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3- DIMENSIONAL "RELATIVITY" FOR AXISYMMETRIS STATIONARY SPACE-TIMES

Z. Perjés
Central Research Institute for Physics, Budapest, Hungary

The equivalence of the axisyimetric stationary vacuum gravita­
tional field problem to a З-diiüensional "relativity theory" in the 
presence of a certain scalar matter field Is shown. An invariant classifica­
tion can be achieved with respect to the algebraic structure of the 3-cLi- 
mensional trace-free Ricci-tensor. The extension of these results to elec- 
trovac spaces 1з also discussed.





1, Introduction

H. Levy [1] found recently a 3-dimensional stress tensor for axi- 
symmetric stationary gravitational fields. In the present work we shall 
extend his result to a 5-dimensional covariant formulation of the problem. 
The basic conception will be developed in Section 2. Here we shall show 
that the axisymmetric stationary gravitational field problem in vacuo
is completely equivalent to a 3-dimensional relativity theory in the pres­
ence of a certain "matter field" and endowed with axial symmetry. In Sec­
tion 3 we ргорозе an invariant classification of the related space-times 
based on the algebraic properties of the 3-dimensional Ricci tensor. 
Section 4 deals with the electrovac problem, while in the summary we shall 
discuss the various new possibilities which are offered by our method for 
the search of the axially symmetrical space-times.

2. Foundation of the 5-dimensional "relativity"

I. iine element of an arbitrary axisymmetric stationary vacuum 
gravitational field may be written [2]t

dS2 = f-1 ds2 - f(dt + шйФ)2 111

where

ds2 = e2y ( dp2 + dz2) + p2 d4>2 /2/

v 1 2and f, «, y xre functions of x =p and x =z only.
Using the notation of F.J. Ernst [3]f we introduce the function «f by

Vf = -f2 p 1 n x Vto . /3/

Неге V is the 3-dimensional gradient operator and fi stands for a unit 
vector which points in the d«> direction. We remark that f  agrees 
with Papapetrou’s scalar function [4] a . The asymptotic conditions for 
the field of a bounded rotating source with mass m and angular momentum
a .m are:

+ z2 1/2

; f
araz
r3

if r
f - 1 2m

r Y /4/
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The field equations constitute two groups, the first of which is 
easily put down without referring to any particular coordinate system«

f Af = Vf Vf - V/ V<p, 

f Af =  2Vf

A denotes the Laplace operator in 3-dimensional Euclidean space. The 
second group of the field equations determines у in terms of f and f t

, 1 /*2 ,2 ^ . 2  .2 )
V p = ^ 2  (fl " f2 + ~ * 2  I

Y2/P = If1 (fl *2 + fl '

/ 6/

/Lower indices denote partial derivatives /. The right hand sides of the 
system /6/ can be written as the - T1;L and-T12 component, respectively, 
of the 3-dimensional symmetric tensor

Tik “ - ^ 2  ( f'i f'k + f'i *'k - I^ik [(Vf Vf) +(V^ Vf) ]) . /7/

This tensor in a slightly different form was found first by 
H. Lévy [1], who has shown that the divergence of Tik vanishes, and 
stated that Tik has the properties of a gravitational stress tensor. 
At this point it is natural to ask, whether a generalization of the defini­
tion /7/ to a curved 3-space V 3 exists. Then equations /6/ would become 
the gravitational equations in V 3 , and eq.s /5/ would appear as the 
"material field equations".

Choosing /2/ as the line element of V3 , and calculating

one gets
ik / 8 /

G 11 = - G22 = - V p » G12 = - Y2/p ? G33 “ -p2 e_2Y(Yll+Y22)'/9/
the remaining components vanish. Eq. /6/ turns out to be the /11/ and /12/ 
component of the gravitational equations

Gik ik / 10/

while G 33 = T33 is a consequence of the field eq.s /5/» /6/. The definition 
of Tik remains formally /7/» using now the line element /2/. The covariant 
divergence of T\k again vanishes and the form of the field eq.s /5/ may 
be maintained changing the definition of the Laplace operator to
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Af Ü l  gij f., f.. .' i '1
It is easily seen from the line element /1/ that the abstract space 

v 3 f in which the "second relativization" of the problem proceeds, is 
equivalent to the hyper surf aces dt + <ж!Ф = О up to a conform factor
f-1

Following F.J. Ernst, we introduce the complex "material field" in
v3 ЬУ

e = f + if . /11/

Then eq.s /5/, /6/ may be written:

(Re eje’1^  = e:i е.± , /12/

Rik " 2 gik R ~ 4(Ree)
1 / * ^ *---~ e-4 e-i + e. . e.ae\2 \ >*■ ,k ,i ,

* i r
к - gik e/r e /13/

These equations can be derived from the Lagrangian
, e.. £** i b

L = R " I /" b(Re e ) z
/14/

by using the variational principle.

