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PREFACE

These notes are based on a serie of seminars given by the author
at the Institute of Mathematics of Brussels University during the first
semester of the academic year 1969/1970.

The purpose of these lectures was to review the status of the
modern current-current theory of weak interactions, and to compare its pre-
dictions with the experimental results in the field of elementary particle
physics. The audience was composed partly of theoreticians working in the
field of the strong interactions, and partly of experimentalists working
in the field of the weak interactions. The author hopes that these notes
will be useful as a review of the theory of weak interactions for research
workers active in the aboye mentioned branches of elementary particle
physics, and as an introduction to this theory for graduate students in-
terested iIn the subject. No preliminary training in the theory of the weak
interaction itself is required by the reader, but the knowledge of the
elements of of relativistic field theory /e.g. of quantum electrodynamics
without the renormalization technique/ and of elementary particle physics
is assumed.

No detailed bibliography is given in these notes. Instead we refer
to basic works where extensive references can be found. Concerning the
numerical values of the various parameters of the theory of the weak inter-
action, we give mean values and errors, but no systematic effort has been
made to use always the "last" or the "best" values, except for the basic
coupling constants g and gv* As is well known, the values of these
parameters often change under the influence of new experiments, and for the
last and/or best values the reader should consult the proceedings of the
appropriate conferences, where he will be referred to the original works.

This stay at the Brussels University was supported by a grant
from the Solvay International Institute for Physics which is gratefully
acknowledged.

It is a pleasure for the author to express his sincere gratitude
to Professors J. Gehéniau and J. Reignier for the kind hospitality extend-
ed to him during this period.



Thanks are also due to Prof. G. Marx and to Dr. P. Hraské for a
critical reading of the manuscript and to Dr. C. Schomblond, whose notes
taken at the seminars considerably facilitated the production of the present
version. The help of Dr. J. Bijtebier in editing these notes is also ac-
knowledged .

The present preprint has been edited at Budapest, but has been
printed from the same manuscript as the corresponding Bulletin of the
Nuclear Physics Department, edited at the University of Brussels. Thus the
two texts should be identical except for minor editorial changes.



1. INTRODUCTION

In the description of weak interaction phenomena the current-current
theory plays a central role. In its original form, due to Fermi, the theory
served to deal with the nuclear R decay. As well known, in 6 decay the
directly observable decay products are the B particle >(an electron or a
positron), and the daughter (or "recoil™) nucleusi N . If the B decay were
a two body decay N Z=N"+ B , then in the rest system of the parent nucleus
N, the energy of the B particle would have a fixed value for given parent

and daughter nuclei. The measurement of the energy of the B particles
revealed that this is not so, and that the B particles have an energy spect-
run. To save the law of energy conservation, in 1931 Pauli suggested that the B
decay is a three body decay N aN* + B+ v . The invisible third particle,
baptized by Fermi the neutrino, was supposed to be a neutral particle with
very small, eventually zero mass (because the measurements have shown that

the upper limit of the EN, + Ev values is very close or equal to NM).

The discovery of the neutron in 1932 led to the hypothesis that the elemen-
tary processes which manifest themselves in the wide variety of the nuclear

B and B decays are the n + pe_ v and p +ne v transitions™, res-
pectively. OFf course the B decay of a free proton is forbidden by energy
conservation, but in a nucleus the binding energy also enters into the game.

To conserve angular momentum, the spin of the neutrino must be
half-integer, and the simplest hypothesis was that it is 1/2. Taking into
account all these facts, iIn 1934 Fermi proposed to induce the nuclear B
transitions by a local interaction of the fields. In other
words, he supposed that the interaction Lagrangean may befe.g.

Lp(x) = fv(™ n() YX p(XxX)V X>yX M X) +h*cO 111

This Lagrangean is of the current-current form.Indeed, it is the

product of the vector current yn of the nucleons with the vector
current y™ e of the leptons. The comparison of the B spectrum for
unpolarized B decay, calculated with L™MX) in lowest order in LA ,

with the experimental spectrum showed® a very good agreement in all those
cases iIn which the nuclear structure of the involved nuclei was sufficiently
known and therefore its influence could be taken into account, or could be
legitimately neglected. However” it turns out that practically the same spec-
trum (with 0,1 % deviations) is given also by the more general Lagrangean



This is due to the peculiar kinematical situation in the nuclear 3 decay,
expressed by the relations >> - MN, me . To find the coupling
constant of these current-current interactions constructed with scalar (S),
pseudoscalar (@), vector (v), axial (@, and tensor (t) currents, measurements
of angular correlation and polarization are needed. These difficult experiments
received fundamental importance in 1956, when,from the analysis of the
K#%2r ,K 3T decays, Lee and Yang came to the conclusion that parity is
not conserved in these decays. The kaon decays are so slow compared to the
characteristic 10_22 sec time interval of the strong interactions, that xt
was supposed that they can be classified as weak interactions. If so, the
possibility of parity violation in nuclear 3 decay should be envisaged.
This expectation was soon confirmed in the celebrated Co”° experiment of Wu.
The number of the coupling constants increased considerably, because now
current-pseudocurrent couplings had also to be included into the Lagrangen.
However, this complication turned out to be salutary, because the parity
violating terms happened to be of the same strength as the parity-conserving
ones, and without them a good agreement with the experimental distributions
would not be possible. Namely, from many concording experiments the V and

A currents were found to be necessary and sufficient to construct the
Lagrangean in the following way:

IP,A(x) = ®n Yx(fv - fA i Y5) 4p(ie YXO - i Y5) »v)+ + h.c.

Until the early fifties the bulk of the experimental information of
the weak interaction came from nuclear physics. The spectacular development
of elementary particle physics in the last two decades changed this situation
The already mentioned discovery of the parity violation; the discovery of the
two kinds of neutrinos; the establishment of the isospin and strangeness se-
lection rules of the weak interaction; the possibility of the application of
the SU(3) algebra to the weak interaction; the discovery of the CP violation
- all these results were found in elementary particle physics, and led to a
further development of the current - current theory of the weak interaction.
In these short notes it is out OF question to follow the historical develop-



ment in detail. Therefore from the very beginning we shall work with the most
modern form of the current-current theory, established by Gell-Mann and
Cabibbo in 1964. Occasionally we shall explain how and why this form of the
theory was adopted, but our order of presentation will not necessarily follow
the historical order.

The principal question we shall deal with is the following: to what
extent the modern current-current theory can be considered as the general
theory of the weak interaction, what are the successes, the failures and
open problems of this theory? Here again a complete review of the status of
the theory is impossible for us; nevertheless, it is hoped that the general
picture will be clear.

The weak interaction Lagrangean of Gell-Mann and Cabibbo can be writ-
ten in the form

LX) = \ (V(x) Jjoo + JI<™) JIx0>) "
/4/
V x>=*W X) +V x) *
The full weak current JN(X) 1is the sum of the weak current of the
hadrons Jthx% , the explicit form of which is unknown apart from some
important SU(3)transformation properties to be specified later, and of the

weak current of the leptons J~N(X) , which is-supposed to be explicitly
known:

(*) = k YaQ ” iVYsb o,.x)Y Y\dA " iYc) o,. (X)
/5/
1 " r*2] - Ole. *2e - *2B O raB*

The cumbersome symmetrizations in eq. /4/ and /5/ are necessary when
some properties of the theory under CP and SU(3) transformations are inves-
tigated. For our purposes they may be ignored in practical calculations.

The lepton current j~(xX) contains a vector part v™M(X) and an
axial part aA(x):

= +
o = Vs a

1 — 1 16/
vx "2 VXV, +2V YV

1
VoiYxXysv, 2 AXYS  wj



The current = VX + a\ 1is unfortunately called in the litera-
ture a "V-A current'", not a V+A current. Later we shall see that the weak
hadron current also has a '"V-A structure', i.e. 1t can be written as
| =V, + A, : As shown in the appendix, the ([ - i yy) factor appearing
in the lepton current leads to the fact that only left handed neutrinos
(neutrinos of negative helicity ) and right handed antineutrinos (‘antineutrinos

of positive helicity) can interact.

In the weak lepton current /5/ two neutrino fields are present. Let
us call the _.neutrino emitted in the nuclear 8 decay the neutrino of the
electron, ve , and the neutrino emitted in the ™ ay+ + decay the
neutrino of the muon. vy Their antiparticles are denoted by Ve - VY -
There exists ample experimental evidence 13 I] PP 389 - 391; [3] pl) that

+ Vv Vv + Vv and that in all interactions the electronic

£

, V
Yy 1 e e e y 1 }
lepton number Lg and” the muonic lepton number L are separately conserv-

ed. The assignment of these quantum numbers to the leptons is given in table

1. For all the other particles L = Ly =0. The conservation laws are of
e

coursefrespected by the Lagrangean (4).

Table 1
Assignment of lepton numbers
v * v
e re e e vy *y Yy
Le 1 -1 1 -1 0 0 0 0
0 0] 0] 0 1 -1 1 -1
Ly
Concerning the masses of the neutrinos, the experimental upper
limits are m, <60 eV, m  <1,6 MeV . As usual we shall assume that
m =m = 0. y
ve vy

We shall now discuss an important open problem-(for optimists), or
failure, (for pessimists) of the current-current theory. As well known, a four
fermion interaction is non-renormalizable, and no higher order corrections
can be calculated in such a theory. Unfortunately, this is the case with our
current-current theory, as one can see from its purely leptonic part.
Also, all the plausible expressions for the hadron current in terms of hadron
fields lead to non-renormalizable structures. In these notes we shall always
deal with such processes, which have non-vanishing matrix element of first
order in L(xX) . Thus our Lagrangean has to be considered as an effective
Lagrangean giving first-order approximations to an unknown or unmanageable



theory. Moreover, it is easy to see that this first-order approximation can-
not be used for the description of very high energy (e > 300 GeV ) processes.
Indeed, both the oV + e" ” + v ) partial cross section and the

total cross section can be calculated in first order In g with our
Lagrangean /4/. For the latter cross section the optical theorem must be
used. The result is that in the centre of mass system for Ev > 300 GeV the
partial cross section exeeds the total cross section. This phenomenon is call-
ed the "unitarity catastrophe'”. In spite of all these problems, the success
of this "bad" first-order theory in the description of a wide set of experi-
mental facts is so impressive, that it can certainly be considered nu -
good low-energy approximation to any future theory of the weak interaction.

Using the decomposition of the full weak current,

the Larangean (4) can be re written as follows:

L LU, + LHE + LHH ;

M = f b K XS

LH). = -fal1 (@H it + 3X JH+ + + it jh)

LHH 2H JHX + JHX Jh)

In first order in ¢ describes purely leptonic processes with four
leptons, e.g. N = i-w decay and a + v @ + 1 scattering.

describes semileptonic processes in which hadrons and a lepton pair Hv®

are involved, e.g. v + N i, + N° scattering and n -m pev decay.
We notice that with JRX = ~ on Yx(fv “ FfA iY5)”~pwe 9et back the symmet-
rized Fermi Lagrangean /3/. Finally, LHR describes the non-leptonic weak
interaction, where only hadrons are present, e.g. K @2m decay, weak

p+n@n + p scattering.

In order to proceed easily later, we give here t general expression
for the matrix element of a semi-leptonic process of the type

Ho H® + A+ v 78/

where H and H stand for two groups of hadrons, while 1 denotes

e" or p" . The transition matrix element for this process in the Heisenberg

picture reads:



<H s VAout H in> = <H"out Ic out(@d Out(vAIH in> lgl

Combining the relation

r v(vAd) iv Y
dout” md -1jdy 1 -Tyj- e 1101

with the equation of motion for the neutrino field

o
— Ao Yx = N1 7 [#0N Y1(@-it5) jX (Y) + jX+(y) *t<y) V. 1"1~ ) 711/

induced by the weak interaction Lagrangean (4), we arrive at the expression

<H4 out IH in> = \ [dy<H"out]c Qut <m(bA ) YX(I-iY5) IX+(Y ) +

» 1Ny
+J Y)O/Y) Yx(I-iY5)|H in>-~— e 712/

As we explained above, we have to restrict ourselves to first order calcula-
tion in g . Since our matrix element /12/ is already proportional to g ,
all the operators and states iIn this equation may be considered as free from
the point of view of the weak interaction. For simplicity we shall also
neglect the electromagnetic interaction. Then the lepton fields in eq. /12/
become free fields, and those in the lepton current j~+(y) are easily seen
to give no contribution in our case. Taking iInto account that

[4+(y),CD (y)] = 0 ,because by definition the hadronic current at t = y°
does not contain lepton operators at the same time t, we Ffind with

u (0 ivA

<H"out jc Qut (JDen(y) = out 3/2 /13/
@)
the result
<H" 1 v™outjH in> = <H"out] J*+(y)|H in> .
sco s . VA \(WAY

714/
«en"372 u( -4) (~37

The "in" and "out" labels refer now to the strong interaction only, because
we consistently neglect the electromagnetic and higher-order weak interactions

Using the well-known relation of the translation invariance for a
local operator O0()



M & VAS
<H*OUTIO(Y) H in> = <H*out]0(0) H in> e' "HT PHY /15/

we TFind our final expression for the transition matrix element H H"Ev

<H"£ v£ out IH in> = @4 <H out]IX+(@O)|H in> .
U(0) , v V(A - 16/
372 Y*(X m 1y5™ N2ua3/2 <SPH/ PH 1 VA™*
Q)
The matrix element of the H =aH"I processes, where | denotes

a y+ or et , can be calculated iIn the same manner and turns out to be:

<H"N+ vout IH in> = Y|r-@rt™)4 <H"out IJ* (0) |H in>

/17/
- (77372 (@ m Y5 (J)3/2 4PH T PH "1 ° .

Eq. 716/ and /17/ contain the hadronic matrix elements of the weak
current operator of the hadrons. Since the explicit form of this operator is
unknown - and even if it were known the lack of a strong interaction theory
would prevent us from calculating its matrix elements exactly - the only
thing we can do is to write down the general form of its various matrix
elements allowed by Lorentz invariance and by other symmetry principles, and
then to find such relations between them as can be tested experimentally.

We shall deal with this problem in some detail and we shall see that the

current-current theory is at least in qualitative agreement with all the
available experimental data.

Let us now turn to the purely leptonic processes. For them instead
of the hadronic matrix element <H"|J™(0)|H> in eq. /17/ we shall have a
matrix element of the lepton current between a lepton state and its neutrino.
This matrix element is explicitely known, and thus the whole matrix element
is calculable.The evaluation of the decay rates and cross section is then
straightforward. To fix our notations and normalizations, we shall give the
relevant formulae for the decay rates of a particle A into r particles
in the appendix. The only purely leptonic weak process for which detailed
experimental data are available is the muon decay. We shall see that the
data are in perfect agreement with the current-current theory. We mention
also that an experiment on the ve + e < vg + e scattering is
in the USA, but no confirmed results are available as yet.

in progress

The question of the applicability of the current-current theory to
the non-leptonic weak interaction is completely open. It is obvious that the



method used in the case of the pure and semi-leptonic processes Tfails in this
case, since neither the weak current of the hadrons, nor the Lagrangean of the
strong interaction are known. Nevertheless, with modern techniques (current
algebra, partially conserved axial current (PCAC) hypothesis) interesting,
qualitatively correct results could be reached in non leptonic kaon and
hyperon decays. However, the current-current structure is not relevant to
these results. A very clear account 6f the status of the non leptonic weak
decays is given in \I\ , where the current-current theory is abandoned when
comparison with the experiments is made. On the other hand, a recent analysis
of the non-leptonic hyperon decays based on the current-current theory was
given in Phys. Rev. 175, 2180, 1968 by Nussinov and Preparata. In both cases
the results are qualitatively (30 %-100 % errors) in agreement with the
experimental data and may depend on auxiliary hypotheses. Thus no definite
conclusion can be made concerning the applicability of the current-current
theory to the non leptonic weak interaction.

In these notes we shall concentrate on the successes of the current-
-current theory, and the problems and/or failures will be only shortly com-
mented. Accordingly, the material will be presented in the following order.
In chapter Il we shall discuss the « Bv,y~> vw and n p ev decays. As we
shall see, their investigation allows to establish the basic properties of
the strangeness-conserving weak interaction. In chapters 111 and 1V the
current-current theory of the leptonic decays of the hadrons will be deve?-
oped. In 111 the isotriplet vector current (ivc) theory of Gell-Mann, in
IV the octet current theory of Cabibbo will be presented and compared with
experimental data. In both cases the concept of the universality of the weak
interaction, developed by Gell-Mann, will be formulated. In chapter V some
of the open problems will be briefly discussed. Finally, technical material
will be gathered in the appendix.



I1. THE STRANGENESS CONSERVING WEAK DECAYS

8l. The w *yv decay

The most conspicuous decay mode of the - meson is the w« -myv
decay. The pion being a spinless particle, the only quantities to measure are
the full decay rate r -=yv) and the polarization of the leptons. In the
rest system of the pion the kinematics is particularly simple. Namely, we have

v = -£
0o .. 0 0,1 o,j& _ .0 , 8/02 A
mo=y0 v =y Qa2 VOl = yO e HO% - WS
2 2 2
ms + mmT - m
0 m ﬁ/ - - - I y
yo = - . v = WNl=ly,= /18/
2m.". \% —1 21 2m.".

Let us calculate G~y v ) in the current - current theory. Eq. 716/
gives

<U~ v out|n in> = <0 | J*+(@©)]-~in> u“ 7 VU /2
n) 2t
Hp(8mn vV) ))(Pj-u-v) . /197
We suppress the helicity index of the antineutrino spinor because the (I-iy,-)
factor forces the antineutrino to be always of positive helicity (see the
Appendix). Then in the rest system of the pion the y must also have helicity
+ 1 because of angular momentum conservation.

Let us investigate the hadronic matrix element <O+ (0)]w in> . We
shall begin with a simple example: if we suppose that Jf—AIJr(x)ef‘f = —SA (€9)
then using eq. of the Appendix we Ffind:

1P
<0,,+ @)t in> = 120/
(2*)3/2 W

We see that the matrix element is not exactly a four vector. because of the
energy-dependent extra factor uw) p°) The appearance of this factor
is due to our definition of the emission and absorbtion operators, given in
the Appendix.

