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P R E F A C E

These notes are based on a serie of seminars given by the author 
at the Institute of Mathematics of Brussels University during the first 
semester of the academic year 1969/1970.

The purpose of these lectures was to review the status of the 
modern current-current theory of weak interactions, and to compare its pre­
dictions with the experimental results in the field of elementary particle 
physics. The audience was composed partly of theoreticians working in the 
field of the strong interactions, and partly of experimentalists working 
in the field of the weak interactions. The author hopes that these notes 
will be useful as a review of the theory of weak interactions for research 
workers active in the aboye mentioned branches of elementary particle 
physics, and as an introduction to this theory for graduate students in­
terested in the subject. No preliminary training in the theory of the weak 
interaction itself is required by the reader, but the knowledge of the 
elements of of relativistic field theory /e.g. of quantum electrodynamics 
without the renormalization technique/ and of elementary particle physics 
is assumed.

No detailed bibliography is given in these notes. Instead we refer 
to basic works where extensive references can be found. Concerning the 
numerical values of the various parameters of the theory of the weak inter­
action, we give mean values and errors, but no systematic effort has been 
made to use always the "last" or the "best" values, except for the basic 
coupling constants g and gv * As is well known, the values of these 
parameters often change under the influence of new experiments, and for the 
last and/or best values the reader should consult the proceedings of the 
appropriate conferences, where he will be referred to the original works.

This stay at the Brussels University was supported by a grant 
from the Solvay International Institute for Physics which is gratefully 
acknowledged.

It is a pleasure for the author to express his sincere gratitude 
to Professors J. Gehéniau and J. Reignier for the kind hospitality extend­
ed to him during this period.
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Thanks are also due to Prof. G. Marx and to Dr. P. Hraskó for a 
critical reading of the manuscript and to Dr. C. Schomblond, whose notes 
taken at the seminars considerably facilitated the production of the present 
version. The help of Dr. J. Bijtebier in editing these notes is also ac­
knowledged .

The present preprint has been edited at Budapest, but has been 
printed from the same manuscript as the corresponding Bulletin of the 
Nuclear Physics Department, edited at the University of Brussels. Thus the 
two texts should be identical except for minor editorial changes.



I. INTRODUCTION

In the description of weak interaction phenomena the current-current 
theory plays a central role. In its original form, due to Fermi, the theory
served to deal with the nuclear ß decay. As well known, in 6 decay the
directly observable decay products are the В particle > ( an electron or a 
positron), and the daughter (or "recoil") nucleusi N . If the В decay were 
a two body decay N -*• N' + В , then in the rest system of the parent nucleus 
N, the energy of the В particle would have a fixed value for given parent 
and daughter nuclei. The measurement of the energy of the В particles 
revealed that this is not so, and that the В particles have an energy spect­
rum. To save the law of energy conservation, in 1931 Pauli suggested that the В 
decay is a three body decay N -*■ N' + В + v . The invisible third particle,
baptized by Fermi the neutrino, was supposed to be a neutral particle with
very small, eventually zero mass (because the measurements have shown that 
the upper limit of the EN , + Ev values is very close or equal to N^).
The discovery of the neutron in 1932 led to the hypothesis that the elemen­
tary processes which manifest themselves in the wide variety of the nuclear
— -f- — — -f-В and В decays are the n + pe v and p -+ ne v transitions^, res­

pectively. Of course the В decay of a free proton is forbidden by energy 
conservation, but in a nucleus the binding energy also enters into the game.

To conserve angular momentum, the spin of the neutrino must be 
half-integer, and the simplest hypothesis was that it is 1/2. Taking into
account all these facts, in 1934 Fermi proposed to induce the nuclear В
transitions by a local interaction of the fields. In other
words, he supposed that the interaction Lagrangean may befe.g.

Lp(x ) = fv(^n(x) YX ^p(x ) V X > yX M X) + h*c0 111

This Lagrangean is of the current-current form. Indeed, it is the
product of the vector current у^ of the nucleons with the vector
current у^ фе of the leptons. The comparison of the В spectrum for
unpolarized В decay, calculated with L ^ x )  in lowest order in f^ , 
with the experimental spectrum showed' a very good agreement in all those 
cases in which the nuclear structure of the involved nuclei was sufficiently 
known and therefore its influence could be taken into account, or could be 
legitimately neglected. However^ it turns out that practically the same spec­
trum (with 0,1 % deviations) is given also by the more general Lagrangean
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This is due to the peculiar kinematical situation in the nuclear 3 decay, 
expressed by the relations >> - MN , me . To find the coupling
constant of these current-current interactions constructed with scalar (S) , 
pseudoscalar (P), vector (v), axial (A), and tensor (t ) currents, measurements 
of angular correlation and polarization are needed. These difficult experiments 
received fundamental importance in 1956, when,from the analysis of the 
К -*• 2тт , К Зтт decays, Lee and Yang came to the conclusion that parity is
not conserved in these decays. The kaon decays are so slow compared to the 

—22characteristic 10 sec time interval of the strong interactions, that xt 
was supposed that they can be classified as weak interactions. If so, the 
possibility of parity violation in nuclear 3 decay should be envisaged.
This expectation was soon confirmed in the celebrated Co^° experiment of Wu.
The number of the coupling constants increased considerably, because now 
current-pseudocurrent couplings had also to be included into the Lagrangen. 
However, this complication turned out to be salutary, because the parity 
violating terms happened to be of the same strength as the parity-conserving 
ones, and without them a good agreement with the experimental distributions 
would not be possible. Namely, from many concording experiments the V and 
A currents were found to be necessary and sufficient to construct the 
Lagrangean in the following way:

the weak interaction came from nuclear physics. The spectacular development 
of elementary particle physics in the last two decades changed this situation 
The already mentioned discovery of the parity violation; the discovery of the 
two kinds of neutrinos; the establishment of the isospin and strangeness se­
lection rules of the weak interaction; the possibility of the application of 
the SU(3) algebra to the weak interaction; the discovery of the CP violation 
- all these results were found in elementary particle physics, and led to a 
further development of the current - current theory of the weak interaction. 
In these short notes it is out Of question to follow the historical develop-

l P , A (x ) = Фп Yx ( f v  -  f A i  Y5)  4-p ( i e YX 0  -  i  Y5)  »v ) + + h . c .

Until the early fifties the bulk of the experimental information of
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ment in detail. Therefore from the very beginning we shall work with the most 
modern form of the current-current theory, established by Gell-Mann and 
Cabibbo in 1964. Occasionally we shall explain how and why this form of the 
theory was adopted, but our order of presentation will not necessarily follow 
the historical order.

The principal question we shall deal with is the following: to what 
extent the modern current-current theory can be considered as the general 
theory of the weak interaction, what are the successes, the failures and 
open problems of this theory? Here again a complete review of the status of 
the theory is impossible for us; nevertheless, it is hoped that the general 
picture will be clear.

The weak interaction Lagrangean of Gell-Mann and Cabibbo can be writ­
ten in the form

L(x) = \ (V(x) J j o o  + Jl<^) Jx0>) '

V x > = * W X) + V x) *
/4/

The full weak current J^(x) is the sum of the weak current of the
hadrons J„.(x) , the explicit form of which is unknown apart from some Нлч 7
important SU(3)transformation properties to be specified later, and of the 
weak current of the leptons j^(x) , which is-supposed to be explicitly 
known:

( * )  = k YaC1 ” i Y5b5 Ф,.(х )/ Y\ (l " iYc) Ф,. (x)

[*1 ' r*2] - Ole. *2e - *2В О  ГаВ*
/5/

The cumbersome symmetrizations in eq. /4/ and /5/ are necessary when 
some properties of the theory under CP and SU(3) transformations are inves­
tigated. For our purposes they may be ignored in practical calculations.

The lepton current j^(x) contains a vector part v^(x) and an
axial part a (x):A

=>x = v, + a.

1 __ 1
VX " 2 V  Yx V e + 2 V  Y* V

- 1
V  iYX y5 V 2e ^XYS 'yj

/6/
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The current = VX + a\ is unfortunately called in the litera­
ture a "V-A current", not a V+A current. Later we shall see that the weak 
hadron current also has a "V-A structure", i.e. it can be written as 
j = v, + A, : As shown in the appendix, the (l - i уц) factor appearing 
in the lepton current leads to the fact that only left handed neutrinos 
(neutrinos of negative helicity ) and right handed antineutrinos ("antineutrinos 
of positive helicity) can interact.

In the weak lepton current /5/ two neutrino fields are present. Let
us call the .neutrino emitted in the nuclear 8 decay the neutrino of the
electron, ve , and the neutrino emitted in the тг+ -+■ y+ + decay the
neutrino of the muon. v • Their antiparticles are denoted by v , vu .У к и
There exists ample experimental evidence fj_l] PP 389 - 391; [3] pl) that

, v + v v + v , and that in all interactions the electronicУ 1 e e 1 e у 1 у ’
lepton number Lg and the muonic lepton number L are separately conserv­
ed. The assignment of these quantum numbers to the leptons is given in table
1. For all the other particles L = L =0. The conservation laws are ofe Уcoursefrespected by the Lagrangean (4).

Table 1
Assignment of lepton numbers

Ve ^e e +e vy *y У +У

Le 1 -1 1 -1 0 0 0 0

Ly 0 0 0 0 1 -1 1 -1

Concerning the masses of the neutrinos, the experimental upper
limits are m < 60 eV, m <1,6 MeV . As usual we shall assume that e - v -
m .= m = 0. y
ve vy

We shall now discuss an important open problem-(for optimists), or 
failure, (for pessimists) of the current-current theory. As well known, a four 
fermion interaction is non-renormalizable, and no higher order corrections 
can be calculated in such a theory. Unfortunately, this is the case with our 
current-current theory, as one can see from its purely leptonic part.
Also, all the plausible expressions for the hadron current in terms of hadron 
fields lead to non-renormalizable structures. In these notes we shall always 
deal with such processes, which have non—vanishing matrix element of first 
order in L(x) . Thus our Lagrangean has to be considered as an effective 
Lagrangean giving first-order approximations to an unknown or unmanageable
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theory. Moreover, it is easy to see that this first-order approximation can­
not be used for the description of very high energy (e ,> 300 GeV ) processes. 
Indeed, both the о (v + e" ” + v ~) partial cross section and the 
total cross section can be calculated in first order in g with our 
Lagrangean /4/. For the latter cross section the optical theorem must be 
used. The result is that in the centre of mass system for Ev >, 300 GeV the 
partial cross section exeeds the total cross section. This phenomenon is call­
ed the "unitarity catastrophe". In spite of all these problems, the success 
of this "bad" first-order theory in the description of a wide set of experi­
mental facts is so impressive, that it can certainly be considered пч - 
good low-energy approximation to any future theory of the weak interaction.

Using the decomposition of the full weak current,
the Larangean (4) can be re written as follows:

L LU, + LH£ + LHH ;

g 1 (.X .+ . + . x\LM “ -fa 2 3X + 3X 3 J

LHJ. = -fa 1 (JH it + 3X JH+ + + it j h )

LHH 2(JH JHX + JHX Jh )

In first order in g describes purely leptonic processes with four
leptons, e.g. \i -> i-vv decay and a + v -*■ + l scattering.
describes semileptonic processes in which hadrons and a lepton pair Hv^ 
are involved, e.g. v^ + N í, + N' scattering and n -»■ pev decay.
We notice that with JRX = ~  Фп Yx(fv “ fA iY5)^pwe 9et back the symmet­
rized Fermi Lagrangean /3/. Finally, LHR describes the non-leptonic weak 
interaction, where only hadrons are present, e.g. К -*■ 2тт decay, weak 
p + n -*■ n + p scattering.

In order to proceed easily later, we give here t general expression 
for the matrix element of a semi-leptonic process of the type

H H ' + Ä- + v /8/e

where H and H stand for two groups of hadrons, while I denotes 
e" or p" . The transition matrix element for this process in the Heisenberg 
picture reads:
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As we explained above, we have to restrict ourselves to first order calcula­
tion in g . Since our matrix element /12/ is already proportional to g , 
all the operators and states in this equation may be considered as free from 
the point of view of the weak interaction. For simplicity we shall also 
neglect the electromagnetic interaction. Then the lepton fields in eq. /12/ 
become free fields, and those in the lepton current j^+(y) are easily seen 
to give no contribution in our case. Taking into account that 
[4+(у),Ф (У)] = 0 ,because by definition the hadronic current at t = y°
does not contain lepton operators at the same time t, we find with

<H'out jc Qut (Л)Фл(у) = out

the result

u (O iy Ä,
(2tt)3/2

/13/

<H' l v^outjH in> = <H'out| J*+(y )|H in> .

u ( 0  / , . \ Л X,
• ^ 3 7 2  ч (  - 4 )  ( ^ 3 7

V/VÄ) \ (VA+Ä) У /14/

The "in" and "out" labels refer now to the strong interaction only, because 
we consistently neglect the electromagnetic and higher-order weak interactions

Using the well-known relation of the translation invariance for a 
local operator 0 (y)

<H' Si vA out IH in> = <H'out I c out(A)d out(vA)lH in> l g l

Combining the relation
Г v(vÄ) iv У

d o u t ^  ■ d -1 j dy 1 - T y j -  e 1101

with the equation of motion for the neutrino field 
(y)

— ^ --- Ух = Л  7 [+»0П  У 1 (1-i  ̂5 ) jX (У) + jX+(y) *t<y) V 1"1^ )  /11/

induced by the weak interaction Lagrangean (4), we arrive at the expression 

< H4 out IH in> = \ [dy<H'out|c Qut <м(фА (у) Yx(l-iY5) J Х+(У ) +

, i ^ y
+ J (У ) Ф / У )  Yx (l-iY5)|H in>-^— e /12/
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i P̂Hf“PH^y<H'outIО(у) H in> = <H'out|0(0) |Н in> e /15/

we find our final expression for the transition matrix element H H'£v

<H'£ v£ out IH in> = (2тг)4 <H'out|JX+(0)|H in> .

Ű ( 0 ) , v V(^Ä) / . -  \
372 Y*(X ■ iy5^ ^2tt̂ 3/2 <S(PH/ PH 1 VA'*(2tt)

/16/

The matrix element of the H -*■ H'l processes, where I denotes
a y+ or e+ , can be calculated in the same manner and turns out to be:

<Н'Л+ vout IH in> = у̂|г-(2тт')4 <H'out IJ* (0) |H in> .

• (7^372 (1 ■ iY5^ (J)3/2 4 PH' ’ PH " 1 ‘ • /17/

Eq. /16/ and /17/ contain the hadronic matrix elements of the weak 
current operator of the hadrons. Since the explicit form of this operator is 
unknown - and even if it were known the lack of a strong interaction theory 
would prevent us from calculating its matrix elements exactly - the only 
thing we can do is to write down the general form of its various matrix 
elements allowed by Lorentz invariance and by other symmetry principles, and 
then to find such relations between them as can be tested experimentally.
We shall deal with this problem in some detail and we shall see that the 
current-current theory is at least in qualitative agreement with all the 
available experimental data.

Let us now turn to the purely leptonic processes. For them instead 
of the hadronic matrix element <H'|J^(0)|H> in eq. /17/ we shall have a
matrix element of the lepton current between a lepton state and its neutrino. 
This matrix element is explicitely known, and thus the whole matrix element 
is calculable.The evaluation of the decay rates and cross section is then 
straightforward. To fix our notations and normalizations, we shall give the 
relevant formulae for the decay rates of a particle A into r particles 
in the appendix. The only purely leptonic weak process for which detailed 
experimental data are available is the muon decay. We shall see that the 
data are in perfect agreement with the current-current theory. We mention 
also that an experiment on the ve + e •+ vg + e scattering is in progress 
in the USA, but no confirmed results are available as yet.

The question of the applicability of the current-current theory to 
the non-leptonic weak interaction is completely open. It is obvious that the
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method used in the case of the pure and semi-leptonic processes fails in this 
case, since neither the weak current of the hadrons, nor the Lagrangean of the 
strong interaction are known. Nevertheless, with modern techniques (current 
algebra, partially conserved axial current (PCAC) hypothesis) interesting, 
qualitatively correct results could be reached in non leptonic kaon and 
hyperon decays. However, the current-current structure is not relevant to 
these results. A very clear account öf the status of the non leptonic weak 
decays is given in \l\ , where the current-current theory is abandoned when 
comparison with the experiments is made. On the other hand, a recent analysis 
of the non-leptonic hyperon decays based on the current-current theory was 
given in Phys. Rev. 175, 2180, 1968 by Nussinov and Preparata. In both cases 
the results are qualitatively (30 %-100 % errors) in agreement with the 
experimental data and may depend on auxiliary hypotheses. Thus no definite 
conclusion can be made concerning the applicability of the current-current 
theory to the non leptonic weak interaction.

In these notes we shall concentrate on the successes of the current- 
-current theory, and the problems and/or failures will be only shortly com­
mented. Accordingly, the material will be presented in the following order.
In chapter II we shall discuss the tt £v,y->- vv and n p e v decays. As we 
shall see, their investigation allows to establish the basic properties of 
the strangeness-conserving weak interaction. In chapters III and IV the 
current-current theory of the leptonic decays of the hadrons will be deve?- 
oped. In III the isotriplet vector current (ivc) theory of Gell-Mann, in 
IV the octet current theory of Cabibbo will be presented and compared with 
experimental data. In both cases the concept of the universality of the weak 
interaction, developed by Gell-Mann, will be formulated. In chapter V some 
of the open problems will be briefly discussed. Finally, technical material 
will be gathered in the appendix.
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II. THE STRANGENESS CONSERVING WEAK DECAYS

§1. The tt -*• уv decay

The most conspicuous decay mode of the tt~ meson is the tt -+■ yv 
decay. The pion being a spinless particle, the only quantities to measure are 
the full decay rate Г (тг -> yv ) and the polarization of the leptons. In the 
rest system of the pion the kinematics is particularly simple. Namely, we have

v = -£

О . О 0 , 1 1  0 , i im = у + v  = y  + |v| = у +|ц| о , i/o2 2̂  = у + Иу - ш..

оУ =
2 2m + mTT _y_ v = I v I = |y =

2 2m - mTT____у
2m ' v ' — 1 ' — 1 2mTT TT

/18/

Let us calculate г(тт-*у v ) in the current - current theory. Eq. /16/
gives

<U~ v out |n in> = <0 |j*+(0 )|.~in> u‘ 7 V U /’2
(2n) \_2tt

H р(8п,л v V )  íí4)(Pj-u-v) . /19/
We suppress the helicity index of the antineutrino spinor because the (l-iy,-) 
factor forces the antineutrino to be always of positive helicity (see the 
Appendix). Then in the rest system of the pion the у must also have helicity 
+ 1 because of angular momentum conservation.

Let us investigate the hadronic matrix element <0|j^+ (0)|tt in> . We
A+ ^ Ashall begin with a simple example: if we suppose that JH (x)eff = -Э (x)

then using eq. of the Appendix we find:

<0 j J„+ (о ) I tt in> =
1 P

(2*)3/2 W
/ 20 /

We see that the matrix element is not exactly a four vector. because of the 
energy-dependent extra factor (2tt) (2p°) The appearance of this factor
is due to our definition of the emission and absorbtion operators, given in 
the Appendix.

Let us now find the most general form of the matrix element. The weak 
interaction is parity-violating, thus a matrix element of J*+ could contain 
both a vector part (v) and an axial vector part (a ). However, our matrix ele­
ment depends only on the pion four momentum p^ , which is a vector, and no 
axial vector can be constructed from it. Thus the most general form is con­
veniently written as
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<0 I J„+ (0 ) I тг in> = ‘ * —  ■ « )(2tt)3^2 /2ртг° '
/20а/

where f(p^) is an arbitrary scalar function of , called the form factor' ТГ ' \ I _ "of the <0 |Ju (o )|tt in> matrix element. Its deviation from the value
= 1 is a measure of the deviation of the axial vector part of (x)

from the simple -Э* in(x ) expression.

