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SUMMARY

The temperature dependence of the roton energy is examined consider-
ing its collision with any other thermally excited roton and the interaction
between one excitation and two rotons. The final state interaction strongly
modifies the two-roton density of states and therefore the Hartree-Fock ap-
proximation is not valid for the roton-roton scattering. Using point inter-
action model for the roton-roton coupling and examining only the self-energy
processes for the one particle Green function linear in the number of rotons
it is shown that the amplitude of this temperature dependence changes sign
as the roton-roton coupling strength is increased and an upper bound is ob-
tained for the temperature dependence of the roton energy. As this upper bound
is only 1/7 part of the experimental result, they can be interpreted only by
assuming more than seven independent channels with different angular depend-
ence .

PE3IOME

WccnepoBaHa TemnepaTypHas 3aBUCUMOCTb 3HEpPrvuM poToHa, paccmaTpuBasi
€ro CTO/IKHOBEHME C APYTMMUA TEepMUYEeCKM BO36YXAEHHbIMM POTOHaMU W Nepexofb ABYX
pPOTOHOB B OAHO BO36yxAeHWe. B3aumogelicTBMe B KOHEYHOM COCTOSIHAM CUIbHO MOAU-
(puuMpyeT MIOTHOCTb [ABYXPOTOHHbLIX COCTOSIHWIA, W MO3TOMY nNpubnmkeHne XapTpu-®oka
HEeNnpMMeHUMO A1 POTOH-POTOHHOIO paccesHusi. [pyu BbUNCIEHUN OAHOYACTUYHOW (YHK-
umm FpyHa 6bMM NPUHATH BO BHUMaHME TOMbKO COOCTBEHHbE 3HEepreTuyeckue avarpam-
Mbl, MPOMOPLUUOHAJIbHbIE YUC/TY POTOHOB, U 6blI0 MCMNOMbL30BaHO MNPUGANXEHNE TECHOro
B3aMMofelicTBUss POTOHOB. TakuMm o06pa3om 6b/I0 MoKasaHo, 4YTO aMnauTyga 3TOW Tem-
nepaTypHoOili 3aBUCUMMOCTW MEHSIeT 3HaK MNpu YBE/NYEHUN KOHCTaHThl POTOH-POTOHHO
CBA3M N Obl1 HalleH BepxHWl npefen TemnepaTypHOil 3aBUCUMOCTU 3HEPruu pOTOHA.
BepxHuii npepen coctaBnseT 1/7-y 4acTb 3KCNEPUMEHTa/IbHOIO 3HayeHusi, YTO MOXET_
ObITb OOGBSCHEHO TONBKO MPEeAno/IOKEHVMEM CYWEeCTBOBaHUSA CEMU HE3aBUCUMbIX KaHau10B
C pas/IM4YHON Yr/I0BOW 3aBUCUMOCTbK.

KIVONAT

A rotonoknak egymassal vald ltkdzését és az egyrészecskés gerjeszté-
sek és a kétrotonos allapotok kozotti kolcsbnhatast fFigyelembe véve megvizs-
galtuk a rotonenergia hémérsékletilggését. A két roton allapotsiriséget a fel-
1ép6 végallapotkdlcsbnhatas er8sen megvaltoztatja, ezért a Hartree-Fock koze-
lités nem alkalmazhaté a roton-roton szérasnal. A rotonok kozott kontakt kol-
csbnhatast feltételezve és az egyrészecskés Green flggvényben csak a roton-
szammal linearis sajatenergias folyamatokat tekintve megmutattuk, hogy a ho-
mérsékletfiggés amplitiddéja a csatolas erdsségének novelésével eldjelet valt
és a rotonenergia hémérsékletfiiggésére egy felsd korlatot kaptunk. Mivel ez a
fels6 korlat a kisérleti értéknek csupan 1/7-ed része, fel kell tételezni,
hogy toébb mint hét egymastéol fiiggetlen kildonb6z6 szogfiiggési csatorna létezik.



