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ABSTRACT
2 2 2 2The two-dimensional complex sphere Sp + S2 + S3 = s forms a 

homogeneous space under the SL(2,C) group. The little group of a point in 
this space is the SO(2,C) group or the horosheric group T(2) according to 
whether S^O or s=0 . Deformation of the SO (2,C) group into T (2) is
investigated and is demonstrated on unitary representations. This deforma
tion is a counterpart to that of the little groups SO(3), E(2), SO(2,l)
belonging to the hyperboloid family.

РЕЗЮМЕ
2 2 2 2Двумерная комплексная сфера Sp+S2+S3 =S образует однородное простран

ство относительно группы Лоренца. Малыми группами некоторой точки, находящейся 
в этом пространстве являются SO(2,C) или группа орисферических трансляций Т(2) 
в зависимости от того, что S^O или S=0. В настоящей работе рассмотрена дефор
мация группы SO(2,C) в группу Т(2), а также продемонстрирована на соответствую
щих унитарных представлениях. Вышеуказанная деформация представляет собой ана
логию деформаций друг в друга малых групп S0(3), Е(2), S0(2,l), принадлежащих 
к семейству гиперболоида.

KIVONAT
Az S? + So + sl = egyenlet által leirt kétdimenziós komplex gömb 

homogén teret képez az SL (2,C) csoporttal szemben. Egy ebben a terben helyet— 
foglaló pont kiscsoportja az SO (2,C) illetve a T (2) horoszférikús alcsoport, 
attól függően, hogy S^O vagy S=0 . Jelen dolgozatban az SO (2,C) csoport- 
nak a T (2) csoportba való deformációját vizsgáljuk és az unitér ábrázoláso
kon demonstráljuk#. Ez a deformáció a hiperboloid családhoz tartozó SO (3) *
E (2), SO (2,l) kiscsoportok egymásba való deformálásának analogonja.
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horospheric group isomorphic to the two-dimensional translation group T(2) .
To this end a family of homogeneous spaces should be used the little groups 
of which are apt for demonstration of the deformation process. Since the prop
er Lorentz group is isomorphic to the connected part of the three-dimensional 
complex rotation group [5] , the two-dimensional complex sphere

s^ + s2 + = sz /1.1/

/hereafter £g / forms a homogeneous space under the proper Lorentz group, 
as well as under SL(2,C) . The three-dimensional complex vector
S, = (s^, s2, s3 ) , which is the self-dual part of a Lorentz covariant
antisymmetrie tensor S /u,v = 0,1,2,3/ under Ae SL(2,c) transforms
as follows

A S A -1 /1 .2/

л
where s - + o2S2 + °3S3 and cn-s stand for the Pauli

3cmatrices. /

We choose a standard vector on as follows

SQ = (o, O, S ) . /1.3/

Here S is supposed to be non-zero. The little group of this vector, that
the subgroup of SL(2,c) satisfying the condition

л л _1 /1.4/S = H S H0 0 0 0

is clearly of the form

/ -i* \ 2 0 ’
-i2°3Hom  = e 2 3 =

e
/1.5/

is,

*^Under proper Lorentz transformations, a complex vector /3 transforms like 
B+iE , where В and E are the magnetic and electric field strengths, 
The~invariance "of the square (B+iE)2 = B2-E2 + 2ÍBE is well known from 
electrodynamics as well.
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where ^  + if2 is a complex angle with a real part describing a rotation 
about the z-axis and varying in the range -2tt <_^^ < 2-n and with an imaginary 
part describing a boost along the z-axis and varying in the range < 00*
It follows that this group is SO(2,c) = SO(2) * So(l,l)

In a similar way, by choosing the standard vector

£}«, = (s, is, О ) , IS Ф 0/ /1.6/

on the complex sphere of zero radius , we arrive at the horospheric little
group isomorphic to the two-dimensional real Euclidean translation group T(2),

H (Я =
-tie2°  +

1 -14»

0 l
/1.7/

where o+ - + ia2 and f = f-̂ + . In the present case both ^  and ^2
vary from to 00 . It is easy to see the validity of the inverse statement,
that is, if the little group of a three-dimensional complex vector is 
T (2) /SO(2,c )/ then it is situated on the complex sphere of zero /non-
-zero/ radius. Here and throughout this paper the § = О point is supposed 
to be excluded from Eq since this point itself is invariant under SL(2,c) 
Hence by including J3 = О the homogeneity of Eq would be spoiled.

