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The well-known theory of tunneling in oxide diodes is the tunneling
Hamiltonian method, hut this cannot describe processes happening in the oxide
layer.Some new experiments necessitate the treatment of the electrons in the
barrier as well. The author has elaborated a method using Green’s functions
to describe the whole phenomenon in an iterative procedure. The starting
point is the treatment of two other problems where the metal on the left or
right side of the barrier is replaced by an insulator. The current density
in the barrier has been derived for normal and superconducting junctions.
The phenomenon in a magnetic field has been treated using the microscopic
theory, avoiding phenomenological considerations. The applicability of the
tunneling Hamiltonian has been investigated; by its use the total current
may be calculated. This method has proved to be very suitable for the prob-
lem of the anomalous tunneling between two normal metals with paramagnetic
impurities in the barrier.

I.  INTRODUCTION

In recent years, the problem of tunneling between two normal or
superconducting metals has been investigated thoroughly in numerous experi-
mental and theoretical works. The theory of tunneling through a barrier was
first investigated by Bardeen.® The general formalism of the problem has
been given by Cohen, Falicov, and PhiIIips,IO who proposed the tunneling
Hamiltonian. This method has proved to be very successful in the interpreta-
tion of experimental results’.

In the tunneling-Hamiltonian method the barrier is replaced by a
mathematical surface and the Hamiltonian describes processes in which an
electron crosses the barrier. This method is a rather phenomenological one
and fails to investigate the tunneling processes themselves. The difficulty
in the elaboration of a new theory describing the electrons in the barrier



as well, comes from the choice of a set of wave functions that is complete
and orthogonal. This problem has been studied very carefully hy Prange,
and the applicability of the tunneling-Hamiltonian method has been proved
in the first-order approximation. A quite different approach has been sug-
gested by de Gennes, who has derived a generalization of the Ginsburg—
Landau equation for the tunneling processes. Recently, Josephson proposed
a very suggestive method using Green’s functions, but it seems to us that
the actual application of this method is not simple.

Nevertheless, a few experiments have turned up in which the region
of the barrier plays a very important role, for example, the geometrical res-
onance and boundary effect in a superconducting tunnel junction measured by
Tomasch™ and the electron scattering on paramagnetic impurities in the bar-
rief investigated experimentally by Wyatt' and by Rowell and Shen.8 In addi-
tion, the proximity effect has a great importance in tunneling.

A theory of tunneling between superconducting or normal metals
across an insulating layer is presented here which describes the phenomenon
in the barrier as well. Green’s functions are used to avoid the problem of
the completeness and orthogonality of the wave functions as far as possible.
The starting point is the treatment of two different problems where the
metal on the left (or light-) side of the barrier is replaced by an insulator.
In these problems, referred to as left and right problems, the main part
of the boundary effects has been taken into account. This method may be ap-
plied to the calculation of 'the current density in the barrier, for it
describes the electrons in the barrier as well. With other methods, only the
total current can be calculated. Throughout the use of the current density,
the effect in a magnetic field may be described in an appropriate way.

The Green’s functions of the original problem are determined by
the Green’s functions of these two left and right problems in an iterative
procedure (Secs. 2 and 3). (in Sec. 4)we give the calculation of the current
density in the barrier. These results are applied to the Josephson current
(Sec. 5), and to the long-range order in the Josephson junction in a magnetic
field (Sec. 6). We discuss the applicability of the tunneling-Hamiltonian
method, and we conclude that the tunneling Hamiltonian is a powerful method
for the calculation of the total current Sec. 7 ¢ Finally, the possibility
of higher order processes is discussed very briefly (Sec. 8).

2. THE MATHEMATICAL FORMULATION OF THE PROBLEM

We must describe an interacting electron gas which is divided by a
potential barrier into two parts, called the left ( and right (r) sides.
The height of the potential barrier is greater than the Fermi energy for an



insulating oxide layer. We shall apply the method of the thermodynamic.
Green’s functions. The normal and anomalous one-particle Green’s functions
introduced by Gorkov' are

Ch ('n *")= <r{V«(x) Ya(x")})

and
£abv ,x')- <4df«(x)v;(x"))> -

where y is the field operator of the electron field. The interaction of the
electrons or impurities is represented by the mass operator £ , which is
calculated according to the special problem. We describe the barrier as a
potential V. For brevity, we introduce the matrix notation for the Green’s
functions G and F,

where the superscript T denotes the exchange of the arguments, and the
spin indices will not be written out.