In the it- -*■ y” v decay the pion is on its mass shell, i.e.
0 2 V1 , 2 \

p  = m^ . We define g f (m* ) = as the coupling constant of the
v decay*. Then from eq. /19/ and / 20a/ we find

'  ■ <” >* ^ > 1 ( g i f t  ^

The tv -*■ yv decay rate in the pion rest system according to eq. /55/
of the Appendix reads

dr(,-.y- 7 ) = i  I |P|2 i(4)(p,-M-v) - ^ 5- -5=5- /22/
S  2y 2vand a straightforward trace calculation yields

о If tt!2 оI И  = — jp- m2 (p V) /23/s
In the pion rest frame

(y v) = y°v°- у v = j (m2 - m2 ) /24/

while the invariant phase space integral gives
r dy dv / m2 \
W p" ■ M ■ v) 7~5 — 5 = I ( 1 - — 2—  ) • /25/J 2y 2v V m /\ tv '

Finally we arrive at the result

„/ - - . - \ 1 1 IFJ  2 f  2 2 \ ti Л  Шу ^
\ У/ 2тт гт^ TT у\тг у/ 2 ^ m2 /TV

From the measured tv" -* y“ decay rate, which practically equals the total
Г (tv“) decay rate, we obtain the absolute value of F^ in R=c=l units:

6 1 _ —10
r ( 0  - (38,42 ± 0 ,02) ±§5 |Fj = (l4,97 ± 0 ,0 2 ) ^ -  /27/

t
From the y- lifetime we shall obtain the value of |g| and then we 

shall know also |f(m2)| = JF^: g j . More important, however, is the fact that 
in our current-current theory we can also calculate the tv” -*■ e + vp decay
xThe relation of f(m2 } to the coupling constant f^ is given in eq./218/.
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rate, and the only difference from the expression for the tt~ -* у + decay 
given in /26/ will be that instead of m,, we will have m .This is a direct con- 
sequence of the so called ”y-e universality” of the weak interaction, expres­
sed by the invariance of the weak lepton current under the substitution у г e 
We note that the quantum electrodynamics also has this property of у - e
universality, the electric current of the leptons being —

, ]

Ф«Г Ул

-V~ v,
Thus in our current-current theory the ratio 

it“ -* e- v
r (tt ) of the

and it--* e“ ve decay rates turns out to be independent on the 
coupling constants and is equal to

r (tt~) =
Г (тт‘ V )e '
г(тт~

= 2,35.10

У

-5

v ) У 7

2 2m - mit e
2 2m - mTT у

2 2m - mit e
2 2m - mTT у

0,43 * 0,43

The experimental value is

= 1,28.10 

r (tt-)

-4

exp = (l, 24 + 0,03)10-4

/28/ 

in good
r 0 ~)agreement with the theoretical value. We see that the smallness of 

is due to the smallness of the ratio of the matrix elements, and not to the 
ratio of the phase spaces, which is 1:0,43. Indeed, the matrix element E|F 
turned out to be proportional to the lepton mass squared. It is easy to see 
that this is due to the fact that in our current-current theory we have V 
and A currents. Namely, the expression for F (see eq./21/) contains the 
factor

\  pJ us (£) y x (a-iby5) v(vÄ) = F^ us(0 (£ + v)(a-iby5) v(v&) = 

= Ftt míL üS (0 (a-ibY5) v(v£) , /29/

proportional to the lepton mass m^ . In eq. /29/ we have slightly generalised 
the V - A coupling " i Y5 ) of the lepton current to the V, A coup­
ling y ^ ( a“ibY^) ! to stress that our result do not depend on the specific
V - A character, but only on the V, A character. If instead of a V, A theory 
we would have a scalar (S ) , pseudoscalar (P ) current-current theory, the 
matrix element for the decay would be proportional to

g<0 I (О) I it ,in> us (i,)(a'-ib'Y5) v (v̂  ) /30/

where is a scalar + pseudoscalar weak hadron current. The most generalH
form of its matrix element reads:

<0 I Jjj (0 ) I it ,in> ^ 7 2 f,(PTr) /31/
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and g £' (m* 2 ) = is a new coupling constant. Now we obtain instead of
/29/ a factor

f ; usOO(a'-ibY5) v(vÄ) /32/

without the lepton mass. Then the ratio of the electron and muon rates gives

r (tt-) =
2 2m - m_tt____ e_
2 2m - mи у

2 2m - mTT____e_
2 2m - mTT у

5,5 /33/

in bad contradiction with the experiment. Thus if the y-e universality of 
the weak lepton current is accepted, the experimental R(tt--) ratio indicates 
that the V, A coupling strongly dominates over the S, P coupling, the S, P 
coupling may be even completely absent. We stress also that nothing can be 
said from this experiment about the possible presence or absence of a tensor 
(t ) current. Indeed, the <0|J^y+(0)| tt-,in> matrix element will be proportional 
to g ^  and p^ p^ , i.e. will be symmetric in X,y .On the other hand, 
the lepton current will contain the antisymmmetric tensor = (yx Y^-y^ Y^V^i 
and thus the contribution of the tensor coupling to the tt -*- yv decay will 
be zero even if the tensor currents are present in the Lagrangean. The sym­
metric tensor (y^ Yy+Yy Y^)( a-iby5)equals 2g^(a-iby5 ) and gives an effective 
S, P coupling with a hadron current JH = 2g^

Let us still investigate the polarization in the V, A theory. Writing 
Yx (a-iby^ in the lepton current, we obtain, after a straightforward calcula­
tion, the following expression for the average helicity of the lepton l in 
the tt-  -*■ v £ decay

2Re ab*
I a I 2 + |b|2

/34/

here Г^(Г^) stands for the decay rate Г (tt- -* l~ v ) with z~ of positive 
/negative/ helicity. Thus for they^(l-iy^) theory <b.£-> = +1 , for the
yx (1 + ÍY5) theory <h^-> = -l,and for pure V or pure A theory <^^-> = 0 . 
The experimental result, <h^-> = 1/17 + 0,32, clearly favourizes the V-A 
lepton current.

Let us end this discussion by the remark that the К -*■ £ decay
.can be treated in our theory exactly in the same manner as the tt" decay.
Of course^ a new coupling constant F^ = g ̂ (m^ ) will take the place of F^ , 
and m^ will turn up instead of m^ . The ratio of the electronic decay rate 
to the muonic in the V, A theory equals 2,75.10 ^, while in the S, P theory 
it is 1,1. The experimental result, (2 + 0,65"). 10  ̂ again shows the correct­
ness of the V, A coupling. From the experimental K~ a~ decay rate we
find IFk|:
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г (к' () = (51,64 - 0,23) 10_
sec Fk| = (4,124 ± 0 ,010) 10-10

MeV
/35/

The polarization measurement carried out on the К -*• y~v^ decay also con­
firms the prediction of the V-A lepton current.

The theoretical results for the tt+ -+ , K+->- О decays
are the same as for the tt~, K~ decays by CPT invariance, with the obvious 
difference that F* and F* stand instead of F^ and Fk (these coupling 
constants are, however, real if T or CP invariance holds) and that

§2. The у -*■ e v v decay

This is the only observed decay mode of the muon. The transition 
matrix element

<vy e" ^e outIP_in> = out|Cout(e) dout(v )|M_in > /36/

for the у decay can be calculated using ea ./lo/and/11/for v. r e
Then we get

<vy e" ve out I y— in> = \ dy<\ vy out lCouti£K^eiy)YX^1"iY5  ̂jX+(y ) +

+ JX+(y') *e (y) Yx(l-i75)) elvy . /37/

We again neglect electromagnetic and higher order weak interact ons. Then 
JA+ gives no contribution,CQut(e) with ф£(у) gives a factor 
(2t t ^ u(e)e^ey , while the matrix element of the lepton current is

<vyout|jA+(y)Iy_in> u(v)
13 / 2 (i - iY5) ) iy(v“y)

(2TT Л'  ̂ (2тг)

Integration over у leads to the final result

3/2

—  . I —. -i g \4 u(e) д . vTv )
<vy e v ои^  ln> = - 7 Г  (2it) Yx(d " 1Y5 / (77^372 *

(v)

u(v) Y (1 _ iv X u(y) *(40. . .. -
YX ^ l5) (20 3/2

< л Г о о о —о  ̂! 2 Í4)/ — \
rs ,S ( у' e

^16y e v v / 6 (y-e-v-v )

/38/

/39/
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!z

Fig. 1.
Angles in the decay of a polarized 
muon.

Л , о о —o\ 16m e v v )\ у 7 ß cos© ") e ev / /41/

dr (у ->-e v v ) = ■- ̂ 9 14 i"i-ß cos©
' ' (2tt ')b 1_ e evj

and the differential decay probability according to eq.A-55 reads

^(y-e-v-v ) de dv d\) /42/

The muon mass is very large as compared with the electron mass ( and the v& , 
vu masses) ? thus the electron is almost always extreme relativistic. Neg­
lecting the electron mass when calculating the lifetime of the muon, we find 
after straightforward integration over the full phase space that

r(y-) =
o o

I 2 m5
9 1 mu
192 ТГ3

/43/

Radiative corrections are calculable for this case, and they give 
a small contribution. Namely,

rc o r > ‘)
1 g 12 5mУ Г, e2 •fir2 - 251 1 g 12 5

mp I1 - 4,2.10 3
192 3ТГ

h

00 
I N) V 4 i 192 „ 3 1

. /44/

From the experimental value of the muon lifetime we calculate the value of 
I g I (with electromagnetic corrections taken into account):

We shall work in the rest system of the muon. Let у be polarized along the 
positive z axis (ŝ  = t) and let the electron have h^licity 
Se ^Se = +1 or -1 ) .After straightforward trace calculation we find

If . 0 I2 fl6m e° v° v°) = 2  — 1-ß cos© +S (cos© -ß ) 1+cos©— /40/+ ,S V у N 4 e ev e\ ev e / v1 e 1 уАт\) JU
Here ß = |e| : e° is the velocity of the electron, and the angles are shown
in Fig. 1. For S = + we would obtain 1 - cos©— instead of 1 + cos0— ̂ у v v
Thus for unpolarized y_ decay and unmeasured electron helicity we obtain:
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т(у ) = (2,1983 - О,0008).10-б

g I = (l,43506 - 0,0002б).10 49 erg cm3 = (l,1659 - 0,0002) 10
GeV

10-5
M

( 1,02636 - 0,00019 ) 1,02 —
-5

/45/

from eq. /27/ and /35/ we then find: 

f(m^) = (l28,4 - 0 ,15)MeV f(m3) = (35,37 - 0,08)MeV /46/

Let us now calculate the momentum distribution of the unpolarized 
electrons in the case of polarized у decay. In the approximation m0 = О 
we find,

dr ,(cosG , x) = -----Г(3-2х) + (l-2x ) cosG 1 x3 dx d cosQ /47/Sy-fV e / 192тг3 eJ e

Here x E I e I / 1 emax | , i.e. x = 2|е|/тц for m0 = 0 . The measured
momentum distribution is in good agreement with this formula. For the elec­
tron energy distribution in unpolarized у decay we find,

I 12 5I g I m
dT(x) = ----- (З - 2x)x dx /48/

96 tt'
The distribution functions (3 - 2x) x3 and (l-2x)x3 are shown in Fig. 2. 
and Fig. 3, respectively, together with the radiative corrections to them.

Let us look also at the helicity of the electron. From eq. /40/ we 
easily find that for a given e, v configuration

cos0Qxl - Зл 1-Зл  ̂cos©
<he+> = 1-e cose ' - -ee — f ----/49/e ev 1-3 cos©e ev

For 30 ̂  1 we have <h0-> «  30 -1 • Thus, except for the rare slow
electrons, the electron helicity is - 1 in y- decay, and the positron 
helicity <he+> = -<he_> «  +1 in jj~ decay. The experimental result is 
<he+> = 1,03 + 0,10 in agreement with our V - A lepton current.

We see that all the available experimental results on the muon decay 
are accounted for by the V - A theory. Nevertheless, a 30 % tensor or scalar 
impurity can still be introduced without getting into contradiction with these 
experimental data; but these new couplings would lead to bad results in pion 
decay and in 3 decay, thus we do not introduce them into the theory.
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Fig. 2.
The isotropic part of the muon decay 

spectrum.
------ the distribution function

(3-2x)x2
---- - radiative correction included

The cos 9 part of the muon decay 
spectrum.

__  the distribution function
(l-2x) x2

------  radiative correction included

§3 The n ->pe v decay

The transition matrix element for this decay reads \see eq. /15/) :

pe ve out I n in> = (2tt ) *\P out| Jд (0) |n in)

u (e) v(v)
(2*)312

6̂ (n-p-e-v)
/50/

If the neutron and the proton are on their mass shell, which is the 
case in the neutron decay, the most general expression for <pout|J^(0 )|n in>, 
compatible with Lorentz invariance is

<pout | (0 ) | n in> = <n in|Jm (0)|p out>* =HX

= u (p ) (p-nVX v M + P
+ (р -п )х

, (p-")vXv M„ + M. (p-n)x /51/

The six form factors Fj_ , Hi (i = 1,2,3) are scalar functions of the momentum 
transfer squared q2 = (p - n^2. Lorentz invariance leaves these functions to 
be completely arbitrary. One of our main problems is precisely the determina­
tion, both experimental and theoretical, of these functions. The constant weight 
factors cv and сд have been introduced for later convenience.



17

The form factors with i = 1,2 are multiplied by the factor 
(р-п)^/(Мр + Mn ) which is of the order of 10 2 in the physical region of the 
neutron decay. Since the hadron masses are the natural units of the energy - 
momentum for a hadronic matrix element of the hadron current, we may hope that 
it will be a good (^10 2) approximation to retain only F?(q2) and H*Yq2 ) .2 j- -L
In the same spirit we shall neglect also the q dependence of these form 
factors in the physical region me ^ q2 ^ (Mn - M^)2 , which is again very
small compared to any hadron mass squared. Thus we shall work with the 
values of these form factors at the point q = О , very close to the physical 
region. Introducing the vector and axial vector coupling constants gv and 

дд of the nuclear ß decay and the usual notation X for their ratio by 
the definitions

9C, ’!(0 )
<3A _ ca H > )

5 ^  ~ <  FlC°) ' /52/

we arrive at the result

<pe out In in> = -1 9,
75^  I» 4 (^§72  n O  - ixv5) 

• J0 T2 4(1 - lYs) *

= (l6n° p° e° V°)  ̂ F i^n-p-e-v) ,
and

dr(n-pev) = ~  IF I 2 Q d£ de dv .,, о о о о 16n р е v

/53/

/54/

We point out that the same result is found with the Fermi-Lagrangean (3) if 
the strong and electromagnetic interactions are neglected and if fv = g* , 
fA = g* . (The coupling constants are real if T invariance effects are 
neglected.)

In the rest frame of the neutron the following approximations are
useful.

* = |e| )

df(n+pev) =

After integrating over £ eq. /54/ becomes ^with v = v° ,

(mn ~2 <5 v + 2e vcosG
, , о о 16m p e v n

, -  e<4 v2 dv dft e2de dfl /55 ev e '

The implicit dependence of the Dirac delta on e gives a factor 
v + e cos0

- 1  -
ev

m - e - v n
= 1-1 + o(io 3) I , /56/
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because
ir л

max{v, e, e°} <mn - nip« Í0 mr /57/

Thus neglecting in eq. /56/ 0 (lO , we find

dr(n+pev) = 2~ IF12 v2 e2 dí2ev de d«e /58/

In the neutron rest frame the kinetic energy of the proton Tp is
always much less than mn - nip . Indeed,

(m - m )2 -
T < Tmax E p° - m - — ---5̂ ---p - p мпах p 2m 10 3 (mn - mp ) . /59/

Thus in the energy balance

e + v = m - m - T n P P /60/

we can neglect Tp and write

e + v = rn - in n P /61/

Below we shall always work with the approximate equations /58/ and /61/.

Let us now give the relevant theoretical formulae to be compared 
with experiment.

i/ Let the neutron be polarized in the direction of the positive Z 
axis. Then for unpolarized proton and electron after straightforward trace 
calculation we find 

I |F|2
S . S n e P~

2 r
.1 — La

16mR p° e° v ( 2tt )

+ 2Re Л ( 1+1) cosq + — 2Im_X

- 1 л л 2Re X (X-1)— * 8 cos© , - ------ 4:-- L
1 + 3 I X I 2 e eV 1+3|X|2

3 cos© + e e
e v - e vx X ____£_i£

1 + 3 I X I 1 + З А 2 . e° v
/62/

The angles in eq /62/ are shown in Fig. 4.

ii/ If the neutron were' polarized in the opposite direction, the 
last three terms in eq. /62/ would change sign. Hence for unpolarized neutron, 
proton and electron we find

n p eS f IF)
1 ̂  О О16in p e vП (21Г У

(l + 3 I X t 2) 1 - Xl2-1
1 + 3 I X I2 Be cos0e>

/63/
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Angles in the decay of a polarized neutron.

iii/ For the electron with helicity 
neutron and proton the calculation gives

Se = -1 and for unpolarized

s sn p__
2 г

,, о о 16m p e v
1 - --1-X J— --Í ß cos© +S ■■ \  cos© -ß2 He ev e ,.-I,|2 ev e1+3 X 1+3 I X I

/64/

Let us now compare the theoretical predictions with experiment.

1/ Dominance_о|_^Ье_Ух_А_соир11пд_1п_the_hadron_current

From eq. /63/ we see that the e-v angular correlation in the un­
polarized neutron decay is determined by the coefficient

5 = - Ш  ,! - , 1
1 + 3 I Л I 2

/65/

For pure V hadron current X = О , and then £ = -1 .In table 2 we show 
the theoretical value of £ for pure V, A, S and T hadron currents. It 
is easy to see that in the nonrelativistic (static) limit p о both the 
V and S currents give Xp Xn (Fermi transition "F") , the A and T cur­
rents give Xp 2. Xn (Gamow-Teller transition "G - T"), while the P current 
gives no contribution. Indeed, u (o ) = 0. To the free neutron decay

Table 2. Table 3.
Theoretical values of £ for pure 

S,V,A and T hadron currents
Experimental values for £

Decay Charac- p 
ter K

He6 ---5-~ ■ Li6
Ne23---e~.— Na23
Ar35 .S.*-»- Cl35

G-T +0,3343 ± 0,0030
G-T +0,33 ± 0,03

Mostly-0,97 ± 0,14 F

Hadron
current S V A T

Z +1 -1 +1/3 -1/3
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both F and G - T transitions contribute. In nuclei the nuclear structure 
often forbids one of these transitions to take place. Thus,in nuclei, F and 
G - T transitions may be separately observed. In table 3 we give the experi­
mental results for £ in some nuclei with pure F or G - T transitions. 
Comparison with table 2 clearly shows that the V and A couplings are much 
stronger than possible S and T couplings, respectively. (For ß+ decay the 
theoretical values for £ are the same as for ß decay. Let us notice also 
that in nuclei instead of eq. /65/ one finds

^ 1< ° >12 |gA l2 - lgv l2 l<i>l2
5 - — ---- 5----=-y----2-я— ----r ~  ' /66/|gv l2 l<i>l2 + |gA l2 I<a>12

where <1> and <o> are shorthand notations for the F and G - T nuclear
2 2matrix elements, respectively. For the free neutron |<1>| = 1, |<a> j = 3 ,
2 2and we get back eq. /65/. In nuclei these values of |<1>| and | <o> | cor­

respond to the so called superallowed F and G - T decays.)

2/ The energY_distribution_of_the_electrons_L_The_Fermi_spectrum

To calculate this energy distribution for unpolarized neutron, proton
1 2and electron we have to insert the expression for £ -r |f | in eq. /63/ at 

2 ^the place of |F j in eq. /58/ and then to integrate over all the variables 
except e°. The result is:

j j 2 ___ (
dr (x) = (l + 3 I A I 2) 3 4m^ (w q - x )2 Лс2-1 x dx /67/

where WQ = (mn - m ): me = 2,53 is the end point energy. Indeed, the dimen­
sionless energy variable x = e°:me changes from x = 1 to x = WQ accord­
ing to eq. /61/.

