L. Sxabados
L. M. Kovács

RKVI, COMPUTER PROGRAM
TO DETERMINE VIBRATION CHARACTERISTICS OF FUEL RODS IN PARALLEL FLOW
©aungarian Socademy of exciences
CENTRAL
RESEARCH
INSTITUTE FOR
PHYSICS
BUDAPEST
2017

RKVI - COMPUTER PROGRAM TO DETERMINE VIBRATION CHARACTERISTICS OF FUEL RODS IN PARALLEL FLOW

L. Szabados - L.M. Kovács

Central Research Institute for Physics, Budapest, Hungary Reactor Research Department

SUMMARY

RKVI is a digital computer program for ICL-1905 computer in FORTRAN language. The code considers an isolated rod supported by two adjacent spacer grids, and calculates some important characteristics of rod vibrations induced by a single-phase fluid. These calculated parameters which are required to the engineering design of spacer grids can be summarized as follows: fundamental frequencies, maximum vibration amplitudes, end slopes,"and fixity" parameters, transverse deflection functions, transverse reaction forces, relative axial displacements and bending moment functions.

ÖSSZEFOGLALÁS

Az RKVI kód az ICL-1905 digitális számológépre kifejlesztett FORTRAN nyelvü program. A kód meghatározza az egy fazisu folyadék által előidézett rudvibráció legfontosabb paramétereit két szomszédos távolságtartó rács közötti rudszakaszra vonatkozóan. A távolságtartó rácsok mérnöki tervezéséhez szükséges számitott vibrációs paraméterek az alábbiakban foglalhatók össze: fundamentális frekvenciák, maximális vibrációs amplitudók, rudvég szögelfordulások, rudvég befogásra jellemző paraméterek, transzverzális lehajlási függvények, transzverzális reakcióerők, relativ axiális elmozdulások és hajlitỏ nyomaték függvények.

PE31OME

Код RкVI представляет собой программу, разработанную для ЭВМ ICL-1905 и написанную на языке FORTRAN. Код определяет основные параметры вызванного однофазной жидкостью колебания одного самосостоятельного стержня между двумя соседними дистанционирующими решетками. С помощью кода могут быть вычислены следующие вибрационные характеристики, необходимые для конструирования. дистанционирующих решеток: собственные частоты, предельные вибрационнне амплитуды, углы наклона концов стержня, параметры, характеризующие крепление концов стержня, Функции поперечного изтиба, поперечные силн реакции, относительные осевые перемещения и функции изгибающего моменга.

1. INTRODUCTION

Heterogeneous water-cooled reactors are often designed for high-power density and hence present a problem in the removal of heat from the core. The problem is generally resolved by employing high water velocities to improve the heat transfer. Measurements performed during the last ten years have proved, however, that high-velocity coolant flowing through a reactor core is a source of energy that can induce and sustain vibration in reactor core components. Both individual rod vibration and composite bundle vibration has the potential for causing component failure by fretting, wear and fatigue. Recently a number of experimental and theoretical studies [1-14] have been conducted in order to predict the amplitude of vibration, to understand the mechanism of parallel-flow induced vibration, and to obtain design fixes to eliminate it.

Earlier studies of parallel-flow induced vibration of flexible rods can be divided into two groups: those involving a deterministic approach [1-11] , and those involving a probabilistic approach [12-15]. In the first group, no complete solution to the equation of motion has been presented, and analyses are hampered by the lack of a complete description of the forcing functions. Several empirical expressions based on postulated causes of self-excitation, cross flow, seconaary circulation etc.have been correlated, yet the real forces exciting the vibration remain unknown. The second group offers an alternative approach to the problem, by postulating that vibration is excited by random pressure fluctuations in the turbulent flow.

The best analytical approach to the study of rod displacement statistics due to pressure fluctuations in turbulent boundary layers has been worked out at the Argonne National Laboratory [15] , [17] . This probabilistic approach is essentially the same as that of Reavis [12], but the equation of motion is that of Paidoussis [4], which accomodates the effects of added mass, damping, axial force and the flow velocity on natural frequencies.

The purpose of the present paper is to calculate some important characteristics of single-phase fluid induced rod vibrations between two adjacent spacers which are required for the design of fuel spacer grids. These vibration parameters are calculated by the RKVI program, which was developed for ICL-1905 computers in FORTRAN language. The values of the fundamental frequencies, the vibration amplitudes, the end slopes, the"end fixities", the transverse deflection functions, the transverse reaction forces, and the reaction moments and relative axial displacements of an isolated rod supported by two adjacent spacer grids can be determined by the program.

The main features of the RKVI program can be summarized as

follows:

a./ It is supposed that each rod is supported by two adjacent spacer grids for arbitrary support "end fixities" represented by a torsional spring /see Fig.1/.

