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ABSTRACT

Many-sorted logic is used in several branches of computer science. This
paper deals with a special feature of many-sorted logic: the problem of
the so-called "empty-sorted"” models. These models may have sorts with
empty universes, too. The using of the classical validity relation in
Tarski®"s sense for the class of empty-sorted models gives logical para-
doxes. That is why we define a new validity concept which is based on
an old idea of A. Mostowski. In this paper the detailed definition of
both (Tarski®"s and Mostowski®"s) validity concepts are presented. The
many-sorted language which is defined by the validity relation in
Mostowski®"s sense, as it will be demonstrated, "works well'. Los lemma
and some axiomatizability theorems illustrating the advantages of this

many-sorted language against the classical one are presented.



0. INTRODUCTION

Many-sorted logic is used in several branches of computer science.
See e.g. Andreka-Nemeti [0]. Its mathematical formalism is applied for
logical foundation of computer-aided problem solving, for definition of
semantics of programming languages, in the theories of program verifica-
tion and data bases, in knowledge representation, etc. The fundamental
difference between many-sorted models and classical models is that the
universes of many-sorted models are not homogeneous but consist of dis-
joint sets of different sorts. Thus, when defining the types of functions
and relations, we must give not only the number of arguments but also the
sort of every argument.

This paper deals with a special feature of many-sorted logic, namely
with the problem of the so-called "empty-sorted” models. In most published
works /e.g. Monk [9]/ all the models having a sort with empty universe
are excluded. This exclusion restricts essentially the area where many-
sorted logic can be used, that is why we omit this restriction. We intro-
duce the class of t-type normal models /Wbdt(vWﬁch is identical
with the class of many-sorted models defined in Monk [9], and we define
the class of t—type empty-sorted models /MOdE!,\Nhich contains MOdV as a
proper subclass: M ~ Mod® .

Using the classical validity relation in Tarski®"s sense /notation: €/
for class of models Mod® gives logical paradoxes. The reason of logical
paradoxes is that the set of valuations of variables into a non-normal

model is empty.



I. Nemeti suggested using an old idea of A. Mostowski [10] for many-
sorted logic in order to avoid logical paradoxes. Mostowski utilized
essentially the fact that the value of a formula in a model depends only
on the free variables occurring in the formula. Tarski defined his valu-
ation function in another way. The domain of a valuation function is the
set of all variables /in general: w/ independently of the number of free
variables in the formula in question.

We introduce a new validity relation /notation: ™ / which is called
validity relation in Mostowski®s sense.

In this paper the detailed definitions of both validity concepts are
presented. In order to be self-contained we give the definitions of many-
sorted models and syntax of first-order many-sorted languages as well. A
simple example is presented to show the difference between two validity
concepts. Finally, we investigate some well-known theorems from the point

of view of empty-sorted models.



1. NOTATION

Throughout the paper = denotes the fact that the concept standing on
the left-hand side of the symbol is defined by the expression standing on
the right-hand side. For example, :dj means that X is equal to Y by
definition. Similarly, "X y'" means that formula ¢ is defined by formula
\, and @ is defined to be true if and only if Y is true. Throughout the
paper "iff" is an abbreviation of "if and only if'. Brackets (,) and [,]
play the same role and they are used simultaneously.

The following notation is given for arbitrary sets.
UA=IXX Gy €AX € 1.
A = @: By € A)X €Yy).
A U B = ulA, 5}

AnB

a{> B}.

¢

A-B={a€cA: a XB}.

Natural numbers are used iIn von Neumann®s sense.

0 denotes the empty set.

a+ 1 =aU{a}.

a)gﬂﬁ:OEH and (M €H)n + 1 € H} and (\/h€wjn2{0, 1, ..., n-1}.

k | denotes the cardinality of the set A.

SbA=4: X£ A Sb A is the set consisting of all the subsets of A.

Sb A is called the power set of the set A.
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@3 b) ={{a}, (@, b3} is the ordered pair of a and b, where the first

member of the pair is @, and the second one is b.

Notation: (@, b)q ga and (@, b d b.

A xB={@ b):a €A and b €B}. A x B is the Cartesian product of A and B.
DomA =faf£uwWA:(D) @G b) £A}. DonAdenotes the domain of the setA.
RngA = £uu A @ b) £A}. ENng Adenotes the range of theset A.

~41 B=A Q@B XRng A) = {(&B b) €Az a £B}. A ~ B denotes the restriction
of the set A to the set B.
Let F be an arbitrary set. f is a function or a mapping or a
sequence iff all the elements of T are ordered pairs and
Va, b, o[((@, b) € 7and (@ 0¢cT) @b = 0].
If / is afunction and 1 € Dom T, then there exists exactly one
set b such that (1, b) € T.
b is said to be the value of the function F at the argument 1 and
is denoted by
1HO) or

i or

% 9 {/ € DA xB) : Fis a function, Dom F = 4}.
AB denotes the set of all the functions from A into B.
T: A =aB denotes that T €A]3

f: ANB denotes that T E% and / is a one-to-one mapping, i.e.

[/: A>+B] » [f: A+Band (fa, b £A(@ = f(b) »a=Db)].
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T: A +B denotes that Tt B and T is a mapping from A onto B, i.e. Rng ¥ = B.

4
T: A»+B denotes that Ft B and f is a one-to-one mapping from A onto B.

Let P-j ..., B, and S be fixed sets.

Let t&, PJ, ..., p ) be an expression, which assigns a unique
set denoted by 1(S3p"} ..., pAJ to every S €S. Then

<t(s, pv Pn)>8€sg<t(s,pr Pn):stS>gt

asi 76, p ¥ S €5}

That is <t(s, P2, -.., Pn)>s € s is a function with the domain S.

If n =0, i.e. there are no parameters P®, ..., Pn then

<Tfs;>s (S~*VstS- 3

QG
For example, suppose t(s, p) =S fip. Then F=<8B fip: stS
is a function for every fixed parameter P and S, otherwise T is
not defined. That is the function F depends on the choice of
the parameters p and S.
d d ;
A further example: Suppose S= bbandp tw. Then g=<p +S:S two
is a function - b*band @ t 6 gX) =p + X. Obviously
function g depends on the choice of the parameter p.

