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ABSTRACT
The two-dimensional complex sphere 86 + 52+ 5% = g2 forms a

homogeneous space under the SL(2,C) group. The little group of a point in
this space is the S0(2,C) group or the horosheric group T(2) according to
whether S0 or s=0 . Deformation of the SO (2,C) group into T (2) is
investigated and 1is demonstrated on unitary representations. This deforma-
tion is a counterpart to that of the little groups S0(3), E(), S0(,D)
belonging to the hyperboloid family.

PE3IOME

JBymepHas KoMMjieKCHas cgepa SE+S§+S§:SZ obpasyeT OAHOPOAHOE npocTpaH-

CTBO OTHOCMUTENbHO rpynns JlopeHua. ManbiMM rpynnamm HEKOTOPOW TOUKU, Haxogsuwencs
B 9TOM npocTpaHcTBe aBnswTtca SO0(2,C) wnu rpynna opuchepmnyeckux TpaHcnauumin T(2)
B 3aBMCUMOCTM OT Toro, 4to S0 mam S=0. B HacToswen paboTe paccmoTpeHa gedop-
mauua rpynnel SO(2,C) B rpynny T(2), a Takxe npoAeMOHCTpUpOoBaHa Ha COOTBETCTBYH-
WMX YHUTapHbIX npencTaBfeHMAX. BblueykasaHHas gedpopmauuns npegctasnsdeT coboii aHa-
normnw pgedopmauui gpyr B gpyra mansix rpynn S0(3), E(2), S0(2,1), npuHagnexawmx

K ceMeWcTBY runepbonovga.

KIVONAT

Az S? + So + sl = egyenlet altal leirt kétdimenzids komplex gomb
homogén teret képez az SL (2,C) csoporttal szemben. Egy ebben a terben helyet-
foglalé pont kiscsoportja az SO (2,C) illetve a T (2) horoszférikus alcsoport,
attol figgéen, hogy S”O vagy S=0 . Jelen dolgozatban az SO (2,C) csoport-
nak a T (2) csoportba vald deformaciéjat vizsgaljuk és az unitér abrazolaso-
kon demonstraljuk#. Ez a deformacidé a hiperboloid csaladhoz tartozéo SO (3) *
E (2), SO (2,1) kiscsoportok egymasba vald deformalasanak analogonja.



horospheric group isomorphic to the two-dimensional translation group T(2) .
To this end a family of homogeneous spaces should be used the little groups

of which are apt for demonstration of the deformation process. Since the prop-
er Lorentz group is isomorphic to the connected part of the three-dimensional
complex rotation group [5], the two-dimensional complex sphere

SN + 52 + = sz /1.1/
/hereafter £9 / forms a homogeneous space under the proper Lorentz group,
as well as under SL(2,0) . The three-dimensional complex vector
S = (s, s2,s83) , which is the self-dual part of a Lorentz covariant
antisymmetrie tensor S /u,v =0,1,2,3/ under Ae SL(2,¢) transforms
as follows
Asa L /1.2/
where s - + 0252 + °3S3 and c¢n-s stand for the Pauli
- Ky
matrices. = /
We choose a standard vector on as follows
SQ = (0, 0, S) . /1.3/

Here S 1is supposed to be non-zero. The [little group of this vector, that 1is,
the subgroup of SL(2,c) satisfying the condition

n 1
S, HY /1.4/

is clearly of the form

Hom = e_igo% = /1.5/

*~Under proper Lorentz transformations, a complex vector A transforms like
B+iE , where B and E are the magnetic and electric fTield strengths,
The~invariance "of the square (B+iE)2 = B2-E2 + 2IBE is well known from
electrodynamics as well.



where N~ + 1f2 is a complex angle with a real part describing a rotation
about the z-axis and varying iIn the range -2 < " < 2n and with an imaginary
part describing a boost along the z-axis and varying in the range < @O
It follows that this group Iis S0(2,c) = S0(2) * So(l,D

In a similar way, by choosing the standard vector

= (s, is, 0) , IS ¢ 0/ /1.6/

on the complex sphere of zero radius , we arrive at the horospheric little
group isomorphic to the two-dimensional real Euclidean translation group T(2),

. 1 -14»
“the,
H (9 = /1.7/
0 1
where o+ - + 1a2 and f= £ + . In the present case both and "2
vary from to . It is easy to see the validity of the inverse statement,

that is, if the little group of a three-dimensional complex vector is

T(@) /50(2,c)Y then it is situated on the complex sphere of zero /non-
-zero/ radius. Here and throughout this paper the § =0 point is supposed
to be excluded from Eq since this point itself is invariant under SL(2,c)
Hence by including B=0 the homogeneity of Eq would be spoiled.