Sometimes it is more convenient to introduce the function £ 
/Ref. [3]* see also Sec. 4./ by

S = 1 + e /15/

We remark that in terms of the field variable 5 the stress tensor is 
expressed as follows:

Tik - - ( « ’ - i)"2 ( «rí 5*k + 5*i «lit - 9lk 5;r E',r) /16/

Invariant classification

As is well known, in v3 the Weyl tensor cijkl vanishes, so 
that the relationship between the curvature tensor and Ricci tensor reads 
[5] 1
Rijkl =  - g ±1 R j k  +  g i k  Rn  - g j k  R ±1  M j i  R i k + ^ ( g il gjk " gik yjи-)- /17/

The classification with respect to the algebraic structure of the curvature 
tensor is therefore completely equivalent in V 3 with that of R ^  [6]. 
We shall deal with the tracefree part of the Ricci tensor:
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P± R± 3 1 ” /18/

It is convenient to use in the calculations th ' line element /2/* In this 
coordinate system we find:

-2y

y11+y22_3y1/p ■3y2/p

-3y2/p ^i i+'̂22+3y1 / P

о

The eigenvalue-problem
pi V1 X v

'2yll 2y22

/19/

/ 2 0 /

leads to the following characteristic equations

[2(y 11+Y22) + a][(y 11+Y22 -л)2 - 9 (у2 + y2 ) /P2] = О /21/

where Л = 3e2y A , The solutions of eq. /21/ ares 

Ло = 2 (Y11 + y22) •
1/9  / 2 2 /. . + , -1 f 2 , 2 ) 112

h± = Y11 + y22 - 3p lYl + y2/

Using the field eq.s /12/, /15/, the eigenvalues can be written in an in­
variant form:

Aо

A+

1 I  Ve 
6 j Re e

2

1_
12

|Vc| 2 + 3 IVe Ve
(Re e)2

/23/

The relation ^0+*++^_ О is satisfied because is tracefree.

If we restrict ourselves to physically realistic spaces, for which 
the asymptotic conditions /4/ hold, we have asymptotically:

»o - К  - -2>- - i f r  • l 2 i l

The type of the Ricci tensor is asymptotically degenerate /D/. The alter­
native possibility is that the degeneracy /24/ does not occur, in that 
case the type is called general /G/. All other possibilities, as e.g. A=o 
are excluded by the asymptotic conditions /4/ for physically interesting 
spaces.



ow we have shown that the axisymmetric stationary graviational 
fields may be classified in an invariant manner, with respect to the algeb­
raic structure of their Ricci tensor in the corresponding space v3 
The possible types are D and G.

From eq. /23/ is learned the necessary and sufficient condition
of the degeneracy:

fl ^ 2 " f2 = 0 • /25/

So the class of the type D vacuum solutions consists exhaustively of the 
static /Weyl/ spaces [5] and the Papapetrou’s solutions [2] for that one
has

Ло = 4  = 2 (x12 + х2г)
where X is an arbitrary harmonic function. However, we recall the well 
known fact that Papapetrou's solutions are physically unacceptable because 
they do not satisfy the asymptotic conditions /4/ /the mass monopolé term 
is lacking/.

All other relevant spaces, among others the Kerr metric [7],being 
now the only known solution of the field eq.s /12/, / 13 /  which can really 
represent the gravitational field of a bounded rotating source, are of type 
G. For the Kerr solution one has

л

, _ 2 _______________  ( 2a2 sln2a )
° " 3 (r2-2mr+a2cos26)2 \ r2-2mr+a2cos26 / '

2 / 2 2 \ \ 1211 
h = -  — ----------12--------------- - ( 1 + 3 + __— __s -̂n в Ii 3 (r2-2mr+a W e ) 2 Г r2-2mr+a2cos20 / J
where the functions r(p,z) and 9(p,z) are defined by the relations

P =  (r2 -  2mr +  a2 ) 1 2̂ sin6 ,
/28/z = (r-m) cos0 .

It is seen from /27/» /28/ also that the space becomes asymptotically of 
type D.

* The present classification differs from that of Lévy [1]
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4. The electrovac problem

As we shall see, the extension of the 3-d.imensional "relativity" 
to electrovac spaces yields rather complicated expressions, although the 
results are very similar to those in the absence of electromagnetism. The 
only exception is that in the electrovac case the type D metrics are not 
all known.