In particular, if / is a function and Bom =S, then

<fs:s tSS =13

<fs>3

Let N t o, and let / be a sequence of the length n.

The sequence T may be given by "enumeration” as follows:
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= TP oeem» 4-2> -

E.g. /=<5, 3, 8, 7> = {0, 5, A, 3), @, 8, G, N}
That is T is a sequence with length 4, /: 4 » @ such that

/w =fo=s5, f(l) =f2=3, f2=18, f3=7.

g+ = U{ng; n € § and n ™ O}. denotes the set of all finite nonempty
sequences of the elements of S.

Let A be a function. The direct product of A is as follows:

PA=P A. = {F€o-n A rURng A): fci € DomAF. €A}
iISDonA t i
CONVENTION O

Throughout the paper each symbol denotes a set unless it is declared
to denote a class or a metaclass. All the notations introduced are used

for classes and metaclasses as well as for sets in the usual way.

REMARK O

Set theory, which is based on the hierarchy of sets - classes -
metaclasses, 1is described e.g. in Herrlich-Strecher [6], where '"conglomerate"

is used instead of "metaclass". The main point of the hierarchy is
Sets £ Metaolasses such that Sets € Metaelasses and
<Sets, ~ > h ZFC and <Metaclasses, € > ¢ Z< .

The difference between metaclasses and classes is that elements of a
metaclass can be metaclasses classes or sets, while a proper class may have

no elements but sets.
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CONVENTION 1

1.1

1.2

From now on the ordered pairs and the 2-length sequences will not be
distinguished. More exactly, <X, z/>will denote both the ordered
pair J Y) and the function {(0, X), (1, Y)} for every set X and Y,
though they are not identical. The reason behind this convention
is that it is not so important from the point of view of this paper,
which meaning of the symbol <X, Y> is to be considered. The only

requirement is that condition
¥XJy, uBw [By>=<u, w» X=Uand Yy =W)]

holds for both meanings, and it obviously holds for both the ordered

pairs and the 2-length sequences.

An important consequence of this convention is that A x A is identical

2
with A for every set A.

This convention (which is improper in principle) is very wide spread

in mathematics, see e.g. Henkin-Monk-Tarski [5] p- 33, or Levy [7] Def,
4.15. p. 58. In these works one can also find the consequences of

the convention above, and a technique which helps to avoid false

results.

|
Let A be a set and N € ©. Then A x A is considered to be identical

with ™A e
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Therefore the ordered pair ( S ---- Sh—l , Sh) is considered to be iden-
tical with the sequence <s eee» SN sn>> anc* the Cartesian product is

considered to be associative
AxB) xC-AxBxOCO£3AuUBUO.

Hence # x 7 X)}:JA-

DEFINITION O (n-ary relation, function)

Let B be a set and n € w. By an n-ary relation over 5 we understand a set

) &

R ¢ B, i.e. an n-ary relation is a set of sequences with the length n.

- <V -
By an n-ary function over B we understand a set / € B. If is an

n-ary function, we write

f: nB - B.

COROLLARY O

Due to Convention 1, n-ary functions over B are n+l-ary relations over B,

since

(nJ
"n-ary functions over B" = B ~ B) B = WJB.

This corollary is utilized essentially throughout the paper.



15

2. MANY-SORTED CLASSES OF MODELS

2.1. MANY-SORTED SIMILARITY TYPE

DEFINITION 1 (many-sorted similarity type)

A set T is said to be a many-sorted (or heterogeneous) similarity type

te3Rg ) and
™ .Dan t1 = (£q)+ and c. Dom f1.

NOTATION

Generally t is denoted by S and t2 by H, so

t=<S,tl,H> .

In Definition 1
=5 is the set of sorts,
is arity function,
©2=H is the set of function symbols,

Dom @ ~ H is the set of relation symbols of the type t.

CONVENTION 2

From now on € denotes a many-sorted similarity type.

NOTATION

Let t be a similarity type and let r € Dom
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o=t =450 .
REMARK 1

If r 6 Dom ~ H, i.e. r is a relation symbol, then Dom (fr) is the number
of the arguments of the relation symbol r. For example, let t =<S,t",H> be

a Ffixed similarity type such that

S=iap3gk}, t = {<r,<g3p3k» 3 <FXg3k»}3 H = {/3. tr = <g3p3k> .

Then Dom () = 3 = {0,1,2}3 and

tr@ =9, or@ =p, tr(@ =k .

Let n = Dom (tr)-1.
If / €H, i.e. T IS a function symbol, then N £ Za? (tFH)-1 is the number

of the arguments of the function symbol F .

2.2 MANY-SORTED MODELS

DEFINITION 2 (t-type model)

Let T be a many-sorted similarity type.
By a many-sorted t-type model we understand a pair = <4,1?> iff the fol-

lowing (1)-(@) hold:

(D) A is a function such that

Dom A =S .

(@ £ is a function, and conditions (i) - (ii) hold:

(O) Dom R =Don t
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(1) Let v €Bom t be an arbitrary symbol and

n 9 Dom (tr)-1. Then:

R* ~ 1 & A**vy i-e*
RV E Arvigy * - * Pavir) -

Furthermore, if V € H, then

I:ez": ign 4tK'O A'tr(n%’ '-e-

'ﬂr: thr(O)X "'thr(‘n—[)’) —>—>4tr(n), i.e. relation R\/ is a func-

tion with domain

By Definition 2 61 is a t-type many-sorted model iff

et = «A>er = <ﬂ:r>Viani’t’\$l>’* i-e.
0= Fsrs 2 @G = R zponfes 2
the conditions (1) and (2) above hold.
NOTATION

Let Ct be an arbitrary t-type model and let r € Bomit™) be an arbitrary

symbol. Then the set R™ is denoted alternatively by V”~~, too. Thus

_ d
%W =<A, R> =« AS>S£S . <P\fvtﬁomit’\j\'>_

Denz g8 <™ Fonifiny” -

AS IS €S) is said to be the universe of the sorts S , and



is said to be the system of universes of the model Ul .

