

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutató Intézete
Computer and Automation Institute Hungarian Academy of Sciences

LOGIC PUZZLES AND LOGIC P R O G R A M M I N G I

Zsuzsa MÂRKUSZ
Gábor MÁRKUS

anulnányok 207/1988
Studies 207/1988

A kiadásért felelős

REVICZKY LÁSZLÓ

Főosztályvezető:

CSABA LÁSZLÓ

Illustrations by

Zsuzsa STUIBER

ISBN 963 311 249 4
ISSN 0324-2951

It’s good rather than a pity if, eventually,
your student feels: It’s not so hard, I may
as well have thought of it myself.

Laszlo Kalmar, The Development of
Mathematical Exactness from
Visuality to Axiomatic Methods.

Lecture, November 1941, Budapest

via the solution of
logic programming

the problem solving
programming, and

The aim of this report is to illustrate,
funny logic puzzles, some basic methods of
and to point out the relation among
strategies of human reasoning, logic
"conventional" algorithmic programming. Each puzzle is solved
by a Prolog program, which demonstrates some useful Prolog
programming techniques. Some puzzles are solved by Pascal
programs as well, which provides an opportunity for comparing
the techniques and strategies used in declarative logic
programming with those used in algorithmic programming. Every
Prolog and Pascal program in the report is original, none of
them is published elsewhere. The programs are short and
easily comprehensible for programmers as well as students of
tertiary education.

5

Contents

Intorduction .. 7

1 The Case of a Jealous Boyfriend........................ IO
1. 1 Solution.. il
1.2 Prolog Program 13
1.3 Pascal Program.................................. * 2o

2 The Case of a Forgotten Phone N u m b e r 34
2.1 Solution
2.2 Prolog Program.................................. 35
2.3 Pascal Program

3 The Case of Three G o d s 43
3.1 Solution.. 44
3.2 Prolog Program..............'................... 44

4 The Case of a Circle in a D e s e r t 49
4. 1 Solution....................................... 51
4.2 Prolog Programs................ 52

5 The Case of the Bridges in Koenigsberg............... 61
5.1 Solution....................................... 61
5.2 Prolog Program.................................. 63

6 The Case of some Color Boxes and B a l l s 68
6. 1 Solution....................................... 69
6.2 Prolog Program.................................. 69

7 The Case of Messieurs S and P 74
7.1 Solution.. 75
7.2 Prolog Program.................................. 76
7.3 Pascal Program.................................. 83

8 The Case of a Lot of Cans of Beer...................... 96
8.1 Solution.. 97
8.2 Prolog Program.................................. 97
8.3 Pascal Programs................................ 70

Concluding Remarks 108

Append i X
A. Implementation Problems Ill
B. S o u r c e s .. 113
C. Further P u z z l e s 114

References.. 125

3

In t r o d u c t io n

Funny logic puzzles have always challenged the artists and
scientists of thinking: the philosophers and mathematicians;
and the thorough investigation of paradoxes or seemingly
paradoxical problems has often led to important results in
logic. In the second half of the twentieth century, a new
kind of device appeared to help humans think: the computers,
which, via their mere existence, have been provoking certain
challenge in a number of fields of life.

As a consequence of such challenges, besides the
"conventional" methods of human reasoning, there have appeared
new, computer oriented deductive techniques, such as the most
recent one, logic programming. It was in the 70s when logic
programming first appeared as a problem definition and problem
solving method in artificial intelligence [4], [16], [24],
[31], [32]. Since then it has become a useful tool in a
number of fields, such as expert systems, computer aided
design, and natural language understanding and translation.
The best known and most widespread programming language of
logic programming is Prolog, which Í3 a subject in the
curriculum of the computer science department of almost every
university in the world.

Since applied logic programming combines the methods of
mathematical logic and certain programming methodologies, it
is quite natural to ask: To uhat extent Is logic programming
adequate for solving logic puzzles? We have found that
question so interesting and inspiring that we have solved
quite a number of puzzles and tried to find an answer to the
question. This report presents a representative sample of the
puzzles we studied; the complete set of puzzles is going to
be compiled and presented as a subsequent report.

The logic puzzles solved in this report are collected
from various sources. The texts of the puzzles are, however,
often tailored to suit to the subject. Puzzles, such as the 8
Queens Problem, the family of cryptarithmetic puzzles of the
type SEND+M0RE=M0N£Y, the Problem of the Tower of Hanoi, etc.,
whose solutions via Prolog programs have already been
published ([7], [8], [9], [30]) are deliberately left out.
Every Prolog and Pascal program in the report is original,
none of them is published elsewhere.

8

Each puzzle In this report Is solved by a Prolog program,
which demonstrates some useful Prolog programming techniques.
Some puzzles are solved by Pascal programs as well, which
provides an opportunity for comparing the techniques and
strategies used in declarative logic programming with thos
used in "conventional" algorithmic programming. As is
expected, each puzzle can be solved by human reasoning without
the help of any computer. Those solutions are also presented;
and the differences between the typical problem solving
approaches and styles of a "pure mathematician" and those of a
"programmer" are discussed. In the case of certain puzzles,
some exercises without solutions are also presented to
complete the discussions. They are to highlight some
mathematical or programming details or alternative approaches
or techniques.

The texts of some Pascal programs are much longer than
those of the Prolog programs for solving the same puzzles,
which shows the compactness and expressive power of Prolog
programs. Many Pascal programs are, on the other hand, much
more efficient than the corresponding Prolog programs.

Though no special or higher knowledge is prerequisite to
the use or understanding of this report, the reader is assumed
to have read some Prolog and some Pascal book (such as C7],
[8], [131, or [25]) and thus be familiar with the basics of
those languages. Neither the solutions of the puzzles via
reasoning require mathematical knowledge exceeding nighschool
mathematics.

The Prolog programs presented are written in the standard
DEC-10 Prolog syntax and run in an MPROLOG environment on an
IBM PC XT compatible personal computer, VARYTER-XT (640
KByte). The Pascal programs are written in Turbo Pascal and
run on the same computer.

We really enjoyed solving logic puzzles by logic
programming, it was so natural and easy and such a fun. We
comletetly agree with Mr. Jacques Arsac [2], who,
parapharasing the French proverb

Those who saw wood, warm twice,

said :

Those who write programs to solve puzzles, enjoy it twice.

9

Acknowledgements
The authors are grateful to friends and colleagues for the
helpful and inspiring discussions we had about the subject.
Ue are especially indebted to György Pollàk, who provided us
with the mathematical solution to one of the puzzles, and
Judit Läufer, Éva Május, and Péter Somogyi, who made many
useful comments on our work. We also acknowledge
Jean-François Poramaret, Csudinka Csudutov, and Judit Läufer
for their help in collecting the puzzles.

S. Markusz & G. Markus
Budapest, June 1988

10

Kate and tfj'Ke were going to get married. They met on Friday
afternoon, when Mike told Kate reproachfully he had tried to
ring her up on Monday, Tuesday, Wednesday, and Thursday
afternoon, but he could never find her at home.

"I have to devote some time to my friends, " Kate said.
nI’ve got only four of them, Olivia, Pat, Rose, and Sam. I
spent an afternoon with each of them. I was at the
hairdresser's with one of them, with another one, 1 went to
the tailor’s to have my skirt taken in, I ran into the third
in the Library, and had a bit of rowing along the River with
the fourth. Anyway, it’s none of your business. Mind your
business and leave me alone. "

Mike was hurt a bit, and he felt something suspicious.
He began to think over the argument :

(1) On the first three days of the week, he was by the River
when he tried to give Kate a ring. Each of these days, Sam
spent the whole afternoon at the Riverbank, too.

(2) Pat and Rose like each other. Uhen they were talking
this morning, they mentioned they had not been able to get to
the hairdresser's for at least a week.

(3) To tell the truth, Olivia and Mike saw a film in a cinema
together on Tuesday afternoon. Then she told him that
originally she had been to go to the tailor’s, but the tailor,
who worked for both her and Kate, had left earlier that day.

(4) Kate’s hairdresser works in the morning on Thursday,
Friday, and Saturday. For Kate works in the mornings, she
couldn’t be at hers during the second half of the week.

(5) Pat or Rose never goes to the Library.

(6) The Library is closed on Thursdays.

Did Kate tell her boyfriend lies?

LI Solution

To figure out if Kate told a lie, Mike has to find a
contradiction in Kate's argument, in which case she did tell a
lie; if he cannot find any contradiction, then he should
conclude that his girlfriend told the truth (or some
uncontradictory lies).

Kate’s argument states a one-to-one correspondence among
the elements of the sets (Monday afternoon, Tuesday afternoon,
Wednesday afternoon, Thursday afternoon), (Olivia, Pat, Rose,
Sam), and (Hairdresser’s, Library, Riverbank, Tailor’s).
Therefore, in order to show that Kate told a lie, it is
sufficient to find a friend of Kate’s, for example, to which
there is no suitable (afternoon, place) pair.

When Mike considers each piece of his Information in
turn, he can produce the following tables, where a table entry
contains an X if a piece of information excludes the
corresponding (friend, place) pair in that afternoon,
otherwise the table entry is empty.

(The following abbreviations are used in the tables: Mon
= Monday afternoon, Tue = Tuesday afternoon, Wed = Wednesday
afternoon, Thu = Thursday afternoon; Oli = Olivia; Hair =
Hairdresser’s, Lib = Library, Riv = Riverbank, Tail =
Tailor’s.)

12

Mon Hair Lib Riv Tai 1 Tue Hair Lib Riv Tai 1
01 i 01 i X X X X
Pat X X Pat X X X
Rose X X Rose X X X
Saa X X X X Saa X X X X

Wed Hair Lib Riv Tai 1 Thu Hair Lib Riv Tail
01 i 01 i X X
Pat X X Pat X X
Rose X X Rose X X
Saa X X X X Saa X X

From the above tables it is obvious that there are only
two possible cases for Tuesday afternoon :

i) Kate was at the Riverbank with Pat on Tuesday afternoon,
ii) Kate was at the Riverbank with Rose on Tuesday afternoon.

First, Mike supposes that Kate was at the Riverbank with
Pat on Tuesday afternoon (Case i)). This implies that no one
else could be at the Riverbank with Kate in any other
afternoon and that Kate could not be at any other place with
Pat in any other afternoon. Thus, Mike has the following
tables, where a + sign denotes Mike’s assumption, and - signs
are p laced into the entr i es that are exc1uded by the
assumption.

Mon Hair Lib Riv Tai 1 Tue Hair Lib Riv Tail
01 i - Öli X X X X
Pat X X - Pat X X + X
Rose X X Rose X X - X
Saa X X X X Saa X X X X

Wed
01 i

Hair Lib Riv Tail Thu
Oli

Hair
X

Lib
X

Riv Tai 1

Pat X X - Pat X X - -
Rose X X - Rose X X -
Saa X X X X Saa X X ~

As for Sam, these tables show only one poss i b i1i ty: Kate
was at the tailor’s with Saa on Thursday afternoon. And this
implies that no one else could be at the tailors’s with Kate
in any other afternoon. Having updated the tables again, Mike
realizes that there is no afternoon remained for Rose to be
with Kate, that is, Kate could not be at any place with Rose
in any afternoon.

13

Following exaclty the same track, Mike can arrive at an
analoguous conclusion in Case ii): If he supposes that Kate
was at the Riverbank with Rose on Tuesday afternoon, then he
concludes that Kate could not be at any place with Pat in any
afternoon.

The conclusions in the two cases together mean that
Kate’s argument is contradictory; consequently, she did tell
her boyfriend lies.

Remark: If we assume that once one is at the Riverbank, he
does notice anyone else who is at the Riverbank, too, or is
rowing along the bank (which is not unreasonable at all if a
particular spot is understood by Riverbank), then it is much
easier to find a contradiction in Kate’s argument. In fact,
in that case there is no friend of Kate’s who could be
together with her on Tuesday afternoon.

L2 Prolog program

There is no doubt, Kate is a rather able girl, but she has
overlooked an important fact: her boyfriend, Mike, can
program in Prolog, so he can easily check the consistency of
her argument. After the sharp conversation, the jealous
boyfriend jumpes up, goes home, sit down at his personal
computer, and writes a Prolog program. A PC is fair, it has
no sentiments, it is thus wise to ask its "opinion" about the
case. First, Mike records some data, the relevant days and
places and Kate’s friends, as Prolog facts. Then he lists the
impossible meetings, that is, the day-friend-place triplets
that are excluded by his infomation. The clauses in
definition impossible correspond to the constraints in the
puzzle in almost a one-to-one manner.

The Prolog program easily generates all the meetings not
excluded by definition impossible; those are the possible
meetings. Mike's task is easy now: he should find four
possible meetings, one for each day, one for each place, and
one for each friend of Kate’s. If he can find such meetings,
then Kate’s argument is consistent: she might have told him
the truth. If, on the other hand, he cannot find such
meetings, Kate told him lies for sure.

By performing that check for Mike, the program
undoubtfully proves that Kate has told Mike lies. All in all,
Mike has a fantastic luck: this simple program has prevented
him from marrying a girl who is not sincere even before the
wedding.

14

% The Case of a Jealous Boyfriend

dynamic(meeting/3).

start : -
environment,
possible, out, check,
nl, writeCThere is no contradiction; "),
write("Kate may have told her boyfriend the truth."), nl,
rétracta 11(meeting(_ , _)).

start:-
nl, write("There is a contradiction; "),
write("Kate told her boyfriend lies."), nl,
rétracta 11(meet ing(_, _, _)).

environment:- set_state(evaluation_limit, 50000).

poss ib1e: -
nl, write("Mike’s information says that Kate could be"),
n 1, n 1,
day(DAY), friend(PARTNER), p1 ace(PLACE),
not impossi b 1e(DAY, PARTNER, PLACE),
write(" with "), wr i te(PARTNER), write(" at the "),
write(PLACE), write(" on "), write(DAY), nl,
assert(meeting(DAY, PARTNER, PLACE)), fail,

poss i ble.

out : -
nl,
write("Now it is to check if the above list contradicts "),
write("Kate’s argument."), nl.

check : -
meeting(monday,Xl,Yl), meet ing(tuesday,X2,Y2),
meet ing(Wednesday,X3,Y3), meeting(thursday,X4,Y4),
cons istent(XI,X2,X3,X4),
consistentm, Y2,Y3,Y4) .

consistent(Xl,X2,X3,X4): -
X4 =/= X3, X4 =/= X2, X4 =/= XI,
X3 =/= X2, X3 =/= XI, X2 =/= XI.

f r i end(olivia).
f r i end(pat).
f r i end(rose).
f г i end(sam).

day(monday).
day(tuesday).
day(Wednesday).
day(thursday).

- 15 -

placet hairdressers).
p 1 ace(tailors),
placet 1ibrary).
place(riverbank).
impossible(DAY, sam, A N Y P L A C E) : - first_ha 1 f_ o f_week(D A Y).

/* 1 */
impossibletDAY, pat, hairdressers). /* 2 */
impossible(DAY, rose, hairdressers). /# 2 */
impossible(tuesday, olivia, ANYPLACE). /* 3 */
impossible(tuesday, ANYFR1END, tailors). /» 3 */
impossibletDAY, ANYFR1END, hairdressers):-

second_ha1f_of_week(DAY). /* 4 »/
impossibletDAY, pat, library). /* 5 */
impossibletDAY, rose, library). /* 5 */
impossib1e (thursday, ANYBODY, library). /* 6 «/

f i rst_ha1f_of_week(monday).
f i rst_half_of_week(tuesday).
f i rst_ha lf_of_week(Wednesday).

second_ha1f_of_week(thursday).

---------- output

? start.

Hike’s inforaation says that Kate could be

with olivia at the hairdressers on aonday
with olivia at the tailors on aonday
with olivia at the library on aonday
with olivia at the riverbank on aonday
with pat at the tailors on aonday
with pat at the riverbank on aonday
with rose at the tailors on aonday
with rose at the riverbank on aonday
with pat at the riverbank on tuesday
with rose at the riverbank on tuesday
with olivia at the hairdressers on Wednesday
with olivia at the tailors on Wednesday
with olivia at the library on Wednesday
with olivia at the riverbank on Wednesday
with pat at the tailors on Wednesday
with pat at the riverbank on Wednesday
with rose at the tailors on Wednesday
with rose at the riverbank on Wednesday
with olivia at the tailors on thursday
with olivia at the riverbank on thursday
with pat at the tailors on thursday
with pat at the riverbank on thursday
with rose at the tailors on thursday
with rose at the riverbank on thursday
with saa at the tailors on thursday
with saa at the riverbank on thursday

16

Now it is to check if the above list contradicts Kate's argument.

There is a contradiction; Kate told her boyfriend lies.
Yes

A closer look into the program
lhe program is so simple and transparent, it needs hardly any
explanation. Having set the environment, the program
generates and displays every possible meeting. Then it tries
to find four possible meetings, one for each friend, one for
each place, and one for each day. The actual generation
and diplay is peformed by calling predicate possible. On
generating the possible meetings, predicate possible utilizes
the inherent unify-and-backtrack mechanism of Prolog: First,
a particular day (day(DAY)), a particular friend
(friend(PARTNER)), and a particular place (place(PLACE)) are
chosen. Then an attempt is made to prove that that particular
triplet is impossible. If it fails to be impossible, then it
is assumed to be possible (negation as failure), and it is
displayed and recorded as a dynamic clause:
assert(Beeting(DAY, PARTNER, PLACE)); finally, predicate fail
forces backtracking. If the triplet being investigated is
impossible, then backtracking commences at that stage: the
program tries out another particular place, if any, and the
process goes on as usual. Notice that, eventually, when it
exhaustively investigated all possibilities, the first clause
of definition possible fails in finding another day beyond the
last. At this point control goes on to the second clause of
possible, which, being always true, turns failure into
success. Such techniques are often used in the programs of
this report.

Predicate check tries to find four required meetigs among
the possible ones. It takes four possible meetings, one for
each day, first and then checks if they are allowed or
consistent. Via backtracking, it checks all candidate sets of
required meetings until the first set is found, when and only
when, it succeeds. In consitency check, built-in
predicate =/= is used. It exactly means not equal if equal
and not are defined as follows:

equal(X, X).
not(X) X, !, fail.
not(X).

equal(X, Y) yields true if and only if X and Y are unifiable,
and it actually performs unification if either /or Y is an
uninstantiated variable. Built-in predicate = corresponds to
equal, while built-in predicate =/= corresponds to not equal.

17

Unfortunately, the concepts of equality and negation are not
so easy as one wishes they were. We will discuss some points
concerning them later in the report; and for more details and
thorough discussion, we refer the interested reader to [24]
and [28].

The program is an excellent example for transparency:
its structure directly follows Mike’s thoughts. Let’s have
just one example.

Kate's hairdresser works in the morning on Thursday,
Friday, and Saturday. For Kate works in the
mornings, she couldn’t be at hers during the second
half of the week.

This piece of information translates into the following two
c1auses:

impossiЫ e(DAY, ANYFRIEND, hairdressers)
second_half_of_week(DAY).

secondha1f _of _week(thursday).

Notice that both DAY and ANYFRIEND are variables. Since
ANYFRIEND is an unconstrained variable, it actually means any
friend. DAY is not unconstrained, it actually means any day
of the second half of the week only.

The above example also presents another issue, the
problem of database consistency. Obviously, the second half
of the week consist of more than one day. Therefore, we
should rather have a three-clause definition

secondhalf_of_week(thursday).
secondhalf_of_week(friday).
secondhalfofweek(saturday).

shouldn’t we? No, we should not, or, rather, must not.
Although there is no problem as far as the solution of the
puzzle is concerned: the result would remain the same with
the latter definition of the second_half_of week and the extra
computation and storage required by the two extra clauses,
defining irrelevant data, is negligible (note, however, that
such extra computation may not be negligible in other cases).
The real problem is that those extra clauses make the database
of the program inconsistent. To show this, it is enough to
ask questions about the second half of the week, which now
should consist of three days, Thursday, Friday, and Saturday.
Obviously, the following two goals should succeed:

? secondhalf_of_week(friday).
? day(friday), second_ha1f of week(friday).

18

But the first one succeeds, while the second one fails. To
overcome this inconsistency, we should add two extra clauses:

d a y (f r i d a y) .
d a y (S a t u r d a y) .

Now the database of the program is consistent, the complete
database, however, defines another set of constraints, a less
restrictive one, and therefore another puzzle. And thus it is
only a coincidence that the final output of the completed
program remains the same: "There is a contradiction."

Built-in predicates used in the program
There are many Prolog dialects all over the world with a lot
of common predicates implemented under diferent names. Ue
would like to help the reader adapt the programs in this
report to his own implementation; that is why we list the
built-in predicates used in the Prolog programs.

In the Prolog program for The Case of a Jealous
Boyfriend, we used the following built-in predicates:

nl, write, rétractai 1, not, assert, fail, =/ = , set state

Built-in predicate set_state occurs in a number of
programs, defining a reasonable call limit for those programs.
In the MPRÛL0G environment, the default value is 10,000, which
should be increased in some cases. For doing so, we always
use a separate predicate environment, such as

environment:- set_state(evaluation_limit, 50000).

which assigns 50,000 to environment parameter evaluationlimit
(see also Appendix A).

Reasoning versus Prolog programming
If one wants to solve the puzzle via reasoning, without the
help of a computer, the strategy implemented in the program is
not really adequate: there are too many constraints in the
puzzle for a human being to cope with. In such cases one
should look for ways of transforming the problem into a
(sequence of) simpler problem(s), in order to achieve success
faster.

If, for instance, there is a day with a lot of
restrictions, such as Tuesday, then it is worth investigating
the question: Is it possible for Kate to meet any of her
friends on that particular day at all? If it is impossible,
we have solved the original problem. If it is possible, then
it is most likely that there are only a few possible meetings

19

(in fact, only two meetings are possible on Thuesday: with
Pat or Rose at the Riverbank), which helps one reduce the
number of possible meetings on other days, too. It is clear
from the constraints that Olivia is the one about whose
whereabouts Mike has the least information; therefore, one
had better examine Kate's possible meetings with the other
girls first. Having a closer look into Pat’s, Rose’s, and
Sam's time schedules, one soon realizes that it is impossible
to arrange the three girls to be at three different places on
three different days. The above is an instance of a general
problem solving strategy: one tries to reduce the search
space as soon as possible by examining the conditions of the
given problem, and concentrating on the most promising
subproblem. Intuition plays an important role in the solution
of problems via reasoning.

The above problem solving strategy is none the less
adequate for solving problems via programs. But, due to some
nonhuman features of computers, the selection and handling of
subproblems may be a bit relaxed: the search space may be
much larger, the algorithm may be less sophisticated, it may
contain more mechanical segments. Notice the instances of
these points in the bodies of clauses possible, check, and
consistent. Although, of course, a computer too has
limitations (see Section 8), it can be a useful aid for humans
in solving various problems, and in solving logic puzzles in
particular. And since Prolog programs can follow human
thoughts fairly closely, they seem to be rather effective
problem solving aids.

Exercises

El.l Change the body of clause check so that no meeting be
chosen in vain, i.e., check consistency as soon as possible
(after the second, third, and fourth predicate meeting);
change predicate consistent accordingly. The new version
seems to be more efficient. Is it really more efficient? At
what cost?

El.2 Having understood the solution of the puzzle, one can see
how the order of database clauses affect the performance of
the program. Change the order of clauses in definitions
place, friend, and day to speed up the program.
(Notice that it is nothing but reducing the search space.)

20

L3 Pascal program

On the surface, the problem solving strategy of the Pascal
program is essentially the same as that of the Prolog program:
for it is most adequate, the Pascal program simulates the
choosing-backtracking strategy of Prolog--there are only minor
differences (see the exercises at the end of this section).
Although the underlying algorithm is virtually identical, the
organization of the Pascal program differs from that of the
Prolog program. The most obvious difference is that the
Pascal program requests the user to enter the relevant data
items, if they are not supplied. Then, using those data, it
generates a list of impossible combinations. In contrast to
this, the Prolog program contains the impossible combinations,
as well as the other relevant constants, declaratively
(definitions impossible, friend, and day) or inline (names
Kate and Mike).

The Prolog program then generates all possible
combinations and then tries to find a different combination
for each day among them. The Pascal program, on the other
hand, tries to find a possible combination for each day in
turn, without having generated the set of possible
combinations.

A closer look into the program
First, the Pascal program sets the initial state of the
solution of the puzzle via procedure Initialize. procedure
Initialize checks if input data are supplied in a text file
(function Exist). If there exists a relevant data file, it
reads the data from that file (procedure GetDataFromFile).
Otherwise it requests the user to enter the relevant data,
echoes and checks the data read and stores them in a data file
in order to save the user’s effort of inputting them when he
reruns the program (procedure GetDataFromKeyboard and
procedure GetOneltem). On accepting the data items in either
way, the program records them and generates the chained list
of impossible combinations (procedures AddFriendEtc,
AddPlaceEtc, and AddDay).

21

The data to be entered in order to solve the puzzle are
shown below along the trace of the man-machine communication
(the user answers are underlined for emphasis).

Please enter the na«e of the girl.
> Kate
Kate
Please enter the паве of her boyfriend.
> hike
Hike
Please enter the naees of the days.
> Honday
honday
> Tuesday
Tuesday
> Wednesday
Wednesday
> Thursday
Thursday
Please enter the naaes of the friends.
> Olivia
Olivia
> Pat
Pat
> Rose
Rose
> Sai
San
Please enter the naaes of the places.
> Hairdressers
Hairdressers
> Library
Library
> Tailors
Tailors
> Riverbank
Riverbank

Please enter the iapossible groups [friend, place of action, day].
AI lowed answers:

Friends: San Rose Pat Olivia AnyFriend
Places of Actions: Riverbank Tailors Library Hairdressers AnyPlace
Days: Thursday Wednesday Tuesday Honday AnyDay

Friend: Sai
Place of Action: AnyPlace
Day: Honday

Is there any ноге impossible group? (y/n): £

Friend: Sai
Place of Action: Anyplace ? > AnyPlace
Day: Tuesday

22

Is there any more impossible group? (y/n): jr

Friend: San
Place of Action: AnyPlace
Day: Wednesday

Is there any nore inpossible group? (y/n): y_

Friend: Pat
Place of Action: Hairdressers
Day: Anyday

Is there any nore inpossible group? (y/n): y_

Friend: Rose
Place of Action: Hairdressers
Day: Anyday

Is there any nore impossible group? (y/n):

Friend: Olivia
Place of Action: AnyPlace
Day: Tuesday

Is there any nore impossible group? (y/n): y_

Friend: AnyFriend
Place of Action: Tailors
Day: Tuesday

Is there any nore impossible group? (y/n): £

Friend: AnyFriend
Place of Action: Hairdressers
Day: Thursday

Is there any nore impossible group? (y/n): £

Friend: Pat
Place of Action: Library
Day: AnyDay

Is there any nore impossible group? (y/n): y_

Friend: Rose
Place of Action: Library
Day: AnyDay

Is there any nore impossible group? (y/n): y.

Friend: AnyFriend
Place of Action: Library
Day: Thursday

Is there any more impossible group? (y/n): n

23

Kate has told Mike lies.

output

After the initialization, the main program starts to
generate and test the candidate combinations for each day. A
possible combination or group consists of a day (at the top
level), a friend (at the next level), and a place [of action]
(at the bottom level). Values are chosen in the order given
at input according to the depth-first search strategy. A new
candidate combination is generated in the loop of the main
program; initial values for the two upper level components
are also chosen on the spot. procedure GenerateGroups
instantiates the bottom level component and checks if the
candidate is impossible. The procedure "generates" new
candidates only, i.e., it examines candidates not yet
investigated. First it calls procedure SetCurrentCounters,
which sets the current values of the backtrack pointers of the
two lower level components, and then finds values of lower
level components to obtain new candidates (procedures
ChooseAnotherPlace and ChooseAnotherFriend) utilizing the
required one-to-one correspondence among the values of
components at different levels. Whenever a candidate is
found, it is checked against the impossible groups (procedure
CheckCandidate). If it proves to be impossible, the algorithm
backtracks: it tries to find a new place, and if there is no
more place to be chosen, it tries to find a new friend. The
backtracking at the two lower levels is implemented by the
loop in procedure GenerateGroups. The backtracking at the top
level is of another sort: the candidate group, which has
proved to be the outcome of a wrong guess, has to be deleted
and backtracking has to be continued at the bottom level of
the previous candidate, if any. This action is performed and
controlled by procedure WrongGuess. The program, that is, the
loop in the main program, stops as soon as a complete set of
possible combinations is found or when all combinations proved
to be impossible.

program Jealous (input, output, 1st, Data, Fil);
const

ItemNo = 4; ItemNoP1usOne = 5; WordLength = 20;
FileName = ’ JEALOUS.DTA’;

type
Word = string[WordLength];
Words = array [0..ItemNo] of Word;
GroupPtr = '“Groups;
Groups = record Friend : Word;

P 1aceOfAction : Word;
Day : Word;
next : GroupPtr

end ;

24

DataType = text;
Extltems = 0..itemNoP1usOne;

var
Girl, Boy: Word;
Days, Friends, P 1acesOfAct ions : Words;
First1mpossiЫ eGroup, Impossible: GroupPtr;
FirstPossib1eGroup, Possible: GroupPtr;
DayCount, FriendCount: Extltems;
FriendChosen: Boolean;
Data: DataType;

procedure InitializeProblem (var Girl, Boy: Word;
var Days, Friends, PlacesOfActions: Words;
var FirstImpossibleGroup, Impossible: GroupPtr;
var Data: DataType);

{ initialize the constraints of the puzzle)
type
Name = string[30];

var
i: 1..1temNoP1usOne;
ItemGotten, A_Day, A_Friend, A_Place: Word;

procedure GetOneltea (var Items: Words; var Item: Word);
Í accept a data item)

var
j: -1..ItemNoP1usOne;
OK: Boolean;

begin t GetOneltem)
OK := false;
while not OK do
begin

read(ItemGotten);
j := -1;
repeat j := j + 1
until (Itemsij] = ItemGotten) or (j = ItemNo+1);
if j <= ItemNo then OK := true

else wr i te(’ ? > ')
end ;
wr i te 1n;
I tern := ItemGotten

end; Í GetOneltem)

25

procedure AddFriendEtc (var FirstlmpossibleGroup,
impossible: GroupPtr);

(generate impossible groups with special respect to
field A_Day)

procedure AddPlaceEtc (var FirstlmpossibleGroup,
Impossible: GroupPtr);

(generate impossible groups with special respect to
field A_Place)

procedure AddDay (var FirstlmpossibleGroup,
Impossible: GroupPtr);

{ actually generate the impôssible groups)
begin { AddDay)
new(Impossible);
with Impossible'' do
begin

Friend := A_Friend;
PlaceûfAction := A_Place;
Day := A_Day;
next := FirstlmpossibleGroup

end ;
FirstlmpossibleGroup := Impossible

end; (AddDay)

begin { AddPlaceEtc }
if A_Day = ’AnyDay’ then
for i := 1 to ItemNo do
begin

A_Day := Days[i];
AddDay(FirstlmpossibleGroup, Impossible)

end
else AddDay(FirstImpossibleGroup, Impossible)

end; i AddPlaceEtc }
begin (AddFriendEtc)

if A_Place = ’AnyPlace’ then
for i := 1 to ItemNo do
begin

A_Place := P1acesOfActionsCi] ;
AddP1aceEtc(Fi rs11mposs ibleGroup, Impossible)

end
else AddP1aceEtc(FirstImpossib1eGroup, Impossible)

end; { AddFriendEtc J
procedure GetDataFromKeyboard (var Girl, Boy: Word;

var FirstlmpossibleGroup, Impossible: GroupPtr;
var Data: DataType);

{ accept data from keyboard, echo and store the items
gotten and generate impossible groups)

var
more: char;
continue: Boolean;

26 с

begin t GetDataFroaKeyboard 1
write 1n(’P 1 ease enter the name of the girl.’);
write(’> *); read 1n(Gir 1) ; write 1n(Giг 1);
write 1n (Data, Girl);
write 1n (’P 1 ease enter the name of her boyfriend.’);
write(’> ’); readln(Boy); writeln(Boy);
wr i teln(Data, Boy);
write 1n (’P 1 ease enter the names of the days.’);
for i := 1 to 1 temNo do
begin
write(’> ’); readln(ItemGotten); write 1n(1temGotten)
Daysii] := ItemGotten; writeln(Data, ItemGotten)
end ;

write 1n (’P 1 ease enter the names of the friends.’);
for i := 1 to 1 temNo do
begin
write(’> ’); read 1n(ItemGotten); write 1n(ItemGotten)
Friendsii] := ItemGotten; write 1n(Data, ItemGotten)
end ;

wríte 1n (’P 1 ease enter the names of the places.’);
for i := 1 to ItemNo do
begin
write(’> ’); readlnCItemGotten); write 1n(ItemGotten)
P 1 acesOfAct ionsii] := ItemGotten;
write 1n(Data, ItemGotten)
end ;

FirstImpossibleGroup : = nil;
wr i te 1n ;
write(’P 1 ease enter the impossible groups ’);
write 1n (’[fгiend, place of action, day].’);
write 1n (’A 1 1 owed answers:’);
wr i te (’ Friends : ’);
for i := ItemNo downto 0 do writeCFriendsti], ’ ’);
wr i te 1n ;
writeC’ Places of Actions: ');
for i := ItemNo downto 0 do
write(P 1acesOfAct ions[i], ’ ’);

wr i te 1 n ;
writeC’ Days : ’);
for i := ItemNo downto 0 do write(Days[i], ’ ’);
wr i te 1n ;
continue := true;
while continue do
begin
wr i te(’Fr iend: ’) ;
GetOneItemCFriends, A_Friend);
write 1n (Data, A_Friend);
writeC’Place of Action: ’);
GetOneltemCPlacesOfActions, A_Place);
write 1n (Data, A_Place);
writeC’Day : ’);
GetOneI tern(Days, A_Day); writelnCData, A_Day);

27

if A_Friend = ’AnyFriend’ then
for i := 1 to ItemNo do
begin

A_Friend := Friendsii];
AddFr iendEtc(FirstlmpossibleGroup, Imposs ib1e)

end
else AddFriendEtc(First1mpossibleGroup, Impossible);
more := ’ ’ ;
wr i te 1n;
writeCIs there any more impossible group? (y/n) : ’);
read(more);
while not ((more = ’y’) or (more = ’n’)) do
begin
write(’ ? > ’); read(more)

end ;
wr i te 1n; wr i te 1n;
if more = ’n’ then continue := false

end
end; { GetDataFromKeyboard }

procedure GetDataFromFi1e (var Girl, Boy: Word;
var FirstlmpossibleGroup, Impossible: GroupPtr;
var Data: DataType);

{ retrieve data form text file
and generate impossible groups)
begin { GetDataFromFi1e 1

readln(Data, Girl);
readlníData, Boy);
for i := i tc !temNc de readlníData, Daysti]);
for i := 1 to ItemNo do readlníData, FriendsCil);
for i := 1 to ItemNo do readlníData, P 1acesOfAct ions[i])
FirstlmpossibleGroup := nil;
while not eof(Data) do
begin

readlníData, A_Friend);
readlníData, A_Place);
readlníData, A_Day);
if A_Friend = ’AnyFriend' then
for i := 1 to ItemNo do
begin

A_Friend := Friendsiil;
AddFriendEtciFirstlmpossibleGroup, Impossible)

end
else AddFriendEtciFirstlmpossibleGroup, Impossible);

end
end; { GetDataFromFile)

28

function Exist (Filename: Name): Boolean;
{ check if a file exists)
var
Fi 1 : file;

begin { Exist)
assignCFil, Filename);
{$ I -}
reset(Fi 1) ;
{$! +)
if lOresult <> 0 then Exist := false

else Exist := true
end; { Exist }

begin { Initial izeProblem }
DaysiO] := ’AnyDay’;
FriendsCO] := ’AnyFriend';
P1 acesOfActions[0] := ’AnyPlace’;
assign(Data, FileName);
if Ex ist(Fi 1 eName) then
begin
reset(Data) ;
GetDataFromFi1e(Gir 1, Boy, Firs11mpossibleGroup,

1 mposs i Ы e, Data);
wr i te 1n ;
writelnC’ >> Data in file FileName,

’ are read. <<’)
end
e 1 se
begin
rewrite(Data) ;
GetDataFromKeyboard(Gir1, Boy, FirstImpossibleGroup,

Impossible, Data)
end ;
close(Data)

end; { InitializeProblem }
procedure ChooseAnotherFriend (var FirstPossibleGroup:

GroupPtr;
var FriendCount: Extltems;
var Friends: Words;
var FriendChosen: Boolean);

{ by taking another friend, find a new candidate group)
var
OK: Boolean;
A_Friend: Word;
CurrentPossib 1 eGroup: GroupPtr;

begin { ChooseAnotherFriend)
CurrentPossibl eGroup := FirstPossibleGroup;
OK := false;
while (CurrentPossibleGroup <> nil) and

(FriendCount < ItemNo) do

29

begin
FriendCount := FriendCount + 1;
A_Friend := FriendsCFriendCounti;
CurrentPossibleGroup := FirstPossibleGroup;
OK := true;
repeat

if CurrentPossibleGroup*.Friend = A_Friend then
OK := false;

if OK then
CurrentPossibleGroup := CurrentPossibleGroup".next

until not OK or (CurrentPossibleGroup = nil)
end ;
if OK then FriendChosen := true

else FriendChosen := false
end; { ChooseAnotherFriend)

procedure GenerateGroups (var FirstPossibleGroup,
Firstlmpossibleroup: GroupPtr;

var DayCount, FriendCount: Extlteas;
var Friends, PlacesOfActions: Uords)

{ fill out the frame of a group to suit to the constraints)
var
Loop: (CYCLE, EXITJ3K, EXIT_BACK);
FriendChosen, PlaceChosen, Collision, Go: Boolean;
PlaceCount: Extltems;
CurrentPossibleGroup: GroupPtr;

procedure SetCurrentCounters (var FirstPossibleGroup:
GroupPtr;

var FriendCount, PlaceCount: Extlteas;
var Friends, PlacesOfActions : Uords);

{ set counters FriendCount and PlaceCount
to point to the values in the FirstPossibleGroup)

begin Í SetCurrentCounters)
FriendCount := 0;
PlaceCount := 0;
if FirstPossib1eGroup".Friend <> FriendsCO] then
repeat FriendCount := FriendCount + 1
until (FriendCount = ItemNo) or

(FriendsiFriendCountl =
FirstPossibleGroup".Friend);

if FirstPossibleGroup".PlaceOfAction <>
P 1acesOfAct ions CO] then

repeat PlaceCount := PlaceCount + 1
until (PlaceCount = ItemNo) or

(P 1acesOfAct ionsCP1aceCount] =
FirstPossibleGroup".PlaceOfAction)

end; (SetCurrentCounters)

30

procedure ChooseAnotherPlace (var FirstPossibleGroup:
GroupPtr;

var PlaceCount: Extltees;
var PlacesOfActions: Words;
var PlaceChosen: Boolean);

{ by taking another place, find a new candidate group)
var
OK: Boolean;
A_Place: Word;

begin Í ChooseAnotherP1 ace }
CurrentPossibleGroup := FirstPossibleGroup;
OK := false;
while (CurrentPossibleGroup <> nil) and

(PlaceCount < ItemNo) do
begin
PlaceCount := PlaceCount + 1;
A_Place := P 1acesOfActions[P 1aceCount];
CurrentPossib1eGroup := FirstPossibleGroup;
OK := true;
repeat

if Cur rentPoss ibl eGroup"'. P1 aceOf Act ion = A_Place
then OK := false;
if OK then
CurrentPossibleGroup := CurrentPossibleGroup'.next

until not OK or (CurrentPossibleGroup = nil)
end ;
if OK then PlaceChosen := true

else PlaceChosen := false
end; i ChooseAnotherP1 ace i

procedure UrongGuess (var FirstPossibleGroup: GroupPtr;
DayCount: Extltees; var Go: Boolean);

{ delete the latest group, which proved to be wrong,
and step back a day)

var
WrongGroup: GroupPtr;

begin (UrongGuess)
if FirstPossibleGroup <> nil then
begin
WrongGroup := FirstPossibleGroup;
FirstPossibleGroup := WrongGroup'. next ;
dispose(WrongGroup);
DayCount := DayCount - 1;
Go : = true

end
else Go := false

end; (UrongGuess)
procedure CheckCandidate (var FristPossibleGroup,

First1npossib 1eGroup: GroupPtr;
var Collision: Boolean);

{ check if a candidate group is impossible)
var
CurrentlmpossibleGroup: GroupPtr;

31

begin { CheckCandidate)
Collision := false;
Cur rent 1mpossibleGroup := Firs11mpossiЫ eGroup;
while not Collision and

(Current 1mpossibleGroup <> nil) do
begin

with Current 1mpossiЫ eGroup" do
if (Day = FirstPossiЫ eGroup~.Day) and

(Friend = FirstPossibIeGroup~.Friend) and
(PlaceOfAction =

FirstPossibleGroup-'.PlaceOfAction)
then Collision := true;

CurrentImpossibleGroup :=
CurrentlmpossibleGroup^.next

end
end; { CheckCandidate }

begin Í GenerateGroups >
SetCurrentCounters(FirstPossibleGroup, FriendCount,

PlaceCount, Friends, P 1acesOfAct ions) ;
Loop := CYCLE;
while Loop = CYCLE do
begin
ChooseAnotherPlace(FirstPossibleGroup, PIaceCount,

P 1acesOfAct ions, P 1aceChosen) ;
if PlaceChosen then
begin

FirstPossibleGroup^.PlaceOfAction :=
PlacesOfActionslPlaceCount];

CheckCandidate(FirstPossibleGroup,
FirstlmpossibleGroup, Collision);

if not Collision then Loop := EXIT_0K
end
e 1 se
begin
ChooseAnotherFriend(FirstPossibleGroup, FriendCount,

Friends, FriendChosen);
if FriendChosen then
begin

FirstPossibleGroup"'. Friend := Fr i ends [Fr iendCount 1 ;
PlaceCount := 0;
FirstPossibleGrоирл.P 1aceOfAct ion : =

PlacesOfActionstPlaceCountl
end
else Loop := EX1T_BACK

end
end ;
if Loop = EX 1T_BACK then
begin

WrongGuess(FirstPossibleGroup, DayCount, Go);
if Go then GenerateGroups(FirstPossibleGroup,

FirstlmpossibleGroup,
DayCount, FriendCount,
Friends, P 1acesOfActions)

end
end; { GenerateGroups)

32
\

begin (Jealous >
I nitia1izeProbi era(Giг 1, Boy, Days, Friends, P1 acesOfAct ions,

First1mpossibleGroup, Impossible, Data);
FirstPossibleGroup := nil;
DayCount := 0;
repeat { generate and test candidate groups)
DayCount := DayCount + 1;
new(Poss ible) ;
with Possible* do
begin
Day := Days[DayCount];
if FirstPossibleGroup = nil then FriendCount := 1
e 1 se
begin
FriendCount := 0;
ChooseAnotherFriend(FirstPossibleGroup, FriendCount,

Friends, FriendChosen);
if not FriendChosen then
begin
writelnl’ Error in the algorithm--main.’);
repeat until keypressed

end
end ;
Friend := FriendsCFriendCount];
PlaceOfAction := P 1acesOfAct ions[0];
next := FirstPossibleGroup

end ;
FirstPossibleGroup := Possible;
GenerateGroups(FirstPoss ibleGroup, FirstlmpcssibleGroup,

DayCount, FriendCount, Friends,
P 1 acesOfAct ions)

until (DayCount = 0) or (DayCount = ItemNo);
wr i te 1n;
if DayCount = 0 then
writeln(Gir 1 , ’ has told ’, Boy, ’ lies.’)

e 1 se
writeln(Gir1, ’ may not have told ’, Boy, ’ lies.’)

end. { Jealous }

----------- output ---
>> Data in file JEALOUS.DTA are read. <<

Kate has told Hike Iies.

33

Exercises

E1.3 Notice that the program utilizes some nonstandard
features of Turbo Pascal, such as the string type, the
built-in function keypressed, special external file handling.
Rewrite the program so that it suit to your Pascal
implementation.
(Hint: Although they make the use of the program convenient,
the file handling fragments are not essential. Strings are
usually implemented as packed arrays of characters.)

El.4 As in the case of the Prolog program, the order of input
data items (days, friends, places, and impossible
combinations) does affect the performance of the program.
Find a better input order.

El.5 As is mentioned above, the actual algorithms programmed
in Prolog and Pascal are different.
a) Rewrite the Prolog program so that it implement the

algorithm of the Pascal program.
b) Rewrite the Pascal program so that it implement the

algorithm of the Prolog program.
Argue for and against the versions obtained.

El.6 The Pascal program presented tries to simulate the
choosing-backtracking strategy of Prolog. The most severe
restriction is the utilization of the static number of
possible values (the algorithm does not allow to add or delete
a friend, for instance) and the utilization of the one-to-one
correspondence among the components of possible groups.
Rewrite the program to get rid of the above restrictions. Is
it worth making a distinction between the static (in the above
sense) and dynamic (as the opposite of static) sets of
clauses? Why?
(Hint: Use chained lists of records.)

El.7 Unlike the Prolog program, the Pascal program collects
the data relevant to the solution of the puzzle from the user.
Rewrite the Prolog program so that it contain a similar
interactive session. Given your Prolog implementation, how
can you utilize external files to improve convenience?
(Hint: Use the constructor functor =.. to form clauses
and/or use lists [instead of clauses]. Remember the
importance of the order of clauses inside a definition.)

2

At a party, someone suggested that they should give Frank a
ring. Unfortunately, there was no one at present who knew his
phone number. All they could collect was some little bits of

» information :

(1) He had a six-figure number.

(2) The second half of the number, that is, the number formed
by the last three figures, was equal to four times the first
one.

(3) The two figures in the middle of the number were
identica1.

(4) The second figure was equal to twice the first.

(5) And the third figure in the phone number was two times
the second one or two plus the second one.

Uhat was Frank’s phone number?

35

2.1 Solution J
The first half as well as the second half of a six-figure
number is a three-figure number. Therefore, from information
(2) it follows that the first figure is not greater than
2--otherwise the second half of the number, which is four
times the first half of it, has four figures.

Now, from information (4) it follows that the first two
figures in the phone number can only be 00, 12, or 24.

Then from information (5) it follows that the third
figure in the number is even, since the second one is even and
the third one is obtained by multiplying the second one by two
or incrementing it by two. Therefore, the phone number cannot
start with 24. Since in that case the first half of it would
be at least 240 and at most 249, and thus the second half of
the number, which is four times the first half of it, would be
at least 960 and at most 996, that is, the fourth figure would
be 9 anyway, which, being odd, cannot be equal to the third
figure (information (3)).

The phone number cannot start with 00 either, since in
that case, according to information (5), the third figure
would be either 0 or 2. If the third figure were also 0, then
the phone number would consist of six zeros, which is not
consisdered a valid phone number (though all requirements are
fulfilled in that case). If the third figure were 2, then the
phone number would be 002-008, which violates requirement (3).

Hence, the phone number can only start with 12, in which
case the third figure is 4, by either part of information (5),
and the second half of the number is 4*124=496, which
satisfied requirements (3) as well.

Therefore, the only phone number that satisfies all
requirements is 124-496. That is Frank’s phone number.

2.2 Prolog program

The people at the party tried to reconstruct Frank’s phone
number from various bits of information. When we start to
write a program to help them, we cannot know how accurate
those little bits of information are or if they are sufficient
for us to determine the phone number. That being the case, we
have to handle three possible cases:

- More than one phone numbers are possible.
- Exactly one phone number is possible.
- The pieces of information do not determine a phone number.

36

Having studied the conditions carefully, we realize that
the first digit determines all other digits: they can simply
be computed. Therefore, the program takes new and new values
for the first digit on backtracking until the complete set of
digits is exhausted, and records the different phone numbers
obtained. The strategy of the solution via reasoning is more
or less the same. A man, however, knows and utilizes a number
of properties of integers, such as integers are either even or
odd, there are simple rules for the parity of the results of
arithmetic operations, the integers are sorted, etc. These
properties can, of course, be incorporated into the program,
but the effort, however little it is, is not worthwhile: the
simple version of the program is reasonably fast. Similarly,
it is easier to list the ten digits than to generate them.
Mote, however, that it may be crucial to program such
background knowledge in other cases (c.f. Section 7).

The program does not utilize the special advantages of
Prolog: it uses hardly any backtracking, does not unify
complex structures, etc. Therefore, its algorithm can easily
be programmed in any other language as well.

A closer look into the program

As is mentioned above, the program tries out the possible
values of the first digit, D1, in turn. Once the first digit
is selected, the second and the third ones (D2 and D3) are
computed using the ruies in the puzzle. Then the program
constructs the first half of the candidate phone number by
calling the half(Dl, D2, D3, FIRST) predicate. FIRST=0 is not
allowed, since in that case the phone number would consist of
six zeros, which is not considered a valid phone number. On
having an allowed value of FIRST, the program computes the
second half (SECOND) of the phone number, and checks if it
satisfies the requirements (half(D3, D5, D6, SECOND)).

The program calls predicate half twice. At the first
call, the first three arguments of the predicate are bound to
decimal digits, in which case the fourth argument is unified
with the integer formed by those digits if the fourth argument
is a free variable. If the fourth argument is also bound,
then it is tested if that argument is unifiable with the
integer formed by the three digits (the first clause in the
definition of half). The second clause in the definition of
half works essentially in the opposite direction: if the
fourth argument is a three-digit integer, then the first three
arguments are unified with or compared to its digits,
depending if an argument is free or bound. When predicate
half is called at the second time, half(D3, D4, D5, SECOND),
the second clause in the definition is activated and the first
argument is compared to the first digit of SECOND, while the
second and the third arguments are unified with the second and
the third digits of SECOND, respectively.

37

% The Case of a Forgotten Phone Number

dynamic(phone/2).

start :-
digit(Dl),
D2 is 2»D1, di gi t(D2),
(D3 is 2*D2 ; D3 is 2+D2), digit(D3),
half(D1,D2,D3, FIRST), FIRST =/= 0,
SECOND is 4#FIRST, SECOND < 1000,
half(D3,D5,D6, SECOND),
remembertF 1RST, SECOND),
fail,

start : -
number_of_resu1ts(N) ,
out(N).

half(D1,D2,D3, N):-
digit(Dl), digit(D2), digit(D3),
Y1 is 100*D1, Y2 is 10#D2, N is Y1 + Y2 + D3.

half(D1,D2,D3, Nit-
integer (N), N > 0,
N < 1000,
Dl is N div 100, Y is N mod 100,
D2 is Y div 10, D3 is Y mod 10.

remember(F, S): -
phoneCF, S), !, fai 1.

remember(F, S)
assert(phone(F, S)).

number_of_results(many): -
phone(F, S), phone(Fl, SI),
(F =/= Fl ; S =/= SI), !.

number_of_results(l): -
phone(F, S), !.

number_of_results(0).

out(many):-
nl, writeCThe phone number is not unique, "),
write(nthe folks have to make some trials."), nl, nl,
write("The possible numbers are:"), nl,
out.

out(1): -
retract(phone(F, S)),
ni, write("Frank’s phone number is: "),
write(F), write!"-"), write(S), nl, nl.

out(0): -
nl,
write("The pieces of information do not "),
wr ite("determine a phone number."),
n 1.

38

out : -
retract(phone(F, S)),
tab(lO), write(F), write("-"), write(S), ni,
out.

out : - ni.

digit(O).
digit(l).
digit(2).
digit(3) .
d i g i t (4).
di g i t(5) .
d i g i t (6) .
d i g i t (7) .
digit(8) .
d i g i t (9) .

output
? start.

Frank’s phone nuaber is: 124-496

Yes

Once we have found a phone number, we record it, that is,
we assert it as a dynamic clause phone(F, S), where F is the
integer formed by the first half of the phone number and S is
the integer formed by the second half of it. (Note that a
six-digit integer would be too big to be representable.) As we
do not know how many solutions we will have, we should
generate all possible phone numbers. But as we are interested
only in the different solutions, we must not record
duplicates. Predicate гешемЬег does exactly that for us:
first it checks if the a phone number has already been
recorded, and stores the solution found most recently if and
only if it has not been recorded yet.

The output of the program depends on the number of the
solutions: we have prepared different texts for each possible
case. On displaying a phone number F-S, the program deletes
the corresponding clause phone(F, S). Although it seems to be
unnecessary, this kind of "garbage collection" becomes
important as soon as we want to re-run the program. That is
why each Prolog program presented in this report deletes all
dynamic clauses generated.

Symbol which denotes the permissive or of logic within
one clause, is worth mentioning here, because it appears at
several places in the program. Using this symbol properly, we
can write more concise and more elegant programs. For
example, the condition in the puzzle

39

And the third figure in the phone number was two
times the second one or two plus the second one.

naturally translates into the Prolog subgoal

(D3 is 2«D2 ; D3 is 2+D2)

The effect of this subgoal could be more difficult to achieve
without ;.

Built-in predicates used in the prograa
integer, =/=, is, *, +, <, fail, div, mod, assert, !, nl,
write, tab, retract.

Exercise

E2.1 Built-in predicate write requires exactly one argument;
it displays the value of that argument. To force a line feed
and carriage return, we have to use built-in predicate nl.
Therefore, if we have to display a number of items on several
lines, several items a line, and usually we have to do so,
then it is rather disappointing to use that huge amount of
single-argument write predicates and the nl predicates. To
overcome such problems, write definitions write and writeln
which accept 0 to 6 arguments, for instance, and writeln
performs line feed and carriage return as well. Rewrite the
program using these new predicates and enjoy the convenience
provided.

2.3 Pascal program

The strategy the Pascal program follows while solving the
puzzle is similar to the problem solving strategy used in the
mathematical reasoning and in the Prolog progam. The Pascal
program PhoneNunber investigates each possible value of the
first digit, Dl, in turn, generates further digits (D2, D3,
and D4) as well as the first half (.FirstVal ue) and the second
half (SecondVa1ue) of the phone number, if necessary, and
checks them against the constraints given in the puzzle.
Whenever a phone number, that is, a pair (FirstValue,
SecondVa1ue), satisfying all constraints is found, it is
recorded as two consecutive entries of array Results if and
only if it is the first occurrence of that phone number
(function Duplicate). This kind of a technique is forced by
the integer representation of Turbo Pascal: maxint = 2‘s =
32768. (Notice that the same problem appears in the Prolog

40

program PhoneNuaber (output);
const
TwiceMaxNoResults = 10;

type
Digit = 0..9 ;
ThreeDigitCard = 0..999;
TimesOrPlus = (times, plus);

var
FirstValue, SecondValue: ThreeDigitCard;
FirstTimes4: 0..9999;
Dl, D2, D3, D4: Digit;
WMchOne: TimesOrPlus;
TwiceNoSo1utions, Count: 0..TwiceMaxNoResu1ts;
Temp : 0..18 ;
TempRea1 : real;
Results: array C1..TwiceMaxNoResults] of ThreeDigitCard

procedure Display3 (Number: ThreeDigitCard);
(display an integer between 0 and 999 with leading zeros
begin Í Diplay3)

if Number > 99 then write(Number :0)
else if Number > 9 then writei’O', Number:0)
else if Number > 0 then write(’00’, Number:0)
else wr i te(’000’)

end; (Display3 }
function Duplicate (Numberl, Number2: ThreeDigitCard):

Boolean
(check if a result has already been encountered)

begin { Duplicate)
Dup1i cate := false;
Count := 1 ;
while (Count < TwiceNoSo1utions) and

((Resu 1ts[Count] <> Numberl) or
(Resu 1ts[Count+1] <> Number2))

do Count := Count + 2;
if Count < TwiceNoSo1utions then Duplicate := true

end; { Duplicate)
begin (PhoneNumber 1
TwiceNoSo1utions := 0;
for UhichOne := times to plus do
for Dl : = 0 to 9 do

if 2*D1 < 10 then
begin

D2 := 2*D1;
if UhichOne = times then Temp := 2*D2

else Temp := 2+D2;

41

if Temp < 10 then
begin
D3 := Temp;
FirstValue := 100*D1 + 10*D2 + D3;
FirstTimes4 := 4 * FirstValue;
if FirstTimes4 < 1000 then
begin

SecondValue := FirstTimes4;
D4 := SecondValue div 100;
if D4 = D3 then
if not ((FirstValue = 0) and

(SecondValue = 0)) then
if not Dup1icate(FirstVa1ue, SecondValue)
then
begin

if TwiceNoSo1utions > 0 then write 1 n(’or’);
write(’Frank’’s phone number is:’,

Dl:3, D2:0, D3:0, ’-’);
Display3(SecondValue);
wr i te 1n;
if TwiceNoSolutions = TwiceMaxNoResu1ts
then
begin
wr i te 1n;
write 1n(’Re-set the maximum number of ’,

’so 1ut ions-- ’ ,
(TwiceMaxNoResuIts div 2):0,

’ i s too sma11.’);
w г i t e 1 n

end
• else
begin
Resu1ts[TwiceNoSo1utions+1] := FirstValue;
TwiceNoSolutions := TwiceNoSolutions + 2;
Resu1ts[TwiceNoSo1utions] := SecondValue

end
end

end
end

end ;
if TwiceNoSolutions > 2 then
begin
wr i te 1n;
writeln(’The phone number is not unique, ’,

’the folks have to make some trials.’);
writeln(’The possible numbers are:’);
Count := 1;
while Count < TwiceNoSolutions do
begin
Display3(Results[Count!); write(’-’);
Display3(Results[Count+l!); writeln;
Count := Count + 2

end
end

42

e 1 se
if TwiceNoSo1 utions < 2 then
begin

wr i te 1 n;
writeln('The pieces of information given

’do not determine a phone number.’);
wr i te 1n;
write In(’(Note that 000-000 is not a valid phone number.)’)

end
end. { PhoneNumber }

---------- output

Frank’s phone nueber is: 124-496

program as well.) If array Results happens to be too small,
the program signals the fault and asks for re-setting the size
of the array. One might think that there cannot appear
multiple phone numbers, since the first digit is sufficient to
generate the complete phone number. The relation between the
second and the third digits is, however, disjuntcive, and if
£>2=2, then £>3=4 = 2#2 = 2 + 2 is obtained in both ways. This is not
a theoretical possibility, for the second digit is, in fact, 2
in the only result, and thus that result is generated twice.

The program tries to obtain the second half of the phone
number using the relation 4*FlrstVa1ue = SecondVa1ue. This
number, however, might have four digits; that is why a
four-digit integer, FirstTimes4, is used.

The program displays an answer to the question; if there
are more than one distinct phone number solutions, the program
lists all of them. In displaying the resulting phone
numberls), procedure Display3 is used, which displays an
integer between 0 and 999 as three characters, with leading
zeros if necessary.

As we can see, the Pascal program for solving this puzzle
is very simple, easy to understand, and easy to write. It
solves the puzzle very efficiently. The solution of the
puzzle by writing a Pascal program requires about the same
effort as the systematic investigation-exclusion in the
mathematical solution.

43

THECAif OF ТНК ее qe»;

з

In an oracle, there sat three gods, the God of Truth, the God
of Lie and the God of Wisdom. As they were sitting
side-by-side, they were quite alike, one could tell none of
them from any one of the others. But everyone knew the God of
Truth always told truths, the God of Lie always told lies, and
the God of Wisdom sometimes told truths and sometimes told
lies.

Once a philosopher arrived at the place to find out the
identity of the gods. He asked the god sitting on the left
hand side, "Who is sitting on thy side, Mighty God?"

"He is the God of Truth," the god said with dignity.

Then the philosopher asked the god sitting in the middle,
between the two others, "Who art thou, Glorious God?"

"I am the God of Wisdom, ” was the answer.

44

Finally, the philosopher asked the god sitting on the
right hand side, "And who is sitting on thy side, my Lord in
the Heavens?"

"The God of Lie," said the god.

How could then the philosopher identify the gods?

3.1 Solution

As for the god sitting between the others, the philosopher has
two different answers. That god cannot be the God of Truth,
since he told he was the God of Wisdom. He cannot be the God
of Wisdom either, since in that case the others, including the
God of Truth, would lie. Hence, the god sitting in the middle
can only be the God of Lie. Then the god sitting on the right
hand side is the God of Truth and the god sitting on the left
hand side is the God of Wisdom.

3.2 Prolog program

This puzzle essentially differs from the previous ones in that
not every statement is necessarily true. If each statement
might be true or false or partially true, then there would be
hardly any chance to solve the puzzle. Furtunately, the
statements in puzzles of the kind can be grouped: there are
true statements, there are false satements, and there are
statements that may be either true or false, which are most
likely to occur in everyday life. In this puzzle we have one
statement of each sort; each statement states something about
the god sitting in the middle. To identify the gods, the
philosopher has to find a one-to-one correspondece between the
gods and their positions:

truth lie wisdom left middle right

The method we have implemented in the Prolog program is
as follows. We suppose that a god is the god of something,
then check if the assumptions made so far contradict the
information given in the puzzle. If there is no
contradiction, then we either take another god or we are
ready, we have identified the gods. Otherwise we have to
change our last assumption and try to assign the positions for
the gods in another way. This process will end sooner or
later, hopefully in a heavenly harmony of statements and
identities of gods.

45

A closer look into the program

In order to fully understand the program, we should have a
look at the database first. We have three gods, who are
recorded in definition god, for example, god(truth). We know
the truth value or certainty level of statements made by the
individual gods, this information is recorded in definition
god_says. "The God of Truth always tells truth," for example,
translates into the clause godsays(truth, is_sure). The last
item in the database is definition saidmiddleis, which
records the statements the gods made (about the identity of
the middle god) as answers to the philosopher’s questions.
Clause said_middle_is(right, lie) means, for example, that the
god sitting at the right hand side said the god sitting in
between the others is the God of Lie.

Following the problem solving algorithm explained briefly
above, we investigate various statements about the identity of
the god sitting in between the others. These statements are
at different levels of certainty (is_sure, may_be, cannotJbe),
depending on the way they are made; they are recorded, at
least temporarily, as dynamic clauses aboutmiddle. If, for
example, the God of Wisdom says something, then it may be
true, or if we suppose that "the middle god is the God of
Lie," for instance, then we have to accept that statement for
sure.

After these preliminary thoughts, we can concentrate on
the actual algorithm. First, we take a god and suppose that
he is sitting in between the others: predicate
suppose_middle(GOD) records, temporarily, our assumption by
calling predicate temporary(GOD, is_sure); then it calls
predicate validityCmiddle, GOD) in order to find and record
what the god we have chosen to be in the middle said about
himself and at which level of certainty. (Predicate temporary
will be discussed in details later in the section.) At this
stage, clauses aboutmiddle represent our information derived
from the text of the puzzle and our assumption. It is now
time we checked the consistency of our information, that is,
we should check if we have contradictory clauses about_midd1e.
The check is actually performed by predicate contradiction.
We can have a contradiction in two ways: we have two true
statements (is_sure) that state different things (first
clause) or we have two statements, a true and a false one
(is_sure and cannot_be), that state the same thing (second
clause). If our information is consistent, we go on and
choose a god for the left hand side position. Then we call
predicate validityileft, L) to find and record what that god
said about the one in the middle and at which level of
certainty. And if the information gathered so far is
consistent, we take the remaining god, place him at the right
hand side position, and check the situation as above. If we
still cannot find any contradiction, we have identified the
gods.

46

% The Case of Three Gods

dynamic(about_middle/2).

start : -
god(M),
suppose_midd1e(M), not contradiction,
god(L), M =/= L,
va 1 idity(1eft, L), not contradiction,
god(R), R =/= M, R =/= L,
va 1 idity(right, R), not contradiction,
nl, write("The gods were sitting in the oracle as follows:"),
nl, nl, out(L), out(M), out(R), nl, nl,
retracta11(about_midd1e(_, _)).

start : -
nl,
write("The philosopher cannot figure out "),
write("the identity of the gods."), nl, nl.

suppose_middle(GOD) : -
temporary(GOD, is_sure),
va 1 idity(mi dd 1 e, GOD).

temporary(GOD, CERTA I NTY) : -
asserta(about_middle(GOD, CERTAINTY)).

temporary(GOD, CERTAINTY):-
retract(about_midd1e(GOD, CERTAINTY)), !, fail.

val idity(PLACE, G0D_0F):-
nonvar(PLACE), nonvar(GODJDF),
god_says(G0D_0F, CERTAINTY),
said_midd1e_is(PLACE, GOD),
temporary(GOD, CERTAINTY).

contradiction: -
about_mi dd1e(X,
about_mi dd1e(Y,
X =/= Y.

contradiction : -
aboutjnidd 1 e (X,
about_midd1e(X,

i s_sure),
i s _s u r e),

i s_sure),
cannot be).

out(X):- write(" God of "), write(X).

god(truth).
god(lie).
god(wisdom)

- 47 -

god_says(truth, is_sure).
god_says(1ie, cannot_be).
god_says(wisdom, may_be).

said_midd1e_is (1 eft, truth).
said_midd1e_isCmidd 1e, wisdom),
said_midd1e_is(right, lie).

---------- output
? start.

The gods were sitting in the oracle as follows:

God of wisdon God of lie God of truth

Yes

If the set of clauses about_middle prove to be
contradictory at any stage of the above algorithm, the program
backtracks, deletes the most recently asserted clauses and,
taking the next possible value of variables R, L, or M, tests
another branch of the search tree. The temporary assertion and
retraction, which have key roles in the program, are performed
by predicate temporary. When the problem solving process goes
ahead and calls predicate temporary, its first clause asserts
a new clause at the beginning of a dynamic definition. When
the process backtracks, on the other hand, the second clause
of temporary is activated, which deletes the first clause in
the dynamic definition, that is, the most recently asserted
one, and backtracking goes on. Obviously, such a definition
may be very useful in many other programs, too. That is why
some Prolog implementations have "backtrackable" assert and
retract as built-in predicates. For example MPROLOG provides
built-in predicates

add_statement_b(P) and del_statement_b(P)
Using these predicates, we can write more straightforward and
more concise programs.

On having a look at the mathematical solution and the
Prolog program, one might ask: Is it worth writing a program
for an easy problem like that? To tell the truth, the
mathematical solution is, in fact, simpler than the program.
But it is due to the small number of conditions. In other
puzzles of the same kind, we have to cope with more
conditions--if we can. It is, however, relatively easy to
modify the program to handle many more conditions.

48

Built-in predicates used in the program
not, = / = , nl, write, retractall, retract, asserta, nonvar, !,
fail.

Exercise

E3.1 Suppose you have "backtrackable" version of predicates
assert and retract. Rewrite the program using those
predicates.

49

«P я е Щ с ь Е ín л « S e r t

4

Kiwi is a prosperous travel agency specialized for long­
distance air trips. The secret of its fortune is very simple:
it offers tours around the wonderful oases of the Nowhere Land
Desert. If one wants to have a go, he chooses an oasis to
start from, and he and his range rover are taken by a
helicopter to that oasis. Then the helicopter returns, and he
starts his drive around. By the end of the term, agreed upon
with the agent before the trip, he has to come back to that
oasis, for then the helicopter fetches him and his range rover
and the journey is over. The price includes food as well as
gas used during the journey.

Uhen Mr. Prudent went to the Kiwi Travel Agency, he got
a map of the desert (a sketch of the map is shown below). The
map and the illustrated brochure, exploring some wonders of
the desert and promising many more, convinced him: he should
give it a try. But when he went back to the Agency a few days
later, the agent told him there had arisen some "tiny"
difficulties.

50

Allisdry

(1) "There a r e only a few g a l l o n s of gas left in the oases:

11 g a l l o n s in Allisdry,

14 g a l l o n s in Baikwell,

11 g a l l o n s in C a t e r e e k ,
32 g a l i o n s in Uuckpond,

a n d 25 g a 1 Ions

1 gallon
2 8 gallons
2 0 gallons

2 gallons
in I d 1e s e e k .

in Eventide,
in Far w a t e r ,
in Culpable,
in H o p e lake,

(2) "The h e l i c o p t e r has to c a r r y a lot of food to s u p p l y the
oases, so it c a n take y o u r r a n g e rover with no gas in it
o n l y . "

"No p r o b l e m , " said Mr. P r u d e n t , "I'll take s o m e gallons
from the h e l i c o p t e r ’s gas."

(3) "U n f o r t u n a t e l y , it's i m p o s s i b l e , " the agent said. "The
gas for a h e l i c o p t e r is of a q u i t e different kind. You c a n ’t
use it. But d o n ’t worry. H o w far can you get with a gallon
of gas in the t a n k ? "

(4) "25 m i l e s or so," said Mr. Prudent w e a r i n g a bit of a
long face.

(5) "Look," the a g e n t said. "Your range rover can take all
the gas you n e e d for the whole drive, c a n ’t it?" Mr. Prudent
nodded. "Q.K. You wanna d r i v e around, d o n ’t y o u ? Then,
eventually, y o u can start at a n y oasis. kell, tell me which
way round you w a n t to drive, a n d w e ’ ll be taking y o u to an
o a s i s from w h i c h y o u can drive a r o u n d . "

51

"Do you think there is enough gas to finish a circle?"

"Sure, there is."

"No, thanks. 1 can’t take the risk,” said Mr. Prudent
and left. ’Now 1 should go to the Vulture Agency to find a
flight over Nouhere Land. Then I can at least have a look at
the desert from high above, ’ he thought on his way home.

Uas Mr. Prudent too cautious when he did not trust the agent?

4.1 Solution

To answer the question, we should check if it is possible to
drive around with Mr. Prudent’s range rover in any way round,
and if it is possible, we should find the starting oasis and
the direction to be followed.

To avoid any unnecessary work, first we should check if
the combined amount of gas in all oases is enough for a
complete circle. If it is not enough, then it is, of course,
impossible to drive around. In the puzzle, the combined
amount of gas in all oases as well as the amount of gas needed
to complete a circle is 144 gallons; so we are not so lucky,
we have to keep on working.

Once the desired direction is fixed, we have to find an
oasis in which there is enough gas for the range rover to
reach the next oasis. If there are such oases, any one of
them can be a starting oasis and we have to try them out in
turn until we find a complete circle or there are no more
candidates. Otherwise, there is no oasis to start from that
way round.

When we reach the next oasis, we combine the gas remained
and the gas that is originally in that oasis, and try to drive
on from that oasis to the next one. If we do not have enough
gas to drive to the next oasis, then we cannot complete that
circle. Otherwise we test the next oasis similarly.

If we cannot complete a circle in one direction, then,
naturally (see Exercise E4.1), we have to try to find a
complete circle driving in the other direction. And we have
to do this even if we have found a complete circle in the
direction fixed first, since the agent said that Mr. Prudent
feel free to choose any direction, the agency would find an
oasis for his trip to start from. Notice, however, that one
complete circle found each way round is enough.

52

Let’s choose the clockwise direction first and try to
find a starting oasis. With a little bit of calculation, we
get that the candidates are: Allisdry, Duckpond, Farwater,
and Gulpable. And soon we have: Starting from Allisdry
oasis, Mr. Prudent cannot get farther than Catcreek, i.e., he
cannot reach the next oasis, Duckpond. Starting from Duckpond
oasis, he can drive as far as Eventide, but he cannot reach
the next oasis, Farwater. Fortunately, starting from Farwater
oasis, Mr. Prudent succeeds in driving around in clockwise
direction, using up the whole amount of gas in the oases.
Although there is another oasis, Gulpable, to start from, we
skip it and investigate the case when Mr. Prudent wants to
drive the other way round.

Let’s try to find a starting oasis for the drive in
counterclockwise direction. With a little work we get that
the candidates are: Balkwell, Duckpond, and Idleseek. Now we
obtain: Starting from Balkwell oasis, Mr. Prudent cannot get
farther than Allisdry, i.e., he cannot reach the next oasis,
Idleseek. Fortunately, starting from Duckpond oasis, he
succeeds in driving around in counterclockwise direction,
using up the whole amount of gas in the oases. Although there
is another possible starting oasis, Idleseek, we may skip it.
And we conclude that Mr. Prudent was too cautious when he did
not trust the agent.

Remark: It is easy to check that there is no other way to
drive around.

Exercise

E4.1 Is it true that if Mr. Prudent can complete a circle
driving one way round, then he can complete a circle driving
the other way round?

4.2 Prolog programs

As one can see, the above solution of the puzzle is rather
mechanical. And, obviously, a program is a much more
appropriate means of solution than manual calculation. In
this section, we are going to present two Prolog programs that
implement the same approach as the mathematical solution. We
note, however, that most other programming languages provide
equally adequate tools for implementing the algorithm.

53

Program Version 1
The data relevant to the program are recorded as clauses
oasis, neighbors, and direction. oasis is a two-argument
predicate, the first argument is the name of the oasis, while
the second one is the amount of gasoline (gallons) the oasis
provides initally. Predicate neighbors has three arguments:
the first and the second arguments are the names of two
neighboring oases listed in clockwise direction; the third
argument shows the distance (miles) between them. The two
opposite directions, clockwise and counterclockwise, are also
recorded.

The algorithm is very simple: first we choose an oasis
to start from, then we choose a direction, and try to reach
the same oasis driving permanently in the chosen direction.
If we fail to complete a circle, then we try driving in the
opposite direction, and if we fail again, we choose another
oasis to start from. In order to obtain all solutions, we
force backtracking even after a successfully completed circle.

The core of the program is definition reacMFROM, TO,
BEFORE, AFTER, DIR), which defines recursively when an oasis
(TO) is reachable, considering the gas supply (BEFORE, AFTER),
from another one (FROM) driving permanently in the same
direction (DIR). A destination oasis TO is reachable from a
starting oas i s FROM if there is an oasis Z such that Z is
reachab1e f rom FROM and TO is reachable from Z (second
clause)• t r : 4. u ~L_ 1 t IICr of two neighboring oases 1 £ reachable from
the other if the combined amount of gas the driver has at the
starting oasis (HAVE), that is the amount remained in the tank
(BEFORE) plus the amount he can get at that oasis, is not less
than the amount needed to reach the other oasis (NEED); AFTER
contains the amount of gas remained upon arriving at the
destination oasis (first clause). Notice that any oasis can
be reached starting from itself only if every other oasis is
visited en route. Hence the subgoal reach(X, X, 0, REST,
DIR), where X is bound to a particualr oasis, DIR is bound to
a particular direction, and 0 is the initial amount of gas in
the tank, provides us with a solution with the amount of gas
remained at the end of the trip in variable REST.

Notice that computation is quite important in this
program, and, what causes the real problem, the results may
not always be integers. Unfortunately, a number of Prolog
dialects do not support floating point arithmetic, which means
that programs written in those dialects cannot directly handle
fractions. To overcome this difficulty, we used the following
trick: Having investigated the data and the operations to be
performed on them, we realized that decimal fractions will not
have more than two digits. On this basis, we multiplied the
numbers by 100, performed the required operations, and, before
printing the result, we produced the integer and fractional
parts of the result, and arranged a suitable display format.

54

%
%

The Case of a Circle in a Desert
Version 1

dynamic(ci rc1e/0).

start : -
oas i s (X, _),
d i rect ion(DIR),
reach(X, X, 0, REST, DIR), assert(circ1e),
ni, write("Starting from "), write(X), write(" oasis, "),
nl, write("it is possible to drive around in "),
write(DIR), write(" direction."), nl,
write(" Gas remained: "), out(REST), nl, fail,

start:- circle, retracta11(circ1e).
start : -

nl, write("lt is impossible to drive around."), nl, nl.

r each(FROM, TO, BEFORE, AFTER, DIR):-
(DIR = clockwise, neighbors(FROM, TO, DISTANCE);
DIR = counterclockwise, neighbors(TO, FROM, DISTANCE)), !,

DISTANCE1 is 100*DI ST ANCE,
oas i s(FROM, GAS), GAS1 is 100*GAS,
NEED is DISTANCEl div 25,
HAVE is GAS 1 + BEFORE,
AFTER is HAVE - NEED.
HAVE >= NEED.

reach(FROM, TO, BEFORE, AFTER, DIR):-
reach(FROM, 2, BEFORE, AFTER_Z, DIR),
reach(Z, TO, AFTER_Z, AFTER, DIR).

out(N): -
N >= 0,
P is N div 100,
Q is N mod 100,
write(P), write!"."), write(Q).

oas is(allisdry, 11).
oas i s(ba1kwe11, 14).
oasis(catereek, 11).
oasis(duckpond, 32).
oas i s(eventide, 1).
oasis(farwater, 28).
oasis(gu 1pable, 20).
oas i s(hope lake, 2).
oasis(id 1eseek, 25).

neighbors(a 11isdry, balkwell, 270).
neighbors(ba1kwe 1 1 , catcreek, 355).
neighbors(catereek, duckpond, 277).
neighbors(duckpond, eventide, 100).
neighbors (eventide, farwater, 726).

55

neighbors(farwater,
neighborstgulpable,
neighbors(hopelake,
neighborslidleseek,

gu 1pab1e,
hope 1 ake,
i d1eseek,
a 11i sdry,

6 9 0) .
3 0 0) .
2 4 0) .
6 4 2) .

direction(clockwise).
direction(counterclockwise).

output
? start.

Starting fron duckpond oasis,
it is possible to drive around in counterclockwise direction.

Gas remained: 0.0

Starting from farwater oasis,
it is possible to drive around in clockwise direction.

Gas remained: 0.0

Yes

Built-in predicates used in program Version 1
write, nl, =, >=, -, +, », div, mod, is, !, ;, fail, assert,
rétracta 11.

Program Version 2
In this version we extend the previous program so that it
should have an extra control step at the beginning and that it
should produce a user-friendly trace of the trials. Before
even trying to move in any direction, it is wise to check if
the total amount of gas is enough for driving a whole
circle. This preliminary check is performed by predicate
pre_check, which calls predicate accumulate to compute the
combined amount of gas and the length of a circle.

In order to obtain a user-friendly trace of the trials,
we have extended the end of the first clause in definition
reach as well as the clauses in definitions start, out, and
outi which produce some output. Predicates out and outi now
produce tabulated messages which may include negative
fractions as well. Although the result justifies the effort,
we should notice that the size of the program fragment to
produce pretty input/output is not at all negligible (see also
the Pascal program in Section 1).

56

% The Case of a Circle in a Desert
X Version 2

dynamic(circle/0).
dynamic(quantity/1).

start : -
pre_check,
oasis(X, _), nl, nl,
write("Start from "), write(X), write(" oasis in"), nl,
direction(DIR) ,
urite(DlR), write(" direction:"), nl,
reach(X, X, 0, REST, DIR), assert(circ1e),
nl, write("Starting from "), write(X), write(" oasis, "),
nl, write("it is possible to drive around in "),
write(DlR), write(" direction."), nl,
write(" Gas remained: "), out(REST), nl, nl, fail,

start:- circle, re tracta 11(circ1e).
start : -

nl, write("It is impossible to drive around."), nl, nl.

pre_check: -
accumu1 ate(gas, GAS), accumu1 ate(mi1 es, MILES),
CAN_DRIVE is 25 *GAS, !, CAN_DRIVE >= MILES.

accumu1 ate(WHAT, TOTAL):-
assertiquantity(O)),
(WHAT == gas, oasis(_, QTY);
WHAT == miles, neighbors(_, _, QTY)),

retractfirst(quantity(Q)), Q1 is Q + QTY,
assert(quantity(Q1)), fail,

accumu1 ate(WHAT, TOTAL):-
(WHAT == gas; WHAT == miles),
retract(quantity(TOTAL)).

accumu1 ate(WHAT, TOTAL):-
nl, write("Program error--"), write(WHAT), nl, abort.

reachtFROM, TO, BEFORE, AFTER, DIR): -
(DIR = clockwise, neighbors(FROM, TO, DISTANCE);
DIR = counterclockwise, neighbors(TO, FROM, DISTANCE)), !,
D1STANCE1 is 100*DISTANCE,
oasistFROM, GAS), GAS1 is 100*GAS,
NEED is DISTANCE1 div 25,
HAVE is GAS 1 + BEFORE,
AFTER is HAVE - NEED,
tab(4), write(FROM), write(" -> "), write(TO),
write!" Have: "), out(HAVE), write(" Need: "), out(NEED),
write!" Remains: "), out(AFTER), nl,
(HAVE < NEED, !,
tab(59), write("Wrong way, go back."), nl, fail; true).

57

reach(FROM, TO, BEFORE, AFTER, DIR) : -
reachtFROM, Z, BEFORE, AFTER_Z, DIR),
reach(Z, TO, AFTER_Z, AFTER, DIR).

out(N):- N >= 0, tab(l), outl(N), !.
out(N): - N1 is -N, write("-"), outl(Nl).
outi(N) : -

P is N div 100,
Q is N mod 100,
(P < 10, !, tab(1); true),
write(P), writeC."), write(Q),
(Q < 10, !, write(O); true).

retractfirst(CLAUSE): - retract(CLAUSE), !.

oasis(allisdry, 11).
oas i s(ba1kwe11, 14).
oasis(catcreek, 11).
oasis(duckpond, 32).
oasis(eventide, 1).
oasis(farwater, 28).
oasis(gu 1pable, 20).
oasis(hope 1ake, 2).
oasis(id1eseek, 25).

neighbors(al1isdry,
neighbors(balkwel1,
neighbors(catcreek,
neighbors(duckpond,
neighbors(eventide,
neighbors(farwater,
neighbors(gulpable,
neighborsihopelake,
neighborsi idleseek,

ba1kwe11, 270).
catcreek. 355).
duckpond, 277).
eventide, 100).
farwater, 726).
gu 1pable, 690).
hope lake, 300).
idleseek, 240) .
a 11isdry, 642).

direction(clockwise).
direction(counterclockwise).

output
? start.

Start fron a 11isdry oasis in
clockwise direction:

a 11isdry -> balkwel 1 Have: 11.00 Need: 10.80 Regains: 0.20
balkwell -> catcreek Have: 14.20 Need: 14.20 Regains: 0.00
catcreek -) duckpond Have: 11.00 Need: 11.80 Regains: - 0.80

Urong way, go back
counterclockwise direction:

allisdry -) idleseek Have: 11.00 Need: 25.68 Regains: -14.68
Urong way, go back

58

Start fron balkwell oasis in
clockwise direction:

balkwell -) catcreek Have: 14.00 Need: 14.20 Reeains: - 0.20
Urong way, go back

counterclockwise direction:
balkwell -> allisdry Have: 14.00 Need: 10.80 Reaains: 3.20
allisdry -> idleseek Have: 14.20 Need: 25.68 Reaains: -11.48

Wrong way, go back

Start froa catcreek oasis in
clockwise direction:

catcreek -> duckpond Have: 11.00 Need: 11.80 Reaains: - 0.80

counterclockwise direction:
catcreek -> balkwell Have: 11.00 Need: 14.20

Wrong way, go back.

Reeains: - 3.20
Wrong way, go back.

Start fron duckpond oasis in
clockwise direction:

duckpond -> eventide Have: 32.00 Need: 4.00 Reaains: 28.00
eventide -> farwater Have: 29.00 Need: 29.40 Reaains: - 0.40

Wrong way,
counterclockwise direction:

duckpond -) catcreek Have: 32.00 Need: 11.80 Reaains: 20.92
catcreek -> balkwell Have: 31.92 Need: 14.20 Reaains: 17.72
balkwell -> a l 1isdry Have: 31.72 Need: 10.80 Reaains: 20.92
allisdry -> idleseek Have: 31.92 Need: 25.68 Reaains: 6.24
idleseek -> hopelake Have: 31.24 Need: 9.60 Reaains: 21.64
hopelake -> gulpable Have: 23.64 Need: 12.00 Reaains: 11.64
gulpable -> farwater Have: 31.64 Need: 27.60 Reaains: 4.40
farwater -> eventide Have: 32.40 Need: 29.40 Reaains: 3.00
eventide -> duckpond Have: 4.00 Need: 4.00 Reaains: 0.00

Starting iron duckpond oasis,
it is possible to drive around in counterclockwise direction.

Gas renained: 0.00

Start froB eventide oasis in
clockwise direction:

eventide -> farwater Have: 1.00 Need: 29.40 Reaains: -28.40
Wrong way, go back.

counterclockwise direction:
eventide -) duckpond Have: 1.00 Need: 4.00 Reaains: - 3.00

Wrong way, go back.

J

59

Start fron farwater oasis in
clockwise direction:

farwater -> gulpable Have: 28.00 Need: 27.60 Regains: 0.40
gulpable -> hopelake Have: 20.40 Need: 12.00 Regains: 8.40
hopelake -> idleseek Have: 10.40 Need: 9.60 Regains: 0.80
idleseek -> allisdry Have: 25.00 Need: 25.68 Resains: 0.12
al 1isdry -> balkwel 1 Have: 11.12 Need: 10.80 Regains: 0.32
balkwell -> catcreek Have: 14.32 Need: 14.20 Regains: 0.12
catcreek -> duckpond Have: 11.12 Need: 11.80 Regains: 0.40
duckpond -> eventide Have: 32.40 Need: 4.00 Regains: 28.40
eventide -) farwater Have: 29.40 Need: 29.40 Regains: 0.00

Starting fron farwater oasis,
it is possible to drive around in clockwise direction.

Gas renained: 0.00

counterclockwise direction:
farwater -> eventide Have: 28.00 Need: 29.40 Regains: - 1.40

Wrong way, go back.

Start frog gulpable oasis in
clockwise direction:

gulpable -> hopelake Have: 20.00 Need: 12.00 Regains: 8.00
hopelake -> idleseek Have: 10.00 Need: 9.60 Regains: 0.40
idleseek -> allisdry Have: 25.40 Need: 25.68 Regains: - 0.28

Wrong way, go back.
counterclockwise direction:

gulpable -) farwater Have: 20.00 Need: 27.60 Regains: - 7.60
Wrong way, go back.

Start frog hopelake oasis in
clockwise direction:

hopelake -> idleseek Have: 2.00 Need: 9.60 Regains: - 7.60
Wrong way, go back.

counterclockwise direction:
hopelake -) gulpable Have: 2.00 Need: 12.00 Regains: -10.00

Wrong way, go back.

Start frog idleseek oasis in
clockwise direction:

idleseek -) a l 1isdry Have: 25.00 Need: 25.68 Regains: - 0.68
Wrong way, go back.

counterclockwise direction:
idleseek -) hopelake Have: 25.00 Need: 9.60 Regains: 15.40
hopelake -> gulpable Have: 17.40 Need: 12.00 Regains: 5.40
gulpable -> farwater Have: 25.40 Need: 27.60 Regains: - 2.20

Wrong way, go back.

Yes

60

Notice finally that groups

(HAVE < NEED, !,
tab(59), write("Wrong way, go back."), nl, fail;
true)

or
(P < 10, !, tab(l); true)

are of the pattern

(CONDITION, !, THEN ; true)
which, dec 1 arat ive 1 y, means that the group is true if
CONDITION as well as THEN is true, or if CONDITION is false.
Procedura 11 y, the group translates into the following: "If
CONDITION is true then evaluate THEN and, if the evaluation
yields true, go on to the next predicate following the group,
or, if the evaluation yields false, backtrack starting at the
predicate immediately preceding the group; otherwise do
nothing but go on to the next predicate right after the
group." The corresponding Pascal control structure is

if CONDITION then THEN ;
For some more details about the subject, see Section 8.

Built-in predicates used in program Version 2
write, nl, tab, ==, =, > = , <, -/2, +, *, -/1, div, mod, is, :,
;, fail, true, assert, retract, rétractai 1, abort.

Notice that -/1 denotes the unary minus, the minus sign,
while -/2 denotes the binary operator subtract.

Exercise

E4.2 Rewrite the programs in Pascal.

61

c$t£SN ÍSUM) 5 EASTERN ISLAND

CB IE°Í THE MÎDÇEJ Sri

5

In the ldth century, there were seven bridges over the river
Pregel in the city of Koenigsberg (or Kaliningrad, as is knoun
nowadays). The figure above shows the relevant part of a map
of the city. The citizens living in Koenigsberg used to take
walks along the banks and in the islands crossing one bridge
or another. And then, among the dames, noblemen, and
noblewomen parading along on holidays, the question arose: Is
it possible to walk around crossing every bridge exactly once?

Answer the question.

5.1 Solution

When one actually takes a walk, he may walk around on the
banks or islands before or after crossing a bridge. Such
mainland or island walks are of no importance, however, when

62

we want to solve the puzzle. Neither are of any importance
the walks from one bridge to another on the same bank or
island. Hence, we can represent a bank or an island as a node
and a bridge as an edge between two nodes, having the
following graph representation of the puzzle:

And the question of the citizens of Koenigsberg is as follows:
(Q) Is it possible to walk along the edges of the graph in
such a way that every edge is used exactly once?

We say a graph is connected if there is a route via its
edges between any two nodes in it. Consider a node of a
connected graph for which the answer to question (Q) is yes,
and let R denote a route covering every edge exactly once. If
the node is neither the start node nor the end node of route
R, then whenever we reach the node via an edge, we should
leave it via another. Thus, the number of the edges connected
to the node is even. If the node is the start (or end) node
of route R, then we reach it at the beginning (or at the end)
of the route and we may reach it several times later (or
before). In the latter case, whenever we reach it via an
edge, we leave it as well via another, which means an even
number of edges connected to the node. An extra initial (or
final) edge is also connected to this node (this is the only
edge connected to it if the node is not reached en route).
Therefore, the start node and the end node may have an odd
number of edges connected to them. (Moreover, they have an
even number of edges connected to them if and only if they are
identica1.)

63

From the above it follows that for the existence of a
route covering every edge exactly once, it is necessary the
graph have at most tvo nodes with an odd number of edges
connected to them.

Consider now the graph representation of the puzzle and
check if the above condition holds. Since that graph has
three nodes with three edges connected to them and one node
with five edges connected to it, the condition does not hold.
Consequently, it was impossible to walk around in Koenigsberg
crossing every bridge exactly once.

Exercises

E5.1 Show that the above condition in boldface is a necessary
condition for nonconnected graphs as well.

E5.2 Prove that the above condition is a necessary and
sufficient condition for connected graphs.

5.2 Prolog program

This famous old puzzle helped a lot in developing a new brauen
of mathematics, namely graph theory. Leonhard Euler, a
prominent mathematician in the 18th century, introduced new
concepts, and, on that new level of abstraction, he proved
that it was impossible to walk around in Koenigsberg crossing
every bridge exactly once. If then, when this problem arose,
computers had been existed, a practical computer programmer
would probably have suggested a solution of an entirely
different kind: he would have programmed a trivial algorithm
of trying the different paths, which, manually, is a very hard
job even for seven bridges.

Now, at the end of the twentieth century, we have the
tools to write a program which implements that algorithm. The
program must give the same result, of course. Still, the
program is not one without interest. It is very easy to alter
the data in the program, which enables us to solve various
problems of the kind with negligible extra effort. Ue will
illustrate this possibility at the end of the section.

A closer look into the program

The seven bridges connect two banks and two islands, which are
the possible starting point of our walk. Ue take a possible
starting point and try to walk around by calling predicate
walk. As soon as it is proved that we cannot cross every
bridge exactly once, the algorithm backtracts and we test the
next possible starting point. The algorithm stops if it has

% The Case of the Bridges in Koenigsberg

start : -
environment, nl, nl,
write("Try to take a walk crossing the bridges as required,
n1, 1 and(LAND1),
nl, write("Start from "), writeCLAND1),
write!" and go ..."), nl,
wa 1 к (LAND 1, _, [1,2,3,4,5,6,73, [], STOPS, [], ROUTE),
out(STOPS, ROUTE),

start : -
nl,write("It is impossible to walk around "),
write("crossing every bridge exactly once."),nl.

environment:- set_state(eva1uation_limit, 50000).

walk(FR0M, TO, COVER], ST, STOPS, RT, ROUTE)
cross_bridgelFROM, TO, OVER, COVER], REST),
append(ST, CTO], STOPS), appendCRT, COVER], ROUTE), !.

wa1 к(FROM, TO, BRIDGES, ST, STOPS, RT, ROUTE)
cross_bridge(FROM, STOP, OVER, BRIDGES, REST),
append(ST, [STOP], ST1), append!RT, COVER], RT1),
wa1 к(STOP, TO, REST, ST1, STOPS, RT1, ROUTE).

cross_bridge!LANDl, LAND2, OVER, BRIDGES, REST):-
memberCOVER, BRIDGES),
(bridgeCOVER, connects !LAND1, LAND2));
bridgeiOVER, connects (LAND2, LAIMD1))),

delete!OVER, BRIDGES, REST).

appendC C], L2, L2).
appendCCXI LI], L2, С X1L 3): - appendtLl, L2, L).

deleteCH, CHIT], T).
de 1 ete(X, CHIT], CH INEUL1 ST 3): - deleteCX, T, NEWL1ST).

member(X, СX IT]).
member(X, CYST]) : — memberCX, T).

out(t X], C Y 3 > : -
tab(30), write("over to "), write(X),
write!" via "), write(Y), write!"."), nl, nl, !.

out (CHI IT13, С H2!T23): —
tab!30), write("over to "), write(Hl),
write!" via bridge "), write(H2), write!", then"), nl,
out(T1, T2).

out! C 3, U).

- 65 -

1 and(northern_bank).
land(western_island).
land(southern_bank).
1 and(eas tern_i s I and).

bridged, connects (nor thern_bank, western
bridge(2, connects(northern_bank, western
bridgeO, connects (southern_bank, western
bridge(4, connects(southern_bank, western
bridge(5, connects(western_i s 1 and, eastern
bridge(6, connects(northern_bank, eastern
bridged, connects (southern_bank, eastern

---------- output ----------

? start.

Try to take a walk crossing the bridges as required.

Start fron northern_bank and go ...

Start fro« western_island and go ...

Start fron 50uthern_bank and go ...

Start fro« eastern_island and go ...

It is inpossible to walk around crossing every bridge exactly once.

Yes

i s 1 and)).
i s 1 and)).
i s 1 and)).
i s1 and)).
i s 1 and)).
i s 1 and)).
i sland)).

investigated all possible starting points and if it could not
find any way to cross every bridge exactly once. It also
stops as soon as a particular way for crossing every bridge
exactly once is found, in which case it calls predicate out,
which lists that route.

The most important part of the program is predicate
wa1 к(FROM, TO, BRIDGES, ST, STOPS, RT, ROUTE) where FROM is
the piece of land we walk from, TO is the piece of land we
walk to, and BRIDGES is the list of bridges to be crossed.
The next four arguments store information about the route we
have made: STOPS collects the banks and islands visited in
turn, while ROUTE collects the bridges crossed in turn.
Arguments ST and RT are auxiliary variables for the collection
of stops and bridges crossed. Our subgoal of "walk from LAND1
to anywhere such that every bridge be crossed exatcly once"
translates into the clause

wa1 к(LAND1, _, [1,2,3,4,5,6,71, [], STOPS, M, ROUTE)

66

The recursive definition walk has two clauses. The first
handles the case when exactly one bridge left (.COVER 1 is a
list of exactly one element). If it is possible to cross that
last bridge, we complete the output lists and our walk ends in
success. If we have more than one bridge to cross (second
clause), we take one of them and cross it arriving at a bank
or island; we append those items to the lists STOP and ROUTE,
and the recursive process goes on.

The actual crossing of bridges is performed by predicate
cross_bridge. This predicate takes the next bridge to be
crossed (predicate œember) and examines if that bridge
connects the place we are standing at with another bank or
island. If it does, then that bridge is taken out of the list
of the bridges not yet crossed (predicate delete).

Another problem
Suppose now that, after a heavy rain, Koenigsberg were flooded
and bridge No. 7 were distroyed. The question of the
citizens can now be the same: "Can they walk around crossing
each one of the bridges remained exactly once?" Having written
the Prolog program, we can answer the question very easily.
All we have to do is change the call to predicate walk for the
fо 11 owing :

walk(LANDl, [1,2,3,4,5,61, [1, STOPS, U, ROUTE)
In the case of 6 bridges, the program list a possible way

for crossing every bridge exactly once (see the figure below).
If we ask the goal

? start, fail.

the program lists every possible way for crossing the six
bridges, each bridge exactly once. We do not wish to present
that long output in the report.

? start.

Try to take a ualk crossing the bridges as required.

Start fron northern_bank and go ...
over to vestern_island via bridge 1, then
over to northern_bank via bridge 2, then
over to eastern_island via bridge 6, then
over to vestern_island via bridge 5, then
over to southern_bank via bridge 3, then
over to vestern_island via 4.

Yes

67

Built-in predicates used in the program

write, nl, tab, setstate, !.

68

\

6

Ue have five boxes, a red, a blue, a white, a black, and a
green one, and ten balls, 2 red, 2 blue, 2 white, 2 black, and
2 green ones. \Je should put the balls into the boxes such
that :

(1) Into each box, we should put two balls the color of
neither of which is the same as that of the box.

(2) There should be no blue ball in the red box.

(3) There should be a box of neutral color with a red and a
green ball inside (the neutral colors are: black and white).

(4) The black box should contain balls of cold color (the
cold colors are: green and blue).

(5) There should be a box with a white and a blue ball
inside.

There should be a black ball in the blue box.

Can we do it?

69

6.1 Solution

The box of neutral color of constraint (3) cannot be black,
since, according to (4), the black box should contain balls of
cold color and red is not a cold color. Therefore, the white
box contains a red and a green ball.

Constraint (4) says that the black box should contain two
green balls, or two blue balls, or one green ball and one blue
ball. Moreover, there must be a green ball in the white box;
and, according to constraint (5), a blue ball, together with a
white one, should be in some other box. Consequently, the
black box contains a blue and a green ball.

What color can the box of constraint (5) be? It can be
neither white nor black; according to constraint (2), it
cannot be red; and, according to constraint (6), it cannot be
blue either. Thus, the green box contains a white and a blue
ball.

There are two boxes, a red and a blue one, and four
balls, a white, a red and two black ones, left. The red box
contanins a black and a white ball, because it can contain
neither a red ball, according to constraint (1), nor two black
ones, according to constraint (6).

And, finally, the blue box contains a red and a black
bali--that is the remaining box and those are the remaining
balls. It is easy to check, moreover, that no constraint is
V io 1ated.

From the above argument it also follows that this is the
only way to satisfy all constraints.

6.2 Prolog program

It is a classical puzzle again: we have to put color balls
into color boxes so that a couple of requirements be
fulfilled. When we solve such a problem, we try to satisfy
the most restrictive requirement in order to minimize the
number of trials required. This is our basic strategy, which
is applicable to any problem of the kind. It is, however, too
general, which implies that we have to "invent" a new
particular technique for almost each problem.

The Prolog program implements a naive and more general
approach: the rules and facts in the program can easily be
modified to solve most puzzles of this kind. The boxes and
the balls are stored in two lists;, the conditions of the
puzzle are represented by rules, each condition has a

70

% The Case of Some Color Boxes and Balls

start:-
boxes(BOXES) , ba11s(BALLS),
put_bal1s(BOXES, _ , BALLS, _ , [], RESULT),
out(RESULT) .

start : -
nl, write("The balls cannot be put into the boxes "), nl,
write("such that all conditions be fulfilled."), nl, nl.

put_bal1s(Boxes 1n, BoxesOut, Bal Isin, BallsOut, RESULTO, RESULT)
take(BOX, Boxesln, BoxesOut),
boxCBOX, X, Y, Ballsln, BallsOut),
append(RESULTO, CBOX,X,Y], RESULT 1),
put_balIsCBoxesOut, _, BallsOut, _, RESULT1, RESULT).

put_bal1st [], , , , RESULT, RESULT).

boxiblue, black, Y, Ballsln, BallsOut):-
take(black, Ballsln, BallsTemp),
take(Y, BallsTemp, BallsOut), Y =/= blue.

box(red, X, Y, Ballsln, BallsOut):-
take(X, Ballsln, BallsTemp), X =/= red, X =/= blue,
take(Y, BallsTemp, BallsOut), Y =/= red, Y =/= blue,

boxtblack, X, Y, Ballsln, BallsOut):-
take(X, Ballsln, BallsTemp), X =/= black, со 1d_co1 or (X),
take(Y, BallsTemp, BallsOut), Y =/= black, со 1d_co1 or(Y).

box(BOX, red, green, Ballsln, BallsOut):-
BOX =/= red, BOX =/= green, neutra1_co1 or (BOX),
take(red, Ballsln, BallsTemp),
take(green, BallsTemp, BallsOut).

box(BOX, white, blue, Ballsln, BallsOut):-
BOX =/= white, BOX =/= blue,
take(white, Ballsln, BallsTemp),
take(blue, BallsTemp, BallsOut).

out(RESULT): -
append([BOX, BALL1, BALL2], REST, RESULT),
nl, write("There is a "), write(BALL1), write!" and a "),
write(BALL2), write!" ball in the "),
write(BOX), write!" box."),
out(REST).

out([]): - n1, n 1.

take(H, [HITI, T).
take(X, [HIT], [H INEUL1 ST]) : -

take(X, T, NEUL1ST).

append([], L2, L2).
append([X I LI], L2, [XIL3]): — append(Ll, L2, L3).

71

boxes([white, red, green, blue, black]).

balls([white,white, red,red, green,green,
blue,blue, black,black]).

neutral_color(white).
neutral_color(black).

cold_color(green).
со Id_color(blue).

---------- output ----

? start.

There is a red and a green ball in the white box.
There is a white and a black ball in the red box.
There is a white and a blue ball in the green box
There is a black and a red ball in the blue box.
There is a green and a blue ball in the black box

Yes

corresponding clause box(BOX, BALL1, BALL2, Bal Isin, BallsOut)
except the first one, which is incorporated into the box
clauses in order to improve efficiency.

The problem solving algorithm is very simple: Take a box
and put two balls into it such that all requirements be
satisfied. If you can do that, take the box and the two balls
out of the lists, and repeat the procedure by taking the next
box in the list. If you fail to find balls as required, you
should have filled in a previous box in some other way,
therefore you should now put back boxes and balls inside them
onto the lists until you find another way for filling in a box
(backtracking). If you do not find any new way of filling in
any box, then you have examined all possible cases and you can
conlcude that it is impossible to fulfill all requirements.
On the other hand, if both lists (the list of boxes and the
list of balls) are empty, you have filled in the boxes so that
all requirement are satisfied.

The above algorithm is implemented by the recursive
definition put_ba11s(Boxes In, BoxesOut, Ballsln, BallsOut,
RESULTO, RESULT), where Boxes In and BoxesOut denote,
respectively, the list of empty boxes and the list of balls
not yet put into boxes at the beginning of a step of the
algorithm, while BoxesOut and BallsOut denote, respectively,
the list of empty boxes and the list of balls not yet put into
boxes at the end of a step of the algorithm; RESULTO is an
auxiliary parameter: it is the empty list at the beginning of
the algorithm, then it accumulates the successfully matched

72

boxes and balls; and RESULT will contain the corresponding
boxes and balls at the end of the successful recursive
process.

The boxes and balls are taken out of the lists by
predicate take(WHAT, OUT_OF, REMAINS), and the selected items
are checked by predicate box. If the test is unsuccessful,
the algorithm backtracks. Otherwise predicate append appends
the resulting sublist [BOX, X, YJ at the end of list RESULTO,
and the process starts again recursively.

The recursive process stops as soon as list Boxesln (and
also list Ballsln) becomes empty, in which case predicate
out(RESULT) displays a solution to the puzzle, or it stops
when all possible cases are tested and no solution is found.
(Notice the usage of predicate append in definition out.)

Built-in predicates used in the progran
nl, write, -/=.

Exercises

E6.1 Notice that the order of subgoals in program clauses is
chosen so that the algorithm do not perform unnecessary
operations. This is not the case with the list of boxes and
balls (they are listed in reverse alphabetical order), though
the actual order of list elements significantly affects the
performance of the program. Sort the elements of the lists to
speed up the program.

E6.2 What is the difference between the definition

app([X ! LI 1, L2, [X!L3]) app(Ll, L2, L3).
app([], L2, L2).

and the definition of append given in the program? When
should we use one or the other? (Be careful with the order of
clauses in recursive definitions: a stopping clause at the
end may be a "royal way" to infinite recursion.)

E6.3 What is the difference between predicates take and
append?
Notice that we do not actually need predicate append in the
above program, we can use predicate take instead. In that
case, however, we obtain the resulting list in reverse order.
In order to reverse the list, we can use predicate reverse:

reverse(H, L3) reverse(Ll, il, L3).
reverse([X ! LI 1, L2, L3) reverse(Ll, [X!L2], L3).

73

which is, forutnately, more efficient (linear) than the usua
definition using append (which is quadratic):

rev([1, t1).
rev([X!Lll, L3) revCLl, L2), append(L2, [XI, L3)

Rewrite the program using predicate take instead of append.

74

* * £ i t Je JntüSSiEvM *ß*v *

7

Once upon a time there were two integer numbers either of
which was greater than one and less than a hudred. And there
were two friends. Monsieur P and Monsieur S, too, either of
whom was rather on the close-mouthed side. Monsieur S happend
to learn the sum of the two numbers, and Monsieur P happend to
learn the product of the numbers. One evening Monsieur P
phoned his friend.

(1) ”1 don't know the two numbers,” said Monsieur P.

(2) "I know you can’t know them," said Monsieur S.

(3) ”Now I’ve got them, ” said Monsieur P after a short while.

(4) "So ... Now I've got them, too,” said Monsieur S and
hung up.

That’s how Messieurs P and S got the two numbers.

Find the two numbers.

75

7.1 Solution

Let x and y denote the two integers between 1 and 100.
Obviously, if x=a, y=b is a solution, then x=b, y=a is also a
solution. Therefore, it is sufficient to find a solution with
X й y. Sentence (1) actually states that the product xy
cannot be factorized uniquely. Therefore, as is easy to see,
from sentence (1) it follows that

(a) both integers cannot be primes at the same time and
(b) neither of them can be a prime greater than 50.

Sentence 12) actually states that the sum x + y cannot be
the sum of two terms a and b such that the product ab is
uniquely factorizab 1e. Consequently, from sentence (2) it
foilows that

(c) x+y cannot be the sum of two terms
for which (a) and (b) hold.

Moreover, sentence (2) implies that
(d) x+y < 55, for otherwise x+y = 53 + n where n i 2, in

which case xy might be the product 53*n, which has
a unique factorization: x=53, y=n (c.f. (b)) ;

(e) x+y is an odd integer, since it is at least 5 and,
as is easy to check, each even numbers between 3
and 55 is the sum of two prime numbers (c.f. (a)
and Exercise E7.1); and

(f) x+y-2 cannot be a prime (c.f. (a)).

Sentence (4) actually states that there has remained a
unique way to divide the sum x+y into two terms. Therefore,
from sentence (4) it follows that

(g) x+y £ 31, for otherwise x+y = 31+2k = 29+2(k+1)
where к is a positive integer (c.f. also (e)), in
which case sentences (1)—(3) allow x and у to be
either x=2k, y=31 or x=2(k + 1), y=29.

Constraints (e), (f), and (g) imply that the possible
sums x+y are 11, 17, 23, 27, and 29.

Then, forming the possible sums, we have:
If x+y=i.l,
then sentences (1) - (3) allow, e.g. , x- 3, У~ 8 or <rIIbe У- 7.

If x+y=23,
then sentences (1) - (3) allow, e.g IIbe y=16 or x=4, y=19.

If *+y=27,
then sentences (1) - < 3) allow, e.g * и CD y= 19 or * = 4, y=23.

If x+y=29,
then sentences (1) - (3) allow, e.g COII* y-16 or x = 6, y=23.

In all but the last cases, it is easy to see that
constraint (e) exc1udes any other factor i zat i on of xy (e.g. ,
3*8=4*6=2*12 and the sums of the factors are even in the last
two cases), thus, Monsieur P can, in fact, know x and y. In
the last case, 6*23=3*46=2*69; 46+3-2 is a prime and

76

69+2 > 55. Therefore, Monsieur P can know x and y in the last
case, too. Monsieur S, however, cannot uniquely find the two
numbers in any of the above cases.

On the other hand, if x+y=17, then sentences (l)-(3)
allow x = 4, y=13 only. The rest of the seemingly possible sums
are excluded because xy has at least two (not necessarily
different) odd prime factors. Thus, if xy is not divisible by
4 and if x is not equal to 2, then sentences (1) and (2) are
valid for both pairs x, y and x ’ = 2, y'=xy/2 (notice that xy/2
< 36 and odd), and, consequently, Monsieur P cannot say
sentence (3). As for the remaining cases, pair x=2, y=15 is
indistinguishable from pair x=5, y=6, pair x=5, y=12 is
indistinguishable from pair x=3, y=20, and pair x=Q, y-9 is
indistinguishable from pair x=3, y=24 for Monsieur P.
Therefore, x=4, y=13 is only case when all sentences can and
do hold.

Consequently, the two integers were 4 and 13, and 52 was
given to Monsieur P, while 17 was given to Monsieur S.

Exercise

E7.1 For a small even number greater than two it is easy to
find two primes whose sum is that number. (We used this fact
for even numbers less than 55 in the solution.) The general
statement is known as Go 1dbach’s conjecture: Every even
number greater than two is the sum of two primes; moreover,
every odd number greater than five is the sum of three primes.
Try to prove or refute the conjecture.

7.2 Prolog program

When we read the puzzle at the first time, all we can do is
realize: it is not at all easy. And when studying its
solution above, we feel to be confirmed. Althoug we can
translate the sentences of the conversation into arithmetical
conditions in a few minutes, the actual application of our
ideas requires a great deal of tedious investigation.
Fortunately, we can program the arithmetical conditions as
we 1 1 as those parts of the solutions in the case of which we
have no helpful idea. Moreover, the Prolog program obtained
is rather transparent, short, and contains a fairly efficient
algorithm for generating prime numbes as well.

A closer look into the program

To form the arithmetical conditions, we need the prime numbers
less than 100. Therefore, at the beginning of the program, we

77

% The Case of Messieurs S and P

dynamic(pr ime/1).
dynamic(sum/i).
dynamic(prod/5).
dynamic(exist/0).

start : -
environment,
generate_primes(1, 100),
nl, write("At the beginning of the conversation, "), nl,
writeCthe possible sums are: 5 <= SUM <= 197 "), nl,
generate_sum,
nl, write("After the 2nd sentence of the conversation,"),
nl, write("the possible sums are: "), nl,
select, nl, out,
nl, write("After the 3rd sentence of the conversation,"),
nl, write("the possible products are: "), nl, nl,
products, outi, nl, nl,
write("After the 4th sentence of the conversation, "), nl,
write("the possibe pairs of numbers are: "), nl, nl,
unique,
rétractai 1(prime!_)),
rétractai 1(sum(_)),
rétracta 11(prod(_, _, _, _, _)).

environment:- set_stäte(eva1uation_l imit, 50000).

generate_primes(FR0M, TO):-
integer(FROM), integer(TO),
0 < FROM, FROM < TO, TO > 4,
primes(FROM, 4, 0, 9, TO).

generate_sum: -
number(5, 197, N),
assert(sum(N)), fail.

generate_sura.

number(FROM, TO, FROM),
number(FROM, TO, N):-

M is FROM+1, M <= TO,
number(M, TO, N).

se 1 ect: -
sum(N), N > 54,
retractfirst(sum(N)), fail,

se 1 ect : -
prime(P), prime(Q), P < Q,
N is P+Q, N < 55,
retractfirst(sum(N)), fail.

78

select:-
prime(P), Q is P*P, Q < 100,
N is P + Q, N < 55,
retractfirst(sum(N)), fail,

select:-
prime(R), prime(Q),
P is R*Q, P < 100, Q2 is Q*Q, Q2 > 100,
N is P+Q, N < 55,
retractfirst(sum(N)), fail,

seiect.

out : -
sum(N),
write(N), tab(2), fail,

out : - n 1, n 1.

products : -
sum(SUM),
HALF is SUM div 2, number(2, HALF, N),
M is SUM-N, PROD is N*M,
product(SUM, N, M, PROD), fail,

products.

product(SUM, N, M, PROD):-
prod(_, _, _, PROD, MULT), MULTI is MULT+1,
retractfirst(prod(_, _, _, PROD, MULT)),
assert(prod(_, _, _, PROD, MULTI)), !.

product(SUM, N, M, PROD): -
assert(prod(SUM, N, M, PROD, 1)).

outi : -
prod(_, _, _, PROD, MULT),
(MULT == 1, out2(PROD);
MULT > 1, retractfirst(prod(_, _, _, PROD, MULT))),

fail.
outi : - n1.

out2(PROD): -
(PROD < 100, !, tab(1) ; true), write(PROD), tab(l).

unique : -
prod(SUM, _, _, PR0D1, 1), prod(SUM, _, _, PR0D2, 1),
PR0D1 =/= PR0D2,
retract(prod(SUM, _, _, _)), fail,

unique : -
prod(SUM, N, M, PROD, 1), assert(exist),
tab(15), write(N), writeC and "), write(M), tab(3),
write("sum: "), write(SUM), tab(3), write("product : "),
write(PROD), nl, nl, fail,

unique:- exist, rétracta 11(exist).
unique:- tab(15), write("none"), nl, nl.

re tractfiг st(CLAUSE):- retract(CLAUSE), !.

5

79

p r i m e s * I N T E G , I N C , M A X , S Q U A R E , L I M I T) : -
I N T E G 1 is I N T E G + I N C , I N T E G 1 < L I M I T ,
s e t _ t e s t _ p a r s (1 N T E G 1 , M A X , S Q U A R E , M A X I , S Q U A R E 1 , E Q)
a d d _ p r i m e (I N T E G 1 , M A X I , E Q) ,
1 N C I is 6 - I N C ,
p r i m e s * I N T E G 1 , I N C I , M A X I , S Q U A R E 1 , L I M I T) ,

p r i m e s * I N T E G , I N C , M A X , S Q U A R E , L I M I T) : -
a s s e r t a (p r i m e (3)) ,
a s s e r t a (p r i m e (2)) .

s e t _ t e s t _ p a r s < I N T E G 1 , M A X , S Q U A R E , M A X , S Q U A R E , n o t _ e q) :
I N T E G 1 < S Q U A R E , !.

s e t _ t e s t _ p a r s (I N T E G 1 , M A X , S Q U A R E , M A X I , S Q U A R E 1 , E Q) : -
p r i m e (M A X l) , M A X I > M A X , S Q U A R E 1 is M A X I * M A X I ,
(I N T E G 1 = = S Q U A R E , !, E Q = e q u a l ; E Q = n o t _ e q), !.

s e t _ t e s t _ p a r s (I N T E G 1 , M A X , S Q U A R E , M A X , S Q U A R E , E Q) : -
(I N T E G 1 = = S Q U A R E , !, E Q = e q u a l ; E Q = n o t _ e q), !.

a d d _ p r i m e (N U M B E R , M A X , e q u a l) .
a d d _ p r i m e (N U M B E R , 0, n o t _ e q) : - a s s e r t (p r i m e (N U M B E R)), !.
a d d _ p r i m e (N U M B E R , M A X , n o t _ e q) : -

p r i m e (P) , P < = M A X , R E M is N U M B E R m o d P,
(R E M = / = 0, P = = M A X , a s s e r t * p r i m e (N U M B E R));

R E M = = 0, t r u e).

o u t p u t

? start.

At the beginning of the conversatien,
the possible suns are: 5 <- SUH <- 197

After the 2nd sentence of the conversation,
the possible suss are:

11 17 23 27 29 35 37 41 47 53

After the 3rd sentence of the conversation,
the possible products are:

18 24 28 52 76 112 130 50 92 110 140 152 162 170 176 C
MCO 54 100 138 154

168 190 198 204 208 96 124 174 216 234 250 276 294 304 306 160 186 232 252 270
336 340 114 148 238 288 310 348 364 378 390 400 408 414 418 172 246 280 370 442

CD О 496 510 522 532 540 550 552 240 282 360 430 492 520 570 592 612 630 646 660
672 682 690 696 700 702

After the 4th sentence of the conversation,
the possibe pairs of nuahers are:

4 and 13 sub: 17 product: 52

Yes

80

call predicate generate_primes(1, 100), which generates the
prime numbers between 1 and 100 and stores them as dynamic
clauses prime(P). The actual algorithm of prime number
generation will be discussed later.

To start the actual puzzle solving algorithm, we have
also to have the set of possible suras. Since the integers
given to Messieurs P and S are distinct* the smallest possible
sum is 5, while the biggest possible sum is 197. And,
obviously, every integer between 5 and 197 is a possible sum.
Those integers are generated and stored as dynamic clauses
sum(N) by predicates generatesum and numbertFROM, TO, N).
That set of possible sums is then investigated and reduced
according to the aricthmetical conditions.

Having read the first two sentences of the conversation,
we know that the prime factorization of the product on
Monsieur P is not unique and that this fact can be deduced
from the sum on Monsieur S. We hope that knowing this, we can
exclude the majority of the possible sums, that is, we can
delete almost every clauses sun(N). But what does the above
paraphasis mean in terms of arithmetic? While answering this
question, we present the corresponding clauses of definition
select, which directly show the underlying considerations.

The sum cannot be too big, more precisely, it cannot
exceed 54. Since if the sum SUM were at least 55, then it
could be decomposed into 53+2+X where X is a nonnegative
integer, which would lead to a unique factorization of
53* (X+2), thus contradicting the second sentence of the
conversation.

select
sum(N), N > 54,
retractfirst(sum(N)), fail.

The sum cannot be the sum of two primes.

select
prime(P), prine(Q), P < Q,
N is P+Q, N < 55,
retractfirst(sum(N)), fail.

The sum cannot be three times a prime if the prime
squared is less than 100.

select
prime(P), Q is P*P, Q < 100,
N is P+Q, N < 55,
retractfirst(sum(N)), fail.

The sum cannot be r+q+q, where r and q are primes, if
r*q < 100 and if, simultaneously, q2 > 100.

81

select
priee(R), priee(Q),
P is R*Q, P < 100, Q2 is Q*Q, Q2 > 100,
N is P+Q, N < 55,
retractfirst(sum(N)), fail.

Notice predicate retractfirst(CLAUSE), which deletes the
first matching clause only. We use this predicate to speed
up the program.

Once we have the reduced set of possible sums, we should
examine the third sentence of the conversation. It means that
the factorization of the product has become unique by now. In
order to utilize this information, we generate the possible
porducts and store them as dynamic clauses
prod(SUM, N, M, PROD, MULT) (predicates products and product).
We take each possible sum SUM in turn, decompose it into
distinct terms SUM=N+M in every different way, and form the
product PR0D=N*M. To save storage, we do not record every
product generated, the multiple occurrences of a value of PROD
are recorded as the multiplicity (MULT) of that value. If
MULT > 1, then only the last two arguments of clauses
prod(_, _, PROD, MULT) are meaningful. Fortunately, we do
not need the rest; every possible product with multiplicity
grater than one is actually impossible and is deleted
(predicate outi).

Finally, we have to consider the last sentence of the
convesation, which says the decomposition of the sum into
terms has also become unique by now. On this basis, predicate
unique deletes all the non-uniquely decomposable still
possible sums, using the clauses prod that remained, and then
lists the solution to the puzzle. If there is not exactly one
solution listed, it is our task to correct either the program
or the puzzle.

A more efficient version of select

The transparency of definition select is excellent.
Unfortunately, however, it is not efficient enough. The
efficiency can be improved with a little bit of manual
precomputation, taking into account the resolution strategy of
Prolog, too. The new definition is selectl.

The first and the last clauses of selectl are the same as
those of definition select.

As for the second clause, it is known that P, Q £ 2 anc
P + Q < 55. The first inequality implies that P < 53 while
the second one is equivalent to Q < 55 - P.

In the third clause, Q = P1 , therefore P i *■”
P * Q < 55 is equivalent to P < 7.

82

In the fourth clause, P = R * Q where Q2 > 100 and
P < 100. Q2 > 100 is equivalent to fi) 10. Moreover, P + Q =
Q(R + 1) < 55 and R 2 2. All these together imply that R <, 6
(or, equivalently, R < 6 since R is a prime) and Ö < 55/3 (or,
equivalently, Q < 18 since Q is a prime).

se 1ectl:-
sum(N), N > 54,
retractfirst(sum(N)), fail,

seiectl:-
prime(P), P < 53, В is 55 - P,
prime(Q), Q < B,
P < Q, N is P+Q,
retractfirst(sum(N)), fail,

se1ectl: -
priBe(P), P < 7,
N is P+P*P,
retractfirst (sub(N)), fail,

se 1ectl: -
prime(R), R < 6,
priee(Q), 10 < Q, Q < 18,
P is R*Q, P < 100,
N is P+Q, N < 55,
retractfirst(suBÍN)), fail,

seiectl.

Notice that neither of the above two definitions for
select utilize that the primes are listed increasingly. A
further step in improving efficiency would be tjie utilization
of that fact in such a way that if, for instance, P < 10 is
required, then the rest of the primes are abandoned, not even
tried out, once a prime greater than 10 (actually, 11) is
encountered. A program version obtained in this way may be
more efficient, the actual effect depedns on the cost of the
more complex control structures and on the amount of data left
out of the search space. Unfortunately, the transparency of
such a version, select2, would be even worse than that of
selectl, thus illustrating a general rule: such alterations
for improving efficiency should be hadled with care. In many
cases, a trade-off should be found between transparency and
ef f iciency.

Prime number generation

Definitions generate_primes, primes, set_test_pars, and
add_prime select the prime numbers out of the positive
integers and stores them, in turn, as facts prime(P) in the
program. The algorithm [33] essentially checks the
divisibility of successive integers. 2 and 3 are primes known
a priori, and the tested integers are obtained by incrementing
alternatively by 2 and 4, thus avoiding integers divisible by

83

2 or 3 ab initio. Divisibility must be tested for prime
divisors less than or equal to the square root of the integers
only. To preserve the monotonicity of the sequence of primes
generated, 3 and 2 are inserted at the top of definition prime
at the end of the algorithm.

Built-in predicates used in the program

nl, write, tab, =, = = , = / = , <, >, <=, + , -, *, div, mod,
integer, is, fail, true, !, ;, retract, rétractai 1, assert,
asserta, set_state.

Notice here the different equality predicates. = checks
if its arguments are unifiable, and unification is performed
if possible. = = , on the other hand, checks identity rather
than unifiabi1ity: it yields true if and only if its
arguments are identical; unification is never performed.

Exercises

E7.2 Rewrite definition select such that the sorted list of
prime numbers be utilized. Which version is the most
ef f ici ent?

E7.3 Using the prime number generator fragment of the program,
write a program that lists every prime number less than a
given 1imi t.
(Hint: Do you have to store all primes to be listed?)

7.3 Pascal program

If we want to solve this shockingly tricky puzzle, we should
find a suitable strategy. In doig so, we should collect what
we have. Of course, we have the puzzle. And we have moderate
skill in writing Pascal programs, we have a computer to run
Pascal programs on, we have a reasonable amount of common
sense, and we have anything but an affinity to arithmetic,
especially to number theory. That being the case, we can do
nothing but write a Pascal program implementing a rather naive
problem solving strategy and hope it will give us a result.

The basic idea of the naive strategy we follow is the
updating of tables. First, generate a table Products
containing the products of two different integers between 1
and 100, and generate a table Sums containing, in some way,
the sums of two different integers between 1 and 100. Those
are the tables of the possible products and the possible sums,
respectively. Then consider sentence (1), which implies that
we have to delete all the entries in table Products which
occur only once.

84

Sentence (2) implies that the entries in table Sumswhich
are the sums of the factors of impossible (i.e., deleted)
products are impossible. Thus, we have to delete all those
entries. At this stage, however, there may remain seemingly
possible products, the sums of the factors of which are no
more possible. Those products are actually impossible,
therefore, we have to delete them, too.

Now sentence (3) implies that all the entries that
remained in table Productsand occur there more than once are
also impossible; consequently, we have to delete them. As
above, this deletion might make some further entries in table
Sums impossible, and we have to delete those entries.
Moreover, if there do appear new impossible entries in table
Sums they might make some entries in table Products~51
impossible, and we have to delete those entries; etc. Ue
have to repeat this cycle until there appear no new impossible
entries. Then, if there has remained no possible product or
sum, the puzzle is inconsistent. Otherwise we should
investigate sentence (4).

Consider now the possible sums and decompose them, in
turn, into two terms that are the factors of possible
products. Sentence (4) states that there is exactly one
possible sum whose decomposition in the above way is unique.
If there are more than one such sums or if there is none, the
puzzle is, again, inconsistent. If there is exactly one such
sum, its terms are the two numbers.

program PandS (output, 1st);
const

MinNum = 2; MaxNum = 99; MaxNumMinusOne = 98;
MinSum = 5; MaxSum = 197;
MinProd = 6; MaxProd = 9702; { = MaxNum * MaxNumMinusOne >

type
A_Number = MinNum..MaxNum;
A_Prod = 0..MaxProd;
ProdType = -MaxProd..MaxProd;
A_Sum = MinSum..MaxSum;
S_Type = (impossible, possible);
ProductsType = array CA_Number, A_Number] of ProdType;
SumsType = array [A_Sum3 of S_Type;

var
Products: ProductsType;
Sums: SumsType;

procedure Initialize (var Products: ProductsType;
var Suas: SuasType);

{ initially every combination not excluded
by the initial constraints is possible)

85

var
i, j: A_Nuraber;
k: A_Sura;

begin (Initialize)
for i := MinNum to MaxNum do
for j := MinNum to i do Productsti, j] := 0;

for i := MinNum to MaxNumMinusOne do
for j := i + 1 to MaxNum do Productsti, j] := -(i*j);

for к := MinSum to MaxSum do Sumstk] := possible
end; (Initialize)

procedure PJDoesNotKnowNumbers (var Products: ProductsType)
{ Delete all uniquely factorizable products)
var
i, j, ir, jr: A_Number;
T_Prod: ProdType;
Negated: Boolean;

begin (PDoesNotKnowNuabers }
{ negate all the products occurring more than once
for i := MinNum to MaxNumMinusOne do
begin
for j := i+1 to MaxNum do
begin

T_Prod := Productsti, j]; Negated := false;
if (T_Prod < 0) and (-T_Prod < MaxProd) then

t entries to be checked against this value
remain only in this case)

begin
if j <. MaxNum then t check the rest of row
for jr := j+1 to MaxNum do

if Productsti, jr] = T_Prod then
begin

Productsti, jr] := -T_Prod:
Negated := true

end ;
if i < MaxNumMinusOne then

{ check the (whole) rows below
for ir := i+1 to MaxNumMinusOne do
for jr := ir+1 to MaxNum do

if Productstir, jr] = T_Prod then
begin

Productstir, jr] := -T_Prod;
Negated := true

end
end ;
if Negated then Productsti, j] := -T_Prod

end
end ;

t substitute zeros for the rest of the products }
for i := MinNum to MaxNumMinusOne do
for j := i+1 to MaxNum do

if Productsti, j] < 0 then Productsti, j] := 0
end; { PDoesNotKnouNumbers)

86

procedure S_HasKnownThat_P_CannotKnowThen (
var Products: ProductsType
var Sums: SumsType);

{ the values that are the sum of i and j such that
Products[i,j] =0 are not possible sums for S to have }

var
i, j: A_Number;

procedure PossibleSums (var Suns: SumsType);
{ display possible sums)
var
к: A_Sum;

begin t PossibleSums }
wr i te 1n(1st);
writeln(lst, ’After the 2nd sentence of the ’,

'conversation, the possible sums,’);
write(lst, ’which P knows, are: ');
for к := MinSum to MaxSum do

if Sumsik] = possible then writeUst, к : 3) ;
writeln(lst); writeln(lst)

end; t PossibleSums)
begin { S_HasKnownThat_P_DoesNotKnowThem }

for i := MinNum to MaxNumMinusOne do
for j := i+1 to MaxNum do

if Productsti, j] = 0 then Sumsti+j] := impossibl
PossibleSums(Sums);

end; t SHasKnowThatPDoesNotKnowThem)
procedure NowPHasGotThem
var

i, j, ir, jr: A_Number;
T_Prod: ProdType;
Deleted: Boolean;

(var Products: ProductsType:
var Sums: SumsType);

procedure PossibleProducts (var Products: ProductsType)
{ display possible products }

var
i, j: A_Number;
Count: A_Prod;

begin { PossibleProducts)
wr i te 1n(1st,

'After the 3rd sentence of the conversation, ’);
wr i te 1n(1st,

'the possible products, which S knows, are:');
Count := 0;
for i := MinNum to MaxNumMinusOne do
for j := i+1 to MaxNum do

if ProductsCi, j] > 0 then
begin

Count := Count + 1;
if Count mod 20 = 1 then write 1n(1st);

87

w r i t e (l s t , P r o d u c t s L i , j] : 4)
end ;

w r i t e 1 n (1 s t)
end; { PossibleProducts }
begin í NowPHasGotThe*)

{ Products[i,j] can be a possible product
only if i + j is a possible sum)

for i : = MinNum to MaxNumMinusOne do
for j := i + 1 to MaxNum do

if ProductsCi, j] > 0 then
if SumsCi+j] = impossible then ProductsCi, j] := 0

Í all Products entries occurring more than once
are impossible)

for i : = MinNum to MaxNumMinusOne do
begin
for j := i+1 to MaxNum do
begin
T_Prod := ProductsCi, jl; Deleted := false;
if (T_Prod > 0) and (T_Prod < MaxProd) then

C entries to be checked against this value
remain only in this case }

begin
if j < MaxNum then C check the rest of row >
for jr := j+1 to MaxNum do

if ProductsCi, jrl = T_Prod then
begin
ProductsCi, jr] :- 0;
Deleted true

end ;
if i < MaxNumMinusOne then

{ check the (whole) rows below }
for ir := i+1 to MaxNumMinusOne do
for jr := ir+1 to MaxNum do

if ProductsCir, jr] = T_Prod then
begin
ProductsCir, jr] := 0:
Deleted := true

end
end ;
if Deleted then ProductsCi, j] := 0

end
end ;

PossibleProducts(Products)
end; Í NowPHasGotThem }

procedure ThenSGetsTheaToo

var
i, j: A_Number;
k: A_Sum;
Count: A_Prod;
Which: 0.. 1 ;
ci, cj: 0..MaxNum;

(var Products: ProductsType;
var Su b s : SuasType);

88

ck : 0. . liaxSum ;
Sti11Possib1e, Changed, Inconsistent: Boolean;

procedure CombinationsToCheck (var Product: ProductsType;
var Sums: SumsType);

{ display the combination remained)
var

i, j: A_Number;
k: A_Sum;
Count, C: A_Prod;

begin { CombinationsToCheck }
wr i te 1n(1st) ;
wr i te 1n(1st,
’S has the following combinations to check:’);

for к := MinSum to MaxSum do
if Sumsik] = possible then
begin

Count := 0;
for i := MinNum to MaxNumMinusOne do

for j := i + 1 to MaxNum do
if (Productsii, j] > 0) and (i + j = k) then
begin

Count := Count + 1 ;
Productsii, j] := -Productsii, j]

end ;
if Count < 1 then write 1n(’Егго г in your deduction’)
else
begin

writeln(lst);
wr i te(1st,

'If Monsieur S has ’, k:0, ’, then Monsieur P ')
if Count = 1 then
begin

for i := MinNum to MaxNumMinusOne do
for j := i+1 to MaxNum do

if Productsii, j] < 0 then
begin

Productsii, j] := -Productsii, j];
writeilst, ’has ’, Products[i,j]:0);
wr i te 1n(1st, ’ <=’, i: 0, ’*’, j:0, ’).’)

end ;
wr i te 1 n(1st)

end
else
begin

writelnilst, ’can have one of the following:’);
C := 1;
for i := MinNum to MaxNumMinusOne do

for j := i+1 to MaxNum do
if Productsii,j] < 0 then
begin

Productsii, j] := -Productsii, j];
writeilst, Productsti,j] : 11, ' (= ’, i:2,

’*’, j :2, ’)’);

89

С := С + 1;
if С mod 4 = 1 then writeln(lst)

end ;
wr i te 1 n(1st)

end
end

end ;
wr i te 1n(1st);
writeln(lst, 'A combination is a solution’,

’ to the problem if and only if’);
writeln(lst, ’S has only one number to choose from.’);
wr i te 1n(1st)

end; { CombinationsToCheck)

begin t ThenSGetsThemToo)
{ delete sums and products that have become impossible)
Which := 0; Changed := true;
while Changed do
begin

Which := Which + 1 mod 2; Changed := false;
if Which = 1 then
begin

for к := MinSum to MaxSum do
if SumsCk] = possible then
begin

StillPossible := false;
for i := MinNum to MaxNumMinusOne do

for j := i+1 to MavNum do
if iProductsti,j] > 0) and (i + j = k)
then StillPossible := true;

if not StillPossible then
begin

Sumstk] := impossible; Changed := true
end

end
end
else (Which = 0)
begin

for i := MinNum to MaxNumMinusOne do
for j := i+1 to MaxNum do

if ProductsCi, j] > 0 then
begin

StillPossible := false;
for к := MinSum to MaxSum do

if (SumsCk] = possible) and (i+j = k)
then StillPossible := true;

if not StillPossible then
begin

ProductsCi, j] := 0; Changed := true
end

end
end

end ;

90

{ consistency check 1
--inconsistent if there is no possible sum or product)

Inconsistent := true; ck := MinSum;
while Inconsistent and (ck <= MaxSum) do

if Sumstck] = possible then Inconsistent := false
else ck : = ck + 1 ;

if not Inconsistent then
begin

Inconsistent := true; ci : -* MinNum - 1;
while Inconsistent and (ci < MaxNumMinusOne) do
begin
ci := ci + 1 ; ej := ci + 1 ;
while Inconsistent and (cj <= MaxNum) do

if Productsici, cj] > 0 then Inconsistent := false
else cj : = cj + 1

end
end ;
if Inconsistent then
begin
wr i te 1n ; wr i te 1n;
writeln(’ The problem is inconsistent.’);
write In; write In

end
else
begin
{ delete the sums with more than one way of their
decomposition into terms that are factors of
possible products)
CombinationsToCheck(Products, Sums);
write!n(1st) ; writeln;
writeln(lst, 'The solution is given by the list below:')
writeln(’The solution is given by the list below:’);
for к := MinSum to MaxSum do
if Sumsik] = possible then
begin
Count := 0 ;
for i := MinNum to MaxNumMinusOne do

for j := i+1 to MaxNum do
if (ProductsCi, j] > 0) and (i + j = k) then
begin

Count := Count + 1;
ProductsCi, j] := -ProductsCi, j]

end ;
if Count < 1 then
write 1n(’Error in your deduction--1’)

e 1 se
begin

if Count = 1 then
begin

for i := MinNum to MaxNumMinusOne do
for j := i+1 to MaxNum do

if ProductsCi, j] < 0 then

91

begin
Products[i, j] := -Productsii, j1 ;
wr i te 1n(1st);
writeilst, 'Monsieur S has k:0,

' (= ’ , i:0, , j:0, ’)') ;
writeilst, ’ and Monsieur P has

Products ii,J]:0);
writelnilst, ’ (=’, i:0, j:0, ’).’);
wr i te 1n;
write!’Monsieur S has ’, k:0, ’ (= ’,

i: 0, ’+’, j:0, ’)’>;
write!’ and Monsieur P has

ProductsC i,J]:0);
writeln!’ (= ’, i: 0, j:0, ’).’)
end ;

write 1n(1st); writeln
end
e 1 se
begin

for i := MinNum to MaxNumMinusOne do
for j := i+1 to MaxNum do
if Products[i,j] < 0 then
Productsii, j) := -Productsii, j];

Sumstk] := impossible
end

end
end ;

! consistency check 2
--inconsistent if there is no unique solution }

Count := 0;
for к := MinSum to MaxSum do

if Sumstk] = possible then Count := Count + 1;
if Count О 1 then
begin
writeln;
writeln!’ All in all, the problem is inconsistent.’)

end
end

end; { ThenSGetsTheniToo)
begin t PandS)
writeln!’ Initialize ...’); t monitors action)
1 nitia1ize! Products, Sums);
writeln!’ P does not know numbers ...’); { monitors action }
P_DoesNotKnowNumbers (Products);
writeln!’ S has known that P cannot know them ...’);

Í monitors action)
S_HasKnownThat_P_CannotKnowThem(Products, Sums) ;
writeln!’ Now P has got them ...’); ! monitors action)
Now_P_HasGotThem!Products, Sums) ;
writeln!’ Then S gets them too ...'); { monitors action)
Then_S_GetsThemToo(Products, Sums)

end. (PandS)

92

screen output
Initialize ...
P does not know numbers ...
S has known that P cannot know thea ...
Now P has got thea ...
Then S gets then too ...

The solution is given by the list below:

Monsieur S has 17 (=4+13) and Monsieur P has 52 (=4*13).

---------- printer output ----------
After the 2nd sentence of the conversation, the possible suas,
which P knows, are: 11 17 23 27 29 35 37 41 47 53

After the 3rd sentence of the conversation,
the possible products, which S knows, are:

18 50 54 24 96 114 28 52 76 92 100 124 148 172 110 160 240 138 174 186
246 282 112 140 154 238 280 152 168 216 232 360 162 234 252 288 130 170 190 250
270 310 370 430 176 198 204 276 348 492 182 208 364 442 520 294 378 390 480 570
304 336 400 496 592 306 340 408 510 612 414 522 630 418 532 646 540 660 672 550
682 552 690 696 700 702

S has the following combinations to check

If Monsieur S has 11, then Monsieur P can
18 (■= 2» 9) 24 (= 3» 8)

If Monsieur S has 17, then Honsieur P has

If Honsieur S has 23, then Monsieur P can
76 (= 4*19) 112 (= 7*16)

If Monsieur S has 27, then Monsieur P can
50 (= 2*25) 92 (= 4*23)

152 (= 8*19) 162 (= 9*18)
182 (=13*14)

If Monsieur S has 29, then Monsieur P can
54 (= 2*27) 100 (= 4*25)

168 (= 8*21) 190 (=10*19)
208 (=13*16)

If Monsieur S has 35, then Monsieur P can
96 (= 3*32) 124 (= 4*31)

234 (= 9*26) 250 (=10*25)
304 (=16*19) 306 (=17*18)

If Monsieur S has 37, then Monsieur P can
160 (= 5*32) 186 (= 6*31)
270 (=10*27) 336 (=16*21)

have one of the following:
28 (= 4» 7)

52 (=4*13)

have one of the following:
130 (=10*13)

have one of the following:
110 (= 5*22) 140 (= 7*20)
170 (=10*17) 176 (=11*16)

have one of the following:
138 (= 6*23) 154 (= 7*22)
198 (=11*18) 204 (=12*17)

have one of the following:
174 (= 6*29) 216 (= 8*27)
276 (=12*23) 294 (=14*21)

have one of the following:
232 (= 8*29) 252 (= 9*28)
340 (=17*20)

93

If

If

If

Monsieur S has 41, then Monsieur P can have one of the following:
114 (= 3*38) 148 (= 4*37) 238 (= 7*34) 288 (= 9*32)
310 (=10*31) 348 (=12*29) 364 (=13*28) 378 (=14*27)
390 (=15*26) 400 (=16*25) 408 (=17*24) 414 (=18*23)
418 (=19*22)

Monsieur S has 47, then Monsieur P can have one of the following:
172 (= 4*43) 246 (= 6*41) 280 (= 7*40) 370 (=10*37)
442 (=13*34) 480 (=15*32) 496 (=16*31) 510 (=17*30)
522 (=18*29) 532 (=19*28) 540 (=20*27) 550 (=22*25)
552 (=23*24)

Monsieur S has 53, then Monsieur P can have one of the following:
240 (= 5*48) 282 (= 6*47) 360 (= 8*45) 430 (=10*43)
492 (=12*41) 520 (=13*40) 570 (=15*38) 592 (=16*37)
612 (=17*36) 630 (=18*35) 646 (=19*34) 660 (=20*33)
672 (=21*32) 682 (=22*31) 690 (=23*30) 696 (=24*29)
700 (=25*28) 702 (=26*27)

A conbination is a solution to the problem if and only if
S has only one nunber to choose fron.

The solution is given by the list below:

Monsieur S has 17 (-4+13) and Monsieur P has 52 (=4*13).

A closer look into the program
Since the two numbers we are to find are distinct and are
between 1 and 100, the least possible sum is 5, the least
possible product is 6, the greatest possible sum is 197, and
the greatest possible product is 4753. Moreover, the upper
triangle part of a two-dimensional array, Products, is
sufficient to store all possible products: an entry is the
product of its indices. The possible sums can be stored in a
one-dimensional array, Sums: an entry is either possible or
impossible, meaning if its index, as the sum of the integers
searched for, is possible or not at a particular stage of the
solution.

Initially, every product as well as every sum is possible
(procedure Initial ize)--the products are negated just for
technical reasons. These tables are updated according to the
solution strategy above. Each major step is performed by an
individual procedure.

procedure PDoesNotKnowNumbers deletes, i.e., rewrites as
zeros, all uniquely factorizable entries in Products: negates
all products occurring more than once (they are the possible
products) and then substitutes zeros for the rest.

94

procedure S_HasKnownThat_P_CannotKnowThem deletes, i.e.,
rewrites as impossible, all entries in Sums that have become
impossible because of new impossible products. Then it calls
procedure PossibleSuns, which lists the sums possible after
the second sentence of the conversation.

procedure NowPHasGotThem deletes all entries in
Products that have become impossible because new impossible
sums. Then it deletes all the Products entries occurring more
than once, since they are impossible at that stage.
Furthermore, it calls procedure PossibleProducts, which list
the products possible after the third sentence of the
conversât ion.

Finally, procedure S_GetsThemToo deletes, alternatively,
the impossible sums and products that might have appeared.
Then it checks the consistency of the puzzle and calls
procedure CombinationsToCheck, which lists the combinations
Monsieur S has to check to figure out the two number.s. In
the end, a consistency check is performed again.

Consistency check is an important issue for two reasons.
First, the puzzle itself may be inconsistent and therefore
cannot be solved. Second, what is more likely, the solution
may be incorrect or the program may contain errors, which
should be detected and corrected.

Note finally that procedures PossibleSums,
PossibleProducts, and CombinationsToCheck provide oniy a trace
of the solution, they all may as well be omitted.

Problem solving strategies reconsidered
Essentialy, this puzzle is solved in three different ways.
The first way may be called the solution of a mathematician,
which requires a great deal of good ideas in order to avoid
the tedious task of manual calculation. Unfortunately, there
is not always a way to avoid it completely.

The third way of solution may be called the solution of a
programmer. In this case, the entire problem is solved by a
program written in a (not neceassarily algorithmic)
programming language. The strategy is simple, and there may
appear some technical difficulties, such as efficiency (the
Pascal program presented is fairly slow), software or hardware
limitations (if the numbers to be found were bigger, for
example, between 1 and 10,000 then the memory would almost
surely become too small--see also The Case of a Lot of Cans of
Beer in Section 8).

The second way of solution may be called the solution of
a computer scientist. In this case, the ideas and programming
techniques are balanced: some almost trivial concepts and

95

background knowledge are utilized in the program, and when
they cannot help, simple programming techniques, similar to
those used in the third solution, are used. This last
approach seems to be the proper one in most cases, since it
combines the most powerful features of human reasoning and
computer programming.

Exercises

E7.4 As we have a closer look into the Pascal program, we
notice that whenever the possible products or sums are updated
or checked, the whole arrays Products and Sums are looked
through, although we could have recorded the relevant
fragments of the arrays and examined only those fragments. At
first sight, this latter approach may seem to be more
ef f icient. Is it rea 1 1 y more efficient?

E7.5 Try to increase the upper limit of 100 for the two
numbers in the puzzle. Find and program a sui tab 1e a 1gor i thm
for testing the various hypotheses. What i s the greatest
upper limit?

96

8

After the maths lecture two students, Brian and David, were
walking over to the bar next door. Suddenly, Brian asked his
friend, "How big do you think the number of the figures in the
sum of the number of the figures in the sum of the number of
the figures in 4444*444 is?”

"Oh, it must be extremely big," said David.

"I don't think so," said Brian after a few steps. "O.K.,
look. I'll be buying that many cans of beer for you. Right
now. "

"No, don’t kid me! You can’t be so rich a guy.
Though, anyway, why not? But don’t blame me then."

"Come on, pal! 1 can afford twenty bucks for that."

"O.K. Then it’s a deal, " David agreed and swallowed: he
could feel a XXXX coming on.

How much did it cost for Brian to by David his favorite brand?

97

8.1 Solution

Let A denote the sum of the digits in 4444*444, let В denote
the sum of the digits in B, and let C denote the sum of the
digits in B. The value of C is to be found. Let’s find upper
limits for A, B, and C first.

Since 4444* 4 4 4 < 10,0004 4 4 4 < 10,0003000 = 1020-000, the
number has at most 20,000 digits; therefore, the sum of its
digits, A, cannot be greater than 9*20,000 < 200,000, which
means that A has at most 6 digits. Thus, the sum of its
digits, B, cannot exceed 9*6 = 54, which means that C £ 13
since the sum of the digits in a positive integer less than or
equal to 54 is maximal if the integer is 49, and 4+9 = 13.

On the other hand, it is known that the remainder in the
division of a number by nine is the same as that in the
division, by nine, of the sum of the digits in that number.
From this it follows that 4444*444, A, B, and C all yield the
same remainder when they are divided by nine. Moreover, that
remainder is 7 as follows from the argument below. 4444*444 =
(44444444 - 74444) + 7*(7î,14ei - 1) + 7, since, for any
positive integer n, (a" - b") is divisible by (a-b),
furthermore 4444-7=9*493 and 73-1=9*38 are divisible by nine.

Consequently, C is less than or equal to 13 and it yields
a remainder of 7 when it is divided by nine. There is only
one such positive integer: C = 7~

8.2 Prolog program

We have this puzzle in this report to illustrate the fact that
there are situations when a computer cannot actually help us.
Every computer has some physical limitations: the memory is
limited, the numbers are represented in a particular way,
which restricts the range of representable numbers, operations
are performed at a certain speed, and thus certain programs
might run virtually forever, ets. For the programs for
previous puzzles, such limitations were not really
restricting, the minor difficulties that appeared were easy to
overcome (see Section 2). This is not the case with this
puzzle. Now, at first sight, one can feel that 4444*444 is
far too big an integer to be representable in an ordinary
computer. But, anyway, we should try and make sure we are
r i ght.

98

To this end we write a program to solve the puzzle--at
least theoretically. Predicate addupfigures(NUMBER, SUM)
returns , in SUM, the sum of the figures in the integer
NUMBER. Predicate power(BASE, EXP, POW), returns, in POU, the
value of BASE raised to the power of EXP. Ue present two
definitions for exponentiation: powerO implements the naive
algorithm of successive multiplication by BASE EXP times,
while powerl implements a more sophisticated and more
efficient algorithm Q15] based on the binary representation of
the exponent, e.g.,

= X16*Xe*X3*X = (((X3)3)3)3 *((x3)3)2 »X2 *x

Unfortunately, however efficient the latter algorithm is,
the only result we can achieve is an even earlier overflow
error message. So, we may conclude that we cannot find a way
to overcome the difficulties along this track. We had better
think and try to solve the puzzle in some other way.

% The Case of a Lot of Cans of Веет

s tart : -
ni,
writeCIf A is the sum of the figures in 4444 raised to"),
nl,
write("the 4444th power and if В is the sum of the figures"
nl,
write("in A and if C is the sum of the figures in B, then")
n 1, n 1,
power(4444, 4444, POW),
add_up_figures(POW, A),
add_up_figures(A, B),
add_up_figures(В, C),
tab(15), write("C is "), write(C), writei"."'

power(BASE, EXP, POW):- powerO(BASE, EXP, POW).

add_up_figures(NUMBER, SUM):-
integer(NUMBER), NUMBER < 0, !,
NUM is - NUMBER, add_up(NUM, 0, SUM);
add_up(NUMBER, 0, SUM).

a d d _u p(0, SUM, SUM).
add_up(NUMB, ACC, SUM):-

ACC1 is ACC + NUMB mod 10, NUMB 1 is NUMB div 10,
add_up(NUMB 1, ACC1, SUM).

99

% Naive algorithm for exponentiation

powerQCO, 0, POW):-
nl, write("Error: 0 raised to the Oth power is undefined."),
nl, abort.

powerO(BASE, 1, BASE):- integer(BASE), !.
powerOCO, EXP, 0):- integer(EXP), !.
powerO(BASE, EXP, POW):-

integer(EXP), EXP < 0,
nl, write ("Error : negative exponent not accepted."), nl,
abort.

powerO(BASE, EXP, POW):-
integer(BASE), integer(EXP), powerOO(BASE, EXP, 1, POW).

powerOO(BASE, 0, POU, POU).
powerOO(BASE, EXP, ACC, POW):-

ACC1 is ACC * BASE, EXP1 is EXP - 1,
powerOO(BASE, EXP1, ACC1, POW).

% A more efficient algorithm for exponentiation

power 1(0, 0, POW): -
nl, write("Error: 0 raised to the Oth power is undefined."),
n1, abort.

powerHBASE, 1, BASE):- integer (BASE), !.
powerHO, EXP, 0):- integer(EXP), !.
powerHBASE, EXP, POW):-

integer(EXP), EXP < 0,
ni, writei"Err or : negative exponent not accepted."), nl,
abort.

powerHBASE, EXP, POW):-
integer (BASE) , integer (EXP), powerlHBASE, EXP, 1, POW).

powerll (BASE, 0, POW, POW).
powerlHBASE, EXP, ACC, POW):-

BIT is EXP mod 2,
(BIT == 1, !, ACC1 is ACC * BASE; ACC1 is ACC),
BASE1 is BASE * BASE, EXP1 is EXP div 2,
power 11(BASEI, EXP1, ACC1, POW).

---------- output ----------

start.

If A is the sun of the figures in 4444 raised to
the 4444th power and if В is the sun of the figures
in A and if C is the sun of the figures in B, then

Error: overflow at _738 is 4444*4444
> _738 is 4444*4444

trace:

100

Notice finally that the group

(BIT == 1, !,
ACC1 is ACC*BASE ;
ACC 1 is ACC)

in the second clause of definition powerll is of the pattern

(CONDITION, !, THEN ; ELSE)

which dec 1 arative 1 y means that the group is true if CONDITION
as well as THEN is true or if CONDITION is false while ELSE is
true. Procedura 1 1 y, the group translates into the following:
"If CONDITION is true, then evaluate THEN else evaluate ELSE.
If, in either case, the evaluation yields true, then go on to
the next predicate following the group, or, if the evaluation
yields false, backtrack starting at the predicate immediately
preceding the group." The coresponding Pascal control
structure is

if CONDITION then THEN else ELSE ;

Built-in predicates used in the program

nl, write, tab, integer, <, is, -/1, -/2, +, mod, div, *, ==,
;, !, abort.

8.3 Pascal programs

We have also written two Pascal programs to try to solve the
puzzle. The basic idea of the first one, CansOfBeerl, is the
same as that of the Prolog programs. The only significant
difference is in that the Pascal program utilizes the floating
point representation of numbers and thereby it can handle much
bigger numbers. function SumOfFigures returns the sum of the
figures in its argument; both the argument and the result are
integer numbers represented as floating point numbers; EPS is
an upper limit for the floating point rounding error.

function Power implements the same algorithm for
exponentiation as predicate powerl in the Prolog program. The
base as well as the result are integer numbers represented as
floating point numbers, while the exponent is a fixed point
number.

The actual result of this pr-ogram is, in accordance with
our expectation, the same as that of the Prolog programs: an
immediate overflow error message.

101

program CansOfBeerl (output);
const Number = 4444.0;

Expo = 4444;
var C: rea 1 ;

function Power (Base: real; Exponent: integer): real;
{ compute the power of a real number

using Knuth’s algorithm)
var Negative: Boolean;

P : rea1 ;
begin (Power)

if Exponent < 0 then
begin
Negative := true;
Exponent := - Exponent

end
else Negative := false;
if Exponent О 0 then
begin
P : = 1;
repeat

if Exponent mod 2 = 1 then P := P * Base;
Base := Base * Base;
Exponent := Exponent div 2

until Exponent = 0;
Power := P;
if Negative then Power := 1.0/P
end
e 1 se

if Base <> 0 then Power := 1
e 1 se

wr i te 1n(
’Error: 0 raised to the Oth power is undefined.’)

end; { Power)
function SumOfFigures (Number: real): real;

(compute the sum of the figures in an integer number
represented as a real one)

const EPS = 0.01; (upper limit for the floating point
rounding error)

var Numbl : rea 1 ;
FracNumbl: real; (the fractional part of Numbl)
Sum : rea 1 ;

begin { SumOfFigures)
if Number < 0 then Number := - Number;
if Number > 1 - EPS then
begin
Sum := 0.0; Numbl := Number;
repeat
Numbl := Numbl/10.0;
Sum := Sum + round(10.0*frac(Numbl))

until Numbl < 1-EPS;

102

SumOfFigures := Sum
end
else SumOfFigures := 0.0

end; { SumOfFigures)
begin (CansOfBeerl >
writeln(’If A is the sum of the figures in

round(Number):0, ’ raised to the
Expo:0, ’th power’);

writeln(’and if В is the sum of the figures in A’);
writeln(’and if C is the sum of the figures in B, then’)
write(’C is ’);
C := SumOfFigures(SumOfFigures(SumOfFigures(

Power(Number,Expo))));
if C >= (maxint + 0.5) then write(C)

else writeCround(C):0);
wr i te 1n (’ . ’)

end. { CansOfBeerl)
---------- output ----------

If A is the sua of the figures in 4444 raised to the 4444th power
and if В is the sua of the figures in A
and if C is the sua of the figures in B, then
C is
Run-tiae error 01, PC=2D43
Prograa aborted

Searching
21 lines

Run-tiae error position found. Press <ESC>

Despite the limitations and aborted trials above, it is
possible to solve the puzzle via a computer program, though
the solution is tedious and, in general, not smart. Program
Cans0fBeer2 represents a further step toward the solution of
the puzzle. The basic idea is the representation of integers
as strings (actually arrays) of digits; the operations
simulate the process of manual calculation (c.f. [331). An
integer is represented as an array of its digits, indexed from
right to left, and the length of the digit string, which is a
fixed point number. As an exception, the exponent is
represented as a fixed point nonnegative integer (cardinal),
procedure AddUpLong computes the sum of the digits of an
integer, while procedure Multiply multiplies two integers and
returns the product. It first generates the lines of partial
products (the lines are indexed f.rom bottom up), then adds up
the lines to obtain the product (see the example below),
procedure PowerLong implements the second algorithm for
ex ponent i a t i on.

103

Examp 1e

БАЗ » 987
488700
04344Û
003801
535941

Fact 1 = С3,4,5] ; Fact2=[7,8,9 1 ; LenFacl=LenFac2 = 3
Line 3, 0ffset=2
Line 2, Offset=l
Line 1, Of fset=0
Res=С1,4,9,5,3,5] ; LenRes = 6

program Cans0fBeer2 (output);
const Number = 4444;

Exponent = 4444;
MaxFig = 100; { maximum length of digit strings)

type Length = 0..MaxFig;
OneLine = array [1..MaxFig] of 0..9;

{ digit string representation of cardinals)
Card = 0..max int ;

var А, В, C, Base, Power: OneLine;
LenA, LenB, LenC, LenBase, LenPow, i: Length;
Temp: Card;

procedure Multiply (var Facti: OneLine; var LenFacl: Length;
var Fact2: OneLine; var LenFac2: Length;
var Res: OneLine; var LenRes: Length)

{ compute Factl*Fact2 as a string of digits)
var Carry, temp: Card;

Offset, B, í, j, k, Tota1 Length : Length;
Lines: array [1..MaxFig] of OneLine;

{ lines in multiplication)
(TotalLength is the maximum length of lines)

begin Í Multiply)
if (<LenFacl = l) and (Fact 1[1]=0)) or

((LenFac2=l) and (Fact2t1]=0))
then begin LenRes := 1; Resll] := 0 end
e 1 se
if (LenFacl=l) and (Factl[l]=l) then
begin

LenRes := LenFac2;
for к := 1 to LenFac2 do Restk] := Fact2ik]

end
e 1 se
if (LenFac2=l) and (Fact2[l]=l) then
begin

LenRes := LenFacl;
for к := 1 to LenFacl do Resik] := Factltk]

end
e 1 se

104

begin
{ generate I ines)
TotalLength := LenFacl + LenFac2 - 1;
for i := LenFacZ downto 1 do
begin
Carry := 0 ;
Offset : = i-1 ;
for к := 1 to Offset do Lines [i, k] := 0;
for j := 1 to LenFacl do
begin

temp := Factlij] * Fact2ti] + Carry;
if temp > 9 then
begin

Carry := temp div 10;
Linesii, Offset+j] := temp mod 10

end
else
begin

Carry := 0;
Linesii, Offset+j] : = temp

end
end ;
if i = LenFac2 then

if temp > 9 then
begin

TotalLength TotalLength + 1;
Linesii, TotalLength] := Carry

end ;
if i ч LenFao2 then
begin

if temp > 9 then
begin

В Offset + LenFacl + 1;
Linesii, В] := Carry

end
else В := Offset + LenFacl;
for к := B+l to TotalLength do Linesii, к] := 0

end
end ;
{ add up 1ines)
LenRes := TotalLength; Carry := 0;
for к := 1 to TotalLength do
begin

temp := Carry ;
for i 1 to LenFac2 do temp := temp + Linesii, к];

{ temp is assumed to be a representable integer)
if temp > 9 then
begin
Carry : = temp div 10;
Resik] := temp mod 10

end
else
begin
Carry := 0 ;
Resik] : = temp

end
end ;

105

while Carry > 0 do
begin
LenRes := LenRes + 1 ;
ResiLenftesl := Carry mod 10;
Carry := Carry div 10

end
end

end; t Multiply)

procedure PowerLong (Base: OneLine; LenBase: Length;
Exponent: Card;
var Power: OneLine; var LenPow: Length)

{ compute Base**Power as a string of digits)
var i, LenRes: Length;

Res: OneLine;
begin { PowerLong }

if (Exponent > 0) and (Exponent <> 1) then
begin

LenPow := 1; Powerill := 1;
repeat

if Exponent mod 2 = 1 then
if (LenPow = 1) and (Powertl]=l) then
begin
LenPow := LenBase;
for i := 1 to LenBase do Poweriil := BaseCi]

end
e 1 se
begin
Mu !tip1 y(Power, LenPow, Base, LenBase,

Res, LenRes) ;
LenPow := LenRes;
for i := 1 to LenRes do Poweriil := Resti]

end ;
Mu 11ip1 y(Base, LenBase, Base, LenBase, Res, LenRes);
LenBase := LenRes;
for i := 1 to LenRes do Baseii] := Resti);
Exponent := Exponent div 2

until Exponent = 0
end
e 1 se
case Exponent of

1 : begin
LenPow := LenBase;
for i := 1 to LenBase do Powertil := Baseii)

end ;
0: if (LenBase = 1) and (Baseil)=0) then

wr i te 1n(
’Error: 0 raised to the Oth power is undefined.’)

e 1 se
begin
LenPow := 1; Poweril) := 1;

end ;
else write 1n(’Error: negative exponent not accepted.’)

end
end; { PowerLong)

106

procedure AddUpLong (var Num: OneLine; var LenNum: Length;
var Sum: OneLine; var LenSum: Length);

(compute the sum of the digits in Num as a string of digits)
var Carry, temp: Card;

i, j: Length;
begin { AddUpLong)
Sumtl] := 0; LenSum := i;
for i := 1 to LenNum do
begin

temp := NumCi] + Sumtl);
if temp < 10 then Sumtl) := temp
else
begin

Carry := 1 ;
Sumt1) : = temp - 10;
j : = 1 ;
while Carry > 0 do
begin

j := j + 1;
if LenSum < j then
begin

LenSum := j;
Sumt j) := 0

end ;
temp := Sumtj] + Carry;
if temp < 10 then
begin

Sumtj) := temp;
Carry := 0

end
else Sumtj) := temp - 10

end
end

end
end; { AddUpLong }

begin t Cans0fBeer2)
writelnC'If A is the sum of the figures in Number:0,

’ raised to the E>ponent:0, ’th power’);
writelnt’and if В is the sum of the figures in A’):
writelnt’and if C is the sum of the figures in B, then’);
wr i te(’C is ’) ;
Í produce Base)
LenBase := 0; Temp := Number;
while Temp > 0 do
begin
LenBase := LenBase + 1;
BasetLenBase) := Temp mod 10;
Temp := Temp div 10

end ;

107

{ solve puzzle >
PowerLong(Base, LenBase, Exponent, Power, LenPow);
AddUpLong(Power, LenPow, A, LenA);
AddUpLonglA, LenA, B, LenB);
AddUpLong(B, LenB, C, LenC);
for i := LenC downto 1 do write(CCi]:0);
wri te 1n(’ .’)

end. { Cans0fBeer2 }

---------- output ----------

If A is the sun of the figures in 4444 raised to the 4444th power
and if В is the sua of the figures in A
and if C is the sub of the figures in B, then
C is

Meaory allocation error
Cannot load COMMAND, systea halted

Unfortunately, in Pascal the size of every array needs to
be known at the beginning of the program, i.e., dynamic or
flexible arrays are not allowed. As a consequence, arrays
have to be declared at maxial expected length, thus consuming
a huge amount of memory. Moreover, an array cannot have more
than 2*maxint+i. entries (the maximum range of indices is
l-saxint..saxintl). That is why program CansOfEccr2 is only a
step toward the solution rather than a solution itself.

Exercises

E8.1 To overcome the last mentioned difficulties of Pascal
programs, rewrite program Cans0fBeer2 using chained lists of
records standing for digits instead of arrays of digits.
(Notice the similarity to list structures in Prolog.) Can we
solve the puzzle in this way? If we can, at what cost?

E8.2 Consider the technique used in program Cans0fBeer2 and
try to declare sufficiently large arrays. If the memory
proves to be too small, the sizes of the arrays have to be
reduced. The shortened arrays, however, may not be able to
actually represent the big integers we want to use. In this
case we can use several such arrays to represent a big
integer, and, almost surely, we have to use secondary storage
as well. Going on in this direction, we can create a(n
implementation dependent) program to solve the puzzle. Write
such a program.

108

Concluding Remarks

This report contains only a subset of the puzzles we solved
via logic programming; the complete set of 25 puzzles is to
be published as a book. The 8 puzzles included in the report
are selected to represent the diversity of the puzzles we
found.

In Introduction we posed the question of whether and to
what extent logic programming is adequate for solving logic
puzzles. Now it is time we answered, and our answer is a
definite yes for the first part of the question. We by no
means want to state, however, that logic programming always
provides the only and the best method for solving a logic
puzzle. That is why we presented three kinds of solution, a
mathematical solution, a solution via a Prolog program, and a
solution via a Pascal program, and compared them to one
another. And we have found that, in certain cases, one kind
of solution is better than the others, and that one may be any
one of the three kinds, while, in other cases, there actually
is only a slight difference between the solution techniques.

programming
natural to
programming

Each Prolog program presented in this report is short,
compact, easily understandable and modifiable, and
transparent. They are transparent, since the program source
texts closely follow the texts of the puzzles. These are
inevitable advantages of logic programs. As one can see, on
the other hand, the algorithmic approach has its own
advantages, especially in terms of efficiency. When

in an algorithmic language, one finds it quite
be aware of inefficiency. When, however,
in a declarative language, one tends to utilize

and emphasize the declarative features of the language in
order to write as transparent programs as possible. And he
does so despite the fact that the sign "Beware of
inefficiency" is none the less adequate for programming in a
declarative language such as Prolog. Some point that
considerably affect the efficiency of Prolog programs are the
order of clauses in definitions, the top-down Ieft-to-right
search strategy, the proper use of cuts, etc. These all can
be utilized to reduce the actual search space. (For further
points concerning efficiency, see, e.g., C7], [281, [30].) We
do think that a basic characteristic of a good Prolog program
is a suitable bal lance between declarative and procedural
f eatures.

The programs for solving certain puzzles contain
subprograms that are independent of the particular puzzles and
solve some general task, such as prime number generation,
exponentiation, list concatenation, finding all solutions,

109

etc. For the sake of generality, those subprograms may be
more complex than they should necessarily be in that
particular environment. In exchange for that complexity, we
have gained the portability of the subprograms: the suitable
program fragments can be transplanted into other programs
a I most directly.

The Case of a Jealous Boyfriend examplifies the case when
it is considerably easier to solve the problem via a Prolog
program than via a program written in a "conventional"
algorithmic language such as Pascal. The Case of a Forgotten
Phone Number shows, on the other hand, that the same algorithm
may be implemented both in Prolog and Pascal quite naturally.
The Pascal program works a bit faster. The Case of Messieurs
P and S is soved following two different problem solving
strategies. In order to solve a problem, we can follow the
most naive approach: we rely on the computer algortihm to the
greatest extent and do not care about the implementation
difficulties. The Pascal program implements such a naive
approach. The Prolog program, on the other hand, incorporates
the results of some simple mathematical (number theoretical)
considerations, and uses a naive algorithm only if there are
no simple mathematical ideas to help and thus the naive
approach is appropriate. This combined approach has made the
Prolog program be much "cleverer," more compact, and rather
eff icient.

The combined approach for the solution of the puzzle is a
piece of the output of a more general consideration: Why do
we solve puzzles at all? Why do we solve puzzles via computer
programs in particular? When is a problem worth being solved
via a program? Once we have decided we write a program, how
much should we think before writing it, when should we use
naive mechanical algorithms? Once we have to think before
writing a program anyway, when is it worth bothering with
actually writing it? The answer to the first question is
simple: Each puzzle is a new challenge to our mind. And we
are eager for testing our capability and finding a solution.
That is why we solve puzzles via programs as well. In that
case, we test our programming skill, too. The questions
remained are much harder. Before solving a problem in any
way, we should find estimates for the effort required by the
solution via reasoning, and for that required by the solution
via a program written in one or another particular programming
language (in general, the effort is not the same for different
programming languages). Once such estimates are found, we
should choose the one with the least effort. Finding the way
of solution with minimum effort is the main criterion for
deciding on the suitable portion of mathematical or other
"external" ideas incorporated into the programs and on the
amount and places of naive mechanical algorithms. The
solutions of The Case of a Jealous Boyfriend, The Case of a
Circle in a Desert, and The Case of Messieurs P and S are
examples for the application of "the principle of minimum
effort."

110

The solutions of The Case of the Bridges in Koeni gsbe г g
and The Case of some Color Boxes and Balls examplify the fact
that, provided that it is not too hard to write the program,
it is useful to write a program for solving a problem in order
to check if the solution via reasoning is correct. The
problem solving methods, based solely on simple mechanical
algorithms, of the programs for solving the last two puzzles
above essentially differ from those used in the "mathematical"
solutions. Therefore, the identity of the results supports
the correctness of both kinds of solution.

In contrast to the relation between the problem solving
method used in the mathematical solutions and in the Prolog
programs for the last two puzzles above, in The Case of Three
Gods the Prolog program.fо 11ows, step-by-step, the track of
human reasoning. The puzzle itself is rather simple, and so
is the program. One might as well say there is no need for
the program--and he would be right. The porgram, however,
will not be considerably more difficult to understand even
when the number of constraints and, therefore, the number of
relations to be checked are increased, while the human brain
can handle only a couple of constraints reliably and
effectively.

Computers can help us a great deal in solving a variety
of tasks; and logic programming augments the diversity of
usable techniques. But there is no computer that could be a
substitute for human brain. There are problems that,
virtually, cannot oe solved via programs because oi the
hardware or software limitations or the speed of execution.
This situation is examplified by The Case of a Lot of Cans of
Beer. One, however, must not give up even in such a case, he
should try to find other ways of solutions. Eventually, he
just cannot avoid thinking.

Appendix A. Impeimentat ion Problems

MROLOG provided us with a minimal set of DEC-10 Prolog
built-in predicates [271. Unfortunately, there are some
useful DEC-10 Prolog built-in perdicates not directly
supported by MPROLOG. The most important of those is
rétractai 1(P). Since we need this predicate frequently, we
have extended the DEC-10 Prolog supporting module by adding
the following clause:

rétractai 1 (P) retract(P), fail; true.

On the other hand, MPROLOG has a couple of useful
built-in predicates with no equivalents in DEC-10 Prolog. One
of those is de 1 statement(P), which deletes the first matching
clause and fails on backtracking. Another interesting and
very useful feature of MPROLOG is the temporary assertion and
retraction of clauses: the effect is temporary since the
assertion or retraction is undone on backtracking. Whenever
such features are needed, they are explicitly incorporated
into the porgrams:

retractfirst(P) retract(P), !.
For temporary predicates, see Section 3.

Upon reading the Prolog source texts in this report, the
reader will find two MPROLOG specific features: the
declaration dynamic and the environment parameter setting
set_state and evaluation_limit. They are compulsory items of
syntax and should be omitted or changed in other Prolog
dialects. In order to assert or retract a program clause in
MPROLOG, its definition must be declared as dynamic,
evaluationlimit is an environment parameter with a default
value of 10,000. If the default value proves to be too small,
the value of the parameter should be set with predicate
set_state, for instance,

set_state(evaluation_limit, 20000).

As for the Pascal programs in this report, the
nonstandard features of Turbo Pascal are rarely used. The
most important nonstandard feature used is the string type.
The reason is: strings are much more convenient to use than
packed arrays of characters. keypressed is a Boolean built-in
function, which yields true if and only if a key is pressed on
the keyboard. Built-in functions assignllfn, pfn),

112

reset(lfn), rewrite(lfn), and close(lfn) are to handle
external files, while compiler directives ($1-) and {$!+} and
standard identifier IOresult enable one to control
input/output error handling. If one wishes to run the Pascal
programs presented in this report in another dialect of
Pascal, he can easily, systematically rewrite every Turbo
Pascal specific feature used.

Appendix B. Sources

The puzzles discussed in this report originate from various
books and problem books. The list below gives the place of
origin of each puzzle. The number in brackets after a puzzle
refers to the source listed in References.

The Case of
The Case of
The Case of
The Case of
The Case of
The Case of
The Case of
The Case of

a Jealous Boyfriend [5]
a Forgotten Phone Number [61
Three Gods [23]
a Circle in a Desert [6]
the Bridges in Koenigsberg [1]
some Color Boxes and Balls [5]
Messieurs S and P [2]
a Lot of Cans of Beer [20]

Note that the puzzles in this report are not exactly the same
as those in the sources. The original problems are often
tailored to suit to the subject.

114

Appendix C. F u r t h e r Puzz les

As we noted in Introduction, we have collected a number of
puzzles and are going to publish a more complete set in
another report or in a book; this repdrt is only an extract
of the complete work. In this appendix we present the texts
of the puzzles solved in the complete version. The numbers in
brackets after the titles refer to the places of origin listed
in References.

1 The Case of a Broken Window [5]

One afternoon four boys, Alex, Bírt, Clive, and Dick, played
football in the middle of a downtown road. As a result- of a
big kick, the ball hit a window and broke it. Soon the
tenants arrived and began to look into the matter. They asked
questions, and the boys gradually told them the whole story:

Alex said, ”(1) It’s not me who kicked the ball then.
(2) It was Dick’s idea to play here. (3) Clive’s innocent.”

Birt said, ”(4) 1 doesn't break no bloody window. (5)
Clive did it. (6) Can play football a lot better than Dick.”

Clive said, ”(7) It ain’t my fault. (8) If I’d known it
ended in that, 1 wouldn’t’ve begun to play here with them.
(9) It ain't got nothin’ to do with Alex.”

And Dick said, ”(10) Did do no harm to that window. (11)
’Twas Clive. (12) When I came here, they were already
playin’. ”

Of course, the tenants noticed the boys did not always
tell the truth; so they kept on asking questions. They found
out later that, as far as the above answers were concerned,
each boy told them exactly one lie.

Which boy broke the window?

2 The Case of a Fooled Trainer [61

Al, Bill, Charlie, Dan, and Ed are members of a swimming club.
Once, while their trainer was off, they held a sort of a
competition among themselves. When the trainer came back and

115

asked about the result of the competition, they gave him
answers as follows.

Al: "(1) Dan was placed second and (21 I was placed third. "

Bill: "(31 ! was the best and (4) Charge was the next.”

Charlie: "(5) I was the third while i61 Bill was the last.

Dan: ”(71 1 was placed second and (8) Ed was placed fourth.”

Ed: "(9) 1 managed to beat just one guy. (101 Al won."

Seeing the trainer's confused face, they admitted,
"You’re right. We've tried to kid you: one of the two
statements of each of us is true, while the other is false.
OK, and there is none of us tied for any place; that’s for
sure. But that’s enough. It’s your turn now.”

Then the trainer began to think and tried tó find out the
result of the competition. Let’s help him.

3 The Case of a Greyhound Race C51

When / visited Huckleberry City last summer, I was strongly
adv 1 s e u not to iïi i s s the Huckleberry Greyhound Race. Al though
1 was not familiar with the dogs, 1 wanted zo make some
bets--just for fun, of course. So I bought tips they were
really cheap. The first tipster told me, "Relieve me, Sir,
Arctic Beam will win; it's the best hound I’ve ever seen.
Biddable’ll be placed second, Castle Warden third, Diamond
fourth, End of Era fifth, and Foot Patrol’ll be placed sixth.
That’s the best and the cheapest tip, believe me, Sir.” The
second tipster said something else: 1st: End of Era, 2nd:
Diamond, 3rd: Biddable, 4th: Castle Warden, 5th: Foot
Patrol, and 6th: Arctic Beam; and that tip was a bit more
expensive. I was happy with the tips of the
pro fessiona1s--right up till the end of the race, when it
turned out that either of them had guessed exactly three
places only, and I lost all my bet. ’Damn it, ’ 1 thought, ’1
should've given tips instead, it’s much more profitable.’

Do you already know the result of the Huckleberry Greyhound
Race ?

116

4 The Case of a Horse Race [261

Last Sunday afternoon two friends, Mark and Ron, went to the
racetrack to watch the King Cup, the most spectacular event in
the season. As soon as they arrived, they went to the paddock
to have a look at the horses. Then they made bets on the
first five places in the first race with a bookie: Mark
thought Asmid, the black stallion, would win, British Hero
would be placed second, Carnival would be placed third, Donnal
Deux would be placed fourth, and Estrali ta would be placed
fifth; while Ron guessed Donnai Deux would be placed first,
Asmid would be the runner-up,' Estra1ita would be the third,
Carnival would be the fourth, and British Hero would be placed
fifth.

The result of the first race showed that neither of them
won :
(1) There was no horse at its actual place in Mark’s guessed

resul t;
(2) he could not even guess the actual order in any pairs of

horses one after the other.
Ron's guess was much closer to reality:
(3) he guessed the actual places of two horses; and
(4) he guessed the actual order in two pairs of horses one

after the other.

What was the result, as far as the first five places were
concerned, of the first race at the King Cup?

5 The Case of 100 Tricky Statements [19]

The following 100 statements are written on a sheet of paper:

1 Exactly one statement is false on this piece of paper.
2 Exatcly two statements are false on this piece of paper.

99 Exactly 99 statements are false on this piece of paper.
100 Exactly 100 statements are false on this piece of paper.

Which of these statements are true and which are not?

117

6 The Case of a Magic Star [29]

Put the first dozen positive integers into the circles in the
figure bel ou such that the sum of the four numbers along each
segment as well as that of the six numbers at the vertices be
equal to 26. How can you do that?

7 The Case of an Unwiped Blackboard [3]

When the pupils entered their classroom one morning, they
found a perfect mess inside. The most disgusting thing of all
was the writing on the blackboard: it was nothing but a
scribble. nDon’t wipe it. It must be the message of an
E.T.," said Jerry, a would-be sci-fi writer, who managed to
find some pattern on the blackboard.

The whole class began to study the lines, curves,
letters, and numbers. But all they managed to figure out was
an arithmetic puzzle written most likely in Latin.
Unfortunately, there was no one among them who could read
Latin. They found, however, a lot of words in the text of the
puzzle which were very similar to certain English words.
Thus, in spite of the strange patter used, they ”deciphered"
the puzzle, which read as follows.

11 8

In the multiplication below, the letters
stand for decimal digits--distinct letters
for distinct digits. A dot stands for any
decimal digit. How much is ABC ?

ABC * ABC
. . . H
C. BH
. EFC

...FFC

They tried to solve the problem. After a few minutes
Jerry said, "Ok, i got it. But what on earth could that
mean?"

What was the "extraterrestrial message?"

8 The Case of a Royal Parade [10], [14], [20]

At the end of the 16th century, there was to be a royal parade
at the court of Czarina Yekatyerina II in St. Petersburg. In
order to produce a spectacular event as a part of the parade,
thirty-six officers of six different ranks were taken from six
different regiments, one of each rank in each regiment. Those
thirty-six officers were to be arranged in a solid sqare
formation of six by six such that each row and each column
contains one and only one officer of each rank and one and
only one officer from each regiment. Because the regiments
were selected so that each of them had a unique colorful
uniform, the square formation was going to be a worthy one for
the royal sight. But was it possible to arrange the
thirty-six officers in that formation?

9 The Case of a Swimming Championship [5]

It was spring, the time of the Local Swimming Championship.
Every teenaged boy in the small town ought to take part in
such an event--a cup in the cupboard or a medal on the wall
was always a most effective, self-explanatory intoroduction to
the beloved girl. And, of course, all the girsl in the town
went to watch the swimmers. All but poor Pru, who had caught
flu and had to stay in bed. Fortunately, her friend, Sue, ran
over to her place after the semifinals and told her the names
of the boys who would compete in the final.

"Uhat do you guess the result will be?" Sue asked.

"Well, 1 don't know. Alf may be placed first, Bob
second, Cliff third, Daryl fourth, Eric fifth, and, perhaps,
Fred sixth and George seventh," said Pru. However she wished,
she dare not have mentioned her loved one, Bob, at the first
place.

"A bit of superstition, isn’t it? I’ll come back after
the final and tell you the result," said Sue and off she went.

Vhen she returned, she told Pru, "I’ve changed my mind:
I’ve decided not to tell you the result directly. I’m gonna
give you some hints instead.

(1) "Your guess isn’t correct: there's no one at his place.

(2) "Not even at a neighoring place of his actual place.

(3) "And not even at a second neighboring place of his actual
place.

(4) "Yea, and I should tell you that if you wanna alter your
guessed result in order to get the real result, you have to
move more guys forward than backward.

(5) "Well, and there was no tie. That’s egough, 1 guess.
Now I’m leaving you; I’m in a hurry as always. See you
later,” said Sue and left.

Is the above hint really enough for Pru to figure out the
result of the championship?

10 The Case of Five Lottery Numbers*

"Do you know the numbers drawn?" a mathematician asked his
friend, who was a mathematician, too, after a lottery draw.

(1) "They are very funny. Really funny. There is one among
them which divides the sum of any two of the numbers drawn."

"And what's that number?"

(2) ”1 won’t tell you that. If 1 did, you’d find out every
winning number. "

* A problem of the Daniel Arany Highschool Competition in
Mathematics, Hungary, 1986

120

(31 "Teil me then, at least, if that number is even or odd."
On hearing the answer, the first guy jumped up, "Boy! Won a
first division!"

What were the winning numbers?

(According to the rules of the Hungarian lottery, five numbers
are drawn out of ninety, more precisely, out of the numbers 1,
2, . . ., 90.)

11 The Case of Nine Different Bottles [Ц]

A store sells three kinds of alcoholic drinks: wine, beer,
and brandy; French, German, and Hungarian made drinks of each
kind. In order to represent the diversity of alcoholic drinks
on stock, the window-dresser took nine bottles of th.e three
kinds of drinks, one of each made in each kind, and was going
to arrange them into a square formation of three rows and
three columns such that each row and each coulmn contains
exactly one bottle of drink of each made and exactly one
bottle of drink of each kind. How many different ways could
he find to do that?

Penthouse Pansion has changed recently. So have the girls.
It is now one of the most expensive girls college in the
state. Mademoiselle Spinstaire, the schoolmaster, is willing
to admit girls of the most prominent families only. The
afternoon walks on Wednesdays are guided by Mademoiselle
Spinstraire herse 1 f--and by her inevitable pink umbrella, of
course. The girls, in their pretty uniforms and with their
yellow straw hats on, walk side by side, three girls a row.
Madmoiselle Spins taire is rigorous; she does know how to
spoil even the afternoon walks of the girls.

"1 do not like those little gangs of yours," she said
last Wednesday. "As for the forthcoming weeks, rearrange your
rows such that no one walk with either of her present rowmates
on the same row until one walks with everybody else on the
same row. "

The girls had found the task too difficult, so
Madmoiselle Spinstaire herself had to rearrange the girls.
For the form of nine girls,- she soon found distinct

121

arrangements for four consecutive weeks, and she could prove
that there was no more distinct arrangements.

For the form of fifteen girls, she has proved that there
could be distinct arrangements for at most seven consecutive
weeks, but she has not yet found the actual arrangements. And
now it’s 1 p.m. Uednesday. What a shame!

Let’s check the reasoning of Madmoiselle Spinstai re and
generate the arrangements for both forms.

13 The Case of Some Zeros [12]

Can we put down the zeros at the end of 1000! on a single
page if we can write 32 lines a page and 60 letters or figures
a line?

(If n is positive integer, then n! is, by definition, equal to
the product of 1»2»...*(n-1)#n.)

14 The Case of the Ancestors’ Ancestors [Ц]

Are my grandfathers’ great-grandfathers the same persons as my
great-grandfathers’ grandfathers? (Suppose there was no
marriage between relatives in the last five generations.)

15 The Case of Three Boys [22]

Two mathematicians, who have not seen one another for quite a
while, is talking during the tea break of a congress.

"Well, and how old are your children?"

"You know what? Remember the old days at the Uni, don’t
you? Well, I’m giving you a puzzle instead of an answer
again. OK?

(1) "Right. I’ve got three kids.

(2) "Multiply the numbers of years they have lived so
far--don’t bother with the fractions--and you’ll get 36.

(3) "And now add up those numbers and you’ll have ... Look!
You’ll have the sum of the windows of that orange house
opposite. ”

122

After a short while the other said,

(4) "Give me some more hint. It’s not enough to find out the
ages of your kids."

(5) "Oh, sorry. You’re right. I should’ve told you that the
youngest one doesn’t like dark chocolate."

"Thanks. That’s more than enough. You have a ... "

Finish the last sentence, that is, figure out how old the
children are.

16 The Case of Triangle Coloring [18]

As soon as Steve, the 12-year-o1d and the naughtiest■son of
Mr. and Mrs. Tryangel, arrived home from school, he dashed
into his room and, after a few seconds, appeared again with a
handful of color crayons. He took a black one and scribbled
the figure below on the wallpaper. Having finished his work,
he called, "Gill, come on in here. I’ll show you somethin’, a
colorful little triangle."

Uhen Gill, his sister, entered the room, Steve gave her
some of his crayons and said, "I’ll give you three crayons, a
blue, a red, and a yellow one. And I’ll tell you how to color
the triangles. Right? Put a blue, a red, and a yellow spot
at the corners of that big triangle. Now put a spot at the
middle of each side of that big triangle, there, there, and
there, so that each spot is of the same color as one of the
endspot of that side. No, you don’t know nothin’! That spot
must be either blue or yellow ’cause there is a blue and a
yellow spot at the ends of that side. Got it? And now you
have that small triangle in the middle with no spots at the
corners. Now I’ll turn away and you’ll color the corners as

123

you like. Hey, don’t start yet. Listen. I’ll come back when
you finish, and if / can find a triangle with a blue, a red,
and a yellow spot at the corners, then you’ll give me the
lolly you got last night. Promise? You still have it, don't
you? And if 1 can’t find such a triangle, then I give my
lolly to you. ÛK, just hurry up, Dad’s cornin’ soon."

Who got the lollipop?

17 The Case of Two Noisy Ghosts [17]

It was last spring when old MacDonald died leaving all his
possessions and debts for his nephew, Hamish. That is how my
friend inherited a superb Highland castle. Unfortunately, it
was not only the castle he inherited: the castle was haunted
by two noisy ghosts, as turned out in the very first night
after he had moved in. Since then, from midnight till dawn
each night, he has been haunted by ghostly noises: a
mysterious singing and a vulgar laughter. Those were the
first two ghosts in Hamish’ life, so he did not really know
what to do. After a while he started to observe them, and
realized certain regularity in their behavior.

Whenever he plays the organ and there is no laughter,
the singing ghost changes her activity to the opposite in the
next minute (that is, if she wes singing, she stops singing,
or if she was silent, she starts to sing). Otherwise, the
singing ghost does, in each minute, what she did in the
preceding one.

- Uhenever the window is closed, the laughing ghost does
what the singing ghost did in the preceding minute (that is,
she laughs if the other sang, or she is silent if the singer
was silent).

Uhenever the window is open, however, the laughing
ghost does the opposite of what the other did in the preceding
minute.

And now, with the results of his remarkable observation,
Hamish has come to me and wants to know by what manipulations
he can get rid of the ghost. Uhat should I tell him?

124

18 The Case of Two Numbers [26]

I have found two numbers, a three-digit one and a two-digit
one. if you divide the three-digit one by the two-digit one,
the quotient will be a number equal to the sum of the digits
of the divisor and the remainder will be a two-digit number
consisting of the digits of the divisor in reverse order. If
you multiply the remainder by the quotient and then increment
that result by the divisor, the three-digit number you will
get will consist of the digits of the dividend in reverse
order. Guess the numbers I have found.

125

References

til Andrasfai, В., An Introduction into Graph Theory.
Tankonyvkiado, Budapest, 1973 (in Hungarian).

121 Arsac, J., Jeux et casse-tête a programmer. (Games and
Puzzles for Programmers.) Dunod, Paris, 1985 (in French).

C3] Bakos, T., P. Lorincz, & G. Tusnady (eds.), Highschool
Competitions in Mathematics -- 1970. Tankonyvkiado,
Budapest, 1970 (in Hungarian).

[4] Battani, G. & H. Meloni, Interpréteur du Language de
Programmation Prolog. Groupe de I.A., UER Luminy,
Université d’Aix-Marseille, 1973.

t5] Bizam, G. & J. Herczeg, Games and Logic in 85 Problems.
Műszaki Könyvkiadó, Budapest, 1972 (in Hungarian).

16] Bizam, G. & J. Herczeg, Colorful Logic. Műszaki
Könyvkiadó, Budapest, 1975 (in Hungarian).

17] Bratko, l., Prolog Programming for Artificial
Intelligence. Addison-Wes 1 ey, Reading, Mass., 1986.

18] Clocksin, U. F. & C. S. Hellish, Programming in Prolog.
Springer-Verlag, New York, 1964.

19] Coelho, H., J. C. Cotta, & L. M. Pereira, How to Solve it
with Prolog. Laboratorio Nációnál de Engenharia Civil,
Lisbon, Portugal, 1980.

110] Denes, J. & A. D. Keedwell, Latin Squares and Their
Applications. Akadémiai Kiadó, Budapest, 1974.

111] Fried, E., Mrs. Lanczi, & J. Suranyi, "Uho is an Expert
of Uhat?” Problems of the Mathematical Competitions
Organized by the Hungarian Television in 1964 and 1966.
Tankonyvkiado, Budapest, 1968 (in Hungarian).

112] Hajos, G., G. Neukomm, & J. Suranyi (eds.), Problems of
Competitions in Mathematics. Part 1: 1894-1928. 3rd
edition. Tankonyvkiado, Budapest, 1965 (in Hungarian).

113] Jensen, K. & N. Uirth, PASCAL User manual and Report.
Springer-Verlag, New York, 1978.

114] Karteszi, F., An Introduction into Finite Geometries.
Akadémiai Kiadó, Budapest, 1972 (in Hungarian).

126

[15] Knuth, D. E., The Art of Computer Programming. I/o/. 2
Seminumerical Algorithms. Addison-Wes1ey, Reading,
Mass., 1969.

[16] Kowalski, R., Predicate Logic as a Programming Language.
Proc. IFIP 74, North Holland, 1973.

[17] Középiskolai Matematikai Lapok (Hungarian Mathematical
Journal for Highschool Students), Vol. 45, 1972 (in
Hungar i an).

[18] Középiskolai Matematikai Lapok (Hungarian Mathematical
Journal for Highschool Students), Vol. 46, 1973 (in
Hungar ian).

[19] Középiskolai Matematikai Lapok (Hungarian Mathematical
Journal for Highschool Students), Vol. 50, 1975 (in
Hungar ian).

[20] Középiskolai Matematikai Lapok (Hungarian Mathematical
Journal for Highschool Students), Vol. 51, 1975 (in
Hungar ian) .

[£!] Középiskolai Matematikai Lapok (Hungarian Mathematical
Journal for Highschool Students), Vol. 59, 1979 (in
Hungarian).

[22] Letters of Mathematics -- Form 3. Admission Preparation
Committee of the Faculties of Sciences, Budapest (in
Hungar ian).

[23] Letters of Mathematics -- Form 4. Admission Preparation
Committee of the Faculties of Sciences, Budapest (in
Hungar ian).

[24] Lloyd, J. W., Foundations of Logic Programming.
Springer-Verlag, New York, 1987.

[25] Markusz, S. , Easily Comprehensible Prolog Programming.
NOVOTRADE RT., Budapest, 1988 (in Hungarian).

[261 Molnár, E. , Collected Problems of Competitions in
Mathematics, 1947-1970. Tankonyvkiado, Budapest, 1974
(in Hungar ian).

[27] MPROLOG Language Reference Manual. Logicware, SZKI,
Budapest, 1985.

[28] Naish, L. , Negation and Control in Prolog. Lecture Notes
in Computer Science Vol. 238. Springer-Ver 1ag, New
York, 1986.

[29] Perelman, Ya. I., Stories and Puzzles in Mathematics.
Gondolat, Budapest, 1979 (in Hungarian).

127

[30] Sterling, L. & E. Shapiro, The Art of Prolog. M.I.T.
Press, Cambridge, Mass., 1986.

[31] Van Emden, M., F i r s t - O r d e r Pr e d i c a t e L o g i c as a
High- L e v e l P r o g r a m m i n g Language. Dept. of A.1.,
MIP-R-106, Univ. of Edingurgh, 1974.

[32] Warren, D. H. D., I m p l e m e n t i n g Prolog. Res. Report
39, 40. Dept. of A. I., University of Edinburgh, 1977.

[33] Wirth, N., P r o g r a m m i n g in Modula-2. Springer-Verlag, New
York, 1982.

A TANULMÁNYOK SOROZATBAN 1987-B EN MEGJELENTEK:

195/1987 Telegdi László: Bináris változók struktúrájának
vizsgálata

196/1987 Rónyai Lajos: Algebrai algoritmusok
197/1987 Hernádi Agnes - Bodó Zoltán - Knuth Előd:

A tudásábrázolás technikái és gépi eszközei
198/1987 Miguel Fonfria Atan: A data base management

system developed for the Cuban minicomputer
CID 300/10

199/1987 Bach Iván - Farkas Ernő - Naszódi Mátyás:
A magyar nyelv elemzése számitógéppel

200/1987 Publikációk'86 /Szerkesztette: Petróczy Judit/
201/1987 Eszenszki József - Hévizi László - dr. Kas Iván -

dr. Läufer Judit - Palotási András - Szőnyi Tamás
Dr. Vörös Károly: Tanulmányok a számítástechnika
nyomdaipari alkalmazásához

202/1987 Problems of Computer Science
Proceedings of the joint workshop of Computer and
Automation Institute of HAS and Computing Centre
of Armenian Academy of Sciences held in Budapest,
September 1987. /Edited by: G.B. Marandzjan,

B. Uhrin/

iy88-BAN EDDIG MEGJELENTEK:

203/1988 KNVVT EG-25. Problems and tools of the integration
of information systems. Proceedings. 1987.
Edited by: Rumjana Kirkova - Tibor Remzső

Ferenc Urbánszki

204/1988 Csetverikov Dmitrij: Digitális texturavizsgálat
néhány uj módszere

205/1988 Hernádi Ágnes: Uj eszközök a fogalmi modellezésben

206/1988 The second Hungarian workshop on image analysis.
Edited by: Csetverikov Dmitrij - Álló Géza

	Tartalom
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������

