# EXTENSION OF THE SL(2,C) SYMMETRY 

P. Surányi

## HUNGARIAN ACADEMY OF SCIENCES

CENTRAL RESEARCH INSTITUTE FOR PHYSICS

Printed in the Central Research Institute for Physics, Budapest
Kiadja a Könyvtár- és Kiadói Osztály. O.V.: dr. Farkas Istvánné
Szakmai lektor: Frenkel Andor Nyelvi lektor: Sebestyén Akos
Példányszám: 260 Munkaszám: KFKI 3815 Budapest, 1968. julius 11.
Készült a KFKI házi sokszorositójában. F.v.: Gyenes Imre

# EXTEESSION OF THE SL $(2, C) S Y M M E T R Y$ 

P.Surányi

Central Research Institute for Physics, Budapest, Hungary

## Abstract

The $S L$ ( $2, C$ ) trajectory generating algebra/TGA/ is extended to a $S L(2, C)$ SL ( $6, C$ ) algebra in a natural way. Axial-, vector- and pseudoscalar meson trajectory families are generated by the same multiplet; the pion is automatically a conspiring particle with Toller quantum number $j_{0}=1$. Generalized SU (6) relations for Lorentz-pole residues are obtained.

## I. Introduction and $\mathrm{SL}(2, \mathrm{C})_{\mathrm{L}}$ • SL $\left(2, \mathrm{C}_{\mathrm{S}}\right.$ Symmotry

Scattering processes, in which the mass of particles in the final state is equal to those in the initial state have an extra symmetry at zero momentum transfer. [1-4]. The group of this symmetry is defined as follows. If the scattering amplitude $\mathrm{Tp}_{1} \mathrm{p}_{2}, \mathrm{p}_{3} \mathrm{p}_{4}$ is written after a formal crossing as

$$
\begin{equation*}
\left.\left\langle-p_{2}, p_{4}\right| T\left|p_{1},-p_{3}\right\rangle=\left\langle E, p^{\prime}\right| T|E, p\rangle=\left\langle p^{\prime}\right| T|(E)| p\right\rangle \tag{111}
\end{equation*}
$$

where $E=p_{1}-p_{3}=p_{4}-p_{2}, p=\frac{1}{2} / p_{1}+p_{3}\left|, p^{\prime}=\frac{1}{2} /-p_{2}-p_{4}\right|$, then we can define a SL ( $2, \mathrm{c}$ ) group as the simultaneous Lorentz-transformation of $p$ and $p^{\prime}$, leaving $E$ unchanged. The scattering amplitude is $\mathbb{Z}$ nvariant under the transformations belonging to the aforementioned group, if $\mathrm{E}=0$. Otherwise it is invariant under a subgroup of $\operatorname{sL}(2, C)$ only, namely under the little group belonging to E . If we denote the elements of the corresponding $S L(2, C)$ algebra by $M_{\mu \nu}, M_{\mu \nu}=-M_{\nu \mu} \quad, \mu \nu \nu=0,1,2,3$, we may write

$$
\begin{equation*}
\left[T(0), M_{\mu \nu}\right]=0 . \tag{121}
\end{equation*}
$$

States can be classified according to irreducible representations of SL ( $2, \mathrm{C}$ ) , labelled by the quantum numbers $\sigma$ and jo [5]. $M_{\mu \nu} M_{\mu \nu}=2\left[\sigma(\sigma+2)+j_{0}^{2}\right], \varepsilon_{\mu \nu \rho \kappa} M_{\mu \nu} M_{\rho \nu}=8 i j_{0}(\sigma+1)$. Expanding
the scattering amplitude, we find poles in the $\sigma$ plane after an analytic continuation [1-4]. These, so-called Lorentz-poles generate an infinite number of Regge-poles. The contribution of such a pole to the scattering amplitude can be written as [5]

$$
\begin{align*}
& \left\langle p^{\prime} ; s_{2}, \lambda_{2} ; s_{4}, \lambda_{4}\right| T(0)\left|p ; s_{1}, \lambda_{1} ; s_{3}, \lambda_{2}\right\rangle \\
& =\left\langle\bar{p}^{\prime} ; s_{2}, \lambda_{2}: s_{4}, \lambda_{4} \mid\left\{\sigma, j_{0}\right\}^{\prime} s^{\prime}, \lambda^{\prime} ; s^{\prime}\right\rangle D_{s \lambda s^{\prime} \lambda^{\prime}}^{\sigma j_{0}}\left(g^{\prime,-1} g\right)  \tag{131}\\
& \text { - } \xi_{\sigma} \lim (\bar{\sigma}-\sigma) \mathrm{T}_{\mathbf{s s},}^{\bar{\sigma}, j_{0}}\langle |\left\{\sigma, j_{0}\right\}, s_{,} \lambda ; s\left|\overline{\mathrm{p}} ; \mathbf{s}_{1}, \lambda_{1} ; \mathbf{s}_{3^{\prime}, \lambda_{3}}\right\rangle+\ldots,
\end{align*}
$$

where $\mathrm{T}_{\text {ss, }}^{\sigma_{0} j_{0}} \quad$ is defined as

$$
\mathrm{T}_{\mathbf{s s ^ { \prime }}}^{\boldsymbol{\theta}, j_{0}}=\left\langle\left\{\sigma, j_{0}\right\} ; j, m ; s^{\prime}\right| \mathrm{T}(0)\left|\left\{\sigma, j_{0}\right\}, j, \mathrm{~m} ; \mathrm{s}\right\rangle
$$

