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ABSTRACT

A complete set of basis functions for the quantum mechanical
three-body problem is chosen in the form of hyperspherical functions.
These functions are characterized by quantum numbers corresponding to

the chain 0 (6)dSU (3) 3 O (3) . Equations are derived to obtain the
basis functions in an explicit form.

PESLLIE

[na KBaHTOBOW 3aflaun Tpex Ten BbIOMpaeTcs MnosHas cuctema 6asmc-
HbIX (OyHKUMIA B BUE TuUMepchepruyecknx QyHKUMA. 3TN (lyHKUMM XapaKTepusyroT-
CA KBaAHTOBbIMM 4uC/fiamn, COOTBETCTBYHOWMMM Uenodyke 0 (6)c>su(3)”0 (3).
MonyyeHbl ypaBHeHUsT A1 onpegeneHns 6asncHbIX (OyHKUMIA B SIBHOM BU[E.

KIVONAT

A kvantum-mechanikai haromrészecske-probléma teljes sajatfligg-
vényrendszerét hipergdémbfiiggvények alakjaban valasztjuk meg, amelyeket
az O (6)2SU (3) 220 (3) lancnak megfeleld kvantumszamok jellemeznek.
Megadjuk a sajatfuggvények explicit alakban térténé meghatadrozéasahoz
szlikséges egyenleteket.






P-4 (*1 + *
<_*
n = yxXlt " x2
for = 1. At the BaTe time t and. n have to fulfill
|2 + n2 = x2 + x2 + x2 = p2 /11.5/

where p is the radius of the five-dimensional sphere. The vectors

can be considered both in the coordinate space and in the momentum space
In the _latter case (I1,3) means that we are in the center-of-mass frame,
and P is a quantity proportional to the energy.

The permutations mix up the components of t and n and
therefore it is useful to consider a six dimensional vector X
for which we have )

o 12 -/3/2\U\

_ . /1.6/
nl \-/37 2 i/ran J

Prom these formulae it is clear, that the permutations appear as some
rotations in the six dimensional space. On the vectors X* (i =1, ... 6)

one can build up the group 0(6) , for which (1,5) can be considered as
the invariance condition. The 15 generators of 0 (6) are

aik = Xi 3X™ - Xk 3X7 11*7]
| K—1j . e 6*

Further, we introduce the complex vectors

2:t+in
/1.8/
> —t-in

the permutation properties of which are especially simple:



P12z = z~* ' pi3z = z*¥e~2137ri p23z = z*e2/3Tri

K2 = 2 . p13z* = ze2™TI |, P23z%= ze-2 A3 1,3/
Por z and z* the condition (1,5) takes the form £2 +n2 = |z|2 = p2 ,
and can be considered as the invariant of the group SU(3) . In other
words, on the vectors z , 75 the group SU(3) can be constructed. The

SU(3) generators are, as usual:

Aik izi 3z, lzk . »
k 9zi /1.10/
i,k =1,2,3

The generators of SU(3) and O (6) are connected in the following ways

Aik =2 aik + i @i+3,k ~ ai,k+3) + ai+3,k+3 ] 11-n/

1.2. Coordinates. Parametrizatlon

In order to complete the parametrization, let’s consider a tri-
angle, the vertices of which are determined by three particles. The sit-

uation of the plane of this triangle in the space will be characterized
by the unit vectors nN2*

¥l = *2 =1" vV 2=0 /1.12]
They form together with 1= X 12 the moving coordinate system, the

orientation of which to the fixed system of coordinates we describe by
the Euler angles 47, 0, "2 -«

Al={-sln flsin'f2+cosflcos'P2cos0;-sinlflcos f2+cos '*sin fjCOsOs-cos'PjSine)
£2={-cos'flsinf2-sin'flcos 'f2cos0;-cos'flcosf2+sin'flsin'f2cosQ;sinflsin0}

1={-cos’\23in0; sinf2 sin0; - cos0} /1.13/

Vectors " and t2 are connected with z
in the following way:

J . e le'r t) /1.14,

where O 2a~TT1T , 0~ X 2% .



The parameters X and a characterize the form of the triangle /except

the similarity transformation, which can be excluded putting p =const./
Note, that the parametrization is chosen in such a way, that we can sep-
arate the two possible types of motion of the triangle: the spatial rota-
tions and the deformations. That can be easily seen for example, if we
rewrite vectors f and 1 in the form

i ' 'fC" 0s tt ¢ i, t2)

/1.15/

n-= ‘T(sin + cos A, /)

However, these expressions can not be obtained as products of functions
of the Euler angles and functions of the coordinates related to the de-
formations /they are, in fact, sums of such functions/. This feature
corresponds to the connection between rotations and deformations. To make
the picture clearer, consider the case of a non-rotating triangle. We
need for that purpose the expressions

s2 -y (I +sin a sinX?