Introduction

In order to interpret the thermodynamical properties
of superfluid helium Landau™ has proposed the existence
of two types of elementary excitations in Hell. There are
long wavelength density fluctuations, the phonons, and
elementary excitations with wavelength corresponding to
the mean atomic distance iIn the liquid, the rotons. The
best description of rotons has been given by Feynman2 and
later in an improved form by Feynman and Cohens- Starting
from first principles they were able to derive the ele-
mentary excitation spectrum shown in Fig.1l. This theory,
however, due to the applied variational method could not
say anything about the interaction between the elementary

excitations.

Examining the iInteraction between the elementary exci-
tations of Hell Landau and Khalatnikov”™ have shown that
at low temperatures (T<1°K) the interaction between pho-
nons, and at higher temperatures (below the point) the
interaction between rotons play fundamental role. These
interactions were calculated iIn Hartree-Fock (H-F) app-
roximation with the assumption that there 1i1s a direct in-

teraction between rotons.

Recently, numerous experimental and theoretical results

have shown that the roton-roton interaction cannot be
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described in H-F approximation. Thus, Raman scattering
experiments in superfluid helium done by Greytak et.al”
have shown that the two-roton density of states (for to-
tal momentum K near zero) has a strong deformation. This
experiment was explained by Ruvalds and Zawadowski6™"

and i1ndependently by Iwamotoo, with the supposition that
there i1s a direct attractive interaction between the ro-
tons. An arbitrarily weak attraction between two rotons
gives rise to a two-roton bound state which 1s split
off below the two-roton continuum. The above theoretical
predictions have been verified by more recent experiments
of Greytak et.al.” which yield a binding energy Eg=0.37°K

for the bound pair with K=0.

Neutron scattering experiments have shown the appea-
rence of two branches iIn the elementary excitation spect-

rumlo'll, which may be iInterpreted as a consequence of an

interaction between the one particle and two-roton states6*7-
Both light scattering and neutron scattering experiments

12 show a simple depen-

as well as viscosity measurements
dence of the roton linewidth on the number of rotons. This
fact can be explained reasonably by assuming that the do-

minant iInteraction at T> 1°K is the roton-roton scattering.

Recent neutron scattering experiments done by Dietrich
et.al.15 (see Fig.2.) show, that the roton energy as the
function of temperature decreases proportionally to the

number of rotons. The experiments have been done in a wi-



de i1nterval of pressure. As 1t can be seen from Pig.2.
the temperature dependence of the roton energy can be

written iIn the form:
n(r)=40- 33"r"e AN °K (@)

where T iIs the temperature, and only depends on the
pressure (in atm) in the following way: AQ8.75-0.12p
Assuming a direct interaction between rotons with coup-
ling constant g”, Ruvalds”™ has calculated the tempera-
ture dependence of the roton energy in H-P approximation.
In order to fit the experimental results he had to sup-
pose g/= —3-7x10_9©ergeé\- It is worth mentionong that
this value of the roton-roton coupling is close to that
value which 1i1s needed iIn H-F approximation to fit the
experimental roton lifetime. Taking Into account this
temperature dependence of the roton energy Ruvalds has

been able to calculate the temperature dependence of the

superfluid part of Hell iIn agreement with experiment.

The appearence of the bound state of two rotons and
the hybridisation between the one and two particle states
show that the roton-roton iInteraction should be studied
in a better approximation than the H-P one. Taking into
account the final state interaction, a consequent inves-
tigation of the roton lifetime has been done first by Fo-
min”~. Similar result have been obtained by Yau and Step-
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henl”™ and Nagai et.al. The iInteraction of rotons with



the particles of the condensate have also been taken iInto
account by Solana et.al.l8 The above authors find that due
to the roton-roton iInteraction, the two-roton density of
states i1s strongly deformed, and the lifetime of a free
roton goes to a constant value as the strength of the att-
ractive interaction increases (see Fig.3.). This upper
bound value remains four times less than the experimental

result.