The ket $\mid \bar{p} ; s_{1}, \lambda_{1} ; s_{3} \lambda_{3}>$ is a two- particle state with zero total four momentum and relative momentum $\bar{p}=(\bar{p}, 0,0,0) \quad$ particles 1 having apin and spin projection to the $z$ aris $s_{i}$ denoted by $s_{i}$ and $\lambda_{i}$ respectively. $\mid\left\{\sigma, j_{0}\right\}, j, m ; s>1 s$ the same type of two-particle state in $S L(2, C)$ angular momentum picture, with total spin s and angular quantum numbers corresponding to the relative momentum $\left\{\sigma, j_{0}\right\}, j, m$. The function
$D_{s \lambda_{,} s^{\prime} \lambda^{\prime}}^{\sigma j_{0}}\left(g^{\prime-1} g\right)$ is the matrix element of $S L(2, C)$ transformation $g^{\prime-1} g^{-1}$

$$
D_{s \lambda s^{\prime} \lambda^{\prime}}^{\sigma j_{0}}\left(g^{\prime-1} g\right)=\left\langle\left\{\sigma, j_{0}\right\}, s^{\prime}, \lambda \prime\right| \cup\left(g^{\prime-1} g\right)\left|\left\{\sigma, j_{0}\right\}, s, \lambda\right\rangle,
$$

where $g$ and $g^{\prime}$ are boosta, transforming from $\bar{p}$ to $p$ and from $\bar{p}^{\prime}$ to $p^{\prime}$, respectively. $\xi_{\sigma}$ is the signature factor. The $s$ and $s^{\prime}$ indices of the matrix element of $T(0)$ indicate the $s$ and $s^{\prime} d e$ pendence of Lorentz-pole vertices. Lorentz-poles will carry a dependence only on $\sigma$ and $j_{0}$, the Casimir-operators of the maximal conserved group SL ( $2, C$ ) The rale of $s$ and $s^{\prime}$ can be understood very easily, if we couple together the spins $s_{1}, s_{3}$ and $s_{2}, s_{4}$ in the zero relative momentum frame

$$
\left|p ; s_{g} \lambda_{1} s_{1}, s_{2}\right\rangle=\sum_{\lambda i}\left(s \lambda \mid s_{1} \lambda_{1} s_{2}-\lambda_{2}\right)(-1)^{s_{2}-\lambda_{2}}\left|p ; s_{1}, \lambda_{1}, s_{2} \lambda_{2}\right\rangle
$$

and expand in "aregular momentum"

$$
\left|p ; s, \lambda, s_{1}, s_{2}\right\rangle \rightarrow\left|p^{2},\left\{\sigma_{0}, 0\right\}, l, \mu ; s, \lambda, s_{1}, s_{2}\right\rangle
$$

/the four- dimensional angular momentum has to be put into self-adjoint representations of $\mathrm{SL}(2, C) /$. Putting the spin state into a Weinberg-
-type representation, [6] $\{s, \pm \mathbf{s}\}$, we couple together the two $\mathrm{sL}(2, \mathrm{c})$ states to give
$\left|\mathrm{p} ;\left\{\sigma, j_{0}\right\}, j, m ; s, s_{1}, s_{2}>=\sum_{, \mu, \lambda}<\left\{\sigma, j_{0}\right\}, j, m\right|\left\{\sigma_{0}, 0\right\} \hat{\ell}_{\boldsymbol{j}} \mu ;\{\mathbf{s}, \mathbf{s}\} \mathbf{s} \lambda>$ $\left|\mathrm{p}:\left\{\sigma_{0}, 0\right\}, \ell, \mu ; s, \lambda, s_{1}, s_{2}\right\rangle$,
where we denoted the Clebsch-Gordan coefficient of the Lorentz-group by

$$
\left\langle\left\{\sigma, j_{0}\right\} j, m\right|\left\{\sigma_{0}, o\right\}, l, j ;\{s, s\} s, \lambda>.
$$

We did not indicate the dependence of the ket on the left hand side of the last equation on $\sigma_{0}$, because $\sigma-j_{0}=\sigma_{0}$ is always satisfied. The introduction of labels $\left\{\sigma_{0}, 0\right\} \quad\{s, s\}$ instead of $\left\{\sigma, j_{0}\right\}$ corresponds to the splitting of the generators of $\mathrm{SL}(2, C)$ into two parts

$$
\begin{equation*}
M_{\mu \nu}=L_{\mu \nu}+s_{\mu \nu} \tag{141}
\end{equation*}
$$

Since the effect of the two $\mathrm{SL}(2, C)$ groups can be defined independently for the states in question,

$$
\left[L_{\mu \nu}, s_{\rho k}\right]=0
$$

is satisfied in the subspace in consideration.
A natural way of extending $\mathrm{SL}(2, C)$ symmetry is to assume that the operators $S_{\mu \nu}$ commute with $T(0)$ as well, thus Regge poles are calssified according to the representations of $S L(2, C)_{L} \otimes S L(2, C)_{S}$.

