

\

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutató Intézete
Computer and Automation Institute, Hungarian Academy of Sciences

H C G neqO B aT enbC K H fi H HCTHTyT B bH H C nH T ejIbH O ß TeXHHKH H aB T C M aT H 3aiiH H
BeHrepcKoß AxaneMHH Hayx

CTATbM KOHOEPEHlIpM KHBBT W ABT0MATH3AIJHH HHQOPMAIJWDHHblX

ÜPOUPCCOB HA nEPCOHAJMMX OEM

E yd a n e im , 5 - 9 ma n 19 8 6 2 .

Tom II.

KNVVT CONFERENCE ON AUTOMATION OF INFORMATION PROCESSING ON

PERSONAL COMPUTERS

B u d a p e s t , May 5 - 9 , 1986

V ol I I .

E yd a n e im , 1 9 8 6

B u d a p e s t , 1986

Tanulmányok 194/1986
Studies 194/1986

A kiadásért felelős

DR. R E V I C Z K Y L Á S Z L Ó

PeaaKTop:

W T B A H PATKÓ

Editor:

I S T V Á N RATKÓ

ISBN 963 311 223 0
ISSN 0324-2951

87/65. Alfaprint
F.v.: Barabás Gábor

3

C O N T E N T S

Page

P.K. Azalov and F.I. Zlatarova: About the document
structure in office information systems 5

Ho Tu Bao: On an inference engine for expert systems 19

A. Bielik - M. Mlodkowski and M. Piotrowicz:
Low-level extensible language systems for image
processing .. 35

M. Csukás - E. Farkas - A. Krámli - G. Maróti
and J. Soltész: Microcomputer monitoring of the
side-effects in Hungarian pharmacological study 47

D.I. Dimov: Interactive system for creating maps
in archaelogy 51

M. Draghici - R. Bercaru - E. Saftoiu - V. Mihail
- T. Dabija and T. Gálos: STAR a QBE-oriented
database management system 59

Há Hoáng Hop: An algebraic approach to knowledge
structuring .. 73

M. Joiko: The CDL programming support enfironment
from Dresden .. 83

P. Kerékfy - A. Kiss - I. Ratkó and M. Ruda:
Microcomputer-based special medical information
systems .. 95

P. Kerékfy and M. Ruda: Form management by
micro-SHIVA ... 101

U. Konzack: An approach to implementating
principles of discrete event simulation on PROLOG 115

4

Page

J.L. Kulikowski: Microcomputers as adaptive tools
between invalids and their environment 121

Van-Lu Nguyen and Thuan Ho: On the Padre's
implementation by preprocessor technique 131

R. Pavlov - R. Mitkov and A. Eskenasi: Personal
computer-aided testing and training systems 14 3

G. Pönisch: Software for the homecomputer
Robotron Z 9001 - Basic-codes for solving
numerical problems 155

A. Radensky and M. Todorova: An approach to
programming by means of equations: Transformation
programs and an interpreter for such programs ...

G. Remzso: Computer-aided database management
system in Hernad "Március 15. MGTSZ" agricultural
co-operative - A case study - 183

T. Remzso: Office automation and data processing 191

B. Thalheim: Deductive basic of relations
new effective normal form for the design of
relational data bases 20 3

Vu Due Thi: On the connection between minimal
keys and relations 213

Ho Thuan: Some additional properties of keys for
relation scheme 219

T. Toma and E. Saftoiu: Natural language query
for databases 237

5

ABOUT THE DOCUMENT STRUCTURE IN
OFFICE INFORMATION SYSTEMS

P.K.Azalov F .1 .Zlatarova

ABSTRACT In this paper we focus on the
document organization and the management
aspects of office information systems.
General problems about document models
and data types used in their definition
are considered. A concrete office docu­
ment model called Object Document Model
(ODM) is described. The object is a prog­
ram unit representing a document type
such that applying some determined rules,
different document instances are genera­
ted. In the data base field there are
used three basic notions: data model,
schema and data base. Similarly here are
considered the next three notions: ODM,
object type and document instances base.

1. INTRODUCTION
There is a growing interest among computer

science researchers about information systems that
handle complex data such as text, attribute data
types (integers, reals etc.) and image. Now these
systems are changed to taking into account new as­
pects. A short review of the basic possibilities
of the data storage and the data retrieval compu­
ter systems suggest that their evolution is close­
ly connected with the complicating of the data
handled. The main evolution stages with respect to
the object structure presented in these systems
are:

6

a) informational objects having fixed struc­
ture (fixed numberi of fields, fixed
length of each field);

b) informational objects having variable
number of fields and variable length of
some of these fields;

c) informational objects being a form;
d) informational objects containing nonstan­

dard types, including graphics elements;
e) informational objects having semi-free

format (see 2.2).
Obviously, the objects corresponding to e)

are the most complex ones and they contain in them­
selves the objects from the other types. It can be
considered that those informational objects not
being especially mentioned in the above classifica­
tion may be situated between the objects of type a)
and e) with respect to their structure complexity
and their building components. It is very interes­
ting to consider the problem about the existence of
a general system having possibilities for managing
informational objects from the simplest type a) to
the most complex type e). Systems which need these
possibilities to manage data with so large range of
the permitted structure are the office information
systems. Some of the functions that these systems
may provide are creation and filing of office in­
formation, content addressibility of office docu­
ments , automatic insertion of documents in a paper
from and document transmition and reconstruction in

7

a different site. Sometimes the realization of
office information systems may be performed by me­
ans of DBMS.

2. DOCUMENT MODEL
2.1. What is a Document Model?

The basic information carrying entity in
office information systems is the document. Docu­
ments are used to communicate information in offi­
ce. A document can be a data base record, a text
ddonmmt , an image or any combination of the abo­
ve [2] . There exists a similarity between the do­
cument model in a document information system and
the data model in a DBMS [l]. The three concepts
characterising a DBMS are: a data model, a schema
and a data base. They are to be found in office
information systems too. For example, in a form
system such as OPS [4]] the corresponding concepts
are: form description language, form types and
form instances. The type concept described in this
system is definitely useful when dealing with
forms, but this is not always the case with more
general documents. In general, the document model
(DM) may be determined by a set of generating ru­
les (R), with respect to which the documents are
built [3^* But the structure specifications do
not assure possibilities for the complete inter­
pretation of the document semantics and of their
application mode. It is realized by specification
of the document operations. The set of generating

8

rules R for building of documents is usually cal-e
led a data definition language. A DM must support
types with a high degree of flexibility in their
structure and provide as much knowledge as possib­
le about the structure of a given office document
in order to assist in its creation, storage and
retrieval.

2.2. Data Types Used in Document Models
Building elements of each office document

are the primitive types (or basic data types),
’iteger, a real, a string, a boolean

and a pointer. It is not difficult to give examp­
les where the first four types are used. The type
pointer may be used by refering to a document from
the same or an other type, or by refering to a pa­
per document, a table or a graphic object. Using
pointers of the first type the possibility to link
documents in a correspondence is obtained. The
other pointers are very useful by the creation of
a document dossier, of documents having appendices
and s.o. With the help of the primitive types more
complex nonprimitive types are defined such as a
date, an address, a telephone number and others.
The definition of these types is performed in two
levels: external and internal representation. Usu­
ally for the internal representation of the type
date an ordered triad of integers is used, corres­
ponding respectively to the day, month and year.
This representation must allow cases of incomple­
teness and indefiniteness for the values of some

9

components. Often the external representation is
like a string having variable structure and lenght.
Por example:

May 15, 1985
15.05.1985
15 of the last month
New Year

Questions like these appear defining and ana­
lysing some other composite types.

There exist two basic kinds of documents used
in the office practice: formatted documents
(F_document) and semi-free formatted documents
(S__document). It is possible to write:

<0f f ice_document :: = <F_documen1> | <S__document>
The wide-used formatted office documents of­

ten are defined as forms.
Obviously, the formatted documents are very

near to the managed in DBMS informational objects.
They may be considered like a sequence of formatted
elements (f_elem).

<F_document> ::= <f_elem> | <F_document> <f__elem>

<f_elem> ::= <f__field> | <stsndard__part> |
<standard_part> <f_field> |
<f_field> <standard_part>

<standard__part> :: = <string>

<f_field> ::= <prim__eleiu> | <Nprim_elem>

<prim__elem> : := <integer> | <real> | <string>|
<boolean> | <pointer>

<Nprim__elem> ::= <tel_number> | <date> | <address>

Each formatted element may be a formatted

10

field (f_field), may be a standard part
(standard_part) which is nothing more than a
string or both in the same time.

The letter is a typical example of a semi-
free formatted document# Usually the office letters
have some obvious elements. In fact in the office
practice there are used letters having arbitrary
structure (T_object). The free text and the
graphics objects (G_object) are typical ele»,
ments for semi-free formatted documents.

<S_document> :: = <s_field> | <S_document> <s_field>|
<S_document> <f_field>

<s_field> ::= <T_object> I <G_object> | <tabla>

<T_object> ::=<string>

<G_object> = <graph> [<pie_chart> | <histogram>

<table> :: = <table__row> | <table> <table_row>

<table_row> :: =<f__field> | <table_row> <f_field>

There exists an essential question, which
must be considered. It consists in determing the
difference between the free format and the string
in the case when the free text is represented by a
string. The answer is ther following: both types dif­
fer only in their semantic. The definition domain
of the field having the type string is well known
beforehand. This fact permits the analysis and the
management on these fields. An example of such a
field is the attribute EDUCATION in the personnel
card of every employee working in an enterprise.
The semantic qontent of the fields having the type

11

T_object is not known, thisway the management of
such fields can not he established in advance. It
is possible to accept this type to be "undetermi­
ned" or "unknown" • Sometimes we can not type a
field of a document. That is, we do not know a pri­
ori that all the instances of that field are of a
given type, or even for that matter that it is one
data type. Take a letter as an example: if the body
of the letter is a field, then any particular in­
stance may have one or more data types as the con­
tent of that field.

3. THE OBJECT DOCUMENT MODEL (ODM)
3.1. A Document Description Language

Up to here considered were the building ele­
ments of the office documents. Document creation
and management could be made using the experience
from the work with DB. Formal language facilities
for description of the objects corresponding to a
given object area exist for each data model. The
availability of language tools for object descrip­
tion for an office activity, i.e. the office docu­
ments, will permit the definition of document types
called further on object types taking into account
some more general functions. The real documents
used in a concrete office will be the document in­
stances generated from each document type, existing
for this office.

12

3.1.1. What is an object type?
The object type is a program unit in the

commonly accepted sence, whose components can be
descriptions of: variables, files, rules for value
computations, object type performance conditions
and document instance building operations, Diffe­
ring from the usual program modules, the object
types can be main or subordinate at the same time.
The general structure of the object types is the
following:

OBJECT <name> ;
VAR <list of variable descriptions> ;
PILE <list of file descriptions> ;
FUNCT <rule descriptions> ;
COND Conditions descriptions> ;
MODULE <list of instructions> ;
end.

In conformity with his structure the object
type has some similarity with the PASCAL-like
program units. But the similarity is only apparent.
The differences consist in:

- the type and the mode of definition and
the utilization mode of variables, files
and functions;

- the type and the mode of operations per­
formance building the module;

- the activating mode of the object type;
- the results from the activation of the ob­

ject type.
It can be admitted that the object type re­

presents a specification of the attributes common
to the document instances, generated by this ob-

13

ject type. In other words, the object type (descri­
bed by the document description language) repre­
sents exactly what is a schema (described by the
data definition language) for the data base.

Variables
There are used variables having primitive and

nonprimitive type. The first ones are given by
FORTRAN-like specifications: I, F, A, L. There are
permitted also the types: a date, an object type,
a graphic object, a procedure and a metatype, all
they noted respectively by D, 0, G, P, T. The de­
finition of all variables is made in the way, shown
in the next example:

VAR X:F7.2, A:G, ALPHA:A7, BETA:A15 ;

Piles
The notion file is used in his known sence.

Each file is determined by its name and an ordered
list containing field names, each of them defined
like the usual variables.

PILE P1(NAME:A10, HR:15, S:P3.1)
F2(NM:14, DATE:D , ABST:A240) ;

To use files in object type definition is not
obligatory, but in most cases it helps the automa­
tic synthesis of document instances. When the docu­
ments are formatted, they can be elements of such
files in a DB and so they can be useful by the cre­
ation of new office documents (not necessarily for­
matted).

14

Expressions
The expressions are used for value computa­

tion. Permitted expression types are: I, P, A, L
and D. They are simple or conditional. The values,
participating in expressions are constants, vari­
ables and file fields. The expression values are
assigned to variables with the help of the assig-
ment instruction.

Examples:
1) P: I5=A+7
2) Y: A1=if L=0 then .*M* else »W* ;
3) NAME: A16=CITY+' CITYJ_-_'+CODE ;
4) R: P5.2=if A=2 then 'X+Y±» + STR(ST)

else PROG;
The examples 1) and 3) illustrate simple

expressions from the types I and A. The examples
2) and 4) represent conditional expressions. In
the last example in the case of A = 2 the procedu­
re PROG will be activated.

Conditions
An object type is in an active state if an

appeal from an other object type or directly from
the office information system is manifested to it.
The object instance generation of a given object
type is possible only if the respective object ty­
pe is in an active state and if the conditions in
the section COND are fulfilled. These conditions
are written like logical expressions,

15

Instructions
The document instances are generated due to

a sequence of instructions, contained in the sec­
tion MODULE of the object type. There exist two
kinds of instructions:

a) reference to: variable, file, file field,
expression, procedure, object type, edi­
ting function, DB-function;

b) control instruction: unconditional, condi­
tional and cyclic.

The aggregate of document instances, genera­
ted by the object types described in ODDL will be
called an object data base (ODB). The presence of
files used as data structures in the object types
building and also the generating of concrete docu­
ment instances creates a direct link between data
in DB and documents in ODB.

3.2. Document Operations
The document operation is a basic operation.

It can be considered like a composite operation of
the following two operations: object document cre­
ation and document instance creation. The first is
performed with the help of a specialized editor,
whereas the second is performed automatically using
previously created object type and introduced in
the DB data.

The retrieval of a document in ODB is a very
important and complicated operation in the document
management. The semi-free format of the documents

16

in ODB and namely the presence of heterogeneous
building elements (text, graphics data) submits ve­
ry serious problems about their physical organiza­
tion and the method for their retrieval. T^e docu­
ment instance visualization must permit the output
of mixed data types (text and graphics data) on
the screen or on paper. On the basis of existing
references between documents (a document type,
which has a reference to .another document type,
has also references to the document instances ge­
nerated by the second document type) it is possib­
le to define the operations union and correspon­
dence. Due to the first of them, instances of dif­
ferent types can be arranged in groups, and due to
the second one it is possible to group instances
of the same type. The operation document modifi­
cation is not so typical, but sometimes it may be
used. Document management for documents of a given
type may include the performance of some arithme­
tical operations on numerical elements in a table,
described according to this type, also the sorting
of documents in respect to concrete criteria and
s .o.

4. CONCLUSION
Management of unformatted data presents a

variety of new possibilities and perspectives for
data base management researchers. Here considered
was only a part of the problems in respect to the
office documents structure. Very interesting but

17

quite sophisticated are the corresponding questi*
ons about software architecture of office infor­
mation systems, physical document base design
techniques, image processing techniques, concuren-
cy control, security, version support etc.

REFERENCES

1. F.Rabitti, A Model for Multimedia Docu­
ments, Office Automation (edi­
ted by D.Tsichritzis), pp.227-
250, Springer-Verlag, 1985.

2. D.Tsichritzis, S.Christodoulakis, P.Eco-
nomopoulos, C.Faloutsos, D.Lee,
A.Lee, J »Vandenbroek, C.Woo,
A\ Multimedia Office Filing
System , The Tenth Internati­
onal Conference on Very Large
Data Bases, 1984.

3. D.Tsichritzis, F.Lochovsky, Data Models,
Prentice-Hall, Englewood
Cliffs, N.J., 1982.

4. D.Tsichritzis, "OFS: An Integrated Form
Management System", Proc.
Sixth Int. Conf. on Very Lar­
ge Data Bases, pp. 161-166,
1980.

r

19

ON AN INFERENCE ENGINE FOR EXPERT SYSTEMS

HO TU BAO

Institute of Computer Science and Cybernetics
Ha noi , Viet nam

ABSTRACT

This paper describes the inference engine COTO , an automated
reasoning ' tool for building expert systems in which the
user-friendliness of knowledge engineering is emphasized.

KEYWORDS

Knowledge representation , rule base , fact base, reasoning
strategies , inference engine , reasoning explanation .

20

INTRODUCTION

Expert Slystems probably constitute today the "hottest" topic
in artificial intelligence and its resultant technology ,
limited to academic laboratories previously , is now becoming
cost-effective and is beginning to enter into industrial
applications.

Building an expert system used to be hard and took years from
scratch. It required thousands of hours of programming just
to put the capability for intelligent behaviour into a
computer. Then a long time of developement in which human
expertise are added to the underlying program. Finally a
period of debugging and fine tuning.

Bringing the scientific results into real-world applications
requires the existence of right tools able to structure , to
deduce , to explain and to deal with a large amount of
knowledge . This ability is exercised with'respect to the
correctness and the elimination of contradiction.

This pa,per describes the reasoning mechanisme C0T0 and deals
with the design principles and implementation aspects of an
expert system based on this mechanisme.

An Expert System usually consists of two essential parts :

- a Knowledge Base ,
- an Inference Engine .

The Knowledge Base consists of a set of RULES , which present
part of the knowledge source of experts in a given domain ,
and a set of FACTS , which relate to a particular situation
to be analyzed . These sets are referred to as the Rule Base
and the Fact Base.

To construst a successful knowledge base , the following
prerequisites must be met :

. There must be at least one human expert acknowledged to
perform the task of defining the set of Rules .

. The primary source for the expert's knowledge is
judgement and experience.

. The expert must be able to explain the applications of
the special knowledge to particular problems .

. The task must have a well-bounded application domain .

21

The Inference Engine is a problem-solving program . It has
the capacity of learning , structuring and manipulating of
knowledge in an intelligent way .It is rather independent
with respect to the danain of the knowledge base . With
different knowledge bases appropriating with the
representation syntax , one can construct many expert systems
without modify the inference engine .

The power of an inference engine is characterized primarily
by its capacity of manipulating the underlying logical
representation of knowledge and also by its flexibility ,
user-friendliness and speed of reasoning ... Inference
engine design may best be considered as an art form in which
the chosen design can be implemented from the collection of
available artificial intelligence techniques in heuristic
search and problem solving .

As an automated reasoning tool for building expert systems ,
the inference engine COTO has the following features :

FORTRAN 77 implementation .

. Reasoning with numerical and alphanumerical variables.
These variables must be instancied in the moment
of deduction .

Reasoning in forward and backward chaining according
to the need of user.

Reasoning in tri-valued logic : affirmation , negation,
ignorance and without limination by Horn clauses .

Interacting easily with users by quasi-natural language ,
i.e. readable by somebody not involved in computer
science .

Explaining its reasoning by pointing out various steps
in the inference process .

22

The overall structure of an expert system based on COTO is
shown in figure 1. The inference engine is the heart of the
system and consists of the following basic components :

. Rule-compiler : Reads the rule base and builds an
internal representation of knowledge.

. Knowledge acquisition : Adds the knowledge in the fact
base , actives and desactives the rules in reasoning.

. Inference : Reasons in forward and backward chaining.

. Dialog : Interacts with users in the quasi-naturel
language, explains the reasoning process.

EXPERT COTO USEE

Fig.l. Overall structure of an expert system based on COTO

:£> Interface

23

II. REPRESENTATION OP INFERENCE ENGINE COTO

II. 1. Knowledge representation

As in almost expert systems , the knowledge is represented in
COTO by prodution rules with a simple syntax . To write the
rules , one uses only the followings :

"IP" , "THEN" , "AND" , "NOT" ,

the comparison operators :
1 1 > V = t^lt H^_t! M _ tl H O n

and the assigment operators :
11 < — — 11
11 . — 11

"RUEE" for keywords,

for numerical variable,
for alphanumerical variable,

for numerical constant,
for alphanumerical constant.

The production rules have the form :

RUEE k
IP <premise 1 > AND ... AND <premise n>
THEN Conclusion 1 > AND ... AND Conclusion m>

The <premise> and <conclusion> must fit the following syntax

< object 1 > < relation > < object 2 >

where :

< object 1 > may be a proposition , a numerical or an
alphanumerical variable or a numerical function given by a
name and a list of parameters between two parenthesis .

< object 2 > may be a numerical or an alphanumerical
constant, a numerical variable or function .

< relation > may be one of comparison or assigment operators
described above.

24

For instance , the following premises and conclusions are
available :

IF THE MONKEY IS HOLDING THE BANANA

IF TEMPERATURE OF PATIENT >= 40.5

IF SUM (LAMBDA 1 ,LAMBDA2,LAMBDA3) > 0.8

IF NOTE (WEIGHT, HIGHT) <> PLUS5(AGE)

IF THE COLOUR OF FLAG == BLACK

IF FORM OF TABLE X CIRCULAR

For example , a rule in COTO may be :

RULE13

IF Diagnosis ==
AND Delta of PGV
AND Plus5(Pprime)
AND PGVmax

THEN
Diagnosis :=

AND Procedure : =
AND Trie <-■

prime or second breach < 20
> PGVmax
> 40

prime breach
A23
Mean(PGVmax, PGVmin)

In this rule , "Diagnosis" , "Procedure" are understood by
the system as the alphanumerical variables , "Delta of PGV",
"PGVmax", "PGVmin", "Trie", "pprime" as the numerical
variables , "Plus(.)", "Mean(.)" as the functions whose
values depended upon the values of "Pprime" or "PGVmax",
"PGVmin" , and "20" , "40", "prime or second breach" , "A23"
as the constants .

One can notice that the negation keyword "NOT" may be
anywhere among the words of the proposition . For example ,
"the monkey is not holding the banana" is equivalent to "not
the monkey is holding the banana" , and it will be understood
by the system as the negation of "the monkey is holding the
banana" .

25

II.2. Acquisition and structuration of knowledge

The first step in the working process of the system is
reading of the rule hase . If the production rules are
written according to the syntax described above , COTO would
have the capacity to learn , to structure the knowledge into
its internal form. In reading the rules, a domain specific
dictionary is built. It contains all of elementary words
expressing the facts by the language of experts. And in the
same time, the external rules are restructured internally
into their inference network. Each premise or conclusion is
considered as an element of state space. The description of
each state consists of the name of fact in the dictionary,
its role and type (premise or conclusion, operative and
connective functions), the sense of fact (negative or
positive.thrshold value,adress of associated alphanumerical
constant), the pointer points to the next adress, and the
situation of premise or conclusion in reasoning.

The semantic of each premise or conclusion is established by
the system whenever it is involked during forward or backward
reasoning.

The factual facts on the concrete situation are affirmed and
added initially in the fact base or in the reasoning process
by the interacting with the system . There exists no
codification of knowledge and this leading to one difficult
problem of knowledge acquisition . The users do not know how
enter the facts so that these facts will correspond to the
system knowledge . The simple and effective way used in COTO
is to make users recognize the system vocabulary by the order
of the apparition frequencies of words or the affirmed or
deduced facts in the fact base concerning to the situation .

The facts are registered in the fact base in the form of a
triplet < object , value , type > . Each time when a fact is
affirmed or deduced , an activation and desactivation
procedure runs over the rule base for propagating the
information and limiting the useless posibilities.

26

II.3* Strategies of reasoning

Two "basic strategies of FORWARD and BACKWARD reasoning are
used mutually in COTO according the need of user .

After reading of rules , COTO asks the user for a set of
initial facts and for a possible goal to prove.

If there exists a goal to achieve , COTO is in the backward
reasoning . It begins by examining a limited set of
production rules whose conclusion contain the goal . Then it
proceeds to verify the premises of these rules to see which
of the goal are satisfied . As the rules are examined in
this backward unraveling , some premises are unknown and
therefore they become new subgoals. This process is perfomed
until the first goal is affirmed or no more rules are
activable.

If there is any particular goal in the begin , COTO starts
with a set of initial facts and proceeds to invoke the' rules
in the forward direction . This will continue until no
further rules can be invoked .

If no fact or goal is given by the user , COTO tries to ask
the "most information" questions determining by the number of
apparitions of each premise.

In fact , both MODUS POKERS and MODUS TOLffiNS are used to
produce new facts or to prevent contradictory reasoning . By
accepting the reponse "I don't know" for the questions , COTO
functions also in non monotonous logic .

An agenda-driven mechanisme is built which lists the tasks
that the system could preform. It provides a good way of
choosing the most promising task on each cycle. As the
knowledge bases grow, the agenda becomes a particularly
significant advantage.

II.4. Dialog and explanation

This plays an important role in the working process of the
system. Through dialog , COTO may eventually provide expert
advice or a solution to the user's problem , or suplly
information that the user is looking for . The user interact
with ,COTO essentially by question answering and vice-versa.

Depending on the variable type in the premise examined and
the different situations , the system asks the convenable
questions :

27

- "Do you want to ... ?"
- "Do you think that ... is true ?"
- "Can you give me ... ?"
- "Do you know ..."

The answers are always simple :

- "Y" or "YES"
- "N" or "NO"_ Vf I vv *
- a number
- an order

(I don't know) ,
(for a numerical value) ,

(for an alphanumerical value) .

The user may also request whenever :
— »»9!»
- "h" or "help"
- "t" or "trace"— tt̂tt or "insert"
- "s" or "stop"

, (why) ,
(for obtaining the useful information) ,

(for displaying the fact base) ,
(for inserting new facts in fact base) ,

(to stop reasoning) .

The explanation of COTO according to the system status when
being asked "?" . It is particularly designed for the
reason of making decision.

III. EXAMPLE OP UTILISATION OF COTO

III.1. The rules

We take here a simple knowledge base . This is the
tracduction of organigram of diagnosis 5 mm after the
injection of security in a PWR 900 MW nuclear core , cf. 1.
procedure AO notes Morori (1982) and Brillon , Janin , Munier
(1981) .

RULE 1
IP PPRIME > 138
AND PPRIME < 160
AND DELTA PGV < 4
AND PURGES GV OR CONDENSER == NON-ACTIVITY

THEN DIAGNOSIS IS OVER-ABUNDANT
AND PROCEDURE := 13

RULE 2
IP PPRIME <= 138
THEN DIAGNOSIS IS BREACH

RULE 3
IP PPRIME > = 1 6 0
THEN DIAGNOSIS IS BREACH

28

RULE 4
IP
THEN

RULE 5
IE
THEN

AND

RULE 6
IP
AND

THEN

RULE 7
IP
AND

THEN

RULE 8
IP
AND
AND

THEN
AND

RULE 9
IP
AND
AND

THEN

RULE 10
IP
AND
AND
AND

THEN

RULE 11
IP
AND

THEN
AND

RULE 12
IP
AND
AND

THEN
AND

DELTA PGV >= 4
DIAGNOSIS IS EREACH

PURGES GV OR CONDENSER == ACTIVITY
DIAGNOSIS IS RUPTURE TUBE GV
PROCEDURE := A3

DIAGNOSIS IS BREACH
PURGES GV OR CONDENSER == NON-ACTIVITY
DIAGNOSIS IS PRIME OR SECOND BREACH

DELTA PGV >= 20
DIAGNOSIS IS PRIME OR SECOND BREACH
DIAGNOSIS IS' SECOND BREACH

DIAGNOSIS IS PRIME OR SECOND BREACH
DELTA PGV < 20
PLUSIO(PPRIME) < PGVmax
DIAGNOSIS IS APRP /LARGE BREACH/
PROCEDURE := A12

DIAGNOSIS IS PRIME OR SECOND BREACH
PLUS10 (PFRIME) > PGVmax
PGVmax < 40
DIAGNOSIS IS SECOND BREACH

DIAGNOSIS IS PRIME OR SECOND BREACH
DELTA PGV < 20
PLUS10(PFRIME) > PGVmax
PGVmax >= 40
DIAGNOSIS IS PRIME BREACH

DIAGNOSIS IS SECOND BREACH
TRIC >= 286
DIAGNOSIS IS SECOND BREACH IN ENCLOSURE /OVERHEATING/
PROCEDURE := A23

DIAGNOSIS IS SECOND BREACH
TRIC < 286
P ENCLOSURE == ELEVATED ANORMALLY
DIAGNOSIS IS SECOND BREACH IN ENCLOSURE /COOLING/
PROCEDURE := A22

29

RULE 13
IP DIAGNOSIS IS SECOND BREACH
AND TRIC < 286
AND P ENCLOSURE == NORMAL

THEN DIAGNOSIS IS VAPOUR TUBE RUPTURE OUT OP ENCLOSURE
AND PROCEDURE := A21

RULE 14-
IP DIAGNOSIS IS PRIME BREACH
AND DECH VALVE PRESSED OR ASP NORM == LARGE OPEN

THEN DIAGNOSIS IS DEPRESSED PRIME CIRCUIT
AND PROCEDURE : = A8

RULE 15
IP DIAGNOSIS IS PRIME BREACH
AND DECH VALVE PRESSED OR ASP NORM == NON-LARGE OPEN
AND PPRIME > PGVmax

THEN DIAGNOSIS IS APRP /SMALL BREACH/
AND PROCEDURE := A11

RULE 16
IP DIAGNOSIS IS PRIME BREACH
AND DECH VALVE PRESSED OR ASP NORM == NON-LARGE OPEN
AND PPRIME <= PGVmax

THEN DIAGNOSIS IS APRP /LARGE BREACH/
AND PROCEDURE := A12

30

III.2. Example of execution

C0T0

List of available files of rules :

1 . Choice of Miss France
2. Choice of methods of data analysis software SICLA
3* Injection of security in the PWR 900 MW nuclear core
4- Recognition of flags
5- Recognition of mushrooms

On what file do you want to work ?
3
I read now the rule base ,
Let me a bit of time .
Do you know how interact with C0T0 ?
If you want to know , please tape "y" (or "n")
no

I have read 16 rules in rule base ,
Then I registered 36 words in my dictionary ,
Among them 1 numerical function ,
and 13 askable goals .

Do you want print the dictionary (by piece) ?
no
Please enter the facts ($ for END) ?
$
Do you have-a particular goal to achieve ? (its name or "n")

PROCEDURE == A11

You tell me that : PROCEDURE == A11
OK ! I understand .
For up-dating the working espace , enter the facts , please ?

$
Do you think that DIAGNOSIS IS PRIME BREACH is true ??

I try to apply all of rules dealing with
DIAGNOSIS IS PRIME BREACH , for example :

RULE 15
IF DIAGNOSIS IS PRIME BREACH
AND DECH VALVE PRESSED OR ASP NORM == LARGE OPEN
AND PPRIME > PGVmax

THEN DIAGNOSIS IS AERP /SMALL BREACH/
AND PROCEDURE := A11

31

Do you think that DIAGNOSIS IS PRIME BREACH is true ?I
Do you think that DIAGNOSIS IS PRIME OR SECOND BREACH
is true ?t
Do you think that DIAGNOSIS IS BREACH is true ?

Can you give me the value of : PPRIME ?
72

You have affirmed me that

Pact 1 : PPRIME = 72.0 <= 138.0
Then I come to the following conclusion :
After RULE 2 , I can deduce that :

1. DIAGNOSIS IS BREACH

Can you tell me PURGES GV OR CONDENSER ,
Is it ?

1. NON-ACTIVITY
2. ACTIVITY

1
OK !
You tell me that : PURGES GV OR CONDENSER == NON-ACTIVITY

With the conclusions :

Pact 2 : DIAGNOSIS IS BREACH
Pact 3 : PURGES GV OR CONDENSER == NON-ACTIVITY

After RULE 6 , I can deduce that :

1 . DIAGNOSIS IS PRIME OR SECOND BREACH

Can you give me the value of DELTA PGV ?
trace

What kind of facts you want see ?

1 . the facts affirmed
2. the facts deduced
3- all the facts in the base

3

32

BASE OF FACTS

1. PPRIM 72 (affirmed)
2. DIAGNOSIS IS BREACH true (deduced)
3. PURGES GV OR CONDENSER NON-ACTIVITY (affirmed)
4. DIAGNOSIS IS P R I M OR SECOND BREACH true (deduced)

Can you give me the value of DELTA PGV ?
1
Can you give me the value of PGVmax ??
I try apply all of rules dealing with : PGVmax , for example

RULE 10
IF DIAGNOSIS IS PRIME OR SECOND BREACH (affirmed)
AND DELTA PGV < 20 (affirmed)
AND PLUS10 (P P R I M) > PGVmax
AND PGVmax >= 40

THEN
DIAGNOSIS IS PRIME BREACH

Can you give me the value of PGVmax ?
71

With the conclusions :

Fact 4 : DIAGNOSIS IS PRIME OR SECOND BREACH
Fact 5 : DELTA PGV = 1 < 2 0
Fact 6 : PLUSIO(PPRIM) = 82
Fact 7 : PGVmax = 71 >= 40

After RULE 10 I can deduce that :

1 . DIAGNOSIS IS P R I M BREACH

Can you tell me DECH VALVE PRESSED OR ASP NORM ,
Is it ?

1 . LARGE OPEN
2. NON-LARGE OPEN

2
OK !
You tell me that : DECH VALVE PRESSED OR ASP NORM ==

NON-LARGE OPEN

All right , at last I come to your goal ,

33

With the conclusions :

Fact 8 : DIAGNOSIS IS PRIME BREACH
Fact 9 : DECH VALVE PRESSED OR ASP NORM == NON-LARGE OPEN
Fact 1 : PPRIME = 72.0
Fact 7 : PGVmax = 71 .0

After RULE 15 I can deduce that :

1 . DIAGNOSIS IS APRP /SMALL BREACH/
2. PROCEDURE := A11

I have responded on your request ,
We try to pass all of possible rules ?
non

Do you want to restart reasoning from one fact affirmed ?
n
Do you want to start another reasoning ?
n

GOOD BYE ! IT'S NICE TO SEE YOU AGAIN !

V. CONCLUSION

COTO is a basic tool to build expert systems which
incorporates many artificial intelligence techniques .
Reasoning automatically in the natural way , it allows the
user easily utilise its features without having to be able an
expert artificial intelligence programmer.

COTO is now actually applied to various problems :

Data Analysis : to help the choosing method and
interpreting results for the data analysis software SICLA .
The interest of the FORTRAN 77 implementation is that COTO
can be intergrated to SICLA . Then it is possible to provide
new rules after a data analysis , as well as analyzing the
the knowledge base itself as data table .

Pattern Recognition : determining the effective
recognition procedure after the data analysis step .

Biology : Recognizing mushrooms .

