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ABSTRACT

Tha parametric resonance in the decay of a system such as
a positronium is discussed. It is shown, using Wigner-Weisskopf per-

turbation theory, that the decay constants depend on the frequency
of the external perturbation.

PE3IOVE

O6ecyxaaeTca napameTpuyeckuii pe3oHaHc B. pacnafe CUCTEM
NOAOGHBbIX MO3UTPOHMIO. [Mp nomouw Teopun BO3MYLLEHWS BurHepa u Balic-
ckonda nokasaHo, 4TO MOCTOSIHHbIE pacnaja CyuleCTBEHHO 3aBUCAT OT uac-
TOTbl BHELUHErO0 BO3MYLLEHUSA.

KIVONAT

Pozitroniumhoz hasonl6 rendszerek bomlasdban fellépd para-
metrikus rezonanciat targyaljuk. Megmutatjuk, hogy a bomlasi allan-
dok. lényeges modon flggenek a kuls6é perturbacié frekvenciajatol.



1. INTRODUCTION

Let us consider a system which undergoes a spontaneous ra-
dioactive decay other than an electromagnetic transition between the
energy levels. An example is the positronium which decays into two or
three gamma quanta. What kind of modification in the decay law can
be expected when the system undergoes a small classical periodical
external perturbation? One is inclined to think that the sole effect
consists in the change of the time distribution from a single exponent,
characterizing the decay of the ground state, into a sum of exponents

-yt
P(f =1 As )e S
each term of which describes the decay of a single stationary state.
The decay constants yg are expected to be those for the corresponding
levels, while the weights A”, depending on the frequency R , charac-
terize the mixing of the states under the influence of the periodic
perturbation. The answer to be given below, however, differs from this
intuitive expectation in that the decay constants y4 in the individ-
ual terms Of p(t) turn out to depend on the frequency in an essential
way. According to the intuitive picture one expects, for example, that
at about the resonance frequency w -wq, when the ground state /s=0/
and one of the excited states /s=q/ are involved, p(t) will consist
of two different exponents of nearly equal weight. The argument pre-
sented here leads to the conclusion that at resonance the distribution
p(t) is a single exponent with the decay constant equal to 2_1(y0+¥Yo»
In addition, the following two properties will be indicated: when the
external perturbation goes to zero, the effect disappears at a small
but finite value, and the statistics of the counts of the decay products
differ from the Poisson distribution.

2. THE EXPONENTIALLY DECAYING COMPONENTS

In order to identify the exponentially decaying states of the
system the perturbation theory of Wigner and Weisskopf [I] will be ap-
plied. Originally this method was conceived to treat the natural broad-
ening of spectral lines observed when the accuracy of the frequency



measurement is of the order of y . According to the uncertainty rela-
tion Aft . At =1 , such an accuracy in the frequency requires the
determination of the wave function for times about y_1 > which is
beyond the possibilities of the time-dependent perturbation theory of
Dirac. Later [2] the method was used in the determination of expo-
nentially 'decaying sambinations of K° meson states, and this is the
aspect to are interested in.

The decay rate in a small interval after the initial time can
be calculated using time-dependent perturbation theory. This calcula-
tion, however, leads to a unique decay law only if, in the course of
the decay, the change of the original state is limited to a decrease
of the norm. This condition is met in the case of well separated sta-
tionary state, but when linear combinations are involved, the change of
the norm is usually accompanied by distortion of the linear combina-
tion. Exponentially decaying, components are those linear combinations
for which such distortions are absent. They can be determined using
Wigner-Weisskopf perturbation theory. Since we need the equations of
the method in a slightly more general form than they are usually pre-
sented, the main steps of the derivation will now be given.

The Hamiltonian of the system ,13 the sum
"= o+ w(t)+V = H(t) +V
where V describes the decay and W is the external perturbation. It

will be assumed that the decay products are insensitive to W The sta-

tionary states 4*cj and '-% of the decaying system and the decay products
satisfy the Schrédinger equations

f = %ze’\

The index e represents, besides the continuous energy variable,
all the quantum numbers which are necessary to specify the states of
the decay products.

