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ABSTRACT

The expansion of the unequal-mass scattering amplitude in terms of 
Poincaré-group representations was considered for positive and zero values 
of s, the squared total four-momentum. The usual singularity problem at s=0 
was avoidable, but it turned out, that the relevant variable is not j, the 
total angular momentum, but a quantity non-singularly related to the Poincaré- 
invariant Wt,wB even at s=0. The notion of complex angular momentum and 
signature was reexamined, and some modification of the old formalism seemed 
useful. The results are perfectly compatible with dispersion relations and 
with the requirements of Regge behaviour. In the Appendix a theorem is proved 
for the expansion of a class of not square-integrable, but Regge behaved 
functions with respect to unitary E (2) representations /that is, for Fourier- 
Bessel expansions/.

РЕЗЮМЕ

Рассматривается разложение амплитуды рассеяния частиц неравных масс 
по представлениям группы П уанкаре , при положительном и нулевом значениях 
квадрата полного момента s . Показано, что  обычную особенность при s = и мож­
но обойти , но выяснилось, ч т о  при этом основной переменной является не пол­
ный угловой момент j ,  а д р у га я  величина, которая связана с инвариантом wyw 
группы  Пуанкаре даже при s = 0 неособенным образом. Пересмотрены понятия 
комплексных угл овы х моментов, а также сигнатуры  и некоторые измерения в обыч­
ном формализме оказались полезными. Полученные результаты согласую тся с тре ­
бованиями дисперсионных соотношений и поведением Редже. В приложении д оказа ­
на теорема, касающаяся разложения не квадратично интегрируемых функции, но 
показывающих поведение Редже по унитарным представлениям группы

KIVONAT

A nem egyenlő tömegű szórási amplitúdó Poincaré-csoport ábrázolások 
szerinti sorfejtéseit vizsgáltuk a teljes négyes-impulzus négyzetének, s, pozi­
tív és nulla értékeire. A szokásos szingularitási probléma elkerülhető volt, de 
kiderül, hogy a lényeges változó nem j, a teljes impulzus momentum, hanem egy, a 
WpWy Poincaré invariánssal s=0 -nál sem szinguláris kapcsolatban álló változó. 
Megvizsgáltuk a komplex impulzus momentum és a szignatura fogalmát, és a régi 
formalizmus néhány módosítását hasznosnak találtuk. Eredményeink összhangban 
vannak a diszperziós relációk és a Regge-viselkedés követelményeivel. Az 
Appendix-ben egy tételt bizonyltunk nem négyzetesen integrálható, de Regge-visel­
kedés t mutató függvények uniter E (2) ábrázolások szerinti sorfejtésére /azaz, 
Fourier-Bessel kifejtésére/.



INTRODUCTION
The difficulties of Regge pole theory at zero energy in the case 

of unequal-mass scattering have inspired many authors, and many different 
approaches have been proposed to solve the problem. The general attitude is 
to take for granted the presence of unpleasant singularities in the Watson- 
Sommerfeld transformed form of the unequal-mass scattering amplitude, and 
the task is just how to remove the singularities. On the other hand, one 
must realise, that even the presence of these singularities is questionable. 
What actually happens in the reggeization procedure is that some formulas, 
well-defined in the s-channel, are extrapolated to new regions, into the t 
or u-channel. It is far not trivial that, although the starting situation is 
very similar, everything must be learned from the equal-mass case. Instead, 
probably Fourier-analysis on Poincaré-group is the "magic word" one is to 
remember in the reggeization procedure.

Many authors have investigated the connection between the forms of 
the scattering amplitude obtained by Watson-Sommerfeld transformation and 
from direct group-theoretic expansions, mostly for space-like total four- 
momentum, s < О [l,2,3,4]. The present paper is mainly devoted to the 
problems at s = О in the unequal-mass case. Some steps of our approach 
were made in [5] and [б], but our results go far beyond theirs.

We are going to deal both with the limit of the Watson-Sommerfeld 
transform to s = О and with the connection of this limit with the group- 
theoretical expansion in terms of light-like Poincaré-representation matrix 
elements. These investigations lead to the following conclusion: the 
appropriate variable at s = О is not j, but w r the eigenvalue of the 
Poincaré-invariant W^W^, W^ being the Pauli-Lubanski operator. As is well- 
known, at s = О real positive values of w correspond to unitary Poincaré 
representations /infinite spin representations/, they are sufficient to 
expand a square-integrable scattering amplitude. Complex values of w
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correspond to non-unitary representations, and a complex angular momentum 
theory is to be formulated in terms of functions of the complex variable w. 
Obviously, when s is not zero, one may equally use w or j. On the other 
hand, one can not provide a /Poincaré/ group-theoretical interpretation to a 
theory, which uses the variable j at s = 0. /Our way of looking at the 
problems with unequal-mass scattering is very strongly supported by R.Hermann's 
book entitled "Fourier analysis on groups and partial wave analysis" [7] . In 
other words our suggestion is that s and j are not the "most economical" 
variables to formulate a complex angular momentum theory, but s and w are. 
/Also Feldman and Matthews have suggested that the correct variable to be 
used is not j but w [б] . See also ref. [8]./ The undesirable singularity 
at s = О is a consequence only of the uneconomical choice of variables.
/The analogue of this phenomenon is well-known in context of the singularities 
which arise when using the variables s and cosQs instead of the "most 
economical" pair s,t./ In arriving at this conclusion group-theoretical in- 
terpretability is only a hint, rather than a necessary condition.