/1.16/
n2 - v '™ - sin a sinx)
and
= ~2 sin a cosX 11.17/
The angle 0 between vectors £ and n
fn = IClInl cosO
can be written in terms of the variables X and a as
C0s© ~7E°_S_)_(____‘°j'[‘__'f‘____ /1.18/
/T - sin“Xsin®a
Note, that the components of the moment of inertia are
p2sin2 (|- - , p2 cos2(| - p2 /1.19/

Thus it is obvious, that, if a = const, the variations of X lead to
such deformations of the triangle, which do not affect the values of
momenta of inertia.



Let us return to the parametrization. In some calculations it
will be useful to apply =z in the form

[ /1.20/

where

7231+ ~ 2) - vriti ~1 )
/1.21/

t# =1, N=£2=07 10=0+x1) =-it

The components of t+ and t_ can be expressed in terms of the Wigner
D-functions, defined as

OL (fi0f2) =e pL (cos0) [1.22]

in the following way:

K- Cn.

Here t and kn are unit vectors corresponding to the moving and the
fixed coordinate systems respectively. Using the form (1,20) it is obvi-
ous, that the components of z and Z* can be written as

11.24/
M p(DI/2,-1/2AX a,°~ DI,M A0~ + DI/2,1/2 (X'a™®)
1/2 1/2
172,-1/2 (1.8,0) D152, 172 (1 /1.25]

Il. GENERATORS AND CASIMIR OPERATORS IN TERMS OP THE ANGULAR VARIABLES.
2.1. The Choice of Quantum Numbers

The theory of spherical functions, which form the basis in the
case of a two-body system, is well known. If one intends to develop an
analogous theory of harmonic functions for three particles, it is natu-
ral to use angular variables on the five dimensional sphere, and con-
struct the wanted functions in terms of these variables.

Introducing angular variables, we separate the similarity trans-
formations, and consider the group of those transformations only, under
which the sum of squared coordinates of the three particles, i.e. the
radius of the five dimensional sphere, remains constant.



Consider now a triangle, the vertices of which are determined
by three particles. If we exclude similarity transformations, two types
of transformations are left: rotations in the ordinary three-dimensional
space which are described by the group 0(3) , and deformations of the
triangle.

Now, it is obvious, that different forms of a deforming, non-
rotating triangle can be considered as .the projections onto its plane
of all the possible positions of a rotating rigid triangle. Dealing with

both the rotations and deformations, one can say, that all transforma-
tions of a triangle besides the similarity transformations can be de-

scribed by the projections onto the three-dimensional space of a rigid
triangle which is rotating in the four-dimensional space. That means,
that an arbitrary motion of three particles is equivalent to the rotation
of a triangle of unchanging form in the four-dimensional space, and its
similarity transformations.

The representations on the five-dimensional sphere of both the
group 0(6) and its reduction to SU(3) involve the representation of the
permutation group Sj. That’s why this description is extremely convenient
for the system of three equivalent particles.

Por the classification of a three-particle state one needs five
qguantum numbers. Thus it is natural to deal with SU(3) symmetry, in case
of which we dispose exactly of the necessary 5 quantum numbers. We have
to separate from the SU (3 ) generator (1,10) the antisymmetric tensor -
the generator of the rotation group 0 (3) i

[ iz J_ +iz* 3 ;7 23
Jik  2(Aik “ ~i)  2(zi Yar — 12k 3% Zi 'Z l2.11

The remaining symmetric part

- 3 s . L H 3 ’* 3
Bik " 2¢fik + \1) 2(zi 3z,  z dzq 1Z i3z%  zk 3] I2.21

is the generator of the group of deformations of the triangle which turns
out to be locally isomorphic with the rotation group. Finally, we intro-
duce a scalar operator

_ . /12.3]
N=£ SPA= 1 | (zk - g 37

To classify the three-body system, we choose the following quantum num-
bers:



Here K(K +4) is the eigenvalue of the Laplace operator on the five

dimensional sphere /quadratic Casimir operator for SU(3) /, J(J + 1)
- the eigenvalue of the square of the angular momentum operator j2 =
=4 | J2k; M—the eigenvalue of = 2J12 and v - the eigenvalue of

N. A 16 ugh N is not a Casimir operator of SU(3) , the representation
might be characterized by means of its eigenvalue, because, as it can be
seen, the eigenvalue of the Casimir operator of third order can be writ-
ten as a combination of Kand v . /if the harmonic function belongs
to the SU(3) representation (p,q) , then K = p+q, vV = (P-q) /.

The fifth quantum number is not included in any of the consid-
ered subgroups-, we take it from O0(6) and define it as the eigenvalue
of the operator

nr Jik Bk* J*i = sp JBJ /2.5/

1rl(f.B
This cubic generator was first introduced by Racah [16]

2.2. The Laplace Operator

We have now to write down the operators, the eigenvalues of
which we are looking for. First of all let us construct the Laplace oper-
ator. We could do that by a straightforward calculation of

12.6/

but there is a simpler way. We calculate
dz =i zdp -j z dX + ~ e_IX(l x z¥da - (dm x z) 12.71

This rather simple expression is obtained by introducing the infinite-
simal rotation dpe . its projections onto the fixed coordinates

=(1,0,0 , k=(, 1, 0), = (o, o, |) can be expressed in
terms of the Euler angles in a well-known form:

dm™ = cos sinG d”™ - 31nA”2

dm2 = -sin4 sinG d~ - cosfj dQ 12.81
dm® = cosG dfj* + d”
We shall use the. expressions of the infinitesimal rotations about the
rotating axes as well; they are defined as
ds™ = 1 dm /12.9/

From (2,7) one easily gets



da + A gx- +j dn* + i dn® + d«3 - /2.10/

-sin a dQ~ dft2 “ cos a dft* dxj + dp
Since the similarity transformations are of no interest to us, we can from
now on put p =1.

The expression (2,10) determines the components of the metric
tensor g”, thus it becomes easy to calculate the Laplace operator:

1. 11 :
A =477 4738 0ik

3q
3 + 2ctg 2ag| * - 1, 2 +cos a ax 3fi_ /2.11]
3az2 sm “a 4 R
+ 1 '32 + sin a "gion 4
2c0s %a 3fi2 342 a2 an2 an:
The explicit form of the operator N s
_ . 9
N=1i 5 /2.12/
If a harmonic function is an eigenfunction of A , it has to fulfill
Ab = -k(k+4)d /12.131
and bth = ydp 12.14]1

Rewriting /2,11/ in terms of the Euler angles, we obtain the Laplacian in

the form
7 b / _2\

A =ha " tg a 91+ 50052, ne” 3f,

sina __,0/1+cos 0 3 _ COSsO /2.15/
2005 23 COSZ4IA\7-§-i-ﬁ-/2-e-" \éll'l 2 sin 20 3f2 2ctgQ 30 +
+ 2 sin© 3f2 30) + sin2lfi (~0 " R

where [Ja and OO0 are 0(3) Laplace operators:

3 +ctg a4 2, cos a xB_ 1 o 12.161
c:| sin a \3X

L2
- -1J + ct,e - 2C0S0 - 12.17]
au bin w ) ' _
The form (2,15) can be obtained from the Laplacian calculated in [9] by
a unitary transformation.
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2.3. The Generators and,

To get the generators directly from dz, one have to invert a
5x 5 matrix in the case of three particles. That requires rather a long
calculation, which is getting hopeless for a larger number of particles.
Instead of performing the straightforward calculation, we obtain the
wanted expressions in the following way. Let us first consider Jlk, or,
to be precise, a component of it, for example "72' We i“roduce a para-
meter aik which define the displacementalong the trajectory which cor-
responds to the action of the operator Jlk.Thus, formally we can write

Ji2 =8§(izi W -~ iz2 dr[ + izl dbj “ iz2 all[) E /2.18/

Acting with J+#2 on the vectors z and z

/2v  Hza U\ a2\

112 72 -1 izl ' 312 z2 =1 izi '2°19 !
\ 23/ \ 0/ \ 23/ \ 0/
we see, that a\2 Nas raaé”na:ry- the following, we will make

use of the equations

zJ12 z = O z J12 z =0 12.20/
z*J12 z = |(z x z)3 /12.21]
i Ji2 i = - j(i XI)3 12.22/
Using the expression /2,7/ for dz , we can write
_ 3z i+ dX , 1 _-iX/t *\ da [ dw .0
J12z - - - 22 + 2 - u-*> A ,2-23/
and
'«** om “ 8 ** afjj + 1 " »») - (affj * 5
(here - is etc.) If we now obtain the derivatives which are

included in the right-hand side of the latter equations, then we can
express Jj2 in tarma of the new variables. Substituting