Eq. /67/ refers to the decay of a free unpolarized neutron.
The corresponding formula for the allowed unpolarized N -*■ N' + ß + v decay

9 2 2 2can be obtained from eq. /67/ by changing 1 + 3 |A | “ to |<1>| + \<a> | | A]
and WQ from (mn “ mp): me to (mN ~ mN ')5 me ' Moreover' the influence of
the extended charge distribution of the nucleus on the motion of the ß par­
ticle may be quite important and must be taken into account by multiplying the
function (w -x ?  ^  x by an appropriate Coulomb correction factor, for which 
detailed tables exist. With all these changes we obtain a theoretical expression 
which can be tested not only for the neutron decay, but also for the wide va­
riety of allowed nuclear ß decays. The energy distribution (the so-called 
Fermi distribution or "Fermi spectrum")

F(x, W0) = (wo - x)2 1 X / 68/
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is shown on Fig. 5. In general one prefers to represent the experimental data 
on the Curie plot /Fig. 6./. The Curie function is defined as

k (x, wq) =
F(x, W0 )
72 "7с/х - 1

/69/

and from eq. /68/ we see that in our theory K(x,WQ) = WQ - x. The experimen­
tal results are in excellent agreement with the theory. We remark that the 
shape of the spectrum near the end point WQ strongly depends on the assump­
tion that the neutrino mass is exactly zero. The best experimental upper limit 
coming from the end point behaviour is m0 < 60 eV.

Fig. 5.
The Fermi spectrum, 

the distribution function f (x ,Wq)
the distortions due to the Coulomb 
correction

Fig. 6.
The Curie plot for the nucleus.
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3/ Determination_of _ l_9v j_and_{X_L

1
T(n)

Integration of eq. /67/ over x gives the neutron lifetime
, - 2 wo

Г(п) = 4(l + 3 I Л I 2) ■■■ V 3  m^ \ f (x , W )dx
(2tt) !

x(n): 

/70/

where
W

r  f (x' 
1

/71/

To obtain the value of I9V I and |X| separately, 3 decays with
superallowed pure Fermi transitions must be investigated. Indeed, for them

0 2 2 2I X I -*■ •* I <o> I I X I = 0  , since I <o> I = О . The best world average for
lgv l is

I gv I = (l,4138 - 0,0026)10 erg cm^ /72/

and then from the neutron lifetime

I X I = 1,23 - 0,01 /73/

The effect of the static Coulomb field of a (heavy) nucleus on the 
3 particle is important. This effect can be calculated and is already taken 
into account in the value of | gv | in eq. /72/. The effect of the radiative 
correction on | gv | is not included. The radiative correction turns out to be 
cut-off dependent and is thus uncertain. With "reasonable" cut-off one finds

Igv I = (l,4032 - 0,0026)l0 ^  erg cm3 =
-5

= (l, 140 - 0,002)
GeV

= (l,00357 - 0,00176 ) . ^  1,00 /74/
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4/ Parity_P_and_time_reyersal_T_experiments^ JThe_sign_of__X___.

The last term in eq. /62/ violates time reversal invariance. To see 
this, let us write down the general form of this term for the neutron polariz­
ed in an arbitrary direction £n . We find

21m X____ ^e p
1 + 3 I X I 2 v ~n [® x ü] /75/

Under T p p , e^-e, v->— v , hence /75/ changes sign and thus—n —n — — — —
the distribution /62/ is not invariant under T unless ImX = 0 . Measure­
ments of the P Ге x vl correlation show that ImX is surely small and—n L— — 1
is compatible with zero. Indeed, the experimental result is

---2lm X . = 0,01 - 0,01 /76/
1 + 3 I X I 2

In the following we shall take X real, i.e. we neglect the possible small 
T violation.

The terms proportional to cos0e and cosO^ in eq. /62/violate
P. Indeed, with the neutron polarized in a direction P , cos© -*(P .e)/en ^ n
cos©v-*-(Pn . v) /v . Under P Рд + Pn, e -e, v -* -v ,hence these 
expressions change sign. The experimental results on the (Pn.e ) and (Pn*v) 
correlations, presented in Table 4»are seen to be compatible with the value 
IxI =1,23 found from the life-time measurements and with T invariance (i.e. 
with X real} supported by the [e x у ] correlation measurement, Only if 
we choose X = +1,23 and not X = -1,23 .

Table 4.
The sign of X and the neutron spin - lepton momentum correlation

experiments

asymmetry
parameters X = + 1,23 X = -1,23 experiment

for e 
-2X(X-l) 
1+31x 12

-0.09
»

-0.99 -0 .11+0,02

for V 
2X (X+l) 
1+31X 12

+0.99 +0-09 +o.88+0.15
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Finally we remark that the first two terms of the distribution /62/
conserve both P and T. In his original theory of ß decay Fermi supposed
that P and T are conserved and he worked with the Lagrangean (2) with
f ss f = fm = 0 and with f,/f real, instead of with the Langrangean (3). It s P T A' v '
is easy to see that for ß -decay with unpolarized particles both theories 
lead to the same result, namely to eq. /63/. Only after the discovery of the 
parity violation in the K° decay in 1956 by T.D. Lee and C.N. Yang one looked 
at the polarized Co^° decay, and then the fact of the parity violation in 
nuclear ß decay was established.

5/ Experiménts_on_the_helicity_of_the_ß_-_particle1

The average helicity of the electron for unpolarized neutron and 
proton can be easily found from eq. /64/. For given e and v we obtain

Ccos8e v -  _ 1 -  в ; 1 ; c o s s ev
1 -  Be 5cos0ev ■ e 1 -  ee Ecos0ev /77/

This formula is similar to that for <h0-> in the у decay, given 
in eq. /49/. But now ß0 can often be <<1 , and thus it is not true that 
<h0->^  -ßg for almost every e , v configuration. On the other hand, 
the approximate formula /56/ now holds, and we can easily integrate our dis­
tribution /64/ over cos00v , which was not the case for the corresponding
distribution in y~ decay. Integration over all the neutrino variables and 
electron angles gives

dr_ (x) = 2Í1 + 3 1A I2) 0 -5 (1 - S ß ") F(x, W )dx
se V ' (2„)3 e ^ e e ) \ 0/

Thus, for fixed x (i.e. for fixed ß = e /x2-l/x)we find

(i-ee) - (i+ße)
<h®_> “ U-Be ) + (l-Be) ■ '6e

/78/

/79/

If in the lepton current we would allow the general V, A coupling 
Y^(a - ib Yt-4) , ’we would obtain for ß and ß+ decay

The experimental results shown in 
lepton current Y^(l “ ÍY5 )

2Re a b*
■ I I 2 ,2'|a| + IЬI

Table 5 give strong

<h0+> .. /80/

support to a pure V - A
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Table 5.
Experimentally determined helicitles of the e— particles

Decay Character <h > ! ßQ e e

b12_ W 2* G - T -0.98 + 0,06

Ga68 <-Z n 68 G - T +0.99 + 0,09

014 < N 14 F +0,97 + 0,19

§4. Conclusions

The available experimental data on it + iv , К -*■ í,v у -► evv r 
n -*■ pev and nuclear ß decays are compatible with the hypothesis that the
weak interaction inducing these decays can be described by the current-current 
Lagrangean /4/ with vector and axial vector currents. For the hadron current 
the predominance of the A coupling over the P coupling is supported 
by the experiments on the Г(тг -> ev) : Г (тт -*■ yv) and Г (K -*■ ev) : Г (К -*■ yv)
ratios if the У-e universality of the lepton current (see page 11 ) 
is taken for granted . The predominance of the V, A couplings over the 
S, T couplings is supported by the v-e angular correlation measurements 
in ß decay. The Y^(l-iY-) structure ("V - A structure") of the 
lepton current is confirmed by helicity measurements in the ß decay and in 
n -*■ yv decay. All the measurements on the у decay are also compatible with 
a pure V - A lepton current; however,the data in this decay would allow 
for 20 % 30 % admixture from S,P and T couplings. Neglecting these unwanted 
couplings which would not allow the description of the у , тт and n decays 
in the framework of a unique theory, one finds from the muon lifetime the ab­
solute value of the coupling constant g . The detailed experimental analysis 
of the nuclear ß decay and of the free neutron decay has shown that the 
matrix element of the weak hadron current between nucleon states can be ap­
proximated, at least at low momentum transfer q2, by an effective y^l-iy^) 
coupling, if,instead of g ,a new coupling constant g^ is used (Fermi 
approximation). X = +1,23 from these experiments. It is remarkable that gv 
is practically equal to g (we suppose that they have the same sign),i.e. 
that the nucleons .take part in the weak interaction practically with the 
same strength as the leptons. For the axial vector part the "renormalization" 
of the hadron current is stronger, g -► g^\ , but still it is only about 20%.

XThe predominance of V over S and T is supported by the experimental 
results in K->-7ri,v decays. See e.g. [8], Chapter 5.
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In chapter IV we shall see that the theory of Cabibbo and Gell-Mann 
explains the fact that gv is smaller than g ,saying that the missing 
strength of the hadron coupling is held by the strangeness changing part of 
the weak hadron current JH  ̂ . Thus a universal theory of the weak interac­
tion, describing all the leptonic and semi-leptonic decays will emerge, with 
a Lagrangean containing only a few free parameters. The problems concerning 
the application of this theory to the non-leptonic weak decays will be briefly 
described in chapter V.
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III. THE LEPTONIC DECAYS OF THE HADRONS. THE ISOTRIPLET VECTOR CURRENT (iVC) 
THEORY

§1. The IVC hypothesis

In chapters III and IV we shall discuss the status of the theory of 
the weak leptonic decays of hadrons, i.e. of processes where the decaying 
particle is a hadron which decays into a lepton pair £v accompanied or not 
by one or several other hadrons. Such decays may be strangeness conserving, as 
the TT £v and n -* pev decays, or strangeness-changing, as the K-*£v
decays. In chapter II we have seen that these three mentioned decays could be 
described by the current-current theory with V and A currents. In this 
chapter we shall see how this theory applies to the leptonic decays of the 
hadrons in general.

First of all we shall examine the structure of the weak hadron cur­
rent operator JIT,(x') which enters the general expression of the transition H A
matrix elements of the leptonic hadron decays,which is given in eq./16/ and /17/, 
if H is now a one - hadron state. The fact that both strangeness-conserving 
and strangeness-changing leptonic hadron decays are observed, shows that 
J (x) must have a strangeness-changing and strangeness-conserving part. If we 
would consider the weak interactions in any order of g , then the separation 
of J„.(x ) into two such parts at a given time would not be maintained at a 
later time: the weak interaction would add a strangeness violating part to the 
strangeness-conserving one and vice-versa. The same reasoning may be applied 
to the separation of the weak hadron current and also of the .lepton current 
into a vector and axial vector part. Only in first order in g have these 
separations a time independent meaning. Since we shall always work in this 
approximation, we can write JH ^(x) in the form:

JHX<X > = Cv VX=0M  + CA АГ ° (Х) + ‘V  Vf V )  + dA Af ° ( x ) /81/

where cv, c^, dy and Зд are coefficients, not necessarily real. At first 
sight the introduction of these coefficients may seem to be superfluous; they
could be included into the operators , V and A , which are themselvesA A
unknown. However, we shall see later that these operators are supposed to obey 
commutation laws which normalize them. Then their coefficients give the weights 
of these normalized operators in the full hadronic current /81/.

Important properties of the operators V. and A in eq. /81/ haveA A
been specified by M. Gell-Mann and N. Cabibbo.



28

In the present chapter we shall discuss the isotriplet vector current hypoth­
esis of Gell-Mann, which refers to the transformation property of the V^“° 
current under rotations in the isotopic spin space. To come to the basic idea 
of Gell-Mann, let us consider the matrix element of V®-° between nucleon
states.

The comparison of eq. /51/ with eq. /81/ shows that

<p (p2) lv"-° Co)+ I n (p^ >

P(P2)
Y x  F i ( i 2 )  ■  i 0

(p2_pl)
Xv M + M 2 n p (ч2)

(p2'pl)
M + M n Р F‘3 i*2)

n (Pl) /82/J ( 2 '
from now on we drop the "in" and "out" labels of the state vectors, and denote 
the neutron state of momentum p by |n(p)> , and the neutron spinor oy n(p)

S=0 "I“The operator (x) increases the value of the electric charge by
one unit, while °(x) lowers it by one unit. Its matrix element
<n|V^ °(0)|p> appearing in the nuclear ß+ decay, can be easily calculat­
ed from eq./82/:

<n(p2) lvx °(°) Ip (Pi)> = <P(Pi) lvx~°+(0) In (P2>*

n(p2) iaXv
(p2'pl)
M + Mn

V

p
p (pl)
T & W 1

/33/

It is well known that for any hadron the relation

Q = Iz + \ У , /Y = В + SI /84/

holds. Then for AS = О transitions we have AQ=QtI,-QTT=AI = - 1 sinceH H z
ДВ = 0 /the lepton current with AQ = -1 and ДВ = 0 ensures the total Q 
and В conservation/. Namely, for V®“° Cx)+ we have AIZ = IzH, “ IzH = +1
and for °(x) Al2 = -1 . Thus we see that if these operators have
definite transformation properties under the isospin group, then the simplest 
possibility for them is to be the q = +1 and q = -1 spherical components
of an irreducible isotriplet isovector operator , (x) (q = -1, O, +l) .q , X
This means that there exist tnen three hermitean operators Vi'x(x ) ~ 1*2,3) 
which satisfy with the three hermitean generators 1  ̂of the isospin group 
the commutation relations

ps' Vk , x H  = iesk5- Vi,x(X  ̂'
i.e. the very relations which the 1  ̂ satisfy with each other:

/85/



29

Ci. гк] - i eski, / 86/

The precise connection of the V,s ° , V s °+ operators with the v. ̂  ̂ i,Aoperators and the expression of these latter through the spherical compo­
nents may be defined in the following way

V=“°(x) = V1(X(x) - i V2jX(x)= /? vfl|x(x)

УГ°(х^+ - Vl,x(x ) + 1 v2,x(x )= vií!x(x )

V3,X<*>= Vo ^ ° ° /87/

The natural question arises whether the third component ^(x)
has a physical meaning or not. In 1958 Gell-Mann suggested that it has. 
Namely, he supposed that the currents \Л ^(x) are just the density oper­
ators for the generators 1^ . Then by definition

I±(t) = Jdx Vif0(x,t) / 88/

If the isospin group were an exact symmetry group, then the generators would 
not depend on the time. We know , however, that in Nature electromagnetic 
and weak* interactions violate this symmetry. Then the eq. /85/ and /86/ are 
supposed to hold as equal time-commutation relations:

vk,X^x,t^  " i eskl

[Is (t), Ik (t)] = i esk(, I,(t) /90/

We notice that from eq. /88/ and /89/eq. /90/ follows, while /88/ and /90/ 
do not imply /89/.

The physical meaning of the V'̂ ^(x) operator is then obvious. It 
enters the electric current operator of the hadrons (x) according
to the well known formula

j h x (x> " v3,x(x > + I V х ) • '91'

x see footnote on page 34
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the space integral of which, with A = 0 and I3 = Iz , gives eq./84/. The 
Lagrangean of the electromagnetic interaction in these notations reads

Le£(x) = e AX(x) ,e£, N , .e£, ,j h x (x ) + (x) /92/

let us also remark that the hypercharge current is an isoscalar operator, i.e,

[ls(0, Yx(x,t)J = 0 /93/

It is important to point out t!it the eq./88/ and /90/ normalize the
currents V. (x ) and also fix their sign. Indeed, if we multiply the cur- 1, A
rents by a common factor К , these equations remain true iffand only iff 
К = +1 . The reason for the introduction of the weight factor in eq. /81/
is now clear. It leaves open the possibility that the s = О vector part 
of the weak hadron current is not exactly equal, but only proportional to 
V1 ~ i ^ 2  ^(x ) * In t îe ог^<9;'-па  ̂ formulation of the isotriplet vector
current /IVC/hypothesis,Gell-Mann suggested that С = 1 , in analogy with 
eq./91/ for the electric current, where the coefficient of ^(x) is
equal to 1. At present, however, both theoretical and experimental considera­
tions indicate that Cv is probably slightly smaller than 1. We shall 
return to this important question when we shall discuss the hypothesis of the 
universality of the weak current at the end of chapter IV.

The /IVC/ hypothesis has far reaching consequences, expressed by 
the Wigner-Eckart (w-E) theorem. This theorem for the SUÍ2) isospin group 
can be written in the form

< 1 М ! , а ' | Й 1 ,  I a> = (i, I. ; k,q|l'I')(a' | \4k) | | a) /94/

In this equation I, Iz, (ijl ) stand for the total isospin quantum number 
and its third component in the initial (final) states, a and a’ denote all 
the other quantum numbers specifying those states, is the q-th
component of an irreducible tensor operator belonging to the SU(2) represen­
tation of dimension n=2k+l. ( I,Iz;kq 11 'Д' ) is an SU(2) Clebsh Gordan coef­
ficient, while (a'| jT^ ||a ) denotes the reduced matrix element, which 
depends an all the variables which occur in the matrix element itself, except 
the magnetic quantum numbers 'Iz, I', q .

The W-E theorem connects the weak nucleon form factors F^(q^) of 
the weak s = О vector current in eq./83/ with the isovector form factors of 
the nucleo'ns F^v (q ) , defined by the relation
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<p(p2) lv3, Ip P̂i) > =
P(P2) Yx F^(q2) - ioXv

(p 2-p i)'
2M r % 2)

C p2-Pl)
2M x- '5 ( 0

pfri)
J Í̂ T71 /95/

it also connects, through eq./91/, the FY(q2) with the electromagnetic 
form factors of the proton F?(q2) and of the neutron F?(q2) , which
are defined as follows (N = p,n^:
<n (p 2 ) I (°) |n (P]_)> =

n (p 2)
W F 1

,N / 2 \
i ( q  )  -  i a ;

(P2"Pl)'
2m n

,N/ 2X■7{q )
(p2'Pl)

F % 2) “(Pi)
XV 2 ^  - 2 -  ' 2Mn

The eq./91/ contains also the operator i Y,(x) which defines the isoscalar 
form factors of the nucleons F?(q2) through the relation (N = p,n)
<N(p2) || Yx(0) N(Pj| > =

(p2-Pl)

/96/

n (p 2)
1 (я2) - iaXv

(P2'Pj)'
2MH ( q 2 ) 2mn ' 5Ю . (2it)

N (Pl)
372

The W-E theorem holds exactly only if the operators and the states involved 
are exact multiplets. In our case this is not so, because even if the opera­
tors satisfy the group properties exactly at a given time, the physical 
proton and nucleon states do not form an exact isodoublet as shown e.g. by 
the fact that ф Mn . Below we shall work, however, in the exact SU(2)
limit, i.e. we shall neglect the smallrfew percent SUf2) breaking effects.
In this limit we have of course = Mn = M^. Then straightforward applica­
tion of the W-E theorem and of eq./91/ gives the following results:

Fi(q2) = 2fY (q2 ) = FP(q2) - F*?(q2)
/98/

2F^(q2) = F?(q2 ) + F^(q2)
To illustrate how such relations are found, we write

< n ( p 2 )  | v x - ° ( ° )  I p ( P x )  > =

- <n(P2) l ^ ’^ ,lfX(0 )|p(p1)> = / ф  I; 1, -l|i, -i)(i p2 I 1^(0) 11| Pl) =
= TS (I p2l l ^ ° )  I l| Pi)

< p ( p 2 ) | v 3 > x ( o ) | p ( P l ) >  =

- <P(P2')lvio,X(0)|P(Pl)> = (i ?>°l|' l)(i р2И'/х,(°)||| pi) -

■ 73 (5 P2J I^Vo) 111 Pl) /99/
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i. e.