In this paper the scattering of two spinless particles with masses 
m and ц /pion-nucleon-type kinematics/ will be examined. In Section 2. 
some remarks on Poincaré representations are presented /for a detailed 
discussion see ref. [9] / , which are of basic importance in the subsequent 
investigations. In Section 3. the Watson-Sommerfeld representation of the 
scattering amplitude is given, and our modifications of the complex angular 
momentum are described in comparison with the conventional treatments. In 
Section 4. the s = 0 limit is calculated, and in Section 5. a comparison 
is made between the Sommerfeld-Watson representation and the expansion with 
respect to Poincaré representation matrix elements. In Section 6. some details 
of our approach are discussed, and in two appendices mathematical statements 
made in the previous sections are proved.

2. REMARKS ON POINCARÉ REPRESENTATIONS
If one takes the standpoint, that the Regge-Watson-Sommerfeld 

representation of the scattering amplitude is nothing else, but essentially 
a group-theoretical expansion in terms of Poincaré representations /this is 
supported, e.g., by the fact, that resonances are classified by putting them 
on Regge trajectories/, then the s = О problem of unequal-mass scattering 
can be, at least in part, transferred to the representation theory of the 
Poincaré group. Namely, the question arises, if the representations of the 
Poincare group can be described in such a form, that is continuous in the
Casimir eigenvalue P^ = = О , when the four-momentum P becomesVs at s
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light-like. This problem was thoroughly investigated in ref. [9], and we 
summarize its most important points here.

The Poincaré group has been represented on a sufficiently large 
function space, and explicit functions in this space could be found with 
the following properties:

1. They are eigenfunctions of the four-momentum, , with arbitrary
real eigenvalues p ; of W W^, with arbitrary complex eigenvalues sj(j+l) =

2 1  ̂ 2 ^= w -■4 s » where s = p^ ; and, of WQ with eigenvalue pX, where p is 
the magnitude of the three-momentum p, X is the helicity. That is, the 
functions with given s and w form an irreducible set for representing 
the Poincaré group in helicity basis.

2. They are continuous functions of the four-momentum, p^ , 
consequently of s as well. Appropriate normalization is essential to achieve 
continuity at s = 0. /The point p^ = О is a very peculiar one [9] , and
is unimportant in this paper. Hereafter s = О will always be associated 
with light-like four-vectors./

When having been in possession of basis functions, representation 
matrix elements of the Poincaré group have been calculated. The result is of the 
following form:

<Py»w,X| Са,Л)|р',w',X'> = N(s,w,w') б4(ру-Лр') Dxx' exP (_iPyau ) /2-1/

2where N(s,w,w') is a continuous function of p^ = s, when w and w'
are fixed. The function Dxx' denotes the familiar representation functions
of the groups SU/2/, SU/1,1/ or Е/2/ depending on whether s is positive,
negative or zero, respectively [lo]. /In the cases when s ф О, more
conventionally the label j is used instead of w. / The Euler-angles f , Q , i p

in the , function are functions of the six parameters of the homogeneous
Lorentz group element Л and of the four components of p^. The method to
determine the functions ^(Л,р ), 0(Л,р ), ф ( Л , р ) is well-known, they areи и ^« У
the Euler-angles of the Wigner-rotation L x Л L . , where L and L

A~ i > u Л Py
are boosts, which transform the four-vector / / s , 0 , 0 , 0 /  /in case s > 0/, or 
the one /0,0,0, / /in case s < 0/ to p and /Лр/ , respectively. It can

w ,• H \ ^be checked again, that the functions are continuous functions
of the components of p^ , when w is fixed. This might be surprising, since 
similar statement is not true for 0(л,р ). Namely, Ит0(л,Ру) = О /р becomes 
light-like!/, independently on Л . On the other hand, if we calculate the 
matrix element /2.1/ directly for light-like representations, /that is, also
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fV = * , *PV = Ф ,

ev = Ip 0 I + p 1/2
I 2.21

e ,

and 0V is now continuous function of s even at s = 0. /As for the 
representations of little-groups for four-vectors like /pQ ,0,0,p/ see, for 
example, ref.[ll]/.

The significance of choosing Euler-variables which are continuous func­
tions of s becomes clear, when we come to the next relevant point, to the 
orthogonality relations of the matrix elements:

Ix = j d4a dy(A)<pM ,w,X| (a,A)|p' ,w' ,X'xp£,w",X" | (a,A)|p",w"*,X*">* , /2.3/

where the integration goes over the translation and the homogeneous Lorentz 
group part of the Poincaré group. /Concerning the measure du(A) on the 
Lorentz group see, e.g., ref. [lo]./
After performing trivial integrations one obtains:

I1 = N(s,w,w') N(s,w",w"') 64(p  ̂- (Ap')^J - (Ap,,,)y)<s4(Pji " Py)x2 '

1 2 . A /

where

- ja11(/.e'',*v) D”x,(f\0\,n
X X

= (lP0 I + p)2 n (s ,w ,w ") 6AA„6X,X„, .
/2.5/

 ̂ л л
the Euler-angles of the "Wigner-rotation" L A L  ̂ with bocBts L and

PH Лрм py

L , transforming a four-vector /p,0,0,p/ to p and (Ap) , respectively./, Л ~1  ̂ У
pywe find that 0ÍA,p (e)0,°°). This discrepancy can be very easily eliminated

4 i/jby reinterpreting the function in the following manner: it is the
representation matrix element , (^,0У ,ф ) = , (f ,0, ф )! ) of the
little-group of the four vector /р ,0,0,p/, p“? - p^ = pf = s, the Euler-
angles of which being those of L A L . where Lp and L , are boosts

Р У ApT> Py ApJPp
transforming the four-vector /pQ ,0,0,p/ into p^ and (Ap)^ , respectively.
It is easy to verify, that
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In the expression /2.5/ dy (̂ V , 0V , фУ ) is the measure for the little-group 
of /p ,0,0,p/. Lengthy, but straightforward calculation gives, e.g., for 
s > 0:

dy(*v ,ev ,*v) = iPol + P
IP«I - P

1/2
sin lp0 l - p

-11/2

Ip «I + P
0V dfv d0v d^v =

IP0 I + P 

IPq 1 ' P
d (cos0 ) df d4> = Ip 0 I + p

Ip0 I ■ p

/ 2 . 6 /

dy (^,0,ф)

and

N(s,w,w") = -^25Т Г)—  6jj" /2*7

where w 2 = sj(j + l) + js, w"2 = sj"(j"+l) + ^s. We call attention to the 
fact, that in the integral /2.5/ the measure dy(^v ,0v ,î v ) has appeared, 
rather than dy('f,0,4'). This is strongly correlated with the singular 
behaviour of the angle 0 at s = 0.

The formulas /2.5-7/ make possible to write down the partial wave 
expansion, that is, the expansion with respect to irreducible, time-like 
Poincaré representations for an unequal-mass scattering amplitude in such a 
form, which we expect, after reggeization, to have nice properties even at 
zero energy:

<Pßfs3»^3» P4 ' ®4 ' ̂ 4 I ̂  I P]_ >  ̂1' ?2 ,S2 ' ̂ 2>

= (2TT)4 64(p1+P2-P3-P4 ) F XiX2X3X4(s,t) = /2.8/

= (2ТГ )4 64(p1+p2-p3-p4) ^ -p 7 - l  ^ A ^ A ^ ' O C 2^ 1 ) djy(0s ) ;

where X = X^ - X^ , у = X^ - X2 , and 0g is the scattering angle in the 
center-of-mass /С.М./ frame for the s-channel. The partial wave amplitudes 
are defined as follows:

(|p |+p)2 }

--- 2 - ---- [ d(cos0s) PxiX2X3X4 Cs't > dJx< 0  • /2.9/
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We do not expect any problem with the analytic continuations of /2.8,9/, if
they involve no C.M. amplitudes, but rather ones defined in a frame, in
which neither the time-component, or the magnitude of the three-vector part
of the total four-momentum, P , are vanishing. The symbol d? denotesУ ЛУ
the familiar Wigner' d-functions.

3. COMPLEX ANGULAR MOMENTUM
In this section we are going to describe complex angular momentum

theory for unequal-mass scattering, which, on one hand, is related to that
for equal-mass scattering as strongly as possible, but, on the other hand,
makes use of the remarks of the previous section. Namely, that, first, the
scattering amplitude is to be expanded in terms of Poincare representations
in a frame, in which the total four-momentum P = p. + p_ is of theУ J- У z у
form /pQ ,0,0,p/. Second, the appropriate variable to be used in a complex 
angular momentum theory is w rather than j. /Of course, this distinction 
is irrelevant, when s ф 0, and we shall use the variable j until we do 
not want to go to s = 0. /

The crucial points of conventional complex angular momentum theory 
/see refs. [12, 13]/ are the following:

1. Using Carlson's theorem, one defines two functions over the 
complex j-plane from the s-channel partial wave amplitudes.

2. By Watson-Sommerfeld transformation one casts the partial wave 
series into an integral along a curve of the j-plane from - -j -i°° to - j +i°°.

3. After analytic continuation in the s and t Mandelstam va­
riables one obtains the crossed channel scattering amplitude represented by
the background integral /along the line Rej = - i /, and the residues of

1 лpoles appearing on the half-plane Rej> ~ 2 ‘ /Cuts not be considered
in this paper./ It is assumed, that the contribution of the integral along 
the infinite half-circle is still negligible.

Now we consider the elastic scattering of two spinless particles 
2 2 2 2 2 2with masses m and y, p^ = p^ = m , P 2 = p^ = у . The Mandelstam variables

are:

s = O l  + P2 )2 = (P3 + P4)2 ,

= (P1 “ Рз)2 = (P2 " P4)2 '

u = (pl - p4 )2 = ( p2 - p3 )2 '

/3.1/
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COS0g 1 + 2st____
Ä(s,m2 ,y2 )

/3.2/

where 0S is the s-channel scattering angle in the C.M. frame, and 
Л ( s ,m2 , у 2) = -(m-у)2]. In the s-channel the partial wave series
for the scattering amplitude F(s,t) looks like

F(s,t) = - — 2 2m]il/2\2--- 2“  I F(s,j)(2j+l) P.(cos0s) , /3.3/
^m -у +Д J - s j=o

where the partial wave amplitudes F(s,j) are defined as follows:

2 1

(s.j) - ^ 2~р2+2 » ^  ' °2 f d(cosQs) F(s't) Pj (COS0S ) •
-1

/3.4/

In the spinless case the d-functions of /2.8/ and /2.9/ are the familiar 
Legendre-polinomials , P.(z). The kinematical factor -p—-—  sm^ , ----- =■

3 (m2-y2+A1/2j s2
in /3.3,4/ corresponds to the one -r~.--yr-—y r  of /2.8,9/. It could have(I PoI+P )
been included into F(s,j), but it has significance when we go to s = 0, 
therefore we prefer to write it explicitly. In the equal-mass case it is 
only a numerical factor

We assume F(s,t) to satisfy unsubtracted dispersion relation in 
the variable t at fixed s :

F(s,t) = Ft (s,t) + Fu (s,t) =
'V

j. f At(3,t-) x Ajs.f)
- k] dt’ t> - t + ? J dt' t' - t /3.5/

4m

Correspondingly, we define F(s,j) = Ft(s,j) + Fu (s, j ) and obtain:

Ft(s'j) = ¥2 („2-u2+a1/2)2 -
туД J dt' At ( s' t ' )  Qj(^ +

4m2
/ 3.6/

„ 1 (m2- u 2 + b 1 1 2 ) 2 -
(m-у)2-s

туД j at' *„(•-*') o A  + - iO

/3.7/
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In /3.7/ it is also denoted, that the real, less than -1 argument of the Qj
function is to be understood as limit from the lower half-plane.

It is usual at this stage to introduce complex angular momentum.
As is well-known, the mathematical problem of defining an analytic function 
having prescribed values at non-negative integer values of j involves an 
essential non-uniqueness. The tradition in Regge-pole theory is to look for 
analytic continuations satisfying the conditions of Carlson's theorem, and 
this leads to the signatured functions:

F+ (s»j) = Ft (s, j)+ Fu (s/j) expiirj /3.8/

We are not going to follow this tradition, but rather we define complex 
angular momentum directly through /3.6,7/. Some problems arising from the 
use of u (s,j) instead of F+ (s,j) will be discussed at the end of this
section. The merits of our choice will be clear only from the subsequent 
ones.

Now, still in the s-channel,- we can write integral

p Л- = _i__________ Е1ПУ__________ vFt,uVB f t ) 2 (  2 2 .l/2'\2 T ~(m -у +A )  -  s

/3.9/

on the jrplane instead of the original partial wave series. The contour C 
encircles the positive real half-axis. Until we are in the s-channel all 
the poles of the integrand in /3.9/ are due to the zeros of sinirj at integer 
values of j . After analytic continuation into the t or u-channel also the 
functions Ffc u (s,j) have poles at real j = a(s) values. Then also the 
contribution of these poles is to be included in the expression /3.9/. The 
basic assumption of Regge-pole phenomenology is that the contribution of 
these latter poles dominates over the remainder, the contribution of the 
poles due to simr j . The usual "proof" for this is to deform the contour C 
into a straight line along Rej = - j  and an infinite half-circle on the 
right half-plane. If one assumes that the integral along this half-circle is 
zero, it is easy to see from the asymptotic expressions for the P^(z) 
functions, that for large values of cosO the background integral is 
reasonably neglected in comparison with the Regge pole contributions. 
Obviously, this "proof" relies very strongly on the appropriate asymptotic 
behaviour of the F(s,j) functions in the variable j. In the t or u- 
channel this cannot be justified simply by looking at the integrated of
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/3.6,7/and it cannot be done either for the signatured functions F+ (s,j) even 
in the most familiar equal-mass case [l2, 13]. On the other hand, the 
successes of Regge-pole phenomenology serve with a justification of the 
assumption. In our treatment Ffc(s,j) and Fu (s,j) must be well-behaved, 
instead of F± (s,j). This assumption may very well be compatible with 
phenomenology, since, although there is an exp(iirj) factor present in /3.8/, 
Ffc u(s,j) and F± (s,j) may have the suitable properties even simultaneously.

There is only one thing we certainly lost when using F. (s,j)U g u
instead of F± (s,j). Namely, in the case of signatured functions the analogue 
expressions of /3.6,7/ make possible to prove, that in the s-channel the 
functions F+ (s,j) decrease /since the functions Qj(z) do so/ fast enough 
so as the contribution of the infinite half-circle be zero. This is not the 
case with Fu (s,j). However, one must notice, that in the s-channel this 
problem has no particular significance. The contour integral has no advantages 
over the partial wave series either one must keep the contribution of the 
half-circle or need not.

Our final formulas for Ft u (s,t) are:

F. (s,t) = F^ (s , t) + f£ (s,t) tju'" ' tju'- '  ' t,uv J

where F^ (s,t) is the backoround term: t,uv '  •

/3.10/

Ft,u(s ' 0 -  2T
smy

f  2 2..1/2 j(m -у +Д I -

-i +Í.00

f dj (2j + 1) F (s , j ) P . ( - 1  - J sirnrj t ,u 4 J > j l
2st ]

Л ] ' /3.11/

and F^ (s,t) denotes the Regge-pole part:u ̂ U

x lpoles

______ smy____

- s

t ,u

2

( s '3 )
c i

/3.12/

As was discussed, we assume the representation /3.10-12/ of the functions 
Ft u (s » 0  to the an<̂  u-channels.
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4. COMPLEX ANGULAR MOMENTUM IN THE s = О LIMIT

After having fixed our definitions for a complex angular momentum 
theory at s ф 0, we investigate its limit to s = 0, which is a physical 
point for the u-channel. We make use of the fact, that there is a finite 
piece of the u-channel physical region above s = 0, and in the present 
paper we restrict ourselves to reaching the point s = О through positive 
values of s. That is, we consider the formulas /3.6,7,11,12/ for s-iO, 
u+iO, О < s < (m-p)2 , (m+y)2 < u < , and, keeping u fixed, we
let s go to zero.' It is worth remarking, that still we are on the lower 
edge of the cut of the Qj function in /3.7/.