Let us now find the most general form of the matrix element. The weak
interaction is parity-violating, thus a matrix element of J*+ could contain
both a vector part (v) and an axial vector part (a ). However, our matrix ele-
ment depends only on the pion four momentum p~ , which is a vector, and no
axial vector can be constructed from it. Thus the most general form is con-
veniently written as



10

<0, +@O©)Ir in> = . /20a/
Q)32 72pme " " <)

where T2 is an arbitrary scalar function of |, , called the form factor
of the <0 |Jul(o)|tt_ in> matrix element. Its deviation from the value
= 1 1is a measure of the deviation of the axial vector part of )
from the simple -9* in(x) expression.
In the i @y’ v decay the pion is on its mass shell, i.e.
po = m~ . We define g F(m*) - as the coupling constant of the

\Y; decay*. Then from eq. /19/ and /20a/ we find

w7 O>* ~ o> 1 (gift n
The v W yv decay rate in the pion rest system according to eq. /55/
of the Appendix reads
ar(,-.y- 7 ) =1 1 P12 i@)(p,-M-v) -~"5- -5=5- /22/
2v

S
and a straightforward trace calculation yields

o Ft!2 o
7

| =— jJp-m2 (p V) /23/

S

In the pion rest frame

G V) =y°ve-yv=j @m -m2) 124/

while the invariant phase space integral gives

r dy dv / m2 \
WopT om MoV Ze5 55 = 'V&l__mfx_ N - /25/

Finally we arrive at the result

A - .=\ 1 1 IFJ 2 f 2 2\ ti J1 Uy »
\ Y/ 2m r™ m y\Tr y/ 2 N m2 /
v
From the measured ' * y*“ decay rate, which practically equals the total

(@) decay rate, we obtain the absolute value of F* in R=c=l units:

6 1 -10

r (0 - (38,42 £ 0,02) +8§5 IFi = (14,97 + 0,02) ™ - /27/
t
From the vy- [lifetime we shall obtain the value of |g| and then we

shall know also |f(m2)] = JF*:gj . More important, however, is the fact that
in our current-current theory we can also calculate the +«’ #@e + ww decay

XThe relation of f(m2 }to the coupling constant  is given in eq./218/.



11

rate, and the only difference from the expression for the w- *y + decay
given in /26/ will be that instead of m,, we will have m .This is a direct con-
sequence of the so called ’y-e universality” of the weak interaction, expres-
sed by the invariance of the weak lepton current under the substitution y r e
We note that the quantum electrodynamics also has this property of y - e
universality, the electric current of the leptons being - o« Yn

Thus in our current-current theory the ratio r @ ) of the
A~v, and it: *e“ve decay rates turns out to be independent on the

coupling constants and is equal to

2 2 2 2
_ rar Ve) me - Mg me = Mg
r@) = 2 2 2 2
radr~ vy Vy» my - my -y

- 2,35.107° 0.43 * 0.43 = 1,28.107% 728/

The experimental value is r (&) exp =(1,24 + 0,03)10_4 in good
agreement with the theoretical value. We see that the smallness of r0 ~)
is due to the smallness of the ratio of the matrix elements, and not to the
ratio of the phase spaces, which is 1:0,43. Indeed, the matrix element E|F
turned out to be proportional to the lepton mass squared. It is easy to see
that this is due to the fact that in our current-current theory we have V
and A currents. Namely, the expression for F (see eq./21/) contains the

factor

\ pJus® yx (a-iby5) v(VA) = F~A us(© & + v)(a-iby5) v(v&) =

/29/
= Fe mL 0S(@© (a-ibY5) v(vE) ,
proportional to the lepton mass m . In eq. /29/ we have slightly generalised
the V - A coupling " 1Y5) of the lepton current to the V, A coup-

ling y~(a“ibY?) I to stress that our result do not depend on the specific
V - A character, but only on the V, A character. If instead of a V, A theory
we would have a scalar (S) , pseudoscalar (P) current-current theory, the

matrix element for the decay would be proportional to

g<0l1l () lic,in> us (i,)(@"-ib"Y5) v (W) 730/
where H is a scalar + pseudoscalar weak hadron current. The most general
form of its matrix element reads:

<0 Wjj ) lit ,in> ~NT2 f,(PTD 731/



and g £ (m2) = is a new coupling constant. Now we obtain instead of
/29/ a factor

f; us00(a"-ibY5) v(vA) /32/

without the lepton mass. Then the ratio of the electron and muon rates gives

e Me Mo M
r@) = —; > >—5 5,5 /33/
m, - my M- my
in bad contradiction with the experiment. Thus if the y-e universality of

the weak lepton current is accepted, the experimental R(w—) ratio indicates
that the V, A coupling strongly dominates over the S, P coupling, the S, P
coupling may be even completely absent. We stress also that nothing can be
said from this experiment about the possible presence or absence of a tensor
(t) current. Indeed, the <0]J"Y+(0) |u ,in> matrix element will be proportional
to g~ and pN p~, i.e. will be symmetric in X,y .On the other hand,

the lepton current will contain the antisymmmetric tensor = (yx YN=yN YAV
and thus the contribution of the tensor coupling to the #w =yv decay will

be zero even if the tensor currents are present in the Lagrangean. The sym-
metric tensor (Y* Yy+Yy YN (a-iby5)equals 2g~(a-iby5) and gives an effective
S, P coupling with a hadron current JH = 29"

Let us still investigate the polarization in the V, A theory. Writing
Yx(a-iby” in the lepton current, we obtain, after a straightforward calcula-
tion, the following expression for the average helicity of the lepton 1 in
the t- @ V£ decay

2Re ab*
lal2 + |bj2

/34/

here ™({™) stands for the decay rate (= = I~ v ) with z- of positive
/negative/ helicity. Thus for they”r(l-iy”) theory <b.£-> = +1 , for the
yx(@ + TY5) theory <h”-> = -l,and for pure V or pure A theory <M-> =0
The experimental result, <hn-> = 1/17 + 0,32, clearly favourizes the V-A
lepton current.

Let us end this discussion by the remark that the K -af decay
.can be treated in our theory exactly in the same manner as the u" decay.
Of course™a new coupling constant F* = g/~ ) will take the place of ™ ,
and m” will turn up instead of m™ . The ratio of the electronic decay rate
to the muonic in the V, A theory equals 2,75.10 ~, while in the S, P theory
it is 1,1. The experimental result, (@ + 0,659). 10 ™~ again shows the correct-
ness of the V, A coupling. From the experimental K-~ a~ decay rate we
find IFk|:
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] _ 10_ _ 10—10
r(x 0 = (51,64 - 0,23) _ ¢ Fk] = (4,124 + 0,010) .,

/35/

The polarization measurement carried out on the K #*y~-yv» decay also con-
firms the prediction of the V-A lepton current.

The theoretical results for the w+ —+ , K+= 0O decays
are the same as for the w, K~ decays by CPT invariance, with the obvious
difference that F and F* stand instead of F* and Fk (these coupling
constants are, however, real if T or CP invariance holds) and that

§2. The y #e v v decay

This is the only observed decay mode of the muon. The transition
matrix element

<vy €" 7e OULIP IN> = out|Cout(e) dout(v )M in > 736/

for the y decay can be calculated using ea ./lo/and/11/for ve
Then we get

<vy e" ve outly— in> = \ dy<\vy out CoutifKMeiy)YX M1"iY5" JX+(y) +

+ IX+@™) *e (y) Yx(1-i75)) elvy . 737/

We again neglect electromagnetic and higher order weak interact ons. Then
JA+ gives no contribution,CQut(e) with ¢£(y) gives a factor
QCt t ™ u(e)erey , while the matrix element of the lepton current is

i . u(v) Civs ) iy(vty) /38/
<vyout|jA+(y)ly_in> @ B2 n§' R em®/?

Integration over y leads to the final result

1 - -ig M u(e)

L _ vIv)
<vy e v onn In> = -7 Qiv

a .
Yx({d ™ 1Y5/ (77"372 *

uv) vy o —iv X u(y) *(0. . -
I15) (20 3/2

’<\’igy° e® O/ 12 g@(y—e—v—V}

rsy .Se (

/3%/
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We shall work in the rest system of the muon. Let y be polarized along the
positive z axis (" = t) and let the electron have h™licity

Se”Se = +1 or -1) -After straightforward trace calculation we find

Ir 12 flém  e° v° v°) =2 - 1-B_ cos©_, +S (cosO_ -R 1+cos@— 740/
1 'F’gel V y W\NA' e ev e( ev e)JU Y

Here R = Je] : e° is the velocity of the electron, and the angles are shown
in Fig- 1. For S =+ we would obtain 1 - cos©v instead of 1 + coso\—/

Thus for unpolarized y_ decay and unmeasured electron helicity we obtain:

L4
Fig. 1.
Angles in the decay of a polarized
muon.
0 .0 -0 .
QLemy e v v) Be cos©ev) /41

and the differential decay probability according to eq.A-55 reads

dr(y e vv)=m9% {i-R_cos®

- ~N(y-e-v-v) de dv dV) 742/
© ey % e evj

The muon mass is very large as compared with the electron mass (and the v&
vu masses) ? thus the electron is almost always extreme relativistic. Neg-
lecting the electron mass when calculating the lifetime of the muon, we find
after straightforward integration over the full phase space that

12 m5

rey-) = 91 mu 743/
0 0 192 T3

Radiative corrections are calculable for this case, and they give
a small contribution. Namely,

5
B2 "y E e2 1 I
. - 251 " 11 - 4,2.10 3 _ s44s
rcor>) 19 T8 8202 4 192 ,3 1

From the experimental value of the muon lifetime we calculate the value of
Ig 1 (with electromagnetic corrections taken into account):
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Ty ) = (2,1983 - 0,0008).10_6

gl = (1,43506 - 0,00026).10 49 erg cm3 = (1,1659 - 0,0002) 10

GeV
1072 -5
(1,02636 - 0,00019) 1,02 — /45/
M
from eq. /27/ and /35/ we then find:
f(m) = (128,4 - 0,15)MeV f(m3) = (35,37 - 0,08)MeV 746/

Let us now calculate the momentum distribution of the unpolarized
electrons in the case of polarized vy decay. In the approximation mO = O
we find,

drSy—f\‘COSGe . XY= —19575(3-2x) + (1-2x) cosG 1 x3ydx d cosQ /477

Here x E lel/ lemax | , 1l.e. Xx = 2]e|/Ty for mO = 0O . The measured
momentum distribution is in good agreement with this formula. For the elec-
tron energy distribution in unpolarized vy decay we find,

g ¥ m®
dT(x) = ————- B - 2x)x dx /48/
9% "

The distribution functions @ - 2x) x3 and (1-2x)x3 are shown in Fig. 2.
and Fig. 3, respectively, together with the radiative corrections to them.

Let us look also at the helicity of the electron. From eq. 740/ we
easily find that for a given e, v configuration

cosoQd - 3n 1-3n”™ cosO
<he+> = 1-e, cose,,~ - -ee 7 ¥ -z53d4Y/
e ev
For 30~ 1 we have <hO->« 30 -1 e Thus, except for the rare slow
electrons, the electron helicity is -1 in y- decay, and the positron
helicity <he+> = -<he > « +1 in jj~ decay. The experimental result is
<he+> = 1,03 + 0,10 1in agreement with our V - A lepton current.

We see that all the available experimental results on the muon decay
are accounted for by the V - A theory. Nevertheless, a 30 % tensor or scalar
impurity can still be introduced without getting into contradiction with these
experimental data; but these new couplings would lead to bad results in pion
decay and in 3 decay, thus we do not introduce them into the theory.
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Fig. 2.
The isotropic part of the muon decay The cos 9 part of the muon decay
spectrum. spectrum.
______ the distribution function __ the distribution function
(B-2x)x2 (-2 x2 i i
———— — radiative correction included  ————- radiative correction included

83 The n —pe v decay

The transition matrix element for this decay reads \see eq. /15/)

pe ve outIn in> = QCu) A\PougJdag (O Inin)
/50/
u(e v(v) & (n-p-e-v)
(2*p12

If the neutron and the proton are on their mass shell, which is the
case in the neutron decay, the most general expression for <pout]J”~(0)]|n in>,
compatible with Lorentz invariance is

<pout | ©)In in> = <n inlJpy (O)|p out>> =

= e w21 " G

v ’\ﬁg-:)M_ (p-n)x /51/

The six form factors H_ , Hi ( = 1,2,3) are scalar functions of the momentum
transfer squared g2 = (p - n™2. Lorentz invariance leaves these functions to
be completely arbitrary. One of our main problems is precisely the determina-
tion, both experimental and theoretical, of these functions. The constant weight
factors cv and cp have been introduced for later convenience.



17

The form factors with 1 = 1,2 are multiplied by the factor
(- Mp + Mn) which is of the order of 10 2 in the physical region of the
neutron decay. Since the hadron masses are the natural units of the energy -
momentum for a hadronic matrix element of the hadron current, we may hope that
it will be a good (10 2) approximation to retain only F?2(g2) and HiYa2).
In the same spirit we shall neglect also the ( dependence of these form
factors in the physical region me ~ q2 ~ (Mn - MA)2 , which is again very
small compared to any hadron mass squared. Thus we shall work with the
values of these form factors at the point g = 0 , very close to the physical
region. Introducing the vector and axial vector coupling constants gv and

pn  of the nuclear R decay and the usual notation X for their ratio by
the definitions
A ca H>)

oc, "1(0) EA L < FIC?) - 752/

we arrive at the result

. -109,
spe outdnin> = 750}, 4 (2872 NnO - ixVvh)
D T24Q@Q -1vs) *
= (I6n° p° e° Vv°) ~ F i™n-p-e-v) , /53/
and
dr(n-pev) =~ 1IFI2 df de dv . /54/
16n° po e® v8

We point out that the same result is found with the Fermi-Lagrangean @) if
the strong and electromagnetic interactions are neglected and if fv =g* ,
fA =g* . (The coupling constants are real if T 1invariance effects are
neglected.)

In the rest frame of the neutron the following approximations are
useful.

After integrating over £ eq. /54/ becomes ~with Vv = v°

*= lel )

2 & v + 2e vcosG .
df(n+pev) = (mn - o o & v dv d, e2de d, 55
18m_ p e v
n

The implicit dependence of the Dirac delta on e gives a factor

v+e cosOeV
-1 - = 1-1 + o(io 3)1 , /56/

mn—e—v
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because
_m
max{v, e, €°} <mn - nip« 10 mr /57/
Thus neglecting in eq. /56/ 0 (IO , we Find
dr(n+pev) = 2~ IF12 v2 e2 dizv de d«e 758/

In the neutron rest frame the kinetic energy of the proton Tp Iis
always much less than mn - nip . Indeed,

(m -m)2 -
Tp < TBax E H;ax - mp - - -——=5 — 10 3 (mn - mp) . /59/

Thus iIn the energy balance

e +v=m -m, -T /60/

we can neglect Tp and write

e + v = "h - rb /61/

Below we shall always work with the approximate equations /58/ and /61/.

Let us now give the relevant theoretical formulae to be compared
with experiment.

i/ Let the neutron be polarized in the direction of the positive Z

axis. Then for unpolarized proton and electron after straightforward trace
calculation we find

S ISn IFI2 2 r
e P 1- 1o = %8 cosd , - 289—5—£¥:1%_3e cosO, +
16nR p° e° v (2t) 1+ 312 e eV 1+3|X|2
e v -e v
+ 2Re N1 (1+1) cosg + — 2ImX X X £ if 762/
1+ 3IX1 1+3A 2 - e v

The angles in eq /62/ are shown in Fig. 4.

ii/ If the neutron were®" polarized in the opposite direction, the

last three terms in eq. /62/ would change sign. Hence for unpolarized neutron,
proton and electron we find

) pse e X12-1
ﬁ%qq p° &0 v ary a+3mt- 1 + 31X 12 Be cosOe /63/
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Angles in the decay of a polarized neutron.

iii/ For the electron with helicity Se = -1 and for unpolarized
neutron and proton the calculation gives

2r

S
np__ 1 - X34 cos® . +S cos® . R /64/
16m p0 e® v 1+3 X_Q ﬁe &V e 1¢3 r)(]z ev e

S

Let us now compare the theoretical predictions with experiment.

1/ Dominance_o]|_”"be_Yx_A_cowupllng_1n_the_hadron_current

From eq. /63/ we see that the e-v angular correlation in the un-
polarized neutron decay is determined by the coefficient

5:_LU!! _ll /65/
1+ 312
For pure V hadron current X =0 , and then £ = -1 .In table 2 we show

the theoretical value of £ for pure V, A, S and T hadron currents. It
is easy to see that in the nonrelativistic (static) limit p 0 both the

V and S currents give Xp Xn (Fermi transition "F") , the A and T cur-
rents give Xp 2 Xn (Gamow-Teller transition "G - T9, while the P current

gives no contribution. Indeed, u (0) = 0. To the free neutron decay
Table 2. Table 3.
Theoretical values of £ for pure Experimental values for £
S,V,A and T hadron currents
Charac- p
Decay ter K
Hadron S Vv A T
current He6 ——-5~ m Li6 G-T +0,3343 + 0,0030
. 1 -1 +1/3 -173  Ne23-—-e~.— Na23 G-T +0,33 * 0,03

Ar35 .S.*» CI35 MOEtIy—O,Q? + 0,14
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both F and G - T transitions contribute. In nuclei the nuclear structure
often forbids one of these transitions to take place. Thus,in nuclei, F and
G - T transitions may be separately observed. In table 3 we give the experi-
mental results for £ in some nuclei with pure F or G - T transitions.
Comparison with table 2 clearly shows that the V and A couplings are much
stronger than possible S and T couplings, respectively. (For [+ decay the
theoretical values for £ are the same as for R decay. Let us notice also
that in nuclei instead of eq. /65/ one finds
ANIke>12 JgA 12 - gv 12 I<i>l2

5 - - —m—=5——-=-y-——-2-8 ————r~ " /66/
lgv 12 I<i>12 + JgA 12 1<a>12

where <1> and <o> are shorthand notations for the F and G - T nuclear
matrix elements, respectively. For the free neutron |<1>] 2 = 1, |<a>j2 =3,
and we get back eq. /65/. In nuclei these values of |<1>] and |<o>]| cor-
respond to the so called superallowed F and G - T decays.)

