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A METHOD FOR CONSTRUCTING CERTAIN
AXTALLY SYMMETRICAL EINSTEIN-MAXWELL FIELDS

Z. Perjés
Central Research Institute for Physics, Budapest,
Hungary

It is shown that the existing cylindrical static electric and
magnetic fields are in a certain linear connection, simplifying the field
equations. Furthermore a method is given to translate results of the
cylindrical static Einstein-Maxwell theory to the cylindrical stationary
free gravitational case and inversely. As an example of the use of this

method, the gravitational field of a magnetic dipole is obtained from the
Kerr metric.

The Einstein-Maxwell equations of interacting gravitational and
electromagnetic fields

n u
Rv = -KTv (K>0) ; m
M ua , . u_aR
Tv = -F  Fva + (174)6VF FaR ; 21
172 la _ _
W= A T Ay 131
permit to reduce the static cylindrical line element to the form
ds = [dp2 + dz2j _e-vfc,z)p,d 2 + evdt2 _ |41

By adding a gradient field to the electromagnetic potential vector, we may
put; A = (0,0,p,0) . The Ffield variables depend on Kl= p and x2 = z
The Maxwell equations /3/ allow us the following substitution: T1j
= - 0 = -
@pr ¢2, mf,b ¢l
/Here and in what follows, lower indices denote partial derivatives /. In terms
of this new potential /3/ may be written:



Ao =V ,

[0 = vi‘i

Here A denotes the Laplace operator in cylindrical coordinate system:

AF = f., + fI/pjf , and the summation convention holds for i . We shall
use the &auation obﬂained from R34 = < T34 :
q)lq; - (qu)l 161

G. Tauber [1] found some exact solutions of the cylindrical static field
equations with nonvanishing ¢ and ¢ . These solutions have the property
® =Ad + B /A,B being real constants./ Now we shall prove the following

Theorem: There exist only such static cylindrical electromagnetic
fields for which

®= Ap + B 171

holds. The ¢ = O case corresponds to A=B=0, the ¢ =0 case to the limit
A ® . .-

It is clear that this theorem iImposes a strong restriction on the
shape of the static cylindrical electromagnetic fields. A further consequence
of the theorem is that the relevant field equations can always be reduced to
the ¢ = O special form.

Proof: The meaning of equ. /6/ is that /5/, regarded as an inhomo-
geneous linear algebraic system for ; Is singular. So the relations
OHld = O N hold, from which, by using partial derivatives of equ. /6/
we get:
@14 - @100 O 5 el
(0 q)z ¢22¢2)¢J2.Z 0 -
The = 0 case corresponds to the absence of the electromagnetic field

/See equ. /6//, and if we take h2 $ 0 , we arrive at the theorem by simple
integration.

Applying this result to the field equations, we have:

Av = *(@VIP)o2 ,
, = 9
& »lli_O- 191

where K =k (I+g 2) . Now we see that the generalization from the ¢ = o case
/when only the magnetic field is present/ to ¢ f O causes only the change



K # K" irr these equations. The remaining field equations yield X by means
of simple line integrals. A more interesting relation will be established
between the axially symmetrical static and stationary fields in our second

Theorem; A change in the sign of the gravitational constant <
causes that the cylindrical static Einstein-Maxwell field problem goes over
to a source-free cylindrical stationary gravitational field one; the inverse
statement holds too with nonphysical sign of the gravitational constant.

In order to prove this theorem, we remark that the most general
source-free stationary cylindrical metric may be written [Z] , [3]

ds2 = -ep (p,2 Wdp2 + dz2] -p2v(p,z)d/ + /V/ [dt - w(p, z/dy] 2. |lo ]

The gravitational equations read now:

VAV - v2 - (1/p2)w2 =0,
VW - @/p) wj —2v1w1 = O

= - - - L+
Ul_ (172 pv2) [p2 (v21 v%/ (w% W%)& Vl/v

= - w w1+ v /v

Y= (1/pv2)fpav v, - WA+ v,
172 o i

For R =(p2+z2) " —® the conditions of asymptotical flatness aresv”/l,

w-0, p-0 . The substitution

v = -21nv ; b = -\F-2/kw ; N = 4g — 21nv 112]

with < <0 brings 711/ to the form /9/. The asymptotic conditions become:
X,<>,-*0 for R" <= . The space is asymptotically flat with vanishing
electromagnetic field at the infinity.

The physical background of the theorem proved now is obscure;
nevertheless, by means of it we can translate results in the static, electro-
magnetic aspect to the free stationary case and vica versa. We mention that
this procedure sometimes fails. This happens whenever the change in Sign(</
excludes the nontrivial solutions. E.g., as it is easily seen, the solutions
of Weyl, having the property []

ev = (K/2)h2 + A\p + 1 113 1

and the vacuum stationary metrics of Papapetrou [5] go into each other when
applying to them our procedure; but no corresponding solution belongs to

the special form of the Weyl metrics, for which /13/ is assumed to have the
form [6] - eV = (V*¥/2 ¢ - 1)2.



As a Tirst application of the theorem, we shall construct the field
which corresponds to the Kerr metric. We remark that the only known cylind-
rical stationary vacuum solutions are the Kerr metric [/] and the solutions
of Papapetrou |5]

Our starting point is the line element found by R. Kerr:

ds2 = - (r2 + a2cos20)(d02 + sin20dy2)- 2fdu + asin2” )(dy + asin20dyj 4
17 |

+ fl - —— )(du +ii]esin20)2
- r2+a2cos20/

which may be brought to the desired canonical form by means of the transforma-

tion
p2 = |[(r- m)2 4 a2- m2]sin20 ,
z = (r- m)cos0O ,
115 |
y* = ¥+(a/”a2 - m2Jdarctg [(r - m) /\a2- m2] ,

t = u-r - @2m2la)y - y) - 2m In(p/sin0)

The Tfieldequations /11/ are satisfied by complex a also. In order to make
dhreal, we put a-= ia .Using 712/, we get the following metric:

ds2 = -112(r2 - a2c0s20)2 [4r - m)2 - (@2 4 m2) J°3 jdr2(r - m2 - (@2 + m2A4dox
ks |

-N"2y@r - m)X - (a2 4 mZ)J |[r2 - a2co0s20]2 sin20dy,2 4 N2(r2- a2cos20pdt2

and magnetic potential

b =\2K 2marsin2O0/N

with N = (r-ml2-m2-a2co0s20 . In the far-field approximation we have the
field of a magnetic dipole with the momentum 2y/2k am and with a mass
proportional to m _If m = 0, the space is flat, and we have cylindrical
coordinates in p and 2z . For m™O /17/ has singularities at p = 0,

z = +{a 4m / , which can be interpreted as the location of the magnetic
poles.

This solution may be generalized to have nonvanishing ¢¢ by using
our Ffirst theorem. A more detailed analysis of it as well as the results of
the current work for obtaining further solutions will be published elsewhere.
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