The equation of motion may be written as

4 - Z)C-1, (3)
where Ga is the inverse of the noninteracting-electron Green’s function,
which is

*  ( Urx0+ 77N ~v 0 \

In this formula Xo denotes the time variable and /M the chemical poten-
tial. The definitions of the inverses are

G-'G ~i Ch5a)
and non 4 n
GG'l =/ /
(5b)
n
where / is the unit operator. The second identity may be proven by partial

integrations.

The crucial point of our approach is the reduction of the solution
of the above-mentioned original problem (o.p) with the potential barrier



separating the left and right sides to the solutions of two other problems.
In the new problems, the electron gas is localized to the left or the right
side of the barrier, introducing appropriate potential wells Fig. 1 . These
problems are called "left and right problems” (l.p. and r.p.). The poten-
tials introduced are chosen in such a way that the potential of the I.p.
(r.p.) is equal to the potential of the o.p. on the left (right) side and

inside of the barrier. The corresponding mass operators and £r Tay
be chosen in a similar way. These definitions may be formulated mathematical
ly if we introduce two smoothed-out step functions and hn correspond

ing to the left and right sides, which vary only inside the barrier [Fig.
Id], Assuming the identity
ht t hr =f C6)

We can write 10

V=ht \L +hr Vr

and

Z'hCLe ‘!*;E.,,'r”n” +rinl

(?)

These equations are independent of the special choice of the step
functions, and we shall have to show that all physical results are indepen-
dent of their choice.

Let us introduce the Green’s functions and their inverses for the
l.p. and r.p. by the definitions
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n y n n
Go~ Gok =1 (9a)

Furthermore,
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(9b)

It is easy to see from Eqgs. (4), (6), (7), (9a) and (9b) that
the following identities.are exact:



Go' - Coche+ Cad hy )

and
G - G- he+G~ hr (12)

Inserting (12) into (5a) and (5b) and multiplying by Gr and Gt from the
left and right, respectively, and using (9b)» we get the following identi-
ties :

nn/ uun o (13a)
(yhr +Gr Gt ht) G =Gr
A n n n
G(hn+h{G{ Gr) =Gr , (13b)
- eF o (13c)
r<—>»Ccn (/Ja) (13d)

Adding these four equations together, we get the fundamental equa-
tion of our approach, where the Green’s function of o.p. is expressed by the
Green’s functions of the |l.p. and r.p .:

G=Gr+Ge (GNGi“he+r ~ LG +6(heG/"Gr+r- -/)/ (14)

Our program is to give an approximate solution of this equation, supposing
that the transition rate of electrons through the barrier is very small.

3. THE ITERATIVE SOLUTION OF THE GREEN’S - FUNCTION EQUATION

We take the Fourier transform of 14 with respect to time:

G(E)-cr(E)" C'(n-H (6 rir-oa(cofto(ha(Ek( £ ) N

to make the discussion of the physical base of our approximation easier. L

Equation (14a) shows quite different characteristics at small and
large values of the energy variables. At small values of the energy, the
Green’s functions G and Gr are strongly localized to the left or to the



right side of the barrier. Only the tails of the Green’s functions penetrate
into the barrier. In this case the expression in the bracket is very small,
for it contains products like d& he which are proportional to the rate
of penetration into the barrier. Therefore Gt * @ is the zero-order
approximation to the Green’s function near the Fermi energy.

