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SUMMARY
The temperature dependence of the roton energy is examined consider­

ing its collision with any other thermally excited roton and the interaction 
between one excitation and two rotons. The final state interaction strongly 
modifies the two-roton density of states and therefore the Hartree-Fock ap­
proximation is not valid for the roton-roton scattering. Using point inter­
action model for the roton-roton coupling and examining only the self-energy 
processes for the one particle Green function linear in the number of rotons 
it is shown that the amplitude of this temperature dependence changes sign 
as the roton-roton coupling strength is increased and an upper bound is ob­
tained for the temperature dependence of the roton energy. As this upper bound 
is only 1/7 part of the experimental result, they can be interpreted only by 
assuming more than seven independent channels with different angular depend­ence .

РЕЗЮМЕ
Исследована температурная зависимость энергии ротона, рассматривая 

его столкновение с другими термически возбужденными ротонами и переходы двух 
ротонов в одно возбуждение. Взаимодействие в конечном состоянии сильно моди­
фицирует плотность двухротонных состояний, и поэтому приближение Хартри-Фока 
неприменимо для ротон-ротонного рассеяния. При вычислении одночастичной функ­
ции Грина были приняты во внимание только собственные энергетические диаграм­
мы, пропорциональные числу ротонов, и было использовано приближение тесного 
взаимодействия ротонов. Таким образом было показано, что амплитуда этой тем­
пературной зависимости меняет знак при увеличении константы ротон-ротонной 
связи и был найден верхний предел температурной зависимости энергии ротона. 
Верхний предел составляет 1/7-ую часть экспериментального значения, что может_ 
быть объяснено только предположением существования семи независимых каналов 
с различной угловой зависимостью.

KIVONAT
A rotonoknak egymással való ütközését és az egyrészecskés gerjeszté­

sek és a kétrotonos állapotok közötti kölcsönhatást figyelembe véve megvizs­
gáltuk a rotonenergia hőmérsékletiüggését. A két roton állapotsürüséget a fel­
lépő végállapotkölcsönhatás erősen megváltoztatja, ezért a Hartree-Fock köze­
lítés nem alkalmazható a roton-roton szórásnál. A rotonok között kontakt köl­
csönhatást feltételezve és az egyrészecskés Green függvényben csak a roton- 
számmal lineáris sajátenergiás folyamatokat tekintve megmutattuk, hogy a ho- 
mérsékletfüggés amplitúdója a csatolás erősségének növelésével előjelet vált 
és a rotonenergia hőmérsékletfüggésére egy felső korlátot kaptunk. Mivel ez a 
felső korlát a kísérleti értéknek csupán 1/7-ed része, fel kell tételezni, 
hogy több mint hét egymástól független különböző szögfüggésü csatorna létezik.
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Introduction

In order to interpret the thermodynamical properties 
of superfluid helium Landau^ has proposed the existence 
of two types of elementary excitations in Hell. There are 
long wavelength density fluctuations, the phonons, and 
elementary excitations with wavelength corresponding to
the mean atomic distance in the liquid, the rotons. The

2best description of rotons has been given by Feynman and
3later in an improved form by Feynman and Cohen . Starting 

from first principles they were able to derive the ele­
mentary excitation spectrum shown in Fig.1. This theory, 
however, due to the applied variational method could not 
say anything about the interaction between the elementary 
excitations.

Examining the interaction between the elementary exci­
tations of Hell Landau and Khalatnikov^ have shown that 
at low temperatures (T<1°K) the interaction between pho­
nons, and at higher temperatures (below the point) the 
interaction between rotons play fundamental role. These 
interactions were calculated in Hartree-Fock (H-F) app­
roximation with the assumption that there is a direct in­
teraction between rotons.

