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Summary

A detailed mathematical analysis is given of the prompt neutron
period measurement based on the fluctuation of the number of neutrons in a
reactor. In the case of the Feynman method the effect of the delayed
neutrons on the accuracy of the measurement is investigated and the cor-
relation between the numbers of neutrons counted in consecutive time
intervals is examined so as to make possible appropriate choice of the
conditions of measuring. For the Rossi method a general theory is develop-
ed taking into account the role of the delayed neutrons. It was found
that the Rossi method can be used in the case of thermal reactors pro /'id-
ed the average neutron lifetime is not larger than about 10-” sec.
Moguilner’s "Zero Probability Method" is discussed and the theoretical
basis of this method is given. Last, a new method /differential method/
is proposed which is less sensitive to the correlation than the Feynman
method. The Rossi and Moguilner methods proved to be faster and more

reliable than the other two methods.



Introduction

Safety considerations draw attention in particular to two of
the parameters determining the kinetic behaviour of reactors, namely the
mean prompt neutron lifetime (t) and the effective fraction of delayed
neutrons -

The mean lifetime of the prompt neutrons depends on their
initial energy and on the structure and size of the reactor. The mean
number of delayed neutrons per fission is known from direct measurements
[M1 - Since the delayed neutrons have lower energies than the prompt
neutrons, their effectiveness iIn the chain reaction is expected to be
different from that of the prompt neutrons. This difference in effective-
ness is usually taken into account by using a factor for modifying the
mean number of delayed neutrons per fission and instead of the values
B = VIiN the values @& = (1 = ~>e*>6) are used. /Here

is the mean number of delayed neutrons of i-th group per fission
and v is the total number of neutrons per fission./

It is of interest to note that for small thermal reactors the
effectiveness of the delayed neutrons is higher than that of the prompt
neutrons, since the delayed neutrons are less likely to leak from the
reactor that the prompt neutrons. On the other hand, in reactors where
the number of fissions initiated by high energy neutrons is rather high,
the effectiveness of the prompt neutrons becomes higher.

eff

Since the experimental values of a, = are not

at present available we shall assume that et>»€ Q@,* - In this



case je™ = ei? §, - el and. this is the quantity that plays an important
=1
role in reactor dynamics calculations.
Methods have been developed for calculating the values both of
I and 6ef [2], these theoretical values, however, are still to be
verified by reliable experimental methods. The experimental check of the
calculated values seems to be of particular interest in small thermal
reactors moderated by hydrogeneous materials in which the values of 1
and & are sensitive to composition and geometry. The measurements of
either B ™ or 1 present considerable difficulties, however, the
ratio may be determined through a relatively simple measurement.
For the experimental determination of the ratio EYL namely
the random fluctuations of the neutron multiplication can be utilized.
The relaxation constants characterizing the dynamic behaviour of a reactor

are determined by the roots u)0< ees < Cc05 @ COg of the equation

heff 1;?: Ty peff” - b |
— Ty 31w
where kK is the multiplication factor and 9~ the decay constant for
nuclei emitting delayed neutrons of type t . It is of interest to note
that only the largest of the roots (@6) is sensitively dependent on the

neutron lifetime. The largest relaxation constant is about equal to the

quantity
k-< peff 9

bl t ke - T \ e
the reciprocal value of which gives the prompt neutron period.
Since it is reasonable to expect that the short-term behaviour

of the fluctuations depends sensitively on the largest relaxation constant



g only, the analysis of rapid fluctuations seems to be the most promis-
ing method for the determination of cog . The values of , as measured
at various reactivities can be used to calculate the ratio /i

The actual task therefore is to determine the largest relaxa-
tion constant o©og & at various negative reactivities. There are several
methods for doing this, our considerations, however, will be restricted
to the 1/ direct /Feynman/, 2/ correlation /Rossi/, 3/ zero probability

/Moguilner/ and 4/ differential methods.

Direct method

The variance of tho number of counts recorded during the time
At Dby a neutron detector placed into a steadily operating subcritical

system containing a neutron source can be expressed in the form

DOt) - NAt[(.EZ DjYjobt)] = NAt(UE<j>) |, JU/

where NAt is the expected number of counts recorded during the time At,
b is the detector efficiency, Dj is a constant independent of At ,

while

-co At
1-e J
/4.2/

W jAt

The variance /1.1/ has been derived by several authors [5], [4]. In the

following we are going to use the results of [4]. The dependence of @

on the counting interval At at various reactivities can be seen in Fig.l.
It is of interest to determine the constributions of the dif-

ferent terms = DjYj Cj=0,...,6) to the quantity @ for various



Fig-1I Dependence of ¢ on the counting interval M for different Talues
of 1-«x in 10“r units CT - 5«10 ” sec)



At -s. In Figs. 2 and 3 the time dependence of each ¢. is plotted for
the multiplication factors «k = 0,9900 and k = 0,9990, respectively. If
At is sufficiently small only the function ®6 will appreciably
differ from zero. That is to say that for suitably chosen values of the

counting intervals we have

D(AL) ~ NAt [14ay(At)] . /1.3/

where

a = £D6 and yCAt) = 1- h-gd1T- . /n/

The effect of the delayed neutrons cn she time dependence of
¢ is illustrated in Fig.4, where the variation in the ratio &¢-p6/0 =6/
with At is shown, for different values of 1-k. It may be noted that the
smaller the value of 1-ks the earlier the effect of the delayed neutrons
manifests itself.