The 1ntention of this paper iIs to Investigate the iIn-
fluence of the final state iInteraction on the temperature
dependence of the roton energy to decide, whether the re-
suit of H-F calculationAilis satisfactory, or the higher
order processes play an equally important role as i1n the

case of the roton lifetime theory.



Chapter 1

The formalism applied in what follows is the same as
in Ref.6,7,18. The basic point is that the rotons are
taken as well defined one particle excitations below the

point, where the inverse roton lifetime remains much
smaller than the roton energy. In this way employing the
finite temperature Green function technique we take the

roton propagator iIn the form:

Glk;lin)= -—————————- - @)
\ 2(k;imn)
where Uun:ZItnT (n 1s an integer and T 1s the tempera-
ture). The roton dispersion curve is choosen iIn the form:
Nn =8.67 °K

(k-kV
where k0=1.92 8"1 ®)

/V ° - 16mHe4
As these parameter values come from the experiment, they
refer to interacting rotons already and therefore in the
self-energy the temperature independent real energy shift
corrections should be neglected.

As 1t has been pointed out iIn Ref.18 1t is a good app-
roximation to neglect the real part of2 in the further
calculation”™. The i1maginary part of the self-energy for
energies near to [ 0 and for momenta near to kQ can be

considered as energy and momentum iIndependent. The expe-



rimental value 1s for the single roton width = Im™ )

1S:

The temperature dependence of the roton energy will be

determined by the following equation:

A (DFAO + Re"2(ko;A(D) @)

Because we are iInterested only in that part of the self-
energy which 1is proportional to the number of rotons, on-
ly the processes which are first order in the number of
rotons will be examined. It iIs not a bad approximation of
the self-energy because below the ™ point the number of

AID

rotons 1is proportional to f%>e- T which 1s a small pa-
rameter. In terms of Feynman graphs we will consider the

diagrams containing only one "backward-going™ roton line

which corresponds to a thermally excited roton. The hig-

her order diagrams containing more than one "backward-

going™ roton Hline will be neglected.

Let us suppose, that the iInteraction between the ro-
tons may be described by a contact coupling g, which is
independent of the energies and momenta of the scattered
rotons. In this case there are only two diagrams with one
"backward-going' roton line (see Fig.4). The diagram in
Fig.4/a corresponds to the H-F approximation, while the

diagram in Fig.-4/b represents a process where in the in-



termediate state the two rotons interact. This iInteracti-
on given hy means of the two roton Green function iIs shown
in turn iIn Fig.4/c. The analytical form of the roton self-

energy given hy Fig.4. 1is:

2 (kun, )=-i2 \__dmtg sl1(n;1m3n ,)™2g4 + B2(K+k]1(n+1uwn,

n n*\(2Tvr
©)

The two-roton Green function G2 includes the roton-roton
scattering to infinite order.

As a consequence of the used separable interaction the
infinite geometrical series for the two-roton Green func-
tion can he summed up and we obtainz*18:

GZo)K;1ton)
G2(K;Uon)= @

"1 1cnkji iu-

Here the unperturbed two-roton Green function is introdu-

ced 1n the following way:

K;lu>n)=-T2 ~77~3 S1°(i;iwn,)GLK-1;1iu3n-1u3n,)
(1 (8)

After performing the sum over frequency con, and the in-

tegration over K we obtain for G

) - , - in -2A1+iP
GTYK;iu,n)=-4S>22(K) In 9
X ) 739O 1ug-2A +1T ®
n o]
2
where ~ 2"\ )= is the density of states of nonin-



teracting rotons for momenta of iInterest, 1i.e. 0'1koq-K<2kcf
and&”™ 1i1s the energy of a "maxon"™ (see Fig.1l).

In Eq.6. the summation over U>n, can be easily done by
transforming the sum to a contour iIntegral. We may restrict
ourselves to the cut of the one particle Green function.