Recently, numerous experimental and theoretical results 
have shown that the roton-roton interaction cannot be
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*
described in H-F approximation. Thus, Raman scattering 
experiments in superfluid helium done by Greytak et.al^ 
have shown that the two-roton density of states (for to­
tal momentum К near zero) has a strong deformation. This 
experiment was explained by Ruvalds and Zawadowski6*̂

О
and independently by Iwamoto , with the supposition that 
there is a direct attractive interaction between the ro- 
tons. An arbitrarily weak attraction between two rotons 
gives rise to a two-roton bound state which is split
off below the two-roton continuum. The above theoretical 
predictions have been verified by more recent experiments 
of Greytak et.al.^ which yield a binding energy Eg=0.37°K 
for the bound pair with K=0.

Neutron scattering experiments have shown the appea-
rence of two branches in the elementary excitation spect- 

10 11rum ' , which may be interpreted as a consequence of an
6 7interaction between the one particle and two-roton states * .

Both light scattering and neutron scattering experiments
1 2as well as viscosity measurements show a simple depen­

dence of the roton linewidth on the number of rotons. This 
fact can be explained reasonably by assuming that the do­
minant interaction at T > 1 °K is the roton-roton scattering.

Recent neutron scattering experiments done by Dietrich 
et.al.15 (see Fig.2.) show, that the roton energy as the 
function of temperature decreases proportionally to the 
number of rotons. The experiments have been done in a wi-
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de interval of pressure. As it can be seen from Pig.2. 
the temperature dependence of the roton energy can be 
written in the form:

Л ( Т ) = Д 0 - З Э ^ е А ^  °K (1)

where T is the temperature, and only depends on the
pressure (in atm) in the following way: AQ=8.75-0.12p 
Assuming a direct interaction between rotons with coup­
ling constant g^, Ruvalds^ has calculated the tempera­
ture dependence of the roton energy in H-P approximation. 
In order to fit the experimental results he had to sup-

— •X О ^
pose g^= -3.7x10 ergem . It is worth mentionong that 
this value of the roton-roton coupling is close to that 
value which is needed in H-F approximation to fit the 
experimental roton lifetime. Taking into account this 
temperature dependence of the roton energy Ruvalds has 
been able to calculate the temperature dependence of the 
superfluid part of Hell in agreement with experiment.

The appearence of the bound state of two rotons and 
the hybridisation between the one and two particle states 
show that the roton-roton interaction should be studied 
in a better approximation than the H-P one. Taking into 
account the final state interaction, a consequent inves­
tigation of the roton lifetime has been done first by Fo­
min^. Similar result have been obtained by Yau and Step-

17
hen1  ̂and Nagai et.al. The interaction of rotons with
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the particles of the condensate have also been taken into
18

account by Solana et.al. The above authors find that due 
to the roton-roton interaction, the two-roton density of 
states is strongly deformed, and the lifetime of a free 
roton goes to a constant value as the strength of the att­
ractive interaction increases (see Fig.3.). This upper 
bound value remains four times less than the experimental 
result.

The intention of this paper is to investigate the in­
fluence of the final state interaction on the temperature 
dependence of the roton energy to decide, whether the re-

А л
suit of H—F calculation  ̂is satisfactory, or the higher 
order processes play an equally important role as in the 
case of the roton lifetime theory.
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Chapter I

The formalism applied in what follows is the same as 
in Ref.6,7,18. The basic point is that the rotons are 
taken as well defined one particle excitations below the 

point, where the inverse roton lifetime remains much 
smaller than the roton energy. In this way employing the 
finite temperature Green function technique we take the 
roton propagator in the form:

G1(k;iUin)= ----------I----------
\  2 ( k ; i m n )

(2)

where Uu =2It nT (n is an integer and T is the tempera-n
ture). The roton dispersion curve is choosen in the form:

(k-kV
Л =8.67 °K

,where k0=1.92 8"1 

/ V ° - 16m He4

(3)

As these parameter values come from the experiment, they 
refer to interacting rotons already and therefore in the 
self-energy the temperature independent real energy shift 
corrections should be neglected.