Assuming the existence of one $\sigma_{0}$ pole, expansion $/ 3 /$ will take the form

$$
\begin{align*}
& \left\langle\mathrm{p}^{\prime} ; \mathrm{s}_{2}, \lambda_{2} ; s_{4}, \lambda_{4}\right| \mathrm{T}(0)\left|\mathrm{p} ; \mathrm{s}_{1}, \lambda_{1} ; \mathrm{s}_{3}, \lambda_{3}\right\rangle \\
& =\left\langle\bar{p}^{\prime} ; s_{2}, \lambda_{2} ; s_{4}, \lambda_{4}\right|\left\{\sigma_{0}, 0\right\}, 0,0 ;\{s, s\} s \lambda^{\prime}>D_{0000}^{\sigma_{00}}\left(\mathrm{~g},-1_{\mathrm{g}}\right) \\
& D_{s i s \lambda}^{\mathbf{s s}},\left(g^{\prime-1} g\right)_{\sigma} \quad \lim \left(\bar{\sigma}_{o}-\sigma_{o}\right) T^{\bar{\sigma}_{0}, s} \\
& <\left\{\sigma_{0}, 0\right\}, 0,0 ;\{s, s\}, s, \lambda\left|\bar{p} ; s_{1}, \lambda_{1} ; s_{3}, \lambda_{3}\right\rangle+\ldots
\end{align*}
$$

All the poles are now labelled by $\sigma$ and $s$. It is clear that one $\sigma_{0}$ pole with given s will correspond to a series of $\sigma$ poles with given
jo values and vica versa. More precisely a pole at $\left\{\sigma_{0}, 0\right\},\{s, s\}$ gives usual Lorentz-poles at

$$
\left\{\sigma, j_{0}\right\}=\left\{\sigma_{0}+s, s\right\},\left\{\sigma_{0}+s-1, s-1\right\}, \ldots\left\{\sigma_{0}^{-s,-s\}} .\right.
$$

Itt follows that with the exception of the trivial $s=0$ case the leading trajectory ( $\sigma=, \sigma_{0}+s$ ) has jo $=s \neq 0$. On the other hand, we know that leading boson trajectories are coupled to two pseudoscalar boson systems, so they have $j_{0}=0$. This observation requires a slight generalization of our symmetry scheme by allowing representations different from $\{\mathrm{s}, \pm \mathrm{s}\}$ for $\mathrm{SL}(2, \mathrm{C})_{\mathrm{S}}$. Then if we choose a representation of the type ' $\{\mathrm{S}$, o\} the leading Lorentz trajectory will have quantum numbers $\left\{\sigma_{0}+\mathrm{S}, \mathrm{o}\right\}$. However, a representation of $\mathrm{SL}(2, \mathrm{C})_{\mathrm{s}}$, which is not of the Weinberg-type [6] cannot realize on physical two-particle states. This can be prooved very easily by taking into account parity conservation. A state $\left|\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s, \lambda\right\rangle s_{1} \neq 0, s_{2} \neq 0$ has parity $n(-1)^{s}$ by construction, where $n$ is some internal parity independent of $s$ and $\lambda$. On the other hand, states $|s, \lambda\rangle$ constructed from a given pair of particles at rest have parity $n$ independently of $s$ and $\lambda$. Degenerate parity doublets allow the construction of representations of the above type, e.g. the system of zero mass fermions /quarks or baryons/ can be classified according to such representations of $\mathrm{SL}(2, \mathrm{C})_{S}$. Because of universality, we may assume that all Regge-poles are classified by the above group, while Reggevertices which depend on the nature of external particles are not invariant under $\operatorname{sL}(2, C)_{S}$ transformations. Of course the $S L(2, C)_{M}$ classification of vertices remaing valid. When we go over to scattered particles of finite mass /from scattered particlea of zero mass/ the parity degeneracy will be resolved and the non-compact generators of sL $(2, c)_{S}$ cannot be defined any more /they do not commute with parity/. Nevertheless, generators belonging to the maximal compact subgroup $\mathrm{SU}(2)_{\mathrm{S}}$ remain well-defined. So we can accept for particles of finite mass as approximate symmetry SL $(2, C)_{L}$ - SL $(2, C)_{S}$ for the Regee-trajectories and $S L(2, C)_{M}$ or $\mathrm{Su}{ }^{(2)} \mathrm{L}^{\circ}$ - SU(2) for the Regge-vertices,

As an illustration we may consider the pseudovector representation of $\mathrm{SL}(2, C)_{S}$
P $\left|\left\{\sigma_{0}, 0\right\}, 0,0 ;\{1,0\}, s, \lambda\right\rangle=-(-1)^{s} \mid\left\{\sigma_{0}, 0\right\} 0,0 ;\{1,0\}, 0,0>$.

The three states corresponding to $s=1$ can be constructed from a NN two particle state, unlike the state $s=0$. The three $s=1$ states are linear combinations of the states appearing in the $f_{0}, f_{1}$ and $f_{22}$ helicity amplitudes [7], in NN scattering. A pole in the $\sigma_{o}$ plane corresponds to the following poles in the $\sigma$ plane

$$
\left\{\sigma_{0}, 0\right\} \oplus\{1,0\}=\left\{\sigma_{0}+1,0\right\} \oplus\left\{\sigma_{0}, 1\right\} \oplus\left\{\sigma_{0},-1\right\} \oplus\left\{\sigma_{0}-1,0\right\}
$$

All the poles are coupled to the $s=1$ states, which are physically realizable. If pions are coupled at zero momentum transfer, they are in the $\left\{\sigma_{0}, \pm 1\right\}$ representation. Then the $\left\{\sigma_{0}+1,0\right\}$ representation corresponds to $A_{1}$ mesons. In exact $S L(2, C) L_{L}$ SL $(2, C) S_{S}$ symmetry limit their distance in the $\sigma$ plane is exactly unity. The possible symmetry breaking mechanism will be discussed in section 3. If $\mathrm{Su}(2)_{\mathrm{S}}$ remains a good symmetry in the vertex functions, the ratio of the coupling of different Lorentz-poles is given slmply by the Clebsch - Gordan coefficienta of the Lorentz-group. It is worth while to remark that in our scheme conspiracies of the II. and III, caass [7] appear necessarily together.

Since mesons are coupled to two pseudoscalar mesons at zero momentum transfer, the $\rho$-trafectory family has $j_{0}=0$. Probably it is the leading family of a $S L(2, C)_{S}$ multiplet. If we try to find some trace of $\operatorname{SU}(6)$ symmetry /as we shall see later/ we have to put the $\rho$-family into a vector representation of $S L(2, C)_{S}$, for which

$$
P\left|\left\{\sigma_{0}, 0\right\}, 0,0 ;\{1,0\} . s, \lambda>=(-1)^{s}\right|\left\{\sigma_{0}, 0\right\}, 0,0 ;\{1,0\}, s, \lambda>
$$

Only the $s=0$ state is coupled to the NN system/this is the fil helici ity state/. The $s=0$ system is coupled to the $\left\{\sigma_{0}+1,0\right\}$ and $\left\{\sigma_{0}-1,0\right\}$ families only. In the framework of the $\operatorname{SL}(2, C)_{L} \operatorname{SL}(2, C)_{S}$ symmetry $\rho$-meson and pions are always in different multiplets/their G-parity is different, but $G$ commutes with $S L(2, C)_{S}$ generators/.

## 2. The Inclusion of Internai Symmetries

If we consider the scattering of zero mass quarks or baryons, we can define easily $S L(6, C)_{S}$ transformations /one may think about an $U(6,6)_{S}$ extension of this group/, which commute with $S L(2, c)_{L}$ by construction. In this case we obtain a minimal trajectory generating algebra $S L(2, C)_{L} \otimes S L(6, C)_{S}$. [8]. This algebra is ninimal in the following sensc: if $T(0)$ commutes with $S L(2, C) G_{S} \otimes$, where $G_{S}$ is a subalgebra of $S L(6, C)_{S}, G_{s}$ contains at least one operator linearly independent of the generators of $S L(2, C)_{S}$ and $S U(3)$, the internal symmetry group, then $S L(2, C)_{L} \otimes S L(6, C)_{S}$ will commute with $T(0)$ as well. This statement is a simple consequence of the equations

$$
\begin{aligned}
& {\left[T(0), M_{\mu \nu}\right]=0} \\
& {\left[T(0), T^{A}\right]=0}
\end{aligned}
$$

and the Jacobi-identity for double commutators of the type $\left[T(0),\left[M_{\mu \nu}, G_{s}\right]\right.$ |. and $\left[T(0),\left[T^{A}, G_{B}\right]\right]$, where $T^{A}$ are the generators of $\mathrm{su}(3)$.

For particles of finite mass the parity degeneracy is resolved, so the maximal symmetry for the vertices will be the maximal compact subgroup of $\mathrm{SL}(2, \mathrm{C})_{\mathrm{L}} \oplus \mathrm{SL}(6, \mathrm{c})_{\mathrm{S}} \quad: \quad \mathrm{SU}(2)_{\mathrm{L}} \oplus \mathrm{SU}(6)_{\mathrm{S}} \quad$ /which commutes with the parity operatorl/.

The trajectories, however, will be classified by the $T G R$ SL $(2, C)_{L}$ • $\operatorname{SL}(6, C) S_{S}$ As evident from the above discussion, non-unitary representations realize for both commuting subalgebras: These are infinite-dimensional "self-adjoint" $J_{O}=0 /$ for $\operatorname{SL}(2, C)_{L}$ and finite-dimensional for $\operatorname{SL}(6, C)_{S}$

