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ABSTRACT

By assuming that the SU(2)xSU(2) symmetry is broken by the isoscalar
element of the representation (A1) effective Lagrangians reproducing the
results of current algebra and the PCAC assumption can be constructe
by a direct method suggested by R. Dashen and M. Weinstein r2] . It is shown
that the symmetry-breaking Farts of these Lagrangians are the solutions
/in closed form/ of the differential equation for the breaking parts in
Weinberg’s formalism [31, and thus the connection between the two ap-
proaches is established.

PE3IOVE

Mpepnonaras, 4YTO W30CKaNAPHbIA 3nemeHT npeactaBneHns (r. >0 HapywaeT
CUMMMETPUIO su (2)xsu(2), HenocpeACTBEHHbIM METOLOM, MpPea/ioXeHHbIM P. [alieHoMm
n M. BEMHWTEAHOM MOXHO 3anucaTb 3h(PeKTUBHble (YHKUUM JlarpaHxa, KOTOpble Npwu-
BOAAT K TeM Xe cavmbiM pe3ynbTaTamM Kak M B C/llydyae MCNONb30BaHMA TOKOBOW an-
re6pbl u ‘npegnonoxeHns PCAC. lMokasaHO, 4YTO Hapylwawuwme CUMMETPUIO 4YaCTu 3TUX
(OyHKUWIA JlarpaH>ka npeacTaBnsAlT cob60ii peweHus (B 3aKpbITOM BUAe) AuddepeHumn-
anbHOr0 ypaBHeHUA [N Hapywawwmux 4vacTteli B opmynnposke BeliH6epra L3J, a
TakKXe co3fjaHa CBA3b MexXiy ABYMS NPUOANXKEHUAMMU.

KIVONAT

Ha feltételezzik, hogy az (t ,£) .reprezentacié izoskalar eleme meg-
tori az SU(2)xSU(2) szimmetriat, akkor az R. Dashen és M Weinstein ;2]
altal javasolt direkt mddszerrel eldallithaték az effektiv Lagrange-tlgg-
vények, amelyek Ujbdl, az &ramalgebra és a POAC-feltevés felhasznalasa-
val kapott eredményekhez vezetnek. Megmutatjuk, hogiy e Lagrange-ng%vények
szimmetria-tord része /zart alakban/ a Weinberg-féle formalizmus 131 adalT-
metria-toro részére felirhatdo differencialegyenlet megoldasat adja, és ez-
zel bebizonyitottuk, hogy a kétféle kozelites kdzott kapcsolat van.



l. INTRODUCTION

R. Dashen and M. Weinstein 111, [2] hare pointed out that
the most logical explanation for the succeg”of the PCAC hypothesis
is that the real world satisfies an approximate SU2xSU2 symmetry.
The symmetry is realized by the appearance of massless pions /Goldstone
bosons/, the vaccuum is not invariant.

Many general theorems have been proved in [2] with the help
of an identity which gives the matrix element <a + nir|s|8> in terms
of matrix elements of time-ordered products of vector and axial vector
currents. Starting from this identity the authors constructed in the
SUxSU2 symmetry case the effective Lagrangian, which in the tree appro-
ximation reproduces the results of the joint assumptions of PCAC and
current algebra.

following this approach, I have looked for the effective
Langrangian in the case of any type of symmetry breaking and any type
of definition of the pion interpolating field, | shall discuss the
connection with Weinberg's results [31 « and thus complete the connec-
tion between the above mentioned definition of PCAC and Weinberg's
phenomenological Lagrangian formalism. | shall then discuss how one can
obtain the general form of the’covariant derivative in this way, and
prove that the symmetry—breaking parts of the Lagrangians are the solu-
tions in closed form of the differential equation determining the break-
ing Lagrangian in Weinberg s formalism.

Current algebra, with the aid of the approximate symmetry-
assumption, determines the amplitudes on the mass shell, but at anon-
physical point /whereas the usual PCAC technique determines the S matrix
element off the mass shell/. | shall make some remarks about this in
connection with the wm amplitude.