Let . (t) = U(t.)) (0 be the wave function in the interaction
picture. The unitary operator Uft) satisfies the equation

O(t) = -iH(t) U(t) : u(o) =1

The time-dependent Schrédinger equation can be written as

S
L = Ve o 11/



where
vi (t) = u(t) v u(t) 121

The substitution of the expansion
h.(0 = 1C (L) +1c (v)
a e
into (1) leads, in the lowest order of V, to

i O'(t) =1 Ce(t) <alvi(t)le> 131
G

i cg(t) =1 cy(t) <elV, (t)]a> fal

Introducing (2) into (4) and integrating, we have
t
iC((t) = )k; <e IVIb> N eiet <bju(t') |a> C/(t') dt' 151/
al N\

Eq.(3) can be presented in the form
ic'(t) =1 "1l £ caju(t)jc> <clvle> C (t) 161

Now the following.thrée steps are to be made:
- introduce (5) into (6),
- make the substitution
-fiy + it) t
Cd'(t) =e )’3/ Y Ca(t)
with constant y and vy, and

- change the integration variable t' into t-t'
As a result we arrive at the equation

(iy +it) C (t) - C (v) = I <alu(t)|b2> <bl|u(t)|b3>
U ' bblb2b3 /7]
I <b3|D (e-t)|b> <b2|v|le> <e|v|bl> bCt)
where .
-i (e-t + 4y)t’
<b3ID(e-y) |b> = \ dt'.e <bJu(-t") |b>

For sufficiently large values of t the quantity on the
right hand side of this equation is independent of the time t

, since
the matrix element <b3|u(-t") |b> is a sum of periodic term, and
using the relation [J]

t
e~i(x+iy)t" dt, = ffé(x) _ i p |

term by term the t-dependence disappears.



The final step consists in averaging (7) over a time interval
T which is large compared to the periods characterizing the motion
of the decaying system, but small compared to the lifetime. The aver-
age of <ca(t)is zero, and we get

(ky + iy)e = | <aju(t)|b2> <bl|u(t)|b3>
\ ' bb,bob.,
1 2 /181

e | <b3ID(e-y) Ib> <b2]|v]je> <e|v|b-">

It is assumeg that the average of the product <G> <U> is inde-
pendent of the time, so that the CQ -s are constants and therefore
determine the linear combinations decaying exponentially over time
intervals T. When the average is time dependent, no exponentially
decaying combinations can be selected.

In the limiting case W=0

-im t
<a|u(t) Ib> = e a 6ab

Therefore

— T ~4 %7 % JE
<alu(t)|b2> <bl|U(t)|b~r> = 6ab2 6bib3 « e

re if w 0}
b2bl b2 bl
- «ab2 ¢ \' b 3 e
1 if 0, = W
n b2 bl

Substituting this into (8) one finds that for a nondegenerate
system the exponentially decaying components are the eigenstates fa
while in the degenerate case the exponentially decaying components
are defined by a nonhermitiall eigenvalue equation.

In the next section eq.(8) will be applied to the case of
decay in a periodical external field in the following way: For any giv
en frequency the eigensolutions of (8) will be assumed to decay accord

ing to the exponential law, with a decay constant equal to the real
part of the corresponding eigenvalue /see eq. (16)/. The weights of
these exponents will be given by the projection of the initial state
of the system on the corresponding eigensolution /eqs.(17) and (18)/.



5. THE RESONANCE IN THE DECAY LAW

If an external field is present the most interesting case oc-
curs when the frequency is near a resonance. To apply (8) an expres-
sion for <alu(t")|b> is needed which can be used at the resonance.

Let i@ (t) be the solution of the equation
i 11 = H(t) o 191
satisfying the initial condition

d(a\o) =
Then
<blU(t) la> = (fb/ dga\o)

i.e. particular solutions of (9) are necessary to construct wn

In the following we confine ourselves to the case of a two-
level system and to an external perturbation of the form

<aM() |b> = (I “ €b) Veb gl(™—+f) + e-i(i2t+f)J

Eg. (9) can be written as
f i (w-tol+i2)t+ilf i (W -wr -ft)t-itfl

LCo (t) " It o 1 I Wol C.Ct)
] . N . P LI . n /I'O/
i(w,-to +ft)t+if iiu.-m -ft)t-if W C (t)
iCl(t) = e 1 ° +e 41 ° KO o
The c¢c”it) -s are defined by
d(t) =1 ca(t) e ~
Using the substitution
cg(t) = e-i<@“+vxt Ccj
where C , v are constants and w=fi - (w, - w,) is the deviation

from the resonance frequency, (10) can be brought into the from

if
e V\é| C1 = VCO
/11/

e~lIf Wo Co " ucCl = vCI I



Quickly oscillating terms have been omitted., because at

=0 they lead to small corrections only of the order of
\-1
Wsik =i ™ “or

The eigenvalues of (11) are

1
va 5 -w + 0.9 + 41V 12

The corresponding eigenfuctions are given by the expres-

with a — tl
aions
.0R
cos § sln 2
a = cfé) 1121
-1 (fif))
Sin 2 e cos 2
where
M = Y
WoIl
tg § =
g W