First we shall consider mesons. They are probably in a $(6, \overline{6})$ /quarkantiquark/. representation of $\mathrm{SL}(\mathrm{J}, \mathrm{C})_{\mathrm{S}}$. The $(6, \overline{6})$ representation goes over to ( $\overline{6}, 6$ ) under space reflection, thus, parity eigenstates can be constructed from the linear combination of these representations $(6, \bar{\sigma})^{ \pm}$ Trajectory families corresponding to positive and negative parity combinations will conspire with each other just like scalar and pseudoscalar trafectories in a $j_{0}=1$ representation in usual $S L(2, c)_{M}$. This fact is a simple consequence of the equality
$(\langle\langle, \overline{6}|+\langle\overline{6}, 6|) \mathrm{T}(|\overline{6}, \overline{6}\rangle+|\overline{6}, 6\rangle)=(\langle 6, \overline{6}|-\langle\overline{6}, 6|) \mathrm{T}(|6, \overline{6}\rangle-|\overline{6}, 6\rangle)=$ $=T^{(6, \overline{6})}+T^{(\overline{6}, 6)}$.
For determining the appearing $\mathrm{SL}(2, \mathrm{c})_{\mathrm{M}}$ families, we reduce first the $\mathrm{SL}(6, \mathrm{C})_{S}$ representations to $\mathrm{SL}(2, C)_{S} \otimes \operatorname{SU}(3)$, then add the $\mathrm{SL}(2, \mathrm{C})_{S}$ to the $\mathrm{SL}(2, \mathrm{c})_{\text {I }}$ representations to give
$\left\{\sigma_{0,0},(6, \overline{6})^{ \pm}=\left\{\sigma_{0}+1,0:\right\}_{8}^{ \pm} \cdot\left\{\sigma_{0}+1,0\right\}_{1}^{ \pm} \bullet\left\{\sigma_{0}, 1\right\}_{8}^{ \pm}\right.$

- $\left\{\sigma_{0},-1\right\}_{8}^{ \pm} \oplus\left\{\sigma_{0}, 1\right\}_{1}^{ \pm} \oplus\left\{\sigma_{0},-1\right\}_{1}^{ \pm} \oplus\left\{\sigma_{0}-1,1\right\}_{8}^{ \pm} \oplus\left\{\sigma_{0}-1,-1\right\}_{1}^{ \pm}$ where we denoted the representations of $\operatorname{SL}(2, C)_{M}$ © SU(3) by $\left\{\sigma, j_{0}\right\}_{n}^{\tau}$ where $n$ is the dimension of the $\operatorname{SU}(3)$ representation and the $\tau$ sign refers to the internal parity. The representations with different $\tau$ are of different C-parity /or G-parity/ as well. If the vector meson nonet is identified as $\left\{\sigma_{0}+1,0\right\}_{8}^{+}$and $\left\{\sigma_{0}+1,0\right\}_{1}^{+}$/so the $\sigma_{0}$ signature is even/, then $\left\{\sigma_{0}+1,0\right\}_{0}^{-}$and $\left\{\sigma_{0}+1,0\right\}_{8}^{\circ}$ give an axial-vector meson family
nonet, $\left\{\sigma_{0} ; \pm 1\right\}_{8}^{-}$and $\left\{\sigma_{0}, \pm 1\right\}_{1}^{-} \quad$ conspiring scalar and pseudoscalar meson nonets, $\left\{\sigma_{0}, \pm_{1}\right\}_{8}^{+^{\prime}}$ and $\left\{\sigma_{0}, \pm\right\}_{1}^{+}$conspiring scalar and pseudoscalar nonets of opposite G-parity, and some even lower lying vector and pseudovector nonet families.

Since the Lorentz quantum numbers of the $\rho$-meson and pion trajectory families are $\sigma_{\rho} \simeq 0,54$ and $\sigma_{I I} \simeq-0,02$, respectively, their difference is less than unity, thus the $S L(6, C)_{S}$ symmetry must be broken even for the trajectories.

The vertices are invariant only under $\mathrm{SU}(6)_{\mathrm{S}}$. If we decompose the $(6, \overline{6})$ representation into $\mathrm{SU}(6)_{\mathrm{S}}$ representations of definite parity we obtain

$$
(6, \overline{6})^{+} \oplus(6, \overline{6})^{-}=\underline{35}^{+} \oplus \underline{35^{-}} \oplus \underline{1}^{+} \oplus \underline{1}^{-} .
$$

A 35 representation of definite parity is composed from both representations of definite parity. Only the states of positive parity are coupled to BB systems.

By coupling the positive and negative energy baryons at rest, we obtain the $\mathrm{su}(6)$ representations $56 \cdot \underline{56}=\underline{1} \cdot \underline{35} 405 \cdot 2695$. Representations 1 and 35 give a projection to the $(6, \overline{6})$ representation. The elements of the above su(6) representations will be the different helicity states. In contrast with static su (6) , pseudoscalar meson pairs are coupled to the $\rho$-trajectory. The two-meson system contains the 35 representation of $\mathrm{SU}(6)_{\mathrm{S}}$ and the $\rho$-trajectory is coupled only to the

$$
s=0 \quad \text { state }\left(j_{0}=01\right)
$$

As far as the baryons are concerned, they can be put into /56,1/ and/1,56/ representations of $\mathrm{SL}(6, \mathrm{C})_{\mathrm{S}}$. Then we get the following $\mathrm{SL}(2, \mathrm{C})_{\mathrm{M}}$ families

