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ABSTRACT

The expansion of the unequal-mass scattering amplitude in terms of
Poincaré-group representations was considered for positive and zero values
of s, the squared total four-momentum. The usual singularity problem at s=0
was avoidable, but it turned out, that the relevant variable is not j, the
total angular momentum, but a quantity non-singularly related to the Poincaré-
invariant WtwB even at s=0. The notion of complex angular momentum and
signature was reexamined, and some modification of the old formalism seemed
useful. The results are perfectly compatible with dispersion relations and
with the requirements of Regge behaviour. In the Appendix a theorem is proved
for the expansion of a class of not square-integrable, but Regge behaved

functions with respect to unitary E () representations /that is, for Fourier-
Bessel expansions/.

PE3IOME

PaccmaTpuBaeTca pasfioxXeHue aMnauTyAbl paccesHWsa 4YacTul, HepasBHbIX Macc
no npepacrtasfeHnaM rpynnbl lNMyaHkape, nNpyv MNOJIOXKUTENIbBHOM W HY/1IEBOM 3Ha4YeHuAaAx
KBagpaTa MNOMHOro MOMeHTa s . [loka3aHo, 4TO OOblY4HYIlO OCOBGEHHOCTb MPU S = N MOX-
HO 060liTK, HO BbIACHMNOCbL, 4YTO MpPM 3TOM OCHOBHOI MNEepemMeHHOl SABNAeTCHA He non-
Hbli yrnoBOW MOMEHT |, a gpyras Be/iM4uMHa, KOoTOopas CBfA3aHa C WHBApPUAHTOM wyw
rpynnbl NyaHkape paxe npu s = 0 HeocobeHHbIM o06pa3om. [lepecMOTpeHbl MOHATUSA
KOMM/IEKCHbIX YTM1OBbIX MOMEHTOB, a TakKkXe CUTrHaTypbl M HEKOTOpble MW3MepeHus B O0Obly-
HOM popmanusme okasanucb MnosesHbiMu. [MoslyyeHHble pe3ynbTaTbl COracylwTcAa € Tpe-
60BaHUAMM AUCNEPCUOHHbLIX COOTHOWEHWA ¥ noBegeHuem Pepxe. B npunoxeHunm pokasa-
Ha Teopema, KacawwWaaca pas/ioXeHUA He KBaApaTUUYHO WHTerpupyembiX (YHKUUK, HO
nokasblBalwlWnx nosegeHne Pepxe Mo YHUTAPHbIM NpeAcTaB/IeHUAM TPYNnbl

KIVONAT

A nem egyenld tomegl szorasi amplitudé Poincaré-csoport abrazolasok
szerinti sorfejtéseit vizsgaltuk a teljes négyes-impulzus négyzetének, s, pozi-
tiv és nulla értékeire. A szokasos szingularitasi probléma elkerilheté volt, de
kiderul, hogy a lényeges valtoz6 nem j, a teljes impulzus momentum, hanem egy, a
WpWy Poincaré invarianssal s=0 -ndl sem szinguléaris kapcsolatban allé valtozé.
Megvizsgaltuk a komplex impulzus momentum és a szignatura fogalmat, és a régi
formalizmus néhany moédositasat hasznosnak talaltuk. Eredményeink 6sszhangban
vannak a diszperzids relaciok és a Regge-viselkedés kovetelményeivel. Az
Appendix-ben egy tételt bizonyltunk nem négyzetesen integralhatd, de Regge-visel-

kedést mutatdé fluggvények uniter E () abrazolasok szerinti sorfejtésére /azaz,
Fourier-Bessel Kkifejtésére/.



INTRODUCTION

The difficulties of Regge pole theory at zero energy in the case
of unequal-mass scattering have inspired many authors, and many different
approaches have been proposed to solve the problem. The general attitude is
to take for granted the presence of unpleasant singularities in the Watson-
Sommerfeld transformed form of the unequal-mass scattering amplitude, and
the task is just how to remove the singularities. On the other hand, one
must realise, that even the presence of these singularities is questionable.
What actually happens in the reggeization procedure is that some formulas,
well-defined in the s-channel, are extrapolated to new regions, into the t
or u-channel. It is far not trivial that, although the starting situation is
very similar, everything must be learned from the equal-mass case. Instead,
probably Fourier-analysis on Poincaré-group is the "magic word"™ one is to
remember in the reggeization procedure.

Many authors have investigated the connection between the forms of
the scattering amplitude obtained by Watson-Sommerfeld transformation and
from direct group-theoretic expansions, mostly for space-like total four-
momentum, s < 0 [I1,2,3,4]. The present paper is mainly devoted to the
problems at s = O in the unequal-mass case. Some steps of our approach
were made in [5] and [6], but our results go far beyond theirs.