As it has been pointed out in Ref.18 it is a good app­
roximation to neglect the real part of 2  in the further 
calculation^. The imaginary part of the self-energy for 
energies near to Д 0 and for momenta near to kQ can be 
considered as energy and momentum independent. The expe­
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rimental value is for the single roton width = Im^ ) 
is:

-7 '

The temperature dependence of the roton energy will be 
determined by the following equation:

A (T)= A0 + Re'2(ko; A(T)) (5)
Because we are interested only in that part of the self­
energy which is proportional to the number of rotons, on­
ly the processes which are first order in the number of 
rotons will be examined. It is not a bad approximation of 
the self-energy because below the ^ point the number of

<—> _ Ail)rotons is proportional to |T e т which is a small pa­
rameter. In terms of Feynman graphs we will consider the 
diagrams containing only one "backward-going" roton line 
which corresponds to a thermally excited roton. The hig­
her order diagrams containing more than one "backward­
going" roton line will be neglected.

Let us suppose, that the interaction between the ro­
tons may be described by a contact coupling g^, which is 
independent of the energies and momenta of the scattered 
rotons. In this case there are only two diagrams with one 
"backward-going" roton line (see Fig.4). The diagram in 
Fig.4/a corresponds to the H-F approximation, while the 
diagram in Fig.4/b represents a process where in the in-
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termediate state the two rotons interact. This interacti­
on given hy means of the two roton Green function is shown 
in turn in Fig.4/c. The analytical form of the roton self­
energy given hy Fig.4. is:

die2  (кии, )=-i2 \-— -3 
n n'\(2Tvr

s1 (й;1изп , )^2g4 + в2(К+к|1(лп+ 1 ш п ,

(6)
The two-roton Green function G2 includes the roton-roton
scattering to infinite order.

As a consequence of the used separable interaction the
infinite geometrical series for the two-roton Green func-

7 18tion can he summed up and we obtain' * :

G2(K;Uon )=
G2Co)(K;iton )

1" I1 G ^ K j i i u J
(7)

n '

Here the unperturbed two-roton Green function is introdu­
ced in the following way:

К; 1 u>n) =-T2  ^ 7 ^ 3  S1'(í;iwn,)G1(K-í;iiu3n-iu3n,)
“ (8)

After performing the sum over frequency con , and the in­
tegration over к we obtain for G

, . , . i^ - 2 A 1+iP
G9Co)(K;iu,n )=-4S> ?̂ (K)ln2

2

i u o - 2 A  +1Г n о
(9)

where ^ 2'°\k )= is the density of states of nonin-
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teracting rotons for momenta of interest, i.e. 0.1k <T K<2k .о o'
and&^ is the energy of a "maxon" (see Fig.1).

In Eq.6. the summation over U>n , can be easily done by 
transforming the sum to a contour integral. We may restrict 
ourselves to the cut of the one particle Green function.
As at small temperatures the occupation number for ener­
gies near to the two-roton energy is much smaller than 
that for energies near to Д  o, the contribution coming 
from the pole of the two particle Green function - cor­
responding to two thermally excited rotons - can be neg­
lected. From this it follows that the roton self-energy 
can be written as:

2 ( К ; Л ) = и %
2g4nB(û  ) $ 1 (k;^ )

1 - Ĝ °̂ ( K+k; -51 + ы )
(1 0)

where we introduced the one particle spectral function: 
£.|(k;uo)=- -̂ r- lm G.| (k; iu> n-* tu+i<5 )

and the Bose function:
г ^ 1 -1

nB(t" )= |_e" ^  _1J

In the temperature region 1<f T<f1.8°K it is true from 
Eq.4.that Г7«^ T, therefore the following approximation 
can be used: nB(uj ) ^ ( k ; ^  ) ~ nB(E]c) • With this form 
of §=,1 we obtain:

2g,
2 (К;Л)= S-ä£-3 11,3(1̂ )

^ 1- ^  G2f0̂ (K+k;
(11)



First let us consider the properties of the roton self­
energy given by Eq.11.

