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ABSTRACT

The time-dependant transition probability for linear photo-
electron emission is calculated and the exact solution of the equa-
tion of motion is given. It shows an oscillating character of double
light frequency with exponentially decreasing amplitude.

Bbina onpegeneHa BepoOSATHOCTb Mepexofa NIMHeHOW (hoTO3NeKTPOHHO
3MUCCUM C MOMOLLpHO TOYHOTO PELUEHUs YPaBHEHWUS [BMXKEHWS onepaTopa MIoTHO-
cTn. OKa3anocba 4YTO BEPOATHOCTb MEPexofa HOCUT KoneGaTe/bHbIA XapakTep
C [IBOMHOW CBETOBOW 4acTOTOM W 3KCMOHEHLMaNbHO YObIBAKOLLIEA aMMNAUTYOON.

KIYONAT

Linearis fotoelektronmisszi6 atmeneti valdszinlségét hataroz-
tuk meg a slirGségoperator mozgasegyenletének egzakt megoldasaval. Az
dtmeneti valoszinlség kétszeres fenyfrekvencidju oszcillaciot mutat,
amelynek amplitidddja idében exponencialisan csokken.



The photon concept was introduced into phyaics by Einstein's
interpretation of the photoelectric effect. Recent developmenta in
the theory of this effect, however, have made it clear that its the-
oretical explanation does not require quantization of the electro-
magnetic field. AIl the experimental phenomena can be described by a
semiclassical theory in which the electromagnetic field is treated
classically, while only the matter interacting with electromagnetic
radiation is treated quantum mechanically. This semiclassical theory
accounts for the relationship between photocurrent and light intensity
both for linear and higher order photoelectric effects, as well as
for i,he Einstein relation between electron energy and light frequency

1 . [ -

The widely used photodetector model consists of a large num-
ber of completely independent atoms. Each atom has one electron, and
for the sake of simplicity we consider the problem to be one dimen-
sional. The atom has a ground state l|g> and a set of quasi-contin-
uous excited states o , which are normalized in n length L very
large compared to atomic dimensions, so that the levels approximate

to a continuum when L tends toward infinity.

The atoms are illuminated by a classical, monochromatic elec-
tromagnetic field, for which the electric field is

E(t) = EO cosait 11/

Transitions from the ground state |g> to any of the |k> states
under the influence of incident light give rise to the emission of
photoelectrons. The Hamiltonian for the electron interacting with the
electromagnetic field is

H=H - e E(t)x 121

where HQ is the unperturbed atomic Hamiltonian, x is the coordlnat
operator of the electron and e is its charge. Here only the elec-'



trie dipole part of the interaction is taken into account, because
atomic dimensions are very small compared to the wavelength of light.
Spatial variations of light within the atom as well as retardation
and magnetic effects are neglected. This approximation simplifies the
calculations further.

It is convenient to go into the interaction picture, in which
the Interaction part of the Hamiltonian becomes:

V(t) = - e x(t) E(t) 13/

where

x(t) =expl|i HQtj > K "o 14/

The nonvanishing matrix elements of /3/ are

<klv (t)l1g> = - e xk g E(t) exp]i ek tj /51

and

- e x k E(t) expj- ™ ek tj 16/

<g|V(t)|k>

where ek is the energy of the K -th excited state measured rela-
tive to the ground state.

Por the description of the transition we use the density ma-
trix formalism. The density matrix of photoelectrons obeys the following
equation of motion in the interaction picture:

ifi p(t) = V(t), p(t)J 171

the formal solution of which is:

t

p(t) =p©) - £ j dt* [v(t) ., p(t)] /81
0

It is convenient to substitute /8/ into /7/ to obtain a more useful
form of the equation of motion for the following calculations:

ifi p(t)= [v(t), pO)] - dt' |v(t), [v(t), p(t")Ij /81



In what follows we ignore transitions between the excited states, be-
cause we are interested in ionization process: i.e.we assume

pk. k' * 6k,k' *

Before going into the details of the calculation we briefly
recall the results obtained by the time-dependent perturbation theory
in lowest order on the ground of the above assumptions [N . W
begin by defining the total probability P (t) of finding a photo-
electron:

We obtain from /91 , to the lowest order:
e 2E2
pk,k(t)~ ¥ Ixk,g!12 6(ek " **“)e* 111/
S0 /10/ takes the time proportional form
P(t) = YI t 112/
where
- . *
vio= o T oy /131
Here a(hw) ia the number of states per unit energy range calcu-
lated at resonance. It should be noted that an electron will be ex-
cited on the «k ~-th level only if = fuo . We denote by A = et

the energy of the first excited state of the quasicontinuous spectrum.
This is the ionization energy of the atom or the work function of the
photodetector. Measuring the kinetic energy E > 0 of the liberated
electron from the ionization energy, we obtain from the argument of
the 6 function in /11/ -ftm =A+E, which is the well-known Einstein
photoelectric formula. It will be noticed that /12/ is proportional
to the light intensity.

In most time-dependent problems one is content with a result
like /12/ . But because of the simplicity of our photodetector model
it is possible to carry out the calculation to all orders in the per-
turbation, i.e. to integrate /9/ exactly. We begin by noting that
P(t), as defined in /10/ , obeys the following equation of motion
taking into account /9/



Triml *(- fi)2 | KI[v(t> $ p(fj & 14
or writing out the commutator explicitly

t
d ~
Z(t” AN PYO (Vglt) & SKCt'> ok, *(t') * \K.9Ct-) Vg.»(t)’

S0(t,) W * '» vg.k(t) - V g (t) V 9 (t-) V9.kCt0}

115/
Since = 1 /the system 1B initially in the ground state/ and
P (t) -4 - £ Pkfk() , where all the P<fk(t) - s are positive,
it is obvious that the pk k(t') - s must have an upper bound as

function of k. When L, the normalization length, tends towards in-
finity, the «k states will approximate to a continuum. Only the inte-
gral of pk k(t) over a finite range of energy gives rise to P(t).
Thus as 1 m« the terms in /15/ involving pk k(t") can be neg-

lected in comparison to those involving pg»g(t') , so from /15/
there remains

t e

i dt' | le xR ™ Eq|2 cosut cosmt' pgg (t') 2cos-~(t-t') /16/

0

Replacing the sum over «k by an integral over excited state energies

according to % ... = fde o(e) ... , where a(e) has the same
meaning as in /13/,and using the fact that pg (t') =1 - P(t") , e
obtain:
dr~t~ =

17 Edt' jde o(e) le xR Eq|2 cosmt cosmt' jAI-P(t')] ?cos”(t-t")
i

117/
The integration over e leads to the delta function 21rb6(» - t') ,
and after performing the t* integration we finally end up with the
simple differential equation:

=y(l +cos2mt)(l - P(t") /18/



where

Apart from a numerical factor, /19/ is equal to A3/

The solution of the differential equation /18 / for the ini-
tial condition p(o) = o

P(t) =1 - expl|-~yt + sin2wt)j 120/

This solution differs from that found by Lamb [I] in the
oscillating exponential term. To understand better its physical mean-
ing, let us expand it as a power series in y(yt << 1) , taking
into account only the first order term:

PAVE) = Yt + sin2wt 121/

This expression can be identified with the lowest order transition

probability and its time derivative is the probability

(V) ,
of transition per unit time:

W('l}) . M = Y + cos2a)t) 1221

dt

This means physically that the transition probability, and hence the
photocurrent, is an oscillating function of time. It oscillates at
double light frequency around the value obtained in lowest order per-
turbation theory. Eq. /20/ shows how the oscillation develops in time.
The amplitude of the oscillating term exponentially decreases with a
time constant T =y 1 o

We conclude that there may exist a modulation of the photo-
current, but this theoretical prediction needs more experimental support.
We hope to return to the problem in a subsequent paper that will take
into account multiphoton transitions and the transitions between ex-
cited states.
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