(tx zv) =ie 27cos MU +i sin ~ i+ 12.251

. -i .
(I x z) = -ie ?"cos Nt+- 1 sin ~ 12.261
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X sin a , z* “ie X sin a 12 .27/
) get from (2,
da dXx
4012  da12 12.281
Similarly, /2,21/ gives
dn 1
*3
4012 5 (3 12.291
and finally, /2,22/ leads to
an, i
do12 =  2*1 /2.30/
®d||12 o i .3 12 31/

where * denotes the k-th component of vector t*
Thus, we obtain

p)i_ + 173 3 + A3)_23 1
12 1" 2" an. an. 5 Al 12.32]
Similarly
1 1 + + 1l _a
23 2 "1 am %)ar% A 2 o /2.331
1 1 a
31 2 1 an 2 an. an 2 A, /2.341
The general expression for the angular momentum operator will have the
form
-i 3
23k " Jij "2 eijk "1 an 2 an, an. aly /2.351
The components of this operator fulfill the commutation relations

pik' jji] - Kj:u v - hk bl) = 1(Jij 4kt - j«k «n) '2-36
Finally, the square of the angular momentum operator is

32
A a2 and ! Me

We could, of course, get directly the expressions for J*. However, we
wanted to prove the method, which is necessary to calculate B”« Let's
consider

15 = ;1r <'12.l -{;?2 + i'z-2 sr3—- fzﬁ 6‘?{ 1'2*2 6% 3812 12.381

12.37/



12 .

From the action of B”2 on 2z and Zz*

/2.39/

It is obvious, that R12 is real. Making use of
12.41/
i B12 z = 8§ (*(1)z2 + K2)z.J 12.42]

«

and of /2,7/ , 12,25/ and /2,26/ , and following a procedure, similar
to that in the case of Jlk, we obtain the generator B”k of the group
of deformations of the triangle:

We introduced here the notation
[2.44]
For the sake of completeness let’s write down the commutation relations
[Bik* Bjsa] “ i (Jii 6kj " Jjk 6it) + I(/ij “ Jkk 6ij)

[Bik- Jjt] * I1(Bii «kj - Bjk SIt) - I(Blj *l« * "*Kk *«) [2°46/

2.4. 'Ehe Cubic Operator n

Finally we calculate the operator @A . Let’s introduce the oper-
ators H+ and H_ - which are the usual SU (2) raising and lowering op-
erators taken at the value of the Euler angle -2«3 =27 =0



m 1 3 +jl NG - )1
H+ = 7Y 75 _isTrTa "5X- | ctg a >/ 12.47/
and the operators 3 and 9
=TT-(Wwll1 sn~= T Tl na 2ira 1Ct903’\1J 12481
Us?ng these notations, we obtain ft in the form
i .| J..%9, B,
-tk Jk ki
12.49]
The operator ii has a simple meaning in the classical approximation.
Substituting velocities for derivatives and introducing £ =p and
Mn=q , We can write
8 fi = (CJ)(qj) - (nd)(p)) 12.50/

The derivative of this operator is obviously zero. If we now choose the
z axis to be directed along J, and introduce two vectors in the space
of permutations

then (2,50) can be rewritten as
I S- (S . y)3 /2.52]

The operator has the form of the third component of the angular momentum
in the space of permutations. So the symmetry properties of the problem
become clear: we deal with spherical symmetry in the coordinate space,
and with axial symmetry in the space of permutations.
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Before writing down the eigenfunctions of the obtained five oper-
ators, we have to make a few remarks. One can show, that fi iS not neces-
sary at small K-values, at which the degree of degeneracy is small. Indeed,
the number of states at given Kand v values is defined by the. usual
SU (3) formula

n(K'v) = g-(K+ 2)(K + 2 - 2v)(K + 2 + 2v) /12.53/
Summing over 2v from - K to K, we obtain the well-known expression

n0) =Y2 (k + 3)(K+ 2)2(k + 1) 12.54/

Maximal degeneracy occurs in the case of states with v = 0 at even K
values, and v = 1/2 at odd K values.