<n(p2)v®=° ( o ) |p ( P l)> = 2<p (p 2) |v3X(o ) |p (Pl)>  /Ю 0 /

Eq. /83/ and /95/, taken in the SU (2) limit with мр = Mn = , imply then
the relation F . ( q 2) = 2FY(q2 ) . We stress that the relations /98/ are deriv-

* 1 2 1 2 ed by us only for q < 0 , which is the physical region of q if Mp = Mn .

The f o l l o w in g  p r o p e r t i e s  o f  th e  fo rm  f a c t o r s  F Y (q2 ) ,  F^ (q2 ) a re
known on t h e o r e t i c a l  g ro un ds :

i/ for i = 1, 2 these functions are real, for i = 3 they are purely 
imaginary. These properties follow from the fact that X(x) and Y^(x)
are hermitean operators.

ii/ Using eq./15/ we easily find the matrix elements of our current 
operators at an arbitrary point x ф 0. We know also that in the SU(2) limit 
all our vector currents are conserved:

ЭХ V± ̂ (x ) = 0 , ЭХ Yx(x) = 0 /101/

Application of the current conservation to eq./95/ and /97/ gives:

F2 (q2) = 0 , F®(q2) = 0 /102/

iii/ If we integrate the eq./95/ and /97/, written for x ф 0 over 
x with X = 0 and take into account that 1з|р> = т̂ |р> r ^ Y|p> = -||p> 
we find

F^(0) = \ , F®(0) = § . /ЮЗ/

Some further properties of the form factors are known from experiments: 

iv/ From magnetic moment measurements we know that

f2 (°) = yp = 1,793 , F > )  = Уп = -1,913 /104/
• Iwhere and yn are the anomalous magnetic moments of the proton and of

the neutron, measured in e!i/2MpC units.

v/ At Stanford the proton and neutron electromagnetic form factors
2have been measured for a wide range of q < 0 . The phenomenological formulae 

for the form factors can be written, within the experimental errors, as fol­
lows :
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^ ( я 2)
1 + li

с£(я2) - пР(я2)=

■ ■ с

Gg(0) = О ,
a Ggta2)

dq‘
= 0,563 М-2

q2=o

/105/

/106/

In eq. /105/ and /106/ the Sachs form factors
N N N
GM E 4  + F2

g n  =  f n  +  _ a l fn°E " *1 .,,2 2
4mn

/N = p, n/ /107/

have been introduced.

According to eq./98/ the information i-v can be transferred to the 
weak form factors

iv' F- (о) = у - у = 3,706P
2

4MN
gm * GH - - ? - ( ge ? ge )

1 - 4Má
= 2F V,s

l  GS - (GE * GS ) . 2F V,s .
1 - 42/4m 2 2V,S > Г1,2(я ) “ 2Р1%(я ) /108/

The relations /108/ have been derived through the W-E theorem in the
2exact isospin symmetry limit for the range q < 0 . In Nature, however, this 

symmetry is violated by the electromagnetic interaction54. The violation is 
thus controlled by the fine structure constant, a = and is expected to
be at most of a few percent. Nevertheless, the precision of the experiments 
in nuclear 8 decay would make it desirable to take into account this small

*and also by the weak interaction. However if we work in first order in 9 
with the Lagrangean (4) , then the weak current J (x) is free from the weak 
interaction.
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effect. Unfortunately, no reliable theoretical method for the calculation of 
the departure from an exact internal symmetry is known. It is obvious only 
that when calculating the phase space for the neutron decay one must use the 
observed, unequal neutron and proton masses because with Mp = the energy
conservation would forbid the decay, and that the relations i - v must be 
continued from the q < 0 range of the e + N -+ e + N scattering to the 
mg <q^ <, (20 MeV range of the nuclear $ decay. The true analytic expres­
sions of the electromagnetic form factors are however unknown, and it is 
hopeless to try to obtain reliable corrections of a few percent from the 
analytic continuation of the approximate expressions /105/, /106/. Moreover, 
the symmetry-breaking corrections to the functional form of the form factors
are also uncalculable54. In practice the following procedure is adopted when2testing the IVC hypothesis: both the q dependence of the form factors 
and the Su(2) symmetry breaking effects are neglected, and the values of the 
form factors at q = О are used. In nuclear ß decay and also in the■f л
TT- -> тт°е- ve(ve ) decay the physical region of q is so small compared 
to a hadron mass squared, that it is hoped that the error caused by this 
approximation is at most a few percent. In particular, we find then from eq. 
/52/, /45/ and /74/:

gv = gc* F*(0) = gc* , |cv | = 0 , /109/

The same procedure will be applied also to the E -*■ A £ v decay, where, of
2course, the neglect of the q dependence is less reliable.

§2. Experimental tests of the IVC hypothesis 

1 / The__________________ isotriplet^Weak^agnetisn^

It was pointed out by Gell-Mann that a convincing test of the IVC
4" 12 12*hypothesis can be carried out with the three Jp = 1 nuclei В ,' C ,

12N , which are the q = -1, 0, +1 components of an isotriplet. These nuclei
decay to the 0+ ground state of the isosinglet via ß , у and ß+
emission respectively /see fig.7/. Gell-Mann drew attention to the fact that
the relevant correction term of the first order in q /M^ to the unpolarized12 Vo л . Nspectrum of the В and N decays is of exatly, the same structure as the

12* 12matrix element which induces the C С + у transition. Indeed, in a
1+ 0+ ß decay, the only zero order term in the matrix element is the well

For conserved current these corrections" are of second order in the symmetry 
breaking at q =0. This is the Ademollo-Gatto theorem.
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.12

Fig. 7.
The decays of the В 

isotriplet
12 - C12 - N12

known G-T term H^(0)<a> = Л<a>. 
This term leads to the Fermi spec­
trum Л2I<o>I 2 F(x, W ) • The
first order correction to shape of 
the spectrum comes from the inter­
ference of the A<a> term with 
two terms of order q^ /Mjj • The 
first comes from the F^(0 ) 
structure when the recoil of 
the daughter nucleus is taken into 
account, the second from the 
F2 (°) o Av qV/2MN structure
without recoil. After a lengthy 
but straightforward calculation 
the shape correction factor which 
multiplies the A2|<a>|2 F(x, W ) 
spectrum turns out to be

1 - -•L 3
< y >

m.
A<a> M x = / 110/

1 19The measured shape correction factors for В and N

12 t 12*)where + (-) refers to the В (C / decay. In eq./llO/ <y> stands for 
the sum of the contributions of the F^(o) and F2^°) f°rm factors, modified 
by the nuclear structure:
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< У > = Firo)<y1> + F2(0)<y2> / 111/

<y > and <y > are appropriate nuclear matrix elements /compare with
H, (0) H1(0)<c> in the G-T transitions/.

Let us now investigate the у transition. First of all we remark that 
the isoscalar part of the electric current cannot contribute to this Д1 = 1 
transition. Thus only the F,v and F„v form factors enter into the game.

-f  ̂ -fMoreover, we have and 1 -*■ О transition, i.e. a pure 1 matrix element
is needed. The F^v form factor does not contribute to it in the static
limit, while the F0V does. Namely, the matrix element <y > of the io  ̂ , Y
CL -*■ С + у decay turns out to be

<Уу> = F^(0) <m±> + F2(0) <у2> /112/

From the IVC relation F, 0 (q2) = 2fY _ (q2 ) we immediately find that
1 rz 4 ' i2x 12<y> = 2<y^> ; thus measuring |<Уу>| in the C —► C +y decay,

value of |<y>| in eq. /110/ can be predicted, assuming that the IVC 
hypothesis is correct.

To test the shape correction formula, still X<o> is needed. A good12experimental value of |X<a>| can be obtained from the lifetime of the В
The point is that the contribution of the shape correction factor to the

12lifetime can be safely neglected. Indeed, the nuclear structure of В is 
sufficiently known and it can be shown that |<a>| and |<y>| are of 
the order of 1. the range of x goes up to WQ «« 30 , therefore the devia­
tion of the correction factor from 1 is of the order of 40 e . «5*0 ,02. Thus 
from the B12 lifetime we get |X<a>| , and finally we find

■x<S>" = 1 (4'68 ± °'5 ) /113/
We stress once more that this result depends on the correctness of the IVC 
hypothesis. It is interesting to note, that even the sign in /113/ can be 
predicted. Namely, if the orbital magnetic moments of the nucleons and other 
complicated but presumably small effects are neglected, one finds that 
<y^ -*• <o> , <У2> <a> t i.e. with eq./lll/ that
<y> •* [f ^(0) + F2 (0)] <a> . Then from the IVC relations F-̂ (o) = 1 ,
F2(o) = Ур - yn we find

< u >
X<a> - 1,23 = 3,75 /113'/

Comparison with eq./113/ shows that the + sign must be chosen. Thus the IVC 
prediction for the shape factor /110/, with eq. /113/ taken into account be­
comes
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1 - (о ,57 ± 0,06 ) 10~2 /114/

12 12while the experimental result from the В and N spectrum gives /see fig.8/

1 ±
0,55 ± 0,10

10-2 eo MeV0,52 ± 0,06

in full agreement with the theoretical expectation.

2 / The__________decaYjL_The_darnging_of _the_Fermi_transition

The hadronic matrix element <A(p2) |JH^(x )|E+(p^)> which appears
in the strangeness-conserving E + •> Ле+ vq decay contains a vector part which 
can be written as

<Л(р2) V® °(x)|E + (p1)> =

= e
1(р2-р1)х Л(р2)

= i (4 2 ) A v
(P2_Pl)'
MA+ME ,(я2 )

(P2"Pl),
M A+MVЛ E :(Я2)J J ^ f 11/115/

The space-time structure of this matrix element is, of course, the same 
as that of the corresponding nucleon matrix element /83/, but the form factors 
are different, since the curreht operator is taken between states belonging 
to other multiplets.

Let us now suppose that the vr°(*) current is conserved:

~A TTS —о . - _Э (x) = 0 111*1

The application of this condition to eq./115/ gives

El(q2)(MA - ME2) + Ч2 E3(q2) = 0 /117/

Since Мд Ф Mj, and E3 (q2 ) has no pole at q2 = О /because no bound state
of zero mass with the discrete quantum numbers of the E+ Л system exists/, 

2we find at q = 0 the condition

E^O) = 0 /118/

Eq./118/ is a direct consequence of the current conservation /116/. If the 
IVC hypothesis holds,/116/ follows from V3 д(х)=0 in the exact SU(2)
limit. We stress that even in that limit Мд f M̂ , since Л and £ belong 
to different isomultiplets. The result is different if the masses are equal.
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This is the case for the <n|v® °('x)|p> matrix element, where from

p i(q2)(Mn ■ Mp ) + q2 р з(ч2 ) = 0
in the SU(2 ) limit we find, with Mn = Mp the well known condition F3(q2)= 0 
for q2 < 0 .

2The physical region of q in the 1 Aev decay is 
m2 < q2 £ (мЕ - Мд)2 (76 MeV)2 , and the approximation E ^ q 2) = E^o) = 0 
is certainly not very good for the whole range. Nevertheless, we expect the 
Fermi transition to be considerably damped as compared to the G-T transition, 
where no current conservation effect occurs. The experimental results are 
again in the favour of this IVC prediction /Fig. 9, 10/.

Fig. 9.
The kinetic energy spectrum of the Л hyperons in 

in S1 -*• Ae±v decay
--------- pure axial current
--------  pure vector current
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3 / The__ß__decay_of _the_charged_£ion

Fig. 10.
The electron - neutrino angular dis-
* Í ±tribution in £ + Ле v decay.
---------  pure axial current
--------  pure vector current

The IVC hypothesis can be successfully applied to the 
7r± -^1T° e± v (v ) decays too. These rare decay modes have been observedG G
with the rate

Г (тт+ tt° e+ ve)exp 
Г(тт+ •> y+ v ) exp

= (l#02 Í 0,07) 10-8

The hadronic matrix element for the tt+ decay reads:

<тт°(к2') |JHX(0) |тг+ (к1) > = cv<TT°(k2) |v ®_o (0)tt + (k1)>

/119/

/ 120/

The strangeness-changing current is absent because the decay is strangeness- 
conserving, and the ° current is absent because no axial vector can
be constructed from the two available four momenta k^ and k2

From the IVC hypothesis we get in the SU(2) limit 
<tt°|v ®=O(0)|tt+> = /21 <iro |v^1 x (0)|tt+> =

=  / 2’ ( l , l ; l , - l | l , o ) ( i r |  | v f j \ o )  I |tt)= (tt | | ^ ( 0 )  | | i r ) / 121/



<7T+ IV3 , A (° } IТГ+> : * V J > > l * +> = (i ,1;1,0|1,i)( tt| Iv^Vo) Mir) = ^ ( ttI ^ V o ) |тт)

/ 122/

<тт°(к2) |V®”°(0)|TT+ (k1) > = /2 <TT+(k2)|V3^(0) |тт+(к1)> /123/

Using the translational invariance formula /15/ and Lorentz invariance re­
quirements, we find that the most general expression for the matrix elements 
of V®=°(x) and V3 A(x) is

<тт°(к2) |VA °(х)|тт+ (к1) > 

<тт+(к2) lv3/A (х)|тт+ (к1) >

i(k2-ki)x
e____________
(2тг)3 /4E~E2

1(k2-kl)x _e___________
(2тг )3 /4E1E2'

fi(q2)(k2+k1) +
X

fI(q2)(k2+ki)X

X k2~kl) /124/

+ 4 ( q 2)(k2-ki) /125/

finite2 ) for 2
q < о /i = 1/2/ /126/

The conservation of the isospin current V3 leads to f2 (q3) = О for
all q3 < 0 , and integration of eq. /125/ over x gives f^Co) = 1 •
Then eq. /123/ says that in the isospin symmetry limit

f3(o) = /? , f2(q2 ) = o /127/

Neglecting the small effects of isospin symmetry violation and taking 
f3(q2 ) = f A(o ) in the small physical region m3 _< q3 £(m^+ - m^0)3
of the tt+ ■+■ tt° e+ decay, we see that in the decay rate formula for this
decay no unknown quantity remains; in particular |g cv | = |gy | is known from 
nuclear ß decay. The calculation of the decay rate then gives

Г (тт+ •* tt° e+ v ) я
---- — -----— Г— ' —  - = (l,07 ± 0 ,003)10 8 /128/

Ч *  * 11 v)exp
in good agreement with the purely experimental rate /119/.

The three successful tests of the IVC hypothesis we discussed above 
give strong evidence that this hypothesis is correct. Other tests in nuclear 
ß decay have also been made and good results were obtained (see ref. 120 in
[l]). Therefore this hypothesis may also be referred to as a theory . In

In eq./124/ and /125/ W labels the weak, V the isovector pion form factors, 
and q = (k9-k,) • In the isospin symmetry limit we have, according to eq.
/123/ - /125/, ^
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conclusion let us make a remark on the history of the IVC theory. We have
seen that IVC leads to the conservation of the weak vector current /CVC/ of
the hadrons /eg.116/. Historically the CVC hypothesis for the weak s = О
vector current was formulated by Zeldovich and Gerstein as early as 1955, then
was rediscovered by Feynman and Gel -Mann in 1958, and later in 1958 Gell-Mann

12 12* 12formulated the IVC hypothesis and proposed the В - C - N experiment to 
test it. We shall not discuss here the consequences of the CVC theory se­
parately (e.g. eq./118/ follows from CVC alone) because the successful IVC 
theory contains all its results. Instead we shall turn to the theory of 
Cabibbo, which is an extension of the IVC theory to the full hadronic current.
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IV. THE LEPTONIC DECAYS OF THE HADRONS. THE OCTET CURRENT THEORY OF CABIBBO 

§1. The octet current

In the IVC theory the V®~° current bears the strong interaction
quantum numbers (в, S, I, I ; YEB+S , Q=I + i Y ) o f  a tt~  meson. The_  \ +  4 ^ - Z  Z JV^~° ] operator has then the quantum numbers of a tt+ meson, whereas
the V., current, which is the third component of the isotriplet current
operator /87/, has the quantum numbers of a it meson. It is natural to ask
whether the V ^ °  current and its adjoint have definite strong interaction
quantum numbers or not. Up to now we know only that Q = -1 for all the
components of , hence also for V ^ °  • This follows from the fact
that we supposed that a full weak current J = + j, exists, and that j
lowers the electric charge by one unit according to eq./5/. Of course then
h f ° )  has Q = + 1.

In 1962 Gell-Mann discovered the SU(3) group to be an approximate 
internal symmetry group of the strong interaction. In this context the 8 
pseudoscala.r mesons тт ,тт+ ,тг°; K+,K°; K°,K ; ri transform according to the 
irreducible, 8 dimensional (̂ "octet"') representation of the SU(3) group. The 
meson octet is a supermultiplet from the point of view of the Su(2) isospin 
group, which is a subgroup of the SU(3) group of Gell-Mann. The SU (З) sym­
metry is broken in Nature, as shown,for instance by the large mass differ­
ences between those members of the meson octet which belong to different iso- 
multiplets. Nevertheless, the concept of the SU (3) symmetry proved to be a 
very useful one in many respects. For details and applications in strong 
interaction the reader is referred to [2] .

In 1963 Cabibbo suggested that the v a ° ' V3 Л ' (VA °) 
isotriplet operators be as the тт , тт°, тт members of art irreducible SU(3)
octet operator, and that attempts be made to identify the 5 missing components 
with physically interpretable currents. He proposed to include in this octet the 
current with the quantum númbers of the К meson, which is the only Q = -1 
member of the pseudoscaler meson octet with non-zero strangeness. Then (v^° 
will obviously have the quantum numbers of the K+ meson. Moreover, the л 
component of this octet operator is known to be proportional to the hyper­
charge current Y^ [2] , Finally, the K° and K° components are not known
to take part directly in physical interactions.

When we discussed the IVC hypothesis, we saw that the space integrals 
of the V^ o currents f(i = 1», 2,3) gave the generators of the su(2) group. 
Similarly, the vector octet of Cabibbo gives the 8 generators of the SU (3)
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group, in particular the 3 isospin operators and the hypercharge operator.
The SU(3) formalism will be developed in §3 of this chapter.

Up to now nothing has been said about the possible internal symmetry 
properties of the axial hadron currents. Cabibbo supposed that their internal 
symmetry structure may be the same as that of the corresponding vector cur­
rents, i.e. he supposed that the A®~°, , A?^° , (л^°)+ currentsA 4 A A 4 A
are also members of an irreducible octet operator of the SU (3) group, namely 
they are the ir-, tt+, K- and K+ components of this octet. Of course the 

tt° and g components of the axial octet, are now axial currents, and have 
nothing to do with the isospin and hypercharge currents. Together with the 
two other neutral K°, K° axial currents of this octet, they are not known 
to have direct physical meaning. This unfortunate situation will be reflected 
in the fact that while the form factors of the vector currents V®’"°, V ^ °  
will be connected by the W-E theorem '(applied to SU (3)) not only between them
selves but also with the isovector V _ . and isoscalar I -4 V , = ^ Y, ]'A s±a V/3 П, A 2 XI
electromagnetic form factors, the A^ ° and A^' form factors will be con 
nected by SU(3) only with each other.

Another important difference between the vector octet  ̂ and the
axial octet A^  ̂ (i = 1,2...,8 labels the hermitean components of thes<
currents) is that,while 3̂  V^,^(x)=0 for i = 1,2,3 in exact SU (2 ) limi t 
and for i = 1,2,...,8 in exact SU(3) limit, no such conservation laws are 
expected to hold for the axial currents. However, an approximate relation 
leading to the notion of the partially conserved axial current (PCAC) has 
been introduced with considerable success for the divergence of the axial 
octet too ^see chapter v).

Let us now turn to the experimental verification of the consequences 
of the Cabibbo theory. All these consequences can be deduced from the W-E 
theorem. It is cuBto.mary, however, to divide the results into to groups: 
the selection rules, which in fact arise because some of the SU 13) Clebsch-- 
-Gordan coefficients are zero, but which can be deduced without the cumber­
some SU(3) technics; and the intensity rules, where the full SU (3) apparatu 
is needed.