At high values of the energy variable, the effect of the potentials
V¥ and W may be neglected. In this case both of the two terms 13 the
bracket of Eq. (l14a) are approximately the solution of Eq. (l4a) itself. W
are interested in the solution of this equation only in the first case and
it seems reasonable to solve the equation by iteration starting with the
zero-order approximation Gg +Gr

To get rid of the physically uninteresting part of the Green’s
functions with large values of the energy variable, we apply a cutoff in the
spectral functions of the Green’s functions at some energy between the top of
the potential barrier and the Fermi energy Fig. 2 . The prime on the Green’s
function will denote that the cutoff procedure is applied. It is worth mention-
ing that Eqgs. f9b) are to be corrected for the truncated Green’s functions.
The corresponding new equations are

fdtx-Q;" (X, XVC (XX )=~ (x,x1= I(X,,-x:,)& (\ X) # 1, c1?)

where the application of the cutoff results in a smeared out Dirac delta func-
tion D . Since the Greens functions Gl and G are strongly Iocallzed to
the left or right sides, Dc is very small on the rlght side and Dr on the
left side.

Our fundaments], equation (lAa) after the application of the cutoff

g '(£) - g; ce)+cile) -U(6;(E)+r*~oalE)
+GXE)(W'C;'(E)C'r(E) W )/. (16)

where the terms in the bracket are small, because we have supposed that the
penetration of the wave function into the barrier is weak. By iterating this
equation, we get some typical terms which we will now investigate.

It will be useful to transform some terms, e.g., in the following
ways,

n - - I r / n.
a;é— he g;~é;(|g—\L +n,9,

(17)



where we have made use of the identity.(15)* and [ ]-denotes the commu-
tator. The commutator in (17) may be calculated using (8) and (i0):

[ = rry-"(*h,,) %+(2TY AhAr-lyhJ- | (18)

where the direction of an arrow above a differential operator indicates the
operand. The cyclic rule is to be followed in the absence of an adjacent
operand.

We suppose that the commutator on the right side of (I18) vanishes»

(19)

the identities in Eq. (19) are fulfilled if the mass operators are local
functions in that region of space where the corresponding smoothed-out step
functions vary, i.e., inside the barrier (see Ref. 10).

Inserting (16) and (19) into (17), we get finally

=0 X"'( %hc) 7. +(2r#1(ZhX)'G't X ; heD (20)

It is easy to prove the following identity for another typical
term appearing in the iteration of (16):

g:g;h,g: =0;(X -(AM-A )- (TLe-AE j) hcGi
=4, htc; -g; (ave- nwn)m, £ n (21)

-c'r(&Er bt)hccy
where we have introduced the new notation
AV =V*-V and afd=Es- L, @2)

and the following identity has been applied:

S-"-ct'=(v,-\r)* (c,-z} (24

which follows from (B8) and (I0). It is worth mentioning that AV( is dif-
ferent from zero only on the right side of the barrier. Similar results may
be obtained by the exchange of the indices r and L

The result in the first-order iteration of (16) may be written as
the arnn of four terms with different physical interpretations:

n n

n I\ A A
G'=g; +Gn +6GT+<fCp +6Gd . (24



We will give the order of the particular terms in powers of the
tunneling rate t . The tunneling rate is the relative decrease of the wave

functions at the Fermi energy in the barriers

t =expf-[2m (\/-/u)]id/ (25)

where d denotes the thickness of the barrier and V is the energy of the top
of the barrier.

The particular terms of the Green’s function are:

b
(1) The tunneling term, dGj

cfGT(x,x’) =jjiG ("(x,y) (4, X) (26)

-G (X, & (y>*)}xC% AMt(y))id4y,

where hr is eliminated by h* wusing (6). In Appendix A another form of
this term is derived to eliminate h( as well:

cfGT(x,x")=J"1¥'(r,y) * - 2m C"(y,x) - r~1tJd dg4tlduo (27)

where the integral is taken on an arbitrary surface & lying in the barrier.
The surface element vector dfy,i is directed from left to right, and it
may be shown that the value of this integral is independent of the special
choice of the surface S to a good approximation. Namely, we can prove that
that part of cfGT which is dependent on the choice of the step function h
is similar to the'third type of correction cfGE [see Eq. (33) and
Appendix A], which is always neglected.

