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A METHOD FOR CONSTRUCTING CERTAIN 
AXIALLY SYMMETRICAL EINSTEIN-MAXWELL FIELDS

Z. Perjés
Central Research Institute for Physics, Budapest,

Hungary

It is shown that the existing cylindrical static electric and 
magnetic fields are in a certain linear connection, simplifying the field 
equations. Furthermore a method is given to translate results of the 
cylindrical static Einstein-Maxwell theory to the cylindrical stationary 
free gravitational case and inversely. As an example of the use of this 
method, the gravitational field of a magnetic dipole is obtained from the 
Kerr metric.

The Einstein-Maxwell equations of interacting gravitational and
electromagnetic fields

и uRv = -KTv (K > o) ;
M ua , , . u aßTv = -F Fva + (1/4)6VF Faß ;

1/2 laj _
MV = A4M - A M у

111 
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permit to reduce the static cylindrical line element to the form
ds = [ dp2 + dz2j  _ e - v f c , z ) p , d^ 2 + e vd t 2  _ |41

By adding a gradient field to the electromagnetic potential vector, we may 
put; A = (0,0,ф,ф) . The field variables depend on К 1 = p and x2 = z 
The Maxwell equations /3/ allow us the following substitution: Гlj

Ф e V/ p = Ф ; ф е %  = -Ф 1 2 2 1
/Here and in what follows, lower indices denote partial derivatives /. In terms 
of this new potential /3/ may be written:
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ДФ = V ,

ДФ = vi^i .
i = 1,2.

Here A denotes the Laplace operator in cylindrical coordinate system:
Af = f., + fl/pjf , and the summation convention holds for i . We shall

11 1 34 34use the equation obtained from R =- < T :
ф Ф = Ф ф I 6 1
1 2  2 1

G. Tauber [1] found some exact solutions of the cylindrical static field 
equations with nonvanishing Ф and ф . These solutions have the property 
Ф = А ф + В /А,В being real constants./ Now we shall prove the following

Theorem: There exist only such static cylindrical electromagnetic 
fields for which

Ф = Аф + В I 71

holds. The ф = О case corresponds to A=B=0, the ф =О case to the limit
A oo . . .

It is clear that this theorem imposes a strong restriction on the 
shape of the static cylindrical electromagnetic fields. A further consequence 
of the theorem is that the relevant field equations can always be reduced to 
the ф = О special form.

Proof: The meaning of equ. /6/ is that /5/, regarded as an inhomo
geneous linear algebraic system for ; is singular. So the relations

Ф±ДФ = Ф ̂ Дф hold, from which, by using partial derivatives of equ. /6/ 
we get:

(ф Ф - ф Ф ) ф2 = О ; 111 111 x
(Ф Ф2

Ф2 2
Ф )ф2= О . 2 1

|e|

The = О case corresponds to the absence of the electromagnetic field
/See equ. /6//, and if we take ф2 $ 0 , we arrive at the theorem by simple 
integration.

Applying this result to the field equations, we have:

Av = * (e V IP2) Ф2 ,
г. v , . , |9 |I (e )ф il i _ 0 •

where K = к (l+д 2) . Now we see that the generalization from the ф = о case 
/when only the magnetic field is present/ to ф f 0 causes only the change
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к ■*- к ' irr these equations. The remaining field equations yield X by means 
of simple line integrals. A more interesting relation will be established 
between the axially symmetrical static and stationary fields in our second

Theorem; A change in the sign of the gravitational constant < 
causes that the cylindrical static Einstein-Maxwell field problem goes over 
to a source-free cylindrical stationary gravitational field one; the inverse 
statement holds too with nonphysical sign of the gravitational constant.

In order to prove this theorem, we remark that the most general 
source-free stationary cylindrical metric may be written [2] , [3] :

ds2 = -ep (p ,z) I dp2 + dz2] -p2v(p,z)d/ + (1/v/ [dt - w(p, z/dy] 2. | lo |

The gravitational equations read now:

vAv - v2 - (1 /p2) w2 = 0 ,

v ĵ Aw - (2 /p) wj -2v±w ОII■H

U = (1/2 p v 2) Гр2 (v2 - v2/- (w2- w 2)j + V /v
1 L 1 2 1 2 J 1

У = 2 ( l / p v 2)[p 2v v - 1 1 2
W  W  1 + V /V .1 2J 2

1/2For R = ( p 2 + Z2 ) ' — 00 the conditions of asymptotical flatness aresv^l,
w-Ю, р-Ю . The substitution

v = -21nv ; ф = - \f -2 / к w ; Л = 4pi — 21nv |12|
with < < 0 brings /11/ to the form /9/. The asymptotic conditions become: 
X»v,<J>,-* 0 for R ' °° . The space is asymptotically flat with vanishing
electromagnetic field at the infinity.

The physical background of the theorem proved now is obscure; 
nevertheless, by means of it we can translate results in the static, electro
magnetic aspect to the free stationary case and vica versa. We mention that 
this procedure sometimes fails. This happens whenever the change in Sign(</ 
excludes the nontrivial solutions. E.g., as it is easily seen, the solutions 
of Weyl, having the property [4]

eV = ( к/ 2) ф2 + A \ p  +  1 I 13 I

and the vacuum stationary metrics of Papapetrou [5] go into each other when 
applying to them our procedure; but no corresponding solution belongs to 
the special form of the Weyl metrics, for which /13/ is assumed to have the 
form [6] : eV = (V*/2 ф - l)2.
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As a first application of the theorem, we shall construct the field 
which corresponds to the Kerr metric. We remark that the only known cylind
rical stationary vacuum solutions are the Kerr metric [7] and the solutions 
of Papapetrou |5] .

Our starting point is the line element found by R. Kerr: 

ds2 = - (r2 + a2cos20)(d02 + sin20dy2)- 2 fdu + as in2 0< ̂ ) (dy + asin20dyj 4
I 14 I

+ f 1 - -—----- )(du +ii|esin20)2
' r2+a2cos20/

which may be brought to the desired canonical form by means of the transforma
tion

p2 = [(r - m)2 4 a 2- m 2]sin20 ,

z = (r - m )cos0 ,

y' = \f + (a/^a2 - m 2 Jarctg [(r - m) / \ a2- m 2] ,

t = u - r - (2m21 a ) (у ' - у) - 2m ln(p/sin0) .

The field equations /11/ are satisfied by complex a also. In order to make
ф real, we put a -* ia . Using /12/, we get the following metric:

ds2 = -II2 (r2 - a2cos20)2 [4r - m)2 - (a2 4 m 2) j'3 jdr2((r - mj2 - (a2 + m2/y)4d02[
I 16 I

-N'2 ĵ (r - m )2 - (a2 4 m 2) j |r2 - a2cos20|2 sin20dy,2 4 N 2(r2- a 2cos20pdt2 

and magnetic potential
ф = \ 2/ к 2 m á r s i n 2 0 /N

with N = (r-ml2-m2-a2 cos2 0 . In the far-field approximation we have the
field of a magnetic dipole with the momentum 2y/2k am and with a mass 
proportional to m .If m = 0, the space is flat, and we have cylindrical 
coordinates in p and z . For m^O /17/ has singularities at p = 0, 
z = +{a 4m / , which can be interpreted as the location of the magnetic
poles.

This solution may be generalized to have nonvanishing ф ф  by using 
our first theorem. A more detailed analysis of it as well as the results of 
the current work for obtaining further solutions will be published elsewhere.

I 15 I
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