As at small temperatures the occupation number for ener-
gies near to the two-roton energy is much smaller than
that for energies near to [J o, the contribution coming
from the pole of the two particle Green function - cor-
responding to two thermally excited rotons - can be neg-
lected. From this 1t follows that the roton self-energy

can be written as:

204nB (W ) $1(k; ™)
2(K:;NM)=un% (10)
1- NK+k;BL+bl )
where we i1ntroduced the one particle spectral function:
£_l(k;uo)=—- ‘- Im G] &; 1> n=>* wHI<G )

and the Bose function:

r~ 1-
NB(t' )= Le"~ 1

In the temperature region I<f T<f1.8°K i1t is true from
Eq.4.that '« T, therefore the following approximation
can be used: nBQj )™(k;”™ )~ nBElc) = With this form
of &1 we obtain:

2g ’

2 (K;N)= S-a£-3 N3(1") 1)
~ 1- A GAN(KHK;



First let us consider the properties of the roton self-

energy given by Eq.11.

Neglecting the intermediate state iInteraction, 1i.e.
leaving off the denominator of the iIntegrand in Eq.11.
we get back the H-F approximation. After making the iIn-
tegration over k, we get for the real part of the roton
self-energy in this approximation the following expres-
sion:

Re2H"F = 2g4Nr (T) 12
where

a3

iIs the number of rotons. Ruvalds”™ could fit this expres-
sion to the experimental recults on the temperature de-
pendence of the roton energy with g"= —3,7x10“38ergcm3-
The H-F approximation however, as it can be seen from
Eg-11, can be applied in the weak coupling limit only.
Let us consider the strong coupling limit. In this ca-
se In the denominator of Eq.11. we can neglect the 1 ,
so the real part of the self-energy becomes:

RGZ(K.A):fAL 2B <V ,(H)

\ 2N)” j W XK+S) @ +V  +F2 GT+V

where

@b -Sl)2+Y2

f D= In -~——— — "2 —f ,
-Oh=1n (N-2[or+rn

2h.-n)(N-240 H)+r2
2 (S1)=TT +2arotg—————————————————————



Por g~—>co , independently of the sign of the coupling
Re” tenda to a finite positive value, which leads to the
increase of the roton energy with the temperature iIn cont-
rast to the experimental fact.

For the real part of the roton self-energy - at larger
energies than the roton energy - we get an upper limit on
Re*2, 1n analogy with the upper limit for the imaginary
part of the self-energy (see Fig.2.) which Fomin ? and
Yau-Stephen have pointed out. From Eq.11, Re E 1is:

1-§1:ReG, °

Re"S (K;.51)= s
nB(E*)2gM - |~AReG2°j2 +||4ImG2°y

Using the i1nequality:

X ‘ 1
leaz 2\a\
we obtain: s D
2nB(EN)-————- = —————— -
@nr JIMG2° (K+k; Fl +EK\

After making the integration over k, we get the following

upper limit for the real part of the roton self-energy:

I (K:A~40) <« —S2 Nr(D (16)

This limit i1s 6 times less than the experimental value!

Returning to the expression of the Re ~# given by Eq.11,

the integration over angles can be carried out and at the



roton momentum we have:

A(koi51)=2g4] A~ | nB(~)~1-2ei (FL+1F2) +
@an

” ND N
+29 pz(f 1+1fF? r in 1__®_ﬁ_£j_t'__2

4 “gl (F1+1€2) +E,
where the dimensionless coupling gjj=g™ €2*(2kQ) has been
introduced. It i1s worth mentioning that the value of the
dimensionless coupling at a typical value of g™ remains
small enough @f g"=1x1CT~8ergcm”™ than gj=0.075 ) which
justifies the applied perturbational method.

The remaining iIntegration over K can be made numerical-
ly. The study of the imaginary part of the self-energy
was given in Ref.18. At energies larger than the roton
energy the Im”™ can be seen In Fig.3. as a function of
the coupling parameter. As the value of the coupling inc-
reases the Im”~ at small couplings like than in the H-F
approximation - proportional to the square of the coup-
ling - and at larger values it tends to a constant value
- to the Yau-Stephen limit - which i1s only 1/4 of the
experimental result.