The variation of Dj (g>0,...,6) with k is 3hown in

6
Fig-5 and the dependence of the sum D] - XL D: ar.d the ratio Dg/D"~

jso J
on the multiplication factor is shown in Fig.6.
Now the ratio D/NAt can be estimated from the measured values
and by repeating the measurement for several; suitably chosen values of
At , it is possible to evaluate the constants o and a . In practice,

the measurement is performed by neutron counting during successive time

intervals At , separated from each other by a given waiting time ©

/See Fig.7./



uuTeeTIr

K -0,9900
T5.107S

01

0,01

0,001

0,001

At insec

Time dependence of @ (j=0,1,...,6) for the multiplication factor k = 0,9900



Time dependence of $ij=0,1, mm,6) for the multiplication factor
K = 0,9990



Fig.4 Variation in the ratio co-0a/0¢=1 with
for different values of 1-k in 10~-™ units

(? = 510“5 sec)



Variation of Dj (}-0,1, ... ,6) with k for T ** sec



Pig.6 Dependence of the sum D*=Tlo, and the ratio d6/dt on the
*n c
multiplication factor k for T - 5.10 ~ sec
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Fis.7 Spacing of the comiting intervals

The counts in successive time iIntervals are correlated. For

the correlation function defined by

Ku*Cs.pg0 - <?;7>> , /15/
where is the number of counts in the i-th interval, the following
expressions can be derived M:

X a,(0,00 = - n 2e n"I'"Ye /1.6/

©.n A jo J* jﬂ )1

i= I»
and
*U,=D. /1.7/

For given At and increasing © , the term with the largest relaxation

constant o©o6 is the Tirst to decrease, whereas the term with the smallest
/asymptotic/ relaxation constant shows only a slight decrease, particular-
ly for small values of 1-k . This means that the correlation between the
counts recorded in intervals At lying far from each other is maintained

by the term due to the asymptotic relaxation constant.
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B NSC

Pig,8 Dependence of Uj(At;0) ((J-0,~ 6)and UMAL,0)
on the waiting time 0 for k = 0,9900 and

570" u 39C



Fig.9 Dependence of Uj(At,0) (¢ 0.1,...,6) and U~7ai,”
on the waiting time 0 for k = 0,9990 and
T = 5.10~-5 sec
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In Figs. 8 and 9 the dependence of the terms

2
n,(®,At) = At'cjjDj [t-Vj(At)] e""] It-el

on the waiting time O is shown for two values of 1-k at a given At

Let us define by P(O ,At,m, ,..., mn) the probability
that m,],...,mn counts sire recorded successively by the detector iIn n
mearuring intervals At , the intervals following each other after wait-
ing times 0 . It can be shown /4/ that the probability generating
function
GC6,At>z1>...,zn) » ZL expCzm” «++znmn) PCO, At.m”, ,mn) /1.9/
"V o>mn

can be rewritten in the form

@®
tnG(o©,At, zi,...,zn) = O\ [g(t ,At ,0,z1,...,zh)-1]dt |, /\0/
0
where g (t,At,0,z1,mm zn) is the probability generating function
for the process initiated by an individual neutron. i0 is the intensity

of the neutron source. Applying now the Central Limit Theorem of the

discrete probability variables to /1.10/, we find
PO, At,m1,...,mn)~ (2*0 2.« P¥Np/-IX1™>CT;-MCT],-M\ , A1V
v N J

where

M = NAt /1117

and

XA x2 .. « 9,
| = /142/

XK *n2 e« *nn
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while Xuy) is the corresponding element in the inverse of the de-
terminant |3/] . The elements in /1.12/ are defined by the expressions
/1.6/ and /1.7/. Since and /1.12/ can be written

in the form

<\ = Insl/

"0 *n-2 *ap.3 == D
Since D>1f£- Ci= the largest term in /1.13/ is obviously
Dn . Consequently, the expression /1.11/ will be the more exact the
better the inequality D>< is satisfied.