Our notation is in agreement with Ref. [8]s a  ̂ stands for the 
electromagnetic 4-potential, and the field variables A^ , Ф, /, e 
used here are defined by the relations

n x УА' = p_1 f 1(vA3 - a) VA4) , /29/

Ф = a 4 + i A 9A3 ' /30/

n x Vf = p_1 f2 Vw - 2 n x im (ф* УФ ) f /31/

€ - f * 1*!!2 + if . /32/

The unit bector n is seen to be the Killing vector of the space 
v3 with the line element /2/. In properly chosen units the first group 
of the field equations which govern the .axisymmetric stationary electrovac 
spaces is as follows:

(Ree + IФ 12 ) Де = (ve + 2Ф* Vi) Ve ,
, о \ / v /33/(Ree + |Ф| / ДФ = (Ve + 2Ф* Vi) УФ .

To any solution of the field eq.s /12/, /15/ it is possible to find 
its "electromagnetic pair" for which e = is an analytic function
of Ф . Then one has [8]

e = 1 - 2i/q , /34/

where q is a complex number. The field eq.s of Sec. 2 are formally get 
back by denoting £=(l-qq*) ^ 2£'.

For the sake of brevity we introduce the complex 3-vectors
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*

t

I

G = ■=1 Ve + 2Ф* УФ
2 Ree + IФ I ‘

and
H = (Ree + I Ф 12) 1 , 2 V$

/35/

/36/

The second group of the electrovac field equations is now equivalent to 
the "gravitational equations" in V3 for which the line element is given 
by eq. /2/ and the stress tensor has the form

ik - - {(«±G- + G*Gk) - (H±Hj + H;Hk) - gik ( .

One easily finds now that the corresponding Lagrangian is

L = R - GrG* + HrH*

/37/

/38/

We put down here the eigenvalues of the Ricci tensor also! 

Ao " f (iGl2 - I»I2) '
/39/

1/24  - - I ( IG I 2 - |H|2) ± I IG2 12 + |H2 |2 - 2 |GHI 2 + 2 IG2H2 - (Gh )2 |J

Hence the condition of the degeneracy XQ = X+ is seen to he

(|G 12 - |H|2)2 = IG2 I 2 + |H2 I 2 - 2 I GH 12 + 2|G2H2 - (g h )2 | . /40/

If /40/ holds, the space is of type d , else G . The asymptotically 
flat static spaces are once again of type D. Known examples of the static 
electrovac spaces are the solutions of Weyl [9]» for that e = e(Ф) is 
assumed, or the space with the line element

ds 2 = - N2 (r2-a2cos2e)2 [(r-m)2 - (а2+ш2) =os29 ]’3 [dr2((r-a,)2 - (a2« 2))'1 + <»2]- 

“ N 2[lr-m j2 - (a2+m2)][r2-a2cos2e]2 sin20 <ЗФ2 + N2 (r2-a2cos26 ) 2 dt2

and magnetic potential
A- = 2mar sin 0/N

/41/

/42/

/ a, m are real constants, N= (r-m)2-m2-a2cos29 /.This latter solution'was 
obtained from the K^rr metric by using an accidental symmetry of the 
axisymmetric spaces [10].
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The metric found by Newman et al. [8, 11] is the "electromagnetic 
pair" of the Kerr solution and as such, is naturally of type G. One can 
construct the "electromagnetic pairs" of Papapetrou’s stationary solutions 
also, which are then of type D. The existence of other type D electrovac 
spaces that can in addition he interpreted as the fields o^ some realistic 
sources, is still an open question.

r). Summary

After the "second relativization" of the stationary axisymmetric 
gravitational field problem, many of the present methods of general rela - 
tivity,as those based on the algebraic features of the curvature tensor 
/Sec. 2/ or on optical properties, can be applied to this particular 
problem. These may prove useful in finding new axisymmetric stationary 
solutions. At this point one can conjecture that certain cylindrical sources 
are privilegized with respect to the rotation around their axis of symmetry, 
in that these do not lose energy then by gravitational radiation. This would 
mean an exclusion principle for the axisymmetric gravitational fields with 
bounded singularities: some of them could not be stationary.

On the other hand, our procedure may shed some light on the ques­
tion, whether general relativity can fully be "geometrized", because it 
gives gn example of the situation when the material field becomes part of 
the metric in a higher dimensional empty space theory.

Further investigations are needed in order to find the possible 
extensions of our results to more general gravitational fields.
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