34

REFERENCES

1. Demonchaux E. , Quinqueton J. , " OURCIN 2.1 : Manuel de
reference ", Technical Report No 57, Institut National
de Recherche en Informatique et en Automatique , Paris ,
Sep. 1985-

2. Lauriere J.L. , " Representation et utilisation des
connaissances ", Technique et Science Informatique, Voll,
N1 and N2, 1982.

3. Rich L. , Artificial Intelligence , Inter.Stud.Ed., 1984.

4. Weiss S.M., Kulikowski C.A., A pratical guide to
designing experts systems, Rowman & Allanheld Publishier,
1984.

5. Ho T.B. , Quinqueton J. , " COTO : Moteur d'inference ,
application en Analyse de Donnees", Research Report ,
Institut National de Recherche en Informatique et en
Automatique, Paris (to appear).

6. Gondran M. Introduction aux systemes experts , Eyrolles,
Paris , 1984 •

7. Yasdi R., A conceptual design aid environment for expert-
database systems, Data & Knowledge Engeneering 1 (1985) •

8. Alty J.L., Coombs M.J., Expert Systems. Concepts and
Examples, NCC Publications 1984-

LCW-LEVEL EXTENSIBLE LANGUAGE SYSTEM POR IMAGE PROCESSING

Andrzej BIELIK, Michal l&ODKCWSKI, Maria PIOTROWICZ.

Institute of Biocybernetics and Biomedical Engineering,
Polish Academy of Sciences
KRN 55
00-818 Warsaw, Poland

Abstract
We present in the paper a proposal for a standard set

of primitives of picture processing yfcarallel and sequen­
tial/operations together with means to compose any opera­
tion from them. These composition rules take a form of
a language* It is built as an extension of the C language.
The method of implementation of the system is also essen­
tial in our approach. Since we use a special compiler-
compiler technique of implementation, we gain extensi­
bility and portability of the system,

I. INTRODUCTION
Pirst of all, we distinguish in a picture processing

system three different levels :
1, machine instruction / or operation primitive /

- 35 -

level$

36

2. operation / or composition language / level* and
3. user command / or task / level*

This distinction may look different in different systems
depending on what is assumed as primitive in a given sys­
tem* Access to pixels, some primitive operations on them,
and some scanning control primitives are primitives for
a sequential processor, whereas for array processor some
operations on the whole pictures are primitives* The dif­
ference between levels lies in their form rather than
contents* While levels 1 and 3 are sets of parameterized
commands, level 2 is a set of expressions built according
to some composition rules. Decomposition of the system
into levels makes it modular and enables its analysis.
We deal here only with levels 1 and 2.

The first thing in system analysis is to check whether
it contains all three levels. Level 1 must always be pre­
sent* Thus only the question of level 2 is important for
us here. Systems with this level included are versatile
in the sense that indefinite number of qualitatively
different operations can be expressed in them.

Systems built as libraries of subroutines / e.g. SPIDER
/ 1 / / in fact lack composition language level and,
in consequence, are not versatile. You will always find

37

an operation for which you will have to write a new,
special subroutine, even though the library were embedded
in a language. The point is that the elements of opera­
tions should be embedded in the language rather than ope­
rations themselves. Otherwise the language ants as a user
command language rather than composition language.

The next important point is the method of implementa­
tion of the composition language. Several approaches were
taken in published systems.
1 . Picture operations primitives embedded in existing ge­

neral purpose language as procedures /e.g. in C /2/ /;
2. Picture operations primitives and composition language

built over existing general purpose language as its
extension :
2.1* by means of preprocessor /e.g. over PASCAL /3/ /;
2.2. by means of modification of existing compiler

/e.g. ALGOL 60 /4/ /.
Although approaches 1 and 2.1 give systems which are easily
extensible / new operations can be easily added / and are
portable / changed hardware implementation of primitives
is met by change of appropriate procedures /, yet they
suffer from cumbersome syntax. On the other hand, approach
2.2. ensures excellent syntax, but systems are hard to

38

modify. Therefore we have taken another approach. We use
a special compiler-compiler which enables easy modifica­
tions and convenient syntax at the same time.
The questions of the set of primitives and the composition
language themselves are, of course, most important design
problems. We have chosen the usual way of extending gene­
ral purpose language with pictorial primitives and mecha­
nisms. We have taken the G language for that purpose.

be
Next sections will devoted to pictorial extensions as well
as compiler-compiler description.

II. PICTURES
Pictures are represented as 2D arrays of numbers.

They can be of any size and any gray value range / up to
2 bytes / including binary pictures. They can be stored
in main memory, display memory, or mass storage.

Some picture analysis tasks / e.g. the intelligent
recognition / require processing of parts of pictures
only. Typically, they are windows and grids. The grid
is a set of pixels evenly spaced over picture. The grids
are usefull for rough picture processing.

39

III. PICTURE SCANNING OPERATIONS
The picture operation is an arbitrary function with

pictorial arguments and/or results. We distinguish a broad
class of most often used operations and call them scanning
operations. They are those which can be written in the form
of the following function :

f/x, S ̂ ̂ f / p / x / » ••• / / y

where:
x is the pixel from the whole picture or its part,
Sx is the neighbourhood of pixel x,
p /x/ is a pixel preceding x / relatively to some order /.
If f depends on x only, then it is called point-wise opera­
tion} If it depends on then it is called local opera­
tion} If it depends on f /p/x/, ••• / then it is called
sequential operation / because to compute its value in a
given pixel, its value in the preceding pixel is necessary/.
If f does not depend on f /p/x/, ... / then it is called
parallel operation / because its value in any pixel does not
depend on the computation order /, The parallel as well as
sequential operations could be point-wise or local.

IV. PRIMITIVES OP PICTURE SCANNING OPERATIONS
Picture operation of the form described in previous

40

section can be divided into 3 independent processes :
control of picture scanning, access to pixel / or to its
neighbourhood / and the proper computation of pixel value
/ or its neighbourhood /.

First and second processes take most of the execution
time of the whole operation / when they are implemented on
universal computer /. The idea is to supply the user with
the above processes as primitives by means of which the ar­
bitrary picture operation can be composed. Processes of
scanning control and access to pixel can be divided into
2 groups : concerning whole picture / executed only once
for whole picture / and concerning pixel / executed for
every pixel /* In consequence, a user obtains the follo­
wing procedures :
- initiation of scanning / control and access to pixel /
for whole picture}

- transition to successive image pixel} and
- access to current pixel or to its neighbourhood.
The following standard kinds of scanning are realized :
- sequential
- lexicographical / row-wise from left to right and from

top to bottom /
- reversed lexicographical / row—wise from right to left

41

and from bottom to top /.
The lexicographical scanning is most effective because
it coincides with image alocation in computer memory*
Therefore it can be used to simulate parallel scanning
/ provided that the input and output images are distinct /.

All of the above primitives are realized in following
versions : for the whole image, window and grid; for dif­
ferent types of images; and for different types of picture
store.

The proper pixel processing is realized through direct
use of processor instruction or language in which the pro­
cedures are embedded*

The above approach has made it possible to attain mo­
dular extensibility as well as time-effectiveness of our
system. The time-effectiveness is achieved owing to simpli­
fication of control and access to pixel by means of extra­
cting the part which concerns a whole picture, and due to
possibility of execution of control processes and access
to pixel only once for many operations on the picture.

V* ELEMENTARY PICTURE OPERATIONS
Picture operations can be functionally divided into

the following groups :

42

1 . Access and change of value

1.1. reading, writing and copying of : pixel, window

and whole image.

i, 2. Inpu t/ou tpu t.

2» Picture processing / picture onto picture /

2.1. Arithmetical-logical pixel-wise

2.2. Arithmetical-logical local / e.g. convolutions /

3. Change of picture form

3.1* Onto the picture with other characteristics

/ spatial resolution, dimensions, gray values range,

p o s i t i o n e.g. rotations, snifts / /

3.2. To the non-pictorial form / e.g. lists /

3 . 2 . 1 o feature calculation

3.2.1.1. Histograms analy sis

3.2.1.2. uegions localization

. 2. * . o • C tne r

3.2.2. Other

v.3. Prom the non-pic torial to pictorial form

/ objects generation .

besides primitives of image scanning we include to tne sys
some

tern operations from above groups as elementary ones,

r; amely tnose which are not picture scanning operations,

some of scanning operations w h i c h are often used, and

43

some domain specific operations* Among them there are
edge and region extraction operators.

VI. SYNTAX OP COMPOSITION LANGUAGE
We give brief review of picture processing extensions

to C language,
1 * Declarations

One can declare : pictures /PIC/, windows /WINDOW/,
grids /GRID/, neighbourhoods /LOC/, and pixels /PIX/.
Pixels are structures with fields : X, Y, VAL.

»

All subsequent occurences of identifiers with suffix
"_id" stand for names of appropriate objects.

2. Data access
One can access :
pixel in picture :
window in picture :
grid in picture :
element of pixel :
element of neighbourhood

pic_id/x,y/
pic_id W/m,n/ AT/x,y/
pic_id G/m,n/ AT/x,y/
pix_id.x, pix_id.y,pix_id
ne_id/x,y/, ne_id.pix_id

3. Scanning, statements
Parallel scanning : FOR / par_list/ statement
Reverse "parallel" scanning : REVERSE FOR / par_list/ sta­

tement

44

Sequential scanning : POR / seg^list/ /initj testj iner/

where
statement

"parJList" is a list of the following expressions :
ALLloc_id IN domain, / for local/
ALLpix_id IN domain, / for point-wise /
"seg_list" is a list of the following expressions :
loc_id IN domain, / for local /
pix_id IN domain, / for point-wise /
’’domain" is one of the following expressions :
picture
window__id OF picture
grid_id OP picture
mask:_id OP picture

All pixels and neighbourhoods contained in the list move
together during picture scanning.

4. Expressions
Expression may have one of the following forms :

unop picture,
pic 1 binop pic 2 ;

where : "unop" and "binop" are standard C operators ;
"binop" may also be which means convolution

45

VII. IMPLEMENTATION
Language is being implemented by means of special

compiler-compiler. It accepts as its input language des­
cription which consists of BNP syntax rules with attribu­
tes and translations appended to them. On output one gets
complete compiler with LALR/l/ parser and code generator
consistent with defined translations. One can easily modify
language description and obtain new compiler.

Implementation is carried out on an experimental image
processor DIPP which is under development in our laboratory.

References
1. H.Tamara, S.3akane, F.Tomita, N./okoya, M.Kaneko, K.Sakaue,

Design and Implementation of SPIDER Transportable Image
Processing Software Package, in: Computer Vision, Graphics,
and Image Processing 23,1983, pp.273-294.

2. J.Piper, D.Rutovitz, Data Structures for Image Processing
in C language and Unix Environment, in: Pattern Recognition
Letters, vol.3, N°2, March 1935, pp.119-129.

3. L.Uhr, A Language for Parallel Processing of Arrays, Emoedd
in PASCAL, in: M.J.B.Duff, S.Levialdi, eds, Languages and

Architectures for Image Processing, Academic Press 1931.,
pp.53-87.

46

4* S*Levialdi, et al, On the Desigji and Implementation
of PIXAL, a Language for Image Processing, ibidem,
pp.89-98.

47

Microcomputer monitoring of the side-effects in Hungarian
pharmacological study

M. Csukás*, E. Farkas**, A. Krámli***, G. Maróti**
and J. Soltész***

x National Institute of Cardiology
xx Richter Gedeon Pharmaceutical Company
xxx Computer and Automation Institute, Hungarian

Academy of Sciences

A pharmacological study - comparing two preparates and a
placebo - is being carried out for the Richter Gedeon
Pharmaceutical Company. The study - according to the
international standards - is based on fixed sample
statistical methods. However the side effects are monitored
by using sequential procedures (for mathematical back­
grounds cf. e.g. "Restricted Sequential Procedures",
Armitage, P ., Biometrics, 16, 9-26) . The sample size is 2500
patients, and about 50 side effects are continuously being
monitored. The structure of data is described in the talk
"Mikrocomputer-based special medical information system"
(Kerékfy, P., Kiss, A., Ratkó, I., Ruda, M.). Here we shall
point out only one peculiarity of the monitoring problem.

For each side effect two files were constructed: the first
one contains records on the patients suffering from the
given side effect and taking the first preparate or the
placebo while the second file contains records on the
patients suffering from the given side effect and taking
the second preparate or the placebo. The two types of files
were processed separately. Further on - for the sake of
simplicity - our considerations refer to one of the above
constructed files.

48

The records of the files are sorted on ascending key,
where key is the time interval from the beginning of
the treatment until the first occurrence of the given
side effect. This arrangement is the appropriate one
for the sequential procedure.

The goal of the sequential procedure is to determine
whether one of the two preparates or the placebo causes
a given side effect with greater probability. The prob­
ability in question is unknown, and its value is irrevelant,
because the sequential procedure omits the "indifferent
cases" i.e. the patients who do not suffer from the given
side effect.

We assign to the -ith record (on the sorted file) the value
r(i) where

r (i) if the ith patient takes the preparate
if the ith patient takes the placebo

According to Wald's method, if the values r(i) form a
random sequence and the probabilities of the occurence
of the given side effect are Ti ̂ and TT, when the patient
takes preparate and placebo, respectively,

n
then w(n) = 21 r(i) is a random walk which steps +1 with

i= 1
probability

(4 - 1 TT̂
('' - tO -v n j U - O

and -1 with probability 1-«

Testing the 0-hvpothesis TT̂ -Tî is equivalent to testing
the O-hypothesis ^ = 4/2, • In the practice instead of
testing we always compare two simple hypotheses
ft - 'ő^Vl and \j - - '1 - < Vl . The ratio -9^/^
can be given on the basis of medical consideration.

49

For given $ and $ the general scheme of the sequential
procedure looks like as follows: for given probabilities
of the errors of first and second kind (o< and jfe) the
coefficients a and b can be computed:

'L ^

1 V/! / (4 ~

We accept the hypothesis ^ if

min n min n
w(n) > a+bn w(n) < -a-bn

i.e. the random walk w(n) hits the upper boundary
a+bn earlier than the lower boundary -a-bn.
Figure 1 illustrates the behaviour of w(n) for one
of the side effects and for the first preparate

For a reasonable choice of the parameters e.g.^0,7,
=0.025 and ß = 0 . 0 5 the coefficients of the boundary

lines are a=8.59 and b=0.2058. So in our example the
sample size is not large enough to accept any of the
two hypotheses.

50

Figure f.

A technical remark: the treatment begins for different
patients at different times, therefore all "side effects
files" are to be rearranged when a next step in the
sequential analysis is needed.

51

INTERACTIVE SYSTEM POR CREATING MAPS IN
ARCHAEOLOGY

Dimciio Ivanov Limov
Institute of Mathematics Sofia, Bulgaria

In their activities the archaeologists used, maps for
different purposes - for illustration and for exact regis­
tration of archaeological finds. These maps are used for
making inferences for the progress of mankind during the
different stages of its existence.

This paper describes a cartographic system intended
for assisting the archaeologists in creation of maps and
plans of the terrain of archaeological investigations.

Computers have come in all spheres of human activities
and changed many of the traditional methods of work in
different fields of science and practice. One of them in
which computers have big application is cartography. The
using of computers in cartography changed fundamentally its
production. Computers and existing graphical devices enable
many of the processes in the production of maps to be auto­
mated - from the information insurance till the automatic
drawing of the maps.

One of the branches of science, using maps is archaeo­
logy. The archaeologists used maps for different purposes.
Some of the maps are designed for illustration of definite
archaeological material, and the others - for exact regis­
tration of archaeological finds. The maps used for these
purposes are in different scales and sizes. Eor instance -

52

a map of the earth with places of the ancient axchaeologl'
cal finds related to the primitive society, or a plan of
an ancient village with noted ruins of buildings, single,
objects and other elements.

DESCRIPTION OP TEE SYSTEM

The described cartographic system is designed for
creating maps and plans of regions of archaeological inves­
tigations and is working on a personal computer IBM PC. The
necessary graphical devices are - platter and digitizer.

1• Sources of information
There are several sources of information for a graphic

data base - cartographic maps, aircraft photographs, land-
sat images, statistical information, geodetic surveyings,
thematic data. Because of the nature and designation of the
system we used only some of the above mentioned sources:
- existing cartographic maps.

Por creating illustrative maps as base maps are used
existing ones on which the aesired archaeological objects
are drawn. Another way of using existing maps is to obtain
from these maps positional information for desired objects
with the help of digitizer and to use this information for
creating new ones. This method is very useful when the num­
ber of desired copies of these new maps is large.
- cartographic data received from me astir ements made on the

terrain of archaeological investigations.
These are the coordinates of geographical objects of

53
the area, received by geodetic surveyings. This informa­
tion is used for making plans of the investigated region.
- archaeological data.

It is information for the geographical location and
archaeological interpretation of the examined objects.
This information is used for showing on maps desired
archaeological objects located on the territory of a de­
finite district, country and etc. For plans the desired
archaeological information is for the exact location and
meaning of every single ODject found on the terrain of the
investigations.

2. Data base
The data base used by the system is different from

the similar ones used in many other cartographic systems
because of its archaeological destination. In the data base
there is information for two different types of objects -
geographical and archaeological. Everyone of them has its
features and is represented with both spatial ana aspatial
information. The spatial information is a set of coordinates
of points in Cartesian system. Aspatial is all other infor­
mation, which is in relation to defined spatial data, but
itself it has no positional meaning. The aspatial informa­
tion is stored in the data base as relations, the spatial -
with the coordinates of representing points.

In the data base there are entities for geometric and
cartographic elements. The way of representation of these
elements is described below.

Geometric elements:
- point - with x,y,z coordinates.

54
- straight line - with coordinates of two different

points x,y,z and a,b,c.
- curve - with coordinates of a set of points put in

order.
- circle - with radius

x,y,z - centre coordinates
a,b,c - normal véctor.

- plane - with x,y,z - coordinates of a pass point,
and a,b,c - normal vector.

- polygon in a plane - with one or a few connected
curved lines, representing its boundary.

Cartographic elements, representing geographical and
archaeological objects:
- interpreted as points.

They are depicted with figures centred with the
corresponding points. The sizes and forms of these figures
presented some of the aspatial information associated with
the treated cartographic or archaeological objects. Such
objects are summits, towns and villages, archaeological
centres and so on. In the data base the information kept
for such objects consists of the type, specifying the real
object, its name, and a pointer to the coordinates of the
representing point.
- depicted with lines.

These are rivers, roads, railroads, canals, transmi­
ssion lines and etc. The type of line with which such car­
tographic element is depicted shows the essential informa­
tion for the respective real geographical or archaeological
object. In the data base for such element there is informa­
tion for the substance of the real object, its name, and a

55

pointer to the set of points representing it.
- regions.

These are districts, lakes, orchards, vineyards,woÖd­
land and etc. They are depicted with their boundaries and
the way of shading, if any, shows the type of the represen­
ted real object and some of the aspatial information associ­
ated with it. The necessary information for such object is
the type and name of the real object, and one or more poin­
ters to the set of points representing it.

3. Data input
We used a subsystem, which makes an incoming control

and initial processing of the input data, after which the
information is stored in the data base.

For input of the non-positional information we useü
the keyboard of the computer, and for the positional we have
two ways - the keyboard and the digitizer. The x,y coordi­
nates of spatial data from the existing maps are received
with the digitizer, while the third coordinate z - altitude
above sea level - is typed on the keyooard. Its value is the
value of horizontal line passing through the digitizing
point. The information for the point elements is stored in
the data base without further processing. For the linear and
polygon elements we used a subroutine for reducing the num­
ber of representing points in XY plane, as the allowable
tolerance, which specifies how much the precision of the
representation should be relaxed, is given by the user.
After this the data is stored in the data base.

For the cases of making plans of small areas the posi­
tional information is entered from the keyboard of the

56
computer. It is received from geodetic surveyings made on
tie terrain of the archaeological object. Because of the
small sizes of the investigated area it is not necessary to
use some special cartographic projection. All the coordi­
nates are in Cartesian system. For centre of the system is
used an arbitrary, non-change able object on the terrain.

The sequence of defining the elements is interactive
and the user can change the representation of some parts of
the visualized element. For representation of linear and
polygon elements are used sets with different number of
points, as the connection of points is with segments or with
smooth curved lines passing through the points. The way of
connection depends on the nature of the objects. If such
received picture of the linear or polygon element differs
from the form of the real object, new points are taken and
the interpolation is done, again. The procedure is repeated
until the drawn image is satisfactory. After that the infor­
mation is stored in the data base.

For indicating the archaeological finds is used a set
of beforehand defined figures, as the set can be changed.
Any of the figures in the set can be changed or deleted, and
new figures can be added. The representation of the new fi­
gures is given by the user with the help of the graphic cur­
sor or digitizer. The data for every graphic figure is stored
in the aata base as a structure and when this figure is de­
picted the information from the structure is modified accor­
ding to the desired scale.

4. Bata processing
Every system must help the user when working with it.

57

He must have an elementary access to the information in the
data base and appropriate methods for its processing, which
includes an elementary transformations of data and some
more complex processings. The described system can easily
extract information from the data base according to speci­
fied conditions, which can be used for easy creating the
thematic maps. The elementary transformations are needed in
most of the cases and include the changing of the scale,
coordinate system and cartographic projection.

The more complex processings include possibilities for
overlay or logical intersect of spatial data sets having the
same geographic coverage, creating one data set with complex
attributes, also calculating various spatial relationships
/ adjacency, linkages/ not stored evidently in the data oase.
Using the Z - coordinates / altitude above or below sea level/
the isolines can be drawn, and for small areas to draw the
surface of the investigated terrain in 3-D coordinate sys­
tem. There are also possibilities for measuring areas,
lengths and distances.

5. Application
The described cartographic system is intended for

assisting the archaeologists both in propagating the
archaeological information by means of illustrative maps,
and in facilitating their own work during the investigations.
The plans with the exact registration of the archaeological
finds are very useful for further investigations on the
same places*

58
References

1. Nagy, G. and S. Wagle, "Geographic Data Processing",
ACM Computing Surveys, Vol. 11, No. 2, June, 1S7S*

2* Newman, W.M. and R.F. Sproull, Principles of Interac­
tive Graphics, 1S7 9•

3. Uno, S., and Matsuka, H. A General Purpose Graphic
System for Computer Aided Design, 6th Annual Confe­
rence on Computer Graphics and Interactive Techniques,
SIGGRAPH, 1979.

59

STAR
A QBE-oriented Database Management System

Margareta Draghiei
Radu Bercaru, Elena Saf t o m , Tiber iu Gálos
Vlad Mihail, lati ana Dabija
Research Institute for Computing Centre
C o rn p u t e r s T e o h n i q u e a n d

I n f o r rn a t i e s Oradea, R o rn an i a

Buchares t, Romani a

Abstract

The paper contains an overview of a relational
database management system called STAR, which is
being implemented on IBM PC compatible Romanian
rn i c r o c ornputers, with a special a c c ent on the
solutions for query description and evaluation.

1. STAR - Objectives and general architecture

The large scale production and use of miero
and -professional personal computers have
determined the necessity for versatile software to
cope with the large diversity of user
re qu i r ernent s .

In the field of dataha sc management, progress
has been very f a st and sy sterns 1 ike dB A ‘áE 1I ,
Rbase, Knowledge-man, Data Base Manager I l and man­
ót hers have quickly received wide acceptance.

A distinct class of users, especial 1y
oriented towards personal computers are the so
called " n o n-prof es s i o n a 1 " users w h o s e rn a i n c o n c e r r i
besides good performance, is with flexible
ope r at i on arid ease of use .

60

The relational approach has been adopted, to
some extent,for most of the DBMS implementations
on microcomputers.STAR is no exception to this
trend and we think that building it around a
Query-by-Exarnple-1 ike language is an important
step towards the above mentioned goals.

So, STAR is a relational database management
system designed for the FELIX F'C (IBM PC
compatible) 16 bit Romanian microcomputers.
Nevertheless, the implementation is intended to
have a high degree of portability, the system,
written mostly in "C", being meant to work under
MS-DOS as well as UNIX operating systems.

The STAR language follows the Query-by~
Example specifications Cl,33j it is re Rationally
complete and combines,under uniform syntactic
patterns, query, data definition and manipulation
facilities, with security and integrity
constraints s p e c i f i ca t i on.

The language has high expresiveness and
provides a simple and flexible interface, ba ed on
full screen operations, easy to learn and use by
n on -p r o f e s s i on als.

Getting f ami1i ar
more than 2 or •?. hours:

with the system takes no

constituted as a set of

level, relations are

- a database is
r e 1 a t i on s

- at interface
represented as tables

- table headers of the relations involved in
a database operát ion are displayed on usei
request

- queries are formulated by filling in the
tables on the screen; the syntax is very
simple and error risk is minimised

- the answer to a query is also a relation,
presented in tabular form

STAR provides great flexibility in screen
management; relations can be displayed on, deleted
from, scanned and moved on the screen by means of
functional keys or special commands.

While database definition and loading is
performed interactively, STAR also allows for
batch-type operations to quickly load or recover

61

large amounts of data stored as standard files.
Users may access information concerning the

database structure and are provided with
facilities to specify data reorganization, to
create snapshots arid views.

Database integrity is enforced by a general
password mechanism, as well as local constraints,
on relation or record level, specified in the STAR
language.

Integrating the above mentioned
characteristics, STAR could become the ideal tool
for non-professionals working with medium sized
database applications on microcomputers, the
kernel of a complex system for office automation.

The overall STAR architecture is illustrated
in figure 1.The organization of the system, in its
main components, follows the general principles
and criteria used in the design of relational
database management systems 114,51. The
peculiarities of the adopted solutions are
determined by the computing system on which STAR
is being implemented (ló bit microcomputer s) and
the chosen implementation language ("C") which,
according to its specific features, is a bias for
some design decisions t 7 3 .

The graphical representation in fig. 1
highlights tine data flow (marked by arrows;
through the system, the control flow being
inherent in the structure of concentric rings.
Each ring designates a depth level of the
structure; t h e c o rn p o n e n t s (m o d u 1 e s) f o r m i n g o n e
ring can "see" i.e. access on 1y modules situated
on inner rings (levels).

In the following sections, a model, for the
formal description of STAR (QBE) queries, as --eil
as an algorithm for query evaluation are
presented. The model naturally leads to the
generation of the algorithm.

2. The Model

Translation of a STAR query into a tuple
calculus expression C41 is staightforward. This
advantage is taken into account in the formal
description of the query.

^XC-.A. •STA.K- M íUMTECT'JXEJE

63

In order to concentrate on the -essence of the
proposed model, some simpilifying assumptions are
made, which do not hamper natural generalization:

(11) the query includes no condition boxes

(12) expressions are avoided
(i3> as for the output operators, not their

type, but only the output relations they
generate are of interest.

For the same reason we use examples to
illustrate theoretical statements.

A relation is designated by the letter R
followed by an index. Relation attributes are
reffered by A , B , ... a.s.o.

Examp le 1

R 1 ! A 1 B 111 R2 1 A ! B '
s

1 .— - — ,—
i P.x 1 <x.i 1 1 1

l1111

... .. 1
t 11

1
<x ;ii

F'-I !ii

During query analy s i s , according to [43 , one
tup 1 e var iable, s and t re spec t i ve 1y, i s
assoc i a t e d to each of the two 1 ines. The
conditions are isolated:

c t: s . B < t . B
c 2 : t . A < s. A

(1)
and

as well as the output operators:

12)
ol: print s.A
o2: print t.B

Also according to C43, the query evalua’ion
algorithm is the following:

(3 >

Range R 1:s
Range R2:t

if c 1 and. c2 then
do:

e x e c ol;
exec o 2 ;

exit;
endrange t j

endrange s:

64

The relations generated by the two output
operators can be defined as:

(4)
o l : { a :3 < s,t > é R 1xR2, (a=s.A)A c 1 A c 2

c>2: { a : 3 (s,t)€ R 1xR2, (a=t,B)A c 1 A c2

We call "query context", the set £s,t) of tuple
variables, and refer to it by X.

Assigning values to each tuple variable in X,
we get a "context value" denoted by (X).

As results of query analysis, we get:

(al) The set of tuple variables:
s: Range Rl,
t: Range R2 (in ex. 1)

(a2> The set of conditions specified in the query
lines, see (1); the set of tuple variables
occuring in the expression of a condition is
called condition context. We have, for
example 1 :

c 1: s.B < t.B , context c 1:£ s,t} ,
< 1 ■)

c2: t . A < s. A , context c2:£s, t} .

<a3) The set of output operators applied to
fields in the 1ines, see (2); a context is
de f i ned for output operators as well

ol: print s. A , context ol:£s},
(2-)

o2 • print t.B , context o2:£t) .

Scanning all values of a query context X is
done by nesting the loops corresponding to the
tuple variables in X. The order of loop nesting
defines an ordering relation ">" on the set X. In
(3) we have s > t, but we should notice that (4)
is invariant no matter what order (s > t or t > s
) is chosen.

65

It is necessary that:
(cl) for each condition c in the query, the

restriction of the ordering relation > to
the condition context (context c) is a total
ordering relation and in the evaluation
algorithm, c is placed in the loop
corresponding to the tuple variable min

>
context c or in a loop included in rnin
context c. >

(c2> for each output operator o, the restriction
of the ordering relation > to the operator
context (context o) is total and "the
highest" location of o is in the loop min
context o. >

For the evaluation of conditions and output
operators in a query, (cl) and (c2> are necessary
cond i t ions.

Furthermore, the loop nesting ordering
relation > should obey the following restrictions:
<c3) the graph of the relation must be a tree,

i.e. one single variable r must exist, so
that 3 s €. X s ^ r , the tree root and for any
s , t c X \ Crl there exists min is,tl.

Condition (c3) is of constructive nature and
its meaning is to be revealed later on.

(c4) Relation > on X must be "minimal" with
respect to conditions (cl), (c2) and (c3),
i.e. one of these conditions should be
violated whenever any pair (s,t) is removed
from the relation graph.
An ordering relation on X satisfying

conditions (cl), (c2) and (c3) is called "tree
coverage". Starting from a tree coverage we define
the "execution tree" by the following:
(dl) the set of nonterminal nodes is the set X of

tuple variables

<d2) the set of terminal nodes is the set of
conditions and output operators

(d3> the dependencies between nonterminal nodes
are determined by the tree coverage

66

<d4) a terminal node c/o is subordinated to the
tuple variable min context c/o

>
(d5) an ordering relation is enforced between the

sons of a nonterminal node
(d5.1> the conditions c come before the first

nonterminal node
(d5.2> the output operators o come after the last

nonterminal node

3. The Evaluat ion Algor i thm

If, when scanning the execution tree in root-
left-right order, for every nonterminal node s

we generate the sequence

Range R:s
i f not c i then next s ;
m m »

i f not c^ then next, s ;
Range R 1 : t*
■ ■ ■
endrange t 1 ;

(5) . . .
Range Rn: t -n j
■ ■ ■
endrange tn;
exec O/t 5
■ ■ ■
exec o P;

endrange s;

67

the resulting algorithm ensures the evaluation of
each condition/output operator for all possible
values of its context. Hence the meaning of
condition (c3) which guarantees the assignment of
some value to a tuple variable in all the loops
included in the loop associated with the variable.

Yet, algorithm (5) does not provide for the
generation of output relations according to the
requirements in (4). Some extra conditions are
necessary.

Before giving the formal expression of the
predicates tested by these conditions, let's see
algorithm (5) plus above mentioned conditions
applied to example 1.

<*)

(sw)

Predl (cl): • false;
Range R 1:s

Pred1(c2;s):= false;
Range R2:t

i f not c 1 then ne xt t;
if not c2 then next t;
Predl(c2;s): = true;
exec o2;

endrange t;
if. not Predl(c2;s) then next s ;
Predl(cl);-true;
exec ol;

endranqe s;
where cl and c2 are notations for nonterminal
nodes s and t respectively, and Predl is a
predicate associated to a nonterminal node cK .

In algorithm (5) for each nonterminal node cK
we can define its context composed of tuple
variables corresponding to nodes q,C'v >cK , and
denoted by XK . The current values of tuple
variables in XK constitute (X*), the current
context.

Then Pred1<cK , (XK));X^ --> {true,false)

If **> is an ordering relation determined by
the root-left-right 1 inearization of the execution
tree, then the meaning of predicate Predl(c , (X*);
should be the following; " (X<) can be extended to a
value (X) in which all the query conditions, c, are
sat isf ied".

The expression of Predl changes according to
the characteristics of the execution tree.

68

For example 1 we have:
Predl(c2;s>: 3 t É R2,clA c2
Predl(cl >:3s£Rl,Predl(c2;s) = 3 <s,t> € RlxR2,cl A e2.

If, in example 1, we define
Pred2< t ; s) : c 1 A c2
Pred2(s): Predl(cl;s>,

we get

Predl(el): V Pred2(s)= 3 * € R 1 >Pred2(5) and
si R 1

Predl(c2;s): V Pred2(t;s)= 3 t £ R1,Pred2(t; s).
te R2

It can be noticed that Pred2 is obtained from
Predl by "setting free" the corresponding tuple
variable. Pred2 is the condition satisfied by the
algorithm at the time the output operator of the
respective loop can be executed. Pred2(t;s)
corresponds to step <*) in (5) and Pred2(s)
corresponds to (w*0.

By means of Pred2 we have:

(4 -‘)
ol: ta: ^ s G R1,(a^s.AjA Pred2(s)l
o2: ia: ^ < s ,t) é R1xR2, (a=t.B) Apred2(t;s)l

In example 1 the expressions of Predl and
Pred2 are simple since the relation > is total on
X. In other cases the expressions get more
complicated. Instead of a formal analysis two
typical examples are given.

Example 2

R1 I11 A B ! R2 ! A B

s
11111

P. <x ! t Í1 1 1 1 <L P.

R3 11 A B i •
u 11 x̂ L ‘

69

The execution tree is

where cl, c2 and c3 are nonterminal nodes and > is
no longer a total ordering relation on X.

c 1: s.B < u. A , context c 1: t s, ul
c2: t.A < u.B , context c2: tt,ul
ol: print s . A , context o l :tsl
c>2: print t.B , context o2: t u

The following algorithm is generated:

Predl(cl):= false;
Range R3:u

Pred1(c2;u >:=Predl(c3;u):=false;
Range R 1 :s

if not cl then next s;
if not Predl(c3;u) then

Range R2:t
if not c2 then next t;
Predl(c3;u):=t rue;
exec o2;

endrange t ;
if not Predl(c3;u) then next u;
Predl(c2;u):=true;
exec ol

endrange s;
if not Predl(c2;u) then next u;

endrange u;

Ue have:
Predl(c3;u): 3 * s» *) 6 RlxR2, cl A c2
Predl(c2;u): 3 (s,t)6 RlxR2, clA Predl(c3,u>
P r e d l (c l) : 3 u € R3, Predl(c2;u).