n(K,o0) = |(k + 2)3 K - even
/2.55/
n(K, 1/2) =|(k + 1) (K+ 2)(K + 3) K - odd

On the other hand, at given K values there are (K + 1) states with
different J and M since j e (0, K) and Me(-j,j). For K» 4 we have

n(k, o) >0 +1)2

and /12.56/

n(k, 1/2) > (k +1)2

Thus, for K<4 all states /with given K, J, Mand v values/ are simple;
the fifth quantum number is not necessary. In the interval 4« K< 8 doubly
degenerate states show up; in these cases the orthogonalization can be
carried out simply by constructing symmetric and antisymmetric combina-
tions. Only at K = 8 states with three-fold degeneracy appear, for
which the orthogonalization requires more complicated calculations. Be-
sides, states with J =0 and J = K values are not degenerate. Conse-
quently, in fact for practical purposes it is enough to deal with four

quantum numbers.

The number of states at given K and v wvalues is given in
the Appendix. There it is shown in detail, that n-fold degeneracy appears
at K = 4n.
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2.5. Eigenfunctions

Finally, let's look for the harmonic functions & , which ful-
fill the eigenvalue equations of the Laplace operator and the operator
N with eigenvalues K (k + 4) and v respectively. The general form is
the following*

om,v - 1 £ *»K>1 °f,m( W /2.571
4
It ia easy to understand the meaning of this solution. 8ne can consider
the second D-function - which is the eigenfunction of J and - as an

eigenfunction of a rotating rigid top with the projection of the angular
momentum onto the moving axie, equal to p . This projection is not con-
served in our case, that’s why we have to take a sum over different values
of p . That is just the point where an additional operator is needed to
orthogonalize the obtained functions.

The coefficients av (K»M) have to be defined from the
Jigenvalue equation of the Laplacian /2,13/ and from

fi*XS,v = *<v /2.58/

These equations are unfortunately somewhat complicated:
11+
K

Fl) [ (0U-2)8 ]/5§-J "K+1)(§ + £ -<) |/(j-p+2)(j-p+1)(j+p-1)(j+p)’

+ay(k,p+2)| A(F + 3 _etD) (f " 2 -<]*(j+h+2)(j+P+1)(j-W-I)(j-u)1+

+a (K,p)(ivp2 + ivi(j+1) + 4«)J DK/2-K (X,a,0) +
V'2

T a - 12 + I) BK/T " (X_a_°) di,m (V /\) + /2.59/
V' 2

tg a(-ijt + 1) W0-p) (3+p+1)(J-p-1)(I+p+2) DK/2"KX,a,0) dl+2 m(A0f2) +

0]

+ (f - 1) '(+p)(JI-p+1) (j+y-1) (j-P+2)"DK/2° KX,a,0) dJ_27m ("))

X The solution is given in a similar form in (715
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LI{O-(" K2+ - (-0 - =+ 1) -5 cor s

—i-a- J(j+I) + ~-0-—

2c0s2a 2cos a °*T -
- -.(«.-0 itgail/(i-i -ic +i)(f ¢s - 0 °Kr (»...*>) or.2>s( ") *
"i
+ «V («,W)[- N-nm)(ntn+l)(mo L 1) (n+mn+2)' LK/2-« (x 0)
4cos a v U n+2,My1 »
[2.60/

Although it ia quite easy to solve this set of equations for every partic-
ular case, we couldn’t obtain ao far a general solution.

The practical calculations are getting simpler, if we take into
account some properties of the eigenfunctions. Note, that in /2,57/ the
D-functions corresponding to the spacial rotations form themselves an or-

thonormal set. Consequently, the eigenfunctions v have to be or-

thogonal in the space of a and X at any given values of the Buier angles
0, .We can therefore put N =0=f2=0 after we have ap-

plied ft . In other words, the problem reduces to the orthogonalization

of the fdrictions bf Kand'X
If we introduce the operators

- 77 (91 £bi1) I3 61/

= - iJ.
which act on Bom(g ° h) in the following way:



Jt d?m w*77) bI>mzl (Nen)

30 °T(*1B*2) - 15 ~ , (v ~)

then 9 can be rewritten in the form

, 262/

° =1ilJ fk Bij Jjk Jki =7 (B- + B++ J! - B+ (J+)- +J-J+ - 2j2) -

-B-o(Vo + JoJ+) " B+o(J-Jo + V -)} =

"7 {~A(h o+ ) v E(j2 - Jo) -

‘iam (ta; + 1 sinaim;)(J+Jo + JOJ+) + (Ta; "™ 1 sinato;)(j-jo+joj-)_ "'
Taking into account D™ (0,0,0) = 6yM we obtain the equations
I (&8 av(ic,2) ljlh - (] - <+ 1) [/1ja+n@g-ne+2)y 0" 1-1ha 0] +