It is easy to see that this term corresponds to the one-particle
tunneling and therefore is proportional to the tunneling rate t , and that
its part depending on the choice of h is of order tz . These correction
give the coupling between the Green’s functions corresponding to the two dif-
ferent sides of the barrier by the current coupling derived by Bardeen.t
They may be illustrated by the diagrams in Fig. 3»

(2) The renormalization terms <fGR due to the potential and mass
operator corresponding to the opposite sides:

<SG, -pE'NTw -a w)hc; ?c;ht (Avr - Avr) £m

+c;(att-/11) hra; +c;ht(at, - N£r)&}d (r-" 1}

Using the definitions of AV( , AVr , a T-c and A'Lr ,
the following identities may be proven:



(29)

AR AGENO (30)

Inserting (29) and (50) into ( 28) and making use of (6) we have gotten rid
of the smoothed-out step functions, hc and hr

"G (x,x') =-f/E ;(x.y)iMr(y,4)G;(4",x" )+ (r~0}dyd%"’ (31)

Here we have introduced the new notation

W% (Y,u'")-M«(y)*(u-U')+af«(y>4Y (52)
N
A certain /gart of 0GR provides a contribution to the proximigy ef-
feet. dGr is proportional to the square of the tunneling rate t , and

is represented by the diagrams in Pig. 4.

(3) Terms corresponding to the nonorthogonality:

tfCj, (x, x") --1 (ftG " x, 4)hc(4) De(tf,x)d \ *fit Cx 4)ht(y)Gjy,x)d” +

#HEr (x, pbc(()Dn(y, x*)d*y +-Dr (x, y)hc Cy)G™(.y, x ] d ]

These terms are slightly dependent on the choice of the ameared-
out step functions. A careful analysis of these terms shows that this cor-
rection renormalizes the one-particle wave functions inside the barrier
and in the neighborhood of it. These correction terms are very strongly
oscillating outside the barrier and quickly damp with increasing distance
from the barrier. They are the effect of breaks in the orthogonality ar_?_d com-
pleteness of the used one-particle wave functions, discussed by Prange.
Because this correction is like a renormalization of the wave functions, the
direct contribution to current via (34-) is zero, but in higher-order approxi-
mations it might give a correction to the current proportional to i3 . W
conjecture that the correction terms are concerned with some mathematical
problems of our approach and never with some real physical problems. We will
neglect them in the following.

We may get higher-order approximations to the Green’s functions
in this way using the corrections of the first and second type.
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The surface and the proximity effect may be taken into account in
two steps:

(1) The Green’s functions have been calculated in the
case where the metal on the opposite side and the barrier are replaced by a
single insulator. In this way, the decrease of the gap function near the
barrier and the surface effects have been taken into account.

(2) Actually, there is another metal behind the barrier and this
may cause a slight modification of the gap function near the barrier. This
can be calculated in perturbation theory using the diagrams in Figs. 3 and
4.

4. THE CURRENT DENSITY IN THE BARRIER

The current density in an arbitrary point X can be calculated
using the Green’s function.

Jgt(x) = U 0)

>®~§<r6+o,%~x,- {e((Vx - 48)/2m)tG'(x ,*))

The zeroth-order approximation to G will not give any contribu-
tion to the current density. Using the first-order approximation to the
Green’s functions, we get the leading term of current density, which is giv-
en by diagrams in Fig. 5» where the lower-case j (x) represents the current
operator. The corresponding mathematical expression is

(35)

In the statistical mechanics of nonequilibrium processes, the
current density is calculated as a response to an external forcé; in the
present case, it is calculated as a response to the tunneling coupling!

jix) =f o'V*,ild_ ddoKi (X, x') Tt>(1), (36)

where T is the general symbol of the tunneling coupling. The causal kernel
Ve (x,x7) is calculated using the causal Green’s functions, but here we
need the retar_?Ped one. Investigation of the analytical properties of the
kernels shows that the retarded kernel may be obtained by shifting the
poles of the Fourier transform of Kc 'below the real axis in the complex
energy plane. If the operator (C—R) stands for this operation, then the
expression of the current density is finally
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- =t (57)

The current density derived here satisfies the equation of conti-
nuity in the barrier. This can be shown by a calculation similar to the one
in Appendix A. We will return later to discuss the connection of (37) and
the current formula derived by using the tunneling Hamiltonian.13

A similar formula can be obtained in the case of an external mag-
netic field:

JM =(C R)efd% tJdxo

J J , (37a)
i(e/c) A(X)JI-[ W~i(e/lc)A(X)PW fc(e™)A (X)]-1fyd(eACA(X)JJ

where A(x) stands for the vector potential.