In §2 we shall deduce the selection rules not only for the leptonic 
hadron decays H -* h 'JIv , but also tor the non leptonic decays И ■* . H' .
In both cases we shall suppose that the decays are induced by the current-cur 
rent Lagrangean /4 / and that the hadronic weak current is composed from the 
vector and axial octets of Cabibbo. Then in §4 we shall look at the intensity 
rules in the leptonic decays of the hadrons. The applicability of the theory 
of Cabibbo (in fact even of the current-current theory in general) to non- 
-leptonic decays is dubious, and these decays will be only briefly discussed 
in the next chapter.



44

Q = I. + \  (в + s) /130/

valid for any individual hadron, and from the fact that in all weak process 
ДВ = B„, - B„ = 0 . Indeed, the lepton current does not change the baryon number
and the total baryon charge is absolutely conserved. Furthermore, in H -*■ H ' 
decays AQ = -1 , since the lepton current does change the electric charge by
Tl. In H -*■ H' decays we have of course AQ = и .

§2. Selection rules for weak hadron decays. (Theory and experiments)

Let us discuss first the selection rules for the H -* H'Av decays.
The hadronic part of these decays is described by the <H'|j^|H> 
matrix element for AQ = +1 , and by <H'|Jh ;J h> for AQ = -1 . For
AS = 0 we find then from eq./129/ that AIz =AQ = + 1. To find the possible
values of AI E I , - I , we must remember that in the Cabibbo theory theH rl
S = 0 currents transform like the tt+ and tt mesons, hence they have 
1 = 1. Then from 1 ®  IH =, (i^ - l)©IH©(lH + l) we find that AI = -1, 0, 1 . 
The AI = 0 case occurs e.q. in the n -*■ pev and tt’V tt0 e ve(ve ) decays-,
AI = -I in the I" -*■ Ae ve v̂e ) decays. The AI = +1 H •> H'Av decays are 
forbidden by energy conservation.

The AS ф 0 H -*■ H'Av decays are induced by the K+ (b=0, S=+l, 1=^, 
!z = t У = +1, Q = + 0  and the K~(b=0, S=-l, I=±, Iz=~|; Y=-l, Q=-l)
components of the Cabibbo current. Thus we have AS = AQ = +1, AIz = ^ 
for <H'|j*+ |H> , and AS = AQ = -1, AI = - j for <H'|j*|H>.
In both cases AI = - is possible as seen from the i (g> i^ = ^lH- ^ ©
relation. The AI = + ^ case occurs e.g. in the AS = AQ = +1 A -*■ pe~ vg
decay and in the AS = AQ = -1 K+ -*• tt°  A+ ve decay, while AI = —^  in
the E •> ne v£ and К -*■ A v decays.

Let us now find the selection rules for the H H' decays. In the 
current-current theory these decays are described by the

When deriving the selection rules, we shall often refer to the relation

AQ = AI + i AS , /129/

which of course holds both for the H H' Av and H H' processes. In 
eq.11291 and below AX E XH ,-XH , where XH stands for a strong interaction
quantum number of the hadron (or hadrons) H . Eq./129/ follows from the already 
mentioned relation
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h  h Jm  + JSx jhIh> /131/

matrix element. The selection rules for the Cabibbo theory can then be deduc­
ed looking at the direct product of the type

(тт+ + К+)(х)(тт“ + К-) = tt+ <g) fr“ + тт+ 0  K~ + K+ ®  tt” + K+ 0  К . /132/

The first and the last term give AS=0 transitions. It is easy to
see that AS = О decays are forbidden by energy conservation (e.g.
N -/^ртТ, z -b-hv, Z ~b~ NK etc.). Thus we are left with the tt+ <g) К case 
which gives AS = -1 transitions with AIz = ^ and AI = - , and
with the K+ 0  tt” case, which gives AS = +1, AIz = - AI = í , Í ^ 
transitions. The AI = - transitions cannot occur because no hadron with
I >_ ^ quantum number exists among the elementary particles (we do not con­
sider the resonances in these notes).

In table 6 we gathered the possible changes of the strong interaction 
quantum numbers for the weak hadron decays allowed by the Cabibbo theory and 
by energy conservation. It is left to the reader to verify in his Particle 
Data Tables that all the allowed decays are indeed observed with normal 
rates. We shall deal here with the complementary test of Cabibbo's selection 
rules: namely, we shall look at the decays which are energetically allowed, 
but forbidden in the Cabibbo theory.

Table 6.
Selection rules for energetically allowed hadron decays

H H ' i-v decays H -*• H' decays
As = 0 AS Ф 0 AS ф 0

ОIIСЛ< AS - AQ = ± 1 AS = ± 1
AI = A Q = - 1 z - § 4 0=* 5 Al = -i AS = + 4 z z z

0 1—11 IIH< > H II 1+ PO| 
1—* 41 - ± §, + 1

The AS = 0 H -*■ H' £v decays are irrelevant in this respect, 
since all the selection rules except AI = -1, 0, +1 come in this case 
simply from the general(not necessarily octet)current-current theory and 
eq./129/. Thus |AI| <_ 1 is here the only specific prediction of the Cabibbo
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theory, but unfortunately it follows also from energy conservation if AS = 0.

On the contrary, for the AS ф 0 H + H'Zv decays we find non 
trival results. As we see from table 6, -AS = AQ = + 1 transitions (or, 
which is the same, AIZ = + j transitions), AS = 2 transitions and 
I AI I  ̂\ transitions are forbidden if the Cabibbo theory holds. The experi­

mental results for the Г (-AS = AQ : Г(AS = AQ ) ratios are:

r(l+ ne+ v): Г (z -> ne v ^ 0,4.10 2

r(z+ +n y  V ): r(t' ny ) £ 5.10-2 /133/

4* «4» — -f-Moreover, 264 К тг тг e v (AS = AQ) events have been found against zero 
K+ -»■ тг+ тг+ e v (-AS = AQ) event. In K° decays also only a small -AS = AQ 
impurity may be present according to the experimental results. Concerning 
the AS ф 2 rule in the H H'fcv decays, the following branchings ratios 
have been measured:

AS = 2 decays AS = 1 decay

R(H° -*■ pe~ v)1 < 1,3.lo"3 r (s" -> Ле" V  ) = (o,63 t 0,23).ю"3

R(H° PU~ v)1 < 1,3.lo-3 /134/

It would be desirable to lower the upper limit for the AS = 2 
decays. However if we take into consideration the fact that these decays 
have a larger phase space than the E- Ae~ v decay, these results are 
already an indication in favour of the Cabibbo theory.

Finally, for the non leptonic H H' decays, the AS = 2 5 ->- N tt
decays are energetically allowed but forbidden by the Cabibbo theory. The 
experimental Г(AS = 2) : Г(AS = 1) ratios are

Г (н_ птт ) : Г(h Лтг") < 1,1.IO-3

г (е0<+ ртт~ ) : г(н° ■> Лтт°) < 0,9.ю "3 /135/

This result is in favour of the applicability of the Cabibbo theory to the 
H -*■ H' decays. However, as seen from table 6, this theory predicts the pos­
sibility of AI = + i in non-leptonic decays', while all the experimental ̂ 3results show that the AI = + amplitude is strongly damped as compared
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with the I = ^ amplitude. From the point of view of the Cabibbo theory, 
this seems to be a dynamical accident. We shall return to this problem in 
chapter V.

§3. Current algebra relations and Wigner-Eckart theorem for SU(3)

As we noticed already, for the discussion of the intensity rules in 
the leptonic decays of the hadrons, the SU(3) formalism must be applied. 
As well known [4], the hermitean generators of the SU (3) group 
1^ /̂ i = 1, 2,...,8) satisfy the commutation rules

[ig, Iĵ ] = i fgkj, Ig, /s,k,i = 1,2,...,8/ , /136/

where the nonzero components of the totally antisymmetric structure constants 
£s M  are!

ski 123 147 156 246 257 345 367 458 678
f ski 1 1/2 -1/2 1/2 1/2 1/2 -1/2 /372 /37 2

The three generators 1^ Ig form an SU (2) subgroup and are iden­
tified with the isospin operators, while Ig is proportional to the hyper­
charge operator Y :

/138/

The eight generators 1^ are the hermitean components of an irredu­
cible SU(3) octet. We shall denote the hermitean components of an SU(3)

8 8 octet operator in general by T^ , and its spherical components by T°v)
The relations between these components and the correspondence of the spherical
components to the physical quantum numbers Y, I, I are given in table 7.
In the same table we give also the state vectors of the pseudoscalar meson
octet |P(v >̂ . Thus e.g. |P(7)> = -|K°> |B(7j> = |S°> . The sign
convention is that of de Swart [4]. Other sign conventions are also used in
the literature and this may lead to unessential differences in the sign of
some amplitudes.

The generators 1^ are space'integrals of the time components of 
vector currents ^(x) :

I± (t) = Jdx V±#0(x,t) . /139/

In exact SU(3) limit the I^Ct) are of course time independent. If SU(3) is 
violated, the equal time SU(3) commutation rules
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Ik (t)J = i fskt l/t) /140/

are still supposed to hold. The currents V. . (x) are, by definition, octet1 f A
operators of SU(3):

Table 7.

tsto' Vk r'x^t)] 1 fski, V£,A(x,t)i /141/

SU(3~) labels

V 1 2 3 4 5 6 7 8

1 *2'2 1 i "I X 2r 2 о i—* Оо 0,1,-i О о о -1 I ’I '2' 2
PCV) -K+ -K° -л+ - тт° iT л -к° к"

B(v) -P -n -Z+ ’ z° А „о

7^t8*2 4+15
^ т 86+i7 7^T8

/1 1+Í2 *5 -̂ T8 /2 1-12

00 00 
Н zLr8 

/? 6-Í7 /21 4-i5

8 —1 / 8  q \The last row reads: Td) = ^  + i T° J , etc.

We notice that from eq. Ill'll eq.. /140/ follows, but not vice-versa.
Any (x ) with the property j" dx CK ^(x,t) = 0 could be added to /141/ and
eq. /140/ still would be true, even if 0^ \(x ) is not an SU (3 ) octet.

According to Cabibbo, the л and К components /see table 7/ of 
the current 0. , (x) are proportional to the weak S = 0 and S ф 0± i Л
vector currents of the hadrons. Furthermore, the weak axial currents are also
supposed to be components of an axial octet A. , (x) :1 ,A

- i £skl /142/

Eq. /142/ do not normalize the A. (x) currents. Such a normalization is1 t A
provided if we suppose with Gell-Mann that the axial charges

I*(0 = ^dx A± ô(x,t) /143/

satisfy with the currents the following communitation rules:
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Í = 1 £sk! - /144/

k V l '  Акд(2'ь)] 1 £skt ) ’ /144'/

Let us stress that eq. /144/ and /144 / are new and strong conditions, the 
consequences of which need further theoretical and experimental verification. 
Only in a few special theoretical models (e.g. in the quark model) are these 
relations automatically satisfied. Since V. is normalized by eq. /139/ -i / A/141/,  ̂ is also normalized by eq. /143/ and /144/. However^the sign of
A^ -y is not determined by these relations: -A^  ̂ is also a solution if
A^  ̂ is. For  ̂ even the sign is fixed by the relations /139/ - /141/.

Integration of eq. /142/ and /144'/ for X = О over x yields com­
mutation rules between the charges I-̂ (t) and 1^ A (t) . Together with eq. 
/140/ this system of commutators is easily seen to generate an SU(3) (x) SU(3)
group. Indeed, introducing the "chiral charges"

, ) = ^ I ±(t) ± I.A (t)) , /145/

one arrives to the commutations rules

^\t)] = i fskt ^\t) ,

K ’w -  Ц ы ]  - 1 f skl -

[Íg’(t), I^’Ct)] = 0 /146/

The Cabibbo current can now be written in the following way /see 
table 7/ :

JHX^X  ̂= Cv(Vl,X^x) -1 V2,X^X 0  + Ca (A1,X^X  ̂“ 1 A2,X^X ')) +

+ ^у(У4,Х^Х  ̂“ 1 V5,X(‘X )̂ + 0а (А4,Х^Х  ̂” 1 A5 , X ^ )  ■ 11411

Since all the operators  ̂ , Ai  ̂ are now normalized, the coefficients
Cv д and dy A are measurable in principle. We have already seen that
cv = gv : g = 0,9778 + 0,0018 when we discussed the IVC theory. This result
followed from the fact that if we neglect su(2) violation effects, then 
F^ (0̂  = 1 because of current conservation. For the other coefficients the
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Situation is more complicated, because the axial currents are not conserved, 
and the SU(3) violation effects may substantially modify the form factors 
of the s ф О vector current. On the other hand, the experimental data on 
weak decays are not good enough for the conjoint determination of these 
coefficients and of the form factors. Thus theoretical hypotheses which re­
duce the number of the free parameters are we]corned. Such a hypothesis is 
the "universality of the weak current". In its modern form /Gell-Mann, Physics 
1, 63 1964/ this hypothesis is based on the observation that it is possible 
to choose the constants cv , сд , dy, dA in the hadron current so that the
full hadronic + leptonic weak currer1: take the universal form

V х) = 2 (с1,л(х> - 1 c2,x(x)) 11481

where the currents c. ,(x) , c0 , (x) are such that the charges c.Ct) 5
Í ± f Л s* r A p  J- -I
dx cx Q(x,t), c2 (t) = \dx c2 Q(x,t) and c3(t) s -î Cĵ Ct.), c2Ct)J

satisfy SU(2) communitation relations:

[cs CO , ck (t)J = i esk£ c^Ct), /s,k,1 = 1,2,3/ . /149/

The condition of the universality turns out to be:

CV CA ' dV dA
2 ^ , 2  . 2 , ,2 

CV + dV = 1 = CA + dA /150/

then with c,y = cos 0 the hadron current takes the form

JHA = 2 COS0 lVl!x - 1 V2+r[) + 51п0К ! х  " 1 Vs!}

E 2 cH - i cH
U 1 , X  1  U 2 , A

where
V.(+), = ilV. , + A. , 1 / A 2 у i ̂ a i , X

/151/

/152/

In eq./150/ and from now on we shall suppose that cv д and are
real numbers. This means that the small T violation effects are neglected.

Thus if the weak current is universal, then only the V. , + A. . 
combination appears in the hadron current. By an unfortunate mismatch be­
tween the generally accepted 'nomenclature and notation, this combination is 
usually called V-A and not V+A coupling. The angle in eq. /151/ is called 
the angle of Cabibbo. We shall discuss the universality hypothesis in more 
detail in §5 of this chapter.

The matrix elements of the J„ current between hadron states canHA
now be related with each other through the W-E theorem. Some remarks on the 
peculiarities of this theorem in the SU(3) case will now be given.



51

It is well known that the SU (2) group has one and only one.irreduc­
ible representation of any dimension n= 2j+l = 1,2,...,k,.., and that in 
the direct product of any two irreducible representations j ̂ and j 2 £ j ̂ 
the irreducible representations - j2 , - j2 + 1,..., + j2 occur
once and only once. For SU(n) groups with n £ 3 the situation is more 
complicated. Inequivalent irreducible representations of the same dimension 
may exist, and in a direct product of two irreducible representations the same 
irreducible representation may enter more than once. For example, in SU (3) 
two inequivalent irreducible representations of dimension 3 exists, the 3 and 
3* . Also 10 and 10X are inequivalent. Furthermore, in the direct product 
8 ®  8 the 8 occurs twice:

8 (g) 8 = 1 @  8 ©  8 ©  10 ©  10* ©  27cl S /153/

The indices a and s mean that 8 is constructed with the help of thecl
fully antisymmetric SU(3) tensor f^ß > ^ ®k ' w^ile
8s ^ 8^ 8̂  , where d^^ is a fully symmetric constant tensor. As a
consequence, in the W-E theorem for SU(3) several reduced matrix elements 
may belong to the same irreducible representations y2, у, y^:

(v)
2y

1/Y /154/

if the representation У2 is contained in the direct product y^ ®  у n times, 
then у takes n different "values". In particular, if y-̂ = у = y2 = 8 , 
then, according to eq./153/ we have

8 I T‘ /155/

The SU (3) Clebsch-Gordon coefficients may be factorized in the following way:

The second factor on the right hand side of eq. /156/ is called the isoscalar 
factor. It does not depend on the quantum numbers 1^ , I , Iz2 , these are
contained only in the known SU(2) clebsch. The isoscalar factors has been 
tabulated by de Swart for the most important representations. They are also 
given in the Particle Properties Tables [7]. For the octet (and also for the 
decuplet) it is costumary to design v, V2 in the Clebsch-Gordan
coefficients by the corresponding parii.de of the meson octet for and
of the baryon octet for v and V2 . To give an example, according to 
table 7 and eq. /156/ we find for v^=3 , v=6 and v2=3 ’ i*e* f°r
Y1I1Izl = Oil, YIIz = 000 and Y2I2IZZ = Oil :
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Í8
8 8y ̂

\ . ( 8
8 8y\

l8 6 3 11 ■ \„11 000 Oil)

The isoscalar factor (71 А Ю а

£ (u+ Л E +) = (llí 00|ll)(» A|e)y /157/

8 8 8a\ \ 8 8

3 6 3 = 0 ’
-

l 3 6 /

1
7 Г /158/

Let us still note the following symmetry property of the SU(3) clebsches:

S-L = -1 if

У ^2y I Уд_ У2у '

V1 v2 )
9

V (N>

for Ух = У = 8 Kj. = +1 if P2y
y2y II м О н °* or 8 a.

5, = ii /159/

It is now easy to apply the W-E theorem to the hadronic matrix ele­
ments which turn up in the P .-*■ Av , P2 P1 ' an<3 B2 B1
decays. If the universality of the weak interactions is supposed, then 
is taken from eq. /515/. In practice one often uses a weakened form of the 
universality hypothesis. Namely, one supposes that

c2
V + /160/

but one does not require Сд = . Then the hadron current may be written
in the form

JHX = cos0v(Vl,A ~ 1 V 2 , x )  + cos0a (A1,X " 1 A 2 , x )  +

+ sin0v(v4_x - 1 V5;X) + sln0A(A4_x - i A5_x) ; /161/

now the universality in the sense of eq. /149/ does not hold, but still we
2 2 2 2have a case where the "total strength" ĉ . + d^, сд + d^ of the vector 

and axial currents is the same as for the case of the universal current. 
Belov/ we shall see that the experimental results leave open the possibility 
for 0Д = Gy • However, we shall derive our results using the general nota 
tion, and then impose the weakened or. precise form of universality and cal­
culate sinGy д or sinG.

