchannels
^τ w,k		psi	wall shear stress in k th subchannel
Tin	PGJ	°F	absolute temperature at inlet $t_{in} = t_{in} + 460$
2. 2			
			turbulent sbsolute viscosity $\mu_{\rm turb} = \varepsilon \cdot g$ (13
			density of coolant, when a liquid
	DAV		average density: $g = \frac{p_{10}}{R} \cdot \frac{m}{r_{10}}$ for a gas g = constant for a liquid
			average absolute viscosity
			Stanton number adjusting factor
			friction adjusting factor
	82121		

- 16 -

61.861

. . . .

Printed in the Central Research Institute for Physics, Budapest,Hungary Kiadja a KFKI Könyvtár Kiadói Osztálya O.v.: Dr. Farkas Istvánné Szakmai lektor: Szabados László Nyelvi lektor: Kovács Jenőné Példányszám: 140 Munkaszám: 5244 Készült a KFKI házi sokszorositójában F.v.: Gyenes Imre Budapest, 1970. november 30.