$$
\begin{aligned}
& \left\{\sigma_{0}, 0\right\} \oplus[(56,1) \oplus(1,56)]=\left\{\sigma_{0}+\frac{3}{2},+\frac{3}{2}\right\}_{10} \oplus\left\{\sigma_{0}+\frac{3}{2},-\frac{3}{2}\right\}_{10} \\
& \oplus\left\{\sigma_{0}+\frac{1}{2}, \frac{1}{2}\right\}_{10} \oplus\left\{\sigma_{0}+\frac{1}{2},-\frac{1}{2}\right\}{ }_{10} \oplus\left\{\sigma_{0}-\frac{1}{2},+\frac{1}{2}\right\}_{10} \oplus\left\{\sigma_{0}-\frac{1}{2},-\frac{1}{2}\right\}_{10} \\
& \oplus\left\{\sigma_{0}-\frac{3}{2}, \frac{3}{2}\right\}_{10} \oplus\left\{\sigma_{0}-\frac{3}{2},-\frac{3}{2}\right\}_{10} \oplus\left\{\sigma_{0}+\frac{1}{2}, \frac{1}{2}\right\}{ }_{8} \oplus\left\{0_{0}+\frac{1}{2},-\frac{1}{2}\right\}_{8} \\
& \left\{\sigma_{0}-\frac{1}{2}, \frac{1}{2}\right\}_{8} \oplus\left\{\sigma_{0}-\frac{1}{2},-\frac{1}{2}\right\}{ }_{8} .
\end{aligned}
$$

Our notations are similar to those used for the description of boson trajectory families. The representations $\left\{\sigma_{0}+\frac{3}{2}, \pm \frac{3}{2}\right\}{ }_{10}$ and $\left\{\sigma_{0}+\frac{1}{2}, \pm \frac{1}{2}\right\} 8$ can be identified as the known decuplet and octet trajectory families [9,10,11].

An interesting consequence of this classification scheme is that the $\Delta$ family has quantum number $\left|j_{0}\right|=\frac{3}{2}$, which forbids its coupling to the in system in the symmetry limit. However, even $S L(2, C)_{M}$ is broken for the $\Delta$ residues due to unequal masses. Another consequence of this classification is that the $\Delta$ trafectory functions $\alpha_{\Delta}(w)$ cannot r-ve a linear term in their Taylor-expansion [9,10], a fact, which was observed in various experimental fits [11,12].

If the $\operatorname{SL}(6, C)_{S}$ symmetry were valid at non-zero momentum transfer, then at the point $\sigma_{0}=0$-as easy to check from the Clebsch - Gordan coefficients all representations but $\left\{\sigma_{0}+\frac{3}{2}, \pm \frac{3}{2}\right\}_{10}$ and $\left\{\sigma_{0}+\frac{1}{2}, \pm \frac{1}{2}\right\}_{8}$ would decouple, that is to say, we would get back the muitiplets (and their parity partner) belonging to the usual 56 representation of $\mathrm{su}(6)$. The coupling of Lorentz-pcles to different two-particle states can be given most easily by writing down the contribution of a $\operatorname{SL}(2, C)_{L} \otimes S L(6, C)_{S}$ pole to the scattering amplitude of particles $\alpha$ and $\beta$ going over to particles $\gamma$ and $\delta$, as

$$
\left\langle\mathrm{p}^{\prime} ; \mathrm{s}^{\prime}, \lambda^{\prime} ; \mathrm{A}\right| \mathrm{T}|\mathrm{p} \quad \mathrm{~s}, \lambda ; \mathrm{A}\rangle=
$$

$$
\begin{gather*}
=\sum_{B, B^{\prime}, \sigma, j_{0}}\left\langle\overline{p^{\prime}} ; s^{\prime}, \lambda^{\prime}, A\right|\left\{\sigma_{0}, 0\right\}, 0,0 ; B^{\prime}, s^{\prime}, \lambda^{\prime}, A>f\left(B^{\prime}\right)  \tag{171}\\
\quad<B^{\prime}, s^{\prime}, \lambda^{\prime}, A \mid C,\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s^{\prime}, \lambda^{\prime}, A>
\end{gather*}
$$

$$
\begin{gathered}
<B^{\prime}, s^{\prime}, \lambda^{\prime}, A \mid C,\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s^{\prime}, \lambda^{\prime}, A> \\
<\left\{\sigma_{0}, 0\right\}, 0, O ; C,\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s^{\prime}, \lambda^{\prime}, A \mid\left\{\sigma, j_{0}\right\}, s^{\prime}, \lambda^{\prime} ; A>D_{s \lambda s^{\prime} \lambda^{\prime}}^{\sigma j_{0}}\left(g^{\prime-1} g\right) \\
<\left\{\sigma, j_{O}\right\}, s, \lambda, A \mid\left\{\sigma_{0}, O\right\}, O, O ; C,\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s, \lambda, A>
\end{gathered}
$$

$<c,\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s, \lambda, A|B, s, \lambda, A\rangle f(B)\left\langle\left\{\sigma_{0}, O\right\}, O, O ; B, s, \lambda, A \mid \bar{p} ; s_{q} \lambda ; A\right\rangle$.

In eq. 7 we used the following notations: A stands for the $\operatorname{su}(3)$ quantum numbers (Casimir-operators and sub-quantum numbers $y, I, I_{3}$ ). B, B' and C denote the $S U(6)_{S}$ and $S L(6, C)_{S}$ representations in question, respectively.

