

55

43-814

TK

KFKI-72-73

- Á. I. Kiss A. Martin
- J. Szőke

QUANTUMSPECTROSCOPY

BA2

Nº 5. Singlet transition energies, MIM wave functions, PPP charge densities and bond orders of the mono- and disubstituted halogenbenzenes

Kungarian Academy of Sciences

CENTRAL RESEARCH INSTITUTE FOR PHYSICS

a summer and

1973 MAJ25

BUDAPEST

QUANTUMSPECTROSCOPY

Papers in this series:

- A.I. Kiss and J. Szőke: Pi-Electron SCF-Mo Calculations for Monosubstituted Derivatives of Benzene Chem. Phys.Lett. <u>11</u>, 52 /1971/ and KFKI-72-1
- A.I.Kiss and J.Szőke: Theoretical Investigation of Electronic Spectra of Monosubstituted Benzene Derivatives Hung.Chim.Acta 1972, 74, 33 and KFKI-72-2
- A.I.Kiss and J.Szőke: Pi-Electron SCF-MO Calculations for Disubstituted Benzene Derivatives Containing Two Donor Groups Part one: Discussion of Results. Submitted to Chem.Phys.Lett., KFKI-72-59
- A.I.Kiss and J.Szőke: Pi-Electron SCF-MO Calculations for Disubstituted Benzene Derivatives Containing Two Donor Groups Part two: Numerical Results of Calculations KFKI-72-58
- A.I.Kiss, A.Martin and J.Szőke: Singlet transition energies, MIM wave functions, PPP charge densities and bond orders of the mono- and disubstituted halogenbenzenes KFKI-72-73

2017

SINGLET TRANSITION ENERGIES, MIM WAVE FUNCTIONS, PPP CHARGE DENSITIES AND BOND ORDERS OF THE MONO-AND DISUBSTITUTED HALOGENBENZENES

A.I. Kiss, A. Martin Department of Physical Chemistry Technical University, Budapest, Hungary

and the sector is protinged over MIA

J. Szőke sztaradan in notronal even Min Department of Optical Spectroscopy Central Research Institute for Physics, Budapest, Hungary

CONTENTS

1.	Singlet transition energies of mono- and dihalogenbenzenes	1
2.	MIM wave functions of fluoro- chloro- and bromobenzenes	4
3.	MIM wave functions of iodobenzenes	5
4.	MIM wave functions of the ortho-disubstituted fluoro-, chloro-,	6
	and bromobenzenes	
5.	MIM wave functions of the meta-disubstituted fluoro-, chloro-, and bromobenzenes	7
6.	MIM wave functions of the para-disubstituted fluoro-, chloro- and bromobenzenes	8
7.	MIM wave functions of ortho- diiodobenzene	9
8.	MIM wave function of meta-diiodobenzene	10
9.	PPP charge densities and bond orders of mono-, and disubstituted fluoro- and chlorobenzenes	11
10.	PPP charge densities and bond orders of mono- and disubstituted	
	bromo- and iodobenzenes	12
11.	Correlation between the experimental and calculated PPP energies of the first and second bonds	13