§4. Intensity rules for weak leptonic hadron decays. Theory and experiment 

1. The__p_+_£y__ decays

In the exact SU (3) symmetry limit the matrix elements <0|J*^(0)|tt 
and <0|jj^AO)|K (p)> may be easily connected through the W-E theorem
The vacuum is supposed to be an SU(3) singlet. Then

(P)>
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<0|j£x(0) |тг“(р)> = с, .0,0,0 - ✓ Т а  (о)|? _ ( р ) ) =
ТТ ,Х 7Г /

" Л  СА L  * , , 1 (l||A®(0)||8p)-\ 0 1 -1 0 1 1  0 0 0 / ^  А /

= х  СA (X l lA® to) I |8р) /162/

<o |j h^ co)|K"(p)> = dT

= -»Т d,
8 
1
2 2

О О О 

8

-/? А8 (О) 
К ,Х

-1 i -i 1 I I 0 0 0

pk -(p )

1| |Af (О) I |8p =

= - f dft (l||A8 (0)||8p) /163/

Ón the other hand, in chapter II we have given these matrix elements for the 
physical (not exactly SU(3) symmetric) cases

i p
<0 JHt(o)l*-(Pl,)> - -^уз72 f (m') '

<o|JH|(o)|K-(pk)> = - ^ = ! r  *(»£) .
(2

/164/

/165/

and the absolute values of f(m^) and ф(mĵ ) could be calculated from
the experimental values of the n -*■ yv , К -*■ yv and у evv decay 
rates, because, as we know,

f(m?) = — ~  / *(*£) /166/

The two expressions /162/ and /164/ for the <0 | JHX (О) | тг”» matrix element
can be equated to each other if we go in eq. /164/ to the SU (3) symmetry 
limit. Then, of course

similarly

Ртт, X
/zET7T

ук, X
/ 2 ^

;W) — f(m2) ,

K ) ЛЁГ=r *(i»2 ) •

/167/

/168/

m is the unknown, common SU(3) symmetric mass of the pseudoscalar octet, 
and we have taken into account that the functional form of f and ф may 
also change. Eq. /162/ - /165/, /167/ and /168/ then give
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dA ' ф(т2)—— ~— =   — =-7—  /169/
CA f(m2 )

If we suppose that when going to the SU(3) limit f  ̂ and Ф ) 
or at least their ratio remain unchanged, we find

dA = ф (m2) = \Ф(ГОк ) = Fk _ /170/
CA f(m2 ) f(mj) Ftt

From the experimental value of (F^ : | we get then

d
— —  = ± (0,27545 - 0,00038 ) /171/
CA V J

And with the universality hypothesis

sin д = ±(о,2655 ± 0,000б) /171' /

Of course this and the following similar results are valid only in 
the approximation if the SU(3) breaking effects in the form factors can be 
neglected. In general we shall always be forced to adopt this hypothesis, be­
cause no reliable method for the calculation of the breaking effects is known. 
As a measure for the expected deviations caused by the SU (3) breaking the 
relative mass breaking in the baryon octet can be used; then (lO ^ 3o) % de­
partures from the symmetry limit are possible.

2/ The__E2---______decay

The comparison of the тг -*■ it0 ev and K ’ -*■ fî ev decay rates
gives the value of : cv | much in the same way as tt -*■ and К £v
gave |dft ; сд | above. In the exact SU(3)limit we have

<тт°(к2) |JHX(0 )|7T+(k1) > = cv<p o(k2)|/? V8_(0)|-P +(kx)> =

= -/21 h \  ®o) (8^2 I |v ^(0) ] |8k1)s +

...► !- * o ) ( 8k2llV X < ° ) l H a] ■
= -/̂ Г cv 8̂k2 I IV8 (о) I I 8кд̂ ^

/The first clebsh is zero./ Similarly, we find 

<ir°(k2) |JHX(0)|K+(k1)> =

- - h V  [Л (8k21 !■VA <01 I I 8kl)s + 7Г (8k2 1К  (0) I 8kl)

/172/

/173/
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The most general form of the reduced matrix-elements is (see for comparison 
eq. /124/) :

= (2tQ ~ 38k2 ||V®(0)I|8k1 

X tT8
a, s /4E1 E2'

f+,S(q2X k2+kl)x + f-,S(c32)(k2-ki); /174/

From Эл У^^(х) = 0 we find
\

ff(q2) = f!(q2 ) = о for q2 < о 

and from the relation

Jdx <тг“ (к2) |v3 ô (x/0)|ir"(k1) > = ő(k2 - k^) =

= ^ x [  + 8q ) (8k2 I lV o^X '0) 1 |8ki)a = ^  f+(°) 6(k 2 “ Él)
\ TT 1° ТГ /

and from a similar relation for  ̂dx<ff+ | Yq( x ,0) | ír > = О

^rf+(0) = 1 , f+(0) = 0

Thus at q2 = 0 we have in the Sü(3) limit:

<тт0(к2) |JHX(°) l1T+(ki) > = - ^ cv (k2 + kl)A

<л°(к2) |JHX(0)|K+(k1)> = - ^ r d v /12^ — T~Ck2 + kl)x *

/175/

/176/

we get

/177/

/178/

On the other hand, for the physical case we have from Lorentz invariance

<^°(k7To) |JHX(0) |тг+ (ктт+)> = ■ ..л
/4E n E ,TT° TT +

f + ^ X V  + V )  + f*(q2X \ 0 -

/179/

<-°Ck7ro)lJHx (0)lK^ kk)> - 1 f% 2X\o + kk) + f-(q2)(4o - kk)
/4E7To Ek L X X

• /180/
^The factor 1/2 introduced into eq. /180/ will be convenient. ) In the phys­
ical case f^(q2) , f^(q2) are not necessarily zero. However they are 
always multiplied by ^k2 - ki)^ = (ke + kv) t which gives a factor me 
when multiplied by the lepton current. Thus, unless f^(q2) , fk (q2) 
are very large, (and this is very unlikely since they are zero in the SU(3) 
limit), they can be suraly neglected. Then the physical decay rates 
determined by f+(q2) and f^(q2 ) . The physical region of

are
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q2 for f^(q2) is so small that the q2 dependence may be neglected. For 
f^(q2) the experimental analysis yields

f*(q2 ) = f+(0)/l + - ^ - Л  » * + = (o,020 ± 0,005) . /181/
' "V /

Thus X+ is small and in good approximation we can take f^(q2) = f+(o)
Then, if we suppose that when goingx to the SU(3) limit f^(0) and f̂ Co.)
(or at least their ratio) remain unchanged, we find from eq. /177/ - /180/ 
that

d f*(0 ) f+(o)= — ±---  = — ±---  . /182/
cv f+ (o) f »

From the measured K+ 7i°ev decay ratex we find

— —  = Í (0,2 3 6 4 - 0,0032) sinG = - (0,2 30 - 0,003 ) /183/
°V

о к / 2 \If the q dependence of f+ (q / is taken into account according 
to eq. /181/, one finds

= ±(o,2516 ± 0,0087) sinG = ±(o,224 - 0,00в) /183'/
CV

3/ The_В ̂ _ В 2 _£v___ decays

Let us remind the reader that a value for cv = gy /g has already 
been derived from the experimental value of the coupling constant gv meas­
ured in superallowed nuclear Fermi decays and from the muon life time, 
which gives g . Supposing that sign gv = sign g we find from eq. /45/ and 
/74/ :

cv = 0,9778 ± 0,0018 sinGv = ±(o,2095 * 0,0086 ) /184/

It is also possible - at least in principle - to derive the values 
of cv , cA, dv , dA from the'leptonic baryon decays and from the muon decay 
which gives again g. Indeed, in these décays both AS = О and AS = -1 
transitions occur, and in both of them vector and axial parts may be present, 
However, because of experimental and theoretical uncertainties, this program 
cannot be carried out completely at present. The point is that even in the

XThe value of f^(o) is( known from IVC better, than from direct 
T7+ тг° e v experiments.
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exact SU (3) limit we have 12 form factors,,and many auxiliary hypotheses 
have to be introduced to reduce the number of the unknown parameters. Below 
we shall outline how this analysis of the B^ Äv data may be done.

The hadronic matrix elements of the B-̂ B2 decays contain in
most cases the adjoint of the operator JH .̂ In exact SU(3) limit we
find
<b (v 2)(p 2)Ij h x (0)Ib (vi)Cp i )>

“ - * ^ < В Ы Ср2)|Су + dV VK+,X(0) + CA A° + ,X(0,+dA 4 ^ 0)lB (vi)(Pl)> =

V \ V
8y

+ dy 

8
V1 К

8 8y
+

8y \ /8 8 8y
v2 / + dA U x  K+ v2

(P2) I lv x (o> I |BCPl )̂ )Y + 

(B (p2) I IА л (0) I IB (Pi)) /185/

A similar expression holds for the matrix element <B^V ^(p 2) I ^ ° ) | B ^ v^^(Px) 
with -/7 ST, tt+ -*• tt~ and K+ -*■ К . (The constants Су, сд , d^, dA
are real if T violation is neglected.) /

The reduced matrix elements in eq. /185/ may be explicited in the 
usual way:

B(p2 )l |v®(0)| |B(Pl S(p 2)
a,s (2tt )372

Y  Ff'd (a2)-i0 (P2~Pl ) y ,d/ 2' b~Pl)x f,d/ 2)
YX 1 Vq / löXv 2M 2 Vq ) 2M 3 )

B (Pi)
>3/2

(P2) I 1А л lB (Pi)^ s 3̂/2 f,d/2N (P2 Pl)V nffd / 2X ,(P2 РЛ  „f,d, 2i 
,H1 / iaXv~^M---H2 Xq /+ 2M H3 iq /

J(2tt)'
/186/

B( P l )

1Y5W ^

In these equations the „f form factors correspond to the у = a case, the 
,,d" form factors to the у = s case. These labels refer to the antisymmetric 
fik£ and to the symmetric couplings. M stands for the unknown mass
of the baryon octet in the exact SU (3) limit. Notice that in that limit the 
equality

<B(v2)(P2)lJ ílX(0,lB (v:L)(Pl)> = <B (vp (Pl) IJHX f0 J I ̂ v 2/ p 2> * /188/

applied e.g. to the |BCv^(p1)> = ~\p(p1)>^ = “ ln (P2)>
case leads to the reality conditions

(b (p2)I Iv® (о) I |B(Pl))a s = (b (p2)||ab(o )||b CPi)
a, s

/189/
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(в(р2) I lA x (°) I |B(Pl)) = (в (p2) I |A®(° )| /190/' 3 £ S d f S

<p(p2)I^HX^0 ^ln(pl)> E <p|j+ |n> , /196/

we obtain for the n -*■ p matrix element, and by a similar calculation for 
the other matrix elements, the following expressions:

or, expressed in terms of the form factors, to
\

F^ ( q 2) - Ff;f(q2)* F3,d(q2) - -F3,d(q2)" , zu i /

Н1 :з(ч2) - Hí;d (-32)* > H2 ,d(q2) = -H*'d (q2)*. /192/

All the hadronic matrix elements of the possible -*■ B2 decays can
now be easily written down in the exact SU(3) limit. For the neutron decay 
we find (see table 7 and eq. /185/)

<P(P2)lJSxW)ln(Pl5> ” <-Bp(P2 ^ JHX(0)l"Bn(pi;)> =

“ I cv ( 8 8+ | (B (p2 )i lv ®(°)l lB (px)) +Y=a,s \n ir+ p ) \ 4 ' / у

+ CV \  8+ 8 ) (B (P2 ) ! |A®(0)| |B(Pl)) /193/\n tt+ p / 4 / Y
From the Particle Data Tables

(» !+ I)= U - i  0 1 1

(
л  1 _ 1 ,■ T  1 7Г £ o r y  = a

for Y = s /194/
Introducing the shorthand notations

(в(р2) I |V®(0)|lB (Pl)) 5 va 's , (в(р2) I |A®(0)| |B(Pl)) = Aa 'S, /195/
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<p|j+ |n> = cv Va + (f Vs) + cA ( ^ A a + (l As

<Л IJ+ 1 E~> = cv ^0 + Vs ̂ + ............ V + A

<A|j|Z + > = - If1 Vs j + ............ v; •* A

<Z°|j+ |l_> = cv ||| va + 0 ^ + ......V-*-A

<E°|j+ |s"> = jjr Va + § VS^ + ........ V - A

<p IJ+ I Л> = dy 7 Y  V a - Vs j + . . . . V -*■ A

<n|j+ |l-> = dv ^- Va + \ff V S j + . . . .  V ^ A

<Л I J+ I E“> = dy Va - Vs j + ........ V -v A

<Z-|J+ |E'> = ^ V a + | T vsj + . . . .  V - A

<Z+ |J+ |S°> = dv ^ V a - )[?v8j + . . . . V -*■ A

/197/

We also find, of course, that the selection rules Д1^1, AS=AQ, |AS|<1 
are respected

:nIJII+> = < Z~IJI"°> = <n|J+ IS“> = <pIJ+ I5°> = О /198/

We shall now shortly describe how the formulae /197/ can be compared 
with the experimental results. First of all, we try to go back from the SU (3) 
symmetric expressions /197/ to the physical ones. To this end in the reduced 
matrix elements /186/ and /187/ we put M -► in В ( р ^  M in B(p2)
and 2M -*■ M-, + M. in the (p_ - p. ) / 2M factors. Also we use the ap-
propriate physical, masses in the relations p = /p + Mz . The result of
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these symmetry breaking "corrections" is the same as if in the physical 
matrix elements of the B-̂ -*• В2 ív decays we were to insert the appropriate 
SU C3) form factors in the place of the physical form factors. To give an ex­
ample, it is easy to see that the substitutions

i(q 2b V J  F i (q 2 )
\

rd ( 2

i(q2b
1 „f/ 2\
7 T HiCq ) * ( T

„d, 2 
Hi(g

lead from eq. /51/ to the first "corrected" eq. /197/ . In the functional
form of the form factors F^,ĉ , HF'd we do not know how to break the
SU(3) symmetry, and we are forced to neglect this breaking. We shall also 

2neglect the q dependence of these form factors and we shall work with 2their values at q = 0 . Then we have only 12 numbers to determine instead 
of 12 functions. However even these are too many for the available experimen­
tal data. Thus we shall use all the possible external information on the 
form factors.
The vector form factors can be easily connected with the isovector and iso­
scalar form factors. Indeed, if we calculate the matrix elements
<P(P2)lV3,x ̂  lp tpl) > and <P(P2) if y x^°)Ip (Pi) > in the SU(3) for­
malism and then compare the result with eq. /99/ and /100/ taken in the 
SU(3) limit (i.e. with M ) we find

1
7зГ F^(q2) + 3F^(q2)

i f ^ 2) = ! t o 2) - Fi ^ 2) /199/

v sFrom the known properties of the F^ form factors we immediately find

^rF[(0) = 1 F^(0) = О

Л - Ф 0 ' = »p + 5 »„ f F F> )  - - § vn

F^(q2) = 0 F^(q2) = О

(As far as SU(3) breaking effects are neglected, the values у = 1,793ч Pand yn = -1,913 are unchanged.]
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Thus in this approximation the vector current form factors are known. 
Let us turn to the axial form factors. The contribution of H2 and may
be neglected. H2 is supposed to be small because it is pure imaginary in the 
SU(3) limit (see eq. /192/) and real if time invariance holds. Notice that 
the same argument is applicable to , but is zero, also due to current
conservation. F^ and are also known as "second class current" form
factors, in contradistinction to F^ , F2 , and which belong to
"first class currents" [l^p. 408. Strong interactions cannot induce second 
class current if originally only first class currents, e.g. Ф2 у^ and
-ф2 iy^ у,- ф^ were present in the weak hadron current. H2 is often neglect­
ed on this basis. Concerning , we know that it is multiplied by the factor
iy,.CP2~Pl)x/(Mi+M2 ) * w^en contracted with the lepton current, (P2-Pi)^
gives m^ ( l = у or e), while iy^ gives a factor 0<j£2 |/2M2< M2-Ml ^2M2‘ Froin
PCAC H^(0)«200H. (0 ) (see in the next chapter), and the factor which multipliesJ 1 -3 -5it is smaller then 5.10 for muonic decays and smaller then 5.10 for elec­
tron decays. Thus H.. may also be neglected. The only free parameters coming

J f dftom the 12 form factors are then (o) and H^a(0). Together with the four
Cabibbo constants Су, сд , d^ and dA we have in this approximation six 
real parameters. For convenience we shall write out the relevant formulae for 
those B-̂ -*■ B2 £.v decays which are measured. Introducing the notations

^тн[(0) = F \[f H^(o ) = D , /201/

we find from eq. /186/, /187/, /195/ and /197/ the coefficients 0^, 02, O^, 
given in Table 8. They correspond to the contributions of the vector, weak 
magnetism, and axial vector form factors,respectively.

Table 8.
2B^ -> B2 matrix elements in the theory of Cabibbo at q = 0 .

Decay 0L (vector) °2 (weak magnetism) 0^ (axial)

n -*• p Cv Cv Фр ”  ̂n ) cA (F + D)
Z± -+ A 0 i c v „ J4 Сд D2 V n 1 3 A

A p - { ?  aA(F4 D )
IT n -dV -c (u +2y ) v'Mp„_Mn' -dA (F-D)

5” - A ( ? dv ~ d (у +U ) 2 v' p n ' ÍI dA(F- | C)
5” -> Z° A d 

Í2 v { 2  dvCyp_yn) U  dA (F-D >
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The expression for a ■+ В2 matrix element is now easily written down.
For instance, for the n + p decay we have 
<P(P2) IJHA(0) ln <Pl) > =

p(p2)
° 1  " i 0 Av

- iYM + M U2 1YX y 5 o 3 n (Pl)
. (2lT)ЗУ! / 202/

with 0  ̂= Cv °2 = Cv ( %  - un)' and = C^F+d)and so on.

"A New Fit of the Parameters for Cabibbo's Theory" has been recently
published by F. Eisele et al. in Z. Physik,225, 383 1969. The universality
hypothesis has been used both in its precise (cv = Сд = cosG, dy = dA = sinGj
"one-angle fit") and weakened (cy = cos0y, сд = cos©A , dy = sin0y, dA = sin©A ;
two-angle fit) forms. The authors go beyond the approximation /202/ in two
respects. 1/ They do not neglect the H-, form factor and calculate it from

J 2with the help of PCAC. 2/ They take into account the q dependence of 
the form factors in the linear approximation, and calculate the slopes in the 
following way: for F- (̂q2) and F2(q ) the phenomenological formulae /108, v'/ 
are used. For H^(q2) the slope is taken to be equal to the half of the 
slope of F^(q2) ,because the q2 dependence is supposed to be dominated
by the vector meson octet for F, and by the axial meson octet for H.,

1 2 2 1 and the ratio of the masses squared is M̂ . : ^  1 : 2 . The slope of H3
is then calculated' from that of using PCAC. Thus no new free parameters
are introduced into the theory, all the slopes are "known". We notice that the
authors apply the Sü(3) formalism only at the point q2 = 0 , the slopes are
not splitted into "f" and "d" parts.

The experimental input data of the "New Fit" are given in Table 9. 
The fitted values of the free parameters in the case of the one-angle fit 
(confidence level = 51 %) are

0 = 0,239 - 0,006 
F = 0,488 - 0,020

sin© = 0,2367 - 0,0058 
D = 0,743 ± 0,020 /203/

©v = 0,232 - 0,013 

0A = 0,250 - 0,018 

F = 0,478 ± 0,023

sin©v = 0,2299 ± C ,0126 

sin©A = 0,2474 - 0,0174 

D = 0,757 ± 0,028 /204/

The predicted values of the input data for the one-angle fit are also 
given in Table 9. The agreement with the experimental values is quite good.

while for the two-angle fit (confidence level = 45 %) they are



Table 9
Experimental data and prediction of the Cabibbo theory for leptonic baryon decays

Decay
Branching ratios °3 : °1

Experiment Theory Experiment Theory

n -*■ pev 100 % 100 % 1,23 ± 0,01 1,23

l~ -*■ Aev 6/04 ± 0,60 .10"5 6,4.10~5 °1 : °3 = -0,29 ± 0,20 °1 : °з “ 0
Z+ -*■ Aev 2,11 ± 0,45 .10~5 1,9.10~5 - °1 : °3 = 0
A -*■ pev 8,50 ± 0,81 .10-4 8,8.10-4 0 97 + O,22 ü'y/ - 0,14 0,73

A -*■ pyv 1,35 ± 0,60 .lO-4 1,45. lo"”4 - 0,73

IT -*■ nev 1,100 + 0,048 ,104 1,06.10"3 i°3 = °ll* °'28 - o',lt -0,26

Z_ * nyv 4,51 ± 0,45 .10"4 5,0.10~4 - -0,26

S~ -*■ Aev 9,° *  l',\-1°'4 5,5.10~4 - 0,24

E" -v Z°ev : з : 0 - 10'4 0,8.IO-4 - 1,23

Fitted parameters: 0 = бд = 0V = C,239 ± 0,006 F = 0,488 ± 0,020 
D = 0,743 ± 0,020
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Only the S- -*• E°i-v branching ratio has a discrepancy exeeding 3 standard 
deviations. The different measured energy and angular distributions compare 
also very well with the theoretical distributions, calculated with the fitted 
parameters.