Il. THE EFFECTIVE LAGRANGIAN IE THE CASE OF ARBITRARY TIRE OF
SYMVETRY BREAKING

The effective Lagrangians can be constructed in closed form
for an arbitrary type of symmetry-breaking from one of Dashen and Wein-
stein's identities t2j. They are ;just the Weinberg's phenomenological
Lagrangians in the case of general pion field definition. The mentioned
identity ist

<a + VW + 5 (p2)+” -ra,O NN SR> = f? <a*n)("PI'P2'-**pn)I3>

11/
with (P1fP2es defined to be the coefficient of f" in the
expansion of the exponential

Thexp |£ Jd4x X(x) ~ 12/

In /2/ <C(x) is in general a sum of two parts, which we can obtain from

\

| f \

fTjducexp -iffujd3x G(f2)f.A°(X) "3y (c(*2M)Ay(y)lexp| un|H3r G(f2)f .Arjjj

+fir[du’ exp [-ifTu[d3x g(*2)".A°(x) "G(f) f.YAy(y)) exp |if iujd3z GAP) f A°)

13/
if in the resulting expression we replace the terms 3 f.A, f.a Ay

/linear in A~(x) / with ayf.Ay , ~.3"A , Here ~f(x) is a ¢ number
isovector function:

n ip .x

£(*) .1 e 3 141
STV

where ¢ is an isovector all of whose components except its —th
component are equal to aero, and only those terms of the resulting
expression should be kept for which all the Pj arp distinct, ap(x)
/i=1,2,3/ are the axialvector currents encountered in the theory of
weak interactions, and the barred quantities are defined as being equal
to the corresponding unbarred quantity with the pion pole removed,

G(E2) stands for an arbitrary function oP *f2 .

erforming the operations in the first term of (5), we get

sinf. Gf / Yy , . cosf Gf-1
A e - K(f) + —"™r- e N Qe /5/



where
sinf Gf
K(*> = f 5(73 i L 16/
f 2
Let [a> = |8 = |o>in (1). In the lowest order we get contributions

from direct and pole terms. Let us look for the contribution of the
direct part. From the first term in (3) we obtain a part which is sec-
ond order in pion momenta:

i<°| jpC-i)2 (x) <E(y))d4x ddy [0>}| n 171

In the case of the direct diagram we can put a caret above the axial
vector currents in (5), which gives

dax dav 2] (€] I.E)fe(x)K(f) +sinf"Gf £ (x)
x d4y X
( Y
P K(vf)+ sinf£n 3viR(y) <o|t(AJ, af)|o> /8/
wf
Here
<°lt(al Ag)|o>
- by

Clearly we obtain the same result by putting £(x) — *-t{x) in (8),
sandwiching it between n pions, and calculating the direct diagram.
Thus the kinetic part of the effective Lagrangian is

_aHy T&)DWMx) 191

where

sinf  Git
e 3T+ —(5\‘/-‘-':--U—— K () 1O/

Let us compare this with the general form of the covariant derivative
of Weinberg [3] *

A There is a misprint in the expression of d"t and v(n2) in 131



[ J | nHy 3 M+  — e~ (f'(T72) + ivjTT.a ™2 /11/
"m v~ £2(72)+72 V 2'~  M_
where
v(,2) - - ® 2)-UW Th *£101- , £.(,.2) 1 4&iii!2
2 dir

It can be seen immediately that the two expressions are the same, as-
suming

sin f Gt = - TTT~ 02/
’ (f2(,2) # ,2)1/2

To find the symmetry-breaking part of the Lagrangian assume
that the strong interaction Hamiltonian can be decomposed at any t time
into two parts

m=~H(t) +e H(t) I Hx(t) = ]*(x)a3x
where HQ(t) possesses a chiral symmetry, and eH-"t) transforms as some
sum of irreducible tensors under the SU2xSU2 group. The first order term
In € comes from

<0 ~(-i) |d 4x oC(x) |o> /13/

Its value can be obtained by evaluating the second part of (j). Here

we must make a general chiral transformation on the Ay(y) operator,
assuming that the symmetry-breaking operator Is the isoscalar element
of the representation (l,z) . Isoscalar and isovector ... elements a-

rise from the transformation, but because of (13) we must look only for
the coefficient of isoscalar part. Taking into account that

2
_hlir 3
Q0| € 010> =t 2102142) /14/
1m

one can see that the symmetry-breaking part of the effective Xagrangian
is

X(b4ax) = jfi [(21+\)(21+2) [ du (n,2u)

[ (x)-mt(x)

/15/



In /15/ denotes the representation of the SU2 generator and
D " (nf2>) the matrix for the rotation 2w = 2(-ff* Gu) about the
axis n =1 of (2£+l) dimensions /see Appendix/.

We find from the known [41 form of

2
! = /16/
\x) _2"_Ll, 2/11) (2£+2) [cos(2nfTT m 1] It OO4-TI()
In=1/2 if is halfinteger/
With the aid of /12/ we get
£+1
(AUx) = const . Re g{ '+ const' 117/
where q = ---4" "-T , and the constants may he obtained by

f(w)-iff
demanding that the Taylor series of JMNATT2) start with ~ njj 72

Let us summarize our results in the following theorem*

In the lowest order of momenta and e the pion*s amplitudes
are correctly calculated by using the effective Lagrangian /in the case
of (.4) -type symmetry-breaking/

X(x) - - De. Dpw+ X 'I\x) 118/

where d™(x) , L ~'"x) are defined by (10) / or (Il) / and (16)
lor (17)/ respectively”™ calculating according to the usual. Feynman rules
but subject to the restriction that one keeps only tree diagrams. In
this way the connection between the point of. view of broken symmetry
and Weinberges phenomenological Lagrangian formalism becoTteB complete.

Namely, X~'A7x) is the solution of the differential equation:

2,2(1(,2)+,29 (,2))2x(r'~ (.2)+

+(F (n2)+n2a(12)) A3f (n2)+ir2g(»2)+2ii2(f (ii2)+i2g(»2)) 1 * Q4+5 ‘% 2)*

= const.

1+ 2f (tr2) f' (u2)- 119/
f{- 2) - 2m2 f'(ir2)



which gives the symmetry-breaking Lagrangian in Weinberg’s method, as
we can convince ouraelves by direct substitution. The other solutions

[ i+ i\
of (19) are ~ im j f which are singular when 71r=0, and we dis-
regard them
In the special case of f(ir2) =- -n- (I - f2 tr2) we gOtx
ACIL2,102n 2) ,2 1 , * , 20.,
1*f; *
4 w2
i (1,14 »2)- -y - u-tr2 . / 20b/
2 (r+t2y
/ 0. m2 .- 1- 6/5f2T2 + f4ird
i (2°2v ) =£ 2 Yo» ‘ , 20c/
tlL+ & )

20/fi is the only closed solution which was demonstrated by Weinberg tjl*

1. THE TT AMPLITUDE

The usual method gives the off-mass shell amplitude as [5]:

<inv P (4 ) 1s 1"B (k)irs(P2)> 92=K2=0 =-i(21M64 (p1+q-p2-k)4f2.
s=mf+2Piq
Bim -2plg
[2 (Piq) (60i68YR ¢ 6CTrAR) + i<7ryCPI) )17 2> r21/
where
zag(q) = Jd4x elCX 6(xo)[a’(x), 9yAj(0)] 1221

With regard to the Adler self-consietency condition, Bose statistics

and crossing symmetry, if v & Jas it is in the a model/, we get

ML - -4f2(t - ™) M - -4fJ(u - mj) w3 = -Ifj(s - mj) /23/

/about the point ssu=m2 , t = 0O [/

Extrapolating this up to the threshold /here the PCAC assumption enters
into the game/ we obtain the known scattering lengths.

On the other hand, with the broken symmetry method we get the
amplitude on the mass shell. Indeed, let us condider the expression



<ty (p1) -
<% (Pi) 1{T(3a(q)3R(-kjKlg)T(Aa (@)3B(“k)+(-ikv)T (% (q)ARCK)) +
+ (% )(-ikv) T(<(q) Ag(-k)1 1*67P2)>

Ta(g) 9g9(-k)) = jd4x ddy eigx e_iky TMA~(x) 3vAg(y))and so”on

Puliing all derivatives through the time-ordered instruction, separating
off all terms corresponding to the pion-pole diagrams, we get in lowest
order of the momenta g, kK and of the eymmetry-breaking parameter e *

<*Y(Pl) TBCq)|s|TT3CYTT6(p2)> (g 2=IV  k2=nV “j-C2")4 64(Pl+q-p2-k)

4fj[2(p,q)C«ab«YB - 6crf3) ¢ i<I¥(pl)llaRCq)l BCPR)>] 125"

Here K,n are unspecialized variables which were fixed when we extract-
ed the pion-pole terms* Lét us compare this with expression (21), W
observe that there the eign of the 2 commutator is opposite, the two
expressions are different. However, this is understandable, since they
determine the S matrix element at different values of their variables*
Of course, the Adler selfconsistency condition, which is an off-mass
shell statement, does not make any restriction on (25), On the other
hand, we can determine the | commutator’s matrix element in our appro-
ximation. Let us consider the identity

jd4x eipx T3y (x>e3tl(o)j=-(ip")|d4x eipx T (ap (xjetf* (0"-Jd4x eip x 6(x0) |a® (x"e'3j(0)j

126/
Sandwiching it between <o|__ [TT6(p2)> » separating 6ff the pion-pole.
terms, we get in the case of p+o and in first order of e

= * o N -

<nY(pl) IZarS(q)I-V PZ»P%PE’\ %—- 16a3 le*If°)IM(P2) >P%“P2 2 =
* 163 GygMir 9 9

The left-band side of (25) is independent from q , K in the case of

any £ »'l ¢ This property must also hold after the approximation, and

this gives a restriction on £ , n *If we choose ¢ = v =/(q+J*p”"pj)

n = x =(qgk), then with the aid of (25), (27),

M(g2 = k" ="V V' x=°) - "V

M(q2-= k2 * vV, X=0) * -4f~(-v) 128/



MB(q2=k2=m", v, x=0)«-4f2 v 128/

Since q2=k2:m2, x=0 , therefore s=m2+v, u:me\fv, t=2m2 ¢ Becrme*»

of BoBa statistics and crossing-symmetry, we find from (28) that around
the on-mass shell point s=u=m2 , t=2m2

Ms) -4f2(t-m2) M. « -4f2(u-m2) M, -4f2(s-m2) 1291

which is identical with Weinberg’s result extrapolated to the mass shell.



APPENDIX

If x+ and yi /1=-£,..0,. 1/ are the representations Of the
two independent SU2 generators, then

*10) = xk yk AN

Let us begin with the second term of (3). Because

Ay (x) = -i F5, e (x)j A.2

we get

0T i -iuf4G (f2) ~(yIF5 - iug,G(f2) J(y)F5
“lef, GW2)Jdu[l(y)F5,e ° * £ T S

(0]

where the 63(x-z) appearing in the equal time commutators has been used

to exchange a°*f5 . With the aid of A.l

eLaC® F , L-Il'i-I™
mxKk(Ne(0) yt " *k D‘(a'2“>kt a.5
/s = Gu/

where DA(nu>) is the matrix of the rotation wsf about the axis

n = |-in(2€+1) dimensions. Let us substitute A.5 in A.3 ,
1
-iefAG N du xk if Ne , &A(n,2w |+— yb A.6
0 o

-
denoting by J( )the representation of the SU2 generator. W& must look
for the isoscalar element from A.6 , because of (13)* It is the trace

times 2Tfi o tbe °ther hand

e



10 -

<o| eTf| ' \o)lo> - W, 21+2T

and so we obtain

AU Y 1~ % - 29 gar(x)

A.8
The relation between n, 2w and the appropriate Euler angles is
, PL+2 , @
cos 0 el 2 fsth 0 e 2 cosid-i ? sinii
aR-Px . PL+d2
i sin| e cos 3 et 2 sinio COSCUAZE sinw
A.9

The expression a.8 is an isospalar, so we can proceed in a special coor-

dinate system: £ = (0,0,f)'*0=0, Then it is easy to see that

I -1n(d1+d2)
(h1,0,p2)) = 1 ~ n.f A. 10

By A.8 and A.9 we get (I6). On the other hand

J £
Ny cos(2nf G'), = I Re (cosf G'P+i sinf Gf) 2n A.l1
n=I il ne=l Y Vv o
(n=1/2) (n-1/2)

Prom (12) we get

(cosfAG* + i sinf~ Gf)2" un A. 12



Substituting a.12 in A.11 we obtain (1?), because

Re -----3— - = const. A. 13
q-1
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