Fig. 1

Model of fuel rod.
These torsional springs at both ends of the rod provide a restoring moment in proportion to the actual end slope. The "end fixity" values can be determined by both static and dynamic methods.
b./ Experiments [1-9] have shown that the flow velocity has a great influence on the amplitude of the vibrations, but does not effect the frequency, which is the natural frequency of the rod and remains constant. The differential equation for the transverse free vibrations of a rod can therefore be used, in order to calculate the fundamental frequencies and the end slope per unit amplitude. These frequency values are corrected in the program for the effect of axial spring loading and of viscous damping in water.
c./ The correlations between the vibration amplitude and the fundamental frequency are calculated by four different semi-empirical approximations / [2] , [4] , [12] , [1] /. The actual end slope values are determined from the slope per unit amplitude by means of the effective values of the vibration amplitude.
d./ Finally the program calculates the transverse deflection functions, the transverse reaction forces and the reaction moments, the relative axial displacement between the fuel rod and the spacer grids, and the axial distributions of the bending moments.
2. GENERAL DESCRIPTION OF THE CODE

1./ Fundamental equations:

a./ "End fixity" calculations:

The "end fixity" value can be calculated by a static load test. The equation relating the deflection of the rod loaded by a concentrated weight at the mid-point to the "end fixity" of the rod $/[1],[9] /$ is:

$$
Y_{\text {conc }}=\frac{1}{4} \cdot \frac{\alpha \cdot L+8}{\alpha \cdot L+2} \cdot \frac{P_{\text {conc }} \cdot L^{3}}{48 \cdot I \cdot E}
$$

The equation relating the deflection of the rod loaded by a uniformly distributed weight to the "end fixity" of the rod / [2] , [3] / is:

$$
Y_{\text {dist }}=\frac{\alpha \cdot L+10}{\alpha \cdot L+2} \cdot \frac{P_{\text {dist }} \cdot L^{4}}{384 \cdot I \cdot E},
$$

where

$$
\begin{equation*}
\alpha \cdot L=\frac{K \cdot L}{I \cdot E} \quad K=\frac{M}{\Theta} \tag{121}
\end{equation*}
$$

If an axial end spring is inserted, then the measured value of deflection will have to be corrected for the effect of axial loading $/ P_{\text {spring }} /$ using the following formula $[9]$:

$$
Y_{\text {corrected }}=Y_{\text {measured }} \cdot \frac{\xi^{3}}{3(\operatorname{tg} \xi-\xi)}
$$

where

$$
\begin{equation*}
\xi=\frac{L}{2} \cdot \sqrt{\frac{\mathrm{P}_{\text {spring }}}{\mathrm{E} \cdot \frac{\mathrm{I}}{}}} \tag{141}
\end{equation*}
$$

b./ Fundamental frequency calculations

The differential equation for the transverse free vibration of the rod with elastically built-in ends shown in Fig. lis / [10], $[13]$; [15] /:

$$
\begin{equation*}
m \cdot \frac{\partial^{2} y}{\partial t^{2}}+E \cdot I \cdot \frac{\partial^{4} y}{\partial x^{4}}=0 \tag{151}
\end{equation*}
$$

The solution of the differential equation can be obtained as follows [10] :

$$
\begin{equation*}
y=\Phi(x) \cdot \sin (\omega t) \tag{161}
\end{equation*}
$$

where

$$
\begin{array}{rl}
\Phi(x)=A \cdot \sin (\beta x)+B \cdot \operatorname{sh}(\beta x)+C \cdot \cos (\beta x)+D \cdot \operatorname{ch}(\beta x) & 17 / \\
\beta^{4}=\frac{m \cdot \omega^{2}}{E \cdot I} & 18 / \\
\omega=2 \cdot \pi \cdot f & 19 /
\end{array}
$$

The fundamental frequencies are obtained from equations /8/ and /9/:

$$
f=\frac{(\beta \cdot L)^{2}}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I}{m \cdot L^{4}}}
$$

The ends of the rod are assumed to be elastically built in, with the angle of rotation proportional to the applied moment. This is the common type of linear torsional elasticity expressed as

$$
M=K \cdot \theta .
$$

The differential equation $/ 5 /$ was solved with the boundary conditions / [10] , [11] , [3]/:

$$
\begin{array}{lll}
K \cdot \frac{\partial \Phi}{\partial x}=E \cdot I \cdot \frac{\partial^{2} \Phi}{\partial x^{2}} & \text { at } & x=0 \\
K \cdot \frac{\partial \Phi}{\partial x}=-E \cdot I \cdot \frac{\partial^{2} \Phi}{\partial x^{2}} & \text { at } & x=L
\end{array}
$$

The values of $\beta \cdot L$, as eigenvalues of the above boundary value problem, can be determined by solving the following transcendental equation for $\beta \cdot L /[10]$, [11] /:
$\cos (\beta L) \cdot \operatorname{ch}(\beta L)+2 \cdot \frac{E \cdot I}{K \cdot L} \cdot(\beta \cdot L) \cdot[\operatorname{sh}(\beta L) \cdot \cos (\beta L)-\sin (\beta L) \cdot \operatorname{ch}(\beta L)]-$

$$
2 \cdot\left(\frac{E \cdot I}{K \cdot L}\right)^{2} \cdot(\beta L)^{2} \cdot \sin (\beta L) \cdot \operatorname{sh}(\beta L)=1
$$

The frequency equations give the relationship between the "end fixity" and the fundamental frequencies and are obtained from equation $/ 13 / /[3]$, [9] /:

$$
\begin{align*}
& \alpha \cdot L=\frac{-2 \cdot \beta \cdot L}{\operatorname{tg}\left(\frac{\beta L}{2}\right)+\operatorname{th}\left(\frac{\beta L}{2}\right)} \\
& \alpha \cdot L=\frac{2 \cdot \beta \cdot L}{\operatorname{cotg}\left(\frac{\beta L}{2}\right)-\operatorname{coth}\left(\frac{\beta L}{2}\right)}
\end{align*}
$$

Equations / 14/ and / 15 / refer to the symmetrical and antisymmetrical modes of vibration, respectively, and these functions are plotted in Fig. $2 /[3]$, [9] /. The limits of $\beta \cdot L$ are π /pin ended beam/ and 4.730 /built-in beam/, corresponding to $K=0$ and $K=\infty$, respectively.