5. JOSEPHSON CURRENT

To calculate the actual value of the current, we have to insert
the matrix form of the Green’s functions (2) into the expression of the cur-
rent (37)» Then using the symbolic notation T for the coupling constant we
obtain the following formula

5, ()" TG'TCATr; TN J-ejr— c]- (38)

It is well known that the anomalous Green’s functions are depen-
dent on the special choice of phases and the absolute value of the time
arguments. Therefore we may write

£ (x,x) =exp(- 2JU*X0) g (X,X" ,x0-*;)

and *exp(-(2elc)l™) (39)

FAMX\ X) =exp(+ 2iy* xc) <B>I(x\X; xj - x0)

x exp [+(2e/c) ip«],
where //[<* is the chemical potential and < is the phase of the pair wave

functions on the c¢x side of the barrier. Here (bx(°<=i,r) are independent
of the choice of phases.

The current density may .be written as the sum of two terms:

J(x) =IN(x) +jj(x) (40)
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where
j.<X)*TG:TG't-(r~0 (*1a)
is the one-particle current density and

Ji(x) =exp{2[(e/c}A<p +A7X0]] Tdr Top{ (41b)

is the current density due to the pair tunneling, first suggested by
Josephson."*"~ Here we have used the notations

4% A = eV, (ur)

where V is the applied voltage, and

A<p = 4 -ipr N
The actual value of the current density is given in Appendix B.

At zero applied voltage, the expression for the current density reduces to
the following:

JJ £ Jj,0 sfn[2(e/c) Ap] (44)

6. JOSEPHSON EFFECT IN MAGNETIC FIELD

We will also very briefly treat the Josephson effect in the presen-
ce of an external magnetic field. This treatment is based on the compensa-
tion of the long range phase modulation of the pair wave function f ’by an
appropriate transformation discussed by the author in the case of fluxoid
quantization. 12 Inside large superconductors the magnetic field vanishes!
the vector potential AL may be written as a gradient of a function yx,
i.e.,

J4«,i (X) * 4 <P«(X) + it (cx =1,1) (45)

where SA#vanishes except at the surface layers and at the neighbourhood
of the barrier where the magnetic field appears. It is useful to apply the
following transformation:
Gl(x.x") =£«(*, x) exp f-i(e/c)[YUDb(X)- % (X")]J >
e \Xx, x) =eXp(+ 21p« Xo) I+Kx \ X; x0- x0
xexp{- L(elc)[ (X))t tx(y,)]} >
b'(x.x") = expC-NMijLL I p«(x, x) XO0-xj)
xexp{- 1l(e/lcY[<pu(x) +%f(x)]}

(46)
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This transformation has a form similar to that of a gauge trans-
formation; therefore, using the gauge invariant structure of our approach,
it is easy to see that in the system of equations for the Green’s functions

of the particular problems only  clAbl occurs, and in the system of equa-
tions of the original problem <fA* and A ¢(X) - yV(X)_<Pr 00 A Inside
the superconductors and d¢x satisfy field-free equations, and so they

are equal to the Green’s function in the absence of an external field and
will be denoted by GOC’ and AIx’ later in this section. We introduce
a notation similar to (45),

Oc=0J t and e = idJ +SE } (47)

where dGex and d are the deviations from the field-free Green’s func-
tions. These deviations are induced by the vector potential dA* according
to the Meissner effect, and produce the current which cancels the magnetic
field in the superconductor and supplies the current in the barrier. cfAa
has to be determined in a selfconsistent way as discussed by Ferrel and
Prange.17 This vector potential is small and therefore can be treated in
perturbation theory.

We can calculate the Josephson current very simply if Wg Suppose
that the phase difference A f is slowly varying in the barrier. Inserting
(46) into (41b) and replacing A<p(x) by ApCx) , we have the formula for
the Josephson current density:

jji(-x) =exp(2ei(c’,Ajp(x) +Vx0)} xThO/I" ThoX’ - (r~t) C8)

At zero applied voltage this formuld becomes more simple as (BIl) has been
simplified to (B12):

Jj (X)= Jj(x) bln[~(e/c)A pCX)], (49)

where some part of the phase shift A < is due to the magnetic field at the
junction. If A <P changes by (Jc/e)n where n =+ 1, + 2 ..., the Josephson.,
current density does not alter.

