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A METHOD FOR CONSTRUCTING CERTAIN 
AXIALLY SYMMETRICAL EINSTEIN-MAXWELL FIELDS

Z. Perjés
Central Research Institute for Physics, Budapest,

Hungary

It is shown that the existing cylindrical static electric and 
magnetic fields are in a certain linear connection, simplifying the field 
equations. Furthermore a method is given to translate results of the 
cylindrical static Einstein-Maxwell theory to the cylindrical stationary 
free gravitational case and inversely. As an example of the use of this 
method, the gravitational field of a magnetic dipole is obtained from the 
Kerr metric.

The Einstein-Maxwell equations of interacting gravitational and
electromagnetic fields

и uRv = -KTv (K > o) ;
M ua , , . u aßTv = -F Fva + (1/4)6VF Faß ;

1/2 laj _
MV = A4M - A M у

111 
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permit to reduce the static cylindrical line element to the form
ds = [ dp2 + dz2j  _ e - v f c , z ) p , d^ 2 + e vd t 2  _ |41

By adding a gradient field to the electromagnetic potential vector, we may 
put; A = (0,0,ф,ф) . The field variables depend on К 1 = p and x2 = z 
The Maxwell equations /3/ allow us the following substitution: Гlj

Ф e V/ p = Ф ; ф е %  = -Ф 1 2 2 1
/Here and in what follows, lower indices denote partial derivatives /. In terms 
of this new potential /3/ may be written:
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ДФ = V ,

ДФ = vi^i .
i = 1,2.

Here A denotes the Laplace operator in cylindrical coordinate system:
Af = f., + fl/pjf , and the summation convention holds for i . We shall

11 1 34 34use the equation obtained from R =- < T :
ф Ф = Ф ф I 6 1
1 2  2 1

G. Tauber [1] found some exact solutions of the cylindrical static field 
equations with nonvanishing Ф and ф . These solutions have the property 
Ф = А ф + В /А,В being real constants./ Now we shall prove the following

Theorem: There exist only such static cylindrical electromagnetic 
fields for which

Ф = Аф + В I 71

holds. The ф = О case corresponds to A=B=0, the ф =О case to the limit
A oo . . .

It is clear that this theorem imposes a strong restriction on the 
shape of the static cylindrical electromagnetic fields. A further consequence 
of the theorem is that the relevant field equations can always be reduced to 
the ф = О special form.

Proof: The meaning of equ. /6/ is that /5/, regarded as an inhomo­
geneous linear algebraic system for ; is singular. So the relations

Ф±ДФ = Ф ̂ Дф hold, from which, by using partial derivatives of equ. /6/ 
we get:

(ф Ф - ф Ф ) ф2 = О ; 111 111 x
(Ф Ф2

Ф2 2
Ф )ф2= О . 2 1

|e|

The = О case corresponds to the absence of the electromagnetic field
/See equ. /6//, and if we take ф2 $ 0 , we arrive at the theorem by simple 
integration.

Applying this result to the field equations, we have:

Av = * (e V IP2) Ф2 ,
г. v , . , |9 |I (e )ф il i _ 0 •

where K = к (l+д 2) . Now we see that the generalization from the ф = о case 
/when only the magnetic field is present/ to ф f 0 causes only the change
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к ■*- к ' irr these equations. The remaining field equations yield X by means 
of simple line integrals. A more interesting relation will be established 
between the axially symmetrical static and stationary fields in our second

Theorem; A change in the sign of the gravitational constant < 
causes that the cylindrical static Einstein-Maxwell field problem goes over 
to a source-free cylindrical stationary gravitational field one; the inverse 
statement holds too with nonphysical sign of the gravitational constant.

In order to prove this theorem, we remark that the most general 
source-free stationary cylindrical metric may be written [2] , [3] :

ds2 = -ep (p ,z) I dp2 + dz2] -p2v(p,z)d/ + (1/v/ [dt - w(p, z/dy] 2. | lo |

The gravitational equations read now:

vAv - v2 - (1 /p2) w2 = 0 ,

v ĵ Aw - (2 /p) wj -2v±w ОII■H

U = (1/2 p v 2) Гр2 (v2 - v2/- (w2- w 2)j + V /v
1 L 1 2 1 2 J 1

У = 2 ( l / p v 2)[p 2v v - 1 1 2
W  W  1 + V /V .1 2J 2

1/2For R = ( p 2 + Z2 ) ' — 00 the conditions of asymptotical flatness aresv^l,
w-Ю, р-Ю . The substitution

v = -21nv ; ф = - \f -2 / к w ; Л = 4pi — 21nv |12|
with < < 0 brings /11/ to the form /9/. The asymptotic conditions become: 
X»v,<J>,-* 0 for R ' °° . The space is asymptotically flat with vanishing
electromagnetic field at the infinity.

The physical background of the theorem proved now is obscure; 
nevertheless, by means of it we can translate results in the static, electro­
magnetic aspect to the free stationary case and vica versa. We mention that 
this procedure sometimes fails. This happens whenever the change in Sign(</ 
excludes the nontrivial solutions. E.g., as it is easily seen, the solutions 
of Weyl, having the property [4]

eV = ( к/ 2) ф2 + A \ p  +  1 I 13 I

and the vacuum stationary metrics of Papapetrou [5] go into each other when 
applying to them our procedure; but no corresponding solution belongs to 
the special form of the Weyl metrics, for which /13/ is assumed to have the 
form [6] : eV = (V*/2 ф - l)2.
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As a first application of the theorem, we shall construct the field 
which corresponds to the Kerr metric. We remark that the only known cylind­
rical stationary vacuum solutions are the Kerr metric [7] and the solutions 
of Papapetrou |5] .

Our starting point is the line element found by R. Kerr: 

ds2 = - (r2 + a2cos20)(d02 + sin20dy2)- 2 fdu + as in2 0< ̂ ) (dy + asin20dyj 4
I 14 I

+ f 1 - -—----- )(du +ii|esin20)2
' r2+a2cos20/

which may be brought to the desired canonical form by means of the transforma­
tion

p2 = [(r - m)2 4 a 2- m 2]sin20 ,

z = (r - m )cos0 ,

y' = \f + (a/^a2 - m 2 Jarctg [(r - m) / \ a2- m 2] ,

t = u - r - (2m21 a ) (у ' - у) - 2m ln(p/sin0) .

The field equations /11/ are satisfied by complex a also. In order to make
ф real, we put a -* ia . Using /12/, we get the following metric:

ds2 = -II2 (r2 - a2cos20)2 [4r - m)2 - (a2 4 m 2) j'3 jdr2((r - mj2 - (a2 + m2/y)4d02[
I 16 I

-N'2 ĵ (r - m )2 - (a2 4 m 2) j |r2 - a2cos20|2 sin20dy,2 4 N 2(r2- a 2cos20pdt2 

and magnetic potential
ф = \ 2/ к 2 m á r s i n 2 0 /N

with N = (r-ml2-m2-a2 cos2 0 . In the far-field approximation we have the
field of a magnetic dipole with the momentum 2y/2k am and with a mass 
proportional to m .If m = 0, the space is flat, and we have cylindrical 
coordinates in p and z . For m^O /17/ has singularities at p = 0, 
z = +{a 4m / , which can be interpreted as the location of the magnetic
poles.

This solution may be generalized to have nonvanishing ф ф  by using 
our first theorem. A more detailed analysis of it as well as the results of 
the current work for obtaining further solutions will be published elsewhere.

I 15 I
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