Fig. 2

The symmetrical and the anti-symmetrical modes of vibration.

c./ End slope per unit amplitude

The end slopes per unit amplitude are obtained by differentiating the function $y(x) / \delta_{\text {max }} /[10] /:$
$\left.\frac{\partial\left(y(x) / \delta_{\text {max }}\right)}{\partial x}\right|_{x=0}=\frac{\theta}{\delta_{\text {max }}}=-2 \cdot \frac{C}{\delta_{\max }} \cdot(\beta \cdot L)^{2} \cdot \frac{E \cdot I}{K \cdot L^{2}}$
where

$$
\begin{aligned}
\mathbf{y}(\mathrm{x}) / \delta_{\text {max }}= & \Phi(\mathrm{x}) / \delta_{\text {max }}=\frac{\mathrm{A}}{\delta_{\text {max }}}[\sin (\beta \mathrm{x})-\operatorname{sh}(\beta \mathrm{x})]+ \\
& \frac{\mathrm{C}}{\delta_{\text {max }}}\left[\cos (\beta x)-\operatorname{ch}(\beta x)-2 \cdot \frac{\mathrm{E} \cdot \mathrm{I}}{\mathrm{~K} \cdot \mathrm{~L}} \cdot(\beta L) \cdot \operatorname{sh}(\beta x)\right]
\end{aligned}
$$

d./ Frequency correction calculatione

The influence of the axial apring load on the fundamental frequency is theoretically represented by / [1] , [9] /:

$$
f_{\text {spring }}=f \cdot \sqrt{1-\frac{\mathrm{P}_{\text {spring }} \cdot \mathrm{L}^{2}}{\mathrm{C}_{1} \cdot \mathrm{E} \cdot \mathrm{I}}}
$$

The frequency values will be corrected by the effect of viscous damping in water / [1] , [?] /:

$$
f_{\text {water }}=f_{\text {air }} \cdot \frac{1}{\sqrt{1+c_{3} \cdot \frac{M_{\text {water }}}{m}}}
$$

e./ Amplitude predictions

In order to calculate vibration amplitudes various authors have proposed semi-empirical treatments of the problem based on the dynamic equilibrium equation of the rod:

$$
\begin{equation*}
m \cdot \frac{\partial^{2} y}{\partial t^{2}}+E \cdot I \cdot \frac{\partial^{4} y}{\partial x^{4}}=P-R \tag{1201}
\end{equation*}
$$

This simplified equation represents the balance between elastic reactions, mass forces, the forces P causing the movement, and the damping forces R. Various hypotheses have been proposed for P and R, and various empirical vibration amplitude relátions have been deduced which contain constants determined by the tests. The RKVI program calculates four different amplitude relations.
1./ Correlation proposed by Burgreen / [2] , [3] /:

$$
\left(\frac{\delta_{\max }}{\delta_{\text {hydr }}}\right)^{1.3}=0.83 \cdot 10^{-10} \cdot \mathrm{k}_{1} \cdot \Gamma^{0.5} \cdot \Omega
$$

where the dimensionless parameters are

$$
\begin{equation*}
k_{1}=\frac{\alpha \cdot L+10}{\alpha \cdot L+2} \tag{1221}
\end{equation*}
$$

$$
\Gamma=\frac{\rho_{\text {water }} \cdot \mathrm{v}^{2} \cdot \mathrm{~L}^{4}}{E \cdot I}
$$

$$
\begin{equation*}
\Omega=\frac{\rho_{\text {water }} \cdot \mathrm{V}^{2}}{\mu_{\text {water }} \cdot \omega} \tag{1241}
\end{equation*}
$$

$$
d_{h y d r}=\frac{2 \cdot \sqrt{3}}{\pi} \cdot \frac{t_{\text {lattice }}^{\Delta}}{D_{\text {rod }}}-D_{\text {rod }}
$$

ii./ Correlation proposed by Paidoussis / [4] , [5] /:

$$
\begin{equation*}
\frac{\delta_{\text {max }}}{D_{\text {rod }}}=C_{2} \cdot\left(B_{\text {water }} \cdot L\right)^{-4} \cdot \frac{\left(u^{2} \cdot R e \cdot e^{2}\right)^{0.8}}{1+2 \cdot u^{2}} \cdot \frac{r^{2 / 3}}{1+4 \cdot r} \tag{1261}
\end{equation*}
$$

where the dimensionless parameters are

$$
\begin{align*}
u^{2} & =\frac{M_{\text {water }} \cdot v^{2} \cdot L^{2}}{E \cdot I} \\
\operatorname{Re} & =\frac{V \cdot d_{\text {hydr }}}{v_{\text {water }}} \\
e & =\frac{L}{D_{\text {rod }}} \\
r & =\frac{M_{\text {water }}}{M_{\text {water }}+m}
\end{align*}
$$

iii./Westinghouse vibration correlation /W.V.I/ / [12] /:

$$
\delta_{\text {max }}=C_{\text {emp }} \cdot \eta_{d_{\text {hydr }}} \cdot \eta_{D_{\text {rod }}} \cdot \eta_{L} \cdot \frac{D_{\text {rod }} \cdot L \cdot N_{\text {rod }}^{0.5} \cdot v \cdot \rho_{\text {water }} \cdot v_{\text {water }}^{0.5}}{W_{\text {rod }} \cdot f_{\text {water }}^{1 \cdot 5} \cdot \xi^{0.5}}
$$

where the empirical dimensionless factor is

$$
c_{e m p}=c_{44} \cdot\left(\frac{d_{h y d r}}{L}\right)^{D} 44
$$

and the dimensionless scale factors are

$$
\begin{aligned}
& n_{d_{\text {hydr }}}=C_{11} \cdot\left(\frac{f_{\text {water }}}{V} \cdot d_{\text {hydr }}\right)^{D_{11}} \\
& { }^{n} D_{\text {rod }}=C_{22 L} \cdot\left(\frac{f_{\text {water }}}{V} \cdot D_{\text {rod }}\right) D_{22 L} \text { if } \frac{f_{\text {water }}}{V} \cdot D_{\text {rod }} \leqq 0.4 \quad \text { /34a/ } \\
& \eta_{D_{\text {rod }}}=C_{22 G} \cdot\left(\frac{f_{\text {water }}}{V} \cdot D_{\text {rod }}\right)^{D_{22 G}} \text { if } \frac{f_{\text {water }}}{V} \cdot D_{\text {rod }}>0.4 \quad 134 \mathrm{~b} / \\
& \eta_{L}=C_{33 L} \cdot\left(\frac{f_{\text {water }}}{V} \cdot L\right)^{D_{33 L}} \quad \text { if } \frac{f_{\text {water }}}{V} \cdot L \leqq 0.4 \quad 135 \mathrm{a} / \\
& \eta_{L}=C_{33 G} \cdot\left(\frac{f_{\text {water }}}{V} \cdot L\right)^{D_{33 G}} \quad \text { if } \quad \frac{f_{\text {water }}}{V} \cdot L>0.4 \quad 135 b
\end{aligned}
$$

iv./ Euratom vibration correlation /E.U.R/ / [I] /:

$$
\frac{\delta_{\text {max }}}{D_{\text {rod }}}=10^{-9} \cdot \frac{\mathrm{Re}^{0.5}}{S_{o}} \cdot e^{1.5} \cdot \phi^{0.5} \cdot\left(\frac{\rho_{\text {water }}}{\rho_{\text {rod }}}\right)^{0.25}
$$

where the Strouhal number is:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{o}}=\frac{\mathrm{f}_{\mathrm{air}} \cdot \mathrm{D}_{\mathrm{rod}}}{\mathrm{~V}} \tag{1371}
\end{equation*}
$$

and

$$
\Phi=\frac{\mathrm{f}_{\text {air }}}{\mathrm{f}_{\text {water }}}=\sqrt{1+\mathrm{C}_{3} \cdot \frac{\mathrm{M}_{\text {water }}}{\mathrm{m}}}
$$

f./ The actual end slope

The actual end slope values are obtained from the end slopes per unit amplitude / [10] /:

$$
\theta=\left(\frac{\theta}{\delta_{\max }}\right) \cdot \delta_{\max }=-2 \cdot\left(\frac{C}{\delta_{\max }}\right) \cdot(\beta \mathrm{L})^{2} \cdot \frac{E \cdot I}{\mathrm{~K} \cdot \mathrm{~L}^{2}} \cdot \delta_{\max }
$$

g./ Transverse deflection function

The transverse deflection function of a rod between two adjacent spacer grids at the moment of maximum amplitude is obtained from equation /17/:

$$
\begin{gather*}
\Phi(x)=\left[\frac{\Phi(x)}{\delta_{\max }}\right] \cdot \delta_{\max }=\left\{\left(\frac{A}{\delta_{\max }}\right) \cdot[\sin (\beta x)-\operatorname{sh}(\beta x)]+\right. \\
\left.\left(\frac{C}{\delta_{\max }}\right) \cdot\left[\cos (\beta x)-\operatorname{ch}(\beta x)-2 \cdot \frac{\mathrm{E} \cdot \mathrm{I}}{\mathrm{~K} \cdot \mathrm{~L}} \cdot(\beta L) \cdot \operatorname{sh}(\beta x)\right]\right\} \cdot \delta_{\max }
\end{gather*}
$$

h./ Transverge reaction forces and reaction moments

The transverse reaction force between rod and spacer can be calculated from the inertial force of the cylinder:

$$
R=-\frac{1}{2} \cdot \int_{0}^{L} m \cdot \frac{\partial^{2} y(x, t)}{\partial t^{2}} \cdot d x
$$

The following approximation is obtained by substituting $y(x, t)$ from equations /6/ and /40/into /4la/:

$$
R=-\frac{1}{2} \cdot m_{\text {rod,total }} \cdot \omega_{\text {water }}^{2} \cdot\left(\frac{\delta_{\text {average }}}{\delta_{\max }}\right) \cdot \delta_{\max }
$$

where

$$
\begin{aligned}
\left(\frac{\delta_{\text {average }}}{\delta_{\text {max }}}\right)= & P_{3}\left[1-\cos \left(\frac{\beta L}{2}\right)\right]+P_{4}\left[1-\operatorname{ch}\left(\frac{\beta L}{2}\right)\right]+P_{5}\left[\sin \left(\frac{\beta L}{2}\right)-\operatorname{sh}\left(\frac{\beta L}{2}\right)\right] \\
P_{3} & =\frac{2}{\beta L} \cdot\left(\frac{A}{\delta_{\max }}\right) \\
P_{4} & =\frac{2}{\beta L} \cdot\left[\left(\frac{A}{\delta_{\max }}\right)+2 \cdot \frac{B}{\alpha} \cdot\left(\frac{C}{\delta_{\max }}\right)\right] \\
P_{5} & =\frac{2}{\beta L} \cdot\left(\frac{C}{\delta_{\max }}\right) \\
m_{\text {rod }}, \text { tot } & =m \cdot L
\end{aligned}
$$