Neglecting the intermediate state interaction, i.e. 
leaving off the denominator of the integrand in Eq.11. 
we get back the H-F approximation. After making the in­
tegration over k, we get for the real part of the roton 
self-energy in this approximation the following expres­
sion:

Re2H"F = 2g4Nr(T) (12)
where

(13)

is the number of rotons. Ruvalds^ could fit this expres­
sion to the experimental recults on the temperature de-

—38 3pendence of the roton energy with g^= -3,7x10” ergcm . 
The H-F approximation however, as it can be seen from 
Eq.11, can be applied in the weak coupling limit only.

Let us consider the strong coupling limit. In this ca­
se in the denominator of Eq.11. we can neglect the 1 , 
so the real part of the self-energy becomes:

R e 2 ( K . Ä ) = f ^ L  2n B < V  _ _ _ _ _
\ (2П)’ j W ’tK+S) (Л  +V +f2(j7" +V

where
(2 b  - S l ) 2+ Y 2

f..(Jl)= In ----- -— "2— — £■ ,
1 ( Л - 2 Д оГ + Г ^

(2Д.-л)(Л-2Д )+Г2
f2(-Sl_)=TT +2arotg---------------------

, (H)
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Por ĝ -~> со , independently of the sign of the coupling 
R e ^  tenda to a finite positive value, which leads to the 
increase of the roton energy with the temperature in cont­
rast to the experimental fact.

For the real part of the roton self-energy - at larger 
energies than the roton energy - we get an upper limit on 
Re*2, in analogy with the upper limit for the imaginary 
part of the self-energy (see Fig.2.) which Fomin ? and 
Yau-Stephen have pointed out. From Eq.11, Re IE. is:

1 - § Í :
Re'S (K;.5l) =

nB(E*)2gM -

ReG, о

|^ReG2°j2 +||4lmG2°y
(15)

Using the inequality:
x

”2— 2lx +a < 1
2 \a \

we obtain:
S -, >)

2nB(E^)----— ------ -
(2ИГ jlmG2°(K+k;fl +Ek)\

After making the integration over k, we get the following 
upper limit for the real part of the roton self-energy:

I (К;Д~Д0) <
___8 Nr(T) (16)

This limit is 6 times less than the experimental value!

Returning to the expression of the Re ̂  given by Eq.11, 
the integration over angles can be carried out and at the
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roton momentum we have:

^ ( k oi5l)=2g4| ^ |  nB(^ ) ^ 1 - 2 ei(f1+lf2) +

2/ \2 1 ”®4(-̂j +i^2 ̂+2gip ( f 1+if?rin ---L------ —
4 “ g| ( f 1+lf2 )

(17)

+E,
where the dimensionless coupling gjj=ĝ  <§>2̂ (2kQ) has been 
introduced. It is worth mentioning that the value of the 
dimensionless coupling at a typical value of g^ remains 
small enough (if g^=1x1CT^8ergcm^ than gjj = 0.075 ) which 
justifies the applied perturbational method.

The remaining integration over к can be made numerical­
ly. The study of the imaginary part of the self-energy 
was given in Ref.18. At energies larger than the roton 
energy the Im^ can be seen in Fig.3. as a function of 
the coupling parameter. As the value of the coupling inc­
reases the I m ^  at small couplings like than in the H-F 
approximation - proportional to the square of the coup­
ling - and at larger values it tends to a constant value 
- to the Yau-Stephen limit - which is only 1/4 of the 
experimental result.

The energy dependence of Re^ is shown in Fig. 5* tor 
a few values of the coupling. In the knowledge of Re/| 
the roton energy is given as a function of the roton-ro— 
ton coupling. This is represented in Fig.6. For small 
coupling the H-F approximation is valid. Its range of va—
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lidity is 0.5x10 ^®ergcm^. At a given temperature
the roton energy is minimal j or g^= -0.9x1О“"5 8 er gen/, but 
this decrease is too small, being 7 times less than the 
experimental value. For largir couplings the temperature 
dependent correction to /SQ s still smaller and above a 
certain value of g^ it even ecomes positive.