We are going to deal both with the limit of the Watson-Sommerfeld
transform to s = 0 and with the connection of this limit with the group-
theoretical expansion in terms of light-like Poincaré-representation matrix
elements. These investigations lead to the following conclusion: the
appropriate variable at s = 0 1is not j, but wr the eigenvalue of the
Poincaré-invariant W~W~, WA being the Pauli-Lubanski operator. As is well-
known, at s = 0O real positive values of w correspond to unitary Poincaré
representations /Zinfinite spin representations/, they are sufficient to
expand a square-integrable scattering amplitude. Complex values of w



correspond to non-unitary representations, and a complex angular momentum
theory is to be formulated in terms of functions of the complex variable w.
Obviously, when s is not zero, one may equally use w or j. On the other
hand, one can not provide a /Poincaré/ group-theoretical interpretation to a
theory, which uses the variable Jj at s = 0. /0ur way of looking at the
problems with unequal-mass scattering is very strongly supported by R.Hermann®s
book entitled "Fourier analysis on groups and partial wave analysis™ [7] - In
other words our suggestion is that s and Jj are not the "most economical”
variables to formulate a complex angular momentum theory, but s and w are.
/Also Feldman and Matthews have suggested that the correct variable to be

used is not Jj but w [6] . See also ref. [8]./ The undesirable singularity

at s = 0 1is a consequence only of the uneconomical choice of variables.

/The analogue of this phenomenon is well-known in context of the singularities
which arise when using the variables s and cosQs instead of the "most
economical"™ pair s,t./ In arriving at this conclusion group-theoretical in-
terpretability is only a hint, rather than a necessary condition.

In this paper the scattering of two spinless particles with masses
m and u /pion-nucleon-type kinematics/ will be examined. In Section 2.
some remarks on Poincaré representations are presented /for a detailed
discussion see ref. [9]/, which are of basic importance in the subsequent
investigations. In Section 3. the Watson-Sommerfeld representation of the
scattering amplitude is given, and our modifications of the complex angular
momentum are described in comparison with the conventional treatments. In
Section 4. the s =0 1limit is calculated, and in Section 5. a comparison
is made between the Sommerfeld-Watson representation and the expansion with
respect to Poincaré representation matrix elements. In Section 6. some details
of our approach are discussed, and in two appendices mathematical statements
made in the previous sections are proved.

2. REMARKS ON POINCARE REPRESENTATIONS

If one takes the standpoint, that the Regge-Watson-Sommerfeld
representation of the scattering amplitude is nothing else, but essentially
a group-theoretical expansion in terms of Poincaré representations /this is
supported, e.g., by the fact, that resonances are classified by putting them
on Regge trajectories/, then the s = 0 problem of unequal-mass scattering
can be, at least in part, transferred to the representation theory of the
Poincaré group. Namely, the question arises, if the representations of the
Poincare group can be described in such a form, that is continuous in the
Casimir eigenvalue P» = s at s = 0, when the four-momentum PV becomes



light-like. This problem was thoroughly investigated in ref. [9], and we

summarize its most important points here.

The Poincaré group has been represented on a sufficiently large
function space, and explicit functions in this space could be found with

the following properties:

1. They are eigenfunctions of the four-momentum, , with arbitrary
real eigenvalues p ; of W WA, with arbitrary complex eigenvalues sj(g+l) =
= W2 —l% s » where g = pz ; gnd, of WQ with eigenvalue pX, where p 1is
the magnitude of the three-momentum p, X 1is the helicity. That is, the
functions with given s and w form an irreducible set for representing
the Poincaré group in helicity basis.

2. They are continuous functions of the four-momentum, p~
consequently of s as well. Appropriate normalization is essential to achieve
continuity at s = 0. /The point p» = 0 is a very peculiar one [9], and
is unimportant in this paper. Hereafter s = 0 will always be associated
with light-like four-vectors./

When having been in possession of basis functions, representation
matrix elements of the Poincaré group have been calculated. The result is of the

following form:

<Py»w,X|] Ca,M|p",w",X"> = N(s,w,w") 64(py-/Ip") Dxx" exP (CiPyau) /2-1/

where N(s,w,w") is a continuous function of pz = s, when w and w"

are fixed. The function Dxx" denotes the familiar representation functions
of the groups SuUs/2/, SuU/l1,1/ or E/2/ depending on whether s is positive,
negative or zero, respectively [lo]. /In the cases when s ¢ 0, more
conventionally the label j 1is used instead of w./ The Euler-angles f,Q,ip
in the , Tunction are functions of the six parameters of the homogeneous
Lorentz group element /1 and of the four components of p~. The method to
determine the functions A(ﬂ,pM), O(H,pm), ﬂ%”'py) is well-known, they are

the Euler-angles ofthe Wigner-rotation L x L. ,where L and L
A~i>u n Py

are boosts, which transform the four-vector //s,0,0,0/ /in case s > 0/, or

the one /0,0,0, //incase s < 0/ to p and /Np/ , respectively. It can

be checked again, that the functions W sH are gontinuous functions

of the components of p~ , when w 1is Ffixed. This might be surprising, since
similar statement is not true for O0(a,p )- Namely, nrto(n,Py) =0 /p becomes
light-like!/, independently on /1 . On the other hand, if we calculate the

matrix element /2.1/ directly for light-like representations, /that is, also



N

n n
the Euler-angles of the "Wigner-rotation" L AL ~ with bocBts L and
PH Npm py
L , transforming a four-vector /p,0,0,p/ to P, and (Ap)y , respectively./,
Wep¥ind that OIA,p (€)0,°°). This discrepancy can be very easily eliminated
i
by reinterpreting the function ) in the following manner: it is the
representation matrix element ,(N,0Y L, ) = ,(F,0,d)!) of the
little-group of the four vector /p ,0,0,p/, p“?-p~ = pf = s, the Euler-
angles of which being those of L AL . where Lp and L , are boosts
PY ApT> Py ApJPp

transforming the four-vector /pQ,0,0,p/ into p~ and (Ap)”™ , respectively.
It is easy to verify, that

12.21

and OV is now continuous function of s even at s = 0. /As for the
representations of little-groups for four-vectors like /pQ,0,0,p/ see, for
example, ref.[I11]/.