DEFINITION 3 (normal t-type model)

Let Ci be a t-type model.

01 is a normal model iff (& € S)AS To

That is 01 is a normal model if and only if there is no sort s such that the
corresponding universe AS is empty.

O

NOTATION

Mdp — {Ot: Ol is a normal £-type model 3} .
Md® — {oc : O1 is a i-type model } .

Note that Mod, and Mod 0 are not sets, but proper classes. Mod £ Mod o,

i.e. MOdV is a proper subclass of class IVth!e
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3. SYNTAX OF FIRST ORDER MANY-SORTED LANGUAGES
DEFINITION 4 (variables)

Let t =<S5,t",M> be a similarity type and let V : ©*S >> Rng V be a
one-to-one function. Let set RNg V be disjoint from any other set occurring
in this paper, e.g. Dom (& DRngV =0

Let <iI,S> € YS . Then
VS. (:j y&NI,s>)

Q

VA is called the i-th_variable of the sort _s.

Def ine

Vs = {uo : 1 € o} .

\S is called the set of variables of the sort s

Def ine

7 = v3

U
S6S

7 1s said to be the set of the variables.

DEFINITION 5 (set of i-type terms : TV

Let t = > be a similarity type, and let \& be a set of variables
of the sort S 65 . Let G be thesmallest sequence such that Dom G =S, and

conditions (i) - (ii) hold:

@ (Mes) 7 cGB) .-
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(i) Let ¥ £H and n = Dom(thH)-I.
Suppose (F1 €N) x.€fF (tF(E)) . Then
f(x0,...,Tn_1) € GCtF(n))

/
Obviously, there exists such a function ff, and only one exists.

Let define
™ =G (3

for every SES

T , is said to be the set of t-type terms of the sort s .

Is
_ 7 (o]
Let Ti = iim? ff, i.e. Tt =U

is called the set of t-type terms.

DEFINITION 6 (set of t-type first order formulas : F )

The set of t-type atomic formulas is a set AP :

3 r(x p--ox ) - V€D0m(t1) ~ H, n- Dom(tr)-1 and x €T‘; = for

'Is"ls

Af,u
every £5 n} U {(x=a) : x,a € r\1/‘ for s£S}.

The set of t-type first order formulas is the smallest set F.s’ such that

(@)  Aftc Ft.

Q
D) Let @\ € Ft and let V. €V for any seff and Then

{@A™), 1(, 3ul<p} C Ft .
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CONVENTION 3

Let Q. € F'G be arbitrary formulas and let \iB € V be a variable for any fixed

S0S" and iCcu. Then

@V P = 10cp A
@B = G VY,

(*vi) = L 3V8V -



4. SATISFACTION AND VALIDITY RELATION IN TARSKI'S SENSE

The concept '‘satisfaction in Tarski®s sense (notation: ) is a 3-ary

relation which connects a class of models, a set of formulas and the corres-

ponding set of valuations. In the case of many-sorted logic, considering
class of model Mod set of formulas F, and set of valuations P A)
* * SIS 3

(see Def. 7 below), the satisfaction relation is:

Mod® X F, x P TFA).
t * slS 3

LetosteMod j peF3KE P (A).
t * StS 3

Then b ,<)>,&> means, that the Vvaluation k satisfies the formula « In
the model 01, or the formula 4 is true In the model QLwith respect to the

valuation k. Usually, we write € <f&] instead of b k>, i.e.

PAb €W = b <& k>

(see e.g. Andreka-Gergely-Nemeti [II or Monk [9])-

By convention (sloppily), symbol b denotes the validity relation in Tarski s
sense} too (see Monk [9]).

The validity is a binary relation, defined on a class of models and on a

set of formulas. In our case:
o
b c MOdU X Fu.
Thus the sequence of symbols &b < means, that the formula < iIs valid iIn
the model OLor i1s a model of the formula <

We define the satisfaction and the validity relation in Tarski®s sense

for many-sorted logic in details below.
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DEFINITION 7 (valuation)
Let VI € Modf .

By a valuation of the variables into a model ur (shortly by a valuation) we

understand a sequence of functions K= <K > such that
s ses

S S S

That is kS € S) for every SES.

Therefore the set of all the valuations of the variables into UL is

DEFINITION 8 @& [KD)-

Let X € Tt,QU Mod; k € P’_ (®(AS))-

The meaning of the term x in the model Vi with respect to the valuation K

(notation: xd:[&]) is defined by recursion

() If x is a variable V£ € Vs (SES and 1) then
S e | = -
ve  I§EE Ks® €AY
(ii) If x is a term of the form /(tg, . Tn_g~ ” where /7 € H, n = Dom(th)-1 and
Vi £ M [X,x € Tll\/fN\ and Xgs " [K] has already been defined ] , then

.otr, , a W oC rin
cce> Tn_q t/\] - f (Tg [/\]> coe> Tn_'I" [k]) -
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DEFINITION 9 (satisfaction: ul ™ 9 [KD

let p €, a €Mod® , k ep ¢4 J).
* t SAS) S

"The valuation ® satisfies the formula ¢ In the model (notation:
Ql h «® [&]) is defined as follows:
1. Atomio formulas
(@) Let t,a € T~ Then
aH (T=a[f s TI[K =0 [K]

(ii) letr ? Dom(t’:I) ~ E, n = Dom(tr)-1 and £nji, € T*r(#> . Then

B
tekT tgllf] «<T, [, ... | [febe
2. Formulas
Let <P, ifEF,Band VZB€V .

Suppose W= @ [] and StE p [&] has already been defined Then
() E£)i™I<p[k]«(o6i]|=<p[fc]lis not true) .
Gi) o= @ A DK « (FXEF@ ] and Qt &Y [feD.
(iii) enh 3i~cp[fc] » (there exists a valuation g € P ( (AS)) such that
s £S ~ {s})k2 =g, and
kyr @- {W =9, @~ {Y and

ON= QgD -
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DEFINITION 10 (validity: Ol ¢ <D

Let Ol £Mod® , @ € P\

The formula @ is valid in the model P# or Plc is a model of the formula @ iff

01 H ¢ « £ P AA )))W\= o [K].
SiS S
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5. FIAST ORZ®? MAM-SORTED LANGUAGES WITH TARSKI"S VALIDITY RELATION
DEFINITION 11. (L 3 L°)

The triples
L d S| Vlodl. = d
T ’E! i an

L® = <Ft, Mod® j =

are said to be first order many-sorted languages.