+ 1 av(K-2)7 (1 - K(f - K+ A2 [fj(j+1)(-D(1+2) D"2" (x,a,0) +

+ (ivj(j+I1) + 40) av(Kf0) (x,a,0) +
+ 4cos~a YJ(J+IH J-1)(J+2)(av(k,2) dJ”™ _k (x,a,0) + ay(kK,-2) dJJ”"k(a,afo)) =0

12.64/

for even Kvalues, (fixing M=0), and

X{t av(K3) f(| - K- |)(f - K+ ) U(G-D) G+2)(-2)(j +3)' (A,a,0) +

+§ av (ii-D)(f - k +j) J(I+1) (A,a,0) +
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1 sin a
4 cos a

1 sin a a
4 cos a Vv /2 .65/

for odd K values (and M= 1) respectively.

I11. ANOTHER WAY OF CONSTRUCTION OF A SET OF EIGENFUNCTIONS

There is another way to find a complete set of eigenfunctions
for the three-body problem. In fact, the problem becomes complicated be-
cause of the requirement of definite permutation symmetry properties.
Without them it would be simple to construct the wanted functions with
help of the graphical method of the so-called "tree-functions", which
was proposed by Vilenkin and Smorodinsky [17] . We have to modificate
these functions, i.e. we have to find a transformation from the complete
set of "tree-functions" to the K-harmonics. /K-harmonics are hyperspherical
functions possessing definite symmetry properties with respect to the
permutations; they were introduced first by Simonov and Badalyan [?]/.
Thus we construct the "tree-functions™ which are the eigenfunctions of
the Laplacian, and are characterized by the quantum numbers

K ~1'" M' 32» M 13.1/
where j-AMN $272  are an6éular momenta and their projections conju-
gated to 5 and n . We have to transform these functions first to a

set with given total angular momentum, that is, to a set characterized by
K J, M t j2 13.21

In the next step we pass over to the quantum numbers

K J, M v, (jx j2) /3.3/



corresponding to the K-harmonics. In order to do that it is necessary to
carry out a simple Pourier transfom. To be correct, ia not a real
quantum number in the sense, that functions corresponding to different

pairs (il”2”~ do no* form an orthonormal set, but this notation demon-
strates where we got these functions from. Let’s point out, that and

32 cease to be eigenvalues any more after performing the Pourier trans-
form.

The calculation of the explicit form of the functions correspond-
ing to /3,3/ is given in details in [12] - [13] . Here we present
only the final expression.

-»M 1 Is 1 (>V Y w)2
/ % 1 . \ K+U-6 ;/k
fe*." b y.-w +jfif - 4 ~
ff) 2«'*
) (G . _
Ploy A5/2,v (ji1+2m)l (j2+2n-2m)l 11/2 (n + + 8V on+ j2 +Kk
ID (K+k+1)! k! nem
y
22
av 112 (Vi) /3.41
where
(-i) " i (1+M)1 (j2+M2) P 1/2
IM 31+j2 (23+1)~2 Nj——r|72,12+T72—|T/7 Gr M)l (j2- M)
1J2
c(Jj_- O- j2, 0]j;0)(j1, M1? j2, M2|J;m) /13.5/
A 177 S R B
102 fK 140 0 iy proo o oo
ket 2 2+1) r(
( ) r&z 2 12 + 2 * 2)

A o (05 Pl A

- W - P2 R A
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Comparing now the expressions /2,57/ and /3,4-/ one can estab-
lish, that the general form of the solution /2,57/ was chosen in
the right way. However, looking at the structure of the coefficient

°f (A,a,0) (*F_0"2) in /3,4-/ it ia easy to understand
that our attempts to determine ay(k,p) directly couldn’t be suc-
cessful. Still, now we can somewhat more precisely describe the method

of determination of the n eigenfunctions. The solutions of the

eigenvalue equations for K and [ have to be linear combinations
of the functions /3,47 S

4 v = C(jij2) g 13.7/
where d"d2 run over each pair of values which can give the total
angular momentum J such that J < 3 2~ Aod- what is more: one

can show, that in fact there is no need to take every possible pair
of d~ d2. The number of the necessary pairs d~ and d2 in ®ach

sum /3,7/ is equal to the degree of degeneracy of the given state
which is considered.
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CONCLUSIONS