The axial distribution of the bending moments can be easily deter mined knowing the transverse deflection function:

$$
\begin{aligned}
M(x)= & -E \cdot I \cdot \frac{\partial^{2} y(x, t)}{\partial x^{2}}=\left\{P_{1} \cdot[\sin (\beta x)+\operatorname{sh}(\beta x)]+\right. \\
& \left.P_{2} \cdot\left[\cos (\beta x)+\operatorname{ch}(\beta x)+2 \cdot \frac{\beta}{\alpha} \cdot \operatorname{sh}(\beta x)\right]\right\} \cdot \delta_{\max }
\end{aligned}
$$

where

$$
\begin{aligned}
& P_{1}=\beta^{2} \cdot E \cdot I \cdot\left(\frac{A}{\delta_{\max }}\right) \\
& P_{2}=\beta^{2} \cdot E \cdot I \cdot\left(\frac{C}{\delta_{\max }}\right)
\end{aligned}
$$

i./ Relative axial displacement between rod and spacer

The relative displacement between rod and spacer in the axial direction, which can cause "fretting corrosion", are obtained as the difference of the curved and even rod lengths:

$$
R D=S-L
$$

where

$$
\begin{aligned}
& s=\sum_{n=1}^{N} \sqrt{d i v} \sqrt{\Delta x^{2}+\left(y_{n}-y_{n-1}\right)^{2}} \\
& n=1,2,3, \ldots \ldots \ldots N_{\text {division }} \\
& \Delta x=\left(x_{n}-x_{n-1}\right)=\frac{L}{N_{\text {div }}}
\end{aligned}
$$

2./ Special features of RKVI

The program contains eight options offering different program choices. These logical parameters are:
a./ Torsional spring constant determination / LP $1 /$;
b./ Determination of the amount of new INPUT data/LP2/;
c./ Transverse deflection function and bending moment distributions calculation /LP3/;
d./ Calculation of relative axial displacements between rod and spacer at four different amplitude correlations/LP4, LP5,LP6, IP7/;
e./ The end of INPUT information/IVEGE/.

3. USER'S MANUAL

1./ INPUT preparation

Input data are punched on paper tape or on cards. The expression "card" will be used for one record/i.e. one line/ of the paper tape.

Identification card: FORMAT /9A8/
The headings provide information for the user and machine operator. This card should follow the DATA card and precede each problem of a problem block.

Parameter card: FORMAT /I2/
Char. 2: IP2 Logical parameter determining the amount of new data.
Operating cards for entire INPUT: FORMAT / 5El3.6/

Card 1. DUA diameter of the fuel rod
DBB inner diameter of the rod canning
DBK outer diameter of the rod canning
RACS diatance of the triangular lattice
E Young's modulus of elasticity

Card 2. ROUA density of the fuel rod
ROB density of the rod canning
ROV density of the water
VISZKK kinematic viscosity of the water
PAX axial spring load

Card 3. Cl constant in equation/18/
C2 constant in equation / $26 /$
C3 constant in equation/19/
DAMP critical damping ratio
SEB mean flow velocity parallel to the axis of the cylinder

Card 4. YKONCR measured rod deflection caused by concentrated weight at static load test
PKONC concentrated weight at static test
YMOSZLR measured rod deflection caused by uniformly distributed weight at static load test

PMOSZL uniformly distributed weight at static test
RUGO torsional spring constant

Card 5. RUDHOS length of the rod between two adjacent spacer grids
Cll coefficient in equation /33/
Dll exponent in equation /33/
C22L coefficient in equation/34a/
D22L exponent in equation /34a/

Card 6. C22G coefficient in equation/34b/
D22G exponent in equation /34b/
C33L coefficient in equation / 35a/
D33L exponent in equation /35a/
C33G coefficient in equation /35b/

Card 7. D33G exponent in equation/35b/
C44 coefficient in equation /32/
D44 exponent in equation /32/
Operating card for simplified INPUT FORMAT/3E13.6/
SEB mean flow velocity parallel to the axis of the cylinder
RUDHOS length of the rod between two adjacent spacer grids
RUGO
torsional spring constant
INPUT constants FORMAT /7/I2,1X/,I4/
LP1 logical parameter for torsional spring constant determination
N number of rods in a bundle
LP3 logical parameter for transverse deflection function and bending moment diatribution calculation
LP4, LP5, LP6, LP7, options for calculation of relative axial displacements between rod and spacer in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively
NNN number of subdivisions of the half rod for the calculation of the relative axial displacement between rod and spacer.

End - of - data card:

At the end of each set of data for a RKVI problem, a card is written to indicate the end of INPUT information. The card must have an integer 8 in column 2, if another problem is to follow, or an integer 9 in column 2, if there are no more problems.