O

Note that both languages have the same syntax and val Lty clLation,
however, L is defined on the class of normal t-type models (W) and

L® is defined on the larger class of empty-sorted t-type models (Mod®) .
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6. SATISFACTION AND VALIDITY RELATION IN MOSTOWSKI®S SENSE

Below we define a new validity relation which is different from that of
Tarski. This validity relation is defined also by defining first satis-
faction of formulas in models at valuations, but the definition of
valuation is different from that of Tarski. Here the valuations depend
on the formulas themselves. The crucial part of the definition of the
satisfaction in Mostowski®s sense is that one defines the set of valua-
tions for each formula ¢ and each modell, val(p.t#,) gives

evaluations only of those variables which freely occur in cp.

DEFINITION 12. (var @))-

Let € =<5 t7j H> be a fixed similarity type. Let a €T UF ,and
Q _ _
var(Q)s £V . (s €S). Let us denote the set of free variables occurring
in a by var(a .
d ) S _
var(@) = <var(a)0- S €S> €7 (D tj.
The definition of var(a) is given by a recursion below:
1. Terms

(i) Let a €V be a variable of the sort S and let a be denoted by

vf(i € ). uar(uf) Cvils e g g {<s, {i}>}.

(ii) Let a be a term of the form (X typ Wwhere § tH,
n = Dom(thH)-1 and (Yi € n) (t"B € Tl’l\’\" and var(va has already

been defined). Then

var (f( .e] n—l)) = <U{var(T. .)S: 1 fn}: S £S.
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2. Atomic formulas

() Let X, a € T8.
var(X = 0) d var(xX) U var(o).-

(ii) Let r € Dom(tj) ~ Hbe a relation symbol, n = Dom(tr)-1 and

frisn T. €Tf(i)

Then
var(r( N U
isn var (X .)-
3. Formulas
Let o, » € Fgand V? € \B.

G
Suppose var(t.p) and var(\JO have already been defined. Then

@) var(\p) = var(<p).
@) var((p a & <:dvar(q>) U var(ty).
Gin var@v e D) - = (5

DEFINITION 13.  (val(x,<%))
Let T =u {T8 - s €5} .

Let T € T and ©b € Mod® . Then

vaitjve) SRVAOOG) - ¢ e &
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DEFINITION 14. (set of valuations of formulas: val @}HD)

Let @ € Ft, Vt 1 Mod® .
Let us denote the set of valuations of the formula (p into the model Wj,

by val ((PJ\0)-
valh.tK) Sd varM(s)

DEFINITION 15, (T[K]

Let T 1 T ,3C1 Mod®, k € val(T,W,).
The meaning of the term t in the model Mwith respect to the valuation K

&
(notation: x[fc]®) is as follows
(@) Let T=VF; V2 € \S

S
V

Sy k@ G ® €A

(ii) Let t be a term of the form FIXQ» eee» Tn where ¥ £H,
n = Dom(tF) -1 and suppose
¢ 1In) (t. iTt’\ @ such that

. b
(ig € val has already been defined”].

Let k € val(§(ty, ---» %, )W)

Then

i+ ﬁg f <T$[<kc,r var(jo/gsz siS >M] i i
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DEFINITION 16. (satisfaction in Mostowki’s sense: F KD

v € H, 0t€ Mod® 3 & € uvazfop
The valuation # satisfies the formula ¢ in the model t (notation:

OC YIfc]) is defined as follows:
1. Atomic formulas

(@ Lletl, a €

- d ex a-
GE = a9 g« T[kg T var(i)IM = a[ks h var(@)IM .

(i) Let r € Dom(t™) ~ E, n = Don(tr)-1 and

M <n)T. € Then
(0]1%3 eeej N II(]l’
«, _ W.
<to[k h var(io)ﬂlw.] H [k P Var(ln)]M-> €v .

2. Formulas

Let ~, X € F and VFE Vs .

Suppose OC|s \Hi7] and 6(]=X[?Z] have already been defined for all
valuation g € val(ty,Gt) and h € val(X,) . Then
@ Oi= 1\ 6 (Ei™ M1 is not true).
(i) a M t AXIfE] « Fithw*  «0010] and JI X[Z;P i*zrQO])-
Gdii) o1~ 3 V? K] » (there exists a valuation < € yaf(\i/,0£) such that
K=9g[ (varqy) ~ {si {i}> and

0f ~ A[~D) -
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DEFINITION 17. (validity relation In Mostowski s sense: &t F qj
Let ¢ € P and € Mod®.

The formula @ iIs valid In the model % ~notation: Of. | qj is defined

as follows:

KEe» (K eval @) -otF oK -
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7. FIRST ORDER MANY-SORTED LANGUAGE WITH MOSTOWSKI™S VALIDITY RELATION

DEFINITION 18. (many sorted language L)
The triple

Mod®,

is said to be the first order many-sorted language with validity relation

in Mostowski®"s sense.
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8. BEXAVPLE FOE DIFFEEENT VALIDITY CONCEPTS

Let €= <S5 H> be a fixed similarity type such that S = {&, 28 2}

= {<r, <0, 2»}, H=0.

Let €Jce (Mod®°~ Mo ) be a non-normal empty-sorted model, defined as

follows (Fig- 1):

Figure 1

01= <4, R>= «AS> > such that

00
s65° " “reDom(L)

A=<AO, i 47 where

Ag = (@, M., A2=0, A2= {a.

2= {<Tj VCE} where V«x= {<a3 o}

Consider the following formula <: *<Vjtvf)

Claim

(i) a Ep 1i.e. the formula ¢ is valid in the model W- in Tarski"s sense,
an N i.e. the formula ¢ is not valid in the model Cfc in Mostowski”™s

sense.