Point Sphere Mataga-Nishimoto Eexp. B=-1.0 B=-1.5 B=-2.0 B=-1.0 B=1.5 (eV) B=-2.0 B=-1.0 B=-1.5 B=-2.0 Fluorobenzene 0.076 0.302 0.072 0.161 0.285 0.207 0.364 0.171 0.093 4.838 4.782 4.742 4.779 4.703 4.847 4.804 4.697 4.836 4.750 5.931 5.778 5.933 5.825 6.024 5.956 5.863 5.612 6.013 6.107 6.582 6.491 6.559 6.80 6.658 6.574 6.480 6.662 6.687 6.630 6.568 6.587 6.682 6.632 6.615 6.80 6.575 6.520 6.491 6.670 1,2- difluorobenzene 0.526 0.595 0.151 0.335 0.587 0.134 0.299 0.153 0.340 4.455 4.780 4.662 4.510 4.810 4.725 4.613 4.762 4.627 5.902 5.847 5.554 5.212 5.661 5.354 5.973 5.824 5.608 6.587 6.190 6.045 6.145 6.458 6.330 6.462 6.295 6.356 6.526 6.573 6.679 6.625 6.574 6.613 6.547 6.507 6.641 1,3- difluorobenzene 0.134 0.296 0.517 0.152 0.336 0.583 0.150 0.331 0.575 4.458 4.780 4.512 4.810 4.726 4.613 4.663 4.768 4.762 4.628 5.638 5.533 5.165 5.896 5.302 5.971 5.810 5.568 6.107 5.841 6.184 6.129 6.587 6.458 6.329 6.016 6.462 6.293 6.356 6.560 6.538 6.492 6.638 6.563 6.510 6.678 6.618 6.609 1,4- difluorobenzene 0.152 0.334 0.579 0.150 0.330 0.571 0.133 0.295 0.513 4.734 4.611 4.703 4.550 4.556 4.643 4.304 4.762 4.399 4.804 5.480 5.843 5.939 5.981 5.637 5.747 6.205 5.932 5.731 5.456 6.621 6.385 6.344 6.506 6.399 6.112 6.506 6.211 6.232 6.537 6.618 6.543 6.612 6.490 6.494 6.650 6.581 6.527 chlorobenzene 0.168 0.298 0.210 0.369 0.088 0.196 0.345 0.075 0.094 4.720 4.756 4.762 4.829 4.667 4.842 4.792 4.678 4.826 4.657 5.967 6.016 5.939 5.834 5.840 5.690 5.740 5.919 5.759 5.590 6.522 6.530 6.674 6.605 6.632 6.423 6.403 6.525 6.621 6.513 6.510 6.484 6.616 6.554 6.515 6.673 6.619 6.573 6.525 6.562 1,2- dichlorobenzene 0.321 0.562 0.361 0.630 0.144 0.166 0.367 0.640 0.163 4.770 4.609 4.644 4.585 4.752 4.483 4.802 4.708 4.592 4.428 5.953 5.779 5.536 5.809 5.497 5.147 5.868 5.601 5.281 5.661 6.426 6.290 6.438 6.264 6.105 6.565 6.330 6.157 6.001 6.550 6.508 6.667 6.606 6.555 6.619 6.588 6.525 6.490 1,3- dichlorobenzene 0.551 0.317 0.165 0.362 0.626 0.162 0.356 0.617 0.143 4.585 4.592 4.770 4.644 4.484 4.802 4.708 4.753 4.609 4.431 5.466 5.569 5.211 5.949 5.759 5.485 5.800 5.083 5.859 5.610 6.564 6.426 5.958 6.438 6.260 6.079 6.287 6.330 6.146 6.598 6.538 6.535 6.487 6.665 6.582 6.511 6.472 6.613

TABLE 1. Singlet transition energies of mono- and dihalogenbenzenes calculated by MIM method using point charge charged sphere and Mataga-Nishimoto approximation as well as $\beta_{\rm cx}$ variation. The ground state energies have negative sign which is omitted.

exp	1.80801	Ja Dafijo	80.1 38	BS BOID	Lat. Conde	18.000011	1 yu 1993. B.L 50.63		
eV	B=-1.0	B=-1.5	B=-2.0	B=-1.0	B=-1.5	B=-2.0	B=-1.0	B=-1.5	B=-2.0
				1,4-	dichloro	benzene			
	0.164	0.361	0.622	0.161	0.355	0.612	0.143	0.316	0.547
4.541	4.727	4.537	4.284	4.755	4.596	4.375	4.795	4.684	4.524
5.510	5.680	5.626	5.305	5.894	5.652	5.341	5.959	5.790	5.549
	6.372	6.208	6.093	6.482	6.317	6.185	6.602	6.475	6.348
	6.576	6.505	6.467	6.585	6.512	6.472	6.633	6.559	6.508
1997	401-5	10.010	x1703	Bromo	benzene	4.697	0 201 4.779	0.836	4.750
9 8 0 . C	0.101	0.225	0.394	0.093	0.208	0.367	0.079	0.176	0.311
4.678	4.812	4.726	4.604	4.815	4.732	4.615	4.837	4.781	4.700
5.821	5.828	5.638	5.458	5.924	5.768	5.600	6.006	5.917	5.801
6.457	6.547	6.413	6.294	6.566	6.436	6.317	6.660	6.578	6.485
6.457	6.470	6.456	6.450	6.568	6.515	6.487	6.662	6.604	6.558
613.6	4. 725	01.4.4	4.5.00	1,2-	dibromob	enzene	0.34 4.627	0,133	
0.00.0	0.179	0.397	0.688	0.177	0.391	0.679	0.152	0.338	0.591
4.558	4.721	4.551	4.345	4.748	4.600	4.418	4.793	4.690	4.556
5 648	5.677	5.318	4.949	5.785	5.468	5,121	5 930	5 729	5 462
0.010	6 829	6 005	5 852	6 341	6 156	5 987	6 538	6 388	6 244
	6.500	6.472	6.458	6.568	6.509	6.479	6.654	6.588	6.538
1.1.1	0.205 3 7 1	.980.0	evere	1,3-	dibromob	enzene	01 L	-42.5	
	0 179	0 201	0 672	0 176	0 296	0 664	0 151	0 224	0 570
	4 721	4 552	1 240	1 749	1.601	0.004	4 702	1.600	0.579
	5 662	5 270	4.545	5 770	5 422	4.420	4.795	4.090	4.550
	5.005	5.279	4.073	5.770	5.422	5.032	5.925	5.704	5.401
	6.494	6.459	6.441	6.557	6.489	5.933	6.651	6.577	6.236
118.0	EPS TO	061.0	1.875	1 4-	dibromob	enzene	- 1- C.O.	6.152	
922.1	101.5	1999 A	1111	1,4-	arpronor	benzene	1.530	1.124	100
	0.178	0.389	0.668	0.175	0.384	0.659	0.151	0.332	0.575
4.508	4.687	4.459	4.171	4.730	4.543	4.293	4.786	4.663	4.487
5.414	5.794	5.477	5.115	5.813	5.509	5.153	5.936	5.738	5.467
	6.200	6.071	5.989	6.384	6.219	6.102	6.578	6.438	6.306
	6.523	6.468	6.443	6.534	6.475	6.448	6.615	6.540	6.492
1.720	0.168	0 0 0 1 8 4 2	4.577	Iodob	enzene	000.0	010	1.66.0	3.5 A. A.
A CARLES	0.111	0.246	0.430	0.105	0.233	0.408	0.088	0.196	0.346
4.805	4.784	4.666	4.508	4.789	4.676	4.524	4.823	4.749	4.645
5.438	5.596	5.406	5.239	5.754	5.556	5.377	5.966	5.837	5.687
6.391	6.314	6,191	6.098	6.360	6.230	6.129	6.607	6.492	6.378
6.391	6.329	6.382	6.406	6.412	6.426	6.432	6.615	6.553	6.514
0.582	0.521	NAL O	0.630	1,2-	diiodobe	nzene	0.367	0.166	and a set
362.2	0 198	0 436	0 753	0 196	0 431	0 743	0 169	0 375	0 652
1 797	1 650	1 116	1 205	1 602	4 502	1 290	1 766	1 627	1 472
5 200	5 200	4.440	4.205	4.093	4.502	4.200	4.700	4.03/	4.4/2
5.209	5.398	5.026	4.055	5.553	5.181	4.011	5.850	5.575	5.253
	5.864	5.738	5.615	6.044	5.878	5.129	6.435	6.259	6.093
	6.488	6.4/4	6.466	6.414	6.430	6.433	6.606	6.538	6.499

TABLE 1, /Continued/

- 2 -

TABLE	1. /Cont:	Inued/										
Eexp.	-	Poir	n t	S	phe	re	Matag	ga-Nishir	noto			
(eV)	B=-1.0	B=-1.5	B=-2.0	B=-1.0	B=-1.5	B=-2.0	B=-1.0	B=-1.5	B=-2.0			
	1,3- diiodobenzene											
4.769 5.438	0.197 4.659 5.382 5.841 6.466	0.430 4.449 4.980 5.660 6.340	0.735 4.212 4.568 5.455 6.395	0.194 4.693 5.530 6.027 6.413	0.424 4.504 5.124 5.818 6.418	0.726 4.284 4.709 5.600 6.416	O.168 4.766 5.839 6.435 6.598	0.370 4.637 5.535 6.253 6.520	0.639 4.473 5.170 6.062 6.476			
4.626	0.196 4.605	0.428 4.320	0.729 3.989	0.194 4.659	0.422	0.720 4.103	0.168 4.755	0.368 4.594	0.634 4.373			
5.102	5.600 5.899 6.433	5.221 5.867 6.420	4.827 5.848 6.415	5.634 6.087 6.447	5.262 5.992 6.427	4.870 5.933 6.419	5.861 6.479 6.563	5.590 6.314 6.495	5.257 6.183 6.461			

Lator health and the A Last an a x and a to a t

Ecalc.			Wave	fun	ctio	n	
(eV)	Ψ _G	Ψ _B 2U	Ψ _B LU	Ψ _E lu	Ψ _E lu'	ΨT ¹ D1	Ψ _T ² _{D₁}
	OE	Fluo	roben	zene	/B=-1.5	eV; Matag	a-Nishimoto/
-0.161	.991	City of An	013		012		.130
4.804		.991		039		.124	
5.956	.039		.969		.150		192
6.630		.061		.983		- 174	
6.632	.031		185		.968		167
10.061		115		.180		.977	
9.662	121		.164		.201		.958
		Chlo	roben	zene	/B=-2.0	eV; Mataga	-Nishimoto/
-0.298	.983		023		021		.179
4.720		.978		078		.193	
5.834	.077		.925		.249		276
6.522		.127		.959		254	
6.573	.047		310		.931		188
9.572		165		.273		.948	
9.562	158		.217		.268		.925
	В	romo	benze	n e /B=-2	.0 eV; M	ataga-Nish	imoto/
-0.311	.982		024		022		.187
4.700		.973		087		.216	
5.801	.087		. 909		.268		308
6.485		.149		.944		293	
6.558	.050		344		.916		202
9.135		179		.317		.931	
0 228	- 161		226		200		011

TABLE 2. Wave functions of fluoro-, chloro- and bromobenzenes calculated by MIM method

C.			1	El	<u> </u>			
Ecalc.		0.00	Wav	re f	unctio	n		
(ev)	ΨG	Ψ _B 2U	Ψ _B _{lu}	Ψ _E lu	Ψ _E _{lU} ,	Ψ _T l _{D1}	Ψ _T ² _{D₁}	285.0
<u> </u>		Iod	obenz	ene	$/\beta = -1.0 eV;$	Point/		1221 - P
-0.111	.991	éto 101	009	30	008		.134	0.450
4.784		.972	337 1.11	048		.230		
5.596	.107		.620		.261		732	
7.112		123		.732		.670		0.475
6.970	056		.220		.847		.481	
6.314		201		680		.706		
6.329	060	\ceon	.753	den Avb	463	suedoto L	.464	
0.0	EL .	Iod	oben	zene	/β=-1.0 eV;	Sphere/	12.6	1999 - O
-0.105	.992	618 33	008	26.	008	10000	.127	1.100
4.789		.975		046		.219		
5.754	.085		.756		.249		599	
6.360		.184		.722		667		
7.076	071		.252		.743		.616	
7.159		128		.691		.712		
6.412	063	41. ,045	.604		621	205	.495	888.9
		Iod	oben	zene	/β=-1.5 eV;	Mataga-Ni	lshimato,	1
-0.196	.987	42	015	it	014	ER	.158	
4.749		.976		065		.210		
5.837	.074		.901		.240		353	
6.492		.140	148 2	.919		369		
6.553	.051		349		. 896		271	
8.162		169	301	.389		.905		
8.181	132		.257		. 374		.881	
1		ET EL B	520	110	S	276	- Correction	1111

TABLE 3. MIM wave function of iodobenzene

Ecalc.				Wave	fu	ncti	on	mary E	TABLE
(eV)	ΨG	Ψ _B 2U	Ψ _B lu	Ψ _E _{lU}	Ψ _E lu′	Ψ _T 1 D ₁	Ψ _T ² _D	Ψ _T 1 _{D2}	Ψ _T ² _{D₂}
1	,2- dif	luoroben	zene /β=	-1.5 eV;	Mataga-	Nishimot	0/	an in charment	180 ⁸ 787
-0.299	.985	.012	018	000	016	.001	.121	.105	059
4.725	023	.984	.007	022	.005	.135	007	.050	104
5.824	.050	007	.913	.158	.253	029	161	167	142
6.458	,004	.028	312	. 808	.424	170	019	104	171
6.625	.031	.024	174	490	.837	.108	113	056	.013
9.422	010	134	064	.059	079	.801	.165	346	424
10.435	155	052	.165	.036	.194	.046	.732	.591	146
9.940	025	101	050	012	061	.082	583	.607	518
9.605	.034	015	.072	.277	.089	.539	210	.329	.683
1	,2- dic	hloroben	zene $/\beta =$	-2.0 eV;	Mataga-	Nishimot	0/		
-0.562	.971	.022	031	001	028	.002	.167	.146	080
4.585	040	.966	.017	039	.012	.192	019	.069	144
5.536	.091	012	.801	. 254	.361	066	218	233	222
6.290	022	.062	429	.816	.204	240	.051	074	197
6.555	.049	036	329	347	.856	.111	133	069	.002
9.045	015	108	050	.033	064	.611	.452	577	266
10.266	191	060	.232	.086	.275	.084	.678	.597	014
9.373	.007	183	041	.243	052	.671	488	.445	128
9.448	.092	.109	.088	. 283	.109	.241	.045	148	. 893
	1,2- dil	bromoben	zene /β=	-2.0 eV;	Mataga-	Nishimot	0/		
-0.591	.968	.023	033	001	030	.002	.176	.153	084
4.556	043	.960	.019	042	.014	.210	024	.076	156
5.462	.100	014	.770	.267	.372	076	238	254	246
6.244	032	.072	439	.807	.148	271	.075	068	212
6.538	.052	038	370	307	.852	.114	143	075	002
8.968	034	245	083	.144	108	.625	375	.371	48
9.877	190	059	.255	.111	.308	.098	.654	.592	.03
8.613	.012	.076	.035	021	.047	518	533	.639	.173
9.088	.104	.045	.053	.386	.068	. 443	186	008	.775

TABLE 4. MIM wave functions of the ortho-disubstituted fluoro-, chloro- and bromobenzenes

	Wave function										
Ecalc. (eV)	Ψ _G	Ψ _B 2U	Ψ _B _{lU}	Ψ _E lu	Ψ _E lu′	Ψ _T 1 D ₁	ψ _T ² _D	ψ ₁ ,1 D ₃	ψ _T ² _D ₃		
	1,3-	difluoro	benzene	/β=-1.5	eV; Mata	ga-Nishir	moto/	na n	and the second second		
-0.296	.986	.012	006	.000	005	.001	.119	103	060		
4.726	023	.984	001	022	001	.135	005	051	103		
5.810	.017	003	.909	154	.262	.027	171	184	.133		
6.458	002	.029	.315	.806	427	169	.019	.105	170		
6.618	.009	.020	184	.495	.831	110	118	065	023		
9.427	.020	143	.063	.057	.079	.801	139	.290	470		
10.267	137	034	.142	034	.168	000	.915	103	287		
10.136	.092	.097	.118	047	.141	103	.176	.891	.332		
9.589	008	003	056	.274	069	.537	.233	220	.725		
	1,3-	dichlor	obenzene	/β=-2.0	eV. Mata	aga-Nish:	imoto/				
-0.551	.972	.022	011	.000	010	.002	.165	141	084		
4.585	042	.967	.007	042	.005	.193	017	075	139		
5.485	.031	024	.794	231	.375	.050	244	272	.195		
6.287	.003	.057	.402	.830	186	246	059	.067	208		
6.538	.013	.022	367	.327	.847	107	140	090	020		
9.112	.052	195	.059	.017	.076	.678	311 -	.294	554		
10.007	137	028	.239	121	.287	066	.804	.179	380		
9.752	.173	.149	.104	134	.127	258	.869	.169	.228		
9.321	.013	.000	.035	.341	.043	.599	.345	.120	.624		
	1,3	dibromob	enzene	/β=-2.0	EV; Mata	ga-Nishin	moto/				
-0.579	.970	.023	011	.000	010	.002	.173	147	088		
4.556	045	.960	.010	046	.007	.210	021	084	150		
5.401	.035	032	.764	237	.386	.055	268	299	.212		
6.236	.005	.065	.398	.825	126	279	087	.056	231		
6.519	.013	.021	417	.277	.840	108	149	100	019		
8.725	.062	209	.048	006	.064	.626	376	.281	578		
9.631	115	017	.269	166	.331	104	.728	.283	395		
9.321	.196	.168	.070	166	.088	317	306	.805	.225		
8.945	.033	.004	.071	.361	.092	.600	.322	.247	.575		

1)

TABLE	5.	MIM wa	ve	functions	of	the	meta-disubstituted	fluoro-,	chloro-
		and br	om	obenzenes					

Ecalc	and the	Wave function											
(eV)	Ψ _G	^ψ B _{2U}	Ψ _B lu	^ψ E _{lU}	Ψ _E lu′	Ψ _T 1 D ₁	^ψ τ ² _D 1	Ψ _T 1 ,D ₄	^ψ T ² D ₄				
		1,4-difl	uorobenze	ene $/\beta = -3$	1.5 eV; 1	Mataga-N	ishimoto	1					
295	.986	.000	.000	.000	.000	.000	.119	.000	.119				
4.703	.000	.976	.000	086	.000	.142	.000	142	.000				
5.843	.000	.000	.936	.000	.245	.000	179	.000	.179				
6.506	.000	.137	.000	.957	.000	181	.000	.181	.000				
6.581	.000	.000	293	.000	.941	.000	121	.000	.121				
9.685	.000	171	.000	.278	.000	.669	.000	669	.000				
0.268	.000	.000	.197	.000	.234	.000	.673	.000	673				
9.274	.000	.000	.000	.000	.000	.707	.000	.707	.000				
0.171	168	.000	.000	.000	.000	.000	.697	.000	.697				
		1,4- die	chlorober	nzene //	3=-2.0 et	V; Mataga	a-Nishim	oto/					
-0.547	.973	.000	.000	.000	.000	.000	.163	.000	.163				
4.524	.000	.944	.000	152	.000	.207	.000	207	.000				
5.549	.000	.000	.843	.000	.375	.000	273	.000	.273				
6.348	.000	.244	.000	.919	.000	220	.000	.220	.000				
6.508	.000	.000	465	.000	.868	.000	123	.000	.123				
9.604	.000	221	.000	.365	.000	.640	.000	.640	.000				
9.954	.000	.000	.270	.000	.325	.000	.641	.000	641				
8.856	.000	.000	.000	.000	.000	.707	.000	.707	.000				
9.742	231	.000	.000	.000	.000	.000	.688	.000	.688				
		1,4- dil	promoben	zene /β=·	-2.0 eV;	Mataga-1	Nishimot	0/					
-0.575	.970	.000	.000	.000	.000	.000	.171	.000	.171				
4.487	.000	.934	.000	164	.000	.226	.000	226	.000				
5.467	.000	.000	.814	.000	.391	.000	304	.000	.304				
6.306	.000	.273	.000	.901	.000	238	.000	.238	.000				
6.492	.000	.000	502	.000	.846	.000	127	.000	.127				
9.286	.000	232	.000	.402	.000	.626	.000	626	.000				
9.556	.000	.000	.294	.000	.362	.000	.626	.000	626				
8.460	.000	.000	.000	.000	.000	.707	.000	.707	.000				
9.275	242	.000	.000	.000	.000	.000	.686	.000	.686				

TABLE 6. MIM wave functions of the para-disubstituted fluoro-chloro- and bromobenzenes

E	Wave function											
calc. (eV)	ΨG	Ψ _B 2U	Ψ _B _{1U}	Ψ _E lu	Ψ _E _{lu} ′	Ψ _T l Dl	^ψ τ ² _{D1}	Ψ _T 1 D2	^ψ T ² _{D2}			
n Ok Annoten er er		1,2	- diiodo	benzene	/β=-1.0 ·	eV; Poin	t/					
-0.198	.985	.008	012	000	011	.001	.120	.104	059			
4,659	025	.929	.018	031	.012	.299	017	.064	203			
5.398	.052	026	. 528	.272	.268	213	237	433	533			
7.027	.047	012	039	.845	129	.330	244	002	.310			
6.488	.064	.025	418	079	.687	082	562	.114	.085			
5.864	.058	206	. 427	388	.105	.713	233	101	.194			
7.398	098	037	. 297	.216	. 594	.072	.550	. 434	.069			
6.697	072	219	.016	.036	233	.143	287	.685	565			
6.222	.035	.209	.523	080	147	464	339	.343	.454			
126	1.53	1,2-	diiodob	enzene /	β=-1.0 e	V; Sphe	re/		¥ 2.3 4 G			
-0.196	.986	.008	012	000	011	.001	.118	.103	058			
4.693	025	.949	.011	026	.007	.244	014	.077	179			
5.553	.062	018	.653	.238	. 289	136	294	390	415			
7.114	.057	016	053	.768	147	. 404	301	015	.358			
6.414	.017	145	518	041	.538	.461	.020	346	295			
6.044	.049	117	.425	530	.021	.605	220	.024	.328			
7.475	096	035	.294	.244	. 557	.099	.542	.462	.127			
6.560	.060	.099	187	101	.506	343	630	.321	.261			
6.801	.071	.230	.017	039	.197	229	.264	628	.620			
and the second		1,2-	diiodob	enzene /	β=-1.5 e	V; Matag	a-Nishim	oto/	· ····································			
-0.375	.977	.015	022	000	020	.001	.150	.130	073			
4.637	034	.961	.012	032	.008	.208	017	.078	158			
5.575	.082	011	.777	.234	.336	075	263	280	263			
6.259	027	.066	422	.772	.160	332	.084	089	263			
6.538	.050	040	366	297	.841	.154	184	101	007			
8.116	.091	.008	.012	.478	.018	.518	282	000	.644			
8.698	152	050	.274	.147	.366	.106	.633	.569	.091			
7.697	.017	.092	.041	029	.069	538	527	.608	.218			
7.977	. 653	.244	.083	096	.127	498	.331	432	.601			

TABLE 7. MIM wave functions of the ortho-diiodobenzene

Ecalc.			W	ave	funo	ction	n		105.60
(eV)	ΨĢ	^ψ B _{2U}	Ψ _B _{lU}	^ψ ε _{ιυ}	Ψ _E _{1U} ,	$\psi_{\mathtt{T}_{\mathtt{D}_{\mathtt{l}}}^{\mathtt{l}}}$	^ψ τ ² _{D1}	$\psi_{\mathtt{T}_{\mathtt{D}_3}^{\mathtt{l}}}$	^ψ T ² _{D3}
-		1.3-	diiodobe	nzene /	β=-1.0 e	V; Point	1		and a state of
-0.197	.986	.008	004	.000	004	.001	.119	103	060
4.659	026	.930	010	031	007	.300	008	066	200
5.382	.017	.012	.537	257	.276	.187	263	464	.500
7.016	033	038	.061	.828	.204	.337	.319	085	.212
6.466	.029	102	474	.044	.676	.119	464	126	245
5.841	006	178	395	397	104	.701	.266	.109	.262
7.342	035	.020	. 298	271	.624	.087	.539	.350	162
6.821	.151	.174	.009	.104	.080	033	379	.739	. 490
6.224	036	.248	487	064	.139	497	. 308	259	.517
		1,3-	diiodobe	nzene	/β=-1.0 e	eV; Sphe	ere/		and the second
-0.194	.986	.008	004	.000	004	.001	.117	101	059
4.693	026	.949	003	026	002	.245	010	079	177
5.530	.021	001	.653	220	.296	.113	320	426	.375
7.098	042	051	.081	.743	.229	.418	.393	096	.218
6.413	011	.127	559	.036	.577	410	058	315	.259
6.027	007	099	374	535	027	.603	.238	004	.377
7.422	034	.018	.294	304	.578	119	.524	.379	231
6.913	.146	.170	.018	.128	.088	029	338	.734	.521
6.556	047	.202	.164	058	431	454	.530	105	.493
	100	1,3-	diiodobe	nzene /ß	=-1.5 eV	; Mataga	-Nishimo	to/	
-0.370	.978	.015	007	.000	007	.001	.148	127	075
4.637	035	.961	.004	034	.003	.208	015	083	154
5.535	.028	019	.769	213	.347	.059	289	321	.230
6.253	.004	.060	.388	.785	141	340	096	.077	281
6.520	.013	.023	408	.269	.828	145	191	131	019
7.763	.058	206	.049	.005	.080	.633	393	.288	555
8.552	071	.005	.287	211	.392	133	.655	.386	345
8.214	.177	.169	.018	210	.025	354	441	.719	.240
8.017	.047	.030	.078	. 420	.118	.522	.266	.320	.595

TABLE 8, MIM wave functions of meta-diiodobenzene

<u>Table 9</u>. PPP charge densities and bond orders of mono- and disubstituted fluoro- and chlorobenzenes

6.1

£1

41

01

<u>Table 10</u>. PPP charge densities and bond orders of mono- and disubstituted bromo- and iodobenzenes

I 1.9513

I 1.9492

6

Notation: x = F; +=Cl; o = Br; $\Box = I$. The numbers: 1,2,3 and 4 stand for the mono-, ortho-di-, meta -di- and para-disubstituted derivatives, respectively.

- 13 -

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Kroó Norbert, a KFKI Fizikai- Optikai Tudományos Tanácsának elnöke Szakmai lektor: Kapuy Ede Nyelvi lektor: Kovács Jenőné Példányszám: 375 Törzsszám: 73-7745 Készült a KFKI sokszorositó üzemében, Budapest, 1973. február hó

61. 992