Consequently, supposing a contact c/r-r*) type inte­
raction between rotons the experimental decrease of the 
roton energy cannot be interpreted. It can give only 1/7 
part of the experimental result. The reason of this is 
the exsistence of a strong final state interaction in the 
roton collision. The attractive roton-roton interaction 
shifts the energy of the two-roton towards lower energi­
es and results in a two roton bound state. Increasing the 
strength of the coupling, the two-roton continuum is de­
populated and the weight of the two roton bound state in 
the two roton density of states increases. As the cont­
ribution of the two-roton continuum and that of the two 
roton bound state to the real part of the roton self-ener­
gy has opposite sign, due to the above mentioned depopu­
lation of the continuum Re'S has a peculiar dependence 
on g^. This can be seen in.Fig.5. and Fig.6.

The decrease of the number of states in the two-roton 
continuum reflected in the behaviour of Ira'S as a func­
tion of the roton-roton coupling as well as, it can see 
on Fig.3. For energies higher than the roton energy, ro-



15

A. The influence of the interaction between the one 
particle and two-rpton states on the roton self-energy.

Besides the ordinary roton-roton scattering the col­
lision of a roton with a particle in the condensate can 
also give contribution to the roton self-energy. The in­
fluence of this process - i.e. that of the hybridisation 
between the one particle and two-roton states - on the 
elementary excitation spectrum of the Hell was investi­
gated by Ref.6,7. This interaction can be characterized 
by a coupling g^, which obviously will depend on the num­
ber of particles in the condensated state. The processes 
contributing to the roton self-energy are represented 
in Fig.7. It is worth noting that the influence of the 
hybridi"a^tion have to be considered in the diagrams of 
Fig.4/b as well. In this diagram the one (two) roton 
Green function Ĝ  (G£) should be repleaced by Ĝ  (G£) 
which allows for two (one) particle states in the inter­
mediate state. The total contribution to the roton self­
energy is:

T  (K;i03 )= _t 2
n n 'П

(16)

J K+k; i u» n+i w n ,

where the Green function are renormalised due to the hyb-
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ridifcation in the following way:
G (к;1из ) G?(k;iua )

G^kjioo )=--- i------ 2- , G2 (kiivon )= ----- n (19)
i - g f o ^  1- ф 1 ° г

In Eq.18. similary as earlier only the cut of the "back­
ward-going" single roton propagator should be considered. 
After making the sum over energy, and applying the app­
roximation ^  -Ê .) it gives the following expression:

^ ( К ; Л ) = dk
(2\Г)

nВ
2geff

1- G2(°)(K+k;5l +Ek )
(20)

i.e. the structure of the self-energy is the same as if 
only the roton-roton collision is included (see Eq.11). 
The effect of the coupling g^ can be incorporated into 
an effective coupling g^^:

2g2
geff= g40  + -g^íK+íciSl+l^)) (21)

This effective coupling is complex due to the imaginary 
part of the one particle Green function. The imaginary 
part, however, can be neglected.

The upper limit for the real part of the self-energy 
given in Eq.16, is independent of the coupling g^, and 
it is valid even if hybridisation is taken into account. 
Neglecting the contribution of the diagram in Eig.7/b, 
there are two independent scattering channels represen-
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ted by the couplings g^ and g^ respectively. This would 
give approximately twice higher value for the self-energy. 
The diagram on Fig.7/b represents the interference term 
between the two interaction, and as a consequence of this 
the self-energy shift is reduced as if there were one in­
teraction only.