PROOF of (i)

Adeplim eP@A s i9&* ¢[K].
PCA3): s €5 = (\) X ("A2) X (a2) =

= (@ b x A x rfc; =

= fa, BY) x 0 x - 0J i.e.
the set of all valuation functions is empty. Thus

(K € @ st= glA] is true, so CvE .
QED of (i).

REMARK 2
We can prove Cl=E (49 in a similar way. Itn nst m BF a 19

which is a logical paradox.
PROOF of (ii)

QA\s ip « m € p<Var((NHD(s)A ; 8 £ 5>; fx[= <p[fe].

P<uar*rcp;rs;4 . s €5>= rU}{a, m ; xrV x r{I}C} =

= {<, a>, <2, £} x {0} x {d3 a>} = X.
The set of all valuation function K has two element -
K=4{kj g} where k=« 1, a, 03, a»
g=«1l, b>, 03<1, o» .

Remember, that in the present example @ is equivalent to the formula

r(Vj, V
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I’(’\/é? VZZ)[?(] v(a, 0), and (@, @) is true, since «X, 0 £ I’Ut

r( 2, i2 )\d r(, a)j and r(b} @ is not true since <b3 0> £ I’$g-
SoOQt I .

QED of (ii) .
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9. LOS LBwWA
THEOREM 1 zjenevalxzation of Los lemma)

1. tos lemaa holds in Mod with Tarski"s validity, that is tos lemma

holds for <, Mod |=. In more details:

Let | la an arbitrary set, Ut€ “Mod, let U be an ultrafilter over
and let ¢ € P be an arbitrary formula. Then the following propo-

sition (i) and (i) hold:

@ PUMNUNh P<cYZUD M eV h ¢ .

(Gi) 1t pep P (4. ;, i.e. let KL €P A. Dbe a

ia sZS s€S

valuation intor"., i.e. (Vi fU s @Sk. €.

<t (M €sjFr: 9>pP _A, /U
s <t s

<= «PA_JS(I‘]): X£I>/ -n € @

>

Let kK = <k_S: S @S> be a valuation into VUW/U. Then
PUU/U h 4ERj « GY 6 V)(U € YIL. € @[C]-

2. tcs lemma does not hold in general for <y Mod®, f=, namely

ISj < - @ Los lemma holds for K78 M , En

3. Los leiroma holds in Mod® with Mostowski®s v..Liditv, that is tos lemma

hold for <F+} Mod® , |=.
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PROOF

1 s proved as Theorem 3 in Markusz [8].

2. First we prove direction«., that Is we prove |S] > « - hos lenma

does not hold for <F M0d°4_}=>-

Let T=«, 0, O
Let “Mod+ be, such that for every N € g

vi — " jsaliGg where
(M 5 nNA - {0} and (Ve > n)AnS:O- See Fig. 2

Ao A, A, A k ﬁ/al?j u
s 5 & © An,o /\
0 0 0 5 i
f /] ,® T - VAHM é ¥
; 2 2 # 2 ® i 2 .
4 L ¢ :¢ . . ]
,_/Ah.h
n é n ¢ n 4 h s n [
h+4 d ht4 ¢ ht/ d n+4 ﬁ ey ® 7
sk T T
0 ) .

Figure 2




Let U be a nontrivial ultrafilter over ©. Then

PfdW= «{(?}; s € (04 where
nEto

0=<0, 0, G ..>

Now

Pcrovz 3v® v® 1(V° =v°) and
(0P34 o]

fin €6~ £3VR Vg 1 (VJ=V2 N since any P €

is valid in Tarski"s sense in every model which has at least an empty
universe. We have proved direction <

It remains to prove direction =. To this end assume |£] < T
Let «&= P_W._./U be fixed with an ultrafilter U.

5
Let 7= U £J: A AL £ 0O}

S€5

Case 1: Y £ U.

Then (3s € S)BS = O since S is finite.

Then Thk:F_L_ and (M €3 -~ Y) Th(&-.'s) = F.’S
I ~Y £u.

Hence Los lemma holds.

Case 2: Y € U
Then &= P ?X./U+ where # is the restriction of U to Y, that is

Ut =XeU XcVYh



Now no sort of Ipand (Vi € Y) no sort of M is empty. Thus the classical
version of Eos lemma can be applied e.g. using Andreka-Nemeti [3] or
Markusz [8] -

QED 2.)

3) Follows from Andreka-Nameti [3], e.-g.- see a similar proof in Andreka-

Nemeti [A]-

QED Theorem 1.
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10. THEOREMS OF AXIOMATIZ_ABILITY

10.1. NOTATION

Having two different validity concepts we should introduce new notation for
the well-known metafunctions Th (“theory of*) and Mod ('model of") . Let t
be an arbitrary similarity type. Metafunctions TH M and I\Itd._M are defined via

Mostowsky validity [ ;

M c I\/bdiu) TAMUO
M £ F) ModK(D)

(<p€FIS K Fo}
Mot : UTE T3}

and metafunction MocF and TH are de ined via Tarki style validity €£:

(M e Modp ThTK) = weF K € 9

(\/T£F,U) Mo<f(K) = {\/t€Modi I e£ € T} .

Note that MocF and TiIF are equivalent to metafunctions Mod and Th, respectively

see e.g. Markusz [8]

Let =

A~
I

K is an iff MocF tiF k and

ModFT\FK .

K is an iff K
<

Let and K — Mod®. We define metafunction 1 = Sb(Mod®)-+Sb(Y)

— Ft Is
such that

(K E Modp W(E® =Y b T(MEK)

is defined in a similar way and metafunctions F and Y are equivalent.
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We recall the definitions of sets of formulas Eq ,AT, Qeq , Qaf 3 Ude 3

Uda , Uhf" Unwv £ F (see Markusz [8]):

Ls

EqQ — (<Tjo> :Tjo €T } (equalities)

AFt &4 m=* ....t~): R=*DM~ -~ tzand v **Tt®-1 * Tt} u

U {(t=0): t,a€T"}. (atomic formulas)

Qg = {(Aye. e) :newand (Vi<n)e €Eq }

(quasi-equalities)

af = i2.(x . R .- :
Q L4, 15 & ~LECRY-1 ROy -
N3k € oj (Vi S n)i>» € Com ~ and
CeEem@E@7 € tRILI. . Ff and VIS K a. €213} .
(quasi atomic formulas)
Ude-= v - i<n . £ and N € w
{68 M<me.£H }
(universal disjunction of equalities)
Uda, {e¥ 8- Vi < na, ‘{-':AFt and N £ w}
(universal disjunction of atomic formulas)
unf, - .V 0.: at most one of the formulas 9. is an atomic formula
i <n Z z
(W < n)0. 1is an atomic formula or negation of atomic

formula, n € w}.