Consider now the vector

interpolating between SQ and - Here T is a real parameter describing
the deformation varying in the range

ONMNT <@

The limits of the vector /1.8/ as T-10 and are SQ and SMN as given
by Eqs. /71.3/ and /1.6/. Since the |length of the vector ST

e /1.9/

is non-zero for t<° the little group of ST is an So(2,c) group isomor-
phic to HQ. For the little group as given by Eq. /1.7/ is obtained.
By making use of Egs. /1.2/ and /1.8/ we get an explicit form of the little
group of ST for an arbitrary value of T :



s 1 £ i - 1 7T
-i 40 5 21T siIn 13T 2
/1.10/
T(E) = expf~4(a3 + TO+) jpp
L]
0 1+ 5
In other words, this subgroup satisfies the equation
HT(£) S; HT m 1= ST /1.11/
with S given by /1.8/. The range of 4=~ + i™2 in this case 1is given
by the inequalities
2ir(+x) < < 21mr(1+n), o< g2 <o .

In the next Section we proceed to an investigation of orbits generated by the
above subgroup in the space of complex vectors. In particular, we are inter-
ested in the orbits as 7T

2. Orbits on the Complex Sphere

According to Eq. /1.9/ the final point of the vector ST is sit-
uated on the complex sphere "Syl+T of radius which is non-zero for
finite x but tends to zero as . At any rate, Jsr has the little
group as given by Eq. /1.10/. Let us fix the value of T for the time being
and see what a little group H* (™) is obtained if another standard vector
of the same length is chosen instead of St . The answer is trivial, since
as a consequence of the homogeneity of ~ g +v there exists an A6SL(2,c) which
translates ST into S" :

A S 12.1

It follows then from Eq. /1.11/ that



where

Thus the

H* () = A HT(F) A-1 .

little group of an arbitrary complex vector S" () is a
HT (W) given by Eq./1.10/, that is, H*(4>) 1is isomorphic to

conjugate to
S0(2,C)when

and isomorphic to T(@) as tiD .

/2.3/

group

Now,we are interested iIn orbits of a complex vector S wunder the
t iIs supposed that the final point of S 1is situated on a

group /2.3/« 1

H®*(40c SL 2,c) the orbit

complex sphere
1c;a+1/«
Since
Moreover, it
ST@)NT = CT
/2.1/ Indeed,

of non-zero radius /not to be confused with the sphere

Under the group H"(Y”) the vector describes the orbit

sTW =h;"™ s h;w 1 . 2.4/

Illustration of orbits on the complex sphere Eg . The
orbit on the complex sphere Eg under the little group
H*CU7) is situated on the intersection of the complex

sphere Eg and a complex plane with a normal vector NT.

In the limit the orbit tends to the horosphere,
which cannot be visualized so simply since 1in this

case the normal becomes a complex vector of zero length

(i.e. nf£ "™ 0, though 0).

will be verified that the orbit lies in a complex p
= const where NT proves to be indentical with
it follows from Eqs. /2.3/ and /2.4/ that

is obviously situated on the SDhere Eg.

lane
given by Eq.



sT(P)s;

A Tr(HT (DS (W) 1 s7d =
/2.5/

Tr(s H" ("1 s" h @) =

-yTris S;/)=SS7 = C, = const.

According to this equation one can associate with each orbit generated by the
little group H"(40 a normal vector S . The orbit can be given by the
homogeneous coordinates (g(, CT) ; hevertheless, apart from the singular
case CT = 0, one can normalize CTtol by an appropriate dilatation of S* . As
the above statements are independent of the value of T, we can take the limit

, Which produces horospheres. So, according to /2.3/ ad. /2.4/ the horo-
spheres on 2 sare orbits described by the horospheric subgroup

a [f\/1 -if\V/a
h; W /a6 - yB = 1/
6/ 0 1Ay

for fixed A . Taking into account Eq. /1.9/ and the fact that transformation
/2.1/ leaves the length of ST unchanged, we get for t-*»

(scOi + (sx,)2 + (si)* =0

Thus when the SO0 ,c) group deforms into the horospheric group as , the
normal vector N = jS characteristic for the orbits arrives at the complex
sphere of zero radius, that is N&': 2 - o -it is concluded that
horospheres of E are determined by the equation SNW = 1 , Where

Ng =0 .