In the usual treatments the limit s = 0 is token at fixed values 
of j, and the singularity problem arises due to the singularity of Pj(z) 
at z = -1 and of Cb (z ) at z =1. In our approach w is the fundamental 
variable, and we calculate the limit keeping w fixed. Indeed, first we 
introduce a /dimensionless/ variable e instead of j, which is not singularly 
connected with w even at s = O:

w2 sj(j+l) + |s 4my /4.1/

The most economical way to calculate the limit of the Legendre-functions is 
to use the following integral representations [l4] :

IT
Pj(z) = I j ( z  + (z2-l)1/2 cos4̂  df , |argz|<-| , /4.2/

о

Г / г о  \l/2 \-j-lQj(z) = \ ( z + z -l] coshtj dt, |arg(zíl)| < it . /4.3/
о

At the end of the calculations one recognizes Bessel-functions of the first 
and third kind in the following forms [is] :

7T
Jo Cz ) = J 5 exp ̂ izcos0)d't> , 

О
14.4/

00
Ko (z ) =  ̂ exp (-zcosht)dt, 

о
1 argz1 < j /4.5/
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Also the relations between Hankel's functions and the К-function are useful:

l£\>) = JjCz) + iYj(z) = - Ц - exp(-ij J ) k .. (zexp(-i | )) , /4.6/

i/j\z) = Jj(z) - iY j (z ) = i I exp ̂ i j ? ) Kj (zexp (i ^ )) • /4.7/

Here Y j(z ) stands for the Bessel-functions of the second kind.

First we deal with the limits of the functions F. (s,j):TI . u

lim Ffc(s, j ) 
s*-o

Ft (0,e) 8
ir my dt' At(°'tO Ko /4.8/

lim Fu (sfj)
s-*-o

/4.9/

Next we calculate the limit of the background integral term /3.11/. It is 
easy to see, that

lim
s-*-o

1
simr j

for

for

íme > О ,

íme < О

/4.10/

This yields:

о

-i°°
/4.11/
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, * . .. v ' - , . j
If F (0,e) behave at most like polinomials on the right e-plane foru f U
|e| 00 eq. /4.11/ can be written also as

V **
oo

< > ■ 0  - Я  ( e de Ft,u(°-e) Jo(£|fic) I“-121

This last expression looks exactly like an expansion with respect to light­
like, unitary representations of the Poincaré group. /Similar result was 
obtained also in [б] . / Our assumption about the asymptotic behaviour of 
the function Ffc(o,e) is obviously correct. The situation is more complicat­
ed in the case of Fu (o,e). The integral representation /4.9/ defines it 
only for Ime < O, where our assumption about its asymptotic behaviour can 
be again verified. For Ime > 0  it remains unverified, just like when s^O. 
It will be later shown, however, that the assumptions we made are reasonable.

The calculation of the pole terms leads to an interesting result, 
if one supposes that at s=0 the poles are placed at real e^(s=0) = 
points. Due to /4.10/, the contour integrals of /3.12/ must be evaluated not 
by the theorem of residues, but by applying the formula:

~x~ ±~iO = I + i7r6(x)

The result is :

FPt,u(0,0 lpoles
/4.13/

where ß (e.) denotes the residues of the functions F (0,e). It is 
remarkable, that the second kind function Yq has appeared in /4.13/.

All the calculations of this section were performed by changing the 
order of integrations and limiting in s. Obviously, had we not used the 
functions Ffc u(s,j ) instead of F±(s,j), we should have obtained meaning­
less results. On the other hand, the limit of the F±(s,j) functions may
very well exist, even if the limit of the integrands does not. /We remind , bthe reader to theorems, e.g., about the existence of lim f f(x) sinyxdx./

y-°° i
However, making simply the assumption that lim F+(s,j) exist, the formulas 
would get uncontrollable.
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5. SELF-CONSISTENCY AND COMPATIBILITY WITH DISPERSION RELATIONS
This section is devoted to the examination of: two problems. The

first is related with the connection of complex angular momentum theory and 
expansions with respect to Poincaré representations. Our concept /in fact, 
it is due to Hermann [7]/ is, that complex angular momentum is important even 
if the scattering amplitude is square integrables it is a tool to continue 
into each other the Poincaré expansions of the scattering amplitude for total 
four-momenta of different character. This interpretation makes use of the 
fact, that those unitary representations of the Poincaré group, which appear 
to be relevant for the expansion of square-integrable functions in the time­
like, light-like and space-like cases, can be characterized by the eigenvalues 
of one and the same Casimir operator W /beyond, of course, P^ = s/. It
is not priori obvious, that there exists an analytic function F(s,w), which 
at the appropriate values of s and w takes the values of the expansion 
coefficients for the previous three expansions. /It is very difficult to 
say anything about the effect of non-square-integrability, beyond that they 
presumably correspond to certain w singularities of F(s,w)./

The second question is independent on group-theory, ind is probably 
more important from the point of view of theories based on the well-established 
analytic properties of the scattering amplitude. Namely, the question arises, 
whether our prescription for the s = 0 limit is compatible with dispersion 
relations we assumed to be valid also for the u-channel amplitude.

of the s-channel scattering amplitude /that is, the formulas /3.6,7,10,11/ and 
/4.8,9,11,12/, and the appropriate crossed-channel expansions we are going to 
write down assuming square integrable /in cosOs l/ scattering amplitude also 
in the u-channel. Clearly, the main task is to cast the inverse formulas for 
these latter expansions,

To answer the first question we compare the formulas for the u-channel 
obtained by the analytic continuation of the Watson-Sommerfeld transformed form

1

-1

and
oo

/5.2/
о

into form comparable with the previously obtained ones of Sects. 2. and 4.
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Our notations are:

_ , . 2stc = COS0S = 1 + — --- 2 Т Г  'A^s,m ,y )

í=fé
For this purpose, at s ф О, we should apply the identity:

( P. (c) . ? P . (l +
Qj(Z) = 2 1 dc ' " 5 I 3 t* - t--- dt'

-1 A

where

/5.4/

/5.3/

/5.5/

z = 1 + 2st'
A (s,m2 ,y2 )

/5.6/

There was no problem with /5.5/ in the s-channel, where we needed it only 
for t '  -  t  ф 0 , -1 < c < 1, I z I >1. When we ajje in the u-channel, in
the region О < s < (m-vi)2, (m+y )2 < u < , the situation changes,
and can be summarized as follows. From a detailed study of the original 
Cauchy-integral one can see, that the dispersion relation /3.5/ is to be 
rewritten as

F(s,t) = i j dt'

where

At (s,t') if t' •> 4m2 ,

A(s,t') = < 0, if (m-у)2 -s < t' < 4m2 , /5.8/

r-
-- > c w ft if t' < (m-y)2 - s ,

and denotes the generalized function ~ iiró(t'-t) [1б] . The
plus sign of iO in /5.8/ comes from the ie -prescription of S-matrix 
theory. The condition -1 < c < 1 remains true, but it is easy to see, that 
now we need /5.5/ also for values of z on the real axis between -1 and 
+1, when /5.5/ fails to be valid in the sense of classical functions. It 
remains, however, true in the sense of generalized functions. Namely, it is 
shown in Appendix A that

A(s, tQ 
t'-t+iO /5.7/
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Qj(x + i0) - I J de 
-1

1

x-c±iO
Pj(c) /5.9/

is true for -1 < с < 1, and for any value of x. Then it is obvious, that 
the formulas /3.6,7/ appear for the expansion coefficients also in the u- 
channel. This shows, that starting either from the s or the u-channel, one 
can define one and the same complex angular momentum. It is clear, moreover, 
that no simple trick /like the introducing of signatured functions in the 
s-channel/ makes possible to define analytic continuation satisfying Carlson's 

» theorem. In fact, complex angular momentum functions satisfying Carlson's
theorem in the u-channel would be incompatible with the ones defined in the 
s-channel.

t
In case of s = О the basic formula one must apply is [l5]:

/5.10/

which is valid in classical sense for |argt'| < ir. However, it is shown in 
Appendix A, that for argt' = íu equation /5.12/ remains true, and it is to 
be understood as

These relations assure, that the formulas of the crossed channel expansion 
and the ones obtained in Sect.4. from the s-channel expansion coincide also 
at s = 0.

The problem of compatibility with dispersion relations, mentioned at 
the beginning of this section can be formulated in the following manner. The 
expansion procedure followed in the previous sections consists, first, in 
giving the kernel of /5.7/ the form

t'-t+iO
2s
“ I  (2j+l) P,(c) Q.(x+io) 

j=o J J 1Д dj 112121sinir j Pj(-c) Qj(x+io),

or, for s “ Os

/5.12/
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/5.13/

Second, substituting the right-hand side of /5.12/ or /5.13/ into /5.7/, and 
changing the order of integrations, one gets:

c

Pj(-C) 
sinir j /5.14/

or, when s 0
l

F.(0,t) = - —  Í t 4 ' it my J /5.15/
I

/The reader can easily write down the corresponding expressions for Fu(s,t)/. 
We consider a limiting prescription compatible with the dispersion relation, 
if the limit of the expression for ^ i ..£+^q given at s > О is identical 
with the expression given at s = 0. Obviously, our prescription has this 
property.

Another problem arising is whether the changing the order of integra­
tions is a legal step. In fact, this is the question about the convergence 
of our expansions. We are not going to discuss this delicate problem for 
s ф 0, where we have the more or less familiar, old formulas. For s = О and 
the function Ft (o,t) we state the following theorem: if the function Ft (o,t) 
can be represented for t < О by an integral

Ft (0,t)
oo At (0,t')

t'-t

where the discontinuity At(0,t') is integrable in any finite interval of 
/4m̂ ,<=°/, and behaves like t'01 for t'-*-°°, then the equality /5.15/ is true. 
/Obviously, this theorem makes possible to write Fourier-Bessel integral for 
a non-square-integrable class of functions./ The proof of this theorem is 
given in Appendix B. To get a corresponding theorem also for Fu (o,t) we need 
further work.
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6. DISCUSSION
In the previous sections we described the basic ideas for calculating 

the limit of the Watson-Sommerfeld transformed scattering amplitude to s = О 
in the unequal-mass case. We discuss here some characteristics of our result:

t

f

F (s=0, t )
00

О

Ft (0,e) + Fu(0,e)

+ Ipoles ß (ei )

where

pt(°’0  - ¥ S T  J, Ko(e'/lj) ■
4iri 4 '

and

/ 6 . 1 /

/ 6 . 2/

/6.3/

Our first observation is that the pole terms do not exhibit the ta 
power behaviour for (-t)->-°°, since the Yq functions behave like

/6.4/

On the other hand, the theorem stated at the end of the previous section 
indicates, that the first, "background" term of /6.1/ is probably sufficient 
to expand a Regge-behaved scattering amplitude. /In fact, we proved it only 
for Ffc(0,t), but similar statements seem to be valid also for Fu (0,t)./ It 
follows, that if we believe in the ta asymptotic behaviour,the usual rule 
concerning the dominance of pole terms over the "background" integral does 
not apply at s = 0. The formulas /6.2,3/ indicate, that the pole terms of 
/6.1/ are probably not present at all. It is easy to see, that the usual
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assumptions A. (o,t') t ' a , A (o,t') t > (-t')a , a < 0, do not lead
t ' -+CO — t '

to any singularity on the half-plane Res >0.

To see some details we assume a very simple model:

At (0,t') =
att'a , if t' > 0

o , if t' < 0
/6.5/

1 if t' > o,
Au ( ° , t ' H

la (-t')a , if t' < 0,
/6.6/

11 U 4 '

where —i < a < 0, at and au are real constants. The integrals correspond
ing to /6.2/ and /6.3/ yields

F, (o,e) = -  — f dt' t'“ tv ' ' ír my J
о

16a, „ 0
C4m̂ ) Г2 (a+l) -2 (a+l)ь Г /6.7/

’ » (о.0 ■ 4 i r  {  i t ' ( - t o *  4 ^  ° " 1,ra(<"»-)“  ' V 1)
.-2 (a+l)

We remind the reader, that the integral /6.3/ defines Fu(0,e) only for 
Ime < 0. After evaluating the integral in this region the result can be 
extended also for Ime > 0. /Eq. /6.8/ is just an example for this./ Finally, 
the integral gives the expected result for the scattering amplitude:

F (°-^ - iisis [“t W  - V “] • /6-9/

One could examine more complicated models /with more complicated Afc,Au 
functions, but with the previous asymptotic behaviour/, but the following 
features of this simple model would remain unchanged. There are no poles of
the functions F. (0,e) on the right e half-plane. Instead, one always

t,u -2(a+l)finds a branch-point at e = О with the characteristic power e 4 . For
large values of |t| the dominant contribution to the integral /6.1/ comes
from the lower end of the integration path, and asymptotically, the form
/6.9/ is always reproduced.
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It is worth noticing, how nicely these results correspond to the 
Lorentz pole picture, the usual solution of the singularity problem at s=0. 
First, we have seen, that the "cause" of the t“ behaviour is "concentrated" 
to the E = О point, which is the image of the j-plane /due to the singular 
mapping at s=0/. That is, the power behaviour is something deeply connected 
with the j-plane. Second, it is not very hard to imagine, that the infinite 
sequence of the /j-plane/ daughters accumulates /on the е-plane/ when s=0, 
and forms a branch-point at e=0. Of course, it is difficult to guess the 
nature of the branch-point. Just like in case of considering all the conspir­
ing daughters, we did not find here any singularity at s=0, only the ta 
behaviour was reproduced.

Our last remark concerns signature. In the previous sections it was 
important, that we did not introduce signatured functions. Of course, eq./3.8/ 
always makes possible to restore the old formalism with signature if гфО.

For s=0 eq. /3.8/ gets singular. However, introducing the quantities

a+ = l(at + au) ' /6*10/

eq. /6.9/ can be rewritten as follows:

F(0,t) = 1+e-iira
sinira 4(-t )a

1-e-iTTOt
SinTTCX /6.11/

OE course, this form follows for F(0,t) from the assumptions of power 
behaviour and symmetry between the t and u-channels. More remarkable is 
that our formalism is compatible with it without superimposing to the formulas 
/notice the factor ехр(-1тш) in /6.8//.
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APPENDIX A
In Section 5. we stated the equalities

and

Pj(<0
x-c+iO

oo

lj=o
(2j + l ) Pj (c) Qj(x±iO) 1

x-c+iO

/А.1/

/ A.2/

for -1 < c < +1. Their proof is straightforward by using the identity

-------=  — —  + í t t ő ( x - c ') ,x-c±iO x-c + ' '

and the formula 15.3/6/ of ref. [l7]:

f Pj ( f ; ) 1 P \ dc — 2x-c
-1

= f Qj(x)

/Р denotes the principal value of the integral/, and the one 3.4/9/ of 
ref. [14] :

Qj(xiio) = Q.(x) ; P.(x) .

Next we investigate the expression

where both t and t' are negative. We apply the regularization technique 
of ref. [l6^, and define the integral /А.З/ as follows:

my
t '-t+iO

_ i r  
+ 2 lim

s-*2
s-1 /А.4/
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It was obtained in rei:. [ll] :

Urn { dC e8'1 - 2 щ И  (t-f) . /А.5/
S-+-2

The remaining task is to calculate the quantity:

lim 1 de e 
s-*-2 I ds £S_1 •

For this purpose one must use the formulas 6.8/37,38,47/ of ref. [18]]

\ xS_1 Jo (bx) Yo (ax )dx = I 2s"1 a_S si* 5(s-l) r2(f) F^f, f, 1; 4 )

if a > b > О, О < Res < 2.

OO 00
j xS_1 JQ(bx) Yo (ax)dx = -J xs_1 JQ (ax) YQ (bx)dx -

4
“T  cos7T

oo
J(s-1) j xS_1 KQ(b x ) K0 (ax)dx ,

if b > a > 0 ,  О < Re < 2.

oo

j  Xs-1 KQ (ax) KQ (bx)dx 
о

if Re a+b > 0 ,  Re s > O. 

The result is:

which completes the proof of /А.З/.

/А.6/
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APPENDIX В

In this Appendix we are going to prove the theorem stated at the 
end of Section 5. The theorem is as follows:
If

oo

F (t) = ( ■ --  dt' , /В.1/
fcO

where A(t') is integrable in any finite interval of /tQ ,“>/, and
IA (t О I r~'— ' t ' a , then 

t '■+°°

OO

F (t) = I A (t')
oo

|e Jo (e/^t) Ko ( e / t 7) á e dt' =

" I  Jo ( ^ )
oo

J A(t') K^e/t^dt' de /В.2/

The proof will be performed in two steps. First we prove, that

te­

lim
П-ю

OO

[e JQ (e/^) ^ ( e / t ^ d e dt' =
О

OO
r

1/П
-

A ( f ) Г e Jo (e/^t) Ko (e/t7)de
‘o о

dt' /В.З/

Second, we show, that

OO
r

Í / Í 2

A(t’) f e *0 ( ^ )  Ko(e/t7)de
J

*о о
dt' =

1 / U

- \ J0 ( ^ )
OO

^ A (t') KQ (e/t^^dt' de /В.4/
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Combining /В.З/ and /В.4/ we just obtain /В.2/.

The proof is based on two well-known theorems of mathematical
analys is:

1/ If the function f(x,y) can be written as f(x,y) = g(x,y) k(y), 
where k(y) is integrable in any finite interval of a < у < +°°, g(x,y) is 
continuous in a £ x £ b ,  a <_ у  <<*>, and the integral

F(x) = J f (x »У ) dy 
a

converges uniformly in [a,b], then the function F(x) is continuous in 
[a,b], and, under the same assumptions, the following equality is true:

b oo
f

oor b

5a
j f(x *y)dy
a

dx = j
a

J f(x,y)dx 
а

2/ The integral j f(x,y)dy converges uniformly in [a,b] , if
a

there exists a function G(y) such, that |f(x,y)| £ G(y), for any
a _ < x £ b ,  a <_ у , and the integral  ̂ G(y)dy converges.

a

F ,.rst we define two functions:

1 /fi / I------T\
ft (t', n)s j X Jo (x) k (x \ j - |dx ,

and

oo
j . ft (t',ß) A(t')dt'

Obviously,

OO

f (0  = F(t,o) = - ± J ft (t',o) A(t')dt'

/В.5/

I B . 6 /

1
t /В.7/
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We show, that F(t,ft) is continuous function of Я in some О <_ Я < 

interval, where is arbitrary positive number. The function A(t') is,
by assumption, integrable in any finite interval of /to ,°°/. It is easy to 
see, that the integral in /В.6/ is uniformly convergent in 0 £ Я <_ UQ .

Namely,

oo

ft (t',n) A(t') I < A(t') j xKo(X |^-) dx = -- A(t') у к п Су ) dy

The last integral is convergent, thus we have the relation

ft (t',il) A(t')

valid for any Я in [0,fioJ , and t' in £to ,°°). It is assumed, that 
IA (t') I t'01, a < 0, therefore also the integral

t  '-»-oo

oo

converges. Consequently, the integral /В.6/ converges uniformly. Lengthy, 
but straightforward calculation yields, that the difference

|ffc(t'+6., Я+ы) - ft (t',fi)| <

< |ft (t'+6, Я+ш) - f (t'+6, fi)| + |ft(t'+6, fi) - ft(t', я)|

can be made arbitrarily small for any 0 £ Я £ t < t'. It follows,
that F (t,Я ) is continuous function of Я in 0 <_ Я _< that is,
lim F(t,fi) = F(t,o). The equality /В.З/ is proved.
Я-*-о

Before starting with the proof of /В.4/, we introduce a new 
auxiliary function:

and consider

f (t',fl,E ) = /В.8/

’ Í fi,E^dt' .F(t,ti,E) = 1
t /В.9/
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One can prove again, that, at fixed t and ft , the function F(t,ft,E) is 
continuous function of E in О < E £ Eq , that is,

7 [l/ft ,__ 7

F (t,ft,0) = F(t,ft) = (- I) lim j dt' A(t') J xJQ(x) KQ M-^-jdx . /В.10/
I е

Repeating the same reasoning as previously it is easy to check, that

OO
r Г1/« / , r - 7 \

) A (t') j xJo^x ) Ko(x | j dx
to E J

dt' =

1/ft
= \ * J 0 ( X )

0°

Í A (t') Ko(xf ? j dt'
to

dx /В.11/

rom equations /В.8,9/ and /В.З/ the validity of /В.2/ follows.
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