(universal Horn formulas)

|

o

unv @ is a formula without quantifier }.

{»

(universal formulas)

According to the definition of the metafunction f, Eq , Af, Qeq43 Qaf3

UdeM3 Udf3 Uhf3 Uhv are also metafunctions.
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The definitions of many-sorted operators

H (weak homomorphic image)

(strong homomorphic image)

(weak submodel)

w
(strong submodel)
P (direct product)
?r (reduced product)
Up (ultraproduct)
Uf (ultrafactor)

see in Markusz [8]-

Let K£ Mod,Q

WK = (PK~ PO UK.

We recall the definitions of the metafunctions

5+ and
w S
St = {od, NS K :Kc Mod}

n
wt
I

Moy N S K = K& Nod} -
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THEOREMS FOR NORMAL MODELS

THEOREM 2 (axiomatizability theorems for normal models

PROOF

D
2)
3
4)
5)
6)
N
8)

Tarski"s style validity)

U6 Up = Mod Th

HW§I+P = Mod Eﬂ1

HUJS-EP Mod Af

SJSr P Up = Mod Qaf

S* P Up = Mod Qeq

SJSr P+Up = Mod Unhf

I-{NSWUp:ModUde

H s+ Up = Mod Uda

W s

S§Up=ModUnv. -

Mod~r

The proof follows from Theorem 1 and 3 in Németi-Sain [11].

QED

with



10.3. ' THEOREMS FOR EMPTY-SORTED MODELS

THEOREM 3 (axiomatizability theorems for empty-sorted models Mod® with

Mostowski style validity)
(O} HW SS PA = Mod4 Elq4
Gii) S, = S,PUp = Mod4 Qeqy

D) Hy Ss Up = Mod4 Ude4
(iv) Sg Up = Mod4 UnvM

PROOF

The proofs follows from Theorem 3 on p. 562 and Section 5 at the end of pp.

570 - 573 of Németi-Sain [11]. See also proofs in Sain [12].
QED
REMARK 3

By using Nemeti-Sain [11] axiomatizability theorems similar to Theorem 3

3 3 T
S. Up (with 6 {s,w} arbitrary chosen) and the corresponding infini-
€t

can be obtained for all the operators Hi S. Prj S. Prj H_, S3 Up ,

tary versions for Hi 53 PF U. S. and also for UA. 83. % where

P™ denotes fc-complete reduced products. Next we show that THEOREM 3 cannot

be generalized to E.
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THEOREM 4

Let let KcM . H.S.P* K P2’KH .S . K

e ds,w} ,and le c. OdE VSq . SX Sl 3 Up

and S . Up Kare not EC?"a (i.e.they are not axiomatizable in €) for
RV 3

some K (this holds even for algebras).
PROOF

Let t be arbitrary such that 0,1 € S. Let (X dMod° be such that
AQ= 0 and A1= 2. Then MocF ThT{QL} = {& : (3s €5) Bg=0} = L.

E.g. there is<€ dL with § 3 and C,lz 0. Cleaky £ 1 '\7!/ SWPr{g£}
(We note that @Rt d P {ft} (= € HLf_ = 1).

QED

PROPOSITION 5

Let J51 >1. Then SSH) K is not ECK for some # .

PROOF

Let a,s €S with a » s. Let 4 be such that AU :SA = 0. Then

3& AdMod™ Th™ fig such that Sg = 2 C9 =3and 5 =S = 0.

Clearly A ,X £ 3Up K

QED
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THEOREM 5

Even if we assume P2 < ® , the algebraic characterization of EC® s as well
as the Keisler-Shelah isomorphic ultrapower theorem fail for [E (i.e. for
Tarki style validity). In more detail:

Let t be arbitrary with I5] >1. Then
@ @K cModp K = Ui UP K £ Mocf ThT K.

(D) @MV L,Ey € o) Th?0t = TiK Jr but they have no isomorphic

ultrapowers, i.e. Up{®} N Up{&} =0 .
Moreover, Ul Up Gio UR UpJp = 0, too.

PROOF

(i) Let t and S as above.
Let S,q $S with s i g- (They exist by the assumption IS >1).

Let K ={a €M0dt°:AS:O and Aq =1}.

Then K =K. Since TIXK - P we have (3, £ € MocFThK) = 2 and Cg
and £5 = 0 and = 0 are allowed. Clearly £ K.

QED of (i).

(ii) For these models we have Jy Db that is T}2ly - P = . But

€ (XfcCch > =0 and W |=2) and
t € UFUp jr >»(Cs|] =3 and ~ = 0).

Hence UFUp j?D LITF uD£ = 0.

QED of (ii).
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PROPOSITION 2

H S PK andH S P K are not axiomatizable (neither in l{_. nor in {z)
S S W W
for some Z. There is such a Z without relation symbol, too. In other words,

HS SS P K is not an E:A even for algebras.

PROOF
Completely analogous with that of Lemma 3 of Section 3 in Andreka-Németi [2].
Actually the quoted abstract model theoretic Lemma 3 implies the present

proposition. Hint: Let t be arbitrary with S infinite and

zZ = {Vi€ModtO: (38£S)AS=0}

QED
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ABSTRACT

Finding the appropriate form of knowledge representation 1is
an essential problem of most Computer-Aided Design (CAD),
Computer-Aided Manufacturing (CAM) and expert systems. In
this paper i1t is shown how the tools of many-sorted logic
can be used for knowledge representation and a practical
application of this method is presented. After giving pre-
cise mathematical definition of many-sorted models and many-
sorted classes of models, we iIntroduce some many-sorted
operators such as weak and strong submodel, weak and strong
homomorphic i1mage and direct product. The main point of this
paper i1s to show how one can give many-sorted operators
practical (technical) meaning. All the abstract mathematical
concepts are 1illustrated by practical examples from the area
of production engineering In a house building factory. A
small example shows, how naturally and easily one can trans-
fer the knowledge represented by logical models to a PROLOG
program using logic programming.