Loop t is included within loop s, but its
execution is conditioned by Predl(c3j u) (loop t is
not executed for all the values of tuple variable
s).

70

Example 2' (example 2 without output operator o l)
The generated algorithm is

Predl(cl):=false;
Range R3:u

Predl(c2;u):=Predl(c3;u>: -false;
Range R 1 :s

i f not el then next s;
Predl(c2;u):=t rue;
exit;

endrange s ;
if not Pred2(c2;u) then next u;
Range R2s t

if not c2 then next t;
Predl(e3;u); = t rue;
exec o2;

endrange t;
if not Predl(c3;u) then next t;

endrange u;

We have:
Predl(c3;u):3*5't*£KlxR2 , cl Ac2
Predl(c2;u): 3* »■ cl
Predl(cl): 3 U * Pred 1 (c3; u) A Predl(c2;u)

Since now, node c2 has no output operator,
we call it "unproductive” and handle it as a
condition subordinated to node cl.

Without going into further details, we state
the very important fact that the expressions of
Predl and Pred2 for examples 2 and 2' enable
formal correctness proofs for the generated
algorithms, i.e. it can be demonstrated that
relations generated by the output operators are of
type (4) according to the requirements of the
algorithm presented in C41.

Final Remarks

The model and the evaluation algorithm
described in the paper represent a theoretical
background for the query decomposition procedures
implemented in STAR.

Further work is dedicated to the
generalization of solutions for all the STAR
language features and to the design and
implementation of an optimization component C63
based on this strategy. A first version of the
STAR system is due by the end of 1986.

References

71

1. M.M.Zloof

2. M.W.Blasgen,
K.P.Eswaran

3. M.M.Zloof

4. J . D . U l l r n a n

5. C.Delobel,
M.Adiba

6. M.Braghici,R.Ber-
caru, E.Saftoiu,
V.Mihail, T.Dabija

7. R.Bercaru, E.Saf­
toiu, V.Mihail,
T .Dab ija

- Query-by-Example: A
Database Language.
IBM Systems Journal,
vol.ló, no.4, 1977

- Storage and Access in
Relational Databases.
IBM Systems Journal,
vol.ló, no.4, 1977

- QBE/OBE: A Language for
Office and Business
Automat ion.
Computer, no.5, 1931

- Principles of Database
Systems.
Computer Science Press,
1980

- Bases de donnees et
systernes relat ionnels.
BORDÁS, 1982

- Criteria and Solutions
for Query Optimization
in STAR (in Romanian).
Research Report, 1985

- STAR: System Architec­
ture (in Romanian).
Research Report, 1985

73

AN ALGEBRAIC APPROACH TO KNOWLEDGE STRUCTURING

h ! HOANG HOP

Hanoi State's Committee for Science and Technology
Hanoi - VIETNAM

A B S T R A C T An algebraic approach to knowledge structuring is
proposed which aims to show some preliminary aspects
of knowledge representation, a so-called "generalized
AND/OR graph" is defined and then combined to the
structure of a such knowledge.

K E Y W O R D S Knowledge representation, "generalized AND/OR graph."

1. INTRODUCTION
Firstly, we present a knowledge algebra, then define a
"generalized AND/OR graph". Some propositions and theorems
are shown which affirm the admissibility of the construction.
Our approach is based on some algebraic and analytical tools
over a vector space which clarifies the combination of concepts
from logics, relational structures and measures.

2. BASIS CONCEPTS AND DEFINITIONS [2], [4], [5], [6]

2 . 1 . D e f i n i t i o n (pseudo-metric space). Let S be a finite set
of definite objects from realworld, and let F be a finite set
of functions f (1 £ q £ n) such that 'd.

The author receives one-year's fellowship from the Ministry of Culture
and Education of Hungarian People 's Republic and work at BME-HEI under
the scientific direction by Dr. Gábor Németh - Head of Comp. Tech. Dept
at HEI.

74

(i) f : S x s -»• W +q

where S x S is the Cartesian product of S and IR+ is the
set of all non negative real numbers.

(ii) fq satisfies the following conditions.

(a) Vs^,s2 e S W s2> * fq (s2 's1>
(b) Vs 6 S f (s,s) = 0q

S with F, denoteí (S,F)}, are named the pseudometric spaces
f is called the distance function.q

2 . 2 . d e f i n i t i o n (pseudodistance matrix). Call a matrix
D = (df.) 1 < i , j < k wherel j — J —

dij = fg(s^,Sj) vsi,Sj 6 S, 1 £ q £ n.

a pseudodistance matrix.

2 . 3 . D e f i n i t i o n (pseudo-Euclidean space). Call a vector
space V a pseudo-Euclidean space if there exists in V an
inner product <.,.> satisfying the following conditions

(i) <u1+u2,v> = <u^,v>+<u^,v> Vu^,

(ii) <cu^,v> = c<u^,v> VU1 e V,

(iii) < U 1 ,v> = <v,u1> VU1 , V 6 V

(iv) <u1,v> = 0 , Vu 1 6 AII>

u2 ,v 6 V

c 6 1

V = o

75

2 . 4 . D e f i n i t i o n (vector representation). Let /•••»V
be the p pseudo-Euclidean subspaces in V such that withParbitrary i,j that i ^ j, fl = {0} and V = ty ̂
Define a mapping g such that

g: ((S, F) } -v {Vv ...fV }|g(S,f) = Vp }

Call such g a vector representation of {(S,F)}.

2 . 5 . D e f i n i t i o n (equivalence relation). Let r be an arbitrary
relation in V, r is called an equivalence relation in V if
the following conditions are held

(i) Vv € V, v r v
(ii) Vv1,v2 € V, v 1 r V2 =>v2 r V 1

(iii) V 1,v2,v3 6 V ' V 1 r v2 & v2 r v3 =>v3 r v.,

2 . 6 . P r o p o s i t i o n . { (S,F)} generates a set of pseudo distance
matrices.

2 . 7 . P r o p o s i t i o n . The set of all pseudodistance matrices forms
a vector space with the usual operations on matrices. Consider
a family of all subsets of the p-ary Cartesian product of V,
denote R .

2 . 8 . P r o p o s i t i o n . R is a relational algebra.

2 . 9 . A f o r m a l p r o c e d u r e f o r k n o w l e d g e s t r u c t u r i n g .

Step 1. Choose functions f (1 £ q £ n) (heuristically)
then define all pseudodistance matrices.

Step 2. Determine the function g.

76

Define a problem-oriented relational algebra on basis
of V.
Determine an available equivalence relation r.
Classify all elements of V into equivalence classes.
Actually, there exists a natural quasi-order in P
^ v , , we return to theorem of Birkhoff that in our
scopes, which has some interesting meanings.

P
2 . 1 0 . T h e o r e m . (Birkhoff, 1937). For "ff v the relation

a = l
(v1#...,vp) Q(v1 ' ,. . . ,v'p) if ((vjj,..., Vp) 6 r =>

P(v1 , • • . /v) 6 r, r 6 Tf V£
i SL= 1

defines an one-to-one mapping s from R to the family of allpquasi-orders Q on yj- v .
Jl=l 1

2 . 1 1 . D e f i n i t i o n (knowledge algebra). A knowledge algebra
is the following triplet

A = <{(S ,F) } , V, R> .

where {(S,F)} pseudometric spaces
V - pseudo-Euclidean space
R - relational algebra on basis of V.

2 . 1 2 . D e f i n i t i o n (knowledge). Knowledge is an equivalence
class generated by an equivalence relation over V.

Step 3.

Step 4.
Step 5.

77

3. GENERALIZED AND/OR GRAPH
AND/OR graphs play a key role in the area of problem solving
which is based on the first order predicate logics (see 8).
We propose here a new concept which theoretically generalize
the class of AND/OR graphs.

3 . 1 . A s c h e m a t a o f g e n e r a l i z a t i o n

There are 3 types of conjunctive AND.
There are 3 types of disjunctive OR.

(A l) . i l l . A N D . Let A, B two arbitrary sentences A 1*1 B if
A ,B happen within an interval of time by two forms.

• A happens before B, denote A b B,
• A happens after B, denote Aa B,

We put the estimation table for A B as follows:
B

A
C 1
ao 3 1 b o

12

b ,

t.
1 bo e l V 1 0 0

b l V 2 e 2 0 1

ao 0 0 £> V 3

a i

C 2

0 1 V 4 e4

where ao - (for A) means that A is false and happens after B.

a1 - (for A) means that A is true and happens after B.

bo - (for A) means that A is false and happens before B.

b1 - (for A) means that A is true and happens before B.

78

The same explains are applied to B.

v1, v2, v , v4 € [0,1] and depend on the semantic of A and B.

0 _< e ̂ « 1 0 <_ e 2 ^ 1

0 < e2 £ 1 0 < e 4 <_ 1

(A 2) A N D . It is understood as the usual meanings.
(A3). well-AND; A, B happen within the time interval
[t^',t2'] 3 [t^,t2] by two forms similar to definition of
ill-AND. The estimation table is as belows

A
B a o a 1 b o

4

b i

bo 0 v i 0 0

b i v '2 1 0 1

• ao 0 0 0
s

t2

a i 0 1
v i

1

v̂j > v̂ , v2 > v i , v3 > v3 ' v4 > v4 anci theY depend on
the semantic of A and B.

(0 1) i l l . ~ 0 N - With the same forms of happening like above,
the estimation table of A 1i1'B is

79

0 £Yj«l; 0 _<y^«1

0 < Y2 — 1’ 0 < y ̂£ 1

U 1,U2,U3,UA 6 ^°’1^

(i=l,...,4) depend on
the semantic of A, B.

(02) . It is understood as the usual meaning.

(0 3) w e l l - O R . The estimation table of A well B is as follows.

u: ul’ 2 *
u3’ u4 u4’ u J , u 2 * , u ^QlO,1]

3 . 2 . D e f i n i t i o n (generalized AND/OR graph).
A random graph is named "generalized AND/OR graph" if the
following conditions are fulfilled:

(i) its nodes are pairs of (sentence, time points),

80

(ii) its edges are one of the below operations
ill-AND,AND, we 11-AND
ill-OR, OR, well-OR.

3 . 3 . T h e o r e m . The set of all generalized AND/OR graph is
isomorphic to

At = <{(S,F)}, Vt, Rt>

where (S,F) - pseudometric spaces.
Vt - a pseudo-Euclidean space for wchich it is

combined by two spaces, a I-dimensional
Euclidean space for the time-like vectors,
and a(n-1)-dimensional Euclidean space for
the feature-vectors,

R - a relational algebra over V, in which each
relation is associated to a time point.

4. CONCLUSION

In this paper, our limited purpose is a firstly to propose
a structure of knowledge. The results in this paper are the
first steps for us to reach further ones in another paper later.

5, ACKNOWLEDGEMENTS
We would like to thank Dr. G. Nemeth for the scientific

and administrative helps during the time we stay at HEI.

81

REFERENCES

[1] Cohn, P.M., Universal Algebra, New York, 1965.

[2] Dieudonné, J., Fondements d'analyse mathématiques,
Dunod, Paris, 1960.

[3] Diday, E., Simon. J.C., Clustering Analysis, in Comm,
and Cybers, 10, Ed. by K.S. Fu. Springer-Verlag,
New York, 1980, pp. 47-92.

[4] Goldfab. L., An Outline of a New Approach to Pattern
Recognition, in Control and Computers, vol. 13, Nr. 2,
1985.

[5] Grenander, U., Lectures on Pattern Theory, 3 volumes,
Springer-Verlag, Berlin, 1978.

[6] Ha Hoang Hop, Truong Cong Dung, Algebraic aspects of
matching problem (to appear).

[7] Lauriére, J.L., Representation et utilisation des
connaissances. Techniques et Sciences Informatiques,
vol. 1. no. 1. 1982.

[8] Nillson, N.J., Principles of Artificial Intelligence,
Springer-Verlag, Berlin, 1981 (first Edition).

[9] Rosenfeld, A., Fuzzy graphs, in L.A. Zadeh "Fuzzy
Sets and their Applications to Cognitive and Decision
Problems" Acad. Press, 1975.

83

The CDL Programming Support Environment

from Dresden

Manuel Joiko

INTRODUCTION

At the implementation of system software or so-

called "large software" for every kind of computer

there is to take care of producing correct, adap­

table, portable, and efficient programs. This

software quality is influenced by the methods app­

lied in its design, by the language chosen for its

construction, and by the tools used.

Producing large software qualitatively differs

from producing small software. The main problem is

to overcome the high complexity of this kind of

software. Programming-in-the-large that means also

organization of an ordered collaboration between

all which are engaged in manipulating the product

all over the software-lifecycle. The production of

system software is similar to the production of

other technical products. According to this pro­

ject planning and project management play an

important role. There is to consider that the tra­

ditional programming languages including the con­

nected tools were developed for the programming -

in-the-small.

To produce correct software it is suitable to use

a language which supports structured programming

84

and stepwise refinement technics. Furthermore the

language should give possibilities to specify the

properties of data and algorithms. Analogous to

algebraical specifications in numerical mathema­

tics the specifications for system software should

be described by metali ngui sti cal means because of

the nonnumerical nature of those programs. The

programming system should include user-friendly

error diagnostics based on the specifications. An

interactive debugging tool using the object names

of the source program is indispensable to prove

the correctness. Furthermore desirable is the

automatic generation of a debugging environment

for incomplete programs. For the administration of

large software a database-manager is a very power­

ful tool also.

Adaptable programs should be primary readable. The

ideal should be achieved if there is only one

language level handled all over the software-life­

cycle and the program is the documentation itself.

An user-friendly listing generator including pret-
•?

ty-printer, cross-referencer, and so on should
I

support the readability. The used language should
f i-» rhave a module and a library concept. A language

I . ¥
oriented editor and an interactive intermodular

analyzer including segmentation support should be

available to perform the program modifications.

A high degree of portability can be achieved only

by using a high-level language including the

possibilities of variable target code generation.

!|

85

Finally, the current development level of the most

available personal computers demands for efficient

programs in run-time and memory space. Therefore

we still need optimizers on the source-/ interme­

diate-code level as well as on the target-code

one. To have the possibility of using all machine

properties is also indi spensi ble for producing

efficient code.

According to these claims a group at the Technical

University of Dresden in 1974 started with the

development of a programming support environment

based on the system implementation language CDL

proposed by KOSTER in 1971 /2/.

THE SYSTEM IMPLEMENTATION LANGUAGE CDL

The main idea of KOSTER by defining CDL was the

investigation of Affix Grammars considering it as

a programming language. Our CDL implementation

realizes five important concepts.

The central role plays the procedure concept. A

CDL program consists of definitions of several

procedures (actions and predicates). Their func­

tions are defined by the calls of other

procedures. In this way the method of stepwise

refinement on a problem oriented level is distin­

guished supported. On each refinement level the

problem to be solved is named in the way of lingu­

istic abstraction. The integrated decomposing

mechanism supports not only the methods of struc-

86

tured programming, but enforces syntactically

tree-structured programs.

Because it is impossible to continue the

description of a procedure by calling of other

procedures endless, CDL has the macro concept on

the lowest refinement level to describe the base

algorithms. These macros are defined by using the

means of the target machine. In this way all pro­

perties of the target language can be used by CDL

programming. For each project it is possible to

define its own base machine. In this way CDL is an

open-ended language.

Furthermore CDL has a module concept which per­

mits to divide a CDL program into one main module

and several attached modules. Each module is sepa­

rately compiled and contains an exact interface

specification with the import- and export-connec­

tions to other modules.

The data concept of CDL is very simple. It allows

only to define data by determining the name, the

memory space needed and the scope. On the other

side CDL supports distinguished the definition of

abstract data. The properties of these data are

defined only by the operations, which are executed

over them.

Finally, the library concept of CDL allows the

collection of all definitions of base algorithms

and constants in one module. These objects can be

used in each other module without specifying or

defining them once m o ^ e . So the library concept

87

permi ts

machine

de fi ned

work in

w a y .

the division of problem oriented and

oriented constructs. If macros are only

in the library, then it is possible to

the modules only in a problem oriented

THE CDL PROGRAMMING SUPPORT ENVIRONMENT

In the following part the components of the pro­

gramming support environment are shortly descri­

bed. The interaction medium of all these tools is

a virtual data memory of 128 k bytes.

1. Language Ori ented Edi tor C LED)

With the editor it is possible to enter and modify

CDL source textes syntax oriented in an interac­

tive way. The editor handles the textes in an

internal manner (EDD).

2. Modular Analyzer (A N A) .

To this component belong the lexical and syntacti­

cal analyzers, the intermediate code synthesizer,

and the semantic eke cker. It produces an interme­

diate program IP in the virtual memory. This

intermediate program is a list structure which is

very suitable for optimizations.

These tools are surrounded by a pretty-printer

PPR) and a cross-referencer (CRF).

88

3. Intermediate Code Optimizer (I C O)

The intermediate code optimizer performs only

machine-independent optimizations. It analyzes the

intermediate program in the virtual memory and re­

stores the optimized program back. The

optimizations which are performed are described

now:
- Procedures which are not reachable from the

roots of the program graph are deleted.

- Data which are defined but never used will be

optionally deleted.

- Procedures which are called statically only a

few times, are removed by copying the procedu­

re's body instead of the call.

- Are there some equivalent ends of alternatives,

they are united and will be represented in the

target program only o n c e .

- Direct right recursive procedure calls are

replaced by jumps to the start of the procedure.

- In case of equal actual parameters for one for­

mal parameter in every call of a procedure, the

parameter-list is decreased by substituting this

formal parameter by the common actual parameter.

- To save memory space it is advantageous to

remove some calls by internal parameterless pro­

cedures .

89

4. Variable Target Code Generator (T C G)

The expense of service and further development of

a programming system is very high if there is a

special code generator on every host machine for

each target language and operating system. The

experience showed that large parts of code ge n e r a ­

tion are independent from the target language too.

To standardize the code generators all machine-

dependent algorithms were put away from the

generator. So the remaining part is machine-inde­

pendent and can be considered as basic operations

of a programmable automaton. In a program for this

automaton it is possible to represent those

generation parts which are influenced by the

target language. The code generator becomes an

interpreter of those special programs. By writing

different special programs any target code is pro-

ducable by only one code generator.

To get an effective code generation on the one

hand and also an acceptable comfort of writing

such programs on the other hand, it was created a

special Target Code Generation Language (TGL) to

formulate the programs. A simple TGL-compiler

(TGLC) translates those programs into an internal

form (TGD) which is suitable for an effective code

generati o n .

5. Variable Target Code Optimization CT C P)

An inspection of the target code showed that

90

programs which are optimized in a machine-indepen­

dent way only contain some typical unefficiencies.

A good compiler-system should avoid such point of

criticism by peephole optimizations on the target

code level. The idea of a portable target code

optimizer is similar to the variable code genera­

tion. The code-independent algorithms are summari­

zed to the target code optimizer. The dependencies

from target code are described in a special Trans­

formational Language CTRL). This language bases on

the formalism of attributed transformational gram­

mars .

A program of this language describes the

syntactical structure of the target code and some

semantical aspects which are important for the

optimizations. Furthermore it contains the patterns

for optimization conditions and the transforma­

tions. The optimizer works like an interpreter

over the internal representation of a TRL-programm

(TRD) produced by the TRL-compiler (TRLC).

6. Interactive Debugging Tool (CDT)

The variable target code generator of the CDL-

system is a well-suited invention for interactive

debugging. By a modified generation description -

a new TGL-program - it is possible to generate a

target code which contains all informations neces­

sary for interactive debugging on a CDL source

level. The CDT provides a lot of functions:

91

- setting trace- and breakpoints,

- setting conditions which can be connected with

other functions,

- inspection of all active procedures for example

to continue with any such procedure you like,

- showing and changing of any data you want,

- starting the debugging aid of the operating

system for debugging on the target level,

- collecting statistical data about run-time,

- interrupt possibilities during the test by the

operator,

- pocket calculator functions,

- showing CDL sources during the test.

Furthermore CDT provides 6 data types, hard copies,

file service and handles errors which normally

would cancel the program. The CDT is written in

CDL and so highly portable.

7. Intermodular Analyzer (I M A)

The Intermodular Analyzer is an interactive system

which analyzes the relations between the modules

of a CDL-program. It gives a lot of informations

about the whole program as a super-cross-

ref erencer. Furthermore IMA supports the segmenta­

tion of CDL-programs and the construction of test

frames.

8. Database Manag ement System (D M S)

The Database Management System controls and

92

manag«* the development of a CDL-program. It
handles the several representations of the modu­
les. The aim Is that users only work In the CDL

4 programming support and do not need no other
environment. It prevents user operations from
leaving a project in an inconsistent state.

~"9. Library Compiler (LIBC)

The Library Compiler transforms CDL—libraries into
a special internal representation called library
description LBD.
The pretty—printer and the cross-referencer
process also libraries.

AVAILABILITY

In 1974 our group started with the implementation
on the HONEYWBLL-like R4000 (an older computer
produced in the G.D.R.) The first version was pro­
grammed in FORTRAN. After that the programming
system was written in CDL itself and was boot­
strapped to other machines.
Presently the CDL programming support environment
works on PDP11-like machines under RSX11 and on
IBM370-like machines under OS. Now the group is/
engaged in completing the system on the several
machines.
Members of our group started to bootstrap the

93

system to INTEL8086-like and Z80-like machines
under CP/M . Table 1 shows the availability of the
components •

PDP11 IBM370 IN8086 Z80 R4000
LED
ANA * * *
PPR * * *
CRF * * *
ICO ♦ * *
TCG * * *
TCO *
CDT * *
IMA
DMS
LIBC * * *
TGLC * * * *
TRLC *

Table 1: Availability of the CDL-System (April
1986)

Every CDL-system can generate code for each other.

EXPERIENCES

Our CDL programming support environment proved at
the implementation of several large software
systems. Examples are a COBOL- and a BASIC-pro-

94

gramming system, some compilers, interpreters,

editors, and so on.

The experiences which are made show that

- the realization of large and powerful software

systems is possible in a short time,

- the software implemented by our system is highly

efficient and satisfies also commercial preten­

sions,

- the software implemented using the CDL

technology is portable in a high degree.

REFERENCES

/1/ Kimm, R.; W. Koch; W. Simonsmeier; F. Tontsch:

Einfuehrung in Software Engineering.

Walter de Gruyter, Berlin, 1979.

/2/ Koster, C.H.A.:

Using the CDL Compiler Compiler,

in: Lecture Notes in Computer Science, v o l .

21,
Springer-Verlag, Berlin, 1974.

/3/ Otter, W . ; H. Loeper; T. H a e n e l ; M. Joiko:

Programmentwicklung mit CDL1600.

Schri ftenreihe Inf ormati onsverarbeitung,

Verlag Die Wirtschaft, Berlin, 1984.

95

MICROCOMPUTER-BASED SPECIAL MEDICAL INFORMATION SYSTEMS

P. Kerékfy, A. Kiss, I. Ratkó» M. Ruda
Computer and Automation Institute

Hungarian Acedemy of Sciences
Budapest

The authors and their colleauges have been engaged in deve­
loping health care systems since 1972. The paper reports on the
authors' latest works on microcomputers.

Since microcomputers appeared» utilization of computers inc­

reases very rapidly.
Four special tasks are discussed below to illustrate the

possibilities afforded by the cheapest personal computers.

1. The infarction register contains data of the South-East
Budapest area» the population of which is above half a million.
In the period of a year approximatly 3000 cases with acute myo­

cardial infarction» or the suspicion of that» are registered. In
more detail see in [11.

2. In the register for extracorporal operations the queue
of patients waiting for heart operation (length about 1000 pati­

ents) is maintained by the system and it schedules patients for
operation. After operation» data are stored in archive files.
Statistics are collected to promote scientific research. In more

detail see in C23.

96

3. A very large amount of data is stored in the IHD-reoister

(Ishemic Heart Diseases) that is overlapping with the extracor­
poral heart operations register. This register contains data of

preoperation tests such as: haemodynamics, x-ray, etc., operation
events, post-operation follow-up.

4. The so-called RSPC-reqister (Richter Bedeon Pharmaceu­
tical Company) contains data of Hungary, approximatly 2500 cases
with (special) acute myocardial infarction.

The aim of the examination are: a) the appreciation of effi­
ciency of the treatment with medicines Tobanum and Rabenid in the
secondary prevention of acute myocardial infarction b) examina­
tion of side effects.

The study is based on fixed sample statistical methods. The

method of the examination is double-blind, multicentral, random
experiment controlled with Placebo.

One record of the register-file have 1084 data-items, the
length of the record is 4614 characters.

Until now we have used five kinds of data forms:
(a) form of Basic Medical Examination

(b) two kinds of form of Following-up Medical Examinaton
(c) Event-form
(d) Death-form

The following-up examinations occur in the 1-st, 2-nd, 3-rd,
4-th, 5-th, 6-th, 8-th, 10-th and 12-th month after basic medical

97

examinations.
Gn monitoring of the side-effects see C33.
The registers are realised on small microcomputers:

- eight-bit processor (ZBO)

- 2 x 250 Kbyte floppy disk
- 64 Kbyte RAM (no ROM)

Our data management system developed for medical applicati­
ons on small microcomputers is controlled by a monitor: micro-
SHIVA. It is portable to any computer equipped with CP/M opera­
ting system, Z80 processor and 16 Kbyte RAM. The heart of this

system is an extended full-screen editor. In more detail see
[4].

Data maneqement
The data manegement package provides the user program with

functions needed in data management, and offers the user the op­
portunity of activating simple functions by function keys. These
latter functions are the following:

- data input and data modification,

- record deletion,
- query by keys,
- display of record contents.
Ulhen the user pressed a function key the system waits for

confirmation, and executes the command.

98

Storage and SSdifiíatifiQ
Database structure is defined by filling up a special form.

It describes the record structure (names and attributes of data)
and the search keys.

Data record consist of compressed fixed-length and variab­
le-length data. Numeric data are stored as bit strings and are
not aligned on byte boundary. Some data fields are assigned as
keys. It is not required that a record be unambigously defined by
its keys.

Data fields of a form displayed on the screen can be filled
up at will, except those of R/0 attribute. Names that may have
been assigned to data fields of the form (while editing it) con­

nect the fields to fields in database record. Contents of named
fields are copied into the corresponding database record.
Starching

Two basic methods of query are used: one for immediate ser­
vice of the user watching the screen, the other is intended to be

used in batch-like processing. The first mentioned fast retrieval
can be formulated in terms of keys allowing search for undefined
key values and usage of partially defined keys, too. The key va­
lues are given by filling up a form. Searching is established by

the use of a key-table that contains keys of each record. The
key-table may contain unchanged or coded key values. In the
latter case it is not required that the key values be decodable.

99

The other method is «»ore flexible. In this case a special
query form is filled up. Complex queries can be formulated defi­

ning conditions that consist of value list or interval list for

data items. From these conditions complex formulae can be built

up by the use of logical AND, OR and NOT. This method makes use

of the key-table, too.

References
Cl 3 I.Ratkó, M.Csukás: A data base management system for patients

suffering from acute myocardial infarction, in: R.Trappl(ed.)
Progress in Cyberenetics and System Research, Vol IX. Hemis­

phere, Washington, 497-501, 1980.
[23 I.Ratkó, M.Csukás, P.Vaszary: Computer registraton of pati­

ents waiting for cardiac operation, in: R.Trappl(ed.), Cyber­
netics and Systems Research, North-Hoi land, Amsterdam,

651-653, 1982.
C33 M.Csukás, E.Farkas, A,Krámli, G.Maróti, J.Soltész: Microcom­

puter monitoring of the side effects in Hungarian pharmaco­

logical study, In this volume.
C43 P.Kerékfy, M.Ruda: Form management by micro-SHIVA, In this

volume.

101

Form Management by micro-SHIVA
Pál Kerékfy, Mihály Ruda

Computer and Automation Institute
Hungarian Academy of Sciences

Budapest, Hungary

Introduction
Nowadays it is a widely acknowledged fact that the condi­

tions of the widespread efficient application of computers are
ever less secured by the recent truly spectacular hardware deve­
lopments themselves. The conventional technique of software deve­
lopment, the problem solving in various programming languages of
lower or higher level, does no more satisfy the users, especially
the growing number of the "personal" users, directly connected
with the computers (with microcomputers or intelligent
terminals), that is provided with very effective means as to
their capabilities. The role of program packages performing tasks
prepared in advance and exactly circumscribed has no decisive
importance considering the total utilization of computer science.
We can say with some exaggeration that of the "closed" programs
only the game programs can expect undivided success.

It has become common knowledge in the field of informatics
that such software means are needed which enable both the "lay
user" and professional system programmer to generate systems
satisfying their respective special demands in every respect. Two
following points of view have to be stressed. One is to secure
for the solving of any type of task the program generating tool
operating with the most commonplace concepts, likely to exempt
the user from programming work, even from the use of highest-
level programming languages. The other is to provide the develop­
er with a tool enabling him to satisfy the user's special de­
mands, -- these demands can even involve the apparent breaking of
the available computer capacity (this is possible only by disen­
gagement from conservative means and by the application of new
methods augmenting efficiency several times). In order to attain
this goal the opennes of the program-genarating tool referred to
in the first point of view must be secured(i.e. its ability to
be completed by new elements, maybe to be broken down to parts).

The authors had already been investigating these issues
before the start of the microcomputer flood, at the time of the
appearance of the concept of software crisis, also in the field
of conventional applications (mainframe computers with batch mode
of operation) C5,61. Embryos of these ideas emerged already in
systems developed during the early '70s and introduced later in
routine utilization C2,4,161. These system developments raised
besides practical problems of informatics theoretical issues in
mathematics, too C17D.

102

In the present paper our considerations outlined above will
be expounded in the course of the presentation of a concrete
microcomputer development. The presented means is the micro-SHIVA
form and data management system, more exactly its layer next to
the user, the form management one serving for input-output sur­
face in the data management system. Instead of discussing the
theoretical issues, we try to present our concepts with present­
ing this subsystem.

A short description of micro-SHIVA
The micro-SHIVA system handles forms similar to printed

guestionnaries, data sheets, files known to everybody on the
screen of the computer. The shape of the forms, texts and fields
printed on the same can be defined sitting in front of the screen
with the aid of an editor. Later, the data, too, are read in on
the screen. This is almost the same as the usage of a printed
form - its pages can be turned over, some columns may be left out
and data inserted in an arbitrary order. There are too important
differences: there can be written only in the marked places
(data fields) and errors committed in the course of insertion can
be simply corrected. Forms filled out can be printed and data
stored for subsequent searches and computations.

The system has been developed by the Computer Science
Department of the Computer and Automation Institute and has
already many applications.

By creating the micro-SHIVA form managment system we
intended to provide both users and programmers of application
systems with an easily applicable and efficient tool.

From the point of view of the user we considered essential
that with the organization introducing the system the changeover
to the computer should involve as little inconvenience and change
as possible. At any rate we had to reckon with the fact that at
most places there had already been developed well-rounded
administrative systems. These frequently require the data-
supplier to fill out forms or files. The data thus recorded will
generally be thereafter carried over to punched card or magnetic
media and processed by computer. The data handling on the screen
changes this only as much as the data appear first on the screen
instead of on the paper. As early as during the filling out
certain verification can be performed and the attention of the
person who fills in can be drawn on the errors which can thus be
corrected without extra expenditure. After the filling in all
known advantages of magnetic data recording are at our disposal
(quick and exact information supply, use of network, avoidance of
copying errors, etc). Later we shall see in the examples how
flexible the format of printed forms can be and thus every kind
of already existing print (based on official rule or custom) can

103
invariably be utilized. All this can be attained by the micro-
SHIVA user in a completely interactive way: the form for data
entry, the checking conditions, the printing figure can be modi­
fied at any time, even during data entry.

The most important means for the designers of user systems
is the form editor. This constructs the forms which the user will
fill out. The location, length, considerations relevant to their
control of the particular rubrics (fields) can be determined.
Likewise their display and typography can be given.

The scope of utilization of the micro-SHIVA form managment
system is very broad. It is enough only to reckon in how many
walks of life various kinds of prints, viz. questionnaire, data
sheet, invoice, receipt, order, bill of lading, application,
decision and alike are being filled out. The data handling can be
applied everywhere where data can be collected by filling out
forms, files where data supplied by enumeration or tables have to
be stored or calculations should be made with them.

Its typical field of application is the automated office
(e.g. secretary station). It can be used for data survey of
persons or objects (letters, books, engineering desings, items of
inventory), their recording and printing, for the retrievals of
files and registries. Letters, minutes, resolutions of arbitrary
form or content can be printed on the basis of the data recorded.

In conformity with the demands and possibilities of the
fields of application we have developed the micro-SHIVA data
management system so it can serve as an efficient tool for the
cheap desk-top computers, we are anxious to propagate it first to
these — systems already operating have also been implemented in
such. The requirement of the present system is a Z-80-based
microcomputer with floppy disk, printer and CP/M compatible
operating system. Depending on the size of the task an about 15-
30 kilobyte memory is necessary, thus additional user software
carrying out special computational and other activities can run
on the computer at the same time. Systems constructed until now
operate on the microcomputers Varyter and Syster developed by the
Computer and Automation Institute and on the microcomputers MOD-
81 and M0D-81-M manufactured by MEDICOR Works.

The forms
The connection between the user working with the micro-SHIVA

system and the programs is based first on forms. These forms
appear on the screen and serve for data input and output, as well
as, parametering of instructions.

The form consists of pages, of them only one at a time
appears always on the screen, the forward and backward paging is
activated by pressing a key. The selected sheet on the screen

104
appears in the place (window) marked for the form. Its size can
exceed that of the window both in horizontal and vertical
direction.

The form (similarly to the printed ones) contains textual
parts and fields (columns) to be filled out, fixed beforehand.
The properties of the fields can be defined in the course of form
editing and can be modified also in the program controlling the
filling out of the form. The type of the field determines the
basic points of view relative of its control (numerical, alpha-
numerical, etc.) and the mode of utilization (whether the user
can only read or also write the same). A descriptive part of
arbitrary length, not visible on the screen, can be attached also
to the fields. This can be used e.g. for the definition of the
connection with various database management systems.

As the possibilities for displaying forms offered by screens
on the one hand and printers on the other hand differ form each
other, the instructions controlling the printer can be given on
the forms of the micro-SHIVA. These instructions do not come in
view on the screen during the filling out of the form, they do
not interfere with the display there. The control of the printer
must be given independently from the just used printer in a
uniform code whereafter the printing instructions translate the
same into the language of the given printer. This possibility can
be used to obtain sophisticated printed figures, e.g. tables,
form prints printed in advance can be filled out.

The upper limit for the various quantitative characteristics
concerning the forms is uniformly 255, this holds for the number
of the pages, the number of lines and fields which can be placed
in one page, the length of fields and lines.