*/

The real and imaginary parts of a complex vector on the complex sphere of

zero radius are quantities analogous to the field strengths B and E of

1l jloctromagnotic plane wave, where B and E are of the same modulus and
re perpendicular to each other: B2 E2 =0, BE = 0



At this point a remark is in order. Namely, we did not investigate
the question whether in Eq. /2.5/ the normal vector of the plane of horo-
spheres is unique up to a factor. From a more detailed investigation which for
the sake of brevity is left to the reader, the following can be shown. A sing-
le fixed point S of the space ss is crossed by a one-parametric mani-
fold of horospheres. These are second order curves which, generally speaking,
determine unambiguously a plane with a normal of zero length, as indicated
above. However, in the manifold of horospheres crossing a fixed point there
are two positions where the horosphere degenerates into a complex straight
line. These lines can be given in the form

So(H=Af+s ., S¢™ =BFf+5

A = (Al + 1A2, Al

+ 1B2, Bx /sts3 o 0/

where the usual s+ = si “ 1S2 notation is used. Therefore, each point S, is
crossed by two straight horospheres, that are determined by the position of

S alone. These horospheres can he called horospheres of the second kind, as
distinguished from those of the first kind, which are in one-to-one correspond-
ence with the vectors of the sphere of zero radius. An analogous situation is
encountered in the familiar case of the three-dimensional real one-sheeted
hyperboloid [I] -

3. Deformation of Unitary Representations

To demonstrate the deformation on unitary representations let us
consider the linear fractional mapping of the z-plane which is a factor space

az + B
yz + 6

In the case of the S0(2,c) subgroup given by /1.5/ this reduces to

z z /3.1/

which is a rotation followed by a dilatation. In a similar way, the horospheric
transformation on the z-plane takes the form of an Euclidean displacement



The interpolating subgroup given by Eq. /1.10/ accomplishes a transformation
similar to that of /3-1/ on the displaced z-plane, i.e.

zZ"+T @+t) .

For realizing unitary representations the representation on the familiar

f(z) functions will be used [I] - Action of an element A = & on
these functions is defined as " )
T8 MN(2) = (-YZ +a)2j (-y*z* + a) 2k -yZ+a) /3.2/
where
3-1(0 -1 +i0), K=1I1(-jJO -1+ 1a0- /3-3/

Here JQ takes integer and half-integer values, while o is an arbitrary
complex number. In what follows we restrict ourselves to the principal series
of unitary representations for which o is real. In Eq. /3.2/ representations
are defined by displacement from the left which results in the following form
of infinitesimal generators:

2 _ o 203
J+ Jl + i1J2 3z K, = K1 + ik2 = 2kz z 5y
J iJ, “2jz + z2 , K /3.4/

These generators are related to the generators of spatial rotations about
kN"-axis /k = 1,2,3/ and to the generators of boosts along Ki'—axis

Nk as  Jk = I(Mk + INK) = Kk = I(Mk " iNk ) *



10 .

Spherical functions in So(2,c) basis satisfy the eigenvalue
equations

/3.5/

where

/3.6/

with U=0/ -\ | £ 1» eee and v continuous. The above basis is a gener-
alization of finite dimensional spinors to the unitary case where m and m*
correspond to undotted and dotted indices of spinors. Unitary spinors can be
succesfully applied to the evaluation of matrix elements of unitary represent-

ations of the Lorentz group, namely, they simplify to considerable extent the
results obtained in angular momentum basis.

[7, 8, 9, IO].

The solution of /3.5/ is

o
=:L-ZJmZk-'-m

/3.7/

The requirement of single-valuedness on the complex z-plane yields the condi-
tion 2y = 1integer or, to be strict, y takes integer and half-integer values
along with Jj . The functions /3*7/ are normalized as

The horospheric group as given by Eq. /1.7/ is generated by the
Hermitean generators M-]-N2 and M2+ni or “ equivalently - by the non-
-Hermitean generators J+ and K . In this basis spherical functions are solu-
tions of the eigenvalue equations

/3.8/



13 .
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