2/ The energY_distribution_of_the_electrons_L The Fermi_spectrum

To calculate this energy distribution for unpolarized neutron, proton
and electron we have to insert the expression for £ —1r If |2 in eq. /63/ at
the place of |Fj2 in eq. /58/ and then to integrat/t\e over all the variables
except e°. The result is:

i _C
dar(x) = (I + 31A12) 3 4 (wg - xX)2 Nic2-1 x dx /67/

where WQ = (mn - m ): me = 2,53 is the end point energy. Indeed, the dimen-
sionless energy variable x = e°:me changes from x = 1 to x = WQ accord-
ing to eq. /61/.

Eq. /67/ refers to the decay of a free unpolarized neutron.
The corresponding formula for the allowed unpolarized N @ N" + B + v decay
can be obtained from eq. /67/ by changing 1 +3|A? to |<1>|2 + \<a> |2 |A]2
and WQ from (mn “ mp): me to (MmN ~ mN")5ne " Moreoverthe influence of
the extended charge distributionof the nucleus on the motion of the R par-
ticle may be quite important and must be takeninto account by multiplying the
function (W -x? ~ X by an appropriate Coulomb correction factor, for which
detailed tables exist. With all these changes we obtain a theoretical expression
which can be tested not only for the neutron decay, but also for the wide va-
riety of allowed nuclear [ decays. The energy distribution (the so-called
Fermi distribution or "Fermi spectrum')

F(x, W0) = (wo - x)2 1X /1 68/
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is shown on Fig. 5. In general one prefers to represent the experimental data
on the Curie plot /Fig. 6 /. The Curie function is defined as

~ F(x, W0)
(D= 2y

and from eq. /68/ we see that in our theory K(X,WQ) = WQ - x. The experimen-
tal results are in excellent agreement with the theory. We remark that the

shape of the spectrum near the end point WQ strongly depends on the assump-
tion that the neutrino mass is exactly zero. The best experimental upper limit

769/

coming from the end point behaviour is mO0 < 60 eV.

Fig. 5.
The Fermi spectrum,
the distribution function f (x ,Wq)

the distortions due to the Coulomb
correction

Fig. 6.
The Curie plot for the nucleus.



3/ Determination_of_19j and {X L

Integration of eq. /67/ over x gives the neutron lifetime x(n):
, 2 wo

1 _ A
T(n) rm =40 + 31M12) (-2\1/]:)3 m !\ f &, W )dx /70/
where
w

r f(x 71y
1

To obtain the value of 19vV1 and |X] separately, 3 decays with
superallowed pure Fermi transitions must be investigated. Indeed, for them
IX1 e I<o> I2 IX I2 =0 , since I<o> I2 = 0 . The best world average for

Igvl is

Igv1 = (1,4138 - 0,0026)10 erg cm® 172/
and then from the neutron lifetime
IX1=1,23 - 0,01 /73/

The effect of the static Coulomb field of a (heavy) nucleus on the
3 particle is important. This effect can be calculated and is already taken
into account in the value of |gv| in eq. /72/. The effect of the radiative
correction on |Jgv | is not included. The radiative correction turns out to be
cut-off dependent and is thus uncertain. With "reasonable" cut-off one finds

lgv 1 = (1,4032 - 0,0026)I0 ™~ erg cm3 =

(1,140 - 0,002)
GeV

= (1,00357 - 0,00176) . ~ 1,00 /747
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4/ Parity_P__and_time_reyersal__T__experiments®JThe_sign_of_X_ .

The last term in eq. /62/ violates time reversal invariance. To see
this, let us write down the general form of this term for the neutron polariz-
ed in an arbitrary direction £n . We find

21m X e p

@ x i /75/
1+ 3IXI12 v ~n

Under T B, P,- et-e, v , hence /75/ changes sign and thus
the distribution /62/ is not invariant under T wunless ImX =0 . Measure-
ments of the En Eg x_yl correlation show that ImX is surely small and

is compatible with zero. Indeed, the experimental result is

-——2Im X . =0,01 - 0,01 /76/
1+ 3IXI12

In the following we shall take X real, i.e. we neglect the possible small
T violation.

The terms proportional to cosOe and cosOon in eq. /62/violate
P. Indeed, with the neutron polarized in a direction Pn, cos©AJ%Pn.e)/e
cosOv* . v) /v . Under P Pg + Pn, e -e, V *-v ,hence these
expressions change sign. The experimental results on the (Pn.e ) and (Pn*v)
correlations, presented in Table 4»are seen to be compatible with the value
Ixl =1,23 found from the life-time measurements and with T invariance (i.e.
with X real} supported by the [e x y ] correlation measurement, Only if
we choose X = +1,23 and not X = -1,23 .

Table 4.
The sign of X and the neutron spin - lepton momentum correlation
experiments
asymmetry X=+ 1,23 X= -1,23 experiment
parameters
for e
-2X(X-D -0.09 -0.99 -0 .11+0,02
1+31x 12 »
for v
2X (XD +0.99 +0-09 +0.88+0.15

1+31X 12
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Finally we remark that the first two terms of the distribution /62/
conserve both P and T. In his original theory of [ decay Fermi supposed
that P and T are conserved and he worked with the Lagrangean (2) with
fS s;fP = f? = 0 and with fk/fv real, instead of with the Langrangean (3). It
is easy to see that for 3 -decay with unpolarized particles both theories
lead to the same result, namely to eq. /63/. Only after the discovery of the
parity violation in the K° decay in 1956 by T.D. Lee and C.N. Yang one looked
at the polarized Co”° decay, and then the fact of the parity violation in
nuclear B decay was established.

5/ Experiménts_on_the_helicity_of_the_R_-_particlel

The average helicity of the electron for unpolarized neutron and
proton can be easily found from eq. /64/. For given e and v we obtain

Ccos8ev- 1 - B;1 ;cossev

1 - Be 5cosOev m e 1 - ee EcosOev 771/

This formula is similar to that for <h0O-> in the vy decay, given
in eq. /49/. But now RO can often be <1 , and thus i1t is not true that
<h0->~ -Rg for almost every e , v configuration. On the other hand,
the approximate formula /56/ now holds, and we can easily integrate our dis-
tribution /64/ over cos00v , which was not the case for the corresponding
distribution in y~ decay. Integration over all the neutrino variables and
electron angles gives

dr_ ) = 2011 + 31A _ - S_ R IF, W,)dx /78/
e v 12), (2,,)g g,(l e Be PP Wopd
Thus, for fixed x (i.e. for Tfixed Be = /x2-1/x)we find

(i-ee) - (it+Re)
<h® > “ U-Be) + (1-Be) m "6e

779/

If in the lepton current we would allow the general V, A coupling
YA(a - ib Y9 , %e would obtain for R and R+ decay

W Realr | <hoe> - 780/
|a| + bl
The experimental results shown in Table 5 give strong support to a pure V - A

lepton current Y~A(l “ 1Y5)



25

Table 5.
Experimentally determined helicitles of the e- particles

Decay Character <hg> ! R3Q
b1l2_ W 2 G -T -0.98 + 0,06
Gab8 <-Zn68 G -T +0.99 + 0,09

014 < N 14 F +0,97 + 0,19

84. Conclusions

The available experimental data on it + iv , K @iy Yy > ew r
n - pev and nuclear R decays are compatible with the hypothesis that the
weak interaction inducing these decays can be described by the current-current
Lagrangean /4/ with vector and axial vector currents. For the hadron current
the predominance of the A coupling over the P coupling is supported
by the experiments on the TI(r =ev) : @G #@ayv) and FrK aev) : TK awyw
ratios if the Y-e universality of the lepton current (see page 11 )
is taken for granted . The predominance of the V, A couplings over the
S, T couplings is supported by the v-e angular correlation measurements
in B decay. The Y~(l-iY-) structure ('V - A structure') of the
lepton current is confirmed by helicity measurements in the [ decay and in
n #myv decay. All the measurements on the y decay are also compatible with
a pure V - A lepton current; however,the data in this decay would allow
for 20 % 30 % admixture from S,P and T couplings. Neglecting these unwanted
couplings which would not allow the description of the y , T and n decays
in the framework of a unique theory, one finds from the muon lifetime the ab-
solute value of the coupling constant g . The detailed experimental analysis
of the nuclear [ decay and of the free neutron decay has shown that the
matrix element of the weak hadron current between nucleon states can be ap-
proximated, at least at low momentum transfer g2, by an effective y~l-iy?)
coupling, if,instead of g ,a new coupling constant g» is used (Fermi
approximation). X = +1,23 from these experiments. It is remarkable that gv
is practically equal to g (we suppose that they have the same sign),i.e.
that the nucleons .take part in the weak interaction practically with the
same strength as the leptons. For the axial vector part the "renormalization"
of the hadron current is stronger, g » g™\ , but still it is only about 20%.

XThe predominance of V over S and T is supported by the experimental
results in KkK>#Hi,v decays. See e.g. [8], Chapter 5.
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In chapter IV we shall see that the theory of Cabibbo and Gell-Mann
explains the fact that gv is smaller than g ,saying that the missing
strength of the hadron coupling is held by the strangeness changing part of
the weak hadron current JH” . Thus a universal theory of the weak interac-
tion, describing all the leptonic and semi-leptonic decays will emerge, with
a Lagrangean containing only a few free parameters. The problems concerning
the application of this theory to the non-leptonic weak decays will be briefly
described in chapter V.
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I11.  THE LEPTONIC DECAYS OF THE HADRONS. THE ISOTRIPLET VECTOR CURRENT (iVC)
THEORY

8l. The IVC hypothesis

In chapters 111 and 1V we shall discuss the status of the theory of
the weak leptonic decays of hadrons, i.e. of processes where the decaying
particle is a hadron which decays into a lepton pair £v accompanied or not
by one or several other hadrons. Such decays may be strangeness conserving, as
the T £v and n =*pev decays, or strangeness-changing, as the K-*tv
decays. In chapter 11 we have seen that these three mentioned decays could be
described by the current-current theory with V and A currents. In this
chapter we shall see how this theory applies to the leptonic decays of the
hadrons in general.

First of all we shall examine the structure of the weak hadron cur-
rent operator Jﬁ&p() which enters the general expression of the transition
matrix elements of the leptonic hadron decays,which is given in eq./16/ and /17/,
if H 1is now a one - hadron state. The fact that both strangeness-conserving
and strangeness-changing leptonic hadron decays are observed, shows that
J (xX) must have a strangeness-changing and strangeness-conserving part. If we
would consider the weak interactions in any order of g , then the separation
of J,,.(x) into two such parts at a given time would not be maintained at a
later time: the weak interaction would add a strangeness violating part to the
strangeness-conserving one and vice-versa. The same reasoning may be applied
to the separation of the weak hadron current and also of the .lepton current
into a vector and axial vector part. Only in first order in g have these
separations a time independent meaning. Since we shall always work in this
approximation, we can write JH™(X) in the form:

JHX<X>= Cv VX=OM + CAAF° () + ¥ VFV ) + dA AF°(x) /81/

where cv, c”, dy and 35 are coefficients, not necessarily real. At first
sight the introduction of these coefficients may seem to be superfluous; they
could be included into the operators ’VA and A .y which are themselves
unknown. However, we shall see later that these operators are supposed to obey
commutation laws which normalize them. Then their coefficients give the weights
of these normalized operators in the full hadronic current /81/.

Important properties of the operators VA and AA in eq. /81/ have
been specified by M. Gell-Mann and N. Cabibbo.
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In the present chapter we shall discuss the isotriplet vector current hypoth-
esis of Gell-Mann, which refers to the transformation property of the VA~*“°

current under rotations in the isotopic spin space. To come to the basic idea
of Gell-Mann, let us consider the matrix element of V®-° between nucleon

states.

The comparison of eq. /51/ with eq. /81/ shows that

<p (p2) Iv''-° Co)+ In (p~™ >

2°pb
P(P2) ®2_pbh ® n ()
. . . - y2 FES - /82/
Y x F|(|2)-|0XVMn+M 2( ) Mn+MPF3I2)J(2

from now on we drop the "in" and "out" labels of the state vectors, and denote

the neutron state of momentum p by |[n(p)> ,and the neutron spinor oy n(p)
The operator S:O(x)l increases the value of the electric charge by
one unit, while °(x) lowers it by one unit. Its matrix element

<njv™ °(0)|p> appearing in the nuclear [+ decay, can be easily calculat-
ed from eq./82/:

<n(P2) vx °() b iy = <PPi) Mx~°+(0) In P>*

\Y

n(2) iay,, (ﬁz.gln)A peED 733/
n p T&W1
It is well known that for any hadron the relation
Q=1z+\Yy |, /Y =B + Sl /84/
holds. Then for AS = O transitions we have AQ=QﬁL—Qﬁ&AIZ =-1 since
OB = 0 /the lepton current with AQ = -1 and OB =0 ensures the total Q
and B conservation/. Namely, for V®“° Cx)+ we have AlIZ = IzH, “ 1zH = +1
and for °(xX) Al2 = -1 . Thus we see that if these operators have
definite transformation properties under the isospin group, then the simplest
possibility for them is to be the q = +1 and q = -1 spherical components
of an irreducible isotriplet isovector operator q,X(X) @-=-1,0, +D
This means that there exist tnen three hermitean operators Vi"x(x) ~ 1*2,3)
which satisfy with the three hermitean generators 17 of the isospin group
the commutation relations
/85/

ps® Vk , xH = iess Vi, x(X" "

i.e. the very relations which the 17~ satisfy with each other:
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Qa. rg - ' Cud, 186/

The precise connection of the V,s ° , V,s °+ operators with the v.i
operators and the expression of these latter through the spherical compo>
nents may be defined in the following way

V=42(x) = VI(X(X) - i V2iX(x)= /? vFI|x(X)

Yre(xn+ - Vi, x(x )+ 1 v2,x(x )= viTIx(x)
The natural question arises whether the third component ~(X)

has a physical meaning or not. In 1958 Gell-Mann suggested that it has.
Namely, he supposed that the currents VI ~(x) are just the density oper-
ators for the generators 1n . Then by definition

1£(t) = Jdx Vifo(x,t) 188

IT the isospin group were an exact symmetry group, then the generators would
not depend on the time. We know , however, that in Nature electromagnetic
and weak* interactions violate this symmetry. Then the eq. /85/ and /86/ are
supposed to hold as equal time-commutation relations:

VK, XM, N " 1 eskl

[Is (©), Ik@®] = i esk( 1, (L) 790/

We notice that from eq. /88/ and /89/eq. /90/ follows, while /88/ and /90/
do not imply /89/.

The physical meaning of the V~~(X) operator is then obvious. It
enters the electric current operator of the hadrons ) according
to the well known formula

ihx&> " v3,x(x>+ 1V Xx) = "91*

x see footnote on page 34
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the space integral of which, with A =0 and 13 = Iz, gives eq./84/. The
Lagrangean of the electromagnetic interaction in these notations reads

LeE(x) = e AX) 7%« + €Eey 792/

let us also remark that the hypercharge current is an isoscalar operator, i.e,

[Is(0, Yx(x,£)J = 0 793/

It is important to point out tl!it the eq./88/ and /90/ normalize the
currents Vl,A(X ) and also fix their sign. Indeed, if we multiply the cur-
rents by a common factor K , these equations remain true iffand only iff
K= +1 . The reason for the introduction of the weight factor in eq. /8Y/
is now clear. It leaves open the possibility that the s = 0 vector part
of the weak hadron current is not exactly equal, but only proportional to

Vi ~ 12 "X)* In the or*9na” formulation of the isotriplet vector
current /I1VC/hypothesis,Gell-Mann suggested that C = 1 , in analogy with
eq./91/ for the electric current, where the coefficient of ~x) is

equal to 1. At present, however, both theoretical and experimental considera-
tions indicate that Cv is probably slightly smaller than 1. We shall
return to this important question when we shall discuss the hypothesis of the
universality of the weak current at the end of chapter IV.

The /IVC/ hypothesis has far reaching consequences, expressed by
the Wigner-Eckart (w-E) theorem. This theorem for the SUI2) isospin group
can be written in the form

<IMI,a" W1, 1 a = @, L kgll"1™)@" MO |] a) /94/

In this equation I, Iz, (ijl ) stand for the total isospin quantum number
and its third component in the initial (final) states, a and a’ denote all
the other quantum numbers specifying those states, is the g-th
component of an irreducible tensor operator belonging to the SU(2) represen-
tation of dimension n=2k+l1. (Il,lz;kg L1*A") is an SU(2) Clebsh Gordan coef-
ficient, while @"] J7T |la) denotes the reduced matrix element, which
depends an all the variables which occur in the matrix element itself, except
the magnetic quantum numbers "Iz, I, q .