The problem of constructing a basis for a system of three free
particles, realizing representations of the three-dimensional rotation
group and of the permutation group, is quite simple in principle. To solve
the problem, however, turned out to be rather hard. We calculated a set
of equations for determining the eigenfunctions, but we could'nt get so
far a general solution for it. /The obtained formulae are complicated,
because the polynomials, which we are dealing with, are not classical and
their theory is not worked out yet. If our method will lead to useful re-
sults, it will not be difficult to study the properties of these new po-
Ilynomials and tabulate them./

Note, that, if one is dealing with a larger number of particles,
then the formulae will be still more complicated; in a certain sense the
situation is similar to the transition from hypergeometrical functions
of one variable to those of few variables, the theory of which is almost
not known.

We have pointed out, that for practical purposes the general
solution of the problem is in fact not necessary, and there is no need to
use the operator n.In spite of that we insist on deriving the solution in
a closed form, the more so since the problem seems to be practically solved.
As it was shown, the eigenvalue equations can be simplified considerably,
and it remains only to calculate the coefficients and obtain numerical
results. /We present them in our next paper./

There are several possibilities to apply the technics developped
here, first of all, as soon as the quantum mechanical three-body problem,
which we have delt , with, has the same symmetry properties as the clas-
sical one, it was interesting to investigate the classical problem from
this group-theoretical point of view [l4] . The equations of motion were
obtained very easily for both the case of free particles and of different
potentials.

The classification of a three-body syetem presented in this paper
can be used as well for the analysis of three-particle decay processes.
Namely: dealing with a Dalitz plot for decay processes it seems to be use-
ful to expand the point density inside the physical region into a series
of orthonormal functions. /Such an expansion is similar to the usual phase
analysis for two-particle decays, and it can be used for coding experimen-
tal data, for calculation of different correlation functiohs, etc./ One
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can choose for the set of basis functions our K-harmonics; this choice
will be especially suitable when there will be an experimental possibil-
ity to notice correlation between the momenta of particles. The expansion
procedure is worked out, but no numerical calculations are done yet.

Prom a practical point of view it is of course essential to de-
velop a method to calculate matrix elements of pairwise interactions in-
troducing different potentials. It will be necessary to obtain a proper
approximation for bound states &s well.

It would be also of interest to see, whether it is possible to
make use of an expansion of that kind, which is described in the present
paper, for the motion of a massive top. Especially interesting /and so far
not well understood/ is the case of the Kovalevskaya top [le] , the
quantum analogue of which is not known yet.



APPENDIX

States with given K values can be obtained in the usual way,
by constructing tensors and pseudotensors from the SU (3) basis vectors
z+x . These states are labelled by quantum numbers J and v according
to the chain SO (3)s 0 (3) x O (2) . Ab an example, we list all pos-
sible states with given K wvalues /in the interval 1« Ki 5/ and dif-
ferent J and v . The degeneracy appears clearly at K = A In order
to get the number of states, it will be sufficient to consider instead
of the polynomials itselves their first /highest/ terms, which will be
denoted as P in the following.

K P 12v 1 J n n(K,xv) n(K)
Zi
1 1 1 3x2 3x2 6
Z*
Zi .
7i 7k 2 5x2
ZTZ? 2 6x2
2 z2 0 1x2 20
z2*2
. 2 5
zizk 0 8
z*z* 1 3
Zizszk 3 7x2
zizjzk 3 10x2
227k 1 3x2
4
3 50
zizjzk 3 7%2
zi zjZk
z* 22 1 1 3x2 15x2
*2
z zk
Z™N(zxz*) 2 5x2

z™N(zxz*)
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P 12v 1
zizj2kz*
zizkz2 4
z4

and complex conjugates
zizjzkzjT

zizM

zizj (zXz*)

z™N(zxz")
and complex conjugates

Z. 2. 77>
Zi 7j zk Zi,

zizjz*
2* *

2 zkz*
2*2
27z

zizk (z*z%)

zizjzkz*zm
zizjzkz2 5
z"nz4

and complex conjugates

zizj2kzi,zm
2_#
Zlgp-zm
4 *
3 7, 3
Zj.zjzR (zxz*)
z7Nz2(zxz*)

and complex conjugates

i K m

j |
2 * *
21272492
*
lejZ’KZ 2 .
z"Nz227*% 2
* *
Zi'Zj g(zxz ) Za
z2(zxz¥) z*
and complex conjugates