The significance of choosing Euler-variables which are continuous func-
tions of s becomes clear, when we come to the next relevant point, to the
orthogonality relations of the matrix elements:

Ix = jdd4a dy(A)<pM,w,X] (@,A)|p" .w" ,X"XpE,w",X" [(@,A)]|p",w"™> X*">* | /2.3/

where the integration goes over the translation and the homogeneous Lorentz
group part of the Poincaré group. /Concerning the measure du(A) on the
Lorentz group see, e.g., ref. [lo]./

After performing trivial integrations one obtains:

11 = N(s,w,w") N(s,w",w'") 64" - (Ap™)™J - (Ap)Y)<sA@Ji * Py)x2 *

12.A/
where

- jan/.e™, ) D’x, (F\O\,n

X X
= (IPO1 + p)2 n( w w')6AA,BX,X,, -

/2.5/



In the expression /2.5/ dy (*V,0V,0Y ) is the measure for the little-group
of / ,0,0,p/. Lengthy, but straightforward calculation gives, e.g., for

s > 0:

172 100 1 -1n/2
iPol + P . p! - P
* = sin Ov dfv dOov d~v =
dy(*v ,ev,*v) IP<l - P b« + P
/12.6/
IPOI + P b0 +
d (cos0) df & = P P dy (*,0,%)
IPg1" P lpOl m p
and
N(s,w,w™) = -"25I N 6jj" /2*7

where w2 = sj@g+D) + js, w"2 = sj"(g"+1) + ~s. We call attention to the
fact, that in the integral /2.5/ the measure dy(*v,0v,¥Vv) has appeared,
rather than dy("f,0,4"). This is strongly correlated with the singular
behaviour of the angle 0 at s = O.

The formulas /2.5-7/ make possible to write down the partial wave
expansion, that is, the expansion with respect to irreducible, time-like
Poincaré representations for an unequal-mass scattering amplitude in such a
form, which we expect, after reggeization, to have nice properties even at

zero energy:

PRFS3IM3» P44 M P> 71T ?22,S52772>

= (@IM4 64(pl+P2-P3-P4 ) FXiX2X3X4(s,t) = /2.8/

= @)Y 64(pl+p2-p3-p4) " -p7-1 "ANMNANMNTOC2M 1) djy(0s) ;

where X = X~ - X , y = X - X2 , and 0g is the scattering angle in the
center-of-mass /C.M./ frame for the s-channel. The partial wave amplitudes
are defined as follows:

dp I+P2 1}
-——2-—— [ d(cos0s) PxiX2X3X4Cs"t>dJIx< 0 = 12.9/



We do not expect any problem with the analytic continuations of /2.8,9/, if
they involve no C.M. amplitudes, but rather ones defined in a frame, in
which neither the time-component, or the magnitude of the three-vector part
of the total four-momentum, P , are vanishing. The symbol d? denotes

Yy ny
the familiar Wigner®™ d-functions.

3. COMPLEX ANGULAR MOMENTUM

In this section we are going to describe complex angular momentum
theory for unequal-mass scattering, which, on one hand, is related to that
for equal-mass scattering as strongly as possible, but, on the other hand,
makes use of the remarks of the previous section. Namely, that, first, the
scattering amplitude is to be expanded in terms of Poincare representations
y = Pgy + pzy is of the
form /pQ ,0,0,p/. Second, the appropriate variable to be used in a complex

in a frame, in which the total four-momentum P

angular momentum theory is w rather than j. /0f course, this distinction
is irrelevant, when s ¢ 0, and we shall use the variable j until we do
not want to go to s = 0./

The crucial points of conventional complex angular momentum theory
/see refs. [12, 13]/ are the following:

1. Using Carlson®"s theorem, one defines two functions over the

complex j-plane from the s-channel partial wave amplitudes.

2. By Watson-Sommerfeld transformation one casts the partial wave
series into an integral along a curve of the j-plane from - 4 -i°® to - j +i°°.

3. After analytic continuation in the s and t Mandelstam va-
riables one obtains the crossed channel scattering amplitude represented by
the background integral /Zalong the line Rej = - i /, and the residues of
poles appearing on the half-plane Rej> -~ % « scuts not be considered
in this paper./ It is assumed, that the contribution of the integral along
the infinite half-circle is still negligible.