We will treat the connection between the direction of the Josephson
current and the magnetic field enclosed by the junction which has been dis-
cussed by Anderson.l% In Fig. 6 we have illustrated a junction and the
penetration of the magnetic field into it. The penetration depths are denot-
ed by Af and Ar , respectively. The magnetic field may be found from the
magnetic field H /which is directed along the axis y /\

Ax (X,z) =y» H4(x, z) dz (50)
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The appropriate transformations discussed before are determined
by the functions

X o ree°
Pe(x) ~ dx dz.H (x,2z) and tpr(x)=/ dx dzH 4 (x,z}>(51)
Jxo Jo J xo Jo 7
where X0 determined the boundary condition for the relative phases. The
corresponding change of the phase difference between the points and
is
O<p(xr) -A<p(x,) dxj dzHv(x,z) =AdH (xr,X") (52)

which is the magnetic flux enclosed by the dashed line in Fig.- 6. The
Josephson current is unaltered if the flux changes by ndH,0  where

qmn0=Hcle is the flux quantum, as has been found by Anderson. The current
density (49) and the phase difference (52) determine the total current as a
function of the enclosed magnetic field, which is similar to a Fraunhoffer
interference pattern formula. %0

It might be expectedithat a similar interference effect would occur
in the local current density at a fixed point x . One of the electrons of
a tunneling pair crosses the barrier at point x , but the other one crosses
somewhere else in the region of the coherence length around the fixed point
X . The phase difference for the second electron might strongly vary as a
function of the tunneling place if the magnetic field were strong enough.
Then the integrand of the current density expression (37a) would oscillate
as a function of ac’. In fact, this effect cannot be observed because the
required magnetic field would- be comparablé with the critical magnetic field.

7. THE TUNNELING HAMILTONIAN METHOD

The tunneling Hamiltonian has been proposed by Cohen, Falicov and
Phillips® to describe the electron transitions through the barrier in a phe-
nomenological way. The Hamiltonian containing the field operators of both
sides of the barrier is

HT ='D:I1I1,T)(',X;¢,r<*ﬂ,l**\.r +COnj.

The transition amplitude T in the tlnneling-Hamiltonian method has been fit-
ted to the electron scattering amplitude corresponding to the transition from
one side of the barrier to the other. According to Bardeen's investigations
which are in agreement with our results,PI they are

fKx ;1,1 (5J)

where the 's are the one-electron wave functions.
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The value of the total current is the same if we calculate from
the tlnneling-Ham iltonian method22 or from the present Green’s-function
method. However, we need not automatically expect corresponding agreement
in the case of the energy density.

8. HIGHER-ORDER PROCESSES

A diagram technique is proposed in Sec. 3 which is similar to
the one suggested by Josephson. The typical structure of the nth-order
diagrams is illustrated in Fig. 7.

The contribution of the fourth-order diagrams to the tunneling
current has been calculated by Schrieffer and Wilkins.24 In the processes
calculated by them one pair has been broken up and two electrons have tun-
neled through the barrier. Such processes were first observed by Taylor and
Burstein as peaks in tunneling characteristics. Recently, 2A/n structure
has been observed.26 These processes may be interpreted as the breaking of
one pair and the tunneling of n electrons in the same quantum-mechanical
process.

We may argue that there is no reason to suppose that there would
be a great difference between the amplitudes for the break of one or several
electron pairs in processes of the same order. The proposed process is the
breaking of p pairs and the tunneling of n electrons. The voltage thresh-
old of these processes is eV= 2ACp/n) > due to the conservation of energy.
The experimental results of Rochlin and Douglass ' may be interpreted as a
2A(p/n~) structure in the tunneling characteristics, as is discussed
elsewhere.