The energy dependence of Re” iIs shown iIn Fig. 5 tor
a few values of the coupling. In the knowledge of Re/|
the roton energy is given as a function of the roton-ro-
ton coupling. This is represented in Fig.6. For small

coupling the H-F approximation 1is valid. Its range of va—



lidity is 0.5x10 ~®ergcm”™. At a given temperature
the roton energy is minimal jor g”= -0.9x10*“"™8ergen/, but
this decrease i1s too small, being 7 times less than the
experimental value. For largir couplings the temperature
dependent correction to /SQ s still smaller and above a

certain value of g™ 1t even ecomes positive.

Consequently, supposing a contact c/r-r*) type inte-
raction between rotons the experimental decrease of the
roton energy cannot be interpreted. It can give only 1/7
part of the experimental result. The reason of this 1is
the exsistence of a strong final state interaction iIn the
roton collision. The attractive roton-roton iInteraction
shifts the energy of the two-roton towards lower energi-
es and results In a two roton bound state. Increasing the
strength of the coupling, the two-roton continuum iIs de-
populated and the weight of the two roton bound state in
the two roton density of states iIncreases. As the cont-
ribution of the two-roton continuum and that of the two
roton bound state to the real part of the roton self-ener-
gy has opposite sign, due to the above mentioned depopu-
lation of the continuum Re"S has a peculiar dependence
on g~. This can be seen iIn.Fig.5. and Fig.6.

The decrease of the number of states iIn the two-roton
continuum reflected iIn the behaviour of Ira"S as a func-
tion of the roton-roton coupling as well as, 1t can see

on Fig.3. For energies higher than the roton energy, ro-
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A. The i1influence of the iInteraction between the one

particle and two-rpton states on the roton self-energy.

Besides the ordinary roton-roton scattering the col-
lision of a roton with a particle In the condensate can
also give contribution to the roton self-energy. The in-
fluence of this process - 1.e. that of the hybridisation
between the one particle and two-roton states - on the
elementary excitation spectrum of the Hell was investi-
gated by Ref.6,7. This interaction can be characterized
by a coupling g~, which obviously will depend on the num-
ber of particles iIn the condensated state. The processes
contributing to the roton self-energy are represented
in Fig.7. It 1s worth noting that the influence of the
hybridi''a®tion have to be considered iIn the diagrams of
Fig.-4/b as well. In this diagram the one (two) roton
Green function G (GE) should be repleaced by G (GE)
which allows for two (one) particle states In the i1nter-

mediate state. The total contribution to the roton self-

energy Iis:

T (K:;i03 )= t2
n n

(6)

J K+k;iwn+iwn,

where the Green function are renormalised due to the hyb-
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ridifcation in the following way:

G (k;lmz ) G?(k;iua )
GAkjioo )=—— F----- 2- , G2(krtvon)=  ----- n (19)

In Eq.18. similary as earlier only the cut of the 'back-
ward-going"™ single roton propagator should be considered.

After making the sum over energy, and applying the app-

roximation » -E*) 1t gives the following expression:
2
Akzny= 9K ng Jeff 20)
@D 1- GA°)(Kk;51 +EK)

i.e. the structure of the self-energy i1s the same as iIf
only the roton-roton collision is included (see Eq.11).
The effect of the coupling g” can be i1ncorporated into

an effective coupling g™":

292
geff= g40 + -gNiK+iciSI+1M)) (21)

This effective coupling is complex due to the imaginary
part of the one particle Green function. The iImaginary
part, however, can be neglected.

The upper limit for the real part of the self-energy
given in Eq.16, is independent of the coupling g, and
it i1s valid even 1T hybridisation is taken iInto account.
Neglecting the contribution of the diagram in Eig.7/b,

there are two independent scattering channels represen-



ted by the couplings g™ and g™ respectively. This would
give approximately twice higher value for the self-energy.
The dragram on Fig.7/b represents the interference term
between the two iInteraction, and as a consequence of this
the self-energy shift is reduced as if there were one In-

teraction only.
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B. Roton-roton collision taking into account the sta-