2./ Code OUTPUT

The OUTPUT of RKVI is self-explanatory for those who are familiar with its algorithm. Therefore, a brief summary of OUTPUT results is sufficient. First, all INPUT data are reproduced in the OUTPUT. The second group of calculated data includes the transverse reaction forces between rod and spacer. The third group contains the transverse deflection function and the axial distribution of the bending moments. /These functions are calculated at the 21 printing points of the half rod./ The fourth group. includes the relative axial displacement between the rod and the spacer.

The most important results are printed out in a separate group as follows:

ROATL average density of the rod
AI moment of inertia of rod canning
SP6 flexural rigidity of the rod canning

RUDM
VIZM
DH
DCELLA
RF
YKONC

RUGO
YMOSZL

ALFA "end fixity" parameter
AL
BETAL
BETAV
BigTARL
BETARV
FREQL
FREQV
FREQRL
FREQRV
TFTAEGY weight at slatic load test torsional spring constant weight at static load test frequency in air with axial spring end slope per unit amplitude
mass of the rod displaced per unit length virtual mass of the fluid per unit length hydraulic diameter of the test section equivalent diameter of the triangular lattice cell Reynolds number, based on the hydraulic diameter corrected rod deflection caused by concentrated corrected rod deflection caused by uniformly distributed
dimensionless "end fixity" parameter frequency parameter in air without axial spring frequency paramter in water without axial spring frequency parameter in air with axial spring frequency parameter in water with axial spring frequency in air without axial spring frequency in water without axial spring frequency in water with axial spring

```
AMPL1, AMPL2, AMPL3, AMPT4 maximum vibration amplitude
    /half peak to peak/ in the Burgreen, Paidoussis,
    Westinghouse and Euratom amplitude correlations,
    respectively
TETAl, TETA2, TETA3, TETA4 actual end slope in the Burgreen,
    Paidoussis, Westinghouse and Euratom amplitude
    correlations, respectively
BlL = BFTAL . RUDHOS dimensionless frequency parameter in air
    without axial spring
B2I = BETAV . RUDHOS dimensionless frequency parameter in
    water without axial spring
B3L = BETARL . RUDHOS dimensionless frequency parameter in ajr
    with axial spring
B4T = BFTARV . RUDHOS dimensionless frequency parameter in water
    with axial spring
```


3./ Machine requirements

RKVI program is written for ICL-1905 comiuters. The code requires a memory capacity of 8200 words. The running time is determined by the complexity of the problem and the desired options, and is about $1-5$ minutes.

Symbols and definitions

The unit system used for RKVI computations follows the normally accepted engineering system of Anglo-Waxon countries:

```
Unit of mass = pounds
Unit of length = feet
Unit of time = seconds
Unit of temperature = Fahrenheit
```

[1] D.Basile - J.Fauré - E.Ohlmer: Fxperimental study on the vibrations of various fuel rod models in parallel flow. Nuclear Engineering and Design 7, /1968/ 517-534
[2] D.Burgreen - J.J.Byrnes - D.M.Benforado: Vibration of rods induced by water in parallel flow. Transactions of the ASME, 80, 991 /1958/
[3] D.Burgreen: Effect of "end-fixity" on the vibration of rods. Journal of the Fingineering Mechanics Division /Oct.1958/ Paper 1791.
[4] M.P.Paidoussis: The amplitude of fluid-induced vibrations of cylinders in axial flow. AECL-2225, Atomic Energy of Canada Ltd, /March 1965/
[5] M.W.Wambsganss, JR.: Vibration of reactor core components. Reactor and Fuel-processing Technology, Vol.10, No.3, Summer 1967 .
R.T.Pavlica - R.C.Marshall: An experimental study of fuel assembly vibrations induced by coolant flow. Nuclear Engineering and Design $4 / 1966 / 54-60$
[7] SOGREAH: Study of vibrations and load losses in tubular clusters. Special Report No.3.USAEC-Euratom, Report, EURAEC-288 /1962/
[8] E.P.Quinn: Vibration of fuel rods in parallel flow. GEAP-4059 /1962/
[9] N.Ferrucci - D.Pitimada: Experimental vibration characteristics of a B.W.R. fuel assembly. RT/ING/70/24, /1970/
[10] E.G.Passig: End slope and fundamental frequency of vibrating fuel rods. Nuclear Engineering and Design 14 /1970/ 198-200.
[11] Y.Takada - T.Egusa: Vibration of fuel assembly of a marine reactor. Nuclear Tngineering and Design $7 / 1968 / 578-584$.
[12] J.R.Reavis: Vibration correlation for maximum fuel-element displacement in parallel turbulent flow. Nuclear Science and Engineering: 38, 63-69 /1969/
[13] W.T.Thomson: Vibration theory and applications. Prentice-Hall, New Yersey /l965/
[14] Froceedings of the conference of flow-induced vibrations in reactor system components. /May 14 and 15, 1970/ Argonne National Laboratory. ANL-7685.
[15] S.S.Chen - M.W. Wambsganss: Response of a flexjble rod to nearfield flow noise. ANL-7685. 5-31 page, /1970/
[16] E.Volterra - E.C.Zachmanoglou: Dynamics of vibrations. New-York /1965/
[17] S.S.Cher - M.W.Wambsganss: Parallel-flow-induced vibration of fuel rods. First Internalional Conference on Structural Mechanics in reactor technology. Berlin. 20-24, sept. 1971.