The first and last brackets under the sum in eq. 7 are the products of transition matrix elements $\left\langle\left\{\sigma_{0}, 0\right\}, 0,0 \mid \bar{p}\right\rangle=\frac{\sigma_{0}+1}{2 \pi}$ and Clebsch - Gordan coefficients of $\mathrm{SU}(6)_{\mathrm{S}}$
$\langle\mathrm{B}, \mathrm{s}, \lambda, \mathrm{A} \mid \alpha \bar{\gamma} ; \mathrm{s}, \lambda, \mathrm{A}\rangle$ )
$f(B)$ is the reduced vertex function.
The second brackets towards the centre of the expression on the r.h.s. of eq. 7 are the transition matrix elements from $S U(6)_{S}$ representations $B$ and $B$, to $S L(6, C)_{S}$ representation $C$. The brackets next to the function $D_{s \lambda S^{\prime} \lambda}^{\sigma j_{0}}$ are the products of transition matrix elements from $S L(6, C)_{S}$ to $S L(2, C)_{S}$. SU(3)representations and Glebsch-Gordan coefficients of the Lorentz- Group.

$$
<\left\{\sigma_{0}, 0\right\}, 0,0 ;\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s, \lambda\left|\left\{\sigma, j_{0}\right\}, s, \lambda\right\rangle
$$

Using the known expressions for the above matrix elements we obtain

$$
\begin{align*}
& \left\langle\mathrm{p}^{\prime} ; \mathrm{s}^{\prime}, \lambda^{\prime} ; \mathrm{A}\right| \mathrm{T}|\mathrm{p} ; \mathrm{s}, \lambda ; \mathrm{A}\rangle \\
& =\frac{1}{(2 \pi)^{2}} \sum_{B, B^{\prime}, \sigma, j_{o}}\left(\sigma_{O}+1\right)\left(2 s_{1}+1\right)\left(2 s_{2}+1\right)\left[(\sigma+1)^{2}-j_{o}^{2}\right] f\left(B^{\prime}\right) \cdot f(B) \\
& \left\langle\bar{B} \delta ; s^{\prime}, \lambda^{\prime} ; \mathrm{A} \mid \mathrm{B}^{\prime}, \mathrm{s}^{\prime}, \lambda^{\prime}, \mathrm{A}\right\rangle\langle\mathrm{B}, \mathrm{~s}, \lambda, \mathrm{~A} \mid \alpha \bar{\gamma} ; \mathbf{s}, \lambda ; \mathrm{A}\rangle \tag{181}
\end{align*}
$$

where we expressed the Clebsch - Gordan coefficients of the Lorentz-Group by $6 j$ coefficients [13].

## 3. Symmetry breaking

As we have seen, the $S L(6, C)_{S}$ symmetry of Regge trajectory families is broken. First we shall consider the symmetry breaking mechanism for the $S L(2, C)_{L} \otimes S L(2, C)_{S}$ group. Since the symmetry breaking operator has to be invariant under $S L(2, C)_{M}$, the most general form of a symmetry breaking operator is

$$
\begin{equation*}
T^{\prime}=\sum_{\sigma j_{0} j_{m}} C_{\sigma, j_{0}} T_{S ; j, m}^{\left\{\sigma, j_{0}\right\}} \quad T_{L ; j, m}^{\left\{\sigma, j_{0}\right\}} \tag{191}
\end{equation*}
$$


scalar operator under $S L(2, C)_{S}$ and a tensor operator of representation $\left\{\sigma, j_{0}\right\}$ under $S L(2, C)_{L}$. Since the realized $\mathrm{SL}(2, C)_{S}$ representations are of finite dimension, only few terms of sum 9. will give a contribution to a matrix element of the type

$$
\begin{aligned}
& \left\langle\left\{0, j_{o}\right\}, j, m\right| T r \mid\left\{\sigma, j_{o}\right\}, j, m>= \\
& =\sum_{\ell, \mu, s, \lambda, \ell^{\prime}, \mu^{\prime}, s^{\prime}, \lambda^{\prime}}<\left\{\sigma, j_{0}\right\}, j, \dot{m} \mid\left\{\sigma_{0}, 0\right\}, \ell^{\prime}, \mu^{\prime} ;\left\{s_{l^{\prime}}+s_{2}, s_{s^{\prime}}-s_{2}\right\}, s^{\prime}, \lambda^{\prime}> \\
& \left.<\left\{\sigma_{0}, 0\right\}, \ell^{\prime}, \mu^{\prime} ;\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s^{\prime}, \lambda^{\prime}\left|T^{\prime}\right|\left\{\sigma_{0}, 0\right\}, \ell, \mu ;\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s, \lambda\right\rangle \\
& <\left\{\sigma_{0}, 0\right\}, \ell, \mu ; \quad\left\{s_{1}+s_{2}, s_{1}-s_{2}\right\}, s, \lambda \mid\left\{\sigma, j_{0}\right\}, j, m>\text {. }
\end{aligned}
$$

The first order perturbation to the Lorentz-poles is given by the expression [9,10]

$$
\sigma^{\prime}=\sigma+\alpha<\left\{\sigma, j_{0}\right\}, j, m\left|T^{\prime}\right|\left\{\sigma, j_{0}\right\} ; j, m>.
$$