Forms generated by the form editor are stored in floppy
disks until further utilization. There are two ways of storage:
either the area occupied on the floppy or the size of the memory
required by the program during the filling out may be optimized.

The following figures show some forms, these are at present
involved in routine applications. Fig. 1 presents a form for
simple data recording as it just appears on the screen. Fig. 2
shows a form containing the same data and suitable to be printed
out on the printed matter used earlier and then filled out by

till presents the various possibilities of the micro-SHIVA
form management and an interesting example of application of the
same.

Form editing

105
The form editing in micro-SHIVA is performed by a special

text editor program. This program, similarly to the other
softwares of this type — but contrary to the style of other
functions of the micro-SHIVA system (filling out forms, database
handling) is a separate "closed" program in the conventional
sense, capable of being handled independently of other functions
of the micro-SHIVA. It secures to the user all possibilities the
full-screen editors have. On the other hand, this program does
not contain the high-level services of sophisticated text
editors, e.g. automatic alignment of the right margin, block move
operations, etc. This is due to the particularity of the form
editor that it does not serve for writing of conventional texts,
only for editing just forms.

Text editors are generally made to generate texts to be
printed. The forms, however, frequently get not into the printer
but into the screen. Thus the conventional text editing functions
(proportional character arrangement, double-column makeup, etc.)
become meaningless, at the same time demands resulting from the
special characteristics of the forms come to the front: horizon­
tal shifting of the edited text (for broad printed matter or text
to be printed with high density, thus producing long lines on the
screen), formation of varied written form (different letter
sizes, text parts printed with various intensity). This problem
necessarily emerges if we wish to fill out a printed form which
-- altough not prepared for computer processing -- has already
been widespread and accustomed. (Fortunately today these can be
realized by cheap matrix printers.)

Compared with the conventional text editors the most
important difference obviously is due to the fact that the form
editor cares also for the location and specification of the data
fields. Altough other text editors, too, perform such functions
(WordStar), but by using them only as auxiliary features. On the
other hand, the micro-SHIVA form system serves primarily the
context-aided data flow and not the activation of parameters
embedded in an edited text (e.g. addressees of a letter in
MailMerge).

By specifying the data fields and with the aid of control
functions put in the text the micro-SHIVA editor influences the
behaviour of the program "operating" the edited form. The edited
form can therefore be considered at the same time as a control
program and the form editor as a program generator. Thus the
program is an amalgam of the widespread text editor, spreadsheet
and report generator tools. The diversity of utilization will be
illustrated later by examples of application.

As to general points of view, the "visual technique"
highlighted in the form handling should be stressed. For the
principle that information imbedded in the form should be visible
(e.g. the specification of the fields takes place in their own
context) is valid not only in the stage of editing but the

106
visibility of data flow is advantageous also in the course of the
utilization of the form: the signalization of errors (blinking,
textual error messages, sound signal), synchronous (occuring on
one screen) display of coherent data grouped according to various
criteria, e.g. repeated display of certain prominent data
(heading) or multiple display of particular data in different
data environment, etc.

We have considered th simplest possible realization of the
form editing process also important. Thus the editing program is
operated not by various menus but by using function keys. Besides
only the following commands should be known: Q (quit), E (exit),
T definition of tabulator positions. (One can enter in or return
form the command mode only by pressing the enter key.)

Among the function buttons there are besides the usual
cursor and screen mover as well as insert and delete keys, as a
result of the speciality of the form editor, the following
special functions: horizontal picture moving, definition of the
location of data fields, specification of data fields,
determination of the location of control characters, displaying
or hiding them, graphic mode of operation switch.

The specification and modification of the fields comes about
in the screen area separated from the edited text, by filling out
fields for: 1. Type of the field (numerical, alphabetical,
alphanumerical or arbitrary content), and within the same can it
be written or only read, besides it can be "instantenous" type or
not. This latter notion means that the input process of the data
handling system regains the control at once at the time of
reading in the data field after the entering of every character,
otherwise this occurs only in case of the filling out the whole
field, or at the time of the activation of some other special
function (i.e. if we leave the field by moving the cursor). 2.
Initial value. 3. The indication of the so-called interface which
can result in the connection the field to a database field, or
the starting of some other process. On the other hand, fields in
the form are not neccesarily connected to those of a database.

Control characters get on the screen only in the stage of
editing but even here they can be hided (by a function key) if we
wish to see the form as it appears on the screen or printer
during the filling out. The function of the control characters
(character strings) is to generate processes independently of the
data fields. This could become necessary for the editing of
printed matter requiring variable letter type or for calculations
needed in a report.

The graphic mode of operation enables the application of
semi-graphic characters to which there are no keys assigned.

107

Filling out forms
This is the part of micro-SHIVA system with which both the

"simple" user and the system programmer are brought into contact.
Who inserts or interrogates data in a system built on micro-SHIVA
does not practically do anything but filling out forms -- and his
instructions, wishes are realized at once (if the system program­
mer did his work well). This latter has plenty of procedures and
adjustable parameters at his disposal to build up a system to
serve the user maximally.

The filling out of form, different from form editing
(meaning the use of a closed program) involves the assembly and
parametering of procedures to be found in libraries. In this
sense no "form-filling program" exists, on the contrary there is
a special one for every user and application.

The programmer can be brought into contact with the
collection of form-filling procedures on different levels. He can
commit nearly everything to the basic system (and in the majority
of tasks this is completely suitable as a first solution). He can
give the name of the form to be filled out or can cause it to be
interrogated from the user, can write data form the program in
the fields of the form, can read what the user has written, can
store data in the database and let the form to be printed. To
this effect he has to learn some (less than 10) procedures and
call them in appropriate order. For the simplest case, viz. if
the names of the data base and the form have to be asked from the
user and the data are to be subjected to basic check only, he
obtains a ready program, too.

On the other hand, the programmer is enabled to control
particular procedures on a lower level. Thus he can modify the
characteristics of data fields, or can display on the screen in
several windows at the same time several forms, or different
pages of the same form. The application program can easily gain
control over every function handled in the basic case directly by
micro-SHIVA (e.g. paging, check of fields, printing), and thus
modify them as needed.

Without the claim of completeness we enumerate some
solutions applied at present in systems operating routinely.

Examples of applicatons, conclusions
Medical applications. The elaboration of the micro-SHIVA

concept started within the frame of our research tasks connected
with medical information systems. The usability of the concept
was justified initially on a mainframe computer model C15], later

108
with sample systems fed into a microcomputer C73. Thus the trans­
fer of various medical information systems to simple 8-bit micro­
computers came about C3,8,93. The importance of this issue is due
to the fact that especially in the beginning (in the late 70's
and early 80's) but even now the role of the microcomputers and
in particular of the small-power 8-bit computers in computer
applications is debated. The usability of the medical information
systems mentioned above has proved the utilization of the micro­
computers. Here it should be noted that in determining the usabi­
lity one cannot think in simplified notions: one must consider
also quality of the peripherials (disk, printer, keyboard,
screen) as a factor of basic importance.

When designing the microcomputer user systems and judging
their efficiency the local networks, making their appearance at
present in an ever growing number of places, have to be taken
into account, too. A microcomputer network can serve as an effi­
cient device in medical applications (especially in the case of
integrated hospital systems Cl,101).

Figures 1 and 2 have been taken as examples from this field
of application.

In medical applications, especially on a microcomputer net­
work on the various points of which the data protection should be
realized on different levels, the application of the micro-SHIVA
system is very advantageous. In our network system based thereon
double data protection is accomplished. On the one hand, there
exists a protection available also in systems operating on one
computer: only who has got a suitable form to this effect, can
modify or have a look on the particular fields of the data base.
On the other hand, the other level of the protection ensures the
access of every working station to those data only which have
been assigned to it by the station having the data (the network
data flow, too, is carried out through forms).

Application in management. The micro-SHIVA developments
have soon transcended the scope of medical applications. As set
forth above, the micro-SHIVA system is for all practical purposes
a general tool. Over and above the fast and comfortable handling
of simple data files, it can also be applied to build up more
sophisticated systems. Our first such system was a program system
helping to determine old age pension C143. This program system
wants to replace a clumsy, by its nature slow mainframe system.
It also wants to ensure possibilities (e.g. with the help of
management administration) which cannot be realised in a batch
system. Our third figure presents a form filled automatically as
a result of the processing of several other data sheets filled
out previously.

A new point of view of data security got prominence in this
management application. While in medical applications first of
all unauthorized access to data has to be prevented, in a system

109
containing also financial calculations first unauthorized data
modification should be made impossible, whereas the chief object
of the system is just to insert as easily as possible the perma­
nently completed and modified data in the course of management
to the existing ones. This contradictory issue can easily be
settled by the flexibility of the micro-SHIVA form handling and
its sensitivity to the modification of data fields. The operator
can print a valid document only if he did not touch the basic
data after the run of the program generating the computed data.
Besides, the validity of data derived from previous work phases
is also examined by the partial systems working such data.

Industr ial application. Management technigue has its pecu­
liarity in every field. This accounts for the substantial diffe­
rence of user systems applicable in the particular areas, even if
they stand on a common ground. This is true also for the medical
and pension calculating systems presented above. Within the frame
of industrial applications a pharmaceutical factory laboratory
system and a machine industrial program package has been complet­
ed. We shall deal with this later system more in detail. This
micro-SHIVA-based program package made for the GANZ-MAVAG Railway
Vehicle Factory C133 surpasses the systems enumerated until now
that it carries out data flow by applying micro-SHIVA form­
handling technique among data bases differing substantially from
each other as to their structure. The task of this program system
is to support, on the one hand, the preparation of the so-called
corner-table getting on the draft of the particular components
and finished products (enumertion of components and building
blocks presented on the draft), and - as a pecularity of this
application - by passing along the row of the hierarchically
systemized drawings (produsts, building blocks, components) draw
up the so-called work-sheets defining the production process
errorless and quicly compared to the conventional solution (see
Fig. 4). This work-sheet contains the specification of the compo­
nents (building blocks) necessary to produce the particular pro­
ducts or building blocks, their quantities and quality indica­
tors. Thus this program system automates and at the same time
accelerates a lot of intellectual works which, because of the
possibility of human error, are in their conventional form not
only slow and expensive but can also do great harm in the produc­
tion (wrongly scheduled production, lack of or surplus in compo­
nents) .

The paper C133 illustrates well by its many examples the
possibilities of the application of the micro-SHIVA form-handling
technique. At the same time it presents the operation of the
micro-SHIVA-based user system by a concrete example.
The connection between form-handling and data bases.

The micro-SHIVA system contains besides the form handling
subsystem also database-handling capabilities. The form-handling,
however, can be built on other database-handling systems, too.

110

Such a possibility is exampli£ied by a record system for corress-
pondance (letter filing) which uses as an input-output surface
the micro-SHIVA form-handling, as a data base the data-handling
subsystem of an inventory system (originally made for wholesale
and retail trading companies).

As a final conclusion it can be said that the great number
of user demands coming from various fields has justified the
utility of the development during the relatively short space of
time passed until now. The diversity of information materials
processed, the largeness of their size show the efficiency of the
microcomputer application. As examples we can point to one of our
health systems (drug effect test) in which we process 15-20
Mbytes of data (by using floppy background store) or to the
social security task in which -- although distributed to several
workstations — the handling of the data of about 100.000 per­
sons should be performed.

References
1. Bakonyi P., Békéssy A., Demetrovics J., Kerékfy P., Ruda

M., A Microcomputer-Network Based Decision Support System for
Health-Care Organization, In: Gertler J., Reviczky L. (eds.), A
Bridge Between Control Science and Technology. Pergamon Press,
Oxford (1985) 1651-1658.

2. Csukás M., Greff L., Krámli A., Ruda M., An approach to the
hospital morbidity data system development in Hungary, In:
Collogues IRIA. Informatioue Médicale. Vol I., IRIA, Toulouse
(1975) 381-390.

3. Csukás M., Kerékfy P ., Ratkö I., Ruda M., Microcomputer
Based Cardiological Patient Registers, In: D.A.B. Lindberg, P.L.
Reichertz (eds.), Lecture Notes in Medical Informatics. Vol. 24,
Springer-Verlag, Berlin-Heidelberg-New York (1984) 240.

4. Csukás M., Krámli A., Ruda M., The computer realisation and
first experiences of the hospital morbidity study, WHO Sta­
tisztikai Vándorszeminárium, Budapest (1974).

5. Kerékfy P., Krámli A., Ruda M., SIS79/GENERA Statistical
Information System, In: R. Trappl et al. (eds.). Progress in
Cvberbetics and Systems Research. Vol. XI, Hemisphere, Washington
(1980) 123-128.

6. Kerékfy P., Ruda M., Program Optimization and Manipulation
on User Level, In: R. Trappl (ed.), Cybernetics and Systems
Research. North-Holland, Amsterdam (1982) 797-802.

7. Kerékfy P., Ruda M., A System Model for Microcomputers in
Health-Care Applications, In: W. van Eimeren et al. (eds.),
System Sience in Health Care. Springer-Verlag, Berlin-Heidelberg-
New York (1984) 1419-1422.

8. Kerékfy P., Ruda M., Micro-SHIVA user friendly information
system development in medical application, In: D.A.B. Lindberg,
P.L. Reichertz (eds.), Lecture Notes in Medical Informatics. Vol.
24, Springer-Verlag, Berlin-Heidelberg-New York (1984) 235-239.

Ill

9. Kerékfy P., Ruda M., Distributed systems on simple micro­
computer architectures, In: Proceedings, IFIP 84 Symposium,
Network in Office Automatization, Sofia (1984) 444-447.

10. Krámli A., Ruda M., Csukás M., Galambos M. , Large sample
size statistical information system for HwB, In: E. Diday et al.
(eds.), Data Analysis and Informatics. North-Holland, Amsterdam
(1980) 457-462.

11. Máté L., Ruda M., Microcomputer system for determining
old-age pension, PERSCOMP, Sofia (1985) (microfiche).

12. Ratkó I., Csukás M., Vaszary P., Computer Registration of
Patients Waiting for Cardiac Operation, In: R. Trappl (ed.),
Cybernetics and Systems Research, North-Holland, Amsterdam (1982)
651-653.

13. Ruda M., Statistical Information System with Health Ser­
vice Application, In: J. Gertler (ed.), Fourth Winterschool of
Visegrád on the Theory of Operating Systems. MTA SZTAKI Tanul­
mányok 87(1978) 167-172.

K O R L A P F E J
0 11 o c ' p e j e A

í.oy neve

□ r s z _
Az adatgyűjtést az egészségügyi miniszter a 37 010 31 sz alatt rendelte el.

Ne ve : I i s EH«":«r b á . L a i

I n t é z

Leánykor • neve: Ar. yf a n e v e . ■ .* • p. u /Kis Dezsőné

<
Q
<

>
_ j

■új

tu
N
if)

C
U J
H
L U
20

7

T
10

21
12

S z ü l e t é s i h e l y e 3 o p r r » n -4je|o : i o i : E3 Z ~ y

Állandó lakása. Sopron Syőri u .2 . 8234 Területi kódja:

Ideiglenes lakása: Teruleti kódja.

Szemelyi ig szama (KÜLFÖLDI eseten a r O L T E S ! U T A S Í T Á S s ze^ r . t

Foglalkozása
(nyugdíjas jellemző fonI) e l öt d ó FEOR kódja

Munkahelye.

13
V. bolt 14

15

Gazda, agí aktív n i
akt;v«ta«a: tanu ó í2 ‘

ör egs ég i n y u g d . (3)
rokkant nyugd (4 i

n tb (5)
e g y e b <6)

Csaiao.
á ü a p o n

n o r ' e n . h a j a d o n
h á z a s . e ^ e t t a r s

(1 i
(2)

elvan
ö z v e g y

(3)
•'4)

16
Legközelebbi hozz itar tozuja 'neve e m e , te'et'onia 17 0 H l

1 - 3 (21

Sopron
K is Dezső

Syőri u.2.

4 6 t 3) szak m ű n k .
7 3 (4 i k ö z é p f o k u

(5) f e l s ő t í 7)
(61 t s m . ! 8 *

8234 18 lamocoarsaga icsak KÜLFÖLDI eseten) KGST-orszag ‘
e u v e b <2 !

>
Z

D
cr
O
*

LL!
>
U J
L L

<

19
Beut a l ás t d i agn óz i s : Rossz a sz ive 6NO kódja.

20 *- O I _ p-O ;rjóoon ! 1 9

Beutalás oka i szerint):

q e o & s
Beküldő orvos neve Dr Kis 21 Sürgősség: .'QOS 1

e m s ür gős 1 2 1
s ür gős m e n t ő <3)
n e m sürgős m e n t ő >4'

23 munkahelye:

XV, rend,
22 Agy rendeltetése: város i ! I)

me g y e » (2)
r e g i o n á l i s -3)
o r s z á g o s <4)

orvosi szc 3 szama:

24
A kapott
felvilágosítás alapion
- a háza endet

kötelezően betartom:

N Y I L A T K O Z A T :

a be-eg a!a rása a beteg aluirása

A kapott felvilágosítás alapján
a gyogykezelesbe, orvosi

.beavatkozásba, mutetbe bele
egyezem

25 OSZTÁLY
A FELVÉTEL

id ő p o n t ja
ho . n a p ó ra

D iag n
t i p .
A

A 3ETEGSEG MEGNEVEZÉSE BNO korti.i
2 3 - 1 5

O 1 taooiGslsio i li JL 2

osztályos orvos ala - asa

26

<
Q
<
c/)
-<
O
C L
<
N
<

osz tályos orvos aláírása

Be u t a l á s és f e l vé t e l oka:
m r t e i e n r o s s z u k é t í l)
b a i e s e t . m é r g e z é s >2)
g y ó g y k e z e l é s (3)

A g y j e l l e g e :
u t ó k e z e l é s ;4 ! sz . . les í 7 j
k ivi zsgáiás (5 ‘ k i s e - ö (3)
kont r o l ! ■ 6 1 e g v e b !9>

• e . v e t e n f 1)
nrenzív (2 1

ő r z ő (3)
oi tol anos (4)

k r ó n i k u s (5)
s z a n a t ó r i u m i (6)

D i a g n ó z i s t í pus a :
á t u t a l ó y 1)
re l ve t e n (2!

s z ö v ő d m é n y
kísérő

áo ;nd f ő • 3> kiin ha i a l ok
s ér ü l é s e k m é r g e z é s e k kül ső oka i
n e m b e t e q s e g es n e m ser . es. d e e .

! 4;
5)

(6 1

E j
szo ' gní t a t as ! J'

k o r b o n c a <a p 17)
k ó r b o r c . h á l á l o k (8 J
k o r b o n c . k i s e r o (9)

A z e l s ő m ű t é t
i d ő p o n t j a : 19

A m ű t é t W H O kódj a:

A t á v o z á s vagy
hal á l i d ő p o n t j a : 19 S & o ~ y o

30 K i írás i á l l a po t : s m e m o r c (1) g y o g y j l t (2) j avu l t (3) vál t ozat lan i 4) r o s s z a b b i 5) m e g n a l t (6) e g y e b (7)

31 T o v á b b k e z e l é s :
3. os?t a*h ! 1 !

más k o m ath (2)
s oec . s z i n t re n e i v . (3)
sajat o s z t . . s sza (4)

sajat int. - i s sza . 5.’
a ' a o e . a t . ' s s z a 1 6 1

• a r o b e t szakr a t advá (7)
<ez es me g r . n e m ig. (8)

e g y e b (9)

PH
itíKArr a \u í r,'.c;

113

F E L V É T E L Törzsszám: 00031
Oszt., ágysz.: /I

A beteg neve:
Leányk. neve:
Anyja neve:
Szül. helye:

Kis Borbála

Kis Dezsőné
Sopron Személyi száma: 00000000000

neme: 2 szül.: 460103 ANH: 8779

Anyja fogl.: eladó
Apja neve: Kis Dezső

fogl.:

Szülők adatai
Cmegh.: 19 00)

Cmegh.:19 00)

60 éves

62 éves
Házastárs adatai

neve: Nagy János sz.sz.: 14012311119
A házasságkötés helye: Sopron , ideje: 660404

Állandó lakóhelye: Sopron
utca» házszám: Győri u.2.
irányítószám: 8234 megye kódja: 00 területkód: 00000

Ideiglenes lakása:
utca, házszám:
irányítószám: 0000 területkód: 00000

hozzát.(gondv.)neve: Kis Dezső 0 l:apa, 2:anya, 3:házt.
címe: Sopron 0 l:áll. 2:ideigl. iakh.

utca, házszám: Győri u.2.
irányítószám: 8234 tel: 000000

IVtC'tt opuiOAN A Q rS

| Gyár t mány: H H B I D A R A B J E G Y Z é K I Fóköl t s é g h e t y : 171
.Tár műszer k é s z t és I . ' I L E V Á L O G A T Á S | D a r a b j e g y z é k s z á a : 0 1 2 1

| Lévái o g a t á s ne ve : műhel y t é t e l e i | ILapszám: 001 j-----—— ----- ----- ---- ---- ------- ----- ----- ------------- ------- -------- — ------- 11----------
IA Z
1

A L K A T R É S Z |A t é t e l e s i á d f á j a I Gy á r t ó üzem,
a | t a s a k s z á m i c r o a c a i : : s . e t a i i i (f4 = ; i __________________ D A R A B / V A L T O Z A 1T

r a i z b ó l k i i n d u l v a i . 2. 3. 4. 0. I 1. 2. 1 3. 4. 5. 6. 1 7. 8.
---- 1

9. 1
Né v i Di e s e l n o t o r 1113 - 511000 / 001L 1

1 Nyer s mé r e t :
N a g y á t f u t á s ú t é t e l j e l e : N |

1
Anyagai n ő s á g : 0021 009 H. t e v . s z á a : 102-191 I a é n v l é s i szám: 14111

. -AA-I -BB- Di menz i ó : db Ki e me l t t e c h n o l ó a i a :
H é r e t : 16PA4V-1B5VG 1723

- 0 4 -
1762
- 0 5 -

1
L _ _ ! _ l

1
I

I
__I__

H i v a t k o z o t t r a j z : 1 1O O 1 ' 777 / 002 1--------------------- 1.001 1 1
N é v : F ő g e n e r á t o r 1 113 - 511000 / 002L Nyer s mé r e t :

N a g y á t f u t á s ú t é t e l j e l e s N.

Anyagai n ő s á g : 0021 009 H t e v . s z á m : 102-189 I a é n v l é s i s z á a : 14121
. -AA-I -BB- Di menz i ó : db Ki eme l t l e c h n o l ó a i a :

H é r e t : H0 630 bHB
ACW 100532

17231
-04- 1

1762
- 0 5 -

1
1 I

1
I

1
__________ 1

r
H i v a t k o z o t t r a j z : 1 1 I I ■

0 0 2 777 / 003 1 I 1.001 1 ... L_ 1
Névi Al so f e g y v e r z e t 1 113 - 511000 / 003

11001-500510/ 001
1
1 Nyer s a é r e t :

N a g y á t f u t á s ú t é t e l j e l e : _

Anyagmi nőség: Aö 400 r i 0 0 1 - 5 0 0 6 0 0 / 0 0 1 010 0021 009 H t e v . s z á m : 108-171 I g é n y l é s i s z á a : 1241
. -QQ- -AA-I -BB- Di menz i ó: Ki e me l t t e c h n o l ó g i a :

H é r e t : H.5Z. 613504 1723
- 0 9 -

17231
-04- 1

1/62
- 0 5 -

“ I
6 1

1
I

1

"T T T I H i v a t k o z o t t r a j z : 1 1 1

Ö O 3 777 / 005 l | 6. 001 _____ 1 1Név:Fel ső f e g y v e r z e t 1 1 1 3 - 5 11000 / 003
11001- 500510 / 002

1 a
1 Nyer s a é r e t : á t m . 220- 200

N a g y á t f u t á s ú t é t e l j e l e : _ _

Anyagai n o s é g : A50 1 0 0 1 - 5 00600 / 002 010 0021 009 H t e v . s z á m: 106- 171 I a é n v l é s i s z á a : 1242
. -QQ- -AA-I -BB- Di menz i ó: Ki e me l t t e c hno l óq a :

H é r e t : á t a : 220-104 1723
1-09-

17231
-04- 1

17621
-05-1 6 1

1
1 • __L. H i v a t k o z o t t r a j z : 1 1 1 1

o o ■q- 'Hl / ööo I I 6. 001 L _ 1 ._______ __ 1
Név : Gumi be t é t 1 1 1 3 - 5 1 1 0ÖÖ/ÖÖ3

11001- 500510/ 003
1
1 Nyer s a é r e t :

N a g y á t f u t á s u t é t e l j e l e : _

Anyagai n ő s é g : guai 010 1 009
Di menz i ó:

H t e v . s z á a : 124-171 I a é n v l é s i s z á a : 14071
. -QQ- 1 -BB- Ki e me l t t e c h n o l ó g i a :

H é r e t : r a j z s z e r i n t
r e n d e l ve

1723
- 0 9 -

1
1

17621
- 05- J 6 1

1
I

1 1
__________ l _

r
[H i v a t k o z o t t r a j z : 1 1 1 I rO O 5 777 / 007 1 I 6. 001 1 1

N é v : u t k ö z o t e s t 1113 - 511000 / 004
1113- 511600 / 001

1
1 Nyer s m é r e t : 0 0 6 - r ó l

N a g y á t f u t á s ú t é t e l j e l e : |
“ 1

Anyagminőség: A 50 010 ! 009 H. t e v . s z á m : 122-171 I g é n y l é s i s z á a :. -QQ- 1 -BB- Di menzi ó: Ki e me l t t e c h n o l ó g i a:
H é r e t : á Y a H 7 0 - B Ö

.
1723
- 0 9 -

1
1

17621
- 05- J 6 1

1
1

1 n 1
__________ 1____

r
[1 H i v a t k o z o t t r a j z : 1 1 1 | r

Ö O <b 777 / 005 1 _____ 1_____ _____ 6. 001__________ __________ !__________ __________ 1__________ __________ __________ L

115
An approach to implementing principle*
of discrete event simulation on PROLOG

by

Udo K o n z a c k

Bereich Informationsverarbeitung
Sektion Mathematik
Humboldt-Universitaet zu Berlin
DDR - 1086 Berlin P0 Box 1297
German Democratic Republic

Abstract
Since the early 80'th the programming language PROLOG has
worldwide become of great interest with regard to the aim of
developing new computer architectures. Especially the
proclamation of the Japanese Fifth Generation Computer Project
has given rise to a lot of investigations in the field of logic
programming. But most of this research work is directed to AI
applications. In the author's opinion it would also be
worthwhile and nessesary to investigate the suitability of
PROLOG for various other purposes differing from AI problems.
This contribution deals with some aspects of using PROLOG for
solving problems of dicrete event simulation. The following
explanations are based on experience made by using the micro
PROLOG system on an 8 bit personal computer. PROSIT (PROLOG
SIMULATION TOOLS), a prototype simulation system has been
implemented and all examples and principles mentioned have been
tested and executed on it. It should be mentioned that serious
applications of course would require higher performance
computers. But for studying principles the micro PROLOG system
proves to be surprisingly powerful, which is mainly due to its
simple LISP like syntax.

0. Introduction
It is presumed that models are regarded as systems of parallel
processes. This gives rise to the following points of emphasis:
- process description/model representation in PROLOG
- process scheduling
- supervision of shared resources
- process communication
- random number generators
- evaluation and statistics
- user interface
On the other hand the question arises which new qualities for
simulation can be achieved by using PROLOG, which provides the
following special features:
- compatibility of data and programmes
- relational (nondeterministic> programming
- backtracking
- untyped variables
- unification

116
1. Model Representation

A process can be replicated on a PROLOG clause in a relatively
natural way. The clause head would correspond to the identifier
of the process and the tail to the sequence of its actions. An
action can also be represented by clauses in the same way. This
allows a systematical, hirarchical and easy to survey process
description.
The problem is just that an ordinary PROLOG theorem prover can
not run two or more processes in parallel but only sequentially
one after the other. Moreover, global data which would be
needed for providing message management, resource access control
and process synchronization in time are not available.

((— consumer)(decide_for— product X)
(— send ((_producer) (X needed)))
(—receive ((_producer) (X available)))
(— consume X)
(— consumer))

((deci de„for_produ c t produc t_1) (draw 0.4))
((decide— for_product product—2)

((-consume product— 1) (— hold X (randint 3 7 X))
((— consume product—2) (— hold X (randint 2 5 X))

((_producer) (— receive ((_consumer) (X needed)))
(— produce X)
(— send ((— consumer) (X available)))
(— producer))

((— produce X) (_prepare X)
(— complete X))

((-prepare product— 1) (— seize tool— 1)
(-hold 5)
(—release tool— 1))

((-prepare product— 2) (— seize tool—2)
(-hold 3)
(—release tool—3))

((— complete X) (— seize tool—3)
(—hold 7)
(—release tool—3))

((tools (tool— 1 tool—2 tool— 3)))

Fig. 1 : model of a consumer producer problem

For this reason a modified PROLOG theorem prover which provides
a coroutine mechanism and special built-in predicates for
synchronization is needed. Such a theorem prover is implemented
in PROSIT and Fig.l shows a model of a "consumer producer
problem" as it can be executed on it.

117
2. Process Scheduling
The scheduler of the PROSIT prototyping system is a special
theorem prover completely implemented on PROLOG.
The processes which are active during a simulation experiment
can be regarded as active PROLOG goals. Consequently the
synchronization of processes has its equivalent in the
synchronization of proving goals. But since in sequential PROLOG
only one goal can be active at a certain time, the scheduler
must be able to freeze up the incomplete prove trees of all
suspended goals in such a way that after changing the active
goal the prove can be continued from the position achieved last.
The scheduler is driven by specifically defined predicates
(scheduling predicates) and if such a predicate is found during
proving the active goal, it will be checked whether the active
goal must be suspended or not.
At present PROSIT provides the following additional predicates:
<1> („hold X) suspends the active process for X

time units
<2> (-hold X Y> similar to < 1 >; Y specifies the rule

for computing X
<3> („send (X Y)) the active process sends the message

Y to process X
<4> („receive (X Y)) the active process waits for recei­

ving the message Y from process X
<5> („seize X) the active process seizes resource X

if X available, else passivate
< Ó (—release X) the active process releases the

resource X
7> (—available X Y) if all resources occuring in X are

available, Y ="yes", else Y ="no"
y (_wait X) the active process becomes passive

unt il fulfilment of cond i t i on X
<9> (—time X) X gets the value of the current

model time
<10> (_new X) a new instance of process X becomes

active at the current time
<11> (_new X at Y) similar to <10>, but at time Y
<12> (_new X name Y) similar to <10>, but with internal

identifier Y
< 13> („new X name Y at Z) similar to <11> + <12>

All these predicates are prefixed by the sign for indicating
dynamical model parts. Each functor of a model clause which
contains a prefixed term must also be prefixed by a . This
enables the theorem prover to minimize the effects of partially
double-entry bookkeeping and slowing down of execution speed
which is caused by the scheduling overhead, by deligating the
prove of all nonprefixed subgoals to the built-in theorem prover
which can do it much more efficiently.
The „new procedure serves for dynamical invoking of instances of
predefined processes in an object oriented manner. Each process
invoked is entered into a certain central queue. So for instance
the SQS contains all processes with a known activation time and
the process with the lowest one is the active process.

118
3. Resource Management
There is one central queue which contains all processes waiting
for the release of a resource. The availability of a set of
resources can be checked using the predicate —available. This
allows e.g. to model the philosopher problem in the following
deadlock free way, where the process waits in the condition
queue until both resources are available.

<(_phi losopher X) (—think) (_eat X) (— philosopher))
((-think) (-hold X (randint 5 9 X)))
(C_eat X) (my_forks X Y Z)

(— wait ((— available (Y Z) yes)))
(— seize Y)
(— seize Z)
(— hold x (normal 5 1 x))
(—release Y)
(—release Z))

((my_forks 1 forkl fork2))
((my_forks 2 fork2 fork3))
((my_forks 3 fork3 fork4))
((my_forks 4 fork4 forkS))
((m y_fork s 5 fork 5 fork1))

((forks (forkl fork2 fork3 fork4 fork5)))
Fig.2: model of the philosopher problem
Resources must be defined as an argument list of a fact in the
model file.

4. Process Communication
PROSIT contains two central lists for establishing process
communication via a mailbox principle. One of these lists can be
considered a mailbox and the other a queue of waiting receivers.
A message can be an arbitrary PROLOG term - even a part of a
PROLOG programme, too.
The receiver and sender need not be fully determined. By using
variables the unification algorithm guarantees that the response
reaches the right sender. This is illustrated by the following
master slave example.
Other communication principles as e.g. rendezvous principle or
broadcasting are also easy to implement.

119
((— master X)

(— send ((.slave V) (execute task Z)))
(—receive ((— slave V) (task Z executed)))

)
((„slave X) (—receive ((—master Y)

(—execute Z)
(„send ((„master Y)
(-slave X))

(execute task Z)))
(task Z executed)))

((—execute X) !X)
Fig. 3: master slave principle

5. Random Number Generators, Statistics and Evaluation
Of course most PROLOG systems are not well-suited for numerical
computation, especially if they only provide integer arithmetic.
But also if there is a real arithmetic, built-in functions like
EXP, LN, SIN, . . . are mostly missing.
For this reason PROSIT provides only equally distributed and
normally distributed random number generators. Other
distributions must be read from a file or calculated via linear-
interpolation of a density function.
Statistics and evaluation have not been supported yet.

6. Final Remarks

PROLOG proves to be appropriate for discrete event modelling and
simulation. Model description can be done on a highly
declarative level. One of the main advantages of PROLOG in
contrast to other programming languages is the compatibility of
data and programmes, which enables to implement arbitrary
synchronization mechanisms in a relatively easy way. Due to the
implementing on PROLOG it was very easy to modify and to
transport the simulation system to other computers. Experience
has shown that especially process communication principles can
be modelled and carried out very conveniently on the basis of a
PROLOG unification algorithm. Untyped variables are of great
advantage in this case.
It can be expected that futural PROLOG systems will overcome
many problems occuring at present e.g. with regard to the
arithmetic or to the access to features of the operating system.
Furthermore, execution speed and memory space will no longer be
the bottle-neck when special PROLOG computers are available.
Then a PROLOG simulation system can be a serious competitor
against traditional systems.
Todays application of PROLOG for simulation could also be
worthwhile when the system to be modelled consist of a small
dynamic part compared to a large logical part e.g. if the model
has to reflect principles of AI.