The W-E theorem connects the weak nucleon form factors F~(g") of
the weak s = O vector current in eq./83/ with the isovector form factors of
the nucleo'ns F~v (@ ) , defined by the relation
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<p(p2) V3, b Pi)> =

aye Cp2-PD) fri)
P(P2) - (2-pi) Jol.
YX FA(G2) - o r% 2 %'5 (0 T7] 795/
Xv o 2M ) 2M ( J I/\
it also connects, through eq./91/, the FY(q2) with the electromagnetic
form factors of the proton F?(qg2) and of the neutron F?(qg2) , which
are defined as follows (N = p,n”:
< @2)I O b €L =
n (2) N/ 2\ P2'PD)" 2x  @2°PD) “(Pi)
i L ias A i 0 /96/
WE 1 (a ) XV 3 -gf—q > 2Mn F% 2)

The eq./91/ contains also the operator i Y,(x) which defines the isoscalar
form factors of the nucleons F?(q2) through the relation (N = p,n)

<N(p2) Il YX(@©) N(Pjl > =

n (2) _ e2Pi)" ®2-PD) N (PT)
1(a2) - "xv N (a2) '510 . 372

2MH 2mn (@4 1»)
The W-E theorem holds exactly only if the operators and the states involved
are exact multiplets. In our case this is not so, because even if the opera-
tors satisfy the group properties exactly at a given time, the physical
proton and nucleon states do not form an exact isodoublet as shown e.g. by

the fact that ¢ Mn . Below we shall work, however, in the exact SU(2)
limit, i.e. we shall neglect the smallrfew percent SUf2) breaking effects.
In this limit we have of course = Mn = M. Then straightforward applica-

tion of the W-E theorem and of eq./91/ gives the following results:

Fi(g2) = 2,FY (@2) = FP(g2) - F?(@2)
/98/
2F™N(g2) = F?(g2) + F~(q2)

To illustrate how such relations are found, we write

<n(p2) [vx-°(°) Ip(Px)> =

/0 11, -, D@p2 bhro) 1] PD) =

TS (1 p2l 1~°) 11] Pi)

— <n(P2) 1*7~ JFXQO) Ip(pD>

<p(p2)lv3>x(o)lp(P1)> =

- <P(P2)MD,X(0) |IP(PD)> 28017 D@ p2nt A1

I
~
-

m 73 (5 P2J17V0) 111 PI) 799/
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<n(p2)v®=°(0)|p (P> = 2<p(p2) |[v3X(0)|p (P> /Koo/

Eq. /83/ and /95/, taken in the SU @ Ilimit with wmp = Mn = , Imply then

the relation F.(g2) = 2FY(q2) . We stress that the relations /98/ are deriv-
ed by us only faﬁr q2 < Ol, which is the physical region of q2 if Mp = Mn

The following properties of the form factors FY(q2), F” (g2) are
known on theoretical grounds:

i/ for i1 =1, 2 these functions are real, for i1 = 3 they are purely
imaginary. These properties follow from the fact that X(X) and Y (X)
are hermitean operators.

ii/ Using eq./15/ we easily find the matrix elements of our current
operators at an arbitrary point x ¢ 0. We know also that in the SU(2) limit
all our vector currents are conserved:

AX VM (x)Y=0 , AXYXX) =0 /101/

Application of the current conservation to eq./95/ and /97/ gives:

F2(2) =0 , F®(g2)=0 7102/

iii/ If we integrate the eq./95/ and /97/, written for x @ O over
X with X =0 and take into account that 13|p> = ™|p> r ~ Y|p> = -||p>
we Find

FA(0) =\ , F®(0) = § . /037

Some further properties of the form factors are known from experiments:

iv/ From magnetic moment measurements we know that

f2(°) =yp =1,793 , F>) =Yn = -1,913 /104/

- ] _
where and yn are the anomalous magnetic moments of the proton and of
the neutron, measured iIn eli/2MpC  units.

v/ At Stanford the proton and neutron electromagnetic form factors
_ 2 -
have been measured for a wide range of q < 0 . The phenomenological formulae
for the form factors can be written, within the experimental errors, as fol-
lows :
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N(a2) c£(A2)
[ B C
a Ggta2 -
6g(0) = 0, gtaz) = 0,563 M72 /106/
d =
a q2=0

In eq. 7105/ and /106/ the Sachs form factors
N N N
GM E 4 + F2
/N =p, n/ /107/

B Bk - ' D
4mn

have been introduced.

According to eq./98/ the information i-v can be transferred to the

weak form factors

ivi F-(@)=y_ -y = 3,706

4AMN

gn * GH --?-(C(ge ? ge) - V.s

4va

|GS—(GE*GS)-2FV,S_ ) 0
1 - 42/4n2 2V,S >ri1,2(a ) “ 2P1%(s )  /108/

The relations /108/ have been derived through the W-E theorem in the

_ _ - 2 _
exact isospin symmetry limit for the range gq < O . In Nature, however, this
symmetry is violated by the electromagnetic interaction%. The violation is
thus controlled by the fine structure constant, a = and is expected to

be at most of a few percent. Nevertheless, the precision of the experiments
in nuclear 8 decay would make it desirable to take into account this small

*and also by the weak interaction. However if we work in first order in 9
with the Lagrangean (4) , then the weak current J (X) is free from the weak
interaction.



effect. Unfortunately, no reliable theoretical method for the calculation of
the departure from an exact internal symmetry is known. It is obvious only
that when calculating the phase space for the neutron decay one must use the
observed, unequal neutron and proton masses because with Mp = the energy
conservation would forbid the decay, and that the relations i1 - Vv must be
continued from the q < 0 range of the e + N + e + N scattering to the

mg <q" < (20 MeV range of the nuclear $ decay. The true analytic expres-
sions of the electromagnetic form factors are however unknown, and it 1is
hopeless to try to obtain reliable corrections of a few percent from the
analytic continuation of the approximate expressions /105/, /106/. Moreover,
the symmetry-breaking corrections to the functional form of the form factors
are also uncalculable54. In practice the following procedure is adopted when
testing the IVC hypothesis: both the q2 dependence of the form factors

and the Su(2) symmetry breaking effects are neglected, and the values of the
farm factors at g =0 are used. In nuclear @R d%cay and also in the

T = 11°e- ve(ve) decay the physical region of q is so small compared
to a hadron mass squared, that it is hoped that the error caused by this
approximation is at most a few percent. In particular, we find then from eq.
/52/, /45/ and /74/:

gv = gc* F*(0) = gc* , levl=0 , /1097

The same procedure will be applied also to the E @A £ v decay, where, of
course, the neglect of the q2 dependence is less reliable.

§2. Experimental tests of the IVC hypothesis

1/ The isotriplet®Weak™agnetisn”

It was pointed out by Gell-Mann that a convincing test of the IVC
hypothesis can be carried out with the three Jp = 14' nuclei &2 . &2*,
N12, which are the q = -1, 0, +1 components of an isotriplet. These nuclei
decay to the 0+ ground state of the isosinglet via B,y and R+
emission respectively /see fig.7/. Gell-Mann drew attention to the fact that
the relevant correction term of the first order in q /M to the unpolarized

spectrum of the B and N0 decays is of exatly, tﬁe'same structure as the
matrix element which induces the Clz* C12 + y transition. Indeed, in a

1+ 0+ R decay, the only zero order term iIn the matrix element is the well

For conserved current these corrections” are of second order in the symmetry
breaking at q =0. This is the Ademollo-Gatto theorem.
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12 known G-T term HM(0)<a> = Jl<a>.
This term leads to the Fermi spec-
trum Jf121<o0>12 F(x, W ) * The
first order correction to shape of
the spectrum comes from the inter-
ference of the A<a> term with
two terms of order g™ /Mijj * The
first comes from the F~(0)
structure when the recoil of
the daughter nucleus is taken into
account, the second from the

F2 () oAv qV/2VN structure
without recoil. After a lengthy
but straightforward calculation
the shape correction factor which

Fig. 7. multiplies the A2|<a>|2 F(x, W )

The decays of the 812 - 012 - N spectrum turns out to be

isotriplet
<y> m.
%_ T3 A<a> M X = /110/
where + (-) refers to the p12 (01”7 decay. In eq./110/ <y> stands for

the sum of the contributions of the F~0) and F27°) f°rm factors, modified
by the nuclear structure:

The measured shape correction factors for B1 and ng
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<Y> = Firo)<yl> + F2(0)<y2> 1111/

<y > and <y > are appropriate nuclear matrix elements /compare with
H, (0) H1(0)<c> in the G-T transitions/.

Let us now investigate the y transition. First of all we remark that
the isoscalar part of the electric current cannot contribute to this [1 =1
transition. Thus only the F,v and F,v Tform factors enter into the game.
Moreover, we have and 14it 0 transi?ion, i.e. a pure 14: matrix element
is needed. The F~v form factor does not contribute to it in the static
limit, w?gle the FQV does. Namely, the matrix element <yY> of the
CL =aC +y decay turns out to be

<Yy> = FA(0) <mx> + F2(0) <y2> /112/

From the IVC relation F, 0(@2) = 2frY _(g2) we iImmediately find that
<y> = 2<y™> ; thus me%gﬁrlgg =A~] in the CI X-—» C12 +y decay,
value of I<v>1 in eq. /110/ can be predicted, assuming that the I1VC
hypothesis is correct.

To test the shape correction formula, still X<o> is needed. A good
experimental value of |X<a>| can be obtained from the lifetime of the B12
The point is that the contribution of the shape correction factor to the
lifetime can be safely neglected. Indeed, the nuclear structure of 812 is
sufficiently known and it can be shown that |<a>| and  |<y>] are of
the order of 1. the range of Xx goes up to WQ « 30 , therefore the devia-
tion of the correction factor from 1 is of the order of 40 e .&0,02. Thus

from the B12 lifetime we get [X<a>| , and finally we find

mx<S>" = 1 (4768 + °"5) 7113/

We stress once more that this result depends on the correctness of the IVC
hypothesis. It is interesting to note, that even the sign in /113/ can be
predicted. Namely, if the orbital magnetic moments of the nucleons and other
complicated but presumably small effects are neglected, one finds that
<ynN B <o> , <Y2> <a> ti.e. with eq.Z111/ that

<y> & [f~0) + F2(©)] <a> . Then from the IVC relations —-M0) =1
F2@©) = Yp - yn we Ffind

<u>

X<a> 1,23 = 3,75 /11377

Comparison with eq./113/ shows that the + sign must be chosen. Thus the IVC
prediction for the shape factor /110/, with eq. /113/ taken iInto account be-
comes
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1- (0,57 £ 0,06) 10~2 /114/
while the experimental result from the B12 and N12 spectrum gives /see fig.8/
1s 0,55 = 0,10 10-2 €0
- MeV
0,52 = 0,06

in full agreement with the theoretical expectation.

2/ The decaYjL The_darnging_of_the_Fermi_transition
The hadronic matrix element <A(P2) |H ) E+F (P> which appears
in the strangeness-conserving E+ < Jle+ vq decay contains a vector part which

can be written as

<N(p2) V& °)|E+(pL)> =
_ e1(p2—p1)x np2) . P2_PD)" “2) 2P, -
:|(42) Av MA+ME ’ Mﬁ\+M¥ -(ﬂz)‘_]\]/\fll

/115/
The space-time structure of this matrix element is, of course, the same

as that of the corresponding nucleon matrix element /83/, but the form factors
are different, since the curreht operator is taken between states belonging
to other multiplets.

Let us now suppose that the Vr°(*) current is conserved:
P Oy =6 111%1
The application of this condition to eq./115/ gives

EI(g2)(MA - MR) + 42 E3(q2) = O 7117/

Since Mg ¢ M, and E3 () has no pole at g2 = O /because no bound state
of zero mass \gith the discrete quantum numbers of the E+ N system exists/,
we find at g = 0 the condition

E~0) =0 /1187

Eq./118/ is a direct consequence of the current conservation /116/. If the
IVC hypothesis holds,/116/ follows from V3 a(x)=0 in the exact SU(2)
limit. We stress that even iIn that limit Mg £ M, since J1 and £ belong
to different isomultiplets. The result is different if the masses are equal.
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This is the case for the <n|v® °("X)|p> matrix element, where from

pi(g2)(Mn m Mp ) + g2 p3(u2) =0

in the SUQ@) limit we find, with Mn = Mp the well known condition F3(g2)= 0
for g2< 0 .

The physical region of q2 in the 1 Aev  decay is
m2 < g2 £ (ME - Mg)2 (76 MeV)2 , and the approximation E~q2) = E”0) =0
is certainly not very good for the whole range. Nevertheless, we expect the
Fermi transition to be considerably damped as compared to the G-T transition,
where no current conservation effect occurs. The experimental results are
again in the favour of this IVC prediction /Fig. 9, 10/.

Fig. 9.
The kinetic energy spectrum of the /1 hyperons in
in S1 % Aetv decay

_________ pure axial current
________ pure vector current
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Fig. 10.

The electron - neutrino angular dis-
* +

tribution in £I + Nle”v decay.

_________ pure axial current
________ pure vector current

3/ The_R __decay_of_the_charged_£ion

The 1IVC hypothesis can be successfully applied to the
it -N° et vG(vG D decays too. These rare decay modes have been observed

with the rate

I G w® e+ ve)exp B 8
= (I#02 1 0,07) 10 /119/
rar+ < y+ v )exp

The hadronic matrix element for the w+ decay reads:
<TT°(2) |IHX (0) pr+ (K1)> = cv<TT°(k2) b ®_o (Ot + (k1)> 1120/

The strangeness-changing current is absent because the decay is strangeness-
conserving, and the ° current is absent because no axial vector can
be constructed from the two available four momenta k~ and k2

From the IVC hypothesis we get in the SU(2) limit

<t®|v®=0(0) Jw+> = /21<iro [V x (0) |w+> =

= 121,00, ey (irg Iviivoy 1 = @li~coy |kn 1121/



N3 LAY c*VI>>1*+> = (i,1;1,0]1,i) (tt] IvVo) Mir) = ~ (el MVo) |

1122/

<TTo@R2) VO (O) | TT+ (K1)> = /2 <IT+(k2)|V3~(0) [ (KD> /123/

Using the translational

invariance formula /15/ and Lorentz invariance re-
quirements,

we find that the most general expression for the matrix elements
of VBe=(x)and V3 A(X) is

i (k2-ki)x
<TTo@K2) VA *GQIT+ (k1) > ©

@m)3 /4E~E2
| olk2-kix

> - N+ 4(q2)(k2-ki) /1257
erys sag1e2- 1A K2k, (a2 )

fiaz)(k2ek1) + X ko-kpy 7124/

<+ (k2) M3/A Q)T+ (K1) >
In eq./124/ and /125/ W labels the weak, V the

and gq = (k9-k,) « In the
/123/ - /125/,

isovector pion form factors,

isospin symmetry limit we have, according to eq.

2

finite2) for ,“ <o /i = 172/ 7126/
The conservation of the isospin current V3 leads to f2(@3) =0 for
all g3 <0 , and integration of eq. /125/ over x gives f/Co) =1 =
Then eq. /123/ says that in the isospin symmetry limit
f3(@) = /7 , f2(@2)=o0 /127/
Neglecting the small effects of isospin symmetry violation and taking
f3(2) = fA@©)

in the small physical region m3 <q3 £(m™+ - m™0)3

of the w- mu® e+ decay, we see that in the decay rate formula

for this
decay no unknown quantity remains; in particular |gcv]| = J|oy | is known from
nuclear  decay. The calculation of the decay rate then gives
Fare s u° e+ v ) A
—— - S - - = (1,07 + 0,003)10 8
y* > 1 v)exp

in good agreement with the purely experimental rate /119/.

The three successful tests of the

IVC hypothesis we discussed above
give strong evidence that this hypothesis

is correct. Other tests in nuclear
[} decay have also been made and good results were obtained (see ref. 120 in

[MD- Therefore this hypothesis may also be referred to as a theory . In
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conclusion let us make a remark on the history of the IVC theory. We have

seen that IVC leads to the conservation of the weak vector current /CVC/ of
the hadrons /eg.116/. Historically the CVC hypothesis for the weak s =0
vector current was formulated by Zeldovich and Gerstein as early as 1955, then
was rediscovered by Feynman and Gel -Mann in 1958, and later in 1958 Gell-Mann
formulated the IVC hypothesis and proposed the B12 - Clz*— N12 experiment to
test it. We shall not discuss here the consequences of the CVC theory se-
parately (e.g- eq-/118/ follows from CVC alone) because the successful IVC
theory contains all its results. Instead we shall turn to the theory of
Cabibbo, which is an extension of the IVC theory to the full hadronic current.
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IV. THE LEPTONIC DECAYS OF THE HADRONS. THE OCTET CURRENT THEORY OF CABIBBO
81. The octet current

In the IVC theory the V@-~° current bears the strong interaction
quantqm numbers gs, S, I, 1, ; YEB+S 1QZIZ+ % Y 3 of a t~ meson. The
VA= ] operator has then the quantum numbers of a w+ meson, whereas
the V., current, which is the third component of the isotriplet current
operator /87/, has the quantum numbers of a it meson. It is natural to ask
whether the V~°© current and its adjoint have definite strong interaction

quantum numbers or not. Up to now we know only that Q = -1 for all the
components of , hence also for V~°©° e This follows from the fact
that we supposed that a full weak current J = + j, exists, and that j
lowers the electric charge by one unit according to eg/%/. OF course then
hf°) has Q = + 1.

In 1962 Gell-Mann discovered the SU(3) group to be an approximate
internal symmetry group of the strong interaction. In this context the 8
pseudoscala.r mesons T ,m ,m°; K+ ,K°; K°,K ;A transform according to the
irreducible, 8 dimensional octet'™) representation of the SU(3) group. The
meson octet is a supermultiplet from the point of view of the Su(2) isospin
group, which is a subgroup of the SU(3) group of Gell-Mann. The SU () sym-
metry is broken in Nature, as shown,for instance by the large mass differ-
ences between those members of the meson octet which belong to different iso-
multiplets. Nevertheless, the concept of the SU (3) symmetry proved to be a
very useful one in many respects. For details and applications in strong
interaction the reader is referred to [Z] .

In 1963 Cabibbo suggested that the va ° " V3 /11 " (VA °)
isotriplet operators be as the T , 11°, m members of at irreducible SU(3)

octet operator, and that attempts be made to identify the 5 missing components
with physically interpretable currents. He proposed to include in this octet the
current with the quantum numbers of the K meson, which is the only Q = -1
member of the pseudoscaler meson octet with non-zero strangeness. Then (v/°
will obviously have the quantum numbers of the K+ meson. Moreover, the n
component of this octet operator is known to be proportional to the hyper-
charge current Y~ [Z] , Finally, the K° and K° components are not known

to take part directly in physical interactions.

When we discussed the IVC hypothesis, we saw that the space integrals
of the V~ o currents i = »,2,3) gave the generators of the su(2) group.
Similarly, the vector octet of Cabibbo gives the 8 generators of the SU Q)



group, in particular the 3 isospin operators and the hypercharge operator.
The SU(3) formalism will be developed in 83 of this chapter.

Up to now nothing has been said about the possible internal symmetry
properties of the axial hadron currents. Cabibbo supposed that their internal
symmetry structure may be the same as that of the corresponding vector cur-
rents, i.e. he supposed that the A@~°,4 A , AKA° , ng\°)+ currents
are also members of an irreducible octet operator of the SU (3 group, namely
they are the -, uwt, K- and K+ components of this octet. Of course the

#° and g components of the axial octet, are now axial currents, and have
nothing to do with the isospin and hypercharge currents. Together with the
two other neutral K°, K° axial currents of this octet, they are not known
to have direct physical meaning. This unfortunate situation will be reflected
in the fact that while the form factors of the vector currents V@7, V~/°
will be connected by the W-E theorem "(applied to SU () not only between them
selves but al?o with the isovector V —A angigsoscalar ¢7§ VH,A_: 3 YXJ
electromagnetic form factors, the A™N °© and AN form factors will be con
nected by SU(3) only with each other.