It is interesting to show how the correlation function K(©,At)
depends on the counting interval At for comparatively large waiting
times. In Fig.10 the function U(0,At) ’:J_Zj_O,UJ(O,At) versus At can be
seen for 0 =3 sec at various reactivities. Using the value £ = 10 sec*“1l
for detector efficiency, the ratio X(®, At)/D(’At) has been calculated
for different time intervals At . The results of calculation are de-
monstrated in Fig.11.

It is obvious that for sufficiently large © and small At
it can be assumed that 0 . In the present case the application of
the maximum likelihood method, when the distribution is determined by the

function

INP(0,At,m<,...)mn) = in2irD - -rw H (nr™ - M> /w/
i AN Tl

gives the following trivial estimates of the parameters M and D



10"3 10"r 101

At in sec

u(ot,0) versus ot  for different values
of 1-k in 10 ™~ units (0=5 sec)
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Fig. 11 Dependence of the ratio KCO,M)/0(AK) on
At Tor different values of 1-k 1iIn 10~r
units (© = 5 3e0)
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_ 1 7115/
D = 172« (ng- M)2 .

The variances of these estimates are given by

<(&M)2> = D/n , <C&D)2> = 2Dn . /1.16/

The value we are actually iInterested in is the variance of the ratio

s W _ _
R =D/M e It is readily seen that

B<«iN)2> -~ ligr)+ u V(174

In the expressions /1.16/ and /1.17/ the terms M and D can be

A (G
replaced by their estimates M and D from /1.15/.

The parameter oL can be determined from the ratios

Ri n=1..,s) measured at various, sufficiently short time intervals

At- d

1,... ,9) using the method of weighted least squares. The values
of bhe parameters al and a?Z2 (an~a and a2=ol) minimizing the

expression

/118/

Q--"1 =1
can be obtained by iteration. The weighting factor in /1.18/ is given by
W; = <((BR)2>"( . /<184

The r -th iteratives of the minimizing parameters can be evaluated

from the equation

SyCr) =cyCr-O +21 [51G40,a28-0]R ¥ [a XT-1))a2Cr-0] |, n<9/

Ch- 1,2)



where

g’gv 0 -1,2 7120/
and R is the corresponding element of the inverse of the matrix _S
with the elements
/121/
/= 1.2)

To carry out the above calculations first of all, the initial
values 3*(0) and a2(0) have to be estimated. Starting the iteration
procedure with the Initial values al(0) and a?2() , a few steps are,
in general, sufficient to yield fairly accurate estimates of the parameters

al and az . The variance of the estimated values is given by

<(6arsxF> = , /1.22/
(fX - 1’2)
where R is conveniently calculated from the last iteratives of the

[

parameters a.r, Cu * 1,2) .

The ratio psfiZt can be given with relatively small error
if the number of different ¢t -s is large and their variances are small
enough. The variance <CC6<502> can be reduced considerably by increas-
ing the number of differenttime intervals used inthe measuring of ca
and decreasing the variance of the R . We have seen that the variance
<(<BR) ¥ is proportional to CD/M) ktherefore the number of measure-

ments n for a given time interval At must be large, particularly if



D/M » 1 < In practice, it is necessary to record a few thousand

counts for each time interval.

Correlation method

The correlation between the counts recorded in consecutive
time intervals diminishes with the increase of time between the intervals.
The first to decrease is the term with the largest relaxation constant,
and gradually all the other terms become relatively small too. This fact
will be exploited for the experimental determination of the largest
relaxation constant.

First of all, we determine the conditional probability of a
count iIn a rime interval At, following a count in an earlier time
interval Atl . Let WCt2-tlA t [~)denote this conditional probability.
The spacing of the time intervals is illustrated in Fig.12. The expression

for WCt,-tl,AtJd 4-LD has already been derived by several authors [5]-

Fig; »12 Spacing of the time intervals



We should like here to give a quite general expression for WON-tpAtgl At”
taking into account also the effect of. delayed neutrons. If WFt2-tl,At2,At1Y)
is the probability of a count in each of the time intervals At2 and AL, ,

we may write

w(t2t,, ut2,At,)
w(t2-t, ,At2lAt, ) £) 72/
wot,

where W(AL,) represents the probability that at least one count Iis
recorded in the interval A,, . Assuming the intervals At2 and A, to

be sufficiently small, we find

WCt2-t,,At2) At,) = wCt2-tl)At2 At, m o(At2At,) , 72.2/

unless At2 and At, have a common point. If t2=t,-At, and At,/Atz=At

we have
w(t2-tl1,At2 ,At,) — * W(AL) . /2.3/
Similar to the expression /2.2/ we obtain
WFAt,) = NAtL, +o (At,) /2n/
and thus
WCt2-tl1 ,At2]At,) ¥ CCt2-t)At2 , /2.5/
where
cct2-t,)~ 1ikiil . /2.6/
For the more exact definition of M and see Appendix 1.
The probability w(t2-ttHdt2dtl can be easily calculated

if the distribution function of the number of neutrons in the reactor is



« ti

known. Let be P(m"m",.=,mg) the probability that precisely m ’ neutrons
and Ffission-product nuclei capable of giving off delayed
neutrons are present in the steadily operating reactor at time tl-dtl .
It is obvious that the probability of a count in the time interval

is £m>dtl+o(dtl) , where £ is the detector efficiency.
Let us denote by P(t2-tl,mjm-"i,rr/D)...,mg) the conditional probability that
m neutrons are present in the reactor at time t2>tjp if m-1 neutrons
and m2)..)m 6 Ffission-product nuclei were, present at time tl1 . It is

easy to see that

w C2-tl)dt2dtl =

@
= £Adtdtl 2L m ,P(m,ml,...,mig)El mPCtI-tA,m|m-1,m"”, 7127/
. mc®

Now we have to determine the conditional probability PCt2-tl1,m!
Since each of the m "-1 neutrons may start a chain reaction independently
of the others we have
m=-1
pfe2-tt,m rim-0 = H T pft2-t1, ) , /2.6/

mi " = 1=
where pCt2-t ,m") is the probability that m- neutrons are present in
the reactor at time t2 if a single neutron was present at time ti<t2<
/The meaning of p(t2-tl,mr|m-1) 1is obvious./ In addition to the chain
reactions started by the neutrons present at time tl1 , chain reactions
can be initiated also by the neutrons emitted in the interval ) by
the fission-product nuclei. Denote by P(t2-11}7| the probability

that neutrons are present in the reactor at time t2 , if m",.. .mig



fission-product nuclei capable of giving off delayed neutrons were present

at time . Finally, we have to consider the chain reactions initiated

by the source neutrons. Denote by PCt -t ,ms) the probability that ms

neutrons are present in the reactor at time t2> tl provided that the

chain reaction may be started only by source neutrons in the time inter-

val Ctl,tz) . 1t follows from the above that we may write

P(e2-t1,ml m-1,m* ,_ _,mig) =

mr+  +m5-m
Introducing now the probability generating function

GCt2-tv zZ\m;Lm\>.__n6) = ZL emzPCt -t,,m] m-1, mj ,..., T } L2y
and putting t2-tl=t>0
c(z-t1 7] - = [C,DIn 16(t,2) '[Fl [ql—Ct"z)]TMl , 2.1/
I~
where
t t )
Gitp)=epfDL[1g@,Ddt] , gogft,D)=e1 J e . 2.2/
(0] (0]
/For the derivation of /2.12/ see the papers 4] ./
From the equation /2.7/ we have
w(t) = £2 Z, T PCr1bT”,... ,iMig)l (g m-1,rn™,__, m”) /2.13/
m>, M 1,...,"'9 b
where
n - /213y

mctel



Using the following notations:

m(t) = A 397 72 emd AOR-SSENPN ) /204
we write
M(t] m-1, m |, -, rrig) =
/2.15/

= MCO+(M"-0mit) + ZL rn™- {e "t noCt-t>)dV .

k=N 0

Finally, we have
g t

wCt) = 62{ n iMCt) + (M2- wZ Q ~ tje*bim(t-t7)dt" } 2./
cti

where

Mk = <Cm")k> and Qr=<r/-m > . 7211/

Introducing the expressions for m(t) and M(t) given in Appendix 11

into /2.16/ and taking into account that N = £,M1 we find:

6 T M2-11~ Fj _-to
CftO - S Z ™7 +£Z M y Cje 3. /2.18/
J—o J J:O - ’ e
where
. |
i tw, riHL £ b _jJuli
CJ jL p E£a 1R kK J >
F = £ g 7219/

It can he easily shown, however, that the following relationship holds for

a steadily operating su®bcritical reactor containing a neutron source:

0 -o. 72207
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X»>  Time dependence of V(t) for different
values of 1-|< in 10_4 units



and thus

eft) = b+4-evct) = NihzvFft) , /2217
1 YOoJ
where
N- 60-70T /2722/
and
VjCt) = cojDje"“1* . /2.23/

In Fig.13 we have shown the time dependence of V(t) at various
reactivities. The components Nt) §=0,...,6) are shown in Fig.14, resp.
13 at two reactivities. It is obvious that the experimental conditions are
the most favourable when leading to so fast a decrease in the term Vg(t)
that the other terms have no time to change appreciably. Of course, it is
rather difficult to achieve this condition and the inaccuracy in a number
of experimental results is probably due to the fact that the components
decreasing slower than Vg]}) have not been taken properly into account
when evaluating the experimental data.

Assuming now that ideal experimental conditions prevail, that

is for each value of i<t®, we have e~-QOF" 4 Cj =0,...,5) , then

CcCt) -~ a 2e-a3t , /2.24/

where

jao



t in msec

Fig»14 Dependence of VjCt) (g=o,v..,6) on the
time t for Kk = 0,9900



Fig-15 Dependence of VjC*> (-o,i,.-., 0) on the
time t for k = 0,9990



It is apparent from the above equations that al is not identical with
the mean number of counts per unit time (N=/=0) . Thus, the usual proce-
dure of calculating the exponent a3 assuming the difference C-M to de-
crease exponentially with t cannot be considered reliable. In order to
obtain correct results the parameters al , a2 and a3 have to be de-
termined simultaneously. CCt") = CCt2~t/p is in fact the expected number
of counts per unit time at time t2 , if a count has occurred at time
tl<t2 - If dt is sufficiently small, C(t)dt will represent the
probability of a count in the time interval (t,t-t-dt) following a
count at time t=0 .

It is obvious that we can determine the dependence of C(t) on
t by measuring the distribution of time intervals between pairs of
counts. Usually multichannel time analysers are used to obtain the
distribution of the time intervals.

Let us now choose the t-th channel which is characterized
by width At and delay time ¢t; and consider the probability of
counts from n >nlL triggering counts. Denote by Pn(n-) this proba-

bility. It can be assumed that

PA(n0 = (  [CCPAL]"1[I-C(tOAt] 1 2.5/

and using s different channels we have

PnCni) =s>ns>Q1>a2>3) = TT Pn(n"™ . /2 26/

Applying now the method of maximum likelihood, it.is seen that the best
estimation of the parameters al>a2,a3 can be obtained by evaluating

the quantities al,a?2, for which the expressions
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F.Cn,a> - (V- 1,2.5) 12.21/

OCny

become zero. It is easy to show that

FYICn,cO = 51 1-8L 9av o . 123 , /2.26/

where
B- = CCtMAt . 12/
Let us now find the elements of the matrix JS with

help of the relationship

s =-nt—|'t|%’ _ihiL 2.3/
A cf 1-B¢ 9av _ 9ar

and construct the elements R = of its inverse matrix P . The roots
of the eguations PyCn.a) =0 (u= 1,2,3) can be obtained by an itera-
tion procedure, defining the r -th. iterative of the estimation .: by

the equation

a )=a Cr-0+ ZL Ma.Cr-1)]JP LaCr-1)] . 2.3/
r r v=1 - -

The initial values of .. (u=1,2,3) which are to be iterated can be
r

obtained by a graphical method. The variance of the estimation is given

by

<«aj2>=-R Cju=1,2,3) , /2 32/
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where Pﬂﬂ is calculated from the last iteratives of the parameters
QD Q2,03 "/

Although we are actually interested in the parameter a 3=dgAct
only, this cannot he evaluated independently of the others. Nevetheless
a choice of the experimental conditions is feasible, where the variance

is kept at a minimum and in this case the parameter of interest
to us can be estimated more accurately at the expense of the other param-
eters involved.

In several experiments reported in the literature [0], [/] the
authors measured the distribution of the time intervals between two suc-
cessive counts. Denote by C,,(©) the probability density function of these
intervals. The evaluation of the measured data was done, unfortunately,
using CCt) as given In /2.24/, although It is obvious that CCt) cor-
responds to the distribution of time intervals between any two counts.

We show presently the relation between the functions C"CE)
and CC) . 1If Ck(tdt is the probability that the K -th count is
recorded in the time interval (t,t+dt) following the triggering count

at time ©T=0 then

CCH) = ZLCkCH). /2.33/

K<l
Thus in principle CCt) cannot be used instead of C~t) . It can be
shown, however, /see Appendix 111/ that for detectors of rather low ef-

ficiency /an undesirable condition for other reasons/ we may find

C/t) ~ CCt) #o0Cd ) ¢ /2.34/



where o0(6) represents higher than first order terms in L

The experiments referred to above have been possibly performed
under conditions where C/t) did not differ appreciably from CCt) ,
although the results obtained by Ingram et al. [/] seem to indicate that

these conditions have not been met.

Zero-probability method

A remarkable method has been suggested recently by Moguilner
[81 for the determination of the relaxation constant ~ ok . The pro-
bability of obtaining no count in a suitably chosen time interval At is
determined experimentally and from the probabilities measured for dif-
ferent values of At , & is then computed.

Moguilner presumed that the probability of recording m counts
during the time At may be expressed by the negative binomial distribu-
tion function. Denoting this probability by PM (At ,m) , he obtained
for the generating function

GMCAt,z) = 2 emzPM(At,rrO / 3.1
m =0

the following expression:

Mat

GMUt,z) = [<+£(1l-el)p6(no] EIHicY) /32/

from which the logarithm of the zero probability can be written in the

form:



- NAt
inPMCAt ,0) NG (At,-00) = - £n 1+ £06(aE) /3.3/
Edo6l )
where
4£60t) = D6réw)

From the values of PM (At,o0) determined, experimentally
d&(M) and thus also & may he computed.

The formula /3-2/ derived by Moguilner needs, however, a proper
theoretical basis. It seemed therefore reasonable to derive a reliable
expression for the zero probability on the basis of the method elaborated
previously by us [4]. According to the exact theory [4] the zero proba-

bility may be computed from the relation

00
P(At,0) = exp O [jrCAt,t)dt] , /3n/
0

where jr(nt,t) is the probability of recording no counts in the time
interval (t-At,t) provided that there was only one neutron in the reactor

at time t=0 .We have shorn earlier that jrCAt.t) satisfies the equa-

tion
d‘bc(;:t,t) EA(AL-1) O™ - (C*£ + <*¢)3r(At,t VorcLpTCAL.1)] , /3.5/
where qO0) is the generating function characterizing the distribution

of the number of fission neutrons, o and ofc are the reciprocal
quantities of fission and absorption life times of the neutrons,

respectively. The components of the vector x=(x0,...,x6) are given by the



relations

X0 = In[l-*(At.t>]

t >

xt IfC AL, t-t")dt’]

0

Ci =

The initial condition corresponding t /3*5/ is given by

Itm JT(At,t3 = O . 13-71
t->0
Disregarding the effects of delayed neutrons and considering solutions

only for which ar(At,t)<< 4 it is sufficient to investigate the ap-

proximate equation

= EA(At-t) - 04T(AL,t)-0o("C\>00~- \D)[r(At, ]2 /3 8/
only. We get
2E \~-e if tEA
0L <371
Jt(At ;) = < /3.9
- <Xt
ce -

, I t>At j
1—%—cotD% e _ott
where

3 = VI+2£D, /3.10/

and

C — /3.11/
+£D64-(fl-1-£D6)e

/3.



From /3.4/, /3-9/, /3*10/ and /3-11/ we have

N _N
tnP(At,0) = - Nat 1+ (fI-O-ZoIAt gn(™HZy) 2 at} /tM/

It can be shown easily that the first two terms of the ex-
pression /3.12/ expanded in a power series in £,DE are the same as the
corresponding terms for Unpm (At,o0) . Naturally, the expansion of /3.12/
into a power series in £.D6 may be justified only when tDe< 1 e This
condition, however, means that the variance of the counts is hardly dif-
ferent from that of a Poisson distribution. The determination of ol , on
the other hand, is the easier the greater the deviation from a Poisson
distribution, that is the better the condition £D6>1 is fulfilled.
So we see that £nP(At,o0) cannot be replaced by £nPM(At,0) .

In Fig.16 the probabilities PM (At,0) and P(At,0) can be
seen as functions of At for different reactivities.

For the determination of o< the following procedure has to be
resorted to. One determines experimentally the number of time intervals

At in which no counts have been recorded. When the waiting time between
the intervals is long enough, the events in two successive intervals of

length At are almost independent. Therefore we may assume that
P(n .,k ,At) = (£)IL[p(At,0)] [1-P(At 0j /bnv/

is the probability of obtaining no counts In K cases out of a total
number of n >k measurements.
For the evaluation of measurements carried out with time

intervals of different lengths At™ (i*=1,...,s) the following maximum



Fig.16 M’1IfmPM (At, 0) and N_i{r*PC(At, 0) versus bl

for two values of Kk



likelihood function can be used:
inP(n ...,n ,Kk,,...)ks,4tdl...,ats) = X CnPCn-_k;,™). /3147

Since the procedure for the parameters * and o( 1is similar to that

described before we do not repeat it here.

Differential method
The difference in neutron counts recorded in equal successive
time intervals fluctuates around the zero expectation value. The variance

characterizing the fluctuation is given by the expression

DACO.AL) = 2Nut]i + e Z D J[4Y —i-cjIuto-Fj)2e "<k ]| /417

where © denotes the time separating the counting intervals. The result

/4.1/ can be obtained quite easily. Appendix 1 leads to

Dj(0,AD) =A[?Ftistl AD)- (LHO+AL, tHO+2AD)] =
= 2D (AY) - 23/(0,At) /4.2/

from which /4.1/ follows immediately. © — co gives —» 2D(ht) as
could be expected.

It can be shown that the correlation between differences is
weaker than that between the counts themselves. The method of Appendix |
can easily yield the first-mentioned correlation function.

The succession of the counting intervals is shown in Fig.17.

As

6CL,0,A0) = (([A(TVAL) - SCVG +ALA+G +adD)] K

* [ICt1+O+T +2AT)1HO+T +3AL) -ACt1H 20+t +3At, t20 +t+4AT)]>



Figel7 Spacing of the time intervals in the case of the

differential method

we can write

—coj©+at)-|2 - ot
Cic Ct,©,At) YNht2Z]aDI[1-"JAD R [-e Je J 74.3/

For given At and t the smallest correlation will he found for © = O.

In this case

5/ Ct,0,At) = -4-N ht4£.2Z, , ( 1 - A Y
0 2 j.,o JJ J

v/hich means a substantial reduction of the correlation for small values of

At (co6At<O0 in comparison with the correlation CK.Ct.At) In the

case Iif At is small and 0=0 we obtain the approximate expression

Ds~ 2NAt { i+£D6[y6 - y olAtO - y6)2]} A 5

Tho relaxation constant <X and its error can be determined

from the dependence on At of the measured data of D”~/2NAt by means of

the procedure discussed in connection with the direct method.
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Appendix 1
If is the number of counts in the interval ,
the quantity
urn —————————JJ-——————————— = N /1M
rn d{

is called the counting rate. For the stationary case there is

<d?(t)> = <?(t,,t+dt)-SOt. ,t» » Ndt . /1.2/

Let us now consider the pairs of counts following one another after a

lapse of time t-t*=@>0 «If to t° the density of such pairs of

events 1is given by

A - A
_<diet)diet™» Wit -17) /1.3/

dtdt”

while for £=1t* it becomes
<diCt)dz;Ct,)> - <d?(t)> = Ndt. /1.4/

The quantity we want to calculate is ~[~Ct~tV] '> For this purpose let
us divide the interval (t1>t) into an integer number n of subintervals

and denote the kK -th of these subintervals by dt~ . It is obvious that
?ct,,t) - ZL [i(t,tk+dtk)-? (tltlt)] -Z ,dictk [i s/
) 7L [i( )-?( )] s )

(t = tn+ dtn)

and hence we obtain

[<(*,, «]*- |Z<al[d i(t» f + Z;qm'd i(tk)di(tk,) /1.6/



The quantity <[ ,©]27 can be calculated by averaging each of the terms

on the right-hand side in /1.6/ and replacing the sum by an integral. Con-

sidering now that we can write
t t ry r 1
<U(t,,t)]2> = [Ndt'+Jdf jw(t-t")dt% JwCf-fldfJ
t, t, 1t *

which can be reduced to a simpler form

tt
<[ic(t,,t)]2> = Ct-t )ON + { [wdlt*-t"Ddt dt" . /1.7/

It is possible to establish a relationship between the pair density func-
tion w(t-t*) and the correlation functions 3£(©,ht) and x(©,u0t) .Since
3/(0,At) expresses the correlation between the counts in two time inter-

vals having no common point, it is easily seen that

OV A
3<(@,at) = | f w(tItr)dtite - M2dt2 . /1.8/
1,4t t,

(t2-t1 = © >0)
The function x(0,At) determines the correlation between the counts in

two overlapping time intervals. Therefore taking into account that

BGHAE TMAT
<?2(tl(t2+at)i:(2>t, +at)> = N8t+ ( {w(t>t’Ddede” 71.9/
2,

it follows that

+At tjHAL

x(0,At) = NAL - N2At(At <©) + [ { w(1~t”l) drdt” . n.o/
tl i2

Making use of the formula for w(lt"-t"l) given by /3.6/ and
/3*21/ it is possible to reproduce both the expressions 3/(0,At) and

X GO At) , derived previously by other methods.



42

Appendix 11

The equation for g(t,z) has already been derived in one of the

earlier papers [4]. g(t,z) satisfies the equation

3g9(t,z)

at = oCc- (otc+otf)g(t,z)-K*{ q[>T(t,z)] /M.\/

where the components of the vector x =>(x0>-,x6) are given by the

relations

X0 s £ng(t,z)

t T
X - Cn[e™lt+ [e*¥gCt-t"zMi’j . In.2l
0
(i=1,...,6)

The initial condition corresponding to /11.1/ has the following form:

gCo.z) = e* . On the basis of /2.13/ we get
q t
m(t .
(9 - = - otm(t)+otr 2 (e . /n.3/
dt L1 0

The solution of this equation satisfying the initial condition rnCo) = \

can be written in the form:

6
mcCtv- ZL c:e*l , JE .4/
Jj="3J

where the relaxation constants 000)...,006 are the roots of the equa-

tions

adf 9 co+ 1 bsif £

« t ep fn ai_ oj>
while the coafficients CO>...,66 are given by /2.19/. The expression for
M(t) can immediately be calculated from the function m(t) with help of the

relation

MO - ©jm(tiHde . ms/
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Appendix 111

We shall prove that in the expansion of C.,(©) in a power

series in £ the first tem is identical with C(Y) , that is
c,ct) = cct) +o(e0 . N/