Using equations 9. and 10, we can obtain for $\sigma^{\prime}$ in a straightforward way

$$
\sigma^{\prime}=\sigma+\sum_{N, M} \bar{C}_{N, M} \tau_{\sigma}\left\{\begin{array}{lll}
\sigma_{0 / 2} & \frac{N+M}{2} & \sigma_{0 / 2} \\
s_{1} & \frac{\sigma^{+} j_{0}}{2} & s_{1}
\end{array}\right\} \quad\left\{\begin{array}{ccc}
\sigma_{0 / 2} & \frac{N-M}{2} & \sigma_{0 / 2} \\
s_{2} & \frac{\sigma-j_{0}}{2} & s_{2}
\end{array}\right\}
$$

where the constants $\overline{\mathrm{C}}_{\mathrm{N}, \mathrm{M}}$ give the weight of the representation $\{\mathrm{N}, \mathrm{M}\}$ in the perturbation operator, $\tau_{\sigma}$ is the signature of the pole in question. E.g. a $\sigma_{\mu \nu} p_{\mu} p^{\prime}{ }_{\nu}$ type coupling of $S L(2, C)_{L}$ and $S L(2, C)_{S}$ corresponds to the $\{1, \pm 1\}$ representations of the perturbation. If one assumes the presence of only wne irreducible representation in the perturbation operator, one can get useful relations among the perturbed $\sigma$ values of a $\mathrm{SL}(2, \mathrm{C})_{\mathrm{S}}$ multiplet.

In the framework of the $\mathrm{SL}(6, \mathrm{C})_{\mathrm{S}}$ symmetry we can construct at first operators which break SL $(6, C)_{S}$ but commute with SL $(2, C)_{S}$. The degeneracy between the $(6, \bar{\sigma})^{+}$and $(6, \overline{6})^{-}$representations can be resolved by a (21,21) type two-quark - two-antiquark perturbation, which contains the scalar representation of $\operatorname{SL}(2, C) \oplus \operatorname{SU}(3)$ and gives a transition between $(6, \overline{6})$ and $(\overline{6}, 6)$
If we want to break $S L(2, C)_{S}$ as well, we can put the symmetry breaking operator into simple representations of $\mathrm{SL}(6, \mathrm{C})_{\mathrm{S}}$, e.g. $(35,1)$, from which we may project out $\mathrm{SU}(3)$ singulet representations and couple with an identical $S L(2, C)_{L}$ representation to give a $S L(2, C)_{M}$ scalar.

## 4. Discussion

The application of the above described symmetry scheme to actual processes will be discussed in a forthcoming paper. We hope to extend our considerations to non-vanishing momentum-transfer [9,10] as well. For non-vanishing momentum transfer, in the C.M.S. of the $t$ channel we hope to classify trajectories according to the representations of $\mathrm{SU}(2)_{\mathrm{L}}$ © $\mathrm{SU}(6)_{\mathrm{g}}$, the maximal compact subgroup of our TGR, just like in the case of TGR $S L(2, C)_{M}$, when at non-zero momentum transfer the remaining symmetry was the maximal compact subgroup of the TGR, $\mathrm{SU}(2)_{M}$.

We mention that Salam et al. [14] tired to extend $\mathrm{SL}(2, \mathrm{C})_{M}$ symmetry in an entirely different manner by embedding $S L(2, C)_{M}$ in a higher group , $\operatorname{SL}(6, C)_{M}$ and continuing some of the Casimir operators of the latter to complex values.

The author is indebted to Drs. A. Frenkel, A. Sebestyén, K. Szeǧ and K. Tóth for valuable discussions.

## References

[1] G. Domokos and P. Surányi:Nucl.Phys: 54, 529/1964/
[2] M. Toller: Nuovo Cim. 53, 671 /1968/ /This paper contains references of earlier works/.
[3] D.Z. Freedman and J.M. Wang: Phys.Rev. 153, 1596/1967/
[4] G. Domokos: Phys.Rev. 159, 1387 /1967/
[5] The definition of our notations can be found in $G$. Domokos and G. L. Tindle: Phys.Rev. 165, 1906 /1968/
[6] S. Weinberg: Phys.Rev. 134, B 1318 /1964/
[7] D.Z. Freediman and J.M. Wang: Phys.Rev. 160, 1560/1967/
[8] This algebra was considered as a symmetry algebra/unlike in our case, where it is a TGR/ by C. FronsdalsHigh Energy Physics and Flementary Particles, IAFA, Vienna, 1965.
[9] G. Domokos and P. Surányi: KFKI preprint $1968 / 3$ and Nuovo Cim. to be published
[10] G. Domokos and P. Surányi: KFKI preprint 1968/4 and Nuovo Cim. to be published
[11] G. Domokos, S. Kövesi-Domokos, and P. Surányi: Nuovo Cim. 56, 233 /1968/
[12] Y. Noirot, M. Rimpoult and Y. Saillard: Bordeaux preprint PIB-28 /1967/
[13] A.R. Edmonds: Angular Momentum in Quantum Mechanics, Princeton University Press, 1957
[14] R. Delbourgo, A. Salam and J. Strathdee: ICTP preprint IC/68/14.