Another important difference between the vector octet ~ and the
axial octet A ~ (G =1,2...,8 labels the hermitean components of thes<
currents) is that,while 3» VA, 2(x)=0 for i1 =1,2,3 1inexact SU Q@) limi t
and for i1 =1,2,...,8 in exact SU(3) limit, no such conservation laws are
expected to hold for the axial currents. However, an approximate relation
leading to the notion of the partially conserved axial current (PCAC) has
been introduced with considerable success for the divergence of the axial
octet too ”~see chapter V).

Let us now turn to the experimental verification of the consequences
of the Cabibbo theory. All these consequences can be deduced from the W-E
theorem. It is cuBto.mary, however, to divide the results into to groups:
the selection rules, which in fact arise because some of the SU 13) Clebsch--
-Gordan coefficients are zero, but which can be deduced without the cumber-
some SU(3) technics; and the intensity rules, where the full SU (@) apparatu
is needed.

In 8 we shall deduce the selection rules not only for the leptonic
hadron decays H = h v , but also tor the non leptonic decays W & H-*
In both cases we shall suppose that the decays are induced by the current-cur
rent Lagrangean /4 / and that the hadronic weak current is composed from the
vector and axial octets of Cabibbo. Then in 8 we shall look at the intensity
rules in the leptonic decays of the hadrons. The applicability of the theory
of Cabibbo (in fact even of the current-current theory in general) to non-
-leptonic decays is dubious, and these decays will be only briefly discussed
in the next chapter.



When deriving the selection rules, we shall often refer to the relation
AQ = Al + 1 AS , /129%/

which of course holds both for the H H® Av and H H® processes. In
eq-11291 and below AX E XH,-XH, where XH stands for a strong interaction
quantum number of the hadron (or hadrons) H . Eq./129/ follows from the already
mentioned relation

Q=1 +\ B+Y9) /130/

valid for any individual hadron, and from the fact that in all weak process

0B =8B,, - B, =0 . Indeed, the lepton current does not change the baryon number

and the total baryon charge is absolutely conserved. Furthermore, in H #@H*"
decays AQ = -1 , since the lepton current does change the electric charge by
T1. In H #a H" decays we have of course AQ =wn .

§2. Selection rules for weak hadron decays. (Theory and experiments)

Let us discuss Tfirst the selection rules for the H =* H"Av decays.
The hadronic part of these decays is described by the <H"|j~|H>

matrix element for AQ = +1 , and by <H"|Jh;lh> for AQ = -1 . For

AS = 0 we find then from eq./129/ that Alz=AQ = + 1. To find the possible
values of Al E IH’ - h , we must remember that inthe Cabibbo theory the

S = 0 currents transform like the w and u« mesons, hence they have
1=1. Then from 1® IH =, (i™ - IDOIHO(IH+ I) we find that Al = -1, 0, 1 .
The Al = 0 case occurs e.gq- in the n -apev and aV w0 e ve(ve) decays-,
Al = -1 in the 1" @mAe ve’ve) decays. The Al = +1 H < H"Av decays are

forbidden by energy conservation.

The AS ¢ O H “mH"Av decays are induced by the K+ ®=0, S=+1, 1=,

1z =t Yy =41, Q =+0 and the K~(b=0, S=-1, I=t, Ilz=~]; Y=-1, Q=-1)
components of the Cabibbo current. Thus we have AS = AQ = +1, Alz ="

for <H"]|j*+ |H> ,and AS = AQ = -1, Al = -] for <H"|J*|H>.

In both cases Al = - is possible asseenfrom the 1 @ i1 = ~H-70
relation. The Al = + ~ case occurs e.g.- in the AS= AQ = +1 A - pe~ vg
decay and in the AS = AQ = -1 K+ & u®> A+ ve decay, while Al = — in

the E ne VvE and K @&A v decays.

Let us now find the selection rules for the H H®* decays. In the
current-current theory these decays are described by the



h h Jm +JX jhlh> 1131/

matrix element. The selection rules for the Cabibbo theory can then be deduc-
ed looking at the direct product of the type

@ + KDEAT + K-) = w+ 9 + TRO K- + K+ ® o’ + K+0 K . /132/

The first and the last term give AS=0 transitions. It is easy to
see that AS =0 decays are forbidden by energy conservation (e.g-
N -/?pTT, z -b-hv, Z ~b~NK etc.). Thus we are left with the wt YK case

which gives AS = -1 transitions with Alz =72 and Al = - , and
with the K+0 w” case, which gives AS = +1, Alz = - Al = 1 , I A
transitions. The Al = - transitions cannot occur because no hadron with

I > ~ quantum number exists among the elementary particles (Wwe do not con-
sider the resonances in these notes).

In table 6 we gathered the possible changes of the strong interaction
quantum numbers for the weak hadron decays allowed by the Cabibbo theory and
by energy conservation. It is left to the reader to verify in his Particle
Data Tables that all the allowed decays are indeed observed with normal
rates. We shall deal here with the complementary test of Cabibbo®"s selection
rules: namely, we shall look at the decays which are energetically allowed,
but forbidden in the Cabibbo theory.

Table 6.
Selection rules for energetically allowed hadron decays
H H"kv decays H % H" decays
As = 0 AS & O AS ¢ O
AQ m O AS - AQ =1 AS = 1
Al, =AQ = -1 - §40=* 5 AIZ:—EAS:+Q
&
AT mp RO T =E 41 - +§, +1
The AS =0 H #H"Ev decays are irrelevant in this respect,
since all the selection rules except Al = -1, 0, +1 come in this case

simply from the general(not necessarily octet)current-current theory and
eq./129/. Thus JAl] <1 is here the only specific prediction of the Cabibbo



theory, but unfortunately it follows also from energy conservation if AS = 0.

On the contrary, for the AS ¢© O H + H"Zv decays we find non
trival results. As we see from table 6, -AS = AQ = + 1 transitions (or,
which is the same, AlZ = + j transitions), AS = 2 transitions and

IAl'1 ~ \ transitions are forbidden if the Cabibbo theory holds. The experi-
mental results for the I (-AS = AQ : FT(AS = AQ) ratios are:

r(l+ ne+ v): T ->ne v ~ 0,4.10 2

r¢z¢ oyt )l r(t oy )£ 5.1072 7133/

Moreover, 264 K4k T«ﬂb T e_f:v (AS = AQ) events have been found against zero
K+ mm™ ™ e Vv (-AS = AQ)event. In K° decays also only a small -AS = AQ
impurity may be present according to the experimental results. Concerning
the AS ¢ 2 rule in the H H*fcv  decays, the following branchings ratios
have been measured:

AS = 2 decays AS = 1 decay
R(H° @pe~ v)1< 1,3.10"3 r@" =Nle" v)= (0,63 t 0,23).10"3

R(H®  PU~ v)1< 1,3.10-3 /1347

It would be desirable to lower the upper limit for the AS = 2
decays. However if we take into consideration the fact that these decays
have a larger phase space than the E- Ae~ v decay, these results are
already an indication in favour of the Cabibbo theory.

Finally, for the non leptonic H H* decays, the AS = 2 5 >\t
decays are energetically allowed but forbidden by the Cabibbo theory. The
experimental I(AS = 2) : I'(AS = 1) ratios are

r. mr) T mY) < 1,1.10-3

r(eO<+ pr~) - r(H°® ®» /iT) < 0,9.10 "3 /135/

This result is in favour of the applicability of the Cabibbo theory to the
H #m H* decays. However, as seen from table 6, this theory predicts the pos-
sibility of Al = + ;\ in non-leptonic decays”, while all the experimental
results show that the Al = + amplitude is strongly damped as compared
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with the =" amplitude. From the point of view of the Cabibbo theory,
this seems to be a dynamical accident. We shall return to this problem in
chapter V.

83. Current algebra relations and Wigher-Eckart theorem for SUQ®)

As we noticed already, for the discussion of the intensity rules in
the leptonic decays of the hadrons, the SU(3) formalism must be applied.
As well known [4], the hermitean generators of the SU () group
mw/m =1, 2,...,8) satisfy the commutation rules

Lg, Wl =i fo<i, o,  /s.k,i = 1,2,...,8/ /136/

where the nonzero components of the totally antisymmetric structure constants
£sM  arel

ski 123 147 156 246 257 345 367 458 678
Fski 1 172 -1/2 172 172 172 -1/2 /372 /372

The three generators 10 Ig form an SU (@) subgroup and are iden-
tified with the isospin operators, while |Ig 1is proportional to the hyper-
charge operator Y

/138/

The eight generators 1~ are the hermitean components of an irredu-
cible SU(3) octet. We shall denote the hermitean components of an SU(3)
octet operator in general by T"8 , and its spherical components by T8v)

The relations between these components and the correspondence of the spherical
components to the physical quantum numbers Y, I, 1 are given in table 7.

In the same table we give also the state vectors of the pseudoscalar meson
octet |P(v> . Thus e.g. |P(7)> = -|K*> IB(7ji> = |S°> . The sign
convention is that of de Swart [4]. Other sign conventions are also used in
the literature and this may lead to unessential differences in the sign of
some amplitudes.

The generators 1~ are space"integrals of the time components of
vector currents X)) -

1+ (1) = Jdx V##O(X,t) . 7139/

In exact SU(3) limit the I~Ct) are of course time independent. If SU(3) is
violated, the equal time SU(3) commutation rules



Ik (©J = i fskt 1/t) 7140/

are still supposed to hold. The currents V1fA (xX) are, by definition, octet
operators of SU(3):

tsto” Vkrx~t)] 1 fsdi, V£,A(X’t)i /141/
Table 7.
UGB labels
\Y 1 2 3 4 5 6 7 8
122 kb7h o % o oo0.1-icoo -1.b.7)
13Y)) -K+ -K° -n+ -T° iT n -K°® K"
BQ) -p -n -Z+ z° A 0
ATg 7AT8 T8 B  zLrs
L5191 15 6+i7 /1 1+12 *5 /2 1-12 8 /2 6-17 /214-i5

The last row reads: Tg): /8 Tg} , etc.

We notice that from eq. "Il &.. /140/ follows, but not vice-versa.
Any (x) with the property J'dx &K ~(x,t) = 0 could be added to /141/ and
eq. 7140/ still would be true, even iIf O \(x) 1is not an SU @) octet.

According to Cabibbo, the n and K components /see table 7/ of
the current O'iifl(x) are proportional to the weak S =0 and S ¢ O
vector currents of the hadrons. Furthermore, the weak axial currents are also
supposed to be components of an axial octet Al,A(X) :

- 1 £skl /142/

Eq. /142/ do not normalize the A1 A(x) currents. Such a normalization 1is
t
provided if we suppose with Gell-Mann that the axial charges

1*(0 = ~dx A+ (X,t) 7143/

satisfy with the currents the following communitation rules:
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—
1l

k VI' Akg(2Tb)] 1 £skt )’ /144~/

Let us stress that eq. /144/ and /144 / are new and strong conditions, the
consequences of which need further theoretical and experimental verification.
Only in a few special theoretical models (e.g. in the quark model) are these

relations automatically satisfied. Since VkI is normalized by eq. /139/ -
/141/, ~ is also normalized by eq. /143/ and /144/. However”~the sign of
ANy is not determined by these relations: -An ~ is also a solution if
AN N is. For ~ even the sign is fixed by the relations /139/ - /141/.

Integration of eq. /142/ and /144%/ for X = 0 over x yields com-
mutation rules between the charges I1-7t) and 1™ A(t) . Together with eqg.
/140/ this system of commutators is easily seen to generate an SU(3) @ SU()
group. Indeed, introducing the *chiral charges”

, )="1x2M®O = 1LA(Y)) , /145/

one arrives to the commutations rules

M1t)] = i fskt ~\t)
K w- Ubl] - 1 fskl -
[fg(®, 1"TY] =0 7146/

The Cabibbo current can now be written in the following way /see
table 7/ :

JHXAX A = Cv(VIEL,X™X) -1 V2,X™"X0 + Ca AL, XXM 1 A2,X”X ) +

+ AYYA,XAXA “ 1VE XKD + 0a (R4, XMXA” 1 A5 ,XA) mi1l411

Since all the operators A~ , Ai N are now normalized, the coefficients
Cv g and dyA are measurable in principle. We have already seen that
cv =gv : g =0,9778 + 0,0018when we discussed the IVC theory. This result

followed from the fact that if we neglect su(2) violation effects, then
F~ (O™ = 1 because of current conservation. For the other coefficients the
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Situation is more complicated, because the axial currents are not conserved,
and the SU(3) violation effects may substantially modify the form factors

of the s ¢ O vector current. On the other hand, the experimental data on
weak decays are not good enough for the conjoint determination of these
coefficients and of the form factors. Thus theoretical hypotheses which re-
duce the number of the free parameters are we]corned. Such a hypothesis is

the "universality of the weak current”. In its modern form /Gell-Mann, Physics
1, 63 1964/ this hypothesis is based on the observation that it is possible

to choose the constants «c¢v, cg, dy, dA in the hadron current so that the
full hadronic + leptonic weak currerl take the universal form

V x)=2€Lax>- 1 c2,Xx(X)) 11481

where the currents len(é) , COrA(X) are such that the ch%rges CLCt)45
X cXx Q(X,t), c2(t) = \dx c2 Q(x,t) and c3(t) s -ICjCt.), c2Ct)d
satisfy SU(2) communitation relations:

[csCO , ck () = i eskE c/~Ct), /s,k,1 = 1,2,3/ . 7149/

The condition of the universality turns out to be:

27,2 - 2, .2
CV CATdV dA oV +dV =1=CA+dA /150/
then with cy=cos 0 the hadron current takes the form
JHA = 2 COSOIVIIX - 1 V2¥D + 51nOK!x "™ 1 Vs!}
E2gi, - T¢gh, /151/
where
Vi@ = BYns * A5 x 7152/
In eq.-/150/ and from now on we shall suppose that cv g and are

real numbers. This means that the small T violation effects are neglected.

Thus if the weak current is universal, then only the V. , + A. .
combination appears iIn the hadron current. By an unfortunate mismatch be-
tween the generally accepted "nomenclature and notation, this combination is
usually called V-A and not V+A coupling. The angle in eq. /151/ is called
the angle of Cabibbo. We shall discuss the universality hypothesis in more
detail in 85 of this chapter.

The matrix elements of the JHA current between hadron states can
now be related with each other through the W-E theorem. Some remarks on the

peculiarities of this theorem in the SU(3) case will now be given.
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It is well known that the SU (@) group has one and only one.irreduc-
ible representation of any dimension n= 2j+1 = 1,2,.._,k,.., and that in
the direct product of any two irreducible representations j» and j2 £ j»
the irreducible representations -j2 , -jJ2+1,..., + jJ2 occur
once and only once. For SU(n) groups with n £ 3 the situation is more
complicated. Inequivalent irreducible representations of the same dimension
may exist, and in a direct product of two irreducible representations the same
irreducible representation may enter more than once. For example, in SU Q)
two inequivalent irreducible representations of dimension 3 exists, the 3 and
3* . Also 10 and 10X are inequivalent. Furthermore, in the direct product
8® 8 the 8 occurs twice:

88 =10 8d© 88© 10© 100 © 27 /1537

The indices a and s mean that 8d is constructed with the help of the
fully antisymmetric SU(3) tensor /R > n ®k " while

8s N 8" 8 , where d~rn  is a fully symmetric constant tensor. As a
consequence, in the W-E theorem for SU(3) several reduced matrix elements
may belong to the same irreducible representations y2, y, y:

2y
() 1/Y /154/

if the representation Y2 1is contained in the direct product y*® y n times,
then y takes n different "values'". In particular, if YW=y =y2 =28,
then, according to eq./153/ we have

81 T* /155/

The SU (@) Clebsch-Gordon coefficients may be factorized in the following way:

The second factor on the right hand side of eq. /156/ is called the isoscalar
factor. It does not depend on the quantum numbers 1~ , 1 , 1z2 , these are
contained only in the known SU(@) clebsch. The isoscalar factors has been
tabulated by de Swart for the most important representations. They are also
given in the Particle Properties Tables [7]. For the octet (and also for the

decuplet) it is costumary to design v, V2 in the Clebsch-Gordan
coefficients by the corresponding parii.de of the meson octet for and
of the baryon octet for v and V2 . To give an example, according to

table 7 and eq. /156/ we find for v*=3 , v=6 and v2=3 ’ i*e* f°r
Y1111zl = Oil, Yllz = 000 and Y21212Z = 0il :
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~ 8 8y~ 8 8y\
I8 \ . (8 EQ@ N E+)= (IIT 00[11)(» Ale)y /157/

jg 6 3 dm=\,11 000 Oil)

The isoscalar factor @ AD a

8 8 8a\ 8
\ 8
- 71r /158/
3 6 3 =0°-" 13 6 /
Let us still note the following symmetry property of the SU(3) clebsches:
Y /\2y 1 Mo YZy b
0 5, = ii /159/
Vioovs Vi v2 )
for yx=y =28 K =+ if py
- _ i = ¥ or 8a.
SL 1 if y2y
It is now easy to apply the W-E theorem to the hadronic matrix ele-
ments which turn up in the P #aAv , P2 P1 a3 B2 B1

decays. If the universality of the weak interactions is supposed, then
is taken from eq. /515/. In practice one often uses a weakened form of the
universality hypothesis. Namely, one supposes that
c2 + 7160/
Vv
but one does not require Cp = - Then the hadron current may be written
in the form

JHX = cosOv(VI,A ~ 1v2,x) + cosOa(ALl,X "™ 1 a2,x) +
+ sinOv(v4 _x - 1 V5;X) + sInOA(A4_ x - 1 A5_X) ; /161/

now the universality in the sense of eq. /149/ does not hold, but still we
have a case where the "total strength” R+ d'z, cﬁ + d*  of the vector
and axial currents is the same as for the case of the universal current.
Below/ we shall see that the experimental results leave open the possibility
for 0O = Gy < However, we shall derive our results using the general nota
tion, and then impose the weakened or. precise form of universality and cal-
culate sinGy o or sinG.