The particular solution ija (t) can be written as

*a)t) =1c(t) e1%t fb
¢ b D

with
CaXt) =1 5@ <£\t) =1 e"i(bw+Va)t CO) <£>
Therefore
™ (uv+bl)+v )t / \ V% 11
<bIU(t) la> = J e b 0 Cl i + B LL_JLLH

Using this equation in the lowest order we have
<b-, ID(e-y) Ib> = 6bb o(e-w) - i P 113/
: e - w
It has been assumed that the matrix elements of V and the statisti-
cal weights of the final states vary slowly enough for the frequencies

wgro« to be replaced by an average w

Turning to the time average in (8), we can write



[u(t)|b2> <blju(t)|b3> =

oy G0 T g e s O WL ey ey e

Near the resonance the average in this expression is equal to

6bXb2 exP 1 (v " 114/
When |WOL| > T 1 , the time average here is equal to
& ,a , but in the opposite case, and in the interval |w| <<

it is equal to unity. Between these two values the average is time
dependent, and no exponentially decaying components can be indentified.

Let us discuss first the more important case of a ”strong”
W, wher.

1 £0) <@ £R) @) 115/

<“lu(t) |b2> <bl|u(t)|b3> = 6b .
'1~2 a bl a b3 bl

Substituting (15) and (15) into (8), we have

(Y + 1Mcg = é cg0) o é v6(e-w) - i Pe—_l "

| cb’” ¢« Hbjlvle»!2 . TO0“ <cb
b, 1 1 * b

This equation is satisfied by putting

Ca = CLO) ¢ Yy =1 1~ ch}lW
where Yb is the decay constant of the state . Using (12), one
finds that
Y°(x) =i(yo + YX) +8§ * (yo " YX 116/
where
X =
2 V|
For a state which at t = 0 is described by the wave func-
tion | cafa » 'kke weights o are
A (x.f) =[]l C C<O) =[Crgr > o It a 752
0 [1+x
cC C 117/

. 1-0 , + 0 o iv cos(~-f-a)
+ leit2 T /llJ:rx Ak+x2



where *
V] CoCl
1%6C1 1
Besides x , the coefficients aq depend on ~ as well..

This phase can be considered as randomly distributed, therefore

2t
P (1) =W\ pf (t) df
0

PACE) = I Aa(x,f) e"Y (x)t |
T a

A/

118/

When, for example, the system at t = 0 is in the ground
state ( ¢ =1, (»=0 ), the time distribution is given by

Far from the resonance this is the single exponent exp(-yot),
while at the resonance ( x =0 ) it is another single exponent
exp[-2-1(y0 + yM t] . The width of the resonance on the scale w
is of the order of Iwoll .

The probability distribution of the number of counts at a
time t in the interval At is given by

R, %'rt (J df . —1H—§]’\I M
0
With

dp.o
PW) = - o At

The dispersion is easily seen to be

a2 = <n> + YV YH - yee'Y_tl (At)2
2(I+ x~) L J

which is larger than for a Poisson distribution, when both C0 and
Cx are different from zero.

Let us turn finally to the case when |wol| << T 1 . If in
this case the same averageing procedure had to be applied, as above,
we would have a very narrow resonance. However, as indicated before,
in this case the average (14) is equal to 6’\12 | therefore



<a IU(t7IE2> <bl|U(t)|b3> - 6blb2 6b2a

Substituting this and (13) into (8), we have
+ ip)ca = 1 ¥6(e-w) - i P [
e e-L

which is satisfied by the eigenstates fa and decay constans ya

This means that at this very small but finite perturbation there is
no resonance in the decay.
The author is indebted to Dr.A.Frenkel

for numerous stimu-
lating discussions.
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