tes with higher angular momenta

Up till now, it has been assumed that the roton-roton
vertex can be repleaced by an cf(?-?") type interaction,
which corresponds to the scattering with angular momentum
1=0. As this attempt to explain the temperature dependen-
ce of the roton energy failed, a better description of
the angular dependence of the roton-roton vertex should
be taken into account, as proposed by Fomin15- Due to the
special form of the phonon-roton dispersion the motion of
the center of mass of the scattered rotons can not be se-
parated from the relative motion. Expanding the roton-ro-
ton vertex with respect to the sperical harmonics, the
scattering states having different angular momenta will

be mixed. Therefore, it is more useful to expand the ro-

ton-roton vertex with respect to an angle:

22)

where the angle IF characterises the rotation of the plane
determined by the momenta of the rotons before and after
the scattering. As the rotons are Bose particles, the
expression of the roton-roton vertex given by Eq.22. has
even m only.

The coupling constant g|m”~belonging to the different
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channels m are supposed to be i1ndependent of the momenta
for the following reasons: 1f only those collisions are
considered where all the particles are rotons, they will
have approximately the same momenta iIn absolute value,
and therefore the dependence of the roton-roton vertex

on the angle between the iIncoming, as well as between the
outgoing rotons will be negligible.

The dependence of the coupling constants g~ on the
total momentum of the scattered rotons can not change the
character of the behaviour of the roton self-energy as it
was pointed out In the previous chapter.

Using the above approach, it is easily to see that the
roton self-energy can be expressed as the sum of the
self-energy contributions corresponding to different

channels 1n the quantum numuer m:

die 2g
Z (K;£-)=Z nB (Ek)

" @3
m (200 1 4 GE)(K+k:SZ +EK)

For each terms of the sum iIn Eq.23 the limit given in
Eq-16 i1s valid. In order to get the experimental value of
the shift of the roton energy, the coupling constants
g/m*should be different from zero several value of m. The
smallest number of channels, which Is necessary to get
the observed lifetime i1d four, while for the real part

of the self-energy it iIs seven. For instance, assuming

that for the first seven channels g”~=-1x10“"8ergcm”™ and



Chapter 11

In order to explain the temperature dependence of the

roton energy there remain the following two possibilities

A. Maintaining the éssumption that the roton-roton iIn-
teraction 1is cT(r-r*) type, we should considered the roton
roton collisions with one elementary excitation in the
final state. This process leads to an iInteraction between
the one particle and two-roton states. Its contribution
can be Important, as the appearence of the two branch
structure 1In the neutron scattering experiments can be ex
plained with this couplin96'7-

B. Another possibility to explain the observed shift

15 The roton-

of the roton energy was proposed by Fomin
roton vertex can be expanded with respect to the m-th
Fourier coefficient of the rotation of the plane determi-
ned by the momenta of the scattered rotons. In this way
the roton self-energy will be given as the sum of the
single self-energy contributions corresponding to the
different quantum number m.

In what follows the above two possibilities will be

considered
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gH O otherwise, both the lifetime and the energy shift

of the rotons 1is describable reasonably.



ughly we have:

ImMS <V 1>[0)" B48§2(KO12/)

It 1s worth nothing, that the above mentioned behaviour

of the self-energy will be not change i1f the roton-roton

coupling i1s allowed to depend on the total momentum of

thejtwo scattered rotons. The expression for the self-ener-

gy given i1n Eg. 11 and the upper limit for Re"S given 1n

Eq.16 remain unchanged.
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Conclusions