Now we consider the elastic scattering of two spinless particles
with masses m and v, p’2 = p'2 = m2, Pg = p’2 = y2- The Mandelstam variables
are:

s = 01 +P2)2 =(P3 + P4)2 ,
= (P1“P3)2 = (P2 "P4)2 - /3.1
u= (pl-p4)2 =(p2 -p3)2 *



cosog 1+ St /3.2/
A(s,m2,y2)

where 0S 1is the s-channel scattering angle in the C.M. frame, and

N(s ,m2,y2) = -(m-y)2]. In the s-channel the partial wave series
for the scattering amplitude F(s,t) looks like

F(s,t) = - > 2mlil/2\2— 2 | F(s,j)(j+1) P.(cosOs) , /3.3/
"m -y +[ J -'s j=o

where the partial wave amplitudes F(s,j) are defined as follows:
2 1

(s-3) - "N 2-p2#2»n T 2 I d(cosQs) F(s™t) Pj(Cos0s) = 73-4/

In the spinless case the d-functions of /2.8/ and /2.9/ are the familiar

Legendre-polinomials , P.(z). The kinematical factor -p—— sm», -—- -
3 (m2-y2+Al1/2]j s2
in /3.3,4/ corresponds to the one +~—yr—yr of /2.8,9/. It could have
(IPol1+P

been included into F(s,j), but it has significance when we go to s = 0,
therefore we prefer to write it explicitly. In the equal-mass case i
only a numerical Tfactor

We assume F(s,t) to satisfy unsubtracted dispersion relation in
the variable t at fixed s:

F(s,t) = Ft(s,t) + Fu(s,t) =

v
3 f At@.t) X Ajs.fF)
- k] dt’ t -t + ? J dt®" t" - t /3.5/
4m
Correspondingly, we define F(s,j) = Ft(s,j) + Fu(s,j) and obtain:
2 (,2-u2+al/s2)2 - , . .
FE(s'y) = ¥ VA J odt' A(s't') Q™ + /3.6/
4m2
(m-y)2-s
» 1 (M2-u2+bl12)2 - i
TYA b at” *,,(=-*") o A + - 10



In /73.7/ it 1is also denoted, that the real, less than -1 argument of theQj
function is to be understood as limit from the lower half-plane.
It is usual at this stage to introduce complex angular momentum.

As is well-known, the mathematical problem of defining an analytic function
having prescribed values atnon-negative integer values of J involves an
essential non-uniqueness. The tradition in Regge-pole theory is to look for
analytic continuations satisfying the conditions of Carlson"s theorem, and
this leads to the signatured functions:

F+ (s»}J) = Ft(s, J)+ Fu(s/)) expiirj /3.8/

We are not going to follow this tradition, but rather we define complex
angular momentum directly through /3.6,7/. Some problems arising from the
use of u(s,j) instead of F+(s,j) will be discussed at the end of this
section. The merits of our choice will be clear only from the subsequent

ones.

Now, still in the s-channel,- we can write integral

E Jl- = _1i EUY \Y;
t,uVB ft) z 7 2 _1I/2°\2 =
%m -y +A ) - S

/3.9/

on the jrplane instead of the original partial wave series. The contour C
encircles the positive real half-axis. Until we are in the s-channel all

the poles of the integrand in /3.9/ are due to the zeros of sinirj at integer
values of Jj. After analytic continuation into the t or u-channel also the
functions FE u(s,j) have poles at real j = a(s) values. Then also the
contribution of these poles is to be included in the expression /3.9/. The
basic assumption of Regge-pole phenomenology is that the contribution of
these latter poles dominates over the remainder, the contribution of the
poles due to simrj. The usual "proof'" for this is to deform the contour C
into a straight line along Rej = - j and an infinite half-circle on the
right half-plane. If one assumes that the integral along this half-circle is
zero, it is easy to see from the asymptotic expressions for the P~(2)
functions, that for large values of cosO the background integral is
reasonably neglected in comparison with the Regge pole contributions.
Obviously, this "proof" relies very strongly on the appropriate asymptotic
behaviour of the F(s,j) Ffunctions in the variable j. In the t or u-
channel this cannot be justified simply by looking at the integrated of



/3.6,7/and it cannot be done either for the signatured functions F+(s,j) even
in the most familiar equal-mass case [12, 13]. On the other hand, the
successes of Regge-pole phenomenology serve with a justification of the
assumption. In our treatment Ffo(s,j) and Fu(s,j) must be well-behaved,
instead of Fx(s,j)- This assumption may very well be compatible with
phenomenology, since, although there is an exp(iirj) factor present in /3.8/,
FEu(s,j) and Fzx(s,j) may have the suitable properties even simultaneously.

There is only one thing we certainly lost when using FUgu(s,j)
instead of Fzx(s,j)- Namely, in the case of signatured functions the analogue
expressions of /3.6,7/ make possible to prove, that in the s-channel the
functions F+ (s,j) decrease /since the functions Qj(z) do so/ fast enough
so as the contribution of the infinite half-circle be zero. This is not the
case with Fu(s,j)- However, one must notice, that in the s-channel this
problem has no particular significance. The contour integral has no advantages
over the partial wave series either one must keep the contribution of the

half-circle or need not.