8. Intensity rules for weak leptonic hadron decays. Theory and experiment

1. The__p_+ £y  decays

In the exact SU (3 symmetry limit the matrix elements <0]J**(0)]|u (P)>
and <O0]|jjMA0) K (p)> may be easily connected through the W-E theorem
The vacuum is supposed to be an SU(3) singlet. Then
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<O0l§Ex©) P (p)> = c, - Ta 1?7 __(p))-=

0.0 T X T 7
AL 1 011° 000 s ~HIAROTIBR)-
= x CA (XI1K@to) 1]8p) 7162/
<o [jh™co) |K"(p)> = dT -/? A8 ©

0 0 O K ,X pk-Cp )

8 8
= —»T d, 1 1 JAFO 18 =
-1 b -b 101 1 000

= - f dft (111A8(0)]18p) 7163/

On the other hand, in chapter Il we have given these matrix elements for the
physical (not exactly SU(3) symmetric) cases

ip
<0 JHt()I1*-(P1,)> - -~y372 f@") . /164/

<o|JH]| (@) [K-(pk)> = e -A=lr *(»£) . 7165/

and the absolute values of f(m?) and oM could be calculated from
the experimental values of the n ayv , K @yv and y ew decay
rates, because, as we know,

F?) = —~ 7 *(E) /166/

The two expressions /162/ and /164/ for the <O PHX (O) [r’» matrix element
can be equated to each other if we go in eq. /164/ to the SU @) symmetry
limit. Then, of course

PrT,X ) — £(m2) , 7167/
/zE%
similarly
YK, X .
=r *(I»2 - /168/
son K ) gt 2

m is the unknown, common SU(@) symmetric mass of the pseudoscalar octet,
and we have taken into account that the functional form of f and ¢ may
also change. Eq. 7162/ - /165/, /167/ and /168/ then give



A D oe@2)

CA f(n2)

/169/

If we suppose that when going to the SU(3) limit T ~ and ¢ )
or at least their ratio remain unchanged, we find

dA = od@m2) = o) = Fk _ /170/
CA f(m2) f(mj) Fu
From the experimental value of ™ : | we get then
d
- - =+ (0,27545 - 0,00038 ) /171/
CA \Y J

And with the universality hypothesis
sin g = £(0,2655 * 0,0006) /171" /

Of course this and the following similar results are valid only in
the approximation if the SU(3) breaking effects in the form factors can be
neglected. In general we shall always be forced to adopt this hypothesis, be-
cause no reliable method for the calculation of the breaking effects is known.
As a measure for the expected deviations caused by the SU (3) breaking the
relative mass breaking in the baryon octet can be used; then (10  30) % de-
partures from the symmetry limit are possible.

2/ The__ E2--- decay

The comparison of the T @i ev and K’ a fitev decay rates
gives the value of cv ] much in the same way as « & and K Ev
gave |dft ; cgq] above. In the exact SU(3)limit we have

<TTo2) JHX Q)| (K1) > = cv<p 0(k2)|/? V8_(0)|-P +(kx)> =

= -/21 h \ ®0) (B"21p~(0)]IBkD s +
.y 1= *o)(8k2IIVX<° )l Ha] =
=-Nov 8RINBQO) I Bkg™ /172/

/The first clebsh is zero./ Similarly, we find

<ire(k2) |HX(0) [K+(kD)> =

--hVv [N @uAaiBds+7T @K Q Bd) 7173/



The most general form of the reduced matrix-elements is (see for comparison
eq. /124/) :

8k2 | [ve(0)1]8k1 = (O3 g S(@2x k2tkDx + f-,S(@2)(k2-ki); 7174/
a,s /4E1 E2"
From 3% W’\(x) =0 we find

ff(g2) = fI1(g2) = o for g2 <o /175/

and from the relation

Jdx < (k2) [v370 (x0)|ir'(kl)> = 6(k2 - k™) =

= M"x[_+ 8 ) (8k2 IN07X "0) 1]8kida = A F+(°) 6(k2 “ EI) 7176/
\T 1° T /
and from a similar relation for ~dx<ff+ |[Yq(x,0) |[r> =20 we get
~rf+(0) =1, f+(0) =0 /177/

Thus at g2 = 0 we have in the Su(3) limit:

<10 (K2) PHX(®) NTHKiD) > = - ~ cv &2 + KDA

<n°(K2) |HX(O)|K+(KL)> = - Ardv /12~ — T-&2 + kD)x * 7178/

On the other hand, for the physical case we have from Lorentz invariance

<ne(k70) [HX(O) pr+ (kTr)> = = N F+AXV O +V) o+ F2X\ 0 -
/4ER Eq,
7179/

<-°Ck70) 1JHx (0) K~ kk)> - 1 6 2X\0o + kk) + F-(g2) (40 - kk)
J4ETO EK L X X

- /180/
~The factor 1/2 introduced into eq- /180/ will be convenient. ) In the phys-
ical case f~(q2) , f~(gq2) are not necessarily zero. However they are
always multiplied by ~k2 - ki)™ = (ke + kv) twhich gives a factor me
when multiplied by the lepton current. Thus, unless (g2) , Ttk (@2)
are very large, (and this is very unlikely since they are zero in the SU(3)
limit), they can be suraly neglected. Then the physical decay rates are
determined by f+(q2) and ~(g2) . The physical region of



q2 for f~(g2) 1is so small that the q2 dependence may be neglected. For
f~(g2) the experimental analysis yields

f*(q2) = f+(0)/1 + -A-N1 » *+ = (0,020 + 0,005) . /181/
- "W o/
Thus X+ is small and in good approximation we can take ¥/~(g2) = f+(0)
Then, if we suppose that when goingxto the SU(3) limit f~(0) and ¥Yo.)
(or at least their ratio) remain unchanged, we find from eq. /177/ - /180/
that

d f*(o f+(o
SO ) /1827
cv f+ () f »
From the measured K+ 7°ev decay ratex we find
- — =1(0,2364 - 0,0032) sinG =-(0,230 - 0,003) /183/

°V

If the q0 dependence of f5€§2> is taken into account according
to eq. /181/, one finds

= +(0,2516 + 0,0087) sinG  =%(0,224 - 0,008) /183"/
CcVv

3/ The_B~ _B2 fv decays

Let us remind the reader that a value for cv = gy/g has already
been derived from the experimental value of the coupling constant gv meas-
ured in superallowed nuclear Fermi decays and from the muon life time,
which gives ¢ . Supposing that sign gv = sign g we find from eq. /45/ and
174/

cv = 0,9778 £ 0,0018 sinGv =1(0,2095 * 0,0086 ) /184/

It is also possible - at least in principle - to derive the values
of cv,cA, dv, dA from the"leptonic baryon decays and from the muon decay
which gives again g¢g. Indeed, in these décays both AS =0 and AS = -1
transitions occur, and in both of them vector and axial parts may be present,
However, because of experimental and theoretical uncertainties, this program
cannot be carried out completely at present. The point is that even in the

XThe value of ~(0) is(known from IVC better, than from direct
T+ mev experiments.
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exact SU@) Llimit we have 12 form factors, ,and many auxiliary hypotheses
have to be introduced to reduce the number of the unknown parameters. Below

we shall outline how this analysis of the B* Av  data may be done.

The hadronic matrix elements of the B~ B2 decays contain in
most cases the adjoint of the operator JH”. In exact SU(C3) limit we
find

< @2)E2DLihx ()b i)Cpi)>

“ _*A<Bb  Cp2|Cy + dV VK+,X(0) + CA A°+,X(0,+dA 4 ~ 0)B (vi)(PI)> =
8y 8 8y
vV \v + dy vi K (P2) Ilvx (o> 1 |[BCP )Y +
sy \ /8 8 8y

v2/7+ dAUX K+ v2 (B (p2) 1TIAn(0) 118 (Pi)) 7185/

A similar expression holds for the matrix element <BMNV ~(p2) 172°) | BAvAM(Px)
with -/7 ST, t+ %t~ and K+ @ K _ (The constants Cy, ca, d*, dA
are real if T violation is neglected.) /

The reduced matrix elements in eq. /185/ may be explicited in the

usual way:
S(p2) Y Ff'd (a2)-i0 @2 ~P1 )y ,d/ 2" b~ PI)x f, d/Zi' B(P')
B(p2)I w0 B(PI
(p2)1 IW@O)] IB( a.s (Zt)372YX1 W 7 16Xv 2™ \q ) Cre
7186/
) f,d/2N €2 POV nffd /72X £2 PN ,F,d, 2i B(PI)
(P2) 11An IB(PIDN s ~3/2 Hi / iaXv~-~"M-—-H2 Xy /+ 2M H3 g /1Y5W .

In these equations the ,,f form factors correspond to the y = a case, the
,,d' form factors to the y = s case. These labels refer to the antisymmetric
fikE and to the symmetric couplings. M stands for the unknown mass
of the baryon octet in the exact SU (3 limit. Notice that in that limit the
equality

<B(v2) (P2)1ITIX(O0, IB (v (P1)> = <B (vp (P1) WHX FOI v/ p 2> * 7188/

applied e.g. to the |BOV(pD> = ~\p(pD)>" = “In (P2)>
case leads to the reality conditions

G eI MO I1BPD)a s = 6 @eDllab @)l ®1) s 7189/
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or, expressed in terms of the form factors, to

\
F~ (q2) - FF;T(g2)* F3,d(g2) - -F3,d(@2)" , zui/
H1:3(42) - Hi;d&X)* > H2 ,d(g2) = -H*"d (g2)*. 7192/
All the hadronic matrix elements of the possible “a B2 decays can

now be easily written down in the exact SU(3) limit. For the neutron decay
we find (see table 7 and eq. /185/)

<P(P2HIISXW) In(PI5> ” <-Bp(P2"IHX(O)I'Bn (pi;)y =

« Ao G & oY BN B (), ¢

FON, & 8)EEDMOI IBED), /193/

From the Particle Data Tables
G H DD=U-1 o011

(-T1—17’r fory =a

for Y =5 /194/

Introducing the shorthand notations

(B(p2) 11ve(0) 1B (PI)) 5va's, (8(p2) I]A®(0)] |B(P1)) = Aa"s, /195/
<p(P2) IMHX Mn @ D> E <plj+ >, 7196/

we obtain for the n =ap matrix element, and by a similar calculation for
the other matrix elements, the following expressions:
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<pli+|In> = cv Va+ (FVs) + cA(~Aa + (I As

<TBU+1E~> = cv "0 + Vs™+ .. V + A
<Aljl1Z+> = -IflVsj + ............ Vi A
<Z°|j+|L>=cv]]] va+ O0O~+ _..... V-*-A
<E°|jt |Is'"> = Jjrva + 8 VS + ... \ -A
<p U+ 11> = dy 7Y va - Vsj + - ..V WA
<n|j+ |[1-> = dv - Va +\ffvsj+ .... V~/NA
<N P+ IE*> = dy Va - Vs + ... V v A
<Z-|3+ |E™> = ANV oa+ ] Tvsj+ .... V -A
<Z+|F+|S°> = dv ~Va -)[?v8) + . .. V W
/197/
We also find, of course, that the selection rules [1™, AS=AQ, |AS|<1

are respected

NIJN+> = <Z~1J17°> = <n|J+1S*> = <plJ+15°> = 0 /198/

We shall now shortly describe how the formulae /197/ can be compared

with the experimental results. First of all, we try to go back from the SU Q)
symmetric expressions /197/ to the physical ones. To this end in the reduced
matrix elements /186/ and /187/ we put M -+ in B(p™ M in B(p2)
and 2M @M, + M. in the (_ -p-)/ 2M factors. Also we use the ap-

propriate physical, masses in the relations p

:/p

+ Mz

. The result of
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these symmetry breaking '‘corrections™ is the same as if in the physical
matrix elements of the B~ % B2 iv decays we were to insert the appropriate
SUC3) form factors in the place of the physical form factors. To give an ex-
ample, it is easy to see that the substitutions

- rd ( 2
i(q2b VJ Fi@2)
\

) 1 .f/ 2\ d, 2
i(g2b 7 THicqg ) = (T Aidg

lead from eq. /51/ to the first "corrected” eq. /197/ . In the functional
form of the form factors FA e , HFd we do not know how to break the
SU(3) symmetry, and we are forced to neglect this breaking. We shall also
neglect the q dependence of these form factors and we shall work with
their values at q = 0 . Then we have only 12 numbers to determine instead
of 12 functions. However even these are too many for the available experimen-
tal data. Thus we shall use all the possible external information on the

form factors.

The vector form factors can be easily connected with the isovector and iso-
scalar form factors. Indeed, i1f we calculate the matrix elements

<P(P2NV3 . x~ btpD> and <P(P2) if yx*)Ip (Pi)> in the SU(3) for-
malism and then compare the result with eq. /99/ and /100/ taken in the
SU(3) limit (i.e. with M ) we find

=a FA(Q2) + 3FA(G2)

i f~2)=1to2)-Fin2) /199/

From the known properties of the VS form factors we immediately find

ArFLCO0) =1 FA0) =0
N-00"=»p +5 », fFF>) - -8 wvn
FA(g2) = 0 FA(g2) = 0

(As far as SU(3) breaking effectsqare neglected, the values yP = 1,793
and yn = -1,913 are unchanged.]
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Thus in this approximation the vector current form factors are known.
Let us turn to the axial form factors. The contribution of H2 and may
be neglected. H2 is supposed to be small because it is pure imaginary in the
SU) limit (see eq. /192/) and real if time invariance holds. Notice that
the same argument is applicable to , but is zero, also due to current
conservation. F* and are also known as "second class current” form
factors, in contradistinction to F , F2 , and which belong to
“first class currents” [17™p. 408. Strong interactions cannot induce second
class current if originally only first class currents, e.g. ¢2 y® and
-2 iy y- ¢ were present in the weak hadron current. H2 is often neglect-
ed on this basis. Concerning , we know that it is multiplied by the factor
iy, .CP2~PDx/(Mi+M2) * w™en contracted with the lepton current, (P2-Pi)"
gives m™ (1 =y or e),while 1iy™ gives a factor 0<j£2|/2M2< M2-M1 ~2M2*“ Froin
PCAC H~N(0)«200H. (@) (see in the next chapter), and the factor which multiplies
it is smaller then 5.10 = for muonic decays and smaller then 5.10_5 for elec-
tron decays. Thus H. may also be neglected. The only free parameters coming
ftom the 12 form factors are then (o) and H™a(0). Together with the four
Cabibbo constants Cy, cg, d» and dA we have in this approximation six
real parameters. For convenience we shall write out the relevant formulae for
those B @B2 £v decays which are measured. Introducing the notations

ATHL(0) =F \[f H*(0) = D , 7201/

we find from eq. /186/, /187/, /195/ and /197/ the coefficients 0%, 02, O©,
given in Table 8. They correspond to the contributions of the vector, weak
magnetism, and axial vector form factors,respectively.

Table 8.
BN > B2 matrix elements in the theory of Cabibbo at q2 =0 .

Decay OL (vector) o (weak magnetism) o~ (axial)
n*p Cv Cv op ” ~n) CA(F+D)
Zx + A 0 by on 14 Ca D
AP - {? aA(F4 D)
IT n -d,, _Cv(Mp:EWnJ -dA (F-D)
57 - A (?dv 2 A Optn 11 dacr-1¢)
57 > 70 A d

2 v (2 dvCyp_yn) U dA(F-D>
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The expression for a ® B2 matrix element is now easily written down.
For instance, for the n + p decay we have

<P(P2) UHA) In<PI) > =

pP(P2) -

iy n (PD
°1 " j0Av M + M U2 1yx ¥5 o3 1202/

3Yy1

with 0~ = Cv °2 = Ccv (% - un)" and = C"F+d)and so on.

“A New Fit of the Parameters for Cabibbo®s Theory"™ has been recently
published by F. Eisele et al. in Z. Physik,225, 383 1969. The universality
hypothesis has been used both in its precise (cv = Cg = cosG, dy = dA = sinGj
"one-angle fit") and weakened (cy = cosOy, cg = cosOA, dy = sinOy, dA = sinOA;
two-angle fit) forms. The authors go beyond the approximation /202/ in two
respects. 1/ They do not neglect the H, Tform factor and calculate it from

with the help of PCAC. 2/ They take into account the q2 dependence of
the form factors in the linear approximation, and calculate the slopes in the
following way: for F"(@2) and F2(q ) the phenomenological formulae /108, v*/
are used. For H"(g2) the slope is taken to be equal to the half of the
slope of F~(g2) ,because the q2 dependence is supposed to be dominated
by the vector meson octet for F, and by the axial meson octet for H._,
and the ratio of the masses squa}ed is M 2A 1 22 . The slope o} H3
is then calculated” from that of using PCAC. Thus no new free parameters
are introduced into the theory, all the slopes are "known™. We notice that the
authors apply the Su(3) formalism only at the point g2 = 0 , the slopes are
not splitted into "f' and "d" parts.

The experimental input data of the "New Fit" are given in Table 9.
The fitted values of the free parameters in the case of the one-angle fit
(confidence level = 51 %) are

0

0,239 - 0,006 sin® = 0,2367 - 0,0058

F 0,488 - 0,020 D =0,743 = 0,020 /203/

while for the two-angle fit (confidence level 45 %) they are

©ov = 0,232 - 0,013 sinbv =0,2299 + C,0126
OA = 0,250 - 0,018 SinGA =0,2474 - 0,0174
F =0,478 + 0,023 D =0,757 + 0,028 /2047

The predicted values of the input data for the one-angle fit are also
given iIn Table 9. The agreement with the experimental values is quite good.



Table 9

Experimental data and prediction of the Cabibbo theory for leptonic baryon decays

Branching ratios o3 - o1
Decay _

Experiment Theory Experiment Theory
n mpev 100 % 100 % 1,23 + 0,01 1,23
1- = Aev 6/04 + 0,60 .10"5 6,4.10~-5 °1 :1°3=-0,29 % 0,20 o9 -3 « g
Z+ a Aev 2,11 + 0,45 .10~5 1,9.10~5 - °1 :°3 =0

097 + 0,22

A mpev 8,50 + 0,81 .10-4 8,8.10-4 a-~/ - 0:44 0,73
A = pyv 1,35 =+ 0,60 .10-4 1,45.10™4 - 0,73
IT = nev 1,100 +0,048 ,104 1,06.10"3 o3 = opgx °*28 - or .1t -0,26
Z_ * nyv 4,51 £ 0,45 .10"4 5,0.10~4 - -0,26
S~ - Aev 9,° =~ ¥i°"4 5,5.10~4 - 0,24
E" v Z°ev -3-0-10"4 0,8.104 - 1,23
Fitted parameters: 0 = 65 = OV = C,239 * 0,006 F = 0,488 + 0,020

+
0,743 = 0,020



Only the S- % E°i—v branching ratio has a discrepancy exeeding 3 standard
deviations. The different measured energy and angular distributions compare
also very well with the theoretical distributions, calculated with the fitted
parameters.