Physical or Mathematical Symbol	FORTRAN Symbol	Units	Definitions and remarks
1	2	3	4
LPI	LPI	-	$\begin{array}{ll} \text { Logical } \begin{array}{l} \text { parameter for torsional spring constant } \\ \text { determination. } \end{array} \\ \text { IP1 = } 0 & \begin{array}{l} \text { torsional spring constant is calculated } \end{array} \\ \text { from equation/la/ } \end{array}$
LP2	LP2	-	Logical parameter determining the amount of new $\begin{array}{ll}\text { LP2 }=1 & \text { data } \\ \text { read entire } & \text { INPUT }\end{array}$ LP2 $\neq 1$ read simplified INPUT
LP3	LP3	-	Logical parameter for calculation of transverse deflection function and bending moment distribution. LP3 $=0$ transverse deflection function and LP3 $\neq 0 \quad$ bending moment calculation is omit bending moment are calculated from equations /40/ and /42/.
$\begin{aligned} & \text { IP4, LP5 } \\ & \text { IP6, LP7 } \end{aligned}$	LP4, LP5 LP6, IP7	-	Logical parameter for calculation of relative axial displacements between rod and spacer in the Burgreen, Paidoussis, \#estinghouse and Euratom amplitude correlations, respectively. LP4 = 0, LP5 = 0, LP6 = 0, LP7 = 0 relative axial displacement calculation is omitted. LIP4 $\neq 0$, LP5 $\neq 0$, LP6 $=\varnothing$, IP7 $\neq 0$ relative axial displacement is calculated from equation $/ 42 /$.
IVEGE	IVEGE	-	Logical parameter indicating the end of INPUT information for a problem. IVEGE $=8$ if anot her problem is to follow. IVEGE $=9$ if there are no more problems.

1	2	3	4
$\mathrm{d}_{\text {ua }}$	DUA	ft	Diameter of the fuel rod
d_{bb}	DBB	ft	Inner diameter of the rod canning
$\mathrm{D}_{\text {Rod }}$	DBK	ft	Outer diameter of the rod canning
$\mathrm{d}_{\text {hydr }}$	DH	ft	Hydraulic diameter of the test section
$\mathrm{d}_{\text {cella }}$	DCELIA	ft	Equivalent diameter of the triangular lattice cell
I	RUDHOS	ft	Length of the rod between two adjacent spacer grids
${ }^{\text {ua }}$	ROUA	$1 \mathrm{bm} / \mathrm{ft}^{3}$	Density of the fuel rod
$p_{\text {burk }}$	ROB	"	Density of the rod canning
$\rho_{\text {water }}$	ROV	"	Density of the water
${ }^{\rho}$ aver	ROATL	"	Average density of the total rod
I	AI	$f t^{4}$	Moment of inertia of the rod canning
E	E	$1 b_{f / f t}{ }^{2}$	Young's modulus of elasticity
E.I	SP6	$1 b_{f} . f t^{2}$	Flexural rigidity of the rod canning
m	RUDM	. $1 \mathrm{bm} / \mathrm{ft}$	Mass of the rod displaced per unit length
$M_{\text {water }}$	VIZM	"	Virtual mass of the fluid per unit length
${ }^{\text {lattice }}$	RACS	ft	Distance of the triangular lattice
${ }^{\text {water }}$	VISZKK	$\mathrm{ft}^{2} / \mathrm{sec}$	Kinetic viscosity of the water

1

1	2	3	4
Hwater	-	lbm/sec.ft	Dynamic viscosity of the water $\mu_{\text {water }}=\rho_{\text {water }} \cdot \nu_{\text {water }}$
$\mathrm{P}_{\text {spring }}$	PAX	$1 b_{f}$	Axial spring load
ξ	DAMP	-	Critical damping ratio
V	SEB	$\mathrm{ft} / \mathrm{sec}$	Mean flow velocity parallel to the axis of the cylinder
K	RUGO	$1 b_{f} . f t / r a d$	Torsional spring constant
$\Psi_{\text {conc }}$ corr	YKONC	$f t$	Corrected rod deflection caused by concentrated weight at static load test
$Y_{\text {conc, meas }}$	YKONCR	ft	Measured rod deflection caused by concentrated weight at static load test
$Y_{\text {dist, }}$ corr	YMOSZL	$f t$	Corrected rod deflection caused by uniformly distributed weight at static load test
$Y_{\text {dist,meas }}$	YMOSZIR	$f t$	Measured rod deflection caused by uniformly distributed weight at static load test
$\mathrm{N}_{\text {rod }}$	N	-	Number of rods in a bundle
$\mathrm{N}_{\text {division }}$	NNN	-	Number of division of the half-length rod at the calculation of the relative axial displacement between rod and spacer
Re	RE	-	Reynolds number, based on the hydraulic diameter
α	ALFA	$1 / f t$	"end fixity" parameter
α_{0} IL	AL	-	Dimensionless "end fixity" parameter.
Bair	BETAL	I/ft	Frequency parameter in air without axial spring
$\beta_{\text {water }}$	BETAV	$1 / \mathrm{ft}$	Frequency parameter in water without axial spring