Our final formulas for Ft u(s,t) are:

F.tju..(s,t) = F’t\ju._(s L) + f{é,uss,t)J /3.10/

where F’% u\gs,,t). is the backoround term:

smy
Ft,u(s" 0- 2T .
f(mz—y2+,£|,l/24 _
-i Ho
- - - 2st ]

T d}J (éljrml Ft,ugs’!J;Pj‘ﬁ'l - ]. /3.11/

and F/l\J"U (s,t) denotes the Regge-pole part:

smy
2
- s

X | t.u(s'3) /3.12/

poles c;

As was discussed, we assume the representation /3.10-12/ of the functions

Ftu(s»0 to the ax® u-channels.
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4. COMPLEX ANGULAR MOMENTUM IN THE s =10 LIMIT

After having fixed our definitions for a complex angular momentum
theory at s ¢ 0, we investigate its limit to s = 0, which is a physical
point for the u-channel. We make use of the fact, that there is a finite
piece of the u-channel physical region above s = 0, and in the present
paper we restrict ourselves to reaching the point s = 0 through positive
values of s. That is, we consider the formulas /3.6,7,11,12/ for s-i0,
u+tio, 0 < s < (m-p)2, (M+y)2 < u < , and, keeping u Ffixed, we
let s go to zero.” It is worth remarking, that still we are on the lower
edge of the cut of the Qj function in /3.7/.

In the usual treatments the limit s = 0 1is token at fixed values
of j, and the singularity problem arises due to the singularity of Pj(2)
at z = -1 and of Cb(z) at =z =1. In our approach w is the fundamental
variable, and we calculate the limit keeping w fixed. Indeed, first we
introduce a /dimensionless/ variable e instead of j, which is not singularly
connected with w even at s = O:

w2 sjGt) + s any /4.1/

The most economical way to calculate the limit of the Legendre-functions is
to use the following integral representations [I4] :

m
Pj(z) =1 j (z + (z2-1)1/2 cos4d df largz|<-| ., /4.2/
o}
3 r / ro \1/2 \-j-1
Qj(z) =\ (z + z -1] coshtj dt, larg(ziD)] < & . /4.3/

(0}

At the end of the calculations one recognizes Bessel-functions of the first
and third kind in the following forms [is] :

n
Jo @) =J 5 exp NizcosO)dt& 14.4/
0
()
Ko (z) = ™ exp (-zcosht)dt, largzl < j /4.5/

(0}



Also the relations between Hankel®"s functions and the K-function are useful:

1£\>) = JjCz) + i1Yj(2)

- U- exp(-ij I D k-@zexpl-i | ) s /4.6/

i/j\2) = Jj(z) - iYi@) =i 1 exp?ij ?)Kji(zexp G ~)) = /4.7/

Here Yj(z) stands for the Bessel-functions of the second kind.

First we deal with the limits of the functions Fﬂ u(s,j):

lim Ffc(s, j) Ft (0,e) i my dt” At(°"t0 Ko /4.8/
s*-0

lim Fu (sfj)
s*0

/74.9/

Next we calculate the limit of the background integral term /3.11/. It is
easy to see, that

for ime > O ,
lim _._ - /4.10/

for ime < O

This yields:

/74.11/

oo
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* -

> -V - 5
If FufU(OJQ behave at most like polinomials on the right e-plane for
lel ® eq. /4.11/ can be written also as
V*\'
®
<>m 0 -9 (e de Ft,u(®°-e) Jo(E|fic) 1“-121

This last expression looks exactly like an expansion with respect to light-
like, unitary representations of the Poincaré group. /Similar result was
obtained also in [6] ./ Our assumption about the asymptotic behaviour of

the function Ffc(o,e) 1is obviously correct. The situation is more complicat-
ed in the case of Fu(o,e). The integral representation /4.9/ defines it

only for 1Ime < O, where our assumption about its asymptotic behaviour can

be again verified. For 1Ime >0 it remains unverified, just like when s"O.
It will be later shown, however, that the assumptions we made are reasonable.

The calculation of the pole terms leads to an interesting result,
if one supposes that at s=0 the poles are placed at real e~(s=0) =
points. Due to /4.10/, the contour integrals of /3.12/ must be evaluated not
by the theorem of residues, but by applying the formula:

~x~+x~i0 =1 + i7r6(x)

The result is:

FP (@] I /4.13/
t.u poles

where R (e.) denotes the residues of the functions F 0,e). It is

remarkable, that the second kind function Yq has appeared in /4.13/.