120
7. References

Cll Clocks in,W. F.;Mellish, C.: Programming in PROLOG,
Spr i n ger Verlag, Berli n 1980

[2 3 Kowalski,R . : Logic for Problem Solving,
North-Hoi land 1979

C33 Birtwistle,G. M.: Discrete Event Modelling in Simula,
The Macmillan Press Ltd., London 1979

C43 Futo,I.; Szeredi,J.: T-PR0L0G User Manual,
Inst, for Coord, of Comp. Techn., Budapest 1984

[51 FutOyl.; Gergely,T.s A Logical Approach to Simulation
(TS-PROLOG)

Proc. of International Conf. on model Realism,
Bad-Honnef, FRG 1982

•>

[61 Clarck,K. L . ; McCabe,F. G.: micro-PROLOG: programming in
logic,

Prentice Hall International, Englewood Cliffs 1984
C71 Campbell,J. A.: implementations of PROLOG,

Ellis Horwood Limited, New York 1934

121

MICROCOMPUTERS AS ADAPTIVE TOOLS BETWEEM INVALIDS AND THEIR ENVIRONMENT

Juliusz L. Kulikov ski
lost, of Biocyberneties
and Biomedical Eng. PAS

Warsaw, Poland

1 • I n t r o d u c t i o n

Human individuals exist in their hone, social, professional and/or natu­
ral environments. A permanent exchange of information between as and the ex­
ternal world í b a basic condition of supporting our vital activity. Unfortu­
nately, there is also a big amount of people living among us that suffer from
different sorts of disfunction of their perceptional /vision, hearing etc./ and/
or effectorial /speech, moving, operating' organs. Rehabilitation of invalids
is a big human, social, economical and technological problem.

A progress reached in the last years in the domain of microelectronics
#

and data processing technology opens new perspectives also for invalids reha­
bilitation. A general purpose is to help then in their contacts with external
world in education, professional work and in home resting. The aim of this pa­
per is to present some concepts concerning the above-mentioned problem. In par-

*

ticular, we shall show the way of using microcomputers as intelligent interfa­
ce between an invalid and his environment that helps him communication and ac­
tion in different situations.

2. General remarks about huaan receptory tracts

Vision, hearing, touch, mnell and taste are the senses that are usually
indicated as basic huoan tracts of information perception. It seems probable
that some vestigial organs permet us to receive some other sorts of 'ttyraira.l

signals coming from external world. However, they play leva important
role in our life and will be not considered here.'

122
following factors are taken into account when talking about the impor-

tanee of any sensor:
_ Bean even/ or maxima information flow / b i t a / a / t ran snitted to the cen­

tral nervous system,
- a general vital role of the given sort of information received by the

sensor.
Fron both points of view the order:

. ’ SMELL
V1SI0M ^ HEARING ^ TOUCH S ■

LTASTE

reflects the role we assign intuitively to the sensors /vision being consider­
ed the aost important one/. However, a sore exact evaluation of parameters
characterizing, say, the information flow through a given sensory organ is a
rather trenendous work. It is caused by the fact that a nervous connection
between the sensory organ and the corresponding cerebral information process­
ing centre is not siaply a communication line but it usually plays a more ac­
tive role in information processing. As a result, the information received by
the central nervous system usually differs in volume and in form from this re­
ceived by sensory organs located on the body's surface. In addition, we are
able to control, by focussing our attention on any given sort of received sig­
nals, a relative information flow delivered by the sensory organs to our cen­
tral nervous system and acting on our consciousness. Therefore, it is very dif­
ficult to say exactly ho» much of information there is received by the given
sensory tract, so as it depends on basin methodological preassumptions. Howe­
ver, if considering the inputs of nervous connections between sensory organs
and cerebrum we can say that vision of a health nan delivers approximately 10̂
times more information per second than his hearing organs, hearing - 1CT* times

2more than touch and the last approximately 10 times more than osell or taste«
Let us also renark that optical signals carry information from practically un­
limited distances while toueh and taste handle with information sources being
close to our body; acoustic and smell signals are in the middle of those two
extremities. For direct supporting vital processes information coming from our

- 123
close environment seems «ore important. This fact explains why primitive bio­
logical organina are eery often dowered with taste and touch sensors only* On
the other hand, our world cognition and understanding as well as social rela­
tions development we owe to our ability to receive information carried by opti-
cal and acoustic signals,

3, Informational aspects of invalidity rehabilitation

Let us focus our attention on some Cybernetical and informational aspects
of invalidity of sensory organs* Invalidity is here considered as a durable re­
duction or elimination of ability of a sensory organ to receive a given sort of
signals and to tram suit them to the corresponding cerebral centre* Therefore,
the case of mental diseases or of central nervous system impaiment making sig­
nals reception and understanding impossible is not considered here* The situa­
tion under consideration is thus illustrated in fig* 1,

Fig. 1 T
There are several sensory tracts receiving different sorts of signals and

tranmitting them to the corresponding local centres where the information is
recognized. The recognized patteras are then used for a global situation inter­
pretation and understanding on a higher level of information processing in cen­
tral nervous system. The problem arises what will be the results of a given sen­
sory tract destroying. Generally speaking, if a given observed object manifests
itself in different ways, its pattern /maybe simplified/ can be reconstructed
on the basis of signals received by the remaining sensors. This fact becomes a

124

big chance for the invalids that up to a certain degree can use aoae of their
sound sensors instead of the injured ones. It is «ell known, for exanple, that
ve can recognise, in certain cireuaatanees, a person not seeing hin but hear­
ing his approaching steps. Deaf-and-dumb children are teaehed to recogpise spo­
ken words by observation of lips novenents. We can evaluate density and consis­
tency of a liquid, without touching it, by hearing its splashes only, etc. How­
ever, substitution of injured sensory organs by the other ones is United to
the class of cases in which several kinds of signals carry the sane information.

Transplantation of sensory organs into the place of the injured ones seens
a promising alternative solution of the problen. Using glasses or hearing aids
vas a first step in this direction. The next one will be a development of sur­
gery of eye and/or ear with transplantation of natural or artificial elements
/like eye lens or eardrum/ and in the future - of complete organs including
the sections of nervous tracts. Let us renark, however, that we are not able
yet to construct artificial sensory organs /of any sort/ that are functionally
equivalent to the natural ones. Therefore, transplantation of complete sensors
can be considered only as a transplantation of natural organs.

At last, there is a third possible solution of the problen, being of inte­
rest for computer scientists: microprocessor-based aids for the invalids or
artificial quasi-sensors adjusted to their sound sensors. A general idea of this
solution is shown in fig. 2.

Fig. 2
In the simplest case an artificial quasi-sensor /AQS/ is a signal transfor­

mer that the signals destinated to the injured sensor transforms into the ones
that can be received by a substitutive sen»or. From a theoretical point of view

125
this solution is possible, in general, if information flows don't overpass tha
information channel capacities* Therefore, using a sound vision tract for trans­
mitting information that is usually transmitted by a hearing tract seems, at a
first glance, a realistic concept, while the opposite seems rather impossible*
However, the general law of non-overpassing channel capacities by information
flows should be interpreted more precisely* The point is that information recei­
ved by our sensors is highly redundant* Our visional tract architecture is ba­
sed on a principle of convergency of inter-cellular connections and, as a res­
ult, of convergency of signals transported to the cerebral centre / » 11*3/*
A similar principle can be observed also in our aural organs / L-H » 12*2/* In
addition, it has been observed that the sort of signals that activate the neu­
rons in our sensory tracts changes along the tracts: it corresponds to elementa­
ry signals in the close environment of sensors and to some higher-order composi­
tions of signals when approaching to the cerebral centre* This is the key to
the construction of computer aids for invalids: we can use sensory tracts with
limited information capacity for transmitting signals of any primary form if
the last is selected and reduced in a corresponding manner. Therefore, construc­
tion of microprocessor-based AQSs is not only the problem of signals conversion
but rather a one of signals selection and transformation into a suitable form*
In addition, by psychological reasons very specific ergonomic demands as well
as technological constraints eure imposed on the AQSs. They must be small, handy,
reliable, easily energy supplied etc. This.explains why microprocessors seem
very perfect elements for such devices. The AQSs can he divided into two gener­
al classes:

a/ portable AQSs using.limited numbers of simple information processing
algorithms,

V stationary AQSs equipped with a library of more sophisticated programs
that may help the invalid in education, work or resting.

In both cases the following scientific and technological problems arise:
i. construction of suitable, versatile and reliable signal receptors

and effectors;

ii. invention of real-time signal processing algorithms;

126

ill. elaboration of simple and effective control and manipulation meth­
ods , acceptable by the users of AQSsj

iv. extension of AQSs' abilities by equipping them with adaptive and/or
self-organising mechanisms.

It should be remarked that the best AQS is the one that is felt by the
user as a natural extension of his natural abilities and doesn't need too much
attention for being handled. That is why the most sophisticated solutions very
often are not the optimum ones.

4« Remarks about artificial receptors and effectors

Up-to-date signal processing technology gives us a large variety of physi­
cal signals reception devices, extending our natural abilities in the domain
of reception of infra-red or ultraviolet optical signals as well as infra- and
ultraacoustic signals. We can also detect and evaluate lot of other physical
parameters directly not affecting our sensors, like connected with steady mag­
netic fields, ionization levels, corpuscular radiation etc. However, we eann't
meet the competition with Nature in making artificial receptors as versatile
and miniature as the natural ones. In the following table there are given some
examples of artificial receptors.

Kind of signals Artificial receptors

Optical Photocells, photocell rows or matrices
Photoelectric multipliers
TV cameras:
- monochromatic
- polychromatic /RGB/

Acoustic Single-frequency acoustic sensors
Wide-band rows of acoustic sensors
Acoustic time-functions analysers

Mechanical Electromechanical, electroresistive or
piezoelectric sensors of
- deflection
- pressure
Rows or matrices of mechanical sensors

Chemical Ion—sensitive field—effect transistors

127
Some of the above-mentioned artificial receptors cann't be recommended

but for stationary AQSs only /Bay, the polychromatic TV cameras/• Some other
ones are of leas importance* like the ion-sensitive FETs which can be used in
artificial taste sensors.

In a similar way there can be specified the effectors or output devices
of AQSs, as shown in the following table.

Kind of signals Artificial effectors

Optical Lamps
Visual indicators:
- lamp matrices
- digital displays
- liquid crystal displays
Electromechanical indicators
Screen monitors:
- monochromatic
- polychromatic /RGB/

Acoustic

Mechanical

BuzzerB, ringers
Headphones, loudspeakers
Acoustic synthesizers
Electromechanical stick or membrane
deplacement indicators
Electromechanical or piezoelectric vib­
rators
Electromechanical or piezoelectric stick
or vibrator rows or matrices

Mechanical effectors can be located on hands, thighs, forehead, shoul­
ders etc. In portable AQSs email and hidden effectors eure usually preferred.

5. Signal processing algorithms

Choosing signal processing algorithms for AQSs should be based on a pre­
vious analysis of situations in which the given AQS will be used. It is not
sufficient to answer the questions: what sort of signals should be received
and what is the suggested sort of substitutive sensor that will be used instead
of the injured one. The next question is: in what conditions the signals will

12b

be received and «hat kind of interference vili dieturb the reception. It ia
evident that AQSs, in general, cann't substitute natural sensors but in sin­
gular and rather specific situations. The next problen arising is thus selec­
tion of signal processing tasks that are preferred as being aided by the AQS.
Any task of this sort should be, in addition, characterized by the desired ac­
curacy of solution as well as by its admissible response-tine /so as being sol­
ved by the AQS in real-tine/. For example, for blind people the following tasks
can be specified:

Task characteristic Accuracy Response-time

Detection of large moving objects middle << 0,3 s
Evaluation of distance to large ata-
tionary objects low < 2,0 s

Detection of objects of given shape
and size middle < 1,0 B

Recognition of indications on displays high < 1,5 8

leading printed texts:
- for a fixed alphabet high ** 20 char/s
- for several collections of char­

acters middle 15 char/s

Here "low" accuracy means more than 30% of erroneous answers, "middle" ac­
curacy - between 10 and 30% and "high" accuracy - less than 10%, however, the
numbers has been taken in an arbitrary way*

It is also evident that the last two tasks can be recommended for statio­
nary visual AQSs rather while the former ones can be realised by handy, porta­
ble AQSs.

Host of the above-mentioned tasks belong to the class of pattern recogni­
tion problems and can be solved using the well-known methods based on determi-

* Iniatlc, statistical or structural approach / , L33 /. The real-time signal
processing condition leads to some additional technological problems, so as
the received optical signals should be stored in an image buff er «memory before
processing. The specific technological problems will be not considered here.

In similar way, for deaf and/or deaf-mute people the following signal-pro­

129
cessing tasks can be offered:

Task characteristic Accuracy Response-time

Detection of any loud burst of noise
with indication of direction middle < 0,2 s
Recognition of typical acoustic sig­
nals /doorbell, huAao voice, dog's
bark etc./ middle < 0,5 s
Recognition of selected single words
spoken middle < 0,5 s
Loud reading of short texts introdu­
ced through a keyboard high < ■
Displaying in typed form spoken texts middle < 1,0 8

Effective solution of some of the above-mentioned tasks needs using ad­
vanced information processing methods. For example, displaying continuous spo­
ken texts is a problem that concerns speech analysis on morphological, syntacti­
cal and sometimes on semantical levels. The problem needs thus high data proces­
sing. rate as well as high RAM's capacity.

All the above-mentioned signal-processing tasks were based on an assump­
tion of steady working conditions in which using fixed algorithms and programs
is possible. However, the AQSs based on such principle would be rather unflex­
ible and in fact uneffective. The working conditions may change due to the chan­
ges in the environment the invalid exists and acts as well as due to the chan­
ges of his proper needs. In particular, it is necessary to take into account
the fact that the abilities of invalids to solve their vital problems develop
according to the experience stored, to the health state etc. This means that
the AQSs should be flexibly programmed and able to be adapted to changing cir­
cumstances*

So as the AQSs perform their signal-processing operations in real time,
they are programmed so as to repeat their programs in loops with repetition­
time not overpassing the admissible response-time of the AQS. However, in or­
der to make the programs adjustable to the current user's demands it is defined
up to a certain set of values of parameters controlled by the user. The parame-

130
tera can be connected with

i. calculation constants, like: sigsal threshold levels, time-inter­

val a duration, frequencies, signal-shape characteristics etc.}

ii. program constants, liket dimensions of arrays, nuaber of repeti-

tioas in program loops, subroutine labels etc.;

iii. structural algorithm constants, like labels assigned to optional

connections within a general logical schene of a program etc.

The set of admissible values of adjusted parameters determines a sort of

a space of control signals for the user of Mjß. The parameter values can be set

by keys and stored in registers for being used during the program perfomance.

From the user's point of view the keyboard states thus form a sort of expres­

sions of a manipulation language that can be used for AQS hand-control* How­

ever, it is assumed that the user is not able to set his own programs of sig­

nal processing, the last being designed by the producer of AQS* It is also

clear that the degree of freedom in program adjusting offered to the users is

larger in stationary AQSs than in the portable ones*

Future progress in AQSs construction will concern their ergonomic paramo*

ters, reliability, versatility, sensibility and accuracy* The manipulation lan­

guage will be "naturalised" so as to make AQS control easier and more flexible*

This will be reached due to wide application in AQSs construction all achieve-e
ments in microelectronic schemes technology, in pattern recognition and artifi­

cial intelligence and in construction of si&ial receptors.

Refer «ices

1* R*F* Schmidt, G* Thews. Human Physiology. Springer Verlag, Berlin, 1983*

2. J. Kulikowski. Cybernetycxne uklady roxpoznajqce. PWK, Warszawa, 1972.

3* K.S* Fu* Syntactic methods in pattern recognition. Acad* Press, Hew

York, 1974

131

ON THE PADRE'S IMPLEMENTATION BY PREPROCESSOR TECHNIQUE
Van-Lu NGUYEN
LITP et Université Pierre et Marie Curie
A Place Jussieu 75252 Paris Cedex 05
Thuan HO
Computer and Automation Institute
Hungarian Academy of Sciences Victor Hugo St. 18-22, Budapest

absiraci

Different steps and advantages of preprocessor tech­
nique are showed in this paper by way of a concrete imple­
mentation of Padre, a programming language especially
designed for describing, transforming and interpreting vari­
ous classes of Petri nets. We also show that the technique
is perfectly applicable on microcomputers.
1. INIRODUeilQN

It has been exposed in C13 that Padre is an experimen­
tal programming language which can describe, transform and interpret different classes of Petri nets - e.g ordinary
nets, capacity nets (C23), coloured nets (C33),
predicate/transition nets (CAT), ... In this paper, a par­ticular Padre's implementation technique is exhibited.

In this implementation we seek two objectives: develop­ment speed and portability. The first one can be obtained by
preprocessor technique which translates a high-level source
language into another high-level target language. The seman­tics of the source and target languages are often well-
understood, so the translation implies no major difficulties
because the existence of their direct semantic equivalence.
For portability objective, we have to choose a language
which is universally implemented on almost all computer fam­
ilies. And that is the case of the language Pascal.

With these objectives in mind, our preprocessor tech­
nique consists in four steps:(i) internal representation
generating of different types with pertinent informations
for future uses, (ii) translating all Padre program into a
semantically equivalent Pascal program, (iii) generating
useful routines in prevision of user's needs, and (iv) sub­
mitting the outputs of preceding steps to a Pascal compiler
which completes the translation. The preprocessor design includes of course all major and well-known algorithms of
compiling processus (C53) - i.e lexical and syntactical
analysis, semantic analysis, error recovery, ... - except

t- 132 -

perhaps that the generated object is coded in high-level
language.

The paper is organized in three parts: in the first
one, we recall some basic constructs of the language Padre,
the second part describes our implementation technique, and
in the third part we show that this technique is perfectly
applicable on micro-computers.
2. PADRE LANGUAGE SUÖÖABY

In the following language summary, we only recall some salient constructs of Padre. One can find a compact descrip­
tion of Padre in C13 or its description in-extenso in C63.

To remedy the incommodity of current high-level
languages in the description, transformations and interpre­
tations of various Petri net classes, we have designed Padre equiped with the following type system and set of instruc­
tions and primitives:

2.1 type system

Beyond elementary and standard types such as char,
boolean, integer, and integer subrange, Padre offers a net
constructor with the following syntax (from this time for­
ward the EBNF < C73 > is used):

net_id = "net of"
Cconst_def "!"D
Ctype_def "i"D
e1ement_dec1";"
connection clause

"end"
element_decl = "element" elem_item -C";" elem_item> elem_item = elem_id -C" , " elem_id> ":" elem_struct
elem_struct = "transition" I "simple place" I

"colored place of" int_subrange_id
connection_clause = "connection"

trans_connect CinterfaceU
{"I"trans_connect Einterface]>

The trans_connect has the following simple syntax
trans_connect = trans_id "E"

E in_c1ause";"3
Cguard_clause"; " 3
Cout_c1ause]

"3"
in which and for each transition identifier trans_id:
- in_clause specifies all its in_places and its associated

133

preconditions,
- guard_clause indicates either an additional constraint on
variables forming its preconditions or its synchronization
interface with the outside world,
- out_clause specifies all its out_places along with the
associated postconditions,
- interface specifies the interface with the outside world.

Instead of going further in syntactic details which are
been completely described in C63, let us give a net descrip­
tion example already found in C13:
Example 1.

The net in fig.l represents a solution without inhibi­tor arc of the classical readers and writers problem (CS3).
The access coherence implies three well-known constraints:
(i) writings are mutually exclusive, (ii) concurrent read­ings are allowed, and (iii) readings and writings are mutu­
ally exclusive.

I il I I ie I
I jv

k I
v

I j
V

I 1 I

I j

I dl l<- ■ ■
II In
I I ■ ■

I xl I

.=====. II In
> I fl I--- '

> I de I--.
'=====' k|

v
* .----- .

I e I
I

.=====. kl
I fe I< — '

I J v
k I
v

I ol I I oe I

fig.l: rwcolor

134

where
il (respectively ie): place containing all processes

which are waiting for a reading (respectively writing),
1 (respectively e): place containing all processes
which are reading (respectively writing),

ol (respectively oe): place containing all processes which
have terminated their reading (respectively writing),

xl: simple place,
dl (respectively fl): transition which represents a reading start (respectively end),
de (respectively fe): transition which represents a writing

start (respectively end).
Me are evidently in the presence of a coloured net which can
be described in Padre as follows by the preceding net con­
structor :
const n=13;
type np=l..n;
rwnet=net of

e1ement
il,1,ol,ie,e,oe:colored place of np;
xltsimple place; d1,f1,de,fe:transition;
connection
dl C in xl:(xl>=l), i1(j:np):(i1Cj3>=1);

out 1s(1 to lCj3) 3 I
fl C in 1(j:np):(1Cj3> = 1) ;out xls(l to xl), ols(l to olCj3) 3 I
de C in xl:(xl=n), ie(k:np): (ieCk3>=1);

out e:(l to eCk3) 3 I fe C in e(k:np):(eCk3>=1) ;
out xl: (n to xl), oe:(1 to oeCk3) 3

end ;
From the basic net constructor, following operations

are allowed on nets:
- QßgEitiQDS iDtCä“D§ti: these operations allow adding new elements to a net, deleting elements of a net.
- operations inter-n§ts: that are operations such as combi­
nation of two nets by merging their identically named ele­
ments, combination of nets by merging their explicitly named
elements, combination of nets by merging two place sets.

2.2 set of statements and E£imitiyes
This set includes the following statements and primi­

tives :
classigal statements and primitives
- assignment statement which is classically defined as

135

variable ": = " expression
- conditional choice specified by an if_statement:

"if"guarded command {"1" guarded_command>"f i"
guarded_command = guard statement_sequence
guard = boolean_expression
statement_sequence = statement statement!

In an if.statement, each guarded_command is examined: if its
guard is true then the associated statement_sequence is exe­
cuted .
- non-deterministic loop specified by an 1oop_statement:

"loop"
guarded_command {"1" guarded_command}

“pool"
In a 1oop_statement, each guarded_command is
ined: if its guard is true thenstatement_sequence is executed. The loop_
minates when all guards become false. The i
loop_statement are inspired from Dijkstra's g
(C93) with a slightly modified semantics.

randomly exam-
the associated
statement ter-
f_statement and
uarded commands

- input/output primitives: all Pascal's input/output primi­
tives are included in Padre with the same semantics.
Q£oper primitives for ntrts
- creating an instance of net: the primitive

"create" "("net_var_id ":" net_type_id ")"
creates a net instance, identified by net_var_id, with the type specified by net_type_id.
- destroying a net instance: the primitive

"delete" "(" net_var_id ")"
destroys the net instance identified by net_var_id and res­
titutes the occupied memory to the available memory space.
- random interpreting of net: the primitive

"randomexec" "(" net_var_id ">"
activates a random interpreting of the net instance
net_var_id. The interpretation terminates when all

136

transitions have been proposed as candidates for firing.
Because of random choices, one transition can be proposed
many times.
- interpreting of net with priority: the primitive

"priorityexec" "<" net_var_id ">"
activates a net interpretation in which transitions are
selected as candidates according to their relative priority.

The following two primitives allow interactive handling
and interpreting of nets:
- the primitive

"stepbystep" "<" net_var_id "l"
gives access to the net instance net_var_id and offers the
following interactive facilities:

- net marking display, net connection matrix display,
- net place list and/or net transition list display,
- display of instantanously fireable transitions,
- accessing a place or transition in order to modify
and/or test its attributes.

- the primitive
"netswork" "<" net_var_idl "," net_var_id2 "l”

offers the following operations on two net instances speci­
fied in parameters:

- merging of two places or two transitions,
- merging of identically named elements,
merging of two place sets (C10D).

137

3. PADRE'S IMPLEMENTATION
This implementation can be described by the following

scheme:

I Padre program I
II
v

I Padre's preprocessor
II
v

II
V

I
II
V

I representation
I of net types

I
I
v

I I equivalent I
I I Pascal I
' I program I_______ _______/

I
v

I Padre I
I library I
\ ______________________ _________/

I
I
v

I Pascal compiler I

v
I object code I________________/

We can subd
the first one
declarative part
imperative part.

ivide the implementation in two steps: in
is described the translation of the Padre's
and in the second, the translation of its

translation of declarative part
The translation of primitive standard types - i.e char,

boolean, integer, integer subrange - dô inot imply any major
difficulties thanks to the syntactical analogy between Pas­
cal and Padre.

The translation of net type constructor necessitates,
on the other hand, a deep analysis of net type descriptions
to dynamically generate internal representations of nets. To anticipate the using of large nets, all generated represen­
tations are stocked in secondary memory.

For each net type description, the translator generates
then a corresponding internal representation, a more or less
complicated graph, in which all pertinent informations for

138

future uses - such as preconditions, guards, postconditions,
interfaces with outside world - are appropriately
transformed and explicitly retained.

For each intra- or inter-net operation, there is in the
Padre's library a corresponding algorithm purposely ela­borated. So the library inludes at least a collection of
graph-manipulating algorithms such as:

graph-traversing algorithm which is useful, for
instance, to generate pre- and post-conditions of each
transition,
graph-duplicating algorithm, useful to generate net
instances,
graph-merging algorithm to realize net combinations,
garbage collecting algorithm for memory recovery when a
net instance is destroyed,

and so on.
translation of imperative part

Generally the translation of this part do not implies
any major difficulties because there is a direct semantic equivalence between Padre's and Pascal's control structures.
Except, perhaps, for guarded commands and for net handling and interpreting primitives.

Let us describe the translation of these cases:
feCiDPlitiSD QÍ guarded commands
- if„statement

An if_statement of Padre
i f
guard_l : stat_seq_l I
guard_2 : stat_seq_2 I
guard_k : stat_seq_k

f i
can be translated into the following Pascal sequence:

if T(guard_l) then begin T(stat_seq_l) end;
if T(guard_2) then begin T(stat_seq_2) end;
if T(guard_k) then begin T<stat_seq_k) end;

where T(<anything>) represents the translation result of

-139

{anything!.
" lfiQO-lfci&fBfDfc

A loop_statement of Padre
loop

guard_l t stat_seq_i I
guard_2 i stat_seq_2 I
• • a
guard_k t stat_seq_k I pool

is translated in the Pascal scquenon
J*»0;
repeat

case j of
0 : begin end;
1 : if T <guard_l) then begin T(stat_seq_l) end;2 : if T(guard_2) then begin T <stat_seq_2) end;
e e

k
s'

: if T(guard_k) then begin T(stat_seq_k) end;end {easel}
ji«alea(generator,k)5
until not < T(guard_l) or T(guard_2) or

... or T(guard_k))
In this translation scheme, the non-determinism of
loop_statement is reflected in a random choice of guarded
command to be executed. In a syntactical analysis with one
symbol look-ahead technique, the number of guarded commands
is unknown at the loop_statement entry} in order to apply this technique in our translation, we have added a dummy
statement

0 : begin end;
tEiDSla&iQD QÍ Dfifc bdDdlÍD9 äDd ÍD£SECEfi£ÍD9 BEÍBÍfcixeS

The translation of net instanciating and destroying
primitives is easy because each one corresponds to a library's algorithm, for example:
- a net instanciating activates a graph-duplicating algo­rithm,
- a net deleting activates a garbage collecting algorithm.
The translation of various net interpreting mechanisms
necessitates on the other hand, two basic routines, the first one for firing of a transition t which can be
described by:

140

f iring_a_transition_t
i) : < if t do«piot have any coloured in-place then the
following Pascal sequence is generated:!

"if" Cguard_of_t "and"D precondition_of_t "then"
"begin"

Cinterface_activation ";"D
mark_consuming_sequence";"
mark_adding_sequence";"

"end"
ii) : { if t has at least one coloured in-place then the

following sequence is generated in which parameters x, w represent colours of the t's in-places.
The interpreting algorithm does then an exhaustive
search to test the truth value of t's precondition
and guard!

x t :=a1ea(generator,max_of_type_of_x);
x:=xt;
■ ■ a

wt:=alea(generator,max_of_type_of_w)5
w: =wt;
repeat

x:=x mod max_of_type_of_x + 1?
a a •

repeat
w:=w mod max_of_type_of_w + 1;
if Cguard_of_t andD precondition_of_t then
begin

done:=true;Cinterface_activation;D
mark_consuming_sequence;
mark_adding_sequence

end;
until (w=wt) or done;
a a auntil (x=xt) or done;

The second routine interprets a list of transitions pointed
by p:

< interpret the list p!
while p<>nil do
begin

t:=transition_pointed_by_p;
f iring_a_transition_t;
p:=transition_following_p;

end;
With these two routines, the other primitives are easily

141

translated, for example:
- the primitive EaodSIDgxgG is translated into

R:=C 3;
repeat

t:=choice(T);
firing_of t;
R:=R+CtD;

until R=T;
where T is the set of net transitions, R the current set of randomly choosen transitions, and choice a random choice
algorithm.
- the primitive ßr±gritygxec is translated into

generating a list p of transitions according to their priority interpret the list p;
The translation of §t§ßbys£§ß and netswgrk implies all apparatus previously evocated.

4. CONCLUSION
The two previously stated objectives in this Padre's

implementation by preprocessor technique have been attained:
- development speed: the preprocessor is completely written
and now operating on MULTICS system. Its implementation has
necessitated 12 months/man for about 10000 Pascal lines.

•

- portability: the transfert of the system on VAX/UNIX is
now undertaking, it doejnot seem imply any problem and will
be operating very soon.

The current program text, of the preprocessor can be
decomposed as follows:
- 172K bytes for the source code written in Pascal,
- 138K bytes for the Padre's library written in Pascal,
- 232K bytes the object code after link edit.

So this implementation technique is well-suited for
almost micro-computers currently in uses.

142

BEEEBE!Ü£E3
Cl 3 Van-Lu NGUYEN"Padre: A Petri nets based parallel programming language"

in Proceedings of The 4th Hungarian Comp. Sei. Conference Gyor, July 1985 Budapest Eds. M. Arató, 1. Katai, L.Varga
C23 Charles ANDRE

"Systémes á évolutions paralléles: Módéiisation
par réseaux á capacités et Analyse par abstraction"
Thése d'Etat, Université de Nice Février 1981

C33 K. Jensen
“Coloured Petri nets and the invariant-method"
in Theoretical Computer Science no 14, 1981

V
C43 H. J. Genrich and K. Lautenbach

" The analysis of distributed systems by means of
predicate/transitions nets"

in Semantics of concurrent computation Lecture notes in Somputer Science no 70
C53 N. Wirth

"Data Structures+Algorithms=Programs"
Prentice_Ha11 1976

C6U Van-Lu NGUYEN
"Padre: un langage d'expérimentation de programmation
paralléle et distribuée basé sur les réseaux de Petri" Thése d'Etat, Université Paris VI á paraitre 1986

C73 N. Wirth
"What can we do about the unecessary diversity of notation
for syntactic definitions"
in Comm, of ACM November 1977

C83 P.J. Courtois et al.
"Concurrent control with readers and writers"
in Comm, of ACM October 1971

C93 E. W. Dijkstra
"Guarded commands, nondeterminacy and formal derivation of
programs"
in Comm, of ACM August 1975

{1103 V. E. Kotov
" An algebra for parallelism based on Petri nets" in Lecture notes in Computer Sciences no 64, 1978

143
PERSONAL COMPUTER-AIDED TESTING AND TRAINING SYSTEMS

Radoslav Pavlov, Ruslan Mitkov, Avram Eskenasi
Insitute of mathematics, Sofia

ABSTRACT

In the present paper are examined the basic principles of achieve­
ment testing, the historical development of its computerization and
mostly some computer-aided testing and training systems developed
at the Institute of mathematics of the Bulgarian Academy of Sciences.
The systems were developed on the personal computer "Apple-II".
Certain advantages of the computer-aided testing and training (the
latter realized efficiently only by means of computer), as compared
to the traditional testing and training are examined, as well as fu­
ture problems and tendencies of computer-aided testing and training.

ACHIEVEMENT TESTING
An achievement test is a systematic procedure for determening the

ammont a student has learned. Testing has been around for centuries,
for longer than most people today realize (ancient China). An wide­
spread and rapid development of testing procedures and generally of
theory of testing was noticed at the end of the 19th and the begin­
ning of 20th century and the names of Rice, Thorndike and Binet
deserve to be mentioned.

Achievment tests are widely used in education as a suitable
instrument to measure someone's knowledge. The tests can be classi­
fied as essay, problem and objective tests. The objective tests can
be scored more rapidly and reliably than either of the other types
(especially preferable when large amounts of students are to be tested).
Usually a test is a collection of test items. Objective items may
be : true-false, multiple-choice, matching and short-answer.
It is certain, that multiple-choice test items are currently the most

144

highly regarded and widely used form of objective test items.
They are adaptable to the measurement of most important educatio­
nal outcomes - knowledge, understanding, and judgement ; ability
to solve problems, to recommend appropriate action, to make
predictions. It was the multiple-choice objective test items ,
that drew the attention of the informaticians in the development
of the first computer-aided testing programs and systems. Where ever
testing is concerned, we may speak also in terms of "training"
(drill and practice), provided there is appropriate feedback.

LOOKING BACK : THE FIRST STEPS IN COMPUTERIZATION OF TESTING

The first computer programs(and later systems) were CTSS
(USA, 1969) , MEDSIRCH (CANADA, 1970) , MENTREX (USA, 1973).
These programs permitted item entry and storage (in the socalled
"Itembank"), item bank maintenance, item generation and item
scoring. In the following years in several countries (USSR, Japan,
Bulgaria) were developed systems with more flexible and extensive
possibilities. The systems TEST-1, TEST-2 and TEST-3 were developed
in 1977 at the Institute of mathematics of the Bulgarian Academy
of Sciences. At the beginning, the test items were kept on punch-
cards and magnetic tapes. Later on, with the development of computer
technology, it was possible to ensure direct access to the stored on
hard discs test items.The appearance of personal computers with
their new interactive(dialogue) and graphics possibilities gave
a strong impact to the development of computer-aided education .
In the field of computer-aided testing and training it was possible
to think of improvements of all the stages connected with testing -
test development, test administration, test scoring and reporting
practices, item analysis and with training - the emergence of
new training individual strategies, including some adaptive features.

145
These ideas were incorporated in the from us developed micro­
computer testing and training systems.

UTEST AND UTRAIN - COMPUTER-AIDED TESTING AND TRAINING SYSTEMS

The systems can be described in two different ways : from view­
point of the user-to be examined or trained (here called "student")
and from the viewpoint of the user-examinator or trainer (heie
called "teacher"). Prom viewpoint of the student UTEST may be
described as follows : the student sits in front of the micro­
computer, receives brief instructions (several sentences on the
screen) and is offerred a test, consisting of multiple-choice
test items. The test item has a problem situation and several
(3,4 or 5) alternatives, one of which correct and the others -
distractors. The test item may also contain graphical illustra­
tion to the problem situation. The student is supposed to select
the correct answer (choosing for instance "1", "2" or "3") or
delay his answer. If after the generation of the test and its
display on the screen the time is not up, the delayed items are
offerred sequentially again. Y/hen no more items available, the
results are stored in a file, further accessible to the teacher.