1	2	$\overline{3}$	4
${ }^{\text {air, spring }}$	BETARL	$1 / \mathrm{ft}$	Frequency parameter in air with axial spring
$\beta_{\text {water, spring }}$	BETARV	$1 / \mathrm{ft}$	Frequency parameter in water with axial spring
$f_{\text {air }}$	FREQL	$1 / \mathrm{sec}$	Frequency in air without axial spring
$f_{\text {water }}$	FREQV	$1 / \mathrm{sec}$	Frequency in water without axial spring
$\mathrm{f}_{\text {air, spring }}$	FREQRL	1/sec	Frequency in air with axial spring
$\mathrm{f}_{\text {water }}$, spring	FREQRV	1/sec	Frequency in water with axial spring
$\theta / \delta_{\text {max }}$	TETAEGY	$\mathrm{rad} / \mathrm{f} \mathrm{t}$	End slope per unit amplitude
$\delta_{\text {max }}$	AMPL1, AMPL2 AMPL3, AMPI4	$f t$	Maximum vibration amplitude /half-peak to peak/ in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively
θ	TETAI, TETA2 TETA3, TETA4	rad	Actual end slope in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively
$\mathrm{B}_{1 L}$	B1L		Dimensionless frequency parameter in air without axial spring
$\mathrm{B}_{2 \mathrm{~L}}$	B2L	-	Dimensionless frequency parameter in water without axial spring
B_{3}	B3L		Dimensionless frequency parameter in air with axial spring
$\mathrm{B}_{4} \mathrm{~L}$	B4L		Dimensionless frequency parameter in water with axial spring
M	ANYOMI, ANYOM2 ANYOM3, ANYOM4	$1 b_{f} . f t$	Restoring bending moment in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively
C_{1}		-	$\begin{aligned} & \text { constant in equation } / 18 / C_{1}=\pi^{2} \text { for pin ended beam } \\ & C_{2}=42 \text { for, built-in beam } \end{aligned}$
C_{2}	$\mathrm{C2}$	-	Constant in equation / $26 /$ C2 depends primarily on the ratio of cross-flow velocity to axial flow velocity, and is approximately equal_to 10^{-0} for a system with minimum flow disturbance and 5.10 ${ }^{-5}$ for highly disturbed flow conditions
C_{3}	C3	-	Constant in equation / $19 /$ C_{3} varies from 1 to 3 depending on the geometry

1	2	3	4
C_{11}	CII	-	Coefficient in equation /33/
D_{11}	D11	-	Exponent in equation /33/
$\mathrm{C}_{22 \mathrm{~L}}$	C22L	-	Coefficient in equation /34a/
$\mathrm{C}_{22 \mathrm{G}}$	C22G	-	Coefficient in equation /34b/
$\mathrm{D}_{22 \mathrm{~L}}$	D22L	-	Exponent in equation /34a/
$\mathrm{D}_{22 \mathrm{G}}$	D22G	-	Exponent in equation /34b/
${ }^{\text {c33 }}$ L	C33L	-	Coefficient in equation /35a/
$\mathrm{D}_{3} \mathrm{~L}$	D33L	-	Exponent in equation /35a/
$\mathrm{C}_{33 \mathrm{G}}$	C33G	-	Coefficient in equation /350/
$\mathrm{D}_{33 \mathrm{G}}$	D33G	-	Exponent in equation /35b/
C_{44}	C44	-	Coefeicient in equation /32/
D44	D44	-	Exponent in equation /32/
\pm	-	sec	Time
x	X	ft	Iongitudinal coordinate
Y	$\begin{aligned} & Y F X 1 / X /, Y F X 2 / X / \\ & Y F X 3 / X /, Y F X 4 / X / \end{aligned}$	ft	Transverse deflection function of the cylinder in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively.
$P_{\text {conc }}$	PKONC	$1 b_{p}$	Concentrated weight at static Ioad test
$P_{\text {distr }}$	PMOSZI	$1 b^{\prime} / \mathrm{f} t$	Uniformiy distributed weight at static load test
$y / s_{\text {max }}$	YPAFX/X/	-	Transverse deflection function per unit amplitude

1	2	3	4
ω	OMEGAL, OMEGAV OMEGARL, ONEGARV	$\mathrm{rad} / \mathrm{sec}$	Circular frequency of oscillation of the cylinder in air without axial spring, in water without axial spring, in air with axial spring and in water with axial spring, respectively.
A, B, C, D		-	Integral constants in equation /7/
$A / \delta \max , C / \delta_{\text {I }}$	x APERA, CPERA	-	Integral constants in equation /17/
S_{0}	STROU	-	Strounal number /as a function of $\mathrm{f}_{\text {air }}$ /
R	REAKI,RFAK2 REAK3,REAK4	$1 b_{f}$	Transverse reaction force between rod and spacer in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively.
$R D$	ROVID1,ROVID2 ROVID3,ROVID4	ft	Relative axial displacement between rod and spacer in the Burgreer, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively.
S	$\begin{aligned} & S 1, S 2 \\ & S 3, S 4 \end{aligned}$	ft	Length of the curved rod in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively.
M/x/	$\begin{aligned} & \mathrm{AMFXI} / \mathrm{X} /, \mathrm{AMFX} / \mathrm{X} / \\ & \mathrm{AMFX} 3 / \mathrm{X} /, \mathrm{AMFX} 4 / \mathrm{X} / \end{aligned}$	$1 b_{f} . f t$	Axial distribution of the bending moments in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, respectively.

Length of the curved rod in the Burgreen, Paidoussis, Westinghouse and Euratom amplitude correlations, resively.
respectively.