All the calculations of this section were performed by changing the
order of integrations and limiting in s. Obviously, had we not used the
functions FE u(s,j) instead of Fz(s,j), we should have obtained meaning-
less results. On the other hand, the limit of the Fzx(s,j) functions may
very well exist, even if the limit of the integrands does not. /We remind
the reader to theorems, e.g., about the existence of Ii@ T f(X) sinyxdx./

However, making simply the assumption that [lim F+(s,jJ) exist, the formulas
would get uncontrollable.
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5. SELF-CONSISTENCY AND COMPATIBILITY WITH DISPERSION RELATIONS

This section is devoted to the examination of: two problems. The
first is related with the connection of complex angular momentum theory and
expansions with respect to Poincaré representations. Our concept /in fact,
it is due to Hermann [7]/ is, that complex angular momentum is important even
if the scattering amplitude is square integrables it is a tool to continue
into each other the Poincaré expansions of the scattering amplitude for total
four-momenta of different character. This interpretation makes use of the
fact, that those unitary representations of the Poincaré group, which appear
to be relevant for the expansion of square-integrable functions in the time-
like, light-like and space-like cases, can be characterized by the eigenvalues
of one and the same Casimir operator W /beyond, of course, PN = s/. It
is not priori obvious, that there exists an analytic function F(s,w), which
at the appropriate values of s and w takes the values of the expansion
coefficients for the previous three expansions. /It is very difficult to
say anything about the effect of non-square-integrability, beyond that they
presumably correspond to certain w singularities of F(s,w)./

The second question is independent on group-theory, ind is probably
more important from the point of view of theories based on the well-established
analytic properties of the scattering amplitude. Namely, the question arises,
whether our prescription for the s = 0 limit is compatible with dispersion
relations we assumed to be valid also for the u-channel amplitude.

To answer the first question we compare the formulas for the u-channel
obtained by the analytic continuation of the Watson-Sommerfeld transformed form
of the s-channel scattering amplitude /that is, the formulas /3.6,7,10,11/ and
/4.8,9,11,12/, and the appropriate crossed-channel expansions we are going to
write down assuming square integrable /in cosOsl/ scattering amplitude also
in the u-channel. Clearly, the main task is to cast the inverse formulas for
these latter expansions,

and

/5.2/
o]

into form comparable with the previously obtained ones of Sects. 2. and 4.
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Our notations are:

c =C0S0S =1+ - —— Tr ' /5.3/
ANs,m .y )

I’:fé /5.4/

For this purpose, at s ¢ O, we should apply the identity:

( P. (©) . 0?2 P.(+
Qj(Z) =2 1 dc "5 1 3t - t— dt- /5.5/
-1 A

where

7= 1 + 2st” /5.6/

A(s,m2,y2)

There was no problem with /5.5/ in the s-channel, where we needed it only
for t' -t O, -1 <c <1, Izl >1. When we ajje in the u-channel, in
the region 0 < s < (m-vi)2, (mty)2 < u < , the situation changes,
and can be summarized as follows. From a detailed study of the original
Cauchy-integral one can see, that the dispersion relation /3.5/ is to be
rewritten as

FGs.t) =i jdem 2510 /5.7/
where
At (s,t") if t" = 4m2
A(s,t") =<0, if (m-y)2 -s < t° < 4m2 /5.8/
1
:Auzﬁ if t < (m-y)2 -s |,

and denotes the generalized function ~ 1iro(t"-t) [16] . The
plus sign of 10 1in /5.8/ comes from the 1ie -prescription of S-matrix
theory. The condition -1 < c < 1 remains true, but it is easy to see, that
now we need /5.5/ also for values of z on the real axis between -1 and
+1, when /5.5/ fails to be valid in the sense of classical functions. It
remains, however, true in the sense of generalized functions. Namely, it is

shown in Appendix A that
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1 -
) i Pj(c)
QQ(x + i0) - 1 J de /5.9/
1 x-cxi0

is true for -1 < c < 1, and for any value of x. Then it is obvious, that

the formulas /3.6,7/ appear for the expansion coefficients also in the u-
channel. This shows, that starting either from the s or the u-channel, one
can define one and the same complex angular momentum. It is clear, moreover,
that no simple trick /like the introducing of signatured functions in the
s-channel/ makes possible to define analytic continuation satisfying Carlson"s
theorem. In fact, complex angular momentum functions satisfying Carlson"s
theorem in the u-channel would be incompatible with the ones defined in the
s-channel .

In case of s = O the basic formula one must apply is [I5]:

/5.10/
which 1is valid in classical sense for Jargt®| < ir. However, it is shown in
Appendix A, that for argt" = ifu -equation /5.12/ remains true, and it is to

be understood as

These relations assure, that the formulas of the crossed channel expansion
and the ones obtained in Sect.4. from the s-channel expansion coincide also
at s = 0.

The problem of compatibility with dispersion relations, mentioned at
the beginning of this section can be formulated in the following manner. The
expansion procedure followed in the previous sections consists, first, in
giving the kernel of /5.7/ the form

t"-t+io = Loo@h Pj(c) Qj(x+i°) in A ]JZLZLPJ(—C) Qj (x+i0),

j=o sinirj

or, for s “ Os
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/5.13/

Second, substituting the right-hand side of /5.12/ or /5.13/ into /5.7/, and
changing the order of integrations, one gets:

PIC-C) /5.14/

thp,t) == ] /5.15/

/The reader can easily write down the corresponding expressions for Fu(s,t)/.
We consider a limiting prescription compatible with the dispersion relation,
if the limit of the expression for ~i.f”7g given at s > 0 is identical
with the expression given at s = 0. Obviously, our prescription has this
property.