Nevertheless, one should keep an open mind concerning the good results 
of this "new fit". The ambiguity of the present situation is well illustrated 
by the values of the Cabibbo angle, calculated from various sources /Table 10/.

Table 10.
The values of the Cabibbo angle calculated from the decays of 

mesons (m ), nuclei (n ) and baryons (B)

Transition
involved

Fitted
quantities Cabibbo angle

К -* У V  
тг ■+■ у  V dA ■' CA

Msin0^ = 0,2655 ± 0,0006

хк -*■ ТГ Í,V 
тг тт e v dv 1 Cv

Msin0 = 0,224 ± 0,008 v ' '
Superallowed 
nuclear Fermi 
transitions cv sin0^ = 0,2095 ± 0,0086

Leptonic decays 
of the baryon 
octet

4 О CD < CD
>

sin©® = 0,2299 ± 0,0126 
sin0® = 0,2474 ± 0,0174

F,D,0=0 =0. ' ' v A sin0B = 0,2367 ± 0,0058

x MГ TT -+ írev calculated from IVC. The s/alue of sinG^ corresponds
to X+ = 0,02 (see the text).

These values are compatible with each other if we take into account the 
imperfection of our theoretical methods, namely the lack of a consistent 
theory of the breaking of the SU (з) symmetry. Since the SU(3) breaking effects 
may give corrections of the order of 20%, it is impossible to see whether 
the SU(3) current theory of Cabibbo and Gell-Mann is itself only approxi­
mately valid, or whether it is basically correct and the 20% discrepancies be- 
twen the values of the Cabibbo angle are due only to the uncalculable SU (3) 
breaking. If the mechanism of this breaking will be found, then the Cabibbo- 
-Gell-Mann theory may be more precisely tested and if needed modified. We can 
go then from the 20% level of precision to the 2% level, i.e. to the level 
of the SU(2) breaking effects and of the radiative corrections, which are also 
uncalculable at present. Thus our conclusion is that,although the basic ideas
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of the SU(3) current theory and of the universality of the weak current may 
be correct, it is illusory to test them with a precision which exceeds the 
level of the precision of the available symmetry breaking mechanism. Further 
progress in the SU (3) theory of the weak interaction hinges on the progress 
in the theory of the symmetry breaking.

In obtaining the various values of the Cabibbo angles given in 
table 10 we neglected the SU(3) breaking in the form factors. It is also 
possible to introduce a unique Cabibbo angle 0 and to attribute the source 
of the discrepancies in table 10 to the form factors. Then 0 is usually 
called the bare Cabibbo angle, while the angles in table 10 are called«the 
renormalized Cabibbo angles. See e.g. [8], chapter 5.

§5. The universality hypothesis

As we mentioned already in chapter III, §1, the universality hypothc- 
esis in the framework of the IVC theory consisted in the requirement that 
the V® ° = Vn  - i V2  ̂ current take part in the weak interaction with
the same strength as the lepton current, in full analogy with the electro­
magnetic interaction, where the current has also the same weight as
the electromagnetic lepton current. In our notation this universality hypoth­
esis simply means that

Cv = 1 /205/

As we know , the experimental results show that Cv is smaller than 1 by a 
few percents. This deviation is, however, of the same order of magnitude as 
the radiative corrections and the SU (2) symmetry breaking effects; therefore 
from this point of view the universality hypothesis /205/ can be considered 
as consistent with the experimental data. A serious difficulty arises only 
when strangeness changing decays are investigated. Indeed, the only natural 
extension of /205/ would be to suppose that the strangeness-changing currents 
are also coupled with the same strength, i.e. that

dy = 1 /206/

Of course 10 % deviations from this value would be tolerated, due to renor­
malization effects. However as we know the experimental results indicate that 
dv is much smaller than 1.
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A reformulation of the universality hypothesis became possible and 
was offered by Gell-Mann when the octet current and the existance of two kinds 
of neutrinos was discovered. The basic observation was that the weak lepton 
current with two neutrinos may be written in the following way (i = 4>e (x b etc
jx(x) = e-Yx(l - iy5)ve + yyx(l " iY5)vy =

It is easy to verify that the leptonic Charges

c^U) = ^dx c^(x,t) , c2 (fc) = ^ dx c2(— ' )  '

c^Ct) = -i^(t), c 2 (t ̂ J /208/
define an SU(2) group, and that the currents

cí,X(x), c2,jfx  ̂ and С3,Х^~,Ъ) E -ijc-j^t), c2fX(x,t)]

are the isocurrent densities for these charges.

The new universality requirement is that the weak hadron current be 
also of the form

2 [C1,X^X  ̂" 1 C2,X^X)_ /209/

where cí? ,(x), cí? (x) should generate an SU(2) group of hadron chargesгг X  f A Z , Л
c” (t) /i = 1,2,3/ in the same way as the lepton charges were generated by 
c^ and c^ .It is easy to show that our octet current

JH ,  X = C v ( V l , X-lV2 , x )  +CA (A1, X-iA2, x)+dv(V 4 , X~lV5 , x )  +dA (A4 , X_iA5 , x )  1 210 ̂

will meet these conditions if and only if

CV = CA ' d v  = dA ' CV = 4  ’ 1 = CA + dA /211/

This universality hypothesis is of course compatible with the experimental 
result

cv = 0,9778 - 0,0018 /212/
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which is now considered not as a troublesome deviation from an exact theo­
retical value Cv = 1 ; on the contrary, it is welcomed that Cv is smaller 
than but near to 1, because this gives then for

/213/

the plausible value О < << 1 , and both the existence and the damping
of the AS ф О decays is thereby accounted for.

It is important to point out that if only one kind of neutrino exist­
ed, the new universality hypothesis would indeed not work/ then we would have

jX(x) = + ^ x C 1 ' =

2^(v, (T1 - iT2) [ . +
7 Г

2/? 1=1,x(x ) - 1 S2,X<x) /214/

~£ £ where now the С.Г  ̂ would play the role of the c.̂  ̂ . Then the uni­
versality hypothesis would, require that the octet current /210/ enter the 
weak interaction with the overall weight factor , because only in this
case would the strength of the lepton and the hadron current be the same and 
only then would the full weak current have definite SU(2) properties. Due to 
this extra /21 the experimental data would require cv instead
of cv 1 , and then dy = /l-с^ ̂  yjr . This would mean that the
strangeness-changing decays ahve the same strength as the strangeness-con­
serving ones, in contradiction with the experimental data.

Thus we see that while the old form of the universality hypothesis 
/205/ must be abandoned, the new form /211/ is in agreement both with the fact 
that v£ ^ • and with the experimental decay rates in the leptonic hadron
decays.
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V. OPEN PROBLEMS 

§1. Basic problems

One of the most serious problems of principle in the weak interaction 
is the lack of reliable methods for the calculation of higher-order weak cor­
rections to the lowest order matrix elements (see chapter I). Several at­
tempts have been made to invent such a method, but no satisfactory solution 
has been reached as vet.

Another important problem is the lack of satisfactory methods for the 
calculation of the internal symmetry breaking effects. As we have seen the 
modern current-current theory of the weak interaction is based on an 
SU(3)® SU (3) algebra which is surely broken, because the physical hadron 
states do not belong to exact multiplets of this algebra. The departures from 
the symmetry limit cannot be calculated, and only ad hoc and arbitrary pro­
cedures exist which "take into account" the symmetry breaking (see e.g. 
chapter IV, §4). The solution of this problem would be of the greatest value 
not only for the theory of the weak interaction, but also for the theory of 
the strong and electromagnetic interactions, where broken SU (3) and SU(2) 
symmetries play an important role.

A interesting problem of the octet current-current theory of the weak 
interaction is the origin of the Cabibbo angle. We have seen that the uni­
versality hypothesis of Gell-Mann naturally leads to the introduction of this 
angle, but the value of the angle is not predicted by this hypothesis. There 
are several interesting attempts to calculate the Cabibbo angle on the basis 
of various theoretical considerations. The main difficulty on the way to the 
solution again comes from the fact that ultraviolet divergencies and internal 
symmetry breaking effects cannot be systematically managed. It is probable 
that a satisfactory explanation of the origin and value of the Cabibbo angle 
hinges upon the solution of these basic problems.

The discussion of these questions lies outside the scope of our notes. 
The interested reader should consult the original papers in the recent 
literature. The most important contributions are listed in [5] and [б].



69

§2. The non leptonlc weak decays. The PCAC hypothesis

Let us now come to the problem of the non-leptonlc.weak decays of the 
hadrons. An excellent review of the status in this field has been given in [2] 
in 1967, and the situation has not changed too much since then. Nevertheless, 
we shall present here a brief discussion of the subject.

In §2 of chapter IV we have seen that the current-current theory of 
Cabibbo allows both Д1 = 1/2 and Д1 = 3/2 transitions for the non leptonic 
decays. On the other hand, the experimental results in hyperon and kaon decays 
indicate that the Д1 = 3/2 channel is strongly damped, the Д1 = 3/2 ampli­
tude being & 5% of the Д1 = 1/2 amplitude. In Table 11 we give the simplest 
predictions for pure Д1 = 1/2 transitions and the corresponding experimental 
results. The calculation is elementary and involves only the W-E theorem for 
the SU(2) group. A further triangle relation may be obtained between the three 
Z~ -*■ Ntt decay amplitudes and, with SU(3), an other triangle relation between 
the 5 -*■ Air , Z ■+ Ntt and A Ntt amplitudes. These triangle rules are also 
supported by the experimental results.

In table 11 the symbols A° , A° , S° and S_ refer to the 
A птг° Л+ртг- , S°-*-mr° and Н~-»-Лтт~ decays, respectively. The
asymmetry parameters

a = 2 Re s
Is I 2 + +

/213/

contain the s and p wave amplitudes, which enter the decay amplitude F 
for the -+• В2 it decay at rest in the following way:

s + p £ a2
la2 l *i /214/

In /214/ Xi and X2 stand for the Pauli spinors of the baryons B^ and 
Э2 , while q2 is the momentum of B2 in the rest frame of B-̂ . The asym­
metry parameters a and у can be measured in experiments with polarized 
baryons.

Since the current-current theory of Cabibbo does not forbid the
Д I = 3/2 transitions by a selection rule, only a detailed calculation of the

*matrix elements of the non leptonic decays could answer the question whether
the current-current theory is applicable or not to these decays. However, the
explicit form of the weak hadron current is unknown, and the modifications2caused by the strong interaction, i.e. the q dependence of the weak form 
factor, is also poorly known. In SDite of these difficulties remarkable re­
sults are obtained for tne non-leptonic decays with the help of tne current 
algebra relations given in chapter IV §8 and of the partially conserved
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Table 11.
The AI = 1/2 rule in Л-» N tt and 5 -> Лтт decays

Quantity measured Experiment Theory

Г ( Л ° )  : [ г ( л ° )  + г ( л ° ) ] 0,640 + 0,014 2/3

й 0 
0 р 1 0 1 , 1 0 + 0,27 1

у ( л ° )  : у ( л ° ) 1,04 + 0,33
0,21 1

г(г°) = г  ( = : ) 0,548 + 0,036 1/2

1 
1inао оinа 0,82 + 0,19 1

Л%) - г (к) 0,97 + 0,17 1

axial current(PCAC)hypothesis. This hypothesis asserts that the divergence 
of the axial current 3̂  A^ (x ) is proportional to the operator ^(x) of 
the pseudoscalar octet. In these notes we shall work only with the SU (2) 
part of this hypothesis, i.e. we shall restrict it to 1, 2 and 3. Then the 
PCAC hypothesis reads

3X A*(x) = c^ Г ± (х) i = 1,2,3 /215/

where ^ ( x )  stands for the hermitean components of the pion field operator.

The PCAC relation may hold because the singularity structure (the lo­
cation of the poles and of the residues)of the matrix element of the operator 

\3. A.(x) between any two states is the same as the singularity structure of 
the matrix element of the operator ^(x) between these stätes. This follows 
from the fact that both operators are pseudoscalars and have identical inter­
nal quantum numbers. However the strength of these singularities (the residues 
of the poles and the spectral functions of the cuts) could be different. The 
PCAC hypothesis asserts that even the residues and the spectral functions are 
identical for 3, A^(x) and (x) up to a common multiplicative con-
stant. The very strong restriction imposed by this condition, which is the 
simplest possible relation between 9 A^(x) and ^i(x) , is obvious,
and it is also clear that it may have far reaching consequences. A clear-cut 
answer to the question whether the PCAC relation is exact or not is not 
available at present, because of the poor knowledge of the spectral functions 
to be compared and of other factors entering the formulae to be tested. Thus 
we shall assume that the PCAC relation is an exact one up to electromagnetic 
corrections, and we shall explore some of the consequences of this assumption.
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The value of the constant can be easily expressed through other
constants of the theory of the weak interaction. To see this we write

3x<°|JH+ (x )|1T"(pir)> = cA Эх <0|a £(x ) + i А^(х )|тт"(Р7Г)> =

= cA cw <0 |fj(x) + i ^2 (x > 17T" (PTr> > =

= CA Ctt ^  <° H 7T(x )+ I7T ( V j > = CA C7T ^  / ф  (2^)TÍT
/216/

On tie other hand from eq. /20/ we find

Д+, . . .. _.2 *(_2
■ipxTT

'x <0|JH+(X)|1T (ртг)> “ ттт fW  /2р°1 (2tt)3/7

and finally

« )  .
CTT “ %  -7YT,

- 2 _= m fТГ TT
Thus the PCAP equation /215/ takes the form

/217/

/218/

Э,л A^(x) = m2 f *7 (X)X l 4 ' it TT l 4 '

Let us point out that the PCAC hypothesis breaks the SU (з) ®  Sü(3)
symmetry . Indeed, in the exact symmetry limit both the vector and axial 
currents must be conserved-; We see that the symmetry is broken by the pion 
mass. If this mass were zero, the axial charge would be exactly conserved. 
Since the pion mass (more generally the mass of the pseudoscalar octet) is 
small as compared to the other hadron masses the current conservation is al­
most respected. This is why one speaks of a partially conserved axial current.

The PCAC equation /219/ has many important consequences. A group of 
these is obtained if we apply the (□ - m2 ) 3̂  operator to the equa­
tion

<P(P2)Ia i (x ) + 1 A*(x )|n(Pl) > =

i(p2-Px)x p(p2)
(2tt)3/2

YX H1 (q2)-iaXv
(P2'Pl)
M +M P П

(q2) (p2~pl)
M +M P n Д 2) lYi (2tt)

n(px)
3?2

taking into account that
/ 220/

(□ - m2) J (x) = jj (x) / 221/

we find
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mif fTr<P(P2 ) I ji(°) + i j2C° )|n(p1)> =

2

5ГP n“ ( У  - m ") ("p + Mn) Hi(42) + m V  н з (<з2)
p ö ?2) n(Pi)
(2тг)3/2 r 5 (2тт)3/2

/222/

The most general structure of the matrix element <p(p2)|jj(°) + i j ^ 0 ) |п(р.Л >» 
allowed by Lorentz invariance, is

<P(P2)|jl(0) + i jJC0 )|n(p1)> =

о ✓ 2\ p ^
9*ш  к (ч ) ^ 7 2  y5 ^ 3 7 2  • /223/

In this equation is the conventional ttNN coupling
constant and the form factor K(q ) is normalized in the usual way:

ttNN = 14,37 + 0,34tt

ГтгШ^ = 13,59 + 0,14 к(га2) = 1 /224/

From the analytic S matrix theory the form factors H.(q2) , H-.(q2 ) and
/ 2 \ 2 1 JК \q ; are known to have a cut in the complex q plane going from

q2 = 9 m2 to q2 = + 00 ; the form factor H_ has also a pole at q2=m2 n F 3 2 71These are the only singularities of these functions in the finite q plane. Thus
H.(q2 ) may be written in the form

H. (ч2) = m  -  qn ^
+ H^(q2j , /226/

where the constant R is the residue at the pole, and H^(q2) has only the 
cut. Similarly, we may rewrite the left hand side of eq. /225/ to separate 
the pole:

Кk i l
m  -  qТГ M

2 2 m  -  q7T
+ К (4 2 )

where
S(q2) = -K(q2)-1 2 2 

"V - q

/227/

/228/

With eq. /222/ and /223/ we arrive at the PCAC relation

(Mp + «„) Hl(42) + — 4 м - “з ^ 2) - 2д„ш  f„ m* - ■ p 2)2 . /225/P  n  ш  -  qTT
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2 2 / 2 \ is a regular function at q = , due to the normalization = 1 .
From eq. /225/, /228/ it is easy to see that

R = 2g „„ f (M + M ) . /229/утгШ it v p n '

2Let us now take the eq. /225/ at the point q =0, where all the form fac­
tors are regular. We find:

lMP + Mn ) V o) - 2% m  f* K < ^  '• l23°l

this is the famous Goldberger-Treiman relation. All the quantities but K(o) 
are known in eq. /230/, and we find for the latter

K ( 0 )  =  í  ( o , 9 0  Í  О Д З ) /231/

If we choose the + sign^.we see that our result supports the general 
belief that far from their singularities the form factors are slowly varying 
"smooth'* functions of the corresponding variable. Morevoer, we see also from 
eq. /227/, /228/ and /230/ that at the point q2 = О the contribution of the 
pole in /225/ is of 90%. Thus PCAcTtells us that the function

G(q2)= (м + M ) H (q2) + д - 4 -fT H (q2) , /232/
^ p n

which is essentially a matrix element of the divergence of the axial current, 
is dominated by the pole term in a neighbourhood of the pole which in par­
ticular contains the point q2 = 0. This property of the function G is called 
the pole dominance of the divergence of the axial current (PDDAC) . We deriv­
ed this property from PCAC* and a smoothness condition (because we supposed 
that the function К (q ) is smooth; this property was only indicated, but 
not proved by the PCAC result |k (o )| = 0,9) . Some times PDDAC is postulated 
independently as a basic hypothesis and used instead of PCAC. In that case 
one generally supposes that a dispersion relation without substraction can be 
written for the function G (q2) (see [2]).

With the help of eq. /226/, /229/ and /230/ we can find an expression
for H3(0). Indeed,

H3(°) = + H3(0) = 2g
nw

M +' Mf _J2__•JTNN * 2 —  + h 3(o ) =

(m + Mn) .
= k ToT~ h i (0) + нз(0) * /233/

m

Supplemented by the experimental value of К (о) coming from / 230/
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If we now suppose that the form factor H^(q^) is also dominated by the pion 
pole term at q2 = 0 , i.e. that |R/m2| >> |H3 CO)| , then we find the
approximate relation used in chapter IV §4:

(m + M )2 ,
H3 (0) «г ----- k 7o T" h i ô) = 210 Hi ^  * 12341m 4TT

This result is often exploited when one neglects the contribution of 
(q2). Indeed, as a rule H3(q2) is multiplied by kinematical factors much 

smaller than 1/200. We would like to point out that this result depends on a 
PDDAC hypothesis for H3(q2) and that this is a separate requirement, which 
does not follow from PDDAC for G(q2) . Indeed, from eq. /232/ we see that 

(q2) is multiplied by q2 , therefore near q2 = О its behaviour cannot 
be inferred from the behaviour of G (q2) , even if H^(q2) were known.

Let us now come to the application of PCAC to the non leptonic weak 
decays. Here PCAC, together with the current alqebra relations of chapter IV 
§3, gives an expression of the amplitudes of the type H + H' + it through 
the amplitudes H ->■ H' and H -*■ H' , where H and H' contain the same 
hadrons as H and H'r respectively, but possibly in other charge configura­
tion. E.g. if H' = тг+ tt° , then H' may be it0 tt° or tt+ y ~  and so on. 
Unfortunately the relations between the amplitudes are obtained at the non
physical point where the four momentum К л of the pion in the H H' +тт<.к)

2 Лamplitude vanishes: k-, ->-0 ; hence к + 0, the pion is not on its mass
2 2 Ashell к = m^ .No unambigu'-us methods of analytic continuation back to 

the mass shall exist at present. In general one adopts the working hypothesis 
that the continuation would not change the results drastically, i.e. the 
results for the non physical point are supposed to be approximately valid at 
the physical point too.