9x2

5x2

1x2

9x2

5x2

7Xx2

3x2

11x2
7x2

3x2

11x2

7x2

3x2

9x2

5x2

11x2

7x2

7x2

3x2

9x2

5x2

n(K,tv)

15x2

24x2

27

21x2

35x2

42x2

n(K)

105

196
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n(k,tv) = -|(k+2)(k+2-2v)(k+2+2v)

n(k) = jj(k+3)(k+2)2(k+1)

[A1/

IA2]

ia worthwile to introduce a simple graphical method, which enables ue
obtain the number of states at any K and v values.

not mark the obvious 2J + 1 -
the case of odd K we have

K-I
2w
\
0
-»
K “5
2V
5

Ny
N
L
ol

fold degeneracy of each dot on the graphs.

2v

K-3

'>K©© K
1r y b5
*“K© ©0 X

* kO X© X

% » %

Hote,

that we
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- tensor states

26 -

- pseudotensor states /i.e.

states

including z x z*/.
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It can be seen, that again the graphs can be
constructed from two elementary graphs; for example, in
the case K = 16 we have
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vl

Analogously to the case of odd K values, these graphs are put
together from "gate8, of increasing multiplicity. The only difference is,
that in the left-hand side column of each "gate" the multiplicity of every
second state is decreased by one. The external "gate« corresponds to the
quantum numbers J »0, J = K and |2v] x K.

It is quite easy to count the number of states in each row of
the graphs /i.e. at given v values/. If we don't take into account the

different values of V, we get

i(s+1)(K-S+1) = | ( k+2+2v) (k+2-2vVv)

in the case of odd K wvalues, and for

even K and odd S values;
n'(K,s) IA3]

i(s+1)(K-S+1) + | - |(k+2+2v) (k+2-2v) +\

for even K and even S values



where

S =

The number of states on the graph which can be obtained by
summing up the rows /that means, summing over v / is the following:

(K+r1)(K2+4K+6) for odd K
[A4]

YJ (K+1)(K2+5k+6) for even K

Note, that the number of all states we get if we take into
account, that the multiplicity of a state with a given J value is 2J+1.
Thus the formulae /A4/ present the number of 6t&tes with given K, J and
v values, independently of the value of M

Finally, it is interesting to oompare /A3/ with /Al/ , From
this comparison it follows, that the "average" number of states at a
given K wvalue is equal to K + 1.



32 -

REFERENCES
[1] W. Zickendraht, Ann. Phya. /I.Y ./ 25 18 /1965/
[2]  ff. Zickendraht, Phya. Rev. |JE2 1448 /1967/
[3] A. M. bagansH, KOA CwumvoHoB, #P 3 6 /1966/
n FOA CumoHoB, AP 3 630 /1966/
n B.B. lyctoBanos, KOA CumoHoB  XOId 51, 345/1966/
[6] A.K. Bhatia, A. Temkin, Rev.Mod. Phya. 36, 1050 /1964/
[7] F.T.Smith, Journ.Math.Phya, 2 735 /1962/
[8] A.J. Dragt, Journ.Math.Phya. 6 533 /1965/
[9] J.M. Levy~-Leblond, M Lévy-Nahaa, Journ.Math.Phya. 6 1571 /1965/
[10] J.Nvyiri, Ya.A. Smorodinaky, Preprint E4-4043, JINR
Dubna /1968/
[11] KO Hupw, A.A. CmopoauHckuia, b9 882 /1969/
[12] J.Nyiri, YaA. Smorodinaky, Preprint E2-4809 JINR Dubna /1969/
[13] KO Hupw, A.A. CmopoauHckuia, Sb 12 202 /1970/
[14] J.Nyiri, Ya.A.Smorodinaky, Preprint E2-5067 JINR Dubna /1970/
[15] R.C. Whitten, F.T. Smith, Journ.Math.Phya. 2 03 /1968/
[16] G. Racah. Rev.Mod.Phya. 21_ 494 /1949/
[17] fi* ¥ BuneHkuH, V. KysHeyoB, A.A. CMOpoavHCKMA SD 2

906 /1965/






Kiadja a Kdzponti Fizikai Kutatdo Intézet o
Felel6s kiadés Kiss Dezsd, a KFKI Nagyenergiajd
Fizikai Tudomanyos Tanacsanak elndke

Szakmai lektors "Lovas Istvén

Nyelvi lektori Gyorgyi Géza
Példanyszams 520 TOrzsszam: 72—6288
Készilt a KFKI sokszorositd lzemében, Budapest
1972. mércius hé