Another problem arising is whether the changing the order of integra-
tions is a legal step. In fact, this is the question about the convergence
of our expansions. We are not going to discuss this delicate problem for
s ¢ 0, where we have the more or less familiar, old formulas. For s = 0 and
the function Ft(o,t) we state the following theorem: if the function Ft(o,t)
can be represented for t < O by an integral

At (0,t")

Ft (0,t) et

where the discontinuity At(0,t") is integrable in any finite interval of

/4 ,<=°/, and behaves like t"A for =2 then the equality /5.15/ is true.
/Obviously, this theorem makes possible to write Fourier-Bessel integral for

a non-square-integrable class of functions./ The proof of this theorem is
given in Appendix B. To get a corresponding theorem also for Fu(o,t) we need
further work.
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6. DISCUSSION

In the previous sections we described the basic ideas for calculating
the limit of the Watson-Sommerfeld transformed scattering amplitude to s =0
in the unequal-mass case. We discuss here some characteristics of our result:

F (s=0,t) Ft (0,e) + Fu(0,e)

+ ; /16.1/
pAIes B (ei)

where

4 4

and

/6.3/

Our first observation is that the pole terms do not exhibit the ta
power behaviour for (©=°°, since the Yq functions behave like

/6.4/

On the other hand, the theorem stated at the end of the previous section
indicates, that the first, "background" term of /6.1/ is probably sufficient
to expand a Regge-behaved scattering amplitude. /In fact, we proved it only
for Ff(0,t), but similar statements seem to be valid also for Fu(0,t)./ It
follows, that if we believe in the ta asymptotic behaviour,the usual rule
concerning the dominance of pole terms over the "background"™ integral does
not apply at s = 0. The formulas /6.2,3/ indicate, that the pole terms of
/6.1/ are probably not present at all. It is easy to see, that the usual
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assumptions A. (0,t") t'a , A (0,t") t > (-t")a , a < 0, do not lead
T "D -t-
to any singularity on the half-plane Res >0.

To see some details we assume a very simple model:

att*a , if t >0

At (0,t") = /6.5/
0, if t" <0
1 if t° > o,

Au(°,t"H /6.6/

iaU g—t')a, if t* <0,

where —i < a <0, at and au are real constants. The integrals correspond
ing to /6.2/ and /6.3/ yields

16a,

» 0
Fe(0-) = gy o e o)’ r2(atl) o2 @D
0}

/6.7/

G ))
>0 -0ma ir {it(-tor 4 N ervlra(<"»-)* 'V 1)

We remind the reader, that the integral /6.3/ defines Fu(0,e) only for

Ime < 0. After evaluating the integral in this region the result can be
extended also for 1Ime > 0. /Eq. /6.8/ is just an example for this./ Finally,
the integral gives the expected result for the scattering amplitude:

F(o-~ -

isis [t W -V “] e /6-9/

One could examine more complicated models /with more complicated Afc,Au
functions, but with the previous asymptotic behaviour/, but the following
features of this simple model would remain unchanged. There are no poles of
the functions F. (0,e) on the right e half-plane. Instead, one always
finds a branch—pgth at e = 0 with the characteristic power e_ng+l)- For
large values of |t] the dominant contribution to the integral /6.1/ comes
from the lower end of the integration path, and asymptotically, the form
/6.9/ is always reproduced.
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It is worth noticing, how nicely these results correspond to the
Lorentz pole picture, the usual solution of the singularity problem at s=0.
First, we have seen, that the '"cause"™ of the t*“ behaviour is "concentrated"
to the E = O point, which is the image of the j-plane /due to the singular
mapping at s=0/. That is, the power behaviour is something deeply connected
with the j-plane. Second, it is not very hard to imagine, that the infinite
sequence of the /j-plane/ daughters accumulates /on the e-plane/ when s=0,
and forms a branch-point at e=0. Of course, it is difficult to guess the
nature of the branch-point. Just like in case of considering all the conspir-
ing daughters, we did not find here any singularity at s=0, only the ta
behaviour was reproduced.

Our last remark concerns signature. In the previous sections it was
important, that we did not introduce signatured functions. Of course, eq./3.8/
always makes possible to restore the old formalism with signature if rgO.

For s=0 eq. /3.8/ gets singular. However, introducing the quantities

a+ = I(at + au) -~ /6*10/

eq. /6.9/ can be rewritten as follows:

14 -TIrA 1_e-iTTOE

FO.O = “ginira 4(-t X SinTTCX /6.11/

OE course, this form follows for F(O,t) from the assumptions of power
behaviour and symmetry between the t and u-channels. More remarkable is
that our formalism is compatible with it without superimposing to the formulas
/notice the factor exp(-1Ttw) in /6.8//.
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APPENDIX A

In Section 5. we stated the equalities

Py(<0
X-Cc+i0 /A1
and
" i . 1
1 (2+1) PI(© QGO ciio A2/

J=0

for -1 < c < +1. Their proof is straightforward by using the identity

“%og+io- TG e) - -

and the formula 15.3/6/ of ref. [I17]:

P Lae -PHT) - 4 o500
-1

/P denotes the principal value of the integral/, and the one 3.4/9/ of
ref. [14] :

QA xTio) = Q.(xX) ; P.(X)

Next we investigate the expression

where both t and t* are negative. We apply the regularization technique
of ref. [I16”, and define the integral /A.3/ as follows:

my _ir . s-1
t"-t+i0 7 o Him /A_4/
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It was obtained in rei:. [II] :

Urn { dC e8"1 - 2uh (t-f) - /A.5/
S+

The remaining task is to calculate the quantity:

Yim } g8 51 .