The derivation of the basic formula is quite simple and goes as fol­
lows :

(2тг)3/2 /тк° <тт±(к)Н'|LH (0 )|H> =

= -i(k2 - m2) ^ dx elkx <H'|T(f.(x) l h (0))|h > = /235/

k2 - m2 Г
= -i ------2“  \dx el X <H' IT(эл a !(x ) lh (o ))|h > = /236/f mTT fti
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= -к
1 2 2 к - ш _______ тг_

X -F m2 Г штт тт
dx elkx <Н'|т (а ^(х ) LH (0))|H> +

,2 2к - ш
+ i . 2 f штт тт

—  |dx е1кх í(x0)<H'| [А°(х), Lh (0 )] |Н> /237/

Eq. /235/ is the well known LSZ reduction formula for the pion state <TTi(k)|-J 
eq. /236/ comes from the PCAC eq. /219/, while eq. /237/ is obtained by 
partial integration where as usual the surface term is assumed to be zero and 
is not written out. In these equations stands for the Lagrangean of the
hadronic weak interactions, which may be the part of our current-current
Lagrangean (see eq. /1/) , but may be also an other one. Its only property 
used in eq. /235/ - /237/ is that it is a local operator L^ix).

Let us now take eq. /237/ in the limit k^ -*• О . Then the second 
term reduces to

---— —  <H' I [l^(0), LH (0)]|H> , /238/

where I^(o) are the axial charges at t = О defined in eq. /143/.

Let us suppose that we work with the current-current theory and that 
the universality hypothesis of Gell-Mann holds in its precise form. Then

LHH contains only - H v i , + A. .) / X i f X f currents, and then

(0 ), lh (°)] 4  hoi0 ) - 1^(0), 0и3

/239/

i. e.

- j- <H' I [l^(o) , LH (0)] |H> = - <H' I [i± L (o)J|H> . /240/Tf TT '

In eq. /240/ we suppressed the time argument in 1^ because we neglect the 
small SU (2)breaking effects.

The isospin operators 1^ are known to act only on the third com­
ponent of the isospin of a hadron state. Thus we have

<н'I[iif l h (o )]|h > = <h '|lh (o )|h> - <h '|lh (o )|h > , /241/

where
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H'>= 1*|Н'> , Н> = I |н> /242/

Concerning the first term of eq. /237/, it is proportional to k^ 
and thus vanishes in the -*■ 0 limit unless the integral has a pole at
к =0. From the known analytic properties one finds1that such a pole turnsX
ur> in the hyperon decays ->• w but not in the kaon decays К Зтг ,
К -* 2тт . Anyhow, our final result is:

( 2tt )3 / 2 lim /2к° <tt . (k) H'|Lh (0)|H> =
V °

= j- lim к fdx elkx <H'|t (a *(x )# Lh (o ))|h> + 
u k̂ ->-o J

+ jj- [<H' |LH (0) |H> - <H'|LH C0)|H>] . /243/
1TT

If we apply’ this formula to К -*• Зтг decay, then, as we said above, the 
first term is missing and we have an expression of the К Зтт decay amplitude 
through К -► 2tt amplitudes. Applying eq. /243/ once more, we arrive at the 
К ■* it matrix elements, and applying it again we go down to the <o |Lh (0) | K> 
matrix element. Thus we have а К-»-ЗттФК-*2тт=ФК-»-ттФК->- vacuum chain, 
and at each step interesting predictions can be made on the corresponding 
amplitudes. These predictions are supported by the experimental results. For 
details the reader is referred to [2] and [з] . Here we notice only that the 
last loop of the chain is obviously a pure AI = 1/2 transition, even if 
L„(o) itself contains 1 = 3 / 2  parts. Coming back along the chain up to the 
К -*• 2ir and К -*■ Зтт amplitudes, we see that a possible explanation of the 
AI = 1/2 rule emerges in the kaon decays. Of course our chain works at a non­
physical point, but the AI = 1/2 rule itself is known to hold only approxi­
mately, as shown by the very existence of the K+ -*■ tt + ti° decay, which is 
a pure AI = 3/2 transition.

The application of eq. /243/ to the hyperon decays is more difficult 
because of the pole terms at k^ -*■ 0 . The origin of the Д1 = 1/2 rule is 
also more obscure in this case, and in many calculation it is imposed by hand, 
i.e. one simply requires that the Lagrangean L^io) transform as an 1 = 1 / 2  
operator. Practically this means that the current-current theory of Cabibbo 
is abandoned. We point out that in the derivation of our basic formula /243/ 
the current-current picture was not really exploited, only the locality and 
the universality property /239/ of the Lagrangean were needed. Thus it is 
possible to abandon the current-current structure and to require only these 
properties and the AI = 1/2 rule to hold. In many calculations of the non- 
leptonic weak decays this procedure is adopted. This does not prove,of course, 
that the current-current theory is inapplicable to the non-leptonic decays;
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but/ unfortunately,the exploitation of the current-current structure involves 
either the introduction of field theoretical models where non renormalizable 
divergencies occur, or the introduction of a complete system of states, the 
bulk of which must be neglected because their contributions are unca]culable. 
In spite of these difficulties, the current-current, theory is also used to 
calculate non-leptonic hyperon decays, and with a "reasonable" cut off of the 
divergent integrals or of the intermediate state spectrum, results of the same 
quality as without the current-current theory are reached;in particular, in 
hyperon decays,the Д1 = 1/2 rule is imitated due to "accidental" cancella­
tions between the unwanted Л1 = 3/2 contributions. Unfortunately,these 
encouraging results are based on calculations which contain too many uncontrol­
lable approximations and therefore they cannot be considered as a proof of the 
applicability of the current-current, theory to the non-leptonic decays.

To conclude these notes we would like to express the opinion that the 
serious problems in the theory of the weak interaction exposed in this chapter 
must not overshadow the brilliant successes of this theory, presented in the 
other chapters. Hopefully further progress will before long allow us to re­
write this last chapter in the spirit of the preceding ones.
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APPENDIX

§.1. Definitions and notations

In these notes the following basic notations and definitions have 
been used.

Non-zero components of the metric tensor:

goo “ 1 gll "g22 _g33 A-l

Scalar product of'.two four vectors a and b :

(ab) = a^ b^ = a° bQ + a"*" b^ + a2 b2 + a2 bg ; A-2

with

X Xy a = g и ay A-3

(ab) = g Xv a bx = aQbQ - a ^  - a2b2 - a3b3 = aQb0 - ab A-4

Differential operators:

Э = Эх, □  E -эл э. A-5

Matrices of Dirac:

[Yy' Yv] + 2gyv Yy = gyv y v ; /U/V = 0 ,1,2,3/ A-6

A frequently used representation of the 4 x 4  Dirac matrices, adopt­
ed also in our notes is:

Yo =
I 0
0 -I У -i =

0 a

-°i 0 / '
/i = 1,2,3/ A-7

In eq. Ill

1 o\ (o o\ (o l\ /о -i\ (l 0
I = l ; 0 = |  I ; о, = I I ; a0 = | I ? o0 = ( I A-8

О 1 ,0 о) ' 1 о 2 ~ l I ' 3Vi о/ \o -1
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We also define the matrix у 5 5

A-9

In this representation

/X = 0,1,2,3,5z . A-10

Notation: for any four veqtor a

a = YX a

especially,

A-12

§2. Zero spin field

Below the operators 'i’(x) , a(k) , b(k) stand for "in" fields, but
the label "in" has been suppressed. The same relations holds also between the 
out operators, but of course *fin(x) ^ ^out^X  ̂ ' excePt for non-interacting 
fields.

The Klein-Gordon equation reads:

A-13

The plane wave decomposition of *f(x) can be written as follows:

A-14

In eq. /14/ the condition

A-15

holds

If the field f(x) is non-hermitean, i.e. if Р̂+(х) ф *-f(x) 
the operators a(k) and b(k) are quantized as follows:

then

A-16
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, |Q
all the other commutators of a, a , b, b vanish identically. From eq. /14/ 
- /16/ the well-known canonical commutation relation

is easily deduced.

*(xb 90 <f(y) хо=Уо = -iő(x - у) A-17

The physical interpretation of the operators a and b is:

a(k) absorbs a particle with momentum к
a+ (к) creates a particle with momentum к
b(k) absorbs an antiparticle with momentum к

b+(k) creates an antiparticle with momentum к

If f+(x) = f(x) , then b(k) = a(k ) . The only non-zero commutator
then is

[a(k ), ' a+(k') ] _ = б(к - к') A-18

and the antiparticle is identical with the particle. The canonical commutation 
relation takes the form

notice that [Ц’(х) , ^(y)]_

f(x), 90 ^(y)
хо=Уо

T x_ =о У о = -i ( x - у ) ; 

is zero if 'f+( x ) ф 'f(x),

A-19

§3. 1/2 spin field

The Dirac equation for the field operator (with the label "in" sup­
pressed) reads:

(i Э - m) ф (x ) = О A-20

Eq. /20/ is a shorthand notation for

( p A YX - n.E)aB *B(x) = 0 A-21

where E is the 4 x 4  unit matrix and a,ß are spinor indices running 
through 1, 2, 3, 4. In /21/ a summation over the index ß is understood.

Plane wave decomposition:

* a (x> = Í dp(e1PX l V„(E) ds(P) + e_lpX ^ u®(E) c s (E))

A-22
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Ih eq. /22/ we have

A-23

The Dirac equation imposes for the spinor amplitudes u and v the 
equations

(p - m) и(]э) = 0  (p + m) v(£) = О . A-24

We normalize the spinors as follows:

vStß) vr(E) = uSTe ) иГ(Е) = 6rs A"25

Notice that in general

vS+(£) ur(£) ф 6rs , A-26

since v and u are solutions of different equations.

For spinor fields all the known antiparticles are different from their 
particles. Thus we give the quantization only for the ф*(х) Ф Фа (х) case:

[c s (E)' CÍ(E)]+ = [ds(R)' d^E)] + = 6Sr 6(H " E') * A~27

All the other anticommutators are zero. From eq. /22/ and /27/ the 
usual canonical quantization

[*<,(*)' * * > ] +° У° = бав ä(* - Z) A~28

is easily obtained. The physical interpretation of the operators c and d 
is the following:

cs (p') absorbs a particle with momentum p and polarization s
cs (P ) creates a particle with momentum p and polarization s
d ( £ ) absorbs an antiparticle vjith momentum £ and polarization s
d+ (p) creates an antiparticle with momentum £ and polarization s

Let us now look at the pölarization states in more detail. The equa­
tion (p - m) u(p) = О has two linearly independent solutions for a given £ 
and with p0 = I I'p2 + m2 | . This is why in eq. /22/ we have two polariza­
tion states s = 1,2 for u(£) . The same is true for the equation
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(p + m)v(p) = 0 . The remaining solutions of these equations belong to the 
P0 = "l^ 2 + I case, and do not enter our eq, /22/ due to eq. /23/.

For particles in motion the polarization is conveniently parametrized 
in terms of helicity eigenstates (spin parallel or antiparallel to the direc­
tion of the motion), while for particles at rest the projection of the spin 
on a fixed direction can be used (spin parallel or antiparallel with respect 
to a fixed axe of quantization).

The components of the spin operator S? 
space of the spinors u(p)) reads:

while for an antiparticle (i.e. on the v(p)-s)

for a particle

i = 1,2,3

1,2,3

(i.e. on the

A-2 9

A-30

the helicity operator for a particle of momentum p is

nP(n) = Z n , n = j'j|I'

while for an antiparticle with momentum g

- E
np(n) = I n n = - щ

A- 31

A-32

In the representation /7/ of the у matrices the two eigenstates o.f
ly be choosen to be, satisfying the eq. (p - m)u(p^=0 with p = 0

j
uX(0 ) = u1 = j °o.

II
ГМ3IIIcT
CN0

\ 0 /
A-33

while for an antiparticle we may choose

VX(0) 5 V1 = ° 2 / _ \ _ 2 0 v (0) = v = \1 A-34

Here u1(v1) describes a particle (antiparticle) with spin parallel 
to the third axe (̂ i.e. ^ =  ̂ , while u2(v2)
describes a particle (antiparticle) with spin antiparallel to the third axe 
(i.e. sf u2 = - § u2 sP v2 = - § v2 ).

For the helicity eigenstates in our representation we find (n = —/|p|^:

u*(e1 о £ 7Г(Т+п V ( , 3 1 A~35
° Г ¥  V 3' W  + ln2 I
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(E)

(e )

Ш + p0
2P0 U ? - /

( „ D \
m + Po d  + m
2P0 H

04^^

p r + P o ' ’ £ E \
p + m *0

I
2 p

/2 (1+ПоУ

/2U+n3V

/2 (1+n

“Hí + in2 
1 + n0

-nl + in2
1 + n-, ,

1 + n.

nl + in2

Л-36

A-37

A-38

u 4 e ) (v ^(e O  describes a_particle (antiparticle) with positive helicity
(i.e. XP(lO u+(£) = u+(£), XP(n) vf(£) = v+(£)) , while u*(£) (v+(£))
describes a particle (antiparticle) with negative helicity (i.e.
xP(n) u+(£) = - ^ ( e ) , XP(n) v^(£) = - v+(£) ) In eq. /35 / - /38 /
we have of course spinors of one column and four rows, e.g.

1+П3 1

+ , , . m + Po 1
u №  \ 2po " /2 (l+n3)

/ 1H •1 П1+1П2
Ie I U+n3)
p0 + m

Ie I (n;L+in2)
p + m*0 A-39

and so on.

In the calculation of transition probabilities, expressions of the
form

|wS(£) 0 (p,p') ws (£') I2 A-40

must be evaluated. In eq. /40/ o(p,p') stands for a 4 x 4  matrix, w
stands for u or v , and

“В/ v _ ST, V c w (E) = w (£) Y A-41

The calculation of eq. /40/ is straightforward and leads to the well 
known result:

|w s (e ) О ws ( £)I 2 =

= Tr < x
л + A + , 
e_lJ!1 ox , y° о y°

w S(e ) po wS (e #) po
A-4 2
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In eq. /42/ X s(£) stands for the helicity or spin projection 
w soperator on the state w (p) . Thus

X +
u (E)

1 + I H  
2 X x и+(р)

1 - 1 n
2 A-4 3

X ж 
v (2 ) v+(E)

i + E n 
2

Xu1
1 + I 1 + Z

1 + z.

A-4 4

A-45

A-4 6

In the factor p + m the sign + (-) must be choosen if p refers
to the momentum of a particle (antiparticle). The same prescription holds for 
л)p + m .

The relevant formulae for unpolarized cases are easily obtained from 
eq. /42/ - /46/ . Thus

s', M .2 = _ p_-.m
l |wS(2 ) °wS (e ') И  = Trs=l, 2

I |wS(£) 0wS'(£') I2 = Tr 
s-1,2

Í  P - m n. p - m' o^+ о [
{ 2po wS (£') 2po J

eJL* n i L L b  v ° n + v°
. w (P) 2P

I |wS(£) 0WS/(£)|2 = T r Í L í -Щ о Y°oV ► .s=l,2 Fo pos ' =1,2

A-47

A-4 8

A-49

As well known, for the polarization index which refers to the initial 
state still a factor 1/2 must be introduced because we have to take the average 
of the two polarization states. For the final state the summation is correct 
as it stands in eq. /47/ - /49/, because both polarization states contribute 
to the unpolarized transition probability.
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§4. Helicity and handedness

In our representation 111 - /9/ of the у matrices, the matrix 
can be written in the following ways

a 0
E H "  0 | - i y 5 vo i A-50

Now it is easy to verify that for a zero mass particle the following 
relations hold:

Y0 I n uf(p) = u*(£ ) 

Y0 1 n ul(E) = u \ e ) 

Y0 1 n v+(£) = -vf(£) 

Y0 I n V+(£) = -V + (£)

Thus if m = 0 the helicity operator is iy5 for the particle and 
-ÍY5 for the antiparticle.
The projection operators for the helicity then become:

= 1 ~ iY5X v 2u (e )
X ж
u (E)

1 + iy,

x +v (E)

1 + 1y5 
2 A-52

The operator ÍY5 on the space of the u(p)-s and the operator"" *-ÍY5 on the space of the v(p)-s are called handedness operators, irrespect­
ive to the mass value of the spinor field. A particle which is in an eigen­
state of ÍY5 with eigenvalue +1 (-l) is called a right-handed (left-
-handed) particle. For the zero mass case a right (left) handed particle is 
also a positive (negative) helicity particle. An antiparticle which is in 
an eigenstate of -iy^ with eigenvalue +1 (-1) is called a right-handed
(left-handed) antiparticle. For the zero mass case a right (left) handed anti­
particle is also a positive (negative) helicity particle. .

As we have seen in these notes, in the V-A theory of the weak inter­
action all the lepton fields in the leptonic current are multiplied by the 
(l - iy^) operator. Indeed, the lepton current may be written as follows:

*
or chirality operators
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M x) - *е Yx(X - lYs) *ve + e

" k »e Yo Y>(X - 1y5)2 *ve + e У =

C1 - ^ 5) *e] Yo Yx(X - 1y 5) *ve + 6 -*-y A-53

Thus in the weak interactions only left handed leptons and right 
handed antileptons take part. For the neutrinos this means also that only
negative helicity neutrinos and positive helicity antineutrinos may interact./For the electron and the muon, a handedness eigenstate contains both positive 
and negative helicity states.

§5. Decay rates

Let a particle A with four-momentum рд and polarization эд decay 
into r particles with four-momenta p^, P2, ..., pr and polarizations 
s^, s2 * . .., sr . We define the transition amplitude F for the decay A -+ r 
through the expression

<r,out|A,in> = F
- K I1 PK

S~2x>°
A-54

pA 2pi‘*-2pr

bA ' К
stand for

The amplitude F is of course a function of all the variables рд , (к = 1, ..., г ) . The states |A,in> and ]r,out> in eq. /54/

IA,in> = a+ (p ) |o> ,sÄ a in A-55

r,out> - ag (E ) a* (E ) ...a* (E ) |0>
S1 out s2 v z/out sr r out

A-56

The operators a(p) obey the quantization rules /18/ or /27/ . Of 
course they hold only between "in" or between "out" operators. The commutator 
between an "out" and an "in" operator depends on the interaction and its cal­
culation involves the solutiort of the equations of the interacting fields. In 
fact this was our main task for the weak interactions in these notes when we 
calculated the different decay amplitudes F.

The differential decay rate dr(A -*■ r) for the decay A -*■ r is 
expressed through the decay amplitude F in the following way:
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d£r
■2p°

A-5 7

If among the decaying particles к are identical and they decay to 
states with all quantum numbers identical except the momenta, then the right 
hand side of eq. /57/ must be divided by k! .

Supposing a pure exponential decay low for the particle A, the 
probability dW(A -*■ r) that the decay A -*• r from the state specified by 
рд , sA to the configuration p^, s^; P2* &2' Pj_' sr takes palace in the
time interval t, t + dt is given by

dW(A ■* r ) = dr (a -*• r ) e”tr A dt A-58

In eq. /58/ Г(а ) stands for the full decay rate of the particle A. 
If the channel A -*■ r is the only one., then Г (A) is simply obtained by 
integration over all the momenta p-̂ ..., pr and summation over all the polar­
izations эд , s ^  ... sr in eq. /57/. (For sft the average must be taken, 
not the sum!). Thus in this case Г(а ) = Г (A -* r} .If there are N decay 
channels, then

Г(А) = I Г (A - r )
П=1 4

A-5 9

It is easy to see that eq. /58/ is correctly normalized, because
•f-oo
f Г (A) e"tr^ d t  = 1 • A-60

i.e. the full probability that the particle A will decay in the time inter­
val (o, +00) is equal to 1 . Also it is easy to see that Г (A) is the 
inverse of the mean lifetime of the particle:

(A) •T -tr(A)
rTÄTtr ( A ) dt A-61
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