Assuming a <€£(r-r") type interaction, that part of the
roton self-energy has been examined which is proportional
to the number of rotons, as the experiments show this be-
haviour for the lifetime and the energy shift of the ro-
tons. The processes that contribute are those i1n which
one roton iIs excited thermally. It has been show that the
H-F approximation is applicable for the roton-roton inte-
raction in the weak coupling limit only, and the final
state interaction has an essential role. The formation
of the bound state of two rotons - which comes into being
at arbitarily weak attractive interaction - changes fun-
damentaly the two-roton density of states. With increa-
sing strength of the roton-roton interaction the states
from the two-roton continuum are transfered into the bo-
und state and accordiﬁbly the density of states iIn the
two-roton continuum decreases. Since the i1maginary part
of the self-energy on the energy shell 1is proportional
to the product of the two-roton density of states in the
two-roton continuum and of g , increasing the iInteracti-
on Im2 goes to a constant value which remains only 1/4
part of the experimental value. The real part of the ro-
ton self-energy to which the states iIn the two-roton con-
tinuum and iIn the bound state contribute with opposite

sign, with the increase of the strength of the interac-
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tion changes sign and tends to a finite positive value.
The maximum value of the real part of the roton self-ener-
gy i1s only 1/7 part of i1ts experimental value.

Both real and imaginary parts of the roton self-ener-
gy have a similar behaviour iIn the case that the roton-
roton interaction iIs separable; thus the successive ro-
ton-roton collisions happen independently of one another,
i.e. both the Green function of two rotons and the roton
self-energy can be expressed as the sum of a geometrical
series.

It 1s known, that the scattering of rotons on the con-
densate leads to a hybridisation between the one partic-
le and the two-roton states. This hybridisation gives ri-
se to the two branch structure observed in neutron scatte-
ring experiments. The temperature dependent contribution
of the roton-condensate scattering to the roton éelf—
energy i1s a nonlinear function of the coupling constant
for the following reason: the self-energy contribution
coming from the hybridisation process is proportional to
the one particle density of states near the two roton
energy. However, the hybridisation process expells the
states from this place to the lower and the higher ener-
gies, producing the two branch structure. In this way
the roton self-energy contribution resulting from the
hybridisation process has a similar structure, than iIf

only the direct roton-roton interaction iIs taken into



account. Considering these two possible roton-roton inte-
raction processes together, the total contribution due to
the i1nterference will be the same as i1f there were only-
one interaction process.

As with a type interaction i1t is not possible
to describe the temperature shift of the roton energy,
following Fomin, a strong angular dependence has been
supposed for the roton-roton interaction. The self-energy
being given as the sum of the partial self-energy cont-
ributions labelled by the quantum number m, the experi-
mental value can be fitted by supposing that there are
at least seven sufficiently strong channels. For example,
assuming for the first seven channels that gn=-1x10~"8ergcm”
and that for the other channels is much smaller, we
shall get for both the imaginary and real part of the
self-energy a value which is In agreement with the expe-
riments.

This sharp angular dependence of the roton-roton in-
teraction means at the same time that the strength of the
roton-roton interaction will be decreasing as the total
momentum of the scattered rotons desreases. This may be
the reason why i1n light scattering experiments (where the
bound state at K=0 i1s examined) the coupling constant

appears to be very small.
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Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5*

Fig.6.

Figure Captions

Comparison of the Landau-Feynman excitation spectrum
(dotted curve) with spectrum obtained from neutron
data ( solid lines).

The roton energy as the function of fr*e for
different pressures estimated from the results of
neutron scattering experiments done by Dietrich et.
al_13

The calculated imaginary part of the roton self-ener-
gy (at 31=/1+T ) divided by ( ? e - ~ versus the
roton-roton coupling Is represented by the solid
line. The dotted line represents the Yau-Stephen
limit.

The self-energy diagrams for the one particle Green®s
function: a) Hartree-Fock approximation, b) self-
energy diagram where G2 includes two roton bound
states, c¢) Diagrammatic representation of the Bethe-
Salpeter equation for two-roton propagator &2 °

The real part of the roton self-energy divided by
the result of the Hartree-Fock approximation versus
energy for different coupling constants.

The calculated roton energy divided by <ﬁle_ A %

as the function of the value of roton-roton coup-
ling (solid line). The dotted line represents the

result of the Hartree-Fock approximation.



Fig.7.
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a) and b) Diagrammatic representation of the self-
energy contributions coming from the interaction
of rotons with particles in the condensed state,
c) The diagrammatic representation of the influen-
ce of the hybridization process of the two- and

one-particle Green’s functions.
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