Keywords: knowledge representation, logic programming,
many-sorted logic, CAD/CAM.



O. INTRODUCTION

As the popularity of logic programming IS Increasing, more
and more computer-aided/computer-manufacturing and expert
systems are written iIn PROLOG or in other logic based
programming languages cl]. In solving complex engineering
problems the first and very important task i1s to find the
form of representation of engineering knowledge. Among seve-
ral knowledge representation tools (semantical networks,
frames, etc.) it iIs mathematical logic which is the most
appropriate to logic programming. In this paper we show how
the many-sorted model theoretical concepts can be used for
modelling certain engineering abstractions.

The fundamental difference between many-sorted models and
classical logical models 1iIs that the universes of many-sorted
models are not homogeneous but consist of disjoint sets of
different sorts. Thus, when defining the types of functions
and relations, we must give not only the number of arguments
but also the sort of every argument. These models give us
better and finer modelling possibilities than classical
models c7.

Many-sorted logic is used not only for knowledge represen-
tation but iIn several other branches of computer science. Its
mathematical formalism is applied e.g. for logical foundation
of computer-aided problem solving [2], for definition of
semantics of programming languages, iIn the theory of program
verification [4] and of data bases :3]. Yet there are several
areas of many-sorted model theory which are full of unsolved
problems. One of them is the question of the so called "empty
sorted” models. In most published works (see c5) all the
models having a sort with empty universe are excluded. In thi
paper we omit this restriction, because these empty-sorted
models can be well applied for knowledge representation (see
Section 2.3). Another paper is to study the theoretical
problems of the class of empty-sorted models c6o.



This paper consists of two parts. In the first part
(Section 1) we define many-sorted models, normal and empty-
sorted classes of models, and iIntroduce some many-sorted
operators such as weak and strong submodel, weak and strong
homomorphic image and direct product. In the second part
(Section 2) we show how one can give the abstract mathema-
tical concepts practical meaning in knowledge representation
of a CAD/CAM system. In previous papers :7,8] we have
introduced an architectural CAD program written in PROLOG.
This program generates different versions of ground-plans of
apartments according to the special needs of the customer.
Then 1t designs a multistorey living-house. The architectur-
al foundation of this program guarantees that these apartment
houses can be built from prefabricated elements. The next
step towards a CAD/CAM system is to design a production
planning program for a house-building factory. All the
examples taken from this area i1llustrate a new kind of know-
ledge representation tools and they could be very useful for
a real application.

1. MANY-SORTED MODELS AND OPERATORS

DEFINITION 1 (many-sorted similarity type)

A set t is said to be a many-sorted similarly type if t iIs a

trlple <tO 1 2 where tI:Dmﬂ ti>1gb)+ and t2£Dom tr

NOTATION

Generally t 1is denoted by S and t™ by H, so t-<S,tMH>. |In
Definition 1

tb:S denotes the set of the sorts (t0)+=(3)+ the
set of all finite nonempty sequences of
elements of S,
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t] denotes the arity function,
denotes the set of function symbols,
DomftM)1# denotes the set of the relation symbols of
type .

REMARK

Let t be a similarity type and let re-Domth

tr-t(n)-tj @

IT reDomt™Mtf, i.e. r is a relation symbol, then Dom(tr) 1is the
number of the arguments of the relation symbol r.

For example, let t=<S3t"3H> be a fixed similarity type such
that S={p3q3k}3 t ={<|j,<q,p,fe>>, <f3<q3k>>}, H={f}. Then
t"=<q3p3k>3 Dom(tr)=3={03132} and tr(0)=qg3 tr{l)=p3 tr(2)=k

Let ngDom(tr)—l. The natural number n denotes that the relation
symbol r has n+l argument, for Dorn(tr)=n+1_. If fsH, i.e. f is a
function symbol, then n= Dorn(tf)-l 1is the number of arguments
of function symbol f.

DEFINITION 2 (@many-sorted t-type model)

Let t be a many-sorted similarity type. By a many-sorted t-type
model we understand a pair CX=<A,R> such that (1), (2 hold:

(1) A i1s a function such that Dom A = S.
(@ R is a function,, and conditions (t), (xx) hold:
() Dom R = Dom tz_. 3
(E=£) Let reDom t”™ be an arbitrary symbol and n=Dom(tr)-I
Then: R _S. A i.e. RrSA XA’Ctr)'n

r szl),n tryx)
Furthermore, 1if r&fH , then

gy Ao teryny s 1o R By Ay PP an |
i.e. relation R\ is a function with domain

Dom (R} = w&n Avﬁlﬁr)':“]x'

ey X
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NOTATION

Let Vt be an arbitrary t-type model, and let reDomCt”) be an

arbitrary relation symbol. Then set is denoted by r™ , too.
Thus
d eit
C=<A,R>=<<A > , <R > >S_<<A > , <r > >
s S&S v reDom(th) 3 s«S reDom(t™)

AS(S&S) is said to be the universe of sort s and O:A:S<A >seS

is said to be the system of universes of model

DEFINITION 3 (normal t-type model)

Let UL be a t-type model. Vt is a normal model iff (VseS)A f 0.
That is Ct is a normal model if and only if there is no sort s
such that the corresponding universe AS is empty.

DEFINITION 4 (classes of many-sorted models)

a
Modta{ :a is a normal t-type model}.
Mod® ={t)t : CC is a t-type model}.

Note that Mod~LMod3, i.e. class of normal models Mod™ is a
proper subclass of class of empty-sorted models Mod3

The syntax of the Tfirst order many-sorted language has similar
rules as that of predicate calculus. The definition of set of
first order many-sorted formulas F can be found in [5,9:.

The connection between many-sorted formulas and models 1is defined
by the "satisfaction™ and "validity" relations. In this paper we

use the validity relation in Tarski’s sense 0 c¢ Mod3 X
defined in [9: .
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DEFINITION 5 (first order many-sorted language)

The triple L -<F , Mod”~, > is said to be a first order many-
sorted language.

DEFINITION 6 (weak submodel)

Let «i , Mod”™ be two models. & is a weak submodel of model

(notation: & eSW or’\—cwfjﬁ) iff

(1) (VseS)BFiAs
(i) (Vr€Dom (t ~))r r*.

DEFINITION 7 (strong submodel)

Let 0t , & € Mod®. is a strong submodel of model 'Ct
(notation: S{"0 or A- CJX ) iff

() (VscS) BSAgQ -
(fF)  (VrebDom (tN))C(n=Dom(tr)-1) = bH):*

DEFINITION 8 (homomorphism)

Let @ ,€r"£Mod”~. By a homomorphism from 'O into we understand

a sequence of functions /=</ > such that
? se.S

i) (vseS) fs : As + Bs
(/ii) (VreDom\;t?)) V<ag, ... ,an>srA )<ﬂ”(r0)—.(aO Jtr (n) @, )>€rn.
NOTATION

f : X & denotes that / is a homomorphism from -~Ot into & .



DEFINITION 9 (weak homomorphic image)

Let \C, h- € Mod”™ . jy is said to be a weak homomorphic image of
model \C

(notation:Jer\(NAW) iff

® there exists a homomorphism +
(H) (VseS)Rng /s=Bg.

DEFINITION 10 (strong homomorphic image)

Let "OCjjk"~Mod™ and f :&>m<& is said to be a strong homomorphic
image of model "C

(notation:fy £ Hq 1I®0) 1ff

® J’\,e\\W{VC} (i.e.& is a weak homomorphic image of Ct).
@Gi1) for every reDomft®) if i=Dom(tr)-1, then

IA:{<5tr{o)rao) ]Etr(n) (an)>:<a0, ,an>er’\ b

DEFINITION 11 (direct product)

Let 1 be an arbitrary set and Vt£"M0dI°S By the direct product
of models (tel) we understand a t-type model
&=<<Bg>e8 » <™ rapom(t )> such that

(®  (VseS)B =P<A. _:tfl>.
@Gi1) VrebDom(t™) if n=Dom(tr)-1 then
N N *
Vbe(\Btr{b)'X'"XBtr{"n)aLber 4:*—(Vte|)<£06t) ,---,b (©)>€ r *3

The direct product of models Vi. (tel) is usually denoted by

Ptf or R '
tel
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2. APPLICATION OF MANY-SORTED MODELS AND OPERATORS
2.1 Similarity type

Let us consider the world of a house building factory where
prefabricated elements for apartment houses are to be produced.
Our aim is to describe this world, formalize its rules and
write a computer program which optimizes the production
planning. We shall represent the world of this house building
factory by a class of many-sorted models. The type t of the
models is defined as follows: t=<S3tj3H> where

S%p>3fr3w3p3wb3d3sf3sw33p3sd3a}

© - numbers, of ~ sequence of front panels,

fr - front panel, su - sequence of wall panels,

w - wall panel, Sp - sequence of floor panels,

p - Tloor panel, sd - sequence of doors and windows,
d - door or window, a apartment

are the sort of type t.

H={f2> 5N are the Efunctions>
Dom 11\HU{r13r2,r2,r4,r5,r6,r?) are the relations,

11={<f o f , sf» 3<f2, <w3sw3sw » 3<f*3<p3sp3sp>>3
<f.s<d3sd3sd » 3<f5, <sf3sp3sd, sw,wh3a>>3

<vi*<fr>d>>, <r2><fr>d>d>>><r3*<fr >>3<r4, <w3d » 3
<rb5, <w3d3<d>>3<r6, <wdw » 3<r?23 <fr3w>>] .

Functions f4, f2, fs, f4 construct sequence of front panels,
floor panels, windows and doors, respectively. Function f.
constructs an apartment from the sequences of front panels,
wall panels, fTloor panels, windows and doors, and a waterblock
(Figure 1). Let us have a simple example with seven relations
only, which, obviously, should be extended in the case of a
real application.
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r - a front panel with one opening, connected with a window,
v0 - a front panel with two openings, connected with two

windows,

a full front panel (without opening),

v4d - a wall panel with one opening, connected with a door,

r0 - a wall panel with two openings, connected with two doors,
Vg - two wall panels have the same length,

v/ - the length of a front panel (Figure 2).

Figure 1. Many-sorted functions Figure 2. Many-sorted relations

2.2 Homomorphia image

Let us consider one of the apartment variants designed by our
computer program in C81 (Figure 3). Figure 4 illustrates all the
prefabricated elements (panels) which are needed for the

apartment in Figure 3. The corresponding many-sorted model repre-
senting all the relations we know about these elements is denoted
by tteMod”™ iIn Figure 6. There are many elements iIn this apartment,
which are quite alike. We should know which the different ele-
ments are.

The elements are different if their dimensions are different, or
their dimensions are the same, but one of them has some openings
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for windows or doors, but the other has not.
This "definition of being different”™ can be
formalized by a homomorphism h from ” into
a certain model This model ModO has
the elements we have defined as different
elements, and all the relations holding in
¢ hold on the corresponding elements in&a.
It is easy to see by Definition 10 that %y is
a strong homomorphic image of model

twin Vi
ber living study
room
bath
k- Vwi
kit-
chen
double N
bedroom
4

Figure 3. An apartment

Pi

by
bs by
be

by
by

P2 Pi

Pi

Figure 5. Different prefabricated elements for the apartment in Figure 3.
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Let us fTormulate the concept of "being different'” for the front

panels iIn a many-sorted formula 9:

p: Vvfr vr (Vv u“ (length3 ~length(vr3 *\vr=v*E))]v

\Y (Full W )™window! (y ™ yY v window™ (VA 3v™, v Dp > L (Y =)

where relations r™, r”3 r4 are denoted by window!, window2 ,
full and length, respectively. A many-sorted variable is denoted
by Vig (seS and fel).

Obviously, & Fp and O op. Geeerally