UTRAIN is a modification of UTEST on the basis of drill and
practice mode. The student may have immediate feedback after
answering each item ; the time, determined for examination may
be adjusted according to the individual pace of work ; there is
no assigning notes or mastery or nonmastery to each student, but
just drill and practice covering desired subject areas.

Prom viewpoint of the teacher UTEST may be regarded functionally:
UTEST consists of four larger subsystems : text base maintenance
(text base editor), graphics base maintenance (graphics editor),
test generation and examination and results processing. These
systems are functionally connected through different files.

♦

146

UTEST uses floppy discs and this brings certain restrictions of
the data base size and technological complications of the results
processing (additional complication of the latter is that the
computers are not connected in net).

Special database maintenance means are elaborated for the
examinator. Text and graphics are stored separately and supported
in different ways. The text base maintenance means (text editor)
represents an elementary menu and no preliminary knowledge is
necessary to correct, update or eliminate text. The graphics base
maintenance means (graphics editor) enables easy creation of
various colour figures, which occupy minimal memory space and
their maximally fast execution. To make use of the graphics
editor is not hard to learn. The teacher is in position to re­
quire the generation of a test from the data base with deter­
mined characteristic features - number of test items, subject
areas, global difficulty, time for test solution. Each test
item is characterized by "difficulty weight" and belongs to
certain subject area.

It should be mentioned, that UTEST is one of the not so many
really functioning testing systems. We have managed to realize
UTEST in several different subject areas. The most popular
concrete version of UTEST is KATEST, a testing system for admi­
nistration of the motor vehicle driver's exam (4) . KATEST is
a menu-driven testing system. Its main menu looks like that :

1. Examination
2. Results processing
3. Text base maintenance
4. Graphics base maintenance
5. Copying of diskettes
6. Exit

147
Option 5. is necessary because of the special protection
measures taken (KATEST works under completely different,
specially elaborated DOS). They were a number of experiments,
carried out with KATEST. We were glad to establish , that
KATEST was friendly accepted by most of the examinees.

A more detailed functional scheme of KATEST is given in
the appendix (page 13).

KATEST was not the only concrete realization of UTEST.
For the students of Sofia University we developed testing
systems for biology, physics, mathematics and law. We are
working now on some perfection of UTEST, which is going to
bue used by the Sofia Council of People's Education. We
plan to include some powerful information subsystem , giving
any information concerning the "achievement history" of each
student. Furthermore, item analysis should be carried out
by the system.

The authors are working now on a project, which will
connect a group of comnuters in net and use common big capa­
city disc. The present paper will not discuss the advantages
of such solution.

Comparing UTEST with traditional testing, we may state
the following advantages in favour of UTEST :

- The number of tests offerred on traditional answer-sheets
is not very large. This enables sometimes students learning
tests by heart in advance and so arises the problem of test
security ;in UTEST the test items are selected within each
subject area by random generator - it means, that provided the
data base is large enough, practically an unlimited number of
distinct tests are produced, not known in advance by students.

- It is very difficult and expensive to change the tests in

- 148 -
traditional way. Only a single change of an item, resulting from)»
certain pedagogical or administrative reasons leads to the print
of numerous tests. In UTEST all is simply done : the respective
item is retrieved and by means of the text editor corrected.

- a similar problem arises when the structure of the test
should be changed.In UTEST the structure of each test may be pre­
determined by the teacher.

- the advantage of UTEST is similarly seen when the global
weight of the test should be changed

- the subjective factor is in UTEST fully eliminated.
It should be also mentioned, that UTEST is independent on the

subject area, i.e. universal with regard to it. The user-friendly
menu enable teachers even with little or no knowledge in pro­
gramming to create their own data base.

In UTRAIN there exists the same functional structure. However
UTRAIN has more options connected with the individual preparation
of each student. The student is allowed to select a desirable
teststructure for the drill and practice, to select the time for
it, to select the mode of feedback. These options can be also
selected by the teacher, furthermore UTRAIN may analyze the
level of knowledge of each student, instead of simply assigning
a corresponding note to it.

ADAPTIVE FEATURES

The authors are trying to incorporate some "adaptive features"
in the systems. Adaptivity is realized in examination differently
from drill and practice. Essential in both cases is the subject
determination of the test items. After some analyses and he­
sitations the authors preferred the hierarchical classification
scheme (HKS) as more suitable than describing each test items

149
by means of key words. The HKS contains 6 levels, and according to
the properties of this type of languages each subject area is
described by code (from 1 to 6 digits) and each subject area
coded by k digits represents a subarea of each area, coded by the
leftmost m digits of its code (m C k). Each test item belongs
exactly to one subject area. Here is a simple example of it :

1. Mathematics
1.1 Elementary mathematics
1.1.1. Arithmetics

1.2 Higher mathematics
1. 2 . 1
1.2.10 Probability theory
1.2.10.1. Random events
1.2.10.2 Random variables

2. Informatics (computer science)
2.1. Programming
2.1.1 Programming languages

3. Mechanics

The authors are acquainted with some attempts aimimng to set
up adaptive CAI systems. Some of these systems are based on creating
a model of the student and adapting the CAI (computer-aided
instruction) in connection with this model . Others make use
of sophisticated statistical theories for estimating student's
ability. In this paper the authors describe their aim to obtain
adaptivity in two strictly defined and not so complicated sides
of the education - examination (testing) as well as drill and
practice (training). What is more, they aim at obtaining this

150

adaptivity by maximally elementary and user-accessible means.
The simplest adaptivity means in UTEST represents the

possibility to postpone the answer of any test item. We can talk
in this case about adaptivity and psychological adjustment of the
student. The experiments, carried out, show that this possibility
is frequently made use of. Unfortunately the authors do not claim
any final conclusions, for too large statistical information is
not available. This remark is also valid for the rest of the
examined problems here.

Another adaptivity strategy is tealized in UTRAIN based on
HKS. The teacher determines a structure of the drill and practice
(just like in case of examination) : subject areas A^, n^ , such
that n^ é card(A^), total difficulty weight of the items of each
area - isL . Besides, a treshold number T^ for each area (T^ < ÜL ^

and a number of loops BL for each area are added. In case the student
reaches at least T^ of given area, he receives items from the next
area A^+1 • If the treshold number is not reached, the test items
are presented once again on the screen with indication of the
correct answers. After reading the correct answers, another n^
Items of A^ are generated. This process is repeated until the
student receives at least T^ points, but not more than times.
In case of I\L unsuccessful attempts the exercise is suspended and
a standard text is given, which recommends learning of the respective
subject matter. If the subject areas are not closely related the
drill and practice may carry on after registration of poor per-
fomance in the respective area. Through this simple mechanism
(both realization and teacher's use) the system adapts itself to
the individual peculiarities of the student.

Another attempt of adaptivity is to react to certain boredom
of the students. This is especially important in case of children.

151
It is applied when a large number n^ of some area (for
example above 20) are available. Test items of equal difficulty-
are generated (In our systems difficulty range from 1 to 9,
but practically only 1,2 and 3 are used). Suppose the result of
the first third items corresponds to the result between T^ and 1/L
(i.d. result : Ti/3$Si1 Í M^/3 is reached) and the results
of the next sixth of elements falls down considerably (i.d. S^1 - 2S 2̂
= S^2* where is a positive number). Then we could presume,
that result deterioration comes from certain boredom and fatigue.
In this case the drill and practice can be temporarily suspended
and some music or animation can be offerred by the computer.
The questions concerning the proper value of and its parameters
(regarding S12 as a function) are still open. A large number of
experiments are necessary in order to establish if the selected
values 1/3 and 1/6 are relevant and in general how efficient this
approach is.

If boredom and fatigue, there might be another way of reaction
to the high intermediate results. After reaching high number of
points in the first third of items, the system generates the
second third of items with higher level of difficulty. In this
case the treshold number is automatically raised. The new treshold
number serves as a criterion if the difficulty level of the last
third of items should be further raised.

Another alternative of the explained procedure of UTRAIN may be
applied in training students to obtain automatic and quick reactions
in some specific areas. In this case instead of raising the diffi­
culty level , time limit for answering each test item and in
respect to the whole exircise is introduced.

So far as the examination is concerned, the authors are trying
to realize in UTRST the following idea (which requires however

152

more complicated structure of the data base in respect to the
subject areas) : subject areas are not regarded as hierarchy,
but as semantic net knots. This is a convenient way to express
more adequately two, close in respect to the subject, areas
(subject proximity). The authors aim by means of this net
and the notion of subject proximity at establishing whether
certain poor result is casual. It is proceeded in the following
way : let Si (S^<- Ti) be a poor result in Then Si is re­
gistered, but several items from subject proximity areas of
are generated (according to the net). Poor perfomance in these
close areas means unsatisfactory preparation in general. The
disadvantage of this approach consists in overcharging the
student. A palliative in carrying out this additional examination
might be in doing it after the basic examination.

The authors regard their attempts to create an adaptive systems
as in initial stage, at least because sufficient statistical
information is not available and because no cooperation with
psychologists and pedagogues is yet established. Thev hope
to overcome these difficulties.

FUTURE PROBLEMS

Perhaps the basic problem of the future in computer-aided
testing and training turns out to be the so far unsolved problem
of computer-aided test item construction. This problem has
attracted some methods for its partial solution (9) , (10) ,
but has not been completely solved yet. For its complete solution
are needed most powerful means of the artificial intelligence.

An unambiguous answer should be given to the question to
what extent the newest possibilities offerred by the micro­
computers - motion, sound etc. can be used in the test items.

153
The restricions, established by computers and informatics exist
practically no more. There exist almost no restrictions concerning
the display of formulae, built of symbols of practically arbitrary
alphabet, of sophisticated colour illustrations, accompanied even
by motion and sound. For the first time it proves out, that not
computer technology, but psychology and pedagogy are lingering
behind.

Also, particular attention should be paid to the development of
new and efficient adaptive strategies.

All these problems may be successfully solved, only if appropriate
scientific cooperation between computer scientists, psychologists,
pedagogues, linguists is established.

REFERENCES

(1) Ebel R. - Essentials of educational measurement,
Prentice-Hall Inc., 1972

(2) Popham J. - Modern educational measurement,
Prentice-Hall Inc.,1981

(3) Pavlov R., Eskenasi, Mitkov R. - An adaptive system of
children examination and training, Proceedings of the
international conference and exhibition on children
in an information age : tomorrow's problems today,
Varna, 1985

(4) Pavlov R., Eskenasi A., Mitkov R. - KATEST - testing system for
administration of the motor vehicle driver's exam,
Proceedings of Perscomp, Sofia, 1985 (in bulgarian)

(5) Mitkov R., Pavlov R., Eskenasi A. - Testing in Bulgaria with
microcomputers, to be published

(6) Mitkov R. - Computerization of testing - situation and
perspectives ,(to be published in bulgarian)

154

(7) Eskenasi A. - Application No.1 , Contract between the
Institute of mathematics and the Sofia Council
for popular education, Sofia, 1986 (unpublished)

((8) Lippey G.,(Ed.) - Computer-assisted test construction,
Educational Technology Publications,USA,1974

(9) Vickers F. - Computer generated problem sets. A practical
approach to computers in education, Educational
Technology, 1973, 13(10), p.47-50

(10) Eskenasi A., Sabev V. - A method for a computer-assisted
test construction, Serdica Bulgaricae mathematicae
publicationes. Vol.11, 1985, p.54-58

(11) Hambleton R., Murray L. - Testing in the United States
with computers, in Schlegel J.(Ed) : Bulletin of
the inernational test commission and of the division
of psychological assessment of the IAAP, No 20,1984

155

SOFTWARE FOR THE HOMECOMPUTER ROBOTRON Z 9001 -

BASIC - CODES FOR SOLVING NUMERICAL PROBLEMS

Gerd Pönisch

The homecomputer robotron Z 9001 is produced since 36
months. It has an 8 bit processor running at 2.5 MHs
clock rate and an user memory of 48 kbytes. A 4k
bytes ROM contains the operating system. The BASIC
interpreter is available of a 10 kbytes ROM. It has
a floating point arithmetic with a 3 bytes mantissa.
The BASIC interpreter allows many string manipula­
tions where 128 graphic signs can be used.
In the G.D.R. the homecomputer is used at the
schools, high schools and universities as well as in
scientific institutes and in the managment. Our de­
partment of numerical analysis get the order to com­
pose some numerical algorithms for solving basis
problems from linear algebra and nonlinear equa­
tions. For the choice of suitable algorithms we make
a point of it that the algorithms have a favourable
rounding error analysis and a good efficiency index.

However, the numerical part encloses only 10% of the
statments of such a program. It is necessary to
realise a comfortable dialog between user and com­
puter. The program leads the user to the formulation
of the desired task by questions or by menus, where
a standard answer is suggested. In any phase the
picture screen is shaped attractively. If the user

156

gl^ss an incorrect answer, after a jingle the ueer
can answer fresh. All data used for the numerical
computation are listed at the picture screen after
the input for control. At this place it is possible
to modify some of it in a simple way. This guaran­
ties also the untrained user an easy work with our
programs.

1. Linear algebra

At first we present three codes solving problems
from linear algebra. The program LINGBN generates
a LU decomposition for a nonsingular matrix A of n
columns and n rows using a Gattes method with column
pivoting and row equilibration. The LU factors are
stored in the place of the matrix A, where the in­
formation about pivoting and equilibration are
noticed in a vector of dimension n.
Using this LU decomposition of A the user can now
solve the four tasks:

(i) Compute a numerical solution of the system
Ax» b of n linear equations.

(ii) Compute a numerical solution of the system
Atx » b , where AT denotes the transposed
matrix of A .

(ill) Compute the inverse matrix A“ ̂ of A
(iv) Compute the determinant det(A) of A

These four tasks can be performed repeatedly. Henoe,

157

the task (1) and the task (11) ean be solved for
different rigfct hand sides. Since a copy of A Is
stored the defect vector d« Ax - b Is computed with
higher acouraoy for each numerical solution z of
Ax a b and ATx » b , respeotively. The user can esti­
mate the goodness of x by the maximum norm of d and
can start an iterative oorreotion of x . In this way*
the system Ac » d is solved using the LU decomposition
of A . The fresh numerical solution x is given by
x » x - c . Further iterative corrections of the nu­
merical solutions are possible if the defect vector
is not small enough. In praxis one or two corrections
are be sufficient.
The inverse A”1 is computed by solving the n systems

Ax * e* f ka
where ek « (0,...,0,1,0,...,0)T denotes the k-th unit
vector of dimension n. The determinant of A is given
by the product of the diagonal elements of the upper
triangle matrix U . The code LINÓÉN needs a storage
of (8500+8n2 + 1 2*n) bytes. Because of the accumu­
lation of the rounding errors the dimension n should
be not greater than 50 .

If the matrix A is symmetric then the code LINSYM
Tcan be recommended. In this case a LDL decomposi­

tion of A is oomputed by the method suggested by
Bunch and Parlett/1/. Note, that A has net to be
positive definite for this method. The implemented

158

algorithm works with symmetrical pivoting. The
factor L is a lower triangle matrix with unit di­
agonal. The matrix D is block diagonal where the
size of the symmetric blocks is 1x1 or 2x2. Be­
cause of the structure of 1 and D we need only one
triangle matrix to store the factorization. The
information about pivoting is keeped in one veotor
of dimension n.
Using the LDLT decomposition of A we can solve the
following tasks:

(i) Compute a numerical solution of the system
Ax =» b of n linear equations.

(ii) Compute the determinant det(A) of A.
(iii) Give the eigenvalue characterization of A ,

i.e. the number of positive and negative
eigenvalues of A.

These three tasks can be performed repeatedly. The
task (i) can be solved for different right hand sides.
After the computation of a numerical solution x of
Ax 3 b the defect vector ds Ai-b is computed with
higher accuracy. Therefore the information of the
symmetric matrix A is doubled stored in an array of
dimension n x n and in a n-dimensional vector. Anal­
ogously to the code LINGEN an iterative correction
for x is possible.
The determinant and the eigenvalue oharaoterization
of A is computed from D .
This code needs a storage of (8900+ 4n2 +1 6n) bytes.

159

Because of the accumulation of the rounding errors
the dimension n should be not greater than 50 .

If the matrix A has n columns and m(*n) rows, we
compute the least squares solution of the over-
determined system Ax 3 b of m equations in n Un­
knowns. The code LINREG generates a QR factorisa­
tion of A using fast Givens rotations/2,3/. This
implementation of Givens method is no more expen­
sive than the well known Householder method. How­
ever, from the view point of rounding errors the
fast Givens method is useful.
At first, we transform the rectangle matrix A by a
finite sequence of plane rotations into a upper
triangle matrix R :

11 11 11 11Rq !3 A* ^ 1 1 *3 diag (d ̂ , &2 ***** d^) » d^ * 1 , k*1,..., m
R. J» • F., * * ... *F. 4 . a • H. . , i* 1,2,...,n

i 3 1,2,...,n ,
j 3 i+1 ,... ,m

id-1J3 diagCd^ t ••• f d ± / r • ••• f d d f ••• $) I

r 1 .

and ̂ are determined such that

r- 1
i
I

i d 1
-------1 -- A

------- r -

i. i
- 1

I
1 J

-i

id-1 i d - 1 id-1

where e1 denotes the 1-th coordinate unit vector.
After n(m--~-) elementar rotations the matrix A
is transformed into R * R . By the same rotations
we transform the right hand side b into
b :=* (b^ , b2)^ where b1 is of dimension n . In the
backsubstitution we have to solve the simple system
Rx » of Dimension n .
The information which allow us to compute and ^
can be stored at the place of (e^J^Ae*^ . Hence we
need only one additional vector in order to update
the diagonal matrix . Our implementation works
with pivoting. The information of it is noticed in
a further vector.

This method can also used to solve a linear re
gression problem

m
g(x1 •xn> £(q(tj , x-j ,x2,.. . ,xQ) - y^)‘

g(x1 ,x2,... ,xn) --->■ minimum

In this case the user has to define the linear
ansats function

^2 * * * ,3Cn^ * q±(t) ,

where the functions --- >-]R , i-1,2,...,n,
are linear independent. After the input of m (hn)
measuring values (t ^ y ^ , (t2,y2) , ... , (tm,ym)

161

the program generates the matrix A and the right
hand side b in the form

~q1 (t1) *** >1 "

A *
q-i (t2)

•
•
•

q2(‘t2)
•
e
•

••• qn^2^
•••

, b * *2
•
••

• • • q (t) Hnv m' _
By solving the overdetermined system Ax * b by the
QR technique mentioned above, the solution x»

T(x1,x2,...,xQ) of the least squares problem
g(x) ---► minimum is obtained. The computation
of least squares solutions is more efficiently in

T Tthis way than by solving the system A A x a A b
which may be ill-conditioned too.

The measuring values * 3*1 »2, ... ,m , are also
stored in a region of the user memory which is not
administered by the BASIC-interpreter. Hence, it
is possible to change the ansatz function q and
start the program again in order to solve an other
regression problem with the same or insignificantly
modified measuring values. This is vary practicably,
if the user does not know a appropriate ansatz func­
tion a priori.

The code needs m storage of (9000+ 4mn+ 8m+ 1 2n)
bytes. This program is tested by many real life
problems with success and can be recommended for
small problems where n and m are not greater than 50.

162

2. Nonlinear problems

Pour nonlinear problems can be solved by our soft­
ware in time. The code PUNKNU computes a zero of a
scalar function f:H --- > 1R with enclosing tech­
niques. Por describing the function f the user has
to define an user function. Then the graph of the
function f can be plotted at the picture screen in
a given interval. Por finding a zero of f the user
can choose between four algorithms which do not use
the derivative f ' of f . The standard method is a
speded up regula falsi method(Pegasus algorithm/4/)
with the R-oonvergence order 5 . An alternative meth­
od is an inverse interpolation method/5/. The bi­
section method can be used if it necessary to com­
pute starting values for the local convergent
methods. In order to oompute multiple zeros effi­
ciently a modified regula falsi method is applicated.
It is possible to change the method during the com­
putation. If the convergence is slowly then the
iteration sequence converges to a multiple zero
probably. In this case the program choose automat­
ically the modified regula falsi . If the graph of
the function is plotted the code find out good
starting values for one zero in the given interval.
If this zero is wanted the Pegasus method computes
the zero in a few steps.
The code PUHJtHU needs a storage of 8000 bytes.

163

If f is a polynomial the code POLYNU should be used.
It computes all roots of a polynomial which can also
have complex coefficients. The method of Nickel/6/
is implemented which computes automatically good
starting values for the roots. The basis algorithm
of it is Newton's method in the complex space. Be­
cause of the so-called pivoting strategy the method
works stable and computes roots with high accuracy.

After the computation the roots are plotted at the
pioture screen into a diagram. The code needs a
storage of (6500+ 20n) bytes, where n is the degree
of the polynomial.

Por solving a system of nonlinear equations the
damped Gauss-Newton method is implemented in the
code NLREG. This program computes a least squares
solution of the system

F1 (x) =» 0
P2(x) >

e

0 t Fj :]Rn — ^ ® ... ,m ,
e

V r) *
0

of m nonlinear equations in n variables x= (x-j ,... ,xQ) .
Starting from a initial guess x° the new iterate is
computed by

xk+1 :=* xk - pk , k*0,1,2,... ,

where the descent direction p is choosen as the
Gauss-Newton direction

164

pk (P'(xk)TP'(xk))~1 P»(xk)TP(xk) .
The step size parameter k ^ is evaluated by the al­
gorithm of Goldstein and Armijo/7/. The direction pk
is efficiently computed by solving the corresponding
linear least squares problem using fast Givens rota-
tions. Instead of the explicit use of P ’(x) we work
with consistent approximations. Hence,the user have
only to write a subprogram for computing the aotuell
function values P(.) a (P1(.),P2(.),...,Pm(.))T.
In the case m a n the code solves a system of n equa­
tions by the damped Newton method.

In particular, it is easy possible to solve nonlinear
regression problems with this Gauss-Newton method.
In this case the user have to define an ansats func­
tion

y » q(t, x1fx2,...,xn)

with the free parameters x1,x2,. . . . After the input
of m (^n) measuring values (t1,y1 (t , y) the
Programm generates the corresponding overdetermined
system

P-j (x) :» q(t 1 , x1fx2,...,xn) - y1 » 0
• e e e
• e e #
e # • e

Fm(x) :» q(tm , X1 ,x2,... ,xQ) - yffi =» 0 ,

which can be solved by the Gauss-Newton method in
an efficient way. Analogously to the code LINREG the
measuring data are stored in a special region of the
user memory. Hence we can easy use these values for

165

many runs.
The oode NLRBG needs a storage of (8500 + 4mn+ 1 2 m + I6n)
bytes. Analysing a number of examples we have to re­
mark, that this oode is suitable to solve weakly
nonlinear problems. Because of the single precision
arithmetic the implemented algorithm may be fail at
strong nonlinear examples.

All these codes are written in the technique of
subprograms. Thus, they can easy adapted for per­
sonal computes which work with a BASIC compiler or
interpreter. The codes created together with a team
of students belong to the software offer of the pro­
ducer of the homecomputer Z 9001 .

References

/ 1 / Bunch, J.R.; Kaufmann, L.; Parlett, B.N.:
Decomposition of a symmetric matrix.
Numer. Math. 27/1 (1976), pp. 95-1o9

/ 2 / Stewart, G,W.: The economical storage of
plane rotations.
Numer. Math. 25/2 (1976), pp. 137-139

/ 3 / Schwetlick, H.; Kielbasinski, A.: Numeri­
sche Verfahren der Linearen Algebra.
Verlag d. Deut. Wiss., Berlin, in press

166

/4/ Anderson, N.; Bjorck, A.: A new high order
method of regula falsi type for computing a
root of an equation.
BIT 13 (1973), pp. 253 - 264

/ 5 / Ostrowski, A.M.: Solution of equations and
systems of equations. 2nd. ed.,
Academic Press, New York 1966

/ 6 / Nickel, K.s Die numerische Berechnung der Wur­
zeln eines Polynoms.
Numer. Math. 9/1 (1966), pp. 80-89

/ 7 / Schwetlick, H.: Numerische Lösung nichtlinearer
Qieichungen.
Verlag d. Deut. Wiss., Berlin, 1979 .

Gerd Pönisch
Technische Universität Dresden
Sektion Mathematik
Mommsenstr. 13
Dresden
8 0 2 7
German Democratic Republic

167

An Approach to Programming by Means of
Equations: Transformation Programs and

an Interpreter for Such Programs

A. Radensicy, M. Todorova

The paper presents an approach to programming
•

by means of equations, allowing the integration
of the functional and logical style of programming.
The aim of this approach is to develop a program
language and an interpreter for it. Some basic
characteristics of the language and the interpreter

iare given.
1. Programming by means of equations in a lo­

gical style
Programming by equations is a particular type

of functional programming. In it, a function is
defined through a system of equations (an equation
program), each equation of which gives various
parts of the definition, for example:

/1 / length (nil) = 0
/2/ length (cons (X,Y)) = length (Y) + 1

The theory of computation through systems, des­
cribed by equations, has been developed by M. O'
Donnell (1). O'Donnell considers tne programs
with equations to be a set of equations of the A = B
type, where A and B are terms or 21 -trees. The
equations are orientated in the sense that B can
be substituted for A, while A cannot be substituted
for B.

Thus, both logical programs.and programs with

168

equations are descriptions of some properties.
Xn logical programs, properties can be described!
by Horn clauses, while in programs with equations
they are described by means of" equations. On the
other hand, both logical programs and programs with
equations can be interpreted as descriptions of
computations. Thus, both these types of programs
have two kinds of semantics: conventional mathema­
tical semantics, and procedure semantics.

The equation interpreter takes a program with
equations and an expression as an input, and yields
the value of the expression as an output.

The logical interpreter takes a logical prog­
ram and a question as an input, and it obtains a
corresponding answer.

There is, however, an essential difference
between the equation and the logical internreters.
Questions put to logical interpreters may contain
variables. The values of these variables are de­
termined by the logical interpreter. The expre­
ssions that are estimated by equation interpreters
cannot contain free variables. At the same time,
substitutions of variables are not allowed in the
course of computations.

The present approach to programming by equa­
tions eliminates this difference. Tt is based on
the simple fact that unification can be used in
the course of computations of an arbitrary func­
tional term, and not only of predicates. Thus,
it becomes possible to estimate terms with free

169
variables by suitable snbstitutions for the' vari­
ables. The method by which this estimation is done
is similar to the way Prolog-interpreters respond
to questions with variables.

Computation of expressions with ffree^ vari­
ables are referred to as the logical style of esti­
mation. The equation language described in this
paper performs such kind of estimations. "The lo­
gical style of estimating will be illustrated by
the following: example.
Example: Let us compute the expression equal
(length(x),1) by means of the following' equation
program

T1 length(Q) = 0
T2 lengthfXS) = length(s) + 1
T3 equalf0,0) = true
T4 equalfM+1,Ol = false
TS equalf 0 ,!t+1) = false
T6 equal(M+1 ,N+-1) = equal/ M,N ̂

At each step of assessing, the leftmost and the
outermost substitution is performed, Tf two or
more equations are applicable in one and the same
step, assessing continues in two or more independ­
ent branches.

T1 and T2 are applicable to equalT 1 engthf X \ T) .
Substitution X = ^ transforms the expression eciua]
Tien gthf X),1) into expression equal f 1 engthf , 1) ;•
while X = X^ Sn transforms equal(length(X) , 1) into
equalf length(X,, S,,) , 1 1 . By means of eauation T1 ,
the expression equalf lenethf^)), ll is reduced to

170

equalfO,l); and 'by T*>, the latter expression is
reduced to "’false". The logical style of estima­
ting the expression equalf 1 engthfX), 11 is present­
ed by the following diagram:

equal(length(X^, l)

false, X = Q
x = * A

eqoalflenethfX.S, 1, ll,X = X S, 1 1 *1 “
T Z

equal (length(S^) + 1 f 1 } ,X = X^lT 6
eaualf len ffthf S) ,0) f X = X S,, 1 4

equa ir length (St) + 1 , O 1 , X = X^X^S^J T 4
false, X = X^X^S^
Therefore, the result of the logical estimation

171

of the expression equal (lengthf Xl , 1) is:
false if X = 0
true if X =
false if X = X X

Thus, a new and a more valuable interpretation
is introduced concerning the conventional equation
programs.

This approach has been introduced in (2^, and
theoretically formulated in (?). Reference (?)
also proves that conventional equation languages
produce logical style interpreters, without chang­
ing traditional semantics.

2. Generalized Transformers
On the basis of the approach described above,

the W program language has been created. Frog-#
rams written in this language will be referred to
as generalized transformers or transformer prog­
rams .*

The W language is a language for programming
by means of equations, and it is generalized in
two directions.

The first generalization is sintactic. Conven­
tional equation interpreters act as transformers of
functional terms. A more general apuroach has been
realized in the W language: generalized transform­
ers describe transformations of strings, and not
only of functional terms. The structure of these
strings is described in the generalized transformer
by means of context-free grammar.

The' second generalization is semantic. The
existing equation interpreters estimate only terms

172

which do not contain variables. Tn the W langua­
ge, a "’logical"' estimation of terms is possible.

Generalized transformers are single-argument
functions consisting of three parts: description
of data types, description of variables, and trans­
formations. Data types, processed by the genera­
lized transformers, are described by a version of
the methods of Becus-Naur. Transformations are
rules according to which the argument of the gene­
ralized transformer is transformed by subseouent
ste^ss into a value of the generalized transformer.
Transformations can contain variables which are des­
cribed in the section on variables. The argument
of the generalized transformer does not participate
explicitly in its definition.

The generalized transformer XETTGTF defines the
function length , defined above.

H1 TRANSFORMER I ENGTFr <.E XPR> ;
H2 TYPE
FH <EXPR>: : = <NA T>r

H4 <NAT>: : = »I/ENGTPf • <LXST> O ' ?
H5 <NAT>: : = <NAT?* + • <FAT> ;
H6 <NAT>:: = * 0 'r
F7 <NAT>::='1';
F8 <LTST>: : = ' CONS*' » <LXST> • , * <LXST> ’ V :
H9 <LXST>: ts'NXI » ;•
F10 VAR
Hi 1 <X>: <LXST>r
FT2 <Y>: < LXST>;*
FI 3 <Z>: <LXST>r
F14 BEGTN
F1 5 'LENGTHf NTT,) » ==»0 • y
H 1 6 * L E N G T H f C O lT S rf 1 < T , • < T > * > V = = ' T E N G T H f • < T > ' 0

H17 END

173
Each line of this program is provided with a num­
ber for the sake of clarity. The first line con­
tains the title of the generalized transformer.
Lines W2 through R9 cover the section for type des­
cription? WTO through RT3 cover the section for
variable description;: and H14 throught HI 7 - the
section for transformations.

By applying this generalized transformer to
the expression T/ENGTHf * < Z >' we get:

C O if Z = NIL,
0+1 if Z = C0WS(X,NT7
0 + T+T if Z = CONS(X,CONSCX,NTT/n ,
0+1 + 1 + 1 if Z = COWSf X, CONS fX, COWS fX, NTT A) \

Here follows a brief description of the syntax
of the X langtrage. Symbols tinder lined by "
are symbols of the X language.
< description of generalized transformer^ : : =

<title^ :: =TRANS FORMER <name) : ^main type^) 7

^block) r:= < section of types>

<type) ::= ^primitive type-V | <eomposition type>
^defined type^

^main type> : := < type >
<primitive type>r:= * <string> *

<title> ^block^

< section of variables >
^section of transformations >

^section of types). : : = type
• < definition of type

^composition type> ::=<P - composition> |
- composition).

174

<P — composition) r:= (primitive t y p e) |

< primitive type> < name of type>j

< primitive type > < N - composition ,)

< N - composition > r:= < nyme of type>(name of type>|
<name of type> < primitive t y p e > |
(name of type> < P - compositional

<name of type> < N - composition>
(n a m e of type). ::= ^ (n a m e > ^

(definition of type) :s=

<,defined type > : r= (defining t y p e >

£ j (defining1 type>jl-
(defined type) : : = ^ (n a m e) ^ >

-n- -— -
<definin^ t y p e) : := (type,>

^section of variables,) : : = <blank,)|

^description of variables >

£ j(description of variables >J
(description of variables) rs=< variable >

| t < variable r < type>
(v a r i a b l e) :t= ^(nane)^>

(section of transformations) ::= (b l ank) |

BEiTTN

1

(transformation

j ^transformation
ENT)

(transformation) ::= (b l a n k) |

(sample) == (sample)

(sample > t:== (C - s a m p l e) J < V - sample)

<C - sample) ::= r (strin;?)' | ' (strinp?r(V -

sample >
< V - sample> ::= (variable)

175

< variable> <;V — sample^j
^variable> <C — sample>

"Name"' in the W langnage means a sequence
of letters, numbers and underscores _w, which
sequence begins with a letter.

Tf B is a defining type which participates
in the definition of type A, this will be marked
by A -----► B. Let X and T be tvpes, and when
i = 1,2, Zj will either mean a type, or blank .
Let the notation of the type of X be AZ,̂ and
A----- wB. Lf T is obtained as a concatenation of
Z 1 , B and Z^ , then we write X — > T.

W e say that T is a subtype of X . and we write
X - > * T if either Y = X, or there exist such
types X 0 , X , • . . , Xr , that 1, X^ — X, and
X^ =- > X i + 4 , for each i = 0 , . . . , r - 1 .

Tf Y is a subtype of X, X is a supertype of Y .
The type description section assigns a grammar

that has the A ---- > B relations between the types
as its rules, and the main type as its axiom. The
relation of direct derivation in this grammar is
similar to the relation A i B. Tt is necessa­
ry that the grammar of the types should be unambi­
guous .

Let us have preset values of the variables.
The value of the sample is a string which is ob­
tained when strings and values of variables are
joined in the line on which they appear in the
sample. By substituting the notations of the va­
riable types for the names of all variables in the

176

sample-, we obtain a type which is referred to as a
t^pe, generated by the sample. Type of* the sample
is each primitive or defined snpertype of“ the type
generated by the sample.

Type of transformation is each type of the
sample which is to the left of the transformation,

Xn order to create more effective programs, it
is recommended that the right side of the transform­
ation should be a sample which is of the same type
as the sample in the left side.

Suppose we have identical types generated by
the left sides of two transformations. Tf the
transformations themselves are not identical, then
they are inconsistent. Transformations are consi­
dered to be consistent if they are not inconsistent.

Tt is desirable, to consider only such generali­
sed transformers that have consistent transforma­
tions .