I

p
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В. Roton-roton collision taking into account the sta­
tes with higher angular momenta

Up till now, it has been assumed that the roton-roton 
vertex can be repleaced by an cf(?-?') type interaction, 
which corresponds to the scattering with angular momentum 
1=0. As this attempt to explain the temperature dependen­
ce of the roton energy failed, a better description of
the angular dependence of the roton-roton vertex should

15be taken into account, as proposed by Fomin . Due to the 
special form of the phonon-roton dispersion the motion of 
the center of mass of the scattered rotons can not be se­
parated from the relative motion. Expanding the roton-ro- 
ton vertex with respect to the sperical harmonics, the 
scattering states having different angular momenta will 
be mixed. Therefore, it is more useful to expand the ro­
ton-roton vertex with respect to an angle:

where the angle if characterises the rotation of the plane 
determined by the momenta of the rotons before and after 
the scattering. As the rotons are Bose particles, the 
expression of the roton-roton vertex given by Eq.22. has 

even m only.
The coupling constant g|m^belonging to the different

(22)
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channels m are supposed to be independent of the momenta 
for the following reasons: if only those collisions are 
considered where all the particles are rotons, they will 
have approximately the same momenta in absolute value, 
and therefore the dependence of the roton-roton vertex 
on the angle between the incoming, as well as between the 
outgoing rotons will be negligible.

The dependence of the coupling constants g ^  on the 
total momentum of the scattered rotons can not change the 
character of the behaviour of the roton self-energy as it 
was pointed out in the previous chapter.

Using the above approach, it is easily to see that the 
roton self-energy can be expressed as the sum of the 
self-energy contributions corresponding to different 
channels in the quantum numuer m:

Z  (K;£-)=Zm
die
(2Ю

nB(Ek )
2g Cm)

1-
4 **o

G2CQ)(K+k;SZ +Ek)
(23)

For each terms of the sum in Eq.23 the limit given in 
Eq.16 is valid. In order to get the experimental value of 
the shift of the roton energy, the coupling constants 
g/m  ̂should be different from zero several value of m. The 
smallest number of channels, which is necessary to get 
the observed lifetime id four, while for the real part 
of the self-energy it is seven. For instance, assuming 
that for the first seven channels g^=-1 x10“^8ergcm^ and
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Chapter II

In order to explain the temperature dependence of the 
roton energy there remain the following two possibilities

•

A. Maintaining the assumption that the roton-roton in­
teraction is cT(r-r') type, we should considered the roton 
roton collisions with one elementary excitation in the 
final state. This process leads to an interaction between 
the one particle and two-roton states. Its contribution 
can be important, as the appearence of the two branch
structure in the neutron scattering experiments can be ex

6 7plained with this coupling ' .
B. Another possibility to explain the observed shift

15of the roton energy was proposed by Fomin The roton- 
roton vertex can be expanded with respect to the m-th 
Fourier coefficient of the rotation of the plane determi- 
ned by the momenta of the scattered rotons. In this way 
the roton self-energy will be given as the sum of the 
single self-energy contributions corresponding to the 
different quantum number m.

In what follows the above two possibilities will be
considered
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g4H 0 otherwise, both the lifetime and the energy shift 
of the rotons is describable reasonably.
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ughly we have:

ImS  < V  Л > Д 0) ^  в 4 § 2(к0!2Л)

It is worth nothing, that the above mentioned behaviour 
of the self-energy will be not change if the roton-roton 
coupling is allowed to depend on the total momentum of 
thejtwo scattered rotons. The expression for the self-ener­
gy given in Eq. 11 and the upper limit for Re'S given in 
Eq.16 remain unchanged.

ft
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Conclusions

Assuming a <£(r-r') type interaction, that part of the 
roton self-energy has been examined which is proportional 
to the number of rotons, as the experiments show this be­
haviour for the lifetime and the energy shift of the ro­
tons. The processes that contribute are those in which 
one roton is excited thermally. It has been show that the 
H-F approximation is applicable for the roton-roton inte­
raction in the weak coupling limit only, and the final 
state interaction has an essential role. The formation 
of the bound state of two rotons - which comes into being 
at arbitarily weak attractive interaction - changes fun- 
damentaly the two-roton density of states. With increa­
sing strength of the roton-roton interaction the states
from the two-roton continuum are transfered into the bo­

ti.
und state and accordingly the density of states in the 
two-roton continuum decreases. Since the imaginary part 
of the self-energy on the energy shell is proportional 
to the product of the two-roton density of states in the 
two-roton continuum and of g^ , increasing the interacti­
on Im 2  goes to a constant value which remains only 1/4 
part of the experimental value. The real part of the ro­
ton self-energy to which the states in the two-roton con­
tinuum and in the bound state contribute with opposite 
sign, with the increase of the strength of the interac-
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tion changes sign and tends to a finite positive value.
The maximum value of the real part of the roton self-ener­
gy is only 1/7 part of its experimental value.