Consider now the vector

interpolating between S Q and . Here т is a real parameter describing
the deformation varying in the range

O ^ T < 00
The limits of the vector /1.8/ as т-Ю and are SQ and S^ as given
by Eqs. /1.3/ and /1.6/. Since the length of the vector ST

S
1 + T /1.9/

is non-zero for t<°° the little group of ST is an So(2,c) group isomor
phic to HQ. For the little group as given by Eq. /1.7/ is obtained.
By making use of Eqs. /1.2/ and /1.8/ we get an explicit form of the little 
group of ST for an arbitrary value of т :
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-i 1 £
1+т 2

т (£) = e x p f ~ 4 ( a 3 + Т0+ ) j p p

О

-2iT sin

i -L. £1+т 2

1 T
1 + т 2

. /1 .1 0 /

In other words, this subgroup satisfies the equation

H (£) s H (^) 1= S /1.11/T T T T

with S given by /1.8/. The range of 4 = ̂  + i^2 in this case is given 
by the inequalities

-2ir(l+x) < < 2тг(1+т), _co < q?2 < oo .

In the next Section we proceed to an investigation of orbits generated by the 
above subgroup in the space of complex vectors. In particular, we are inter
ested in the orbits as т-*■<*>

2. Orbits on the Complex Sphere

According to Eq. /1.9/ the final point of the vector ST is sit-Quated on the complex sphere ^Sy1+T of radius which is non-zero for
finite x but tends to zero as . At any rate, j§T has the little
group as given by Eq. /1.10/. Let us fix the value of т for the time being 
and see what a little group H'(q>) is obtained if another standard vector 
of the same length is chosen instead of St . The answer is trivial, since
as a consequence of the homogeneity of ^ д +т there exists an A6SL(2,c) which 
translates ST into S' :

A
A S / 2 . 1/

It follows then from Eq. /1.11/ that



where

Н' (Ч>) = А Нт ( f) А-1 . /2.3/

Thus the little group of an arbitrary complex vector S' (У) is a group 
conjugate to HT (vp) given by Eq./1.10/, that is, H'(4>) is isomorphic to 
SO(2,C)when and isomorphic to T (2) as t-1-00 .

Now,we are interested in orbits of a complex vector S under the 
group /2.3/« It is supposed that the final point of S is situated on a 
complex sphere of non-zero radius /not to be confused with the sphere 
1с;д+т/« Under the group н'(Ч’) the vector describes the orbit

sTW  = h;(̂ ) s h;w _1 . /2.4/

Illustration of orbits on the complex sphere Eg . The 
orbit on the complex sphere Eg under the little group 
Н'СЧ7) is situated on the intersection of the complex 
sphere Eg and a complex plane with a normal vector NT .
In the limit the orbit tends to the horosphere,
which cannot be visualized so simply since in this 
case the normal becomes a complex vector of zero length 

(i.e. n £ " 0, though 0).

Since H'(40c SL (2 ,c) the orbit is obviously situated on the SDhere Eg .
Moreover, it will be verified that the orbit lies in a complex plane 
ST(4,)NT = CT = const where NT proves to be indentical with given by Eq.
/2.1/ Indeed, it follows from Eqs. /2.3/ and /2.4/ that
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sT(f)s;

= ^ Tr(^H'(f)S н'(Ч’) 1 s'J =

= Tr(s H'(f)“1 s' h '(4>)) =

-yTrís S ' ) = S S '  = C = const.z \ x ' ~T T

/2.5/

According to this equation one can associate with each orbit generated by the 
little group H'(40 a normal vector S' . The orbit can be given by the 
homogeneous coordinates (g(, CT) ; nevertheless, apart from the singular 
case CT = 0, one can normalize CTtol by an appropriate dilatation of S' . As 
the above statements are independent of the value of т , we can take the limit 

, which produces horospheres. So, according to /2.3/ and. /2.4/ the horo- 
spheres on 2 sare orbits described by the horospheric subgroup

h; W
'a ß\/l -if\/a

б Д о  1 A y
/аб -  yß = 1 /

for fixed A . Taking into account Eq. /1.9/ and the fact that transformation 
/2.1/ leaves the length of ST unchanged, we get for t-*-»

(s cOi + (s±,)22 + (si)* = О .

Thus when the
normal vector 
sphere of zero 
horospheres of 
N2 = O .—OO

SO(2 ,c) group deforms into the horospheric group as , the
N = jS' characteristic for the orbits arrives at the complex2 2radius, that is NOT = = о .it is concluded that
E are determined by the equation SNW = 1 , where

*/
The real and imaginary parts of a complex vector on the complex sphere of 
zero radius are quantities analogous to the field strengths в
:ui

re
; 1оctromagnоtic plane wave, where 
perpendicular to each other: B2

в and 
E2 = o,

E are 
BE = о

of the same
and E o f  
modulus and
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At this point a remark is in order. Namely, we did not investigate 
the question whether in Eq. /2.5/ the normal vector of the plane of horo- 
spheres is unique up to a factor. From a more detailed investigation which for 
the sake of brevity is left to the reader, the following can be shown. A sing
le fixed point S of the space ss is crossed by a one-parametric mani
fold of horospheres. These are second order curves which, generally speaking, 
determine unambiguously a plane with a normal of zero length, as indicated 
above. However, in the manifold of horospheres crossing a fixed point there 
are two positions where the horosphere degenerates into a complex straight 
line. These lines can be given in the form

where the usual s+ = si “ iS2 notation is used. Therefore, each point S, is 
crossed by two straight horospheres, that are determined by the position of 
S alone. These horospheres can he called horospheres of the second kind, as 

distinguished from those of the first kind, which are in one-to-one correspond
ence with the vectors of the sphere of zero radius. An analogous situation is 
encountered in the familiar case of the three-dimensional real one-sheeted
hyperboloid [l] .

3. Deformation of Unitary Representations

To demonstrate the deformation on unitary representations let us 
consider the linear fractional mapping of the z-plane which is a factor space

s (f) = Af + s , S«,^) = Bf + s~  OO 4 ' , / ' 00 О-' ,Лl/

with

A = (A1 + iA2, A1

+ 1B2, Bx /s±s3 Ф 0/

z az + ß
yz + 6

In the case of the SO(2,c) subgroup given by /1.5/ this reduces to

z z /3.1/

which is a rotation followed by a dilatation. In a similar way, the horospheric 
transformation on the z-plane takes the form of an Euclidean displacement
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z' = z - if = z +

The interpolating subgroup given by Eq. /1.10/ accomplishes a transformation 
similar to that of /3-1/ on the displaced z-plane, i.e.

z' +T (z+t ) .

For realizing unitary representations the representation on the familiar 
f(z) functions will be used [l] . Action of an element A = & on

these functions is defined as ' '

тд ^(z) = (-YZ +a)2j (-y*z* + a ) 2k ̂ -yZ+ä) /3.2/

where

3 - |(з0 - 1  + i o ) , к = !(-j0 - 1 + ia0- /з-3/

Here jQ takes integer and half-integer values, while о is an arbitrary 
complex number. In what follows we restrict ourselves to the principal series 
of unitary representations for which о is real. In Eq. /3.2/ representations 
are defined by displacement from the left which results in the following form 
of infinitesimal generators:

J+ J1 + iJ2
_Э_ 
Э z К , = K1 + iK2 = 2kz - z .2 Э 

Э z’

J iJ, “2jz + z2 , K_ /3.4/

K3 = -k +

These generators are related to the generators of 
k^'-axis /к = 1,2,3/ and to the generators
Nk as Jk = l(Mk + lNk) ' Kk = l(Mk " iNk ) *

spatial rotations about
ij hof boosts along к -axis



10 -

Spherical functions in So(2,c) basis satisfy the eigenvalue
equations

/3.5/

where

/3.6/

with U = 0/ - \  I ± 1» ••• and v continuous. The above basis is a gener
alization of finite dimensional spinors to the unitary case where m and m* 
correspond to undotted and dotted indices of spinors. Unitary spinors can be 
succesfully applied to the evaluation of matrix elements of unitary represent
ations of the Lorentz group, namely, they simplify to considerable extent the 
results obtained in angular momentum basis.
[7, 8, 9, Ю ] .

The requirement of single-valuedness on the complex z-plane yields the condi
tion 2y = integer or, to be strict, у takes integer and half-integer values 
along with j . The functions /3*7/ are normalized as

Hermitean generators M-|-N2 and M2+n i or “ equivalently - by the non- 
-Hermitean generators J+ and K_. In this basis spherical functions are solu
tions of the eigenvalue equations

The solution of /3.5/ is

1 j -m •* k+m* =—  zJ z /3.7/

The horospheric group as given by Eq. /1.7/ is generated by the

/3.8/
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