Expressions in the W language are also refer­
red to as T-strings.
^ T — string^ i : = < s a m p l e > £ if <assumption

^ £if <assrrmption > J ,
where

4 assumption> ::= (<variable> = < sample >
^ variables =<sample>j)j
< blank > .

The generalized transformer is applied to T-
strings with a blank assumption.
< application of generalized transformer to T-string^

::= <name> (<T-strine>).

177
The result; of 1th« application of a generalised

Iran »former to a T-string1 is the list of T — strings:

< l i s t of T-strings > f<sequence of T-s tr in gs>)
< sequence of T — strings> : <.T—string> j

< T-s tring ^ sequence of T — strings ̂

We shall glee a brief description of the seman­

tics of the If langnage. First, *e shall define

the way a transformation is applied’ to a T —string.

The sample of each T —string may b e considered
to be a concatenation of three samples which will

b e referred to as head, body and tail. Jt set of

such representations exists for each sample.

We shall discuss the way in which transforma­

tion F == V is applied to T-string if 0“.

Suppose that with a suitable selection of

values for variables in the F sample, the value of

U cincides with a body of t. Then we say that TT==

V is P-applicable to T — string t if 0“ . The assump­

tion to the left o f the signs, in which there

are variables that are present In the sample of the

transformation while on the right there are sub­
strings of t, will be referred to as P —assump­

tion defined b y transformation F == T.

Suppose that with a suitable selection of

values for variables of body t, the value of the

body coincides with sample F o f transformation
F == T. Then we say that F == V is S-applicable

to T —string t if (T . The assupmtion in the left
sides of which there are variables pertaining to

an y T —string while on the right there are substrings

of F, will be referred to as S— assumption defined

178

b y t r a n s f o n a t i o n F == T.

Suppose that with a suitable selection of

▼allies for variablsa of a b o d y in T — string1 t if U~ ,

as well a* valnea for -variables o f IT, tíie -values

o f the body coincide with the -value o f F . Then we

say that transformation T7 == V is FS—applicable to

t if <T .
Therefore, if F == V is FS—applicable to t if

Q~ , then it is a t the same time F-applicable and

S—applieable to this string.
Transformation TT == T is applicable to T-string

t if Q~ , in ease it is either F —applicable, or S—

applicable, or F S — applicable. Tn such ease the
-transformation and the body of the T-string have

art least one common type which is referred to as a

type o f application. Xn addition to the above-

stated definition concerning- the applicability of

a transformation to a T —string, a composition type
is also required which is defined b y the head of

the T-string, the type of application, and the tail
of the T-string, and ft should be a subtype of the

main type.

Transformation F == T is applied to T-string

t if 0~ , depending on the type of its applicability.

T f the transformation is P-applicable to t if (7“ ,

it is applied to i t in the following way: the value

of V is found b y the P-assumptlon defined b y the

transformation, then this value is substituted for

the b o d y of the T-string. Q~ is not changed.

T f F == T is 5— applicable to t if CT , it is

applied' to it in the following way: the value of

179

t if (T is found’ b y S-assumption Ó , defined by

T-string', m substitute »ample T for tbe Talne of

the body.

X f V == T is FS-applicable to t if (T , it is

applied to it in the following way: the Talne of

siring we substitute ibe value of V by P-assumption

defined by transformation ü == V, for the value of

the body b y means of d" .

A set of transformations, applicable to a T-

string, is referred to a set of transformations

equivalent with respect to applicability, if the

bodies, the heads and the' types of application of

ail transformations of the set are the same. A

set o f transformations equivalent with respect to
applicability is applied to a T-string in the fol­
lowing way: each transformation is applied to the

T —string depending on its type of applicability.
Thus a list of T-strings is obtained, which is the

result of the application.

Suppose two sets of transformations are given,

equivalent with respect to applicability, that are

applicable to one and the same T — string. For each

one of the two sets there exists any kind o f a head,

of a body, and a type of application. We say that

the first set is applicable before the second, if

one of the following conditions is satisfied:

1. The head in the ease of the first set is

shorter than in the case of the second set.

. Tn this

180

2. The two heads are equal, but the body in the
ease o f the first set is longer than the body in the
ease o f the second.

3. Heads and bodies of the two sets are the same
but the types o f application are different, and the
the type of application of the second set is a sub­
type of the type of application of the first set.

The computation of a generalised transformer
with a preset argument is perfomed in subsequent

steps. A cheek is made at each step whether the
argument is of the main type. Xf it is not, the

Taloe of the generalised transformer is indefined

(i . e. the walue is). X f the argument is of

the main type, those transformations are sought

that are applicable to the argument. If there is

not such a transformation, computation for this ar­

gument end up. Otherwise, all applicable transform­

ations are divided Into sets of transformations,

equivalent with respect to applicability. Ataiong
all applicable transformations, this one is select­
ed that is applicable before the others. The set

thus chosen is applied to the argument. This way,
a list of T-strings is obtained, each element of

which is assumed to be an argument of the genera­

lised' transformer.

3. Hsperimental System o f Programming b y Means

of Generalised Transformers

Strings pertaining to a contest-free language

may b e represented b y functional terms. On this

basis, generalised transformers may be converted

into conventional equation programs in which func­
tional terms should be used, but which compute terms

181
with Taria bles. Such programming systems are

called generalised' systems for programming with

equations. This allow® the setting-up o f an expe­

rimental system of programming by generalised trans­

former® of the »emi-interpreting type.
The experimental system consists of:
— a preparatory part including a lexical ana­

lyser, syntax analyser, and TF-conrsrtery
— an interpreter which computes the term cor­

responding to the input T-string by the generali­
sed equation program, obtained by the generalised
transformer;’

— an FT-eonverter.

This organisation is illustrated in Pig.T.

preparatory generalixed

References
1. O'Donnell M. , Computing in Systems Described by

Equations, LFCS, ▼0I.58, Springer-Verlag (1977^
2. Radensky Ä. , Functional Programming in the St-vie

of Logical Programming, C.R. Acad. Bulg. Sei.
37 (198*0, p.7*M-7*M*

3. Todorova Pf. , On the Confluency of Generalized
Subtree Replacement Systems, C . R . Acad. Bulg-.
Sei. (to be printed 1

r

/'

183

COMPUTER - AIDED DATABASE MANAGEMENT SYSTEM IN
the

HERNAD "MÁRCIUS 15. MGTSZ" AGRICULTURAL
CO-OPERATIVE

A Case Study
R E M Z S O G A B O R

T E C H N I C A L U N I V E R S I T Y O F B U D A P E S T
Computer Centre

1. The most important activities in the
co-operative

The HERNAD "Március 15. MGTSZ" Agricultural
Co-operative is the cooperator of the
H U N N I A H I B R I D production association which was
called to existence for the production of
broiler-chicken. In this field of activity
the Cooperative has a close business link with
the Dutch E U R O H I B R I D company. In the process
of the broiler production small estates have a
high importance as most of the breeding takes
place there. The HUNNIAHIBRID is a union of
many Hungarian agricultural co-operatives
working on the poultry breeding area. The
most important activities in the co-operative
are:

animal b r e e d i n g a n d p r o c e s s i n g
p l a n t g r o w i n g
f o d d e r p r o c e s s i n g
m a n a g e m e n t f a r m i n g p l o t s
c o m p l e m e n t a r y industrial activities
f o o d p r o c e s s i n g
consulting m e m b e r s o f t h e H U N N I A H I B R I D

With respect to its monetary value the most
important is the animal breeding (and poultry
production, respectively) branch.

184

2.Computers in the co-operative

In the HERNAD "Március 15. MGTSZ"
Agricultural Co-operative there are the
following computer hardware systems:

I B M S E R IE S /I
I N T E L 80 D a t a C o l l e c t i o n S y s t e m
V I D E O T O N E C 1 0 / M (V I D E O P L E X)
I B M P C / X T

In the centre of the computer system is the
IBM SERIES/1 computer. This computer has
the following hardware configuration:
PROCESSOR IBM 4955-F00 256KByte

Timers
Floating Point
Communication Indication Panel
Programmable Communication Features

I/O Expansion Unit IBM 4959-A00
Diskette Magazine Unit 27.8 MByte
Disk Subsystem 28 MByte
Display terminals IBM 4978-1 4 pcs
Matrix printers IBM 4974-1 3 pcs
Teletype Displays ORION ADP 2000 18 pcs
TTY lines

185

T H E C O N F I G U R A T I O N O F T H E E C - 1 0 / M :

128 KByte CPU
Magnetic tape units (2*)
Disk 20 MByte
Punched card reader
Line printer

T H E C O N F I G U R A T I O N O F T H E I B M P C X T S

CPU 256 KByte
Winchester disk capacity 10 MByte
Floppy disk
Matrix printer
IBM 8087 Math. Coprocessor

186

3.Systems on the SERIES/1

In the IBM SERIES/1 the following systems were
developed (H E R N A D - I N F O) :

Collection of poultry production branch
data
Book-Keeping System
Farm Accounting System
Accounting system
Marketing system
Stock Management
Optimal Control of the Fodder Plant
Production Information (daily,weekly,
montly/yearly)
Summarized information of the
HUNNIAHIBRID system.

187

4.THE WORK OF THE VIDEOPLEX

On the VIDEOPLEX there is a data preparing
system for the other computers.
The large capacity line printer is connected
to the IBM SERIES/1 too.

5.THE WORK OF THE INTEL 80 SYSTEM

This system is the part of
Chicken Slaughtering Equipment,
data of tills computer system is
IBM SERIES/1.

the LINDHOLST
The collected

sending to the

G.ACTIVITIES IN THE IBM PC/XT COMPUTERS

We proposed to make a Consulting system for
the HUNNIAHIBRID union, the name is HUNNIA.

This system connecting with the other systems
serves the following data:

i n f o r m a t i o n a b o u t p a r t n e r s a n d c o n t r a c t s ;

i n f o r m a t i o n for p o u l t r y breeding
t e c h n o l o g y ;

s t a t i s t i c a l d a t a of the H U N N I Á N I DR It
s y s t e m ;

i n f o r m a t i o n for the o p t i m a l p r o d u c t i o n o f

188

a n i m a l s ;

collected information of the
HUNNIA H I B R I D ;

trace the egg production;

trace the hatching and the fodder process
ing data.

One part of these systems is developed and
used, the other part (HUNNIA) is under
development .

189

REFERENCES

l.Date,C.J., An Introduction to Database
Systems
Addison-Wesley Publishing Company
1977.

2.Benasteuu,D., Comment creer votre propre
banque de donnees,et la reussir
L'Usine Nouvelle
No 21. 1985.

3.Mi 11,J ., An •' xt:cu t.; v tool ul LoyV
Computing to»- Magazine
No 4. 1)85.

\

191

OFFICE AUTOMATION and DATA PROCESSING
Remzso Tibor

Computer and Automation Institute of the
Hungarian Academy

of Sciences

INTRODUCTION
When first introduced, the microcomputer was a
revolutionary development, bringing quick and
convenient computing right down to the desktop
level. As a tool of business or office, the
microcomputer had some serious deficiencies.
In effect, it offered only half a solution to
the problem of office automation.
The other half is the local area network - the
indispensable partner of the microcomputers in
the office.

Most of this lecture deals with how set up and
organize this powerful combination: the
microcomputer technique and the local area
network.

192

First let's examine what a local area network
is and why it is essential and useful in using
microcomputers in the office.
A local area network is a communications
system much like a telephone system. Any
connected device can use the network to send
and receive information. For the time being,
that information on IBM PC networks is almost
exclusively data, although the technology is
now available for carrying voice and video
signals also.
As the name implies, a local area network is
used to cover relatively short distances.
Usually a local area network will be limited
to a department or a single building. The
most common network for IBM PC-like users
contains from 3 to 10 PCs, various data
storage devices, printers and other
specialized peripherals (modems, digitizers,
etc.)

WHAT IS A L O C A L ARE A N E T W O R K ?

An important charcteristic of local area
networks is speed. They deliver data very
fast. A person passing and receiving data
over a local area network ideally experiences
the same rapid response time as if the data
were coming from a local machine rather than
from some place out on the network. To get
this kind of response time, most local area

193

networks operate at 1 to 10 Mbits per second
speed.
Besides being fast, local area networks must
be both adaptable and reliable. They have a
flexible architecture that permits PC
workstations to be located wherever they are
needed. PCs or peripherals should easily be
added or removed from the system without any
extended interruption in the operation of the
network.
One of the major benefits of a stand-alone PC
was that if it breaks down or malfunction in
some way, the effects were limited. The rest
of the office work wasn't interrupted.
Likewise, when personal computers are linked
into a local area network, the system should
retain this kind of reliability. The failure
of a single PC should not cause the entire
network to shut down.
A local area network is a micro-to-micro
network with distributed intelligence. The
personal computers attached to the network can
use the computing power of other intelligent
devices - as in a host-to-terminal network
but the personal computers can also use their
own computing power.

194

A local area network is a system made from
building blocks that can be added and shaped
as needed.
One of these components is the cable. Each
device on the local area network is attached
to a transmission cable usually a coaxial
cable - so that messages can be sent from one
device to another. For the interface, a
circuit board is placed between the cable and
the PCs and peripherals. This board is
logically called the network interface card.
Central mass storage is provided in the form
of a hard disk (e.g. Winchester disk) that
contains files and programs which are shared
by people using the network.
A local area network is a multiuser system
because more than one person at a time can
send requests to a single microprocessor. The
shared machine, together with a software
program, handles the requests and distributes
the network resources, such as data files and
printer time. Both the machine and its
software are referred to jointly as the
server.
PCs on the local area network continue to use
their own local operating systems (e.g.
PCDOS, MSDOS). Since these operating systems
make no provision for using a network,

COMPONENTS OF THE L O C A L A REA N E T W O R K

195

appropriate software must be added. This
software is called the network operating
system.(E.g. I-NET, TRANS-NET, PCNET, 3COM).

196

ARGUMENTS FOR AND AGAINST NETWORKING

If we want to make a network, we must examine
the features that networking brings to the
office and weigh their advantages against the
cost of networking.
Sharing expensive peripherals is often
promoted as the primary reason to network. It
is right in our countries, but isn't in the
western countries.
Then we come to the question of sharing
itself. Do most office users really want to
share? A large part of the appeal and
acceptance of the personal computer has been
that it wasn't shared, that it was indeed
available for personal use. Waiting in a
queue to get computing time on a mainframe or
to have a document printed is just not
something that most people relish.
Sharing also raises another possible
disadvantage. When three, four or ten people
start using a large and fast hard disk, its
speed can quickly go back to that of a local
floppy drive.
These are very important considerations, but
only in the one part. When viewied as a
system, networking has some powerful arguments
in its favor. Organizations with multiple PCs
should network them for the following reasons.

197

a./ Sharing of peripherals reduces their cost
per-user. Often a higher-quality peripheral
can be justified as a shared resource, with
the result that speed and quality are improved
and MTBF is increased (Mean-Time-Between-
-Failures). When a device fails in the local
area network, another one is ready to fill the
void while repairs are being made.

b. / Better response time can be achieved
through networking. If properly implemented,
a PC local area network will be more efficient
than stand-alone computers or networked
terminals.
c. / The peripherals attached to a local area
network tend to be faster than those dedicated
to stand-alone PCs. The cable speed of all
the local area networks far exceeds the speed
capability of the PC with its 8088
microprocessor. For many applications the PC
is the bottleneck. Using local area networks
you may not able to speed up the PC itself,
but you can speed up the results, because of a
local area network is a multiprocessor-like
system.
d. / Departments, offices are all
organizations, which imply interaction and
teamwork. Without a local area network the
personal computers have been a powerful but
isolated devices.Theirs output have been
difficult to integrate into the organization
mainstream . Networking is a communications
mechanism that ties the isolated PC into the
organization.
e. / Flexibility is a distinct advantage of a
local area network. Microcomputers can use
another computer's processing power instead of
their own. Peripherals can be shared or
dedicated. Finally, local area network users
have options that can be tailored to achieve
the right balance of performance and cost
efficiency for the needs of a particular network.

198

THE L O C A L A R E A N E T W O R K S AS C O M M U N I C A T I O N S DEVI C E S

The local area networks are communications
devices. Letters, messages, memos and files
can be sent from one PC to another. With
this, a local area network can be connected to
wide area networks through gateways . So that
users can communicate with other local area
networks, data base services, and remote PCs,
too.
Communicating and sharing information have a
side benefit that may actually be the best
inducement of all for networking: a network
promotes an organized computing environment.
In many business the personal computer can be
a disruptive force. It may causes
difficulties, because everyone does things
differently. The text files generated by one
user are not usable by another because each
person has a different word processor.
Formats of documents tend to vary from machine
to machine.
If information generated on a personal
computer must be read by other machines or
stored on a mainframe, much of the work may
need to be redone to move it to a new system.
The network with its shared central storage
and channels of communication, requires user
cooperation, which results in better
organization and continuity of effort.

199

DATA SAFETY AND SECURITY

A local area network permits distributed
processing and central storage. Distributed
processing is a performance enhancer, but
central storage is crucial to data control.
On a network, data can be protected through a
supervisor-administered backup system. Access
to data can be limited and monitored with
multiuser protection schemes (e.g. user
passwords) , which are available on most
networks.
Microcomputer local area networks are capable
of providing a microcomputer environment with
many of the security and data integrity
protections common to multiuser terminal
networks. At the same time, micro local area
networks offer special controls that are
necessary to handle intelligent workstations.

200

PROBLEMS CAUSED BY THE NETWORK

The local area networks can be a source of
problems. . that are specifically
network-related. One type of these problems
is the accidental loss of data when two or
more people share the same data at the same
time. A later modification of a file can
overwrite the work of an earlier user. Any
changes or additions made by the first user
who first stored the file - are lost.
A local area network's software must therefore
be able to protect against the danger of
accidental loss of data. There are simply and
more sophisticated solutions for this problem.

Though networks prevent some security
problems, they may create others. Someone can
tap into the network by entering the cable at
an accessible point. This may be dangerous.

R E F E R E N C E S

Flanagan,P., Need Information? You name
it, databases supply it.
Office Administration and Automation
1983. No.4. pp. 42-48.
Hwang,K., Fu,K., Integrated computer
architectures for image processing and
database management
Computer
1983. No. 1. pp. 51-60.
Netravali,A.N., Bowen, E.G., A picture
browsing system
IEEE Transactions on Communications
1981. No. 12. pp. 968-1976.

\

I 203

DEDUCTIVE BASIS OF RELATIONS - NEW EFFECTIVE
NORMAL FORM FOR THE DESIGN OF RELATIONAL DATA BASES

B. Thalheim
Technische Universität, Mathematik, Dresden, GDR

The "normalization** of relations is one of the
moat important tools for database design. The concept
of special kinds of dependencies has been proved to
be useful in the design and analysis of relational
databases /4,5/* By using this concept, a new
("deductive") normal form of relational databases
is defined* This deductive normal form is better
than other known normal forms in the most cases. By
using special tuple-generating dependencies as de­
duction rules we get the entry relation from its
deductive basis. During the query phase, the rules
are used to generate all posible derivations of facts
and thereby make them again explicit in the database.
But from recursive deduction rules arises the termi­
nation problem when the rules are used since poten­
tially they may lead to infinite derivation paths.
However, in the case of single decomposition depen­
dencies as deduction rules or in the case of classes
of decomposition dependencies generated by a single
decomposition dependency it is possible to find a
termination condition which cuts potentially infini­
te derivation paths. Therefore in this paper a con­
ditions for classes of decomposition dependencies to
be generated by single decomposition dependencies

204

is given moreover.

1 . Basic notions and problems
We assume some familiarity with the relational

model. In this section we define the elements of the
model used in the paper.

Attributes or column names are symbols from a gi­
ven finite set U = ■£ A1,A2, • • •, An) \ with a given
fixed natural number n . We assume that with each
attribute A there is associated a set, called
its domain. Since ift this paper are discussed only
dependencies and deductive basis, w.l.o.g., we assu­
me that there is one domain G

A relational data structure (on U) is a system
<G , R > , whwre R is a finite subset of GU
celled relation.

For a subset X of U , a relation R
and a tuple r of R we denote by r(X)
the restriction of r to X .

A special Horn-formulae
PixjT ,... ,x1n)&...&P(xm1,. — * P(xo1,.. *»xon)
is called strong tuple-generating dependency (TGD)
if then j = 1 (C£i,k^m, 1^j,l^n) and
if for all x qj there is a k , 1-k^m, with

Xoj = xkj »
and is called decomposition dependency (DD) if more­
over for all i , j (iii<ĵ Di) and k (1*k*n)
froa xij 3 *kj follows = xoj
(no hidden conditions in premise).

205

A join dependency (JD) is a cover (X^...,^)
of U . A DDP (X 1 1 * * * * ,X1n^* * > * ,,»Xmn ̂ p x̂o1‘*--»xon)
is equivalent to the JD (X^,...,^)
with X t- { k . / xi4 - I oj } .

A TOD means that if some tuples, fulfilling cer­
tain conditions, exist in the relation then another
tuple must also exist in the relation.

Given a set M of TGD, a set G , a relation
R on U and a set of interpretations I(M) *

\

{ Pr1 ft ... Prk — * Pr 1 of M in G . Dien
we define

^ M . O = R ,

/P//M, i+1 * ..
{reQ°
/r/m -

/ r ,..«,r €
0 /R/M , i=0 M>1

The set /R/jj is i

Corollary 1 . Given a
of TGD M , there :

is called the M-closure of R •

that /R/jj =

. A relation R - GU is called M-closed if holds
R = /r/jj • A set of TGD M is true in R if

holds R = /R/jj • A TGD ß follows from a set
H if all M-closed relations R are {ßj-closed
(M t ß).

Given a set of TGD M and a M-closed relation
R . A subset R* of R is called M-deduetive

206

subset if holds /R'/M * R . A M-dsductive sub­
set R' of R is called
M - d e d u c t i v e b a s i s o f R
if there is no M-deductive subset R" of R
with R" c R' .

*

Given a relation R . Let be the set of
all TGD ß with /R/^^ * R • A Mp-deductive
basis of R is called d e d u c t i v e
b a s i s o f R .

Example 1 . Given G * {0,1$, n*3, u 3 {1»2,3$,
ß * P(x1 ,x^,x^)AP(x1 ,x2,x̂) — ► P(x1 ,x2,x5) and
R = { (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0) $.
The subsets R' * { (0,1,0), (0,0,1), (1,0,0) j and
R" 3 {(0,0,0),(0,1,1),(1,0,0)$ are {ßi-deductive
bases of R *

There are two main problems.
0

1. Given a deductive basis R of a relation /R/M •
How many steps are needed for construction of the
M-closure of R ? For a given set M are there
bounds for construction of M-closure of relations ?
2. Given R and M . How to construct a M-deduc­
tive basis of R ?

For the second problem there are some algorithms.
The fimst problem is harder. If for a given M
the construction of M-closure is unlimited then the
using of M-deductive basis is unprofitable.

- 207 -

Example 2. Given U = {1,2,3, 45 , G = IN’ ,

6i = P(x,y,z,u') & P(x,y,z',u) — P(x ,y,z,u) 1
S2 * P(x',y,z,u) & P(x,y’,z,u) — P(x:,y,z»u) 1
M = {ßi,ß2 i >

rl = (0,0,0,0) and for i - 1
r2i(il,2,3i) = r2i_1 ({1,2,3$) , r2.(4) * r2i-1 (4) + 1,
4 i « 1,2,4$) = r2._1 ((1,2,4$) , r2i”) = r2i-1 + 1 »
r2i+1 (il,3,4f) = r2i(£l,3,4j) , r2i+1 (2) = ra <2) + 1,
r2i+1 ((2,3,4$) = r2i ((2,3,4$) , r2i+1 (1) * r2.(1) + 1 .
Let be R̂ = { r̂ $ and for i ^ 2

h * Ri-1v t ri-i*w *ri’ri*
Then holds (0,0,0,0) e and
(0,0,0,0) ^ ^i+17M, i-1 »

1 • 6 • ^i+I^M,! * ^i+^Mji-l •
We get that for all natural numbers i exists a
relation R with /R/M ^ /R/M ^

2, A solution of the first problem

Example 2 shows that there are sets of TGE and
of DE without bounds for closure.

A set of DD M is called Sheffer-set if there
is a DD ß with M - { Ő' / {ß$ £ ß' j , M 1= ß .

Iheorem 1. Given a Sheffer-set M of DD. For any
relation R holds /R/M = /R/M ^

Theorem 1 cannot be extended to TGD because the
following TGD

208

P(x,y',z,u’) 4 P (x', y , z, u') Jt FCx.y’.z'ju) A
& P(x' ,y,z',u) — ► P(x,y,z,u)

is equivalent to the set M in example 2.

Proof.
For the proof of theorem 1 we use the approach of
/ V to recursive axioms. Ve introduce some useful
definitions. Qiven a TGD £ with the set Var(£)
of variables snd a subset V ef Var(£) , a
substitution s i of old variables
x = (x^,...,!^) and corresponding new variables
y = (yi,...,yk) • The substitution S~ is said
to be safe for £ and Y if holds

a Var(jß) * 0 and { x1f...,xk$n V » 0 .
Given two formulaes £ * £,&...&£ and' P

Y"* with atomar formulaes £1,...,fip,
»• • • > *q • Giv*n v 6 Var (£) v Var (v-) .

A pair of safe substitutions < S 1,S2> for fl
resp. i" and V is called safe unificator if
holds 'i. S.j (ß1),.. .,Si (£p) i ^ S2 (Ŷ) I... IS2 () •

How we consider special derivations A(M,P(x))
for formulaes P(3£) :
■®1 1-®2 >***i'®i>*** with = P(x) and for any i ,
ßi-1 = ßi-l&*‘*&ßi-i » fli x there
exist some j , P(y1)&.. .&P(ya) — P(y) e M
and a safe substitution S with
Bi * Bi-1 » ^ +8+1 * (1*l*k-j+1) ,

» S (P (y)) , £j>+t = S(P(yt)) (1*t*e)
and k' = k+s-1 .

209

Any such derivation A (ll,P(x)) correspond to the
generation of a new element in /R/jj ̂ for a
interpretation I and vice versa.

Therefore our first problem is solved if a halting
condition exists for derivations.

Corollary 2 (/1.V). Given some derivation
A(M,P(x)) = ß1,... ... If for some j ,
a safe unificator exists for
the derivation A(M,P(x))
derivation ß ß . •J

<ßj,ßj+1> then
is equivalent to the

Example 3 (Continuation of example z) .

A(iß1 ,ß2>,P(x,y,z,u)) *
P(x,y,z,u) ,
P(x,y, z,u') & P(x,y,z’,u) ,
P(x,y',z,u') & P(x* ,y, z,u') & P(x,y,z',u) ,
P(x,y’, z,u") & P(x,y',z",u') & P(x,y,z',u) &,

& P(x* ,y,z,u') ,
P(x,y", z,u") & P(x' ,y’, z,u") & P(x,y', zM,u') &

& P(x',y,z,u') & P(x,y,z',u) , ...
Obviously, for no j a safe unification exists
for 8111(1 v a íx,y,*,uíí

Now we can prove theorem 1•
Given a DD ß . Any derivation A ({Bj,P(x)) *
ß^,...,ß^,... is equivalent to t ̂ 2^ *

Let be ß = PCXj) * . . . & P(?k) — * P(x) , 0 1
^ = P(2) , 58 »

210

*3 * *31 & & Ä3 (2k-1) * •**
EQr definition of ß^ we get for some i , j :

*21 “ *31 » *3 j+k+i = *2 j+i
(1«i*k-j) .
A safe unification exists for the pair
< j+ 1 » Ä 3 j+1 * & fi3 j+ic5“ Änd therefore
also for <£2>j33 > •

Given a Shaffer-set M of DD with
H * { £' / £ß} h S'Jr . It is easy to prove that
for every derivation A(M,P(x)) exists sn equi­
valent derivation A' (tß]r,P(5)) •

3« Characterizations of Sheffer-sets

In /2/ a characterisation of Sheffer-sets is
given in the special case of binary JD. This result
can be extendee to bigger classes of JD.

A set of JD K is called n -closed if holds
j • • • t 1 1 ̂ j_+ j > • • *i) € I for any

, (X̂ ,X2 (j • •. ,X^) € K •

Corollary 3. Given a DD ß and the corresponding
\ s

JD D . The set K * -ÍD' / {D} h D'} is
r\ -closed.

A JD (DD) (X1, ... ,X^) is called full first-
order hierarchical dependency (FOHD) if holds
Xin Xj * XfcoXi for any pairs with i/j , kj*l .

In /4/ is proved

211

Theorem 2. Let K be a set of FOHD. The following
are equivalent:
(1) K la equivalent to a single JD I) .
(2) K is n -closed.

The characterization problem for Sheffer-sets is
open for arbitrary sets of JD.
Given two JD's D = (X^,...,^) , D' = (Y^,...,Y^).
If for any X^ there is a Yj such that
X. € y. it holds D - D ' .If for any Y. l J J
there is some X^ such that X^ = Y^ it holds
D - D'.
A set K is called ^-closed
(i) if for any JD D' and D = (X1,...,XJB) € K
with D M ' D’ G K and
(ii) if for D = (X,,...^), D' = (Y1,...,Y1) € K
there exist i , j (2-i-m, 1^j^l-1) such that for
D" = (T1>...,Yj,Xi....Xm J holds D ^ D" , D - D",
D' — D" , D' ^ D" .

Corollary 4. ^-closed sets are Sheffer-sets.

References
/I/ C.L. Chang, R.C.-T. Lee, Symbolic logic and mecha­
nical theorem proving. New York 1975.
/2/ N. Goodman, Y.C. Tay, A characterization of multi­
valued dependencies equivalent to a join dependency.IPL 18(1984), 261 - 266.

/5/ J. Minker, J.M. Nicolas, On recursive axioms in deductive databases. IS 8, 1, 1-15, 1985.
/4/ B. Thalheim, Abhängigkeiten in Relationen. Dissertation, Dresden 1985.
/5/ B. Thalheim, Bibliographie zur Theorie der Abhängig­
keiten in Relationen 1970 - 1984. Dresden 1985.

>

\

\

.

213

ON THE CONNECTION BETWEEN MINIMAL KEYS AND RELATIONS

VU DUC THI
Computer and Automation Institute,Hungarian Academy of Sciences

Budapest,Hungary
§0.INTRODUCTION

The relational datamodel which was defined by E.F.Codd [l-] is
one of the possible datamodels of a data base.In this model the
form of data storage is a matrix /relation/.

The minimal keys play important roles for the logic and structural
investigation of this model.The equivalence of minimal keys with
Sperner-systems was proved by J.Demetrovics £2̂] •

The main purpose of this paper is to give two effective combinational
algorithms.The first algorithm,for a given Spemer-system K,determines
a relation R so that the set of minimal keys of R is exactly K.
Conversely, for a given arbitrary relation R the second algorithm
determines the set of minimal keys of R.

§1.DEFINITIONS
We start with some necessary definitions.

Definition!.1. Let R= j h^,•.•,h j be a relation overji,and A,B = XI .
Then we say that B functionally depends on A in R if
(t/hj.h/R = h„(a;J--*|V b £ Bj (h.(bj = h(b ,

where 1 4 i 6 m,i ^ j t m .
Denote this by A R B
Definition 1.2. Let R be a relation overX2,and A =X2. .Then A is a
minimal key of R if A— ffiand for any Bi= A ,^B— *_fr)— > (b=a).

Let us denote by K the set of all minimal keys of R.Ii is clear
fL*

that K form Sperner-system.
For a Sperner-system K we can define the set of antikeys , denoted
by K ,as follows:

214

K_1» J A^lXl I (b & K^-y Aj and (á C C £ K̂) ^ B C C) j

- 1 — iIt is easy to see that K is also a Sperner-system, K and K
are uniquely determined by each other •

In this paper we assume that Sperner-systemaplaying the role
of the set of minimal keys /antikeys/ are not empty / don ’ t
contain the full set _Q. /
Definition 1.3» Let K be a Sperner-system overall • We say that
a relation R represeftts K if K^b k .
§2. THE FIRST ALGORITHM
The first time, we construct an algorithm which determines the

set of antikeys from a given Sperner-system.
Let us given an arbitrary Sperner-system K = -j B (

I i.)

Q .We set K <=j>.n.^jaj : a £ B^ j .It is obvioas that K^a j B 1 j •
,B J for

over
-4

Let us suppose that we have constructed = B,...
q m .We assume that X,...
B .<7+4
So K

are the elements of K containing

F l/fx,...,X /, where a Í A f K ^ j B ^ A £ .
9 f t V 9 (9 f+i T J

F o r all i (i=l,• • •,t^), we construct the antikeys ofjß^ j on
analogous way as K ± , which are the maximalX . in the

L

subsets of X.not containing B .We denote them by A L ,•••.c <7+4 "" 4
()•

Let K => F U f A 1 t A € F A 1 <± A , U i í t , U p á p ,<7+i l P 9 f> ' °l "i.
Theorem 2.1. M For every q fl^q á m) , K = ,. . . ,B j* ,i.e.
K a'TW K

-1Because K and K are uniquely determined by each other , the
-4determination of K based on our algorithm does not depend on the

order of B ,..., B
Nov/ we assume that the elementary step being counted is the comparison

215

of two attribute names.Consequently, if we assume that subsets of .fl­
are represented as sorted lists of attribute names ,then a Boolean
operation on two subsets of -CL requires at most j-fL j elementary steps«
According to the construction of • We have

K . F U 7 jx^,•••, X^ J, where 1 6 q 6 m-1.
DenoteYthe number of elements of .It is clear that for
constructing the worst- case time of algorithm is 0 ̂ h^Z-t^) t̂ /
if t Z / and 0 f n't) if A = t . Consequently, the total time spent

1 7 \ 7/ 7 * . m - t

by the algorithm in the worst-case is 0 (nA2 tu),where l-fl|=n,
“ V S * “ "u

1 i if ^
It can be seen that when there are only a few minimal keys

/ that is m is small /our algorithm is very effective . In cases for
wiiich ^ C _/ (Vq s 1 ^ q 6 m-1 ̂ it is clear that our algorithm
requires a number of elementary operations which is not greater
than 0 [n^K/./K V 7. Thus, in these cases our algorithm finds K i
in* polynomial time in fSlj, /K / and/K */ •
In [87 , we have proved that the worst-case time of our algorithm
is exponential in the number of attributes.

Remark 2.2. Let K * = j ,••• ,At jbe a set of antikeys.
Let R=jh, h ,...,h (be a relation overilgiven as follows s/ O i

For all a (il , h Q(aj = o , '

For i (l ^ i 6 t| , h .Ja.)
if a € A

i otherwise.
In [37 , it has been proved that R represents K.