C,CHdt is the probability that the time between two successive
counts lies in the interval (t,t+dt) . In order to simplify the proof the
effect of delayed neutrons will be neglected. The probability that the
first count 1is recorded in the interval CU', €+dt”) after a count record-
ed In the interval Ct™Mt*dt”) may be denoted by wCt=Od~dt* . Since

the probability of a count in the iInterval ( \tVdt®) is known to be

tZ m*"PCmOdt”’ one can write
m "=0

crcer - A W/t'-tydtrdt} X 21

6, PCMOM" dt
where P(m™) represents the probability that m > neutrons are present in
the reactor at an arbitrary time. Denote by P(tn-1\0, ml m-1)=P(t,0,ml m-1)
the probability that there are m neutrons iIn the reactor at time t
and no count was recorded in the time interval (O,t) , provided that m-1

neutrons were present at time t=0 . It can be readily seen that

C™M) = - mzoi:orn'P(m'?n;;0 mPCt,o,m|] m-1) . /U3
Actually we have to determine the distribution function P(t,0,m] m*-0 e
Since at time t=0 each of the m-1 neutrons present in the reactor may
start chain reactions independently of the others and in addition chain
reactions may be initiated by souxe neutrons emitted in the interval

0,1, the probability generating function



GCtojzim-1) = z _OemzPCt 0,ml m-1) /W,
m
has the form
G(t,0,z]m-0 = G(t02)[oCt,0.2)] Ix sl
where
L
G(t,0,2) = exp|-1Q [[A-oCt0,2)3dt"| , /7X.6/
1 0 J
while
oCt,0,2) = Z emzpCt,oi) . V174
m =0

pCEJOjin) is the probability that m neutrons are present in the
reactor at time t and in the time interval (0,£) no count was recorded,
provided that at time t=0 one single neutron was present.

Using the procedure given in previous papers M for the pro-
bability generating function g(t,0,z) the following equation cfin be
derived:

- =,.. - (@c+oU +E)g(t,0,2D)+SE gq[£ng(t ,0,2)] - M./

It is t be noted that

gC0,0,2) = ez M9/
and g(t,0,0) = p(t,0) £ 1. pCt,0) is the probability that no count is
obtained in the interval (0O,t) , provided that a neutron has been inject-
ed at time t=0 into the hitherto neutron-free system.

Let us introduce now the following notations:

oCt.0.0) = p(t,0) , GCt.0.0) « P(t>0) /s



and

mft.o) /.1y

36Ct,0,2)
[m iz

P(t,o)M(t,0)

It may be also noted that

t

M(t,0) = dt” . /W 12/
(0]

Taking into account the relations /111.10/ and /111.11/, we find

Cit) =4|-P (t®)Z m,PCm,)[pCt,0)]m XpCt)MCt0)+Cmtl)mCt.0)} . /W.13/

In order to determine the linear term of C.,(®) in 6 it is sufficient
to know only that part of functions p(t,o0),P(t,0), m(t,0) and M(t,o0) which

does not contain the parameter £, . We wish to find these functions in

the form
p(to) =pxH+ £p/1) + o(6)
P Ct,0) = PO(t) + + 0o(£) )
/ui4/
m (t,0) = mQt) + fernst) + 0CB8) ,
M Ct,0) = MO(t) + 6 M/t) + o(£)
Now we can derive from /111.8/ the following equations
dp(t,o
p((jt ) <*c- Cc'c +£)p(t,0) +oqq[En p(t,0)] /K <5/
and
dmcCt,o)
= - Colc-fo(~M+-6) mCt,0)+ot|: q[6n p(t,0)] - /X.1e/

dt
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Taking into account the initial conditions pCO,0) = mCo,0) N we find

1
=

po(t) m 0(t) m(t) = eott /X 17/

aud thus

P(L) = 1 , M QD) M(E) - /X 18/

Using the above results one can write

CjCt) « 6 [ rnCt)+ MCt)] + 0C6) , /x. 19/

where the first term on the right-hand side is actually CCt) e Thus we
have shown that under certain conditions the assumption /3.29/ may be

valid.

Note The evaluation of the second order term in C/t)

presents no particular difficulties, we find

c.ct> - C(t)-t2{ M Ict)+p, COM+ i hd I T[_ Ity pIFOMFE) +

+ P,()mCt)] + — 1TTL p<ctY)m(t)} + o(br) . /x.ro/

It is of iInterest to note that the moment appears already in the
second order term iIn £

A short computation will prove that

p,«> - T - > p«(d) - [1- 1 > /M2,/

*j<« -[<-$eYo-4>] t £ CPOO-2,,)e-* , 22/



- 4/ ~

and

NN 00-270-e* ). /re/

W3 can be calculated from the generating function of Perm®) .
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