For this purpose one must use the formulas 6.8/37,38,47/ of ref. [1d]]

\' XS_1 Jo(®x) Yo@x)x =1 2s"1 a_S si* 5(s-1) r2(f) F~f, £, 1; 4)

if a>b >0, O < Res < 2.

@® ®
J xS_1 JQ(bx) Yo (ax)dx = -J xs_1 JQ (@) YQ(bx)dx -

@

4 _
vl cosJ(S-D J xS_1 KQ(bx) KO (ax)dx ,

if b>a>0, 0 < Re < 2.

i Xs-1 KQ (@x) KQ (bx)dx
o

if Re atb >0, Re s > 0.

The result is:

/A.6/

which completes the proof of /A.3/.
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APPENDIX B

In this Appendix we are going to prove the theorem stated at the
end of Section 5. The theorem is as follows:
If

0o

F(O = ( = — dt" . /B.1/
©

where A(t") is integrable in any finite interval of /tQ,>/, and

IACtO Ir=" t'a , then
T

00 00

I A Je Jo(e/") Ko (e/t7)ae dt" =

F@®

[ee]

w1 Jo(n~y ) AR Kre/tnder de /B.2/

The proof will be performed in two steps. First we prove, that

[e JQ (e/™) ~(e/tNde dt" =

(o}

te-
o0 1/n
lim A (f) I e Jo (e/~t) Ko (e/t7)de dt” /B.3/
M- . o)

Second, we show, that

00 i/i2

A(t) fe*0(~) Ko(e/tT)de It° =
* o
(0]

1/U 00
-\ J0( M) A A (L) KQ (e/tAMdt” de /B.4/
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Combining /B.3/ and /B.4/ we just obtain /B.2/.

The proof is based on two well-known theorems of mathematical
analysis:

1/ If the function f(x,y) <can be written as f(X,y) = g(x,y) k),
where k(y) 1is integrable in any finite interval of a <y < +°, g(X,y) is
continuous in af£x£b, a <y <<*> and the integral

F(xX) = J F&»w)dy
a

converges uniformly in [a,b], then the function F(x) is continuous in
[a,b], and, under the same assumptions, the following equality is true:

b @ ® b
5 j F(x*y)dy dx = ] J F(x,y)dx
a a a a

2/ The integral j f(x,y)dy converges uniformly in [a,b] , if
a
there exists a function G(y) such, that T, yv)] £ G(y), for any

a_<x£b, a <y, and the integral ~ G(y)dy converges.
a

F ,.rst we define two functions:

1/fi /
fte(,n)s J X Jo(xX) k & \j- [dx , /B.5/

and

FE(e",R) A(tT)dt" IB.6/

()

Obviously,

00

fO =F(t,0) = - 33 fr,o) A)de /B.7/
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We show, that F(t,ft) 1is continuous function of 4 1in some O < 4 <

interval, where is arbitrary positive number. The function A(t") s,

by assumption, integrable in any finite interval of /to,”/. It is easy to
see, that the integral in /B.6/ is uniformly convergent in 0 £ { < UQ.
Namely,

00

ft(t ,n) A™) I < A(t") j xKo(X |~-) dx = — A(tT) yknGy) 9y

The last integral is convergent, thus we have the relation

(e, il A(tY)

valid for any 49 in |[O,fioJ, and t° in £to,”). It is assumed, that
IA(ED) 1 t"0lL, a < 0, therefore also the integral

t "-»-00

converges. Consequently, the integral /B.6/ converges uniformly. Lengthy,
but straightforward calculation yields, that the difference

|flo(t"+6., dA+b) - Fe (", fi)] <

< |fe(t"+6, d+w) - £ (x7+6, f)| + |fe("+6, f) - Fr(t", )|

can be made arbitrarily small for any O £ d £ t < t". 1t follows,
that F (t,4) 1is continuous function of d in 0 < 4 < that is,
lim F(t,fi) = F(t,0). The equality /B.3/ is proved.

470

Before starting with the proof of /B.4/, we introduce a new

auxiliary function:

f(,fl,E) = /B.8/
and consider

F(t,ti,E) = l|' fi,Endts /B.9/
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One can prove again, that, at fixed t and ft , the function F(t,ft,E) is

continuous function of E in O < E £ Eq, that is,

7 [1/ft L 7
F(t,f,0) = FCL,fY) = (- 1) lim j dt* AE®) J xJQ(X) KQM-~-jdx . /B.10/

| e

Repeating the same reasoning as previously it is easy to check, that

(:'0 rl/« /.r—7\
) A J xJorx) Ko(x| j dx 9E 7
to E
1/t oF
= \ *Jo(x) T A(t?) Ko(xF?jdt /B.11/
to

rom equations /B.8,9/ and /B.3/ the validity of /B.2/ follows.
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