It must be stressed that the proposed method is not correct to
any order, as the first term of the Green’s function in the iteration proce-
dure given in Sec, 3 contains unphysical corrections of higher order to the
lowest nonvanishing one. It seems reasonable to suppose that if we consider
only the leading corrections of the higher-order processes and neglect the
unphysical corrections, we will obtain the interesting contributions of
these processes. On the other hand, the amplitudes of the higher-order cor-
rections strongly decrease as the order increases. Therefore the processes
of this type may be much more intensive if the -transitions of the electrons
through the barrier occur at some imperfections of the barrier. In the last
case our approach cannot be applied.
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9. CONCLUSION

A many-body treatment of the tunneling processes has been elabor-
ated. The present approach has dealt with the behavior of the electrons in
the barrier, as well. The Green’s functions have been calculated by an
iteration procedure. The contributions to the Green’s functions in the lowest
approximation might be classified into three different groups:

(1) The tunneling term <fGr which describes the electron transi-
29

tion through the barrier™¥
"
(2) The renormalization'term c¢TGn for the metal on one of the
sides due to presence of the metal on the opposite side; and

(3) The term <fG$ due to nonorthogonality and noncompleteness
of the wave functions. These terms are dependent on the choice of the step
functions introduced in Sec. 2. These terms have been neglected.

We have found that only the term of the first type gives contribu-
tions to the current density in the barrier. We may conclude that our ap-
proach computing the current density is correct to order . The advantage
of working with the current, density occurs in the consequent treatment of
the electromagnetic properties of Josephson junctions.

In a few cases, the description of the electrons in the region
of the barrier is very important. One of them is the geometrical resonance
effect discovered by Tomasch31 where the surface and the boundary effects
play important roles. This method may be very powerful in the discussion
of.this effect, because the boundary and surface effects could be taken into
account in the solution of the so-called left and right problems and a direct
calculation of the tunneling current becomes possible using the solutions of
the particular thin-film problems.

Recently some new tunneling anomalies have been discovered-" and
Anderson 33 and Suhl34 have called attention to the Kondo scattering in
the barrier as the possible explanation of this effect. Appelbaunr® has
calculated the tunneling current using the tunneling Hamiltonian.Recently
Sélyom and the author have applied this Green’s-function method to this
problem ,” siumning up. a wide class of diagrams. The resonant scattering on
the paramagnetic impurities has been taken into account by finding the solu-
tion of the particular left and right problems considering also the paramag-
netic impurities.

Finally, it has been concluded that the phenomenological tunneling
Hamiltonian can be applied to the calculation of the current in those cases
in which the barrier effects are not important.
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APPENDIX A

We have derived the tunneling term of the Green’s function, but
(26) contains the smoothed-out step function h( . We must show that <GI
is independent of the choice of h( to a good approximation. The following
expression is to be calculated:

L<flethe Cy)]cf6T(x, x), ¢f yCB A)

or taking the Fourier transform with respect to the time variable,
Co/dht (y)]<fGT (x,x ; E), if LICB (a2)

A straighforward calculation gives the derivative

'< X. YR YrT\ Ucy,}

or

fc/fx.y; £)((S,,-buw/rT)c; (yx"5 £)-(r— O}
0 )

We express the Laplacian operators by the inverses of the Green’s
functions, using (8) and (9):

Ad/2m = - (£ +7-V(y)~TB(Yy;£)) +G«1y, E) (ab)

N eyi2m = (E+A-V (y)-£.-(<l: £)) +G~f(y: E) |
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where we made use of the structure of the mass operator"” and the arrow
above a differential operator indicates the operand.

Inserting (A5) into (A4) and using ((15)» we get the following
formula:

[6/(ff>c(y)]4Gr'(xy;E) =fGe'(x,y\E)D".(y,x)-De(x,y")Gr "(ii,x")} c}

(A6)
= [cS/Iht (yA]cfFGTX (X, x 1 £),

where we have introduced the new notation

<fGrt>(x,x't £) =f{Gc'Cx, ) ;E)Dr(q, x’) - O (y,x)G" (x,y;E)}xhl,(y)d3y-(r*().

. We may concxlvude that 1dGﬂT gould be cut into two parts
<fGT —<fGT,.D and dGTio .. The first term contributes directly to
the physical g\uantitites e.g., current density , but the second one is
similar to cfGD , which is due to the break of cgmpleteness and orthogo-
nality. Inn Sec. 3 we neglected the contributior}.I <fGB so we do the same
with oGTD . Finally we conclude.that cfDT is independent of the
choice of h( in this approximation.