Both real and imaginary parts of the roton self-ener­
gy have a similar behaviour in the case that the roton- 
roton interaction is separable; thus the successive ro- 
ton-roton collisions happen independently of one another,
i.e. both the Green function of two rotons and the roton 
self-energy can be expressed as the sum of a geometrical 
series.

It is known, that the scattering of rotons on the con­
densate leads to a hybridisation between the one partic­
le and the two-roton states. This hybridisation gives ri­
se to the two branch structure observed in neutron scatte­
ring experiments. The temperature dependent contribution

/of the roton-condensate scattering to the roton self­
energy is a nonlinear function of the coupling constant 
for the following reason: the self-energy contribution 
coming from the hybridisation process is proportional to 
the one particle density of states near the two roton 
energy. However, the hybridisation process expells the 
states from this place to the lower and the higher ener­
gies, producing the two branch structure. In this way 
the roton self-energy contribution resulting from the 
hybridisation process has a similar structure, than if 
only the direct roton-roton interaction is taken into



account. Considering these two possible roton-roton inte­
raction processes together, the total contribution due to 
the interference will be the same as if there were only- 
one interaction process.

to describe the temperature shift of the roton energy, 
following Fomin, a strong angular dependence has been 
supposed for the roton-roton interaction. The self-energy 
being given as the sum of the partial self-energy cont­
ributions labelled by the quantum number m, the experi­
mental value can be fitted by supposing that there are 
at least seven sufficiently strong channels. For example, 
assuming for the first seven channels that g^=-1x10~^8ergcm^ 
and that for the other channels is much smaller, we 
shall get for both the imaginary and real part of the 
self-energy a value which is in agreement with the expe­
riments.

This sharp angular dependence of the roton-roton in­
teraction means at the same time that the strength of the 
roton-roton interaction will be decreasing as the total 
momentum of the scattered rotons desreases. This may be 
the reason why in light scattering experiments (where the 
bound state at K=0 is examined) the coupling constant 
appears to be very small.

As with a type interaction it is not possible
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Fig.1. Comparison of the Landau-Feynman excitation spectrum 
(dotted curve) with spectrum obtained from neutron 
data ( solid lines).

Fig.2. The roton energy as the function of fr* e for
different pressures estimated from the results of 
neutron scattering experiments done by Dietrich et. 
al.13

Fig.3. The calculated imaginary part of the roton self-ener­
gy (at 31=Л+Т ) divided by ( ? e - ^  versus the 
roton-roton coupling is represented by the solid 
line. The dotted line represents the Yau-Stephen 
limit.

Fig.4. The self-energy diagrams for the one particle Green's 
function: a) Hartree-Fock approximation, b) self­
energy diagram where G2 includes two roton bound 
states, c) Diagrammatic representation of the Bethe- 
Salpeter equation for two-roton propagator &2‘

Fig.5* The real part of the roton self-energy divided by
the result of the Hartree-Fock approximation versus
energy for different coupling constants.

/— I _ A №Fig.6. The calculated roton energy divided by \T e 1 
as the function of the value of roton-roton coup­
ling (solid line). The dotted line represents the 
result of the Hartree-Fock approximation.

Figure Captions
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Fig.7. a) and b) Diagrammatic representation of the self­
energy contributions coming from the interaction 
of rotons with particles in the condensed state, 
c) The diagrammatic representation of the influen­
ce of the hybridization process of the two- and 
one-particle Green’s functions.
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