Nevertheless, one should keep an open mind concerning the good results
of this "new fit". The ambiguity of the present situation is well illustrated
by the values of the Cabibbo angle, calculated from various sources /Table 10/.

Table 10.
The values of the Cabibbo angle calculated from the decays of
mesons (@), nuclei (n) and baryons (B)
Transition Fitted -
involved quantities Cabibbo angle
=
K vV i sino® = 0,2655 + 0,0006
dAw CA
T My
XK @ TIiy S W
T ey dv 1 Cv smq/—OJM-iOﬁ%
Superallowed
nuclear Fermi cv sin0” = 0,2095 + 0,0086
transitions
Leptonic decays <~ ° 8y 8, sino® = 0,2299 + 0,0126
of the baryon sin0O® = 0,2474 + 0,0174
octet F 4D ,0=0,,=0,, sinOB = 0,2367 + 0,0058
X

T+ irev calculated from IVC. The s/alue of sinGM corresponds
to X = 0,02 (see the text).

These values are compatible with each other if we take into account the
imperfection of our theoretical methods, namely the lack of a consistent
theory of the breaking of the SU (3) symmetry. Since the SU(3) breaking effects
may give corrections of the order of 20%, it is impossible to see whether

the SU(3) current theory of Cabibbo and Gell-Mann 1is itself only approxi-
mately valid, or whether it is basically correct and the 20% discrepancies be-
twen the values of the Cabibbo angle are due only to the uncalculable SU Q)
breaking. If the mechanism of this breaking will be found, then the Cabibbo-
-Gell-Mann theory may be more precisely tested and if needed modified. We can
go then from the 20% level of precision to the 2% level, i.e. to the level

of the SU(2) breaking effects and of the radiative corrections, which are also
uncalculable at present. Thus our conclusion is that,although the basic ideas



of the SU(3) current theory and of the universality of the weak current may
be correct, it is illusory to test them with a precision which exceeds the
level of the precision of the available symmetry breaking mechanism. Further
progress in the SU () theory of the weak interaction hinges on the progress
in the theory of the symmetry breaking.

In obtaining the various values of the Cabibbo angles given in
table 10 we neglected the SU(3) breaking in the form factors. It is also
possible to introduce a unique Cabibbo angle 0 and to attribute the source
of the discrepancies in table 10 to the form factors. Then O is usually
called the bare Cabibbo angle, while the angles in table 10 are called«the
renormalized Cabibbo angles. See e.g. [8], chapter 5.

85. The universality hypothesis

As we mentioned already in chapter 111, §l, the universality hypothc-
esis in the framework of the IVC theory consisted in the requirement that
the V® ° = Vn -1va2n current take part in the weak interaction with
the same strength as the lepton current, in full analogy with the electro-
magnetic interaction, where the current has also the same weight as
the electromagnetic lepton current. In our notation this universality hypoth-
esis simply means that

Cv =1 7205/

As we know , the experimental results show that Cv is smaller than 1 by a
few percents. This deviation is, however, of the same order of magnitude as
the radiative corrections and the SU (2 symmetry breaking effects; therefore
from this point of view the universality hypothesis /205/ can be considered
as consistent with the experimental data. A serious difficulty arises only
when strangeness changing decays are investigated. Indeed, the only natural
extension of /205/ would be to suppose that the strangeness-changing currents
are also coupled with the same strength, i.e. that

dy = 1 /206/
OF course 10 % deviations from this value would be tolerated, due to renor-

malization effects. However as we know the experimental results indicate that
dv is much smaller than 1.



A reformulation of the universality hypothesis became possible and
was offered by Gell-Mann when the octet current and the existance of two kinds

of neutrinos was discovered. The basic observation was that the weak

lepton
current with two neutrinos may be written

in the following way (i = 4e (Xb etc
IX) = eYxd - iy5ve + yyx@ " 1Y5)vy =

It is easy to verify that the leptonic Charges
cMU) = ~Ndx ™M X,1B) , c2( = ~dx c2¢") "
cCt) = —-iN(t), c2(n /208/
define an SU(2) group, and that the currents
Ci,X(x), c2,jKk» and C3,X"~,b) E -ijcj™D), c2fX(X,D)]
are the isocurrent densities for these charges.

The new universality requirement is that the weak hadron current be
also of the form

2[CL  XAX~ ™ 1 C2,X™X) 7209/

wnere ?@A,(x), cE’n ) should generate an SU(2) group of hadron charges
c’(@® /i =1,2,3/ in the same way as the lepton charges were generated by
ch and c® . It is easy to show that our octet current

JH, x=cv (vi ,X=-1V2 ,x) +CA @1 ,X-1A2,X)+dv(V4 ,X~1V5 ) +dA @4 ,X_iA5 ,x) 12107

will meet these conditions if and only if

CV=CA " 4gv =dA " CV =4 ~ 1=CA +dA /211/

This universality hypothesis is of course compatible with the experimental
result

cv = 0,9778 - 0,0018 /212/
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which is now considered not as a troublesome deviation from an exact theo-
retical value Cv = 1 ; on the contrary, it is welcomed that Cv is smaller
than but near to 1, because this gives then for

/213/

the plausible value 0O < << 1 , and both the existence and the damping
of the AS ¢ O decays is thereby accounted for.

It is important to point out that if only one kind of neutrino exist-
ed, the new universality hypothesis would indeed not work/ then we would have

jX(X) = + A"xC1 * =

27 (v, 1 - iT2) [. +
7r

2/71=1,x(x) - 1 S2,X<x) 7214/

where now the 6? n would play the role of the cﬁ n - Then the uni-
versality hypothesis would, require that the octet current /210/ enter the
weak interaction with the overall weight factor , because only in this
case would the strength of the lepton and the hadron current be the same and
only then would the full weak current have definite SU(2) properties. Due to
this extra /21 the experimental data would require cv instead

of cv 1 , and then dy = /I-c® ™ yjr . This would mean that the
strangeness-changing decays ahve the same strength as the strangeness-con-
serving ones, in contradiction with the experimental data.

Thus we see that while the old form of the universality hypothesis
/205/ must be abandoned, the new form /211/ is in agreement both with the fact

that vE£ 7~ < and with the experimental decay rates in the leptonic hadron
decays.



V. OPEN PROBLEMS

81. Basic problems

One of the most serious problems of principle in the weak interaction
is the lack of reliable methods for the calculation of higher-order weak cor-
rections to the lowest order matrix elements (see chapter I). Several at-
tempts have been made to invent such a method, but no satisfactory solution
has been reached as vet.

Another important problem is the lack of satisfactory methods for the
calculation of the internal symmetry breaking effects. As we have seen the
modern current-current theory of the weak interaction is based on an
SU(3)® SU @ algebra which is surely broken, because the physical hadron
states do not belong to exact multiplets of this algebra. The departures from
the symmetry limit cannot be calculated, and only ad hoc and arbitrary pro-
cedures exist which "take into account™ the symmetry breaking (see e.g.
chapter 1V, 84). The solution of this problem would be of the greatest value
not only for the theory of the weak interaction, but also for the theory of
the strong and electromagnetic interactions, where broken SU @) and SU(2)
symmetries play an important role.

A interesting problem of the octet current-current theory of the weak
interaction is the origin of the Cabibbo angle. We have seen that the uni-
versality hypothesis of Gell-Mann naturally leads to the introduction of this
angle, but the value of the angle is not predicted by this hypothesis. There
are several interesting attempts to calculate the Cabibbo angle on the basis
of various theoretical considerations. The main difficulty on the way to the
solution again comes from the fact that ultraviolet divergencies and internal
symmetry breaking effects cannot be systematically managed. It is probable
that a satisfactory explanation of the origin and value of the Cabibbo angle
hinges upon the solution of these basic problems.

The discussion of these questions lies outside the scope of our notes.
The interested reader should consult the original papers in the recent
literature. The most important contributions are listed in [5] and [6]-



69

§2. The non leptonlc weak decays. The PCAC hypothesis

Let us now come to the problem of the non-leptonlc.weak decays of the
hadrons. An excellent review of the status in this field has been given in [2]
in 1967, and the situation has not changed too much since then. Nevertheless,
we shall present here a brief discussion of the subject.

In 82 of chapter 1V we have seen that the current-current theory of
Cabibbo allows both 1 = 1/2 and [1 = 3/2 transitions for the non leptonic
decays. On the other hand, the experimental results in hyperon and kaon decays
indicate that the [1 = 3/2 channel is strongly damped, the [l = 3/2 ampli-
tude being & 5% of the 01 = 1/2 amplitude. In Table 11 we give the simplest
predictions for pure [1 = 1/2 transitions and the corresponding experimental
results. The calculation is elementary and involves only the W-E theorem for
the SU(2) group. A further triangle relation may be obtained between the three
Z~ #Nw decay amplitudes and, with SU(3), an other triangle relation between
the 5 @WwAr , ZwNau and A N amplitudes. These triangle rules are also
supported by the experimental results.

In table 11 the symbols A° , A , S° and S_ refer to the
A mre THprTr- , —*mr° and H->»Ji~  decays, respectively. The
asymmetry parameters
2Re s

a = 7213/
IsI2 + +

contain the s and p wave amplitudes, which enter the decay amplitude F

for the 4 B2it decay at rest in the following way:
£ a2
s + . /214/
P ga2r i

In /2147 Xi and X2 stand for the Pauli spinors of the baryons B~ and
32 , while (g2 is the momentum of B2 in the rest frame of B . The asym-
metry parameters a and Yy can be measured in experiments with polarized
baryons.

Since the current-current theory of Cabibbo does not forbid the
A1 = 3/2 transitions by a selection (yle, only a detailed calculation of the
matrix elements of the non leptonic decays could answer the question whether
the current-current theory is applicable or not to these decays. However, the
explicit form of the weak hadron current is unknown, and the modifications
caused by the strong interaction, i.e. the q2 dependence of the weak form
factor, is also poorly known. In SDite of these difficulties remarkable re-
sults are obtained for tne non-leptonic decays with the help of tne current
algebra relations given in chapter 1V 8 and of the partially conserved
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Table 11.
The Al = 1/2 rule in /N« and 5 = /i  decays

Quantity measured Experiment Theory

r(ney @ [r(n°) + r(n°)] 0,640 + 0,014 2/3
s 2 a S 1,10 + 0,27 1

+ 0,33
y(n°) :y(n°) 1,04 0.21 1
r(r°) =r(=1 0,548 + 0,036 172
o 5° o 5F 0,82 + 0,19 1
o P

n%) _ F(K) 0,97 + 0,17 1

axial current(PCAC)hypothesis. This hypothesis asserts that the divergence
of the axial current 3 A™(x) is proportional to the operator ~(x) of
the pseudoscalar octet. In these notes we shall work only with the SU @
part of this hypothesis, i.e. we shall restrict it to 1, 2 and 3. Then the
PCAC hypothesis reads

XA*(X) = AT+ i = 1,2,3 /215/

where 7~ (x) stands for the hermitean components of the pion Ffield operator.

The PCAC relation may hold because the singularity structure (the lo-
cation of the poles and of the residues)of the matrix element of the operator
3. A.(X) between any two states is the same as the singularity structure of
the matrix element of the operator ~(x) between these states. This follows
from the fact that both operators are pseudoscalars and have identical inter-
nal quantum numbers. However the strength of these singularities (the residues
of the poles and the spectral functions of the cuts) could be different. The
PCAC hypothesis asserts that even the residues and the spectral functions are

identical for 3, AM(x) and (€9) up to a common multiplicative con-
stant. The very strong restriction imposed by this condition, which is the
simplest possible relation between 9 A(X) and (X)) , Is obvious,

and it is also clear that it may have far reaching consequences. A clear-cut
answer to the question whether the PCAC relation is exact or not is not
available at present, because of the poor knowledge of the spectral functions
to be compared and of other factors entering the formulae to be tested. Thus
we shall assume that the PCAC relation is an exact one up to electromagnetic
corrections, and we shall explore some of the consequences of this assumption.
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The value of the constant can be easily expressed through other
constants of the theory of the weak iInteraction. To see this we write

3x<® | JH+ GOIT'(PID> = cA 3x <OpE(K) + i AN (P> =

=cAcw <O|fJ) + 1 "2 >1m (PT>> =

- , /216/
=CACtEN <HTGIT (Vj>=CACT~ /¢ @CHTIT
On tie other hand from eq. /20/ we find
mipx
A+, .. - 272 7217/
X <O|IH+QQIIT (pm> “ 7w FW /2p°1(2w)3/7
and finally
« = 2

crew% -7y, "t 7218/

Thus the PCAP equation /215/ takes the form
BRATG = mg T j 40

Let us point out that the PCAC hypothesis breaks the SU (B ® Su(3d)
symmetry . Indeed, in the exact symmetry limit both the vector and axial
currents must be conserved-; We see that the symmetry is broken by the pion
mass. If this mass were zero, the axial charge would be exactly conserved.
Since the pion mass (more generally the mass of the pseudoscalar octet) Iis
small as compared to the other hadron masses the current conservation is al-
most respected. This is why one speaks of a partially conserved axial current.

The PCAC equation /219/ has many important consequences. A group of
these is obtained if we apply the a@-m2)y» operator to the equa-
tion

<P(PDlai x )+ 1 A*(X)InCPDH > =

i(p2-Px)x  p(p2) _xy C2°PD ©2-pl n(px)
YX H1 (q2)- pPD ;
2 (@2)-1a M+ (%) e A2 M a7

o 1220/
taking into account that

@-m2) I =1 1221/

we Find
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Mif FIP(P2) 1ji(°) + i j2C°)|n(pl)> =

2 b6 22) n(Pi)

(Y -7y o+ M) HIM2) + 0V wsG2) 372 15, 372

1222/

The most general structure of the matrix element <p(p2)1JjjiC°) + | J 2 0)Inp-n >»
allowed by Lorentz invariance, 1is

<P(P2)|JI1(0) + 1 JICO)In(pD> =

o 2\ p"
9w k@ )N 7 2 y5°372 - 1223/

In this equation is the conventional u\N coupling
constant and the form factor K(g ) 1is normalized in the usual way:

uNN  _ +
4 - 14,37 0,3

Frpn = 13,59 70,14 K@ra2) = 1 7224/

With eq. /222/ and /223/ we arrive at the PCAC relation

Mp + «,,) HI(42) + — P4 Mn— “3n2) - 2,0 F, m* —m- p_2q)2 . /225/

™
From the analytic S matrix theory the form factors H.(g2) , H-.(2) and
KGZ\; are known to have a cut in the complex q2 plane going from
ﬁz = 9m2 to q2 = +® ; the form factor H_ has also a pole at q%:m_zﬂ_
These are the only singularities of these functions in the finite q plane. Thus
H.(g2) may be written in the form

Ho (u2) = + HM( 7226/
my = &k
n
where the constant R is the residue at the pole, and H”™(g2) has only the
cut. Similarly, we may rewrite the left hand side of eq. /225/ to separate

the pole:

Kkil
o m2- s 7t K(42) 1227/
T W T q
where
S(q2)= -Kgq2)-3 7228/
w - g
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is a regular function at q2 = 2 , due to the normalization 72N 2 1.
From eq. /225/, /228/ it is easy to see that
R = 29T’rtt1 fit &Mp + My ) - /229/

_ 2
Let us now take the eq. /225/ at the point g =0, where all the form fac-
tors are regular. We find:

IMP + MN )V 0) - 2% m F* K<~ = 123°1

this is the famous Goldberger-Treiman relation. All the quantities but K(o)
are known in eq. /230/, and we find for the latter

K(O) = i (0,90 I OA3) /231/

If we choose the + sign™.we see that our result supports the general
belief that far from their singularities the form factors are slowly varying
"'smooth"* functions of the corresponding variable. Morevoer, we see also from
eq. 7227/, /228/ and /230/ that at the point g2 = O the contribution of the
pole in /225/ is of 90%. Thus PCAcTtells us that the function

Ga2)= M +M)H (@) +a-4-FT H (@) , 7232/
n p n

which is essentially a matrix element of the divergence of the axial current,
is dominated by the pole term in a neighbourhood of the pole which in par-
ticular contains the point g2 = 0. This property of the function G is called
the pole dominance of the divergence of the axial current (PDDAC) . We deriv-
ed this property from PCAC* and a smoothness condition (because we supposed
that the function K (g ) is smooth; this property was only indicated, but

not proved by the PCAC result |k @)] = 0,9) . Some times PDDAC is postulated
independently as a basic hypothesis and used instead of PCAC. In that case
one generally supposes that a dispersion relation without substraction can be
written for the function G (@2) (see [2])-

With the help of eq. /226/, /229/ and /230/ we can find an expression
for H3(0). Indeed,

M_ +M
H3(®) = +H3O@ = 204gpy Tx —B5 - +13@)=
nw
(m + Mn) -
= m kToT~ hi (@) + H3(O) * 1233/

Supplemented by the experimental value of K@ coming from / 230/
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If we now suppose that the form factor HMN(g") is also dominated by the pion
pole term at g2 =0 , i.e. that |R/m2] >> |H3CO)] , then we find the
approximate relation used in chapter 1V 84:

(m +M )2 ,
H3 () «  ————— k740T" hi”) = 210 Hi ~ * 12341

This result is often exploited when one neglects the contribution of
(@2) - Indeed, as a rule H3(g2) 1is multiplied by kinematical factors much
smaller than 1/200. We would like to point out that this result depends on a
PDDAC hypothesis for H3(g2) and that this is a separate requirement, which
does not follow from PDDAC for G(g2) . Indeed, from eq. /232/ we see that
(@2) is multiplied by g2 , therefore near g2 = O its behaviour cannot
be inferred from the behaviour of G (g2), even if H™(q2) were known.

Let us now come to the application of PCAC to the non leptonic weak
decays. Here PCAC, together with the current algebra relations of chapter 1V
83, gives an expression of the amplitudes of the type H + H" + it through
the amplitudes H =mH* and H @H" , where H and H" contain the same
hadrons as H and H"r respectively, but possibly in other charge configura-
tion. E.g. if H = W « , then H" may be 0 «°© or w y- and so on.
Unfortunately the relations between the amplitudes are obtained at the non
physical point where the four momentum Kn of the pion in the H H* +T<.K)
amplitude vanishes: k, =0 ; hence K2 i 0, the pion is not on its mass
shell K2 =m®  _No ﬁnambigu“us methods of analytic continuation back to
the mass shall exist at present. In general one adopts the working hypothesis
that the continuation would not change the results drastically, i.e. the
results for the non physical point are supposed to be approximately valid at
the physical point too.

The derivation of the basic formula is quite simple and goes as fol-
lows :

@m)3/2 /1k° < (K)H"JLH ©)|H> =

= —i(k2 - m2) ~ dx elkx <H"|T(F.(x) 1h (O)]|h> = /235/
k2 -m2 T
= im0 \dx el X <HUIT@N a () 1h @))In> = 7236/
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12 _ 2
= k. —— = dx elkx <H"]T @~(x) LH @) +
X F_p2
m
F(Z - LIJ2
+ 1 > |dx elkx T(xX0)<H"] [A°(X), Lh@©)] |*> /237/
f_w
m

Eq. 7235/ is the well known LSZ reduction formula for the pion state <Ti(K)|-J
eq. /236/ comes from the PCAC eq. /219/, while eq. /237/ is obtained by
partial integration where as usual the surface term is assumed to be zero and
is not written out. In these equations stands for the Lagrangean of the
hadronic weak iInteractions, which may be the part of our current-current
Lagrangean (see eq. /1/) , but may be also an other one. Its only property
used in eq. /235/ - /237/ is that it is a local operator L"ix).

Let us now take eq. /237/ in the limit kn %0 . Then the second
term reduces to

————— <H" I[I"O), LHOIIH> , 7238/

where I™(0) are the axial charges at t = O defined in eq. /143/.

Let us suppose that we work with the current-current theory and that
the universality hypothesis of Gell-Mann holds in its precise form. Then

LHH contains only _Hvi/nx? A'i fX)f currents, and then
©). 1h(®)] 4 hoio) - 170, w so /239/
i.e.
o <IN L LHOD I = - <G L (oJH> . /240/
m .

In eq. 7240/ we suppressed the time argument in 1M because we neglect the
small SU (2)breaking effects.

The isospin operators 1 are known to act only on the third com-
ponent of the isospin of a hadron state. Thus we have

<H"I[Iif 1th @)]]h> = <h "Jth @)]h> - <h "J1h @)]h> , /241/

where
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H*>= 1*|H"> , H>= 1 | 71242/

Concerning the first term of eq. /237/, it is proportional to Kk

and thus vanishes in the @0 limit unless the integral has a pole at
KX =0. From the known analytic properties one findslthat such a pole turns
u> in the hyperon decays > w but not in the kaon decays K 3ar ,
K =*2r _ Anyhow, our Ffinal result is:

@w)3/2 lim  /2k° <w.(K) H|Lh (O)|H> =
V o

= j- lim k fdx elkx <H"|t @*(x)# Lh @ ))|nh> +
u k>0 J

+ jjﬁT [<H" |LH ) [ - <HTILHCO)[H>] .- 7243/

IT we apply’this formula to K % 3r decay, then, as we said above, the
first term is missing and we have an expression of the K 3 decay amplitude
through K + 2« amplitudes. Applying eq. 7243/ once more, we arrive at the
K wit matrix elements, and applying it again we go down to the <o |Lh Q) K>
matrix element. Thus we have a K-»-3TTO0K-*2TT=0K-»-TTOK-> vacuum chain,
and at each step interesting predictions can be made on the corresponding
amplitudes. These predictions are supported by the experimental results. For
details the reader is referred to [Z] and [3]. Here we notice only that the
last loop of the chain is obviously a pure Al = 1/2 transition, even if
L,,(0o) itself contains 1=3/2 parts. Coming back along the chain up to the
K% 2r and K “3m amplitudes, we see that a possible explanation of the

Al = 1/2 rule emerges in the kaon decays. OF course our chain works at a non-
physical point, but the Al = 1/2 rule itself is known to hold only approxi-
mately, as shown by the very existence of the K+ - uwt+ «° decay, which is

a pure Al = 3/2 transition.

The application of eq. /243/ to the hyperon decays is more difficult
because of the pole terms at k™ a0 . The origin of the o1 = 1/2 rule is
also more obscure in this case, and in many calculation it is imposed by hand,
i.e. one simply requires that the Lagrangean L"io) transform as an 1=1/2
operator. Practically this means that the current-current theory of Cabibbo
is abandoned. We point out that in the derivation of our basic formula /243/
the current-current picture was not really exploited, only the locality and
the universality property /239/ of the Lagrangean were needed. Thus it is
possible to abandon the current-current structure and to require only these
properties and the Al = 1/2 rule to hold. In many calculations of the non-
leptonic weak decays this procedure is adopted. This does not prove,of course,
that the current-current theory is inapplicable to the non-leptonic decays;
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but/ unfortunately,the exploitation of the current-current structure involves
either the introduction of field theoretical models where non renormalizable
divergencies occur, or the introduction of a complete system of states, the
bulk of which must be neglected because their contributions are unca]culable.
In spite of these difficulties, the current-current, theory is also used to
calculate non-leptonic hyperon decays, and with a 'reasonable™ cut off of the
divergent integrals or of the intermediate state spectrum, results of the same
quality as without the current-current theory are reached;in particular, in
hyperon decays,the [1 = 1/2 rule is imitated due to "accidental™ cancella-
tions between the unwanted /11 = 3/2 contributions. Unfortunately,these
encouraging results are based on calculations which contain too many uncontrol-
lable approximations and therefore they cannot be considered as a proof of the
applicability of the current-current, theory to the non-leptonic decays.

To conclude these notes we would like to express the opinion that the
serious problems in the theory of the weak interaction exposed in this chapter
must not overshadow the brilliant successes of this theory, presented in the
other chapters. Hopefully further progress will before long allow us to re-
write this last chapter in the spirit of the preceding ones.
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APPENDIX

8.1. Definitions and notations

In these notes the following basic notations and definitions have
been used.

Non-zero components of the metric tensor:

goo “ 1 gll  "g22 ¢33 A-l
Scalar product of".two four vectors a and b
@) =a* b =a° bQ + & b + a2 b2 + a2 bg ; A-2
with
aX = gx% ay A-3
(@) =gxv a bx = abQ - a”™ - a2 - a3b3 = aQb0 - ab A-4
Differential operators:
9= x, O E -3n a. A-5
Matrices of Dirac:
Yy = gy yv ; /U/N =0,1,2,3/ A-6

Iyy" yvl+  2gyv

A frequently used representation of the 4x4 Dirac matrices, adopt-
ed also in our notes is:

| 0 0 a
Yo = Vi = /i = 1,2,3/  A-7
In eq- 111
1 o\ (o o\ (o I\ /o -i\ ¢ 0
1 =1 o= | o, =1 I ag = v 0@ =( 1A-8
0 1 0 o) ° 10 v \’I o/| 8 \o -1
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We also define the matrix y5 5

A-9
In this representation
/X =0,1,2,3,5z - A-10
Notation: for any four veqtor a
a =YX a
especially,
A-12

82 . Zero spin field

Below the operators TX) , a(k) , b(k) stand for "in" fields, but
the label "in" has been suppressed. The same relations holds also between the

out operators, but of course *Min(xX) N "out™X~" excePt for non-interacting

fields.
The Klein-Gordon equation reads:
A-13
The plane wave decomposition of *f(X) can be written as follows:
A-14
In eq. /14/ the condition
A-15
holds
If the field Ff(X) is non-hermitean, i.e. if P () ¢ *FX) then

the operators a(k) and b(k) are quantized as follows:

A-16



80

R ; , _
all the other commutators of a, a , b, b vanish identically. From eq. /14/
- /16/ the well-known canonical commutation relation

*(xb @ <Fy) C7° = Si6(x - y) A-17

is easily deduced.
The physical interpretation of the operators a and b is:

ak) absorbs a particle with momentum K
a+ (K) creates a particle with momentum kK
b(k) absorbs an antiparticle with momentum K
b+ ) creates an antiparticle with momentum K

If f+) = fX) , then b(k) = a(k) . The only non-zero commutator

then is

[ak), a+ (kD ]_ 6(k - K%) A-18

and the antiparticle is identical with the particle. The canonical commutation
relation takes the form

TX,4=
), 9 ~¥) oo -i(x-y); A-19

notice that [WG) . A1 °° is zero if “B(x)d "FO,

83. 1/2 spin Tfield

The Dirac equation for the field operator (with the label "in" sup-
pressed) reads:

@@-m px) =0 A-20
Eq. /20/ is a shorthand notation for
(pPA YX - nE)aB *B(x) = 0 A-21

where E 1is the 4x4 unit matrix and a,B are spinor indices running
through 1, 2, 3, 4. In /21/ a summation over the index R is understood.

Plane wave decomposition:
*a(x> = I dp(elPX V,,(E) ds(P) + e_lIpX N u®(E) cs(E))

A-22
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lh eq. /22/ we have
A-23

The Dirac equation imposes for the spinor amplitudes u and v the
equations

@ -m ud> =0 (P +m) v(£) =0 . A-24

We normalize the spinors as follows:

vStRR) vr(E) = uSTe ) ulr () = 6rs A"25

Notice that in general

VSHE) ur(E) ¢ 6rs A-26

since v and u are solutions of different equations.

For spinor fields all the known antiparticles are different from their
particles. Thus we give the quantization only for the ¢@*(x) ¢ da(X) case:

Es(E)" CI(E)]+ = [Ms®)" d*E)]+ = 6Sr 6(H " E7) * A~27

All the other anticommutators are zero. From eq. /22/ and /27/ the
usual canonical quantization

<.(d" **>]+° ¥° = 6aB a(* - 2) A~28

is easily obtained. The physical interpretation of the operators c¢ and d
is the following:

cs (p°) absorbsa particle with momentum p and polarization s

cs (P ) createsa particle with momentum p and polarization s

d (£) absorbsan antiparticle vjith momentum £ and polarization s

d+ (p) createsan antiparticle with momentum £ and polarizations

Let us now look at the pélarization states in more detail. The equa-
tion (p - m) u(p) =0 has two linearly independent solutions for a given £
and with p0 = '@ + m2 | - This 1is why in eq. /22/ we have two polariza-
tion states s = 1,2 for u(£) . The same is true for the equation
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(p + mM)v(p) = 0 . The remaining solutions of these equations belong to the
PO = "IN 2 + | case, and do not enter our eq, /22/ due to eq. /23/.

For particles in motion the polarization is conveniently parametrized
in terms of helicity eigenstates (spin parallel or antiparallel to the direc-
tion of the motion), while for particles at rest the projection of the spin
on a fixed direction can be used (spin parallel or antiparallel with respect
to a fixed axe of quantization).

The components of the spin operator S? Tor a particle (i.e. on the
space of the spinors u(p)) reads:

i=1,2,3 A-29

while for an antiparticle (i.e. on the v(p)-s)

1,2,3 A-30

the helicity operator for a particle of momentum p is

nP(n) =2Zn , n= g A-31
while for an antiparticle with momentum ¢

- E

np() = I n n=-u A-32

In the representation /7/ of the y matrices the two eigenstates of
, satisfying the eq. (p - Mu(p™=0 with p =20 ly be choosen to be

j -
ux@©) =ul = Jog oZQ| = WS - A-33
\o 7/
whille for an antiparticle we may choose
2/_\ 2 0
VX(@©) 5V1 = ~° vi@ =v =\1 A-34

Here ul(vl) describes a particle (antiparticle) with spin parallel

to the third axe (i.e. n = ~ , while u2(v2)
describes a particle (antiparticle) with spin antiparallel to the third axe
(i.e. sf u2=-8u2 sPv2=-§8v2).

For the helicity eigenstates in our representation we find (n = —/|p|*:

s Lok, MEAY (3,3 ra



U + po “HI + in2
® 2p0 /2 (1+oy 1+ no
u2-/
D \
n o+ Po ( . -nl + In2
q m
2P0 ﬁo /2U+n3v 1+ nm |
> T
pr+po-* £E \ 1+n
C) 2p Ro * M  /2@+n )
nl + In2

ude) (WNeO
(i.e.. XP (IO u+(®)

Nn-36

A-37

describes a_particle (antiparticle) with positive helicity

u+(®), XP(n) vF(E) = v+(£))

, while u*(£) (v+(£))

describes a particle (antiparticle) with negative helicity (i.e.

XPM) u+t@E) = -~(e) , XP() VM£E) = - v+(E) ) In eq. /357 - /38/
we have of course spinors of one column anﬂgfour rgws, e.g.
+
+M2
. o ma+pPo 1 le | U+n3)
u N \ 2po /2 (1+n3) pO + m
k I(n;L+in2)
Rg tm A-39
and so on.

In the calculation of transition probabilities,

form

must be evaluated.
stands for u or

In eg.

\%

MS(E) 0(p,p") ws () I2

/40/  o(p,p")
, and

stands for a 4x4

expressions of the

A-40

matrix, w

W& = wSTee) v© A-41
The calculation of eq. /40/ is straightforward and leads to the well
known result:
ksE)O0 ws (E)I2 =
n+ A+
= Tr <x e_IJM ox , y® 0 y° A-42
wS( ) po wS (e ¥ po



In eq. 742/ X s(£) stands for the helicity or spin projection
operator on the state WWS(p) . Thus

1+ IH 1-1n
X + 2 XX @ 2 A-43
u ®
+ E
X |2n A-44
v @) O
1+ 1 1+72
X A-45
L
1+2Z
A-46

In the factor p +m the sign + (-) must be choosen if p refers
to the momentum of a particle (antiparticle). The same prescription holds for
n)

p’ +m

The relevant formulae for unpolarized cases are easily obtained from
eq. 742/ - /46/ . Thus

I @) oud e i = 7 | P—m - p-m oMol a4y
s=1, 2 { 2po wS (E") 2po J

[ IWS(E) OWS"(E™) 12 = Tr eJL* n iLLb ven+ve A—48
s-1,2 NG 2P

I [MS(E) OWS/(E)]2 = TriLi-I O Y°oV » . A-49
=1, Fo po

s™=1,2

As well known, for the polarization iIndex which refers to the initial
state still a factor 1/2 must be introduced because we have to take the average
of the two polarization states. For the final state the summation is correct
as it stands in eq. /47/ - /49/, because both polarization states contribute
to the unpolarized transition probability.
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84. Helicity and handedness

In our representation 111 - /9/ of the y matrices, the matrix
can be written in the following ways

a 0
EH™ O ]-iy5voi A-50

Now it is easy to verify that for a zero mass particle the following
relations hold:

YO I n uf() = u*(£)
YO 1 nul(E) =u\e)
YO 1 n v+(E) = -vF(£E)
YO I n V+(E) = -V+(£)

Thus if m = 0 the helicity operator is iy5 for the particle and
-1Y5 for the antiparticle.
The projection operators for the helicity then become:
1+ 1y, _—

X X X v 2
u (E) u )

iY5

1+ 1ly5
A-52

+
v (B

The operator [Y5 on the space of the u(p)-s and the operator
-1Y5 on the space of the v(p)-s are called handedness operators, irrespect-
ive to the mass value of the spinor field. A particle which is in an eigen-
state of 1Y5 with eigenvalue +1 (-1) is called a right-handed (left-
-handed) particle. For the zero mass case a right (left) handed particle is
also a positive (negative) helicity particle. An antiparticle which is in
an eigenstate of -iy™ with eigenvalue +1 (-1) is called a right-handed
(left-handed) antiparticle. For the zero mass case a right (left) handed anti-
particle is also a positive (nhegative) helicity particle.

As we have seen in these notes, in the V-A theory of the weak inter-
action all the lepton fields in the leptonic current are multiplied by the
( - iy™) operator. Indeed, the lepton current may be written as follows:

*

or chirality operators



M x) - *e¢ YX(X - 1Ys) *ve + e
"k »e Yo Y>(X - 1y5)2 *ve e Y =

CL-~5)*] Yo YX(X - 1y5) *ve + 6 5

Thus in the weak interactions only left handed leptons and right
handed antileptons take part. For the neutrinos this means also that only
negative helicity neutrinos and positive helicity antineutrinos may interact.
For the electron and the muon, a handedness eigenstate contains both positive
and negative helicity states.

85. Decay rates

Let a particle A with four-momentum pg and polarization 3 decay
into r particles with four-momenta p~, P2, ..., pr and polarizations
sN, s2* ..., sr . We define the transition amplitude F for the decay A —+r
through the expression

K11 PK
<r,out]A,in> = F A-54
S26R 2pi <*-2pr
The amplitude F is of course a function of all the variables pg,
bA - K (K= 1, ..., r) . The states |A,in> and Jr,out> in eq. /54/
stand for

Wie=a, ), P

r,out> - ag (E ) a* () --.a* (B ) o> A-56
S1 out s2 v z/out sr r out

The operators a(p) obey the quantization rules /18/ or /27/ . Of
course they hold only between "in" or between "out" operators. The commutator
between an "out" and an "in" operator depends on the interaction and its cal-
culation involves the solutiort of the equations of the interacting fields. In
fact this was our main task for the weak interactions in these notes when we
calculated the different decay amplitudes F.

The differential decay rate dr(A ar) for the decay A #@r s
expressed through the decay amplitude F in the following way:
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der A-57
m2p°

If among the decaying particles k are identical and they decay to
states with all quantum numbers identical except the momenta, then the right
hand side of eq. /57/ must be divided by k!

Supposing a pure exponential decay low for the particle A, the
probability dW(A #r) that the decay A *r from the state specified by
p4a, sA to the configuration p», s®; P2* &° Pl * sr takes palace in the
time interval t, t + dt is given by

dW(A s r)=dr@ #=r)e”tr A dt A-58
In eq. /58/ T (a) stands for the full decay rate of the particle A.
IT the channel A #r is the only oe., then T (A) is simply obtained by

integration over all the momenta p-~..., pr and summation over all the polar-
izations 3, s ... sr in eq. /57/. (For sft the average must be taken,

not the sum!). Thus in this case @) =TA *r} .If there are N decay
channels, then

re = 1 réa-r) A-59
n=1 4

It is easy to see that eq. /58/ is correctly normalized, because
L0

frd e"trrdt =1 - A-60

i.e. the full probability that the particle A will decay in the time inter-
val (0o, +00) is equal to 1 . Also it is easy to see that r(A) is the

inverse of the mean lifetime of the particle:

® .T tr@) W 4t CTAT A-61
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