APPENDIX B

The tunneling current can be obtained by computing expressions
(41a) and (41b).

The Green’s functions may be expressed by a complete set of appro-
priate one-particle wave functions

<**N* E XA 1A C xo -~ ) \K(X) (B1)

The spectral representation of the normal and anomalous Green’s functions
are

G b , ; (E ) : fd<tew (i E c“h

dn*(E)=[m exp(iEt)<fijliJ (t)=fdu>il-——-— —JOi*— ~
( )y[ PUED<RIlI() y ttlfCD+ie * E-co-ie | %A (c0)
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**NNE)*d x*,.(£) fB3)
where t- X0- Xo and

hcd* ={expfftdcr-~"J+1}'1 (B4)

Here the spectral functions Ax (co) and Bx(0oS) are real. The current

density may be expressed by the Fourier transform of the causal response
function

Ji (x) :lr:i_@(c-*RJ)!d zf4JrJ_!;dt exp(iit)Ke -((x")TI1>00 . B)

We calculate first the one-particle current using (37) and (Bi)-(B5) and
introducing the transition matrix elements

b: ="\‘e " X-X.r =~

and
AL*nC -jtd AXi>AXEELrE (K A=~ >t ("st)
S

The current density calculated in a straightforward manner is

fcuC*) =2/im(C-R)efdtexp LU {I" .\ Den . JUV/x) &t (t)6y,e(~t)fa.bl ~(r~0}

~2eMorC'~RYe{\y 7TAAIft,r'A 7x*»n {~27MCx> (E'+0Cx\ ( r~0J
:2Fi|iom(c-R)elf£,7)4X Tx,\/,tn(i{d ¢ ou ] felcdAx 1Cc))
<

X —Z"ul)(r~t)J
\E+ai-cj +tie E+co-co-ity

—2Him (C -R)eflL TpsihlrM Txy t fdcJA (<J3doll\yt(co~~ Yro<r~t)\>
E~0 (AX J tco- af+|e J
(B8)

where the factor two is due to the spin orientations. Finally we have

iNiM = IT, it () b Yogd<s>rAXir(cd)IdeA AN () -+¢jZ ~ jtie | (B
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or
Ing*)- LL.rWTx'Ar cjdoiAx r(bj)A)i-1 (cJ)(nOiGnGq,r')- (Bio)

The Josephson current density can be calculated in a similar way and the
result is

Jj,i (x)=-F-elmlexp{2ie(cAp\V)Q}r. Tyy, Cr,(X)Tx y.rCfdco"Bx r (cj)jdcoBx-c(cd) x
1 ARx BN ' J ’ (B1I)
—- - m ©-rJ =3 v(x)sin[2e(c~"A<pi-Vx0)] +Jl1v(x)cos[2e(c'Ap +0)/,

cm -co tie J
where we have introduced the notations (42) and (43) and the amplitudes

Jsv and Jcv

At zero applied voltage we have a much more simple expression of
the Josephson current

J.i Nesin[(2e/c)A<pKINTx 1 .m(r (X)TxVir,jdcIB xi(cd)JdcdBx, e( ¢ 0 AB12°

where ffo=nblr=M(] and Jj Q> O
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Figure captions

Figure 1 The potential a of the original h of the left problem,
¢ of the right problem; and d the smoothed-out step func-
tions .

Figure 2 The cutoff energy between the top of the potential barrier and
the Fermi energy.

Figure 3 The first-order diagrams corresponding to the tunneling contri-
bution of the Green’s function. B denotes the barrier and X
denoted the current coupling.

Figure 4 The diagrams corresponding to the renormalization of the Green's
function by the opposite side.

Figure 5 The diagrams of the current density. 5 is the surface occur-
ring in (34) and stands for the current operator.

Figure <6 Junction with penetration region of the magnetic field. The
arrows represent the direction of the Josephson current density.

Figure 7 Typical nth-order diagram. B denotes the barrier and the
circles stand for the different Green’s functions GF and Ff,
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