Thus, for a given Sperner-system K we can construct an algorithm
which determines a relation R so that the set of minimal keys of R is
exactly K ,as follows:

216

Algorithm 2.3.
Step 1 I based on Algorithm 2.1 we construct K •
Step 2 : by Remark 2.2 we have R which represents K •
It is clear that the complexity of this algorithm is the complexity
of Algorithm £ » 1 •
§3. THE SECOND ALGORITHM

In C3J » the equality setdof the relation are defined as follows:
Let R sjh^,..., h^jbe a relation over_il .We denote by E^the
set j'a.fJCl : h,(aj = h_(a}j »where i ^ j » l ^ i ^ m and 1 6 j 6 m •
We set M = /e . E such that E. C E I •/ tj q p 17 q p j

Practically, it is possible that there are some E t-y which are
equal to each other • We choose one E to M , .i.e. the elements ofy ./ /
M are not equal to each other.
Theorem 3»1« K ̂ ® » !•«• M is the set of antikeys
of R .
It can be seen that the complexity of finding the set of antikeys
of R is polynomial inland /R j »where l-flj* n, |R) = m .

Let G = V(fl)9 0 $ G and A Cj2,A f 0 .Wel define MIN(G) and
V(A/} , as follows :
MIN (G)a B »where B is an element of G such that /B/ = min[/B. / :B ̂G j .
V(Aj= a , where a is an element of A .

Let K be a Sperner-system over_iL ,K_1a , • •. »B^ j »and
let B be a key ,i.e. there is an A € K so that A 's B
We set b S b Í) B.(y± : 1 A ± á r « m and G^ = |b *» • • •, B ' j*.
Then for i (i^ 1^ let

[b V (MIN and

°f<1- fBr - mN (°:)' j" K “.... B) *
Clearly, because /-djis finite there exists a natural number p
such that Ĝ ^ 0 and F ̂ = 0 • It is obvious that p £ min (n,m//) ,
where /-ft/ = n .

Theorem 3»2. (i 6 j J A m u j v (i u i n (g c)) I 1 b an element of K •
Thus, A is a minimal key .
It is easy to see that the worst-case time of finding the element
A is 0 ̂n^m) . ■
Theorem 3.3. (i l l) Let H be a Sperner-system over ,and let
H I B,•••,B I be a set of antikeys of H , T ■ H • Then
T C H and T f S S if and only if there is a B G f l such that B £ T 1

and B B. (Vi ; l A 1 A m)

Let K be a Sperner-system over_n.* Based on Theorem 3«3 we can
construct a following algorithm which determines a set H so
that H a K by induction.
Algorithm 3*4»
Step 1: by Algorithm 3»2 we construct a minimal key A 4 •
Set K^-fAj.
Step i+1 * if there exists a B£IT such that B ^ B (Vj * 1 a j á m

then by Algorithm 3«2 we determines a minimal key A (A £B) .
i* i i*i

After that ,let K. = K.(j A. .In the converse case we set
H = K . .t
It is easy to see that thare is a natural number p so that
K - H .

P

It can be seen that Algorithm 3.4 ia very effective if the
number of minimal keys is small.
In L7j ,we have been shown that in many ' cases the complexity
of Algorithm 3.4 is polynomial in/JZ^/K/ and /H | , the .worst-
case time of this algorithm is exponential in the number of
attributes.
For a given arbitrary relation R we construct a following
algorithm which determines the set of minimal keys of R.
Algorithm 3*5«
Step 1 s according to Theorem 3.1 we construct the set of antikeys

- 217 -

of R.

218
Step 2 t based on Algorithm 3*4 we have tha sat of minimal keys of R.
It is claar that tha worst-casa tima of Algorithm 3*5 is

*max J tha complexity of Algorithm 3«4,the complexity of Algorithm3.i
It is easy to see that we can use Algorithm 2,1 and 3»4 for
determining ..special Sperner-sys terns, i.e. sets of special minimal
keys and antikays ^see Í 5 J J •

ACKNOWLEDGEMENTS
The author would like to take this opportunity to express deep
gratitude to Professor J.Demetrovics for his help»valuable comments
and suggestions.

REFERENCES

LI 1 Codd E.F. , Relational model of data for large shared data banks.
Communications of the ACM,1 $, (l97o)377-384»

[2~] Demetrovics J.,On the equivalence of candidate keys with Sperner-
systems . Acta Cybernetics 4 ^1979^ 247- 252.
[3J Demetrovics J.,Relációs adatmodell logifeai és strukturális
vizsgálata.MTA ;-SZTAKI Tanulmányok »Budapest ,114 (l98o^ 1-97«
L4J Vu due Thi »Remarks on closure operations.
MTA-SZTAKI Közlemények »Budapest , 3o (l 9 Q 4) 74-87.
t5] Vu due Thi »Some special Sperner-systems.
MTA-SZTAKI Közlemények »Budapest,32 (1985̂) 163-174.
L6] Vu due Thi »Algorithms for finding minimal keys and antikeys
of relational data base.MTA-SZTAKI Közlemények,Budapest,33 (1985^
113-143.

[7J Vu due Thi »Relációs adatmodell antikulcsairól.
Alkalmazott matematikai Lapok (to appear) •

Vu due Thi , Minimal keys and antikeys.
Acta Cybernetics (to appear)

219

SOME ADDITIONAL PROPERTIES OP KEYS
POR RELATION SCHEME

Ho Thuan

MTA - SZTAXI

Abstract.

In this paper we prove some additional properties of
keys and superkeys for relation schemes . Some of them and
their variants have been proved / perhaps by different
methods / and used to design an algorithm to find all keys
for any relation scheme / 3 / •

220

^ I. Introduction.

In [i] some characteristic properties of keys for a

given relation scheme S =<-^ , F > have been investi­

gated , in particular the necessary condition under which

a subset X of _Q- is a key for S .

In this paper , we prove some additional properties of

keys and superkeys for relation schemes. In particular ,

sufficient conditions under which a superkey in a special

family is a key for a given relation scheme are established.

Finally, some remarks for improving the performance of

the algorithm of Lucchesi and Osborn [3j are also given.

The notation used here is the same as in £ I] and [2] .

The reader is required to know the basic notation of

the relational model and functional dependency [4] .

In this section we recall some notions and results

which will be needed in the sequel.

Let S = <X- , F > be a relation scheme, where

XI ■ { Ai » -A-2 , ... , An ^

p ' (Li -— > Rj_ j i = L, 2, ••

t U S denote ••
k k

L - U i-i , R = ,U Ri•ic 1 L - X

■ f K l| K .is a key for S J

Oi - Ä \
+Li » 2, ...

ÍJ ■ { 1 J there is no j such

£ Í I, 2, ... , k | •

. k i

Recall that for X c ,

X+ = | A j (X - > A) É F+ }

is the closure of X w.r.t. F , where F+ is the closure

of P , i.e. the set of all FDs that can be inferred from

the PDs in P by repeated application of Armstrong *s axi­

oms £ 5 J •

Two subsets X and Y ofX I are said equivalent, written

X Y , if X Y and Y X .

It is easy to show that
y * v V - X Y iUnil /if f X Y) F -*" A X U Y

X Y iff X+ = Y+ .

Without loss of generality , throughout this paper we

assume that

- 222 -

Li n Ri = J2 , i = I

Li * v/ith i * 0

We have the following lemmas :

Lemma I. [2] •

Let S = < -Q. , F > be a relation scheme, X , Y g)

then (X Y) + = (X + Y) + = (X Y +) +

Lemma 2. £ 2J .

For any i t

Li is a key for S if and only if Ci = -ßf

Lemma 3. [2] . ^ Key representation) .

Let S =< , P > be a relation scheme. Then any key

K for S has the following form

K = Li Xi

for some i 6 , where X^ c Ci •

Remark I.

It is easy to see that for every j <=• f I, 2, kl

Lj Cj is a superkey for Sj and for every I c Si- t

223

X is a superkey for S iff X+ = •&- •

§ 3 *

We are now in a position to prove some additional pro­

perties of keys and superkeys for relation schemes which

can be used for the design of algorithms to find keys for

relation scheme.

Lemma 4.

Let S = < , F > be a relation scheme.

Then V i * j , i, j é (I, 2..... k]

Li ̂Ci n Lj Cj ̂ is a superkey for S .

Proof.

The case Gi = i? , we have

Li (Ci 0 Lj Cj) = Li .

But in that case, it is obvious that Li is a superkey.

Now we consider the case Ci f 0 .

First , we will prove that if Ci £ 0 then

Ci n Lj Cj t 0 » v j t i .

In fact, assume the contrary that

224

Gi n ló Gó - 0

It follows that :

(Ci A Ld) (Ci A Cj) = es .

On the other hand .>

Ci= (C l n Ld) (Oj. A Oj) (CiA (L + \ L ^) = c± n(i+ \ Lj

showing that

Ci £ (lj \ Lj) •
Thus

Si \ ci3 jn\(iJ \ Lj")

or Li p Lj Cj .

The last set inclusion shows that Li is a superkey, a con

tradiction.

Therefore, if Ci ^ 0 then Ci O Lj Cj ? 0 .

Now, it is clear that

Gi n LjGj -2-* Gi G LjGj

Consequently,

Li (Gi A Lj Cj) L i ̂ Ci 0 Lj ^ (Ci ft C j ^

On the other hand , we have :

Lj = (Lj \ ci) (Lj n ci) — Li (ci n L j) •

225

G j = (có \ ciS) (Cj ^ Ci) - Li (Ci ^ Cj) *
Hence

Li (ci n L j) (ci n c j) P Ló có
Finally, we have

Li (Ci n Lj Cj) Ld c3
showing that Lj_ ^Ci (1 Lj Cj) is a superkey for S .

Lemma 5 «
Let K be any key for S = <Xl , F> and having the form

K = Lj_ X , X c Ci ,

Then there exists j0 4 i such that
K Q H (ci n L3o C0o) #

Proof«
Assume the contrary that

L± , X c/t L± (Ci n Lj C-j) , Y j |i i ,

or, equivalently
X ^ Ci fi Lj Cj , V j ^ i •

Then, for all j / l jthere exists an attribute
Ai3 e (LJ \ ij) n x .

Obviously, we have :
L± X L± R± X .

Then there must exist p such that Lp c Li Ri X .

(Otherwise, Li X , a contradiction^ *

Let k\ XP (Lj \ Lp)n X and let l ' = X\ | Aip J

Since Aip £ Lp , so Lpc L± Ri x'
Therefore , it is easy to see that

L± x' -*-> Li R± x' _— Li % p̂ RP
* Li R± Lj X

226

Moreover A-,- 6 LÍ •1p P
Consequently,

Lj_ X ' _*_> Li X ,
lLshowing that Li X is not a key, a contydiction .

The proof is complete •
Corollary I.
The family

(Li (Ci n Lj Cj) J ó j i , I s<r i, Ó < k }

can be used to find all keys for the relation scheme S.
Remark 2.
Lemmas 4 and 5 have been proved / perhaps by different
methods / and used to design an interesting algorithm to
find all keys for any relation scheme [6] •
Theorem I»
Let S = < -ß-, F > be a relation scheme. Suppose that
the following conditions hold :
i/ Li ̂Ci fl Lj Cj) = Li Ci , V i = I, 2,..., k;
ii/ Li n R. = 0 , v j 4 i .
Then L^ Ci is a key for S .
Proof.
First, from condition i/ , we can prove that for every
X c , Li X is not a superkey for S •

In fact, since C± 0 L̂ C^ = C± , V j /- i , it follows
that

Ci 0 (Lt \ l 3) 6 0 , T j .

Therefore, if A é Ci then

{ a } r,(L+ \ Lj) = i> , r i
Let A be any element of C^ and X = Ci \ j A J
It is easy to see that

227

Lj_ X Lj_ R ± X
Since Lj, Rí 0 Cj_ = t> / because Li R± c ' I»i /,
A € Ci , A ^ X , it follows that

A ^ Lj_ Rj_ X .
How, suppose that there exists

1^ c Lt R± X , h 4 i

Obviously A and

Li X -dhy L± R± X ..Ír ̂ Li R± 1^ Rh X .

It is clear that A ^ R^ , otherwise
A <t (l£ \ L^") , a contradiction •

By repeating the same reasoning, we can prove that
Li X >

showing that for every X c ^ , Li X is not a super­
key for S.
In other words Li Ci contains only key / or keys /

/ /of the form Li Ci with Li c Li .

By condition ii/ , we have
L± = L i \ R c L \ R

On the other hand, from [I]
L \ R c - O - X R c K , Y K<= .

This shows that L^ is a key for S . Q.E.D.
Corollary 2.
If S = < -&• , F > has a key K = Li X with X <=• Ci

then there exists j0 ^ i such that

li (« i f l °i

Corollary 3.

h (ci n lj °j) L- C.l lIf I V j 4 i »

228

then 0. c H ■ U K

In othertoords, Cj_ consists of only prime attributes.
Corollary 4«
If (G±|[= I j V i = It 2, ,,,, k , then Lj Cj is a

key for S iff there is no q , q t j , such that
L. C. =3 L CŰ ű q q

Theorem 2.
Let S = <-Q- , P > be a relation scheme, L^ Z be a

key for s ,
Li f— •> > Lj_ O z = Lj n Z 0 ;

l j 1A Rh = 0 j) V h jí ó
Then Lj Z is a key for S .

Proof,
It is easy to see that if L-j_ Z is a key for S and Lj_<f->Lj

then Lj Z is a superkey for S,
In fact we have

Lj Z L± Z -Q -

Moreover, we can prove that for every Z <=- Z , Lj Z is

not a superkey for S, Assume the contrary that Lj Z is a

superkey for S with Z Z .
It is clear that

z)+ = z)+ - (Li z)+ - (li z) +
showing that Lj_Z is not a key , a contradiction .
The condition Lj O = 0 , V h

implies that Lj n R =? 0 •

Hence Lj c L \ R .

Moreover, again by [I]

229

L X R C - i l X R c K j ? K € ^ t s

showing that L-Z is a key for S .J
Theorem 3«
Let S = (p > be a relation scheme ,

x, y , Z c - O - , x a z = y n z = 0 .
Suppose that the following conditions hold :

i/ X Y ;
ii/ Por every x'c X with | X'l = 1 X \ - I

there ezists Y' er Y such that Y' *— ± X ,
iii/ Por every Y ' c Y with 1 Y'\ = 1Y\ - I

there ezists X' X such that X' Y' .
Then ZX is a key iff ZY is a key .
Proof.
ONLY IP. Suppose that ZX is a key •
Since X <-^Y , following the pr»oof of theorem 2, YZ is
a superkey for S while YZ' is not for every z'c- Z
In other words, YZ contains only key / or keys / of the
form Y'Z with Y' c y .
Now, we shall prove that for every Y c Y , Y Z is not
a superkey for S.
The proof is by contradiction. .Let Y'Z is a super­
key for S with Y € Y' C Y w h e r e 1 Y'l = 'Yt- ± .
Taking the condition iii/ into account, we have
s l = (Y'Z)+ = ((Y')+ Z)+ = ((X'f Z)+ = (x' z)+

Where X c X , X' Y ' , ■
showing that XZ is not a key , a contradiction .

Similarly we can prove the IP part •
The proof is complete .

Corollary 5.
Let S =s<Xl , p > be a relation scheme,
L± Lj , I L± 1 = I Lj I = I , L± o Z = Lj L Z = 0 .

230

Then L. Z is a key for S iff L. Z is a key .
Proof.
It is easy to verify that all conditions of theorem 3
are satisfied •
Example I.
We take up again the example in [3] • According to our
notation, we have

S l = { 0, I, N, P, T] +/
P = I N — * I, I — >. IT, NC — > PT, PT — ► C j

It is obvious that N ± I •
So, using the algorithm Lucch&ii and Osborn, after the keys
IPT and IC have been found, we can add immediately to
the set K two new keys NPT and NC.
Theorem 4.
Let S = < -^ , P > be a relation scheme, Z is a key
for S with Z d L. = 0 .
If z c ci - L . L.

and C°J o K' ►-» II Ld cá , v h J
then S has no key including L- •J
Proof.
The condition Lj_ implies that Lj Z is a superkey

for S • Prom Z <= Cj, it follows that Lj ci is not a key
Prom

h (c i n L h ch) = L- C . and J J °d is not a
key, by corollary 2, we conclude that S has no key that
includes Lj • Q .E.D.

C, I, IT, P, T stand for Course, ID- number, Name, Pro­
fessor and Time respectively.

231

§ 4 -

In [3] C.L. Lucchesi and S.L. Osborn provided a very
interesting algorithm to determine the set of all keys
for any relation scheme S = < , P > .
The algorithm has time complexity

o ^ (f j I +l-il0) ,

in our notation, i.e. in time polynomial inJ-̂ -1, |F)
and [s)
We copy here this algorithm with some modifications in ac­
cordance to our notation •
ALGORITHM Oil, Set of all keys for S = , F > ;
Comment (H g is the set of keys being accumulated in a
sequence which can be scanned in the order in which the
keys are entered;

+/
b

HH CD

for each K in 3C g do_
for each FD (Lj_ •— * Rj_) in F dn

T «-- L± (K \ R ±) ;

test ^— true;
for each J in g d_o

if T includes J then test <— false ;
if test then 0(<_ s o £ Key^-XL ,

end
end;
return

Key X) corresponds to the algorithm Minimal K e y
in [3J I which determines a key for S that is a subset of
& $ & c-ífía-d S u p. * * ' k ̂ y X«

232

The following simple remarks C TJ , in some cases can be
used to improve the performance of i?he algorithm of Lucche-
si and Osborn,
Remark 3»
To find the first key for S = < -O- , P > , instead of -Q-
it is better to use the superkeyff*- \ R) u (L n R") and
algorithm I in [I] , and instead of th^hlgorithm Key(-ß, F, T)
it is better to use algorithm 2 in [I] for finding one
key for S included in a given superkey T .
Remark 4»
In [I] it is shown that

R \ L cil\ H ,
i.e. R \ L consists only of non- prime attributes.
Therefore, if Rj_ c R \ L then

c:•H K = 0 , Y and (K \ R^) p K .

That means , when computing T = (K \ R^") , we can
neglect all PDs (R-^ with Rj_ C R \ L

for every K € s .
Let us denote

F = P \ j -y Rj I R^eF and- R \ L }
Remark 5»
With a fixed K in , it is clear that if Kn Rj_ = 0
then Li (K \ R ±) 3 K .

In that case , it is not necessary to continue to check
wfrether T includes J for each J in K c .o
So, it is better to compute T by the following order

T = (K \ R±)u L±
Remark 6.
The algorithm of Lucchesi and Osborn is particularly effec—

233

tive when the number of keys for S = <-*\ F> is small.
No, basing on what information one can conclude that the
number of keys for S is small ?
There is no general answer for all cases^and it is shown
in [8] that the number of keys for a relation scheme
S = , F> can be factorial in jF { or exponential in
jjfL[, and that both of these upper bounds are attainable.
However, it is shown in [I , corollary I] that

X N<
rh/2]

C h
where h is the cardinality of L O R •
Thus^if L H R has only a few elements then it is a good
criterion for saying that S has a small number of keys.
In the case L O R = 0 , -il\ R is the unique key for
S = <-ß , F > as pointed out in [I , corollary 4-J .
Example 2.
Once more, we return to the second example in [3, Appendix i]

S I ={a, b, c, d, e, f, g, h)
F = j a — ■+ b, c — > d, e — > f, g — »> h j

It is clear that for this relation scheme
L O R = 0 ,

and it has exactly one key, namely aceg.
Taking the remarks 3 - 5 into account, the algorithm
of Lucchesi and Osborn now can be presented as follows:
ALGORITHM 0L2. Set of all keys for S = < S X f f > ;
X { Algo.I f i l , F, (S L \ R) (l R))} rS V
+/Algo.I and Algo.2 refer to Algorithm I and Algorithm 2

in[Ij respectively .

234

for each K in i){ do
for each PD (L. — > R-^in P such that K\ R. ̂ K do■ — ■ i c t —

T (K \ Rj.} Lj_ ;
test <— true ;
for each J in d£

if T includes J then test <— false
if test then * K „ <— tK u { Algo.2(*íi, P,S S 1

end
end;
return .
------ S

Acknowledgment
The authors thank Vu Due Thi for reading one earlier
version of the paper and providing useful comments.

235

References
1 HO THUAN - LE VAN BAO :Some results about keys of

relational schemas • Acta Cybernetics, Tom. 7, Fase. I,
Szeged, 1985, pp. 99-113.

2 DEMETROVICS, J. - HO THUAN - NGUYEN XUAN HUY - LE VAN
BAO : Balanced relation scheme and the problem of key
representation • Közlemények MTA - SZTAKI , 32/1985,
Budapest, pp. 51-80.

3 LUCCHESI,C.L. - OSBORN, S.L. : Candidate keys for rela­
tions • Journal of Computer and System sciences, 17,
1978, pp. 270-279.

4 ULLMAN, J.D. sPrinciples of database systems.
Computer Science Press, Second edition, 1982.

5 ARMSTRONG, V/.W. : Dependency structures of database
relationships. In : Information Processing 74, North
Holland Publishing Company, 1974, pp. 580-583»

6 FERNANDEZ, M.C. : Determining the normalization level
of a relation on the basis of Armstrong's axioms. Com­
puters and Artificial Intelligence, 3 / 1984 /,
pp. 495-504.

7 HO THUAN : Some remarks on the algorithm of Lucchesi
and Osborn . Közlemények MTA - SZTAKI, 35/ 1986,
Budapest / to appear /.

8 OSBORN, S.L. : Normal forms for relational databases.
Ph.D. Dissertation, University of Waterloo, 1977.

■

■

237

NATURAL LANGUAGE QUERY FOR DATABASES

Tudor Toma and Elena Saftoiu,
Institute for Computer Technique and
Informatics, Bucharest, Romania

Abs t rac t

In the first section the paper points out the
duality of the natural query language and the
difference between natural language processing in
AI programs and in database interfaces. In view of
this difference, some features of NL query
processing are presented. The second section is
concerned with the analysis of NL queries, based
on relational data models. First the premises for
simple query analysis are outlined. Then a model
for lexical, syntagmatic and semantic processing
of these queries is discussed. The third section
presents the SINAL system, a framework for
implementing stand-alone interfaces in natural
language for dBASE III databases. Specific
implementation aspects and system performances are
ment ioned.

238

1. The duality of natural query language

Natural language understanding, as an AI
field, deals with the analysis and representation
of natural language in complex structures, as
abstract models of the real world. As pointed out
in [33, the models used for database structures,
called "data models", are simpler then those used
in NL understanding systems. On the other hand, NL
interfaces based on data models usually deal with
a very large amount of data. Consequently, NL
query processing presents specific features:

a. The NLQ interfaces are not concerned with
the understanding of the complex meaning of the NL
input but rather with the translation from NL form
into the formal database interface language. The
query meaning is tightly correlated with the data­
base d a t a mode 1 .

b. Generally, database users formulate simple
NL queries and access data in small successive
steps. Short queries are a feature of the NL
itself and assure a higher data accuracy.

c. In order to access a database defined by a
rigurous data model, the user's language is
restricted to an extent necessary for the usage of
the system. Under these conditions, natural query
language still remains a formal language[33.

d. NLQ interfaces, like any friendly
interface program, must take into account a set of
dialog engineering rulestl]:

- avoid acausality: make the activity of the
system a clear consequence of the user's
actions;

- uniformity and consistency: ensure that all
terminology and semantics are uniformly
available and consistently applied
throughout all interface activity;

- make the state of the dialog observable:

239

the response should be sufficient to
identify the type of the current activity.

- validate data on entry by checking syntax
and values. Have the user himself
revalidate major updates before acting
upon them.

The usual NL queries could be considered as
expressed in a "formal" natural language. Because
of this dual nature, there are various and
contradictory opinions about the success of NL
interfaces for database sy s terns C 3 D , C 4] . This paper
illustrate a simple and versatile approach to NLQ,
which covers the range from fully natural laguage
query to formal query facilities.

2. A model for understanding NL queries

Our model for understanding natural language
queries performs a translation of the input query
into an intermediate form. The model is dedicated
to relational database query and not to general NL
analysis. Consequently, as discussed in the
previous section, the NL input, practically not
restricted from lexical and syntactical points of
view, must be formulated according to a query
semantic grammar. The grammar accepts compound
queries, every simple query being composed of a
command and some of its structured attributes,
given in an arbitrary order.

240

2.1. Premises for simple NL query processing

The relational database systems are based on
a relational data model which accepts queries
with a simple internal structure. Besides the
command, simple queries may include a set of
(structured) elements as the field list, the
filter, the peripheral list, the entity, the
command execution options, etc. The data model
provides some particular features for the NL query
processing :

- the words can be generally represented in
the dictionary in stem form. The expensive
morphemic analysis is not necessary.

- the lexical processing becomes practically
language independent and makes the entire
query analysis language independent.

- the NL input is not subject to a global
syntactic analysis. The syntactic analysis
processes only local syntactic aspects
permitting a great liberty for the relative
position of semantic elements within the NL
query .

- the semantic analyzer is fast and accurate.
It provides a large variety of facilities
such as references to previous queries or
query elements, the developement of the
referenced query elements, the use of
default queries or of default query
e lerne n t s .

- an easy diagnose of incorrect queries and
the evaluation of query ambiguities.

- the lexic can be extended with simple
symbols introduced in the dictionary as
synonyms for usual, application-dependent
syntagms. These symbols provide for an
abreviated query language and a great'
versatility in dealing with database
applications, for users with increasing

241

2.2. The query analysis

Three levels of analysis, lexical,
syntagmatic and semantic are performed, each level
using specific represen tat ion and processing
techn iques.

At the lexical level all the items of the
input query are mapped in the dictionary. The
dictionary contains either word stems or words in
complete form, if necessary, in order to avoid
lexical ambiguity. The items found in the
dictionary form the output list, the others are
discarded. Synonyms are solved at this level.

The syntagmatic analysis is performed by a
rule driven ascendant parser. The parser
transforms the lexical analysis output into a
list of terminals of the query semantic grammar.
The rule set do not define a formal input
language. The rule» driven analysis performs mostly
syntagmatic processing and is focused on small
parts of the processed list, so its effects are
local. The parsing becomes more accurate as the
rule set increases in complexity.

At the semantic level some structured
elements need their information to be grouped, so
that a local syntactic analysis is indispensable.

The semantic grammar is represented by a
semantic network based model called a
representation network. The input list is
processed in the representation network by local,
node oriented procedures activated by a control
algorithm. If the input is semantically correct,
it is transformed into an intermediate form.
Otherwise, the analyser asks for the Reformulation
of the missing semantic elements.

242

3. SINAL A natural language interface
for dBASE III databaiei

This section presents a frame system for
implementing interfaces for dBASE III databases in
natural language. The dBASE III interfaces are
implemented with SINAL as stand-alone programs
which interfere with a database application only
by its data files. The interfaces accept the
general dBASE multifile multientity database
structure and all the dBASE commands, including
the access to a large variety of coded fields. The
application database may be created and modified
either with the dBASE system or using a special
editor and a set of data management programs
written in dBASE, which extend the system
facilities in order to fit the SINAL interface.
The extended dBASE framework and the SINAL
interface, designed as an integrated package,
provide a performant tool for creating, manageing
and friendly accessing dBASE applications.

SINAL is composed of two basic parts: the
preprocessor and the natural language interface
proce s so r .

3.1. The preprocessor

This first module performs a preliminary
processing of the domain-dependent information,
the dictionary and the syntagmatic rules. This
information is edited into two text files and
preprocessed into a couple of coded files. The
program analizes the domain-dependent information
consistency and ensures a minimum storage form for
the coded output data.

The lexical and syntagmatic analysis are
based on the domain-dependent information
preprocessed in the coded files. During the coding

243

process, rule activation information is attached
to the corresponding lexical items. These items,
when present in the processed list, guide the
syntagmatic analysis by activating only thoses
rules that may successfully match in the given
context.

For every particular dBASE application, a
specific lexicon must be appended to the system
dictionary. Rules must be added to model some low
level syntactic aspects and syntagms of the
application query language.

3.2. The interface processor

The interface processor consists of two main
modules and two auxiliary modules. The first
module is a query analyzer which implements the
query understanding model for dBASE III databases
and performs the query translation into
intermediate code form. The second module is a
query interpreter which executes the intermediate
code commands. It eliminates the dBASE critical
time overhead and internal buffer restrictions,
providing a highly performant access to the dBASE
III datafiles, through the stand-alone SINAL
interface. The auxiliary modules implement the
query management and a menu-driven help.

3.2.1. The query interpreter

The query interpreter loads the information
from the database files, using an adequate memory
allocation strategy, selects the information
according to the command filter and performs the
command action.

The structure loader is application
independent but depends on the data model of the
database system, in this case the dBASE relational

244

model. At the beginning of the query session, the
structure loader reads from a directory file the
names of the application data files (dBASE
relations), accesses their structure block and
creates an internal representation, as one
equivelent extended relation. This internal data
model requires the existence of a common key field
in each data file and removes the retrieval
restrictions imposed by dBASE, which limits the
number of active data files. The model provides a
versatile storage for the entity characteristics;
for each entity, attribute sets can be omitted or
introduced with multiple values; it is also
possible to surpass the dBASE system facilities by
simulating variable length fields for databases
developed with the SINAL associated editor
mentioned at the beginning of this section.

During the query session, for a given request
the data loader activates all the associate data
files, which are completely or partialy loaded.
The data buffer is adapted to the database size,
at the beginning of the query session.

The interpreter selects the requested
information according to the intermediate code
filter. The filter expression accepts the usual
arithmetic and logic operators, a substring search
operator and unrestricted parantheses levels. The
interpreter performs the selection and projection
operations and a set of usual functions (count,
total, min, max, average, etc); current work is
dedicated to the implementation of the complete
set of relational operators. Simple coded fields,
code list fields, fields with codes grouped by
code set tags and codes with subcode patterns are
decoded before output. For all the coded fields,
application dependent output patterns can be
imp lerne n ted .

The query result can either be just displayed
on the screen or structured as a report. The

245

output may be simultaneously displayed, printed
and stored on disk.

3.2.2. The auxiliary modules

The query management module permits to
associate NLQ queries with tags, to store and to
delete queries, to invoke them by their tags and
to display stored tags and their associated infor­
mation. Sets of query tags can be attached to new
tags, implementing a hierarchical metaquery level,
useful for frequent routine query sequences.

The HELP menu-driven module provides
information about the database structure, the
query semantic grammar, the query control
facilities and the query management system.

3.3. The system implementation

SINAL is written in "C" on an IBM-PC
compatible microcomputer in a MS-DOS environment.
It was designed and implemented to assure a fast
query response, a fully natural query language and
a great flexibility and portability. All searches
are performed by hashing. The rule-based analysis
is efficiently bottom-up driven. The semantic
processing control is information gain driven
providing a minimal search in the representation
network.

The representation network model and all the
AI processing methods and control techniques used
for the query analyzer were modeled and tested in
LISP prior to their implementation in "CH.

The query analysis is performed immediately.
The query execution depends on the average disk
access time and on the number of necessary
accesses given by the database structure and size,
and by the query complexity. For medium databases

246

and for intensely coded applications all the
information can be loaded in the interface
internal buffer, providing an immediate query
response.

The first interface application was
implemented for a database on personal and
professional computers, in both Romanian and
English languages. The second application is a NLQ
interface for a medical database now used in a
radiobiology clinic.

Rcfcrcncat

Cl] B .R .Gaines,M .L .G .Shaw: Dialog engineering,
, Design for human - computer communication,

Academic Press, N.Y. (1983)

C2] I.D.Hill: Natural language versus computer
language, Design for human - computer
communication, Academic Press, N.Y. (1983)

C3D K .D .Krage loh,P .C .Lockemann: Access to data
base systems via natural language, Lecture
notes in computer science 63, Springer
Ver lag, (1978)

C4] D .Tufis,D .Cristea,G .Ciobanu: QUERNAL - a
natural language interface for databases, The
Il-nd National Symposium of AI,
Bucharest (1985)

1986-ban e d d i g m e g j e l e n t e k :

179/1986 Terlaky Tamás: Egy véges criss-cross módszer és
alkalmazásai

180/1986 n/K.N. Cimev: Separable sets of arguments of functions

181/1986 Renner Gábor: Kör approximációja a számitógépes
geometriai tervezésben

182/1986 Proceedings of the Joint Bulgarian-Hungarian Workshop
on "Mathematical Cybernetics and Data Processing"
Scientific Station of Sofia University, Giulecica
/Bulgaria/, May 6-10, 1985 /Editors: J. Denev, B. Uhrin/
Vol I

183/1986 Proceedings of the Joint Bulgarian-Hungarian Workshop
on "Mathematical Cybernetics and Data Processing"
Scientific Station of Sofia University, Giulecica
/Bulgaria/, May 6-10, 1985 /Editors: J. Denev, B. Uhrin/
Vol II

184/1986 HO THUAN: Contribution to the theory of relational
databases

185/1986 Proceedings of the 4th International Meeting of Young
Computer Scientists IMICS'86 /Smolenice, 1986/
/Editors: J. Demetrovics, J. Kelemen/

186/1986 PUBLIKÁCIÓK - PUBLICATIONS 1985
Szerkesztette: Petróczv Judit

187/1986 Proceedings of the Winter School on Conceptual
modelling /Visegrád, 27-30 January, 1986/
/Editors: E. Knuth, A. Márkus/

188/1986 Lengyel Tamás: A Cluster analizis néhány kombinatorikai
és valószinüségszámitási problémája

189/1986 Bernus Péter: Gyártórendszerek funkcionális analizise
és szintézise

190/1986 Hernádi Ágnes: A tipus fogalma, és szerepe a
modellezésben

191/1986 VU DUC THI: Funkcionális függőséggel kapcsolatos
néhány kombinatorikai jellegű vizsgálat a relációs
adatmodellben

192/1986 Márkusz Zsuzsanna: P a p e r s on Many-stored
logic as a tool for modelling

193/1986 K N W T Conference on Automation of Information
Processing on Personal Computers
Budapest, May 5-9, 1986 Vol I.
Szerkesztette: Ratkó István

4

	Tartalom
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	195����������
	196����������
	197����������
	198����������
	199����������
	200����������
	201����������
	202����������
	203����������
	204����������
	205����������
	206����������
	207����������
	208����������
	209����������
	210����������
	211����������
	212����������
	213����������
	214����������
	215����������
	216����������
	217����������
	218����������
	219����������
	220����������
	221����������
	222����������
	223����������
	224����������
	225����������
	226����������
	227����������
	228����������
	229����������
	230����������
	231����������
	232����������
	233����������
	234����������
	235����������
	236����������
	237����������
	238����������
	239����������
	240����������
	241����������
	242����������
	243����������
	244����������
	245����������
	246����������
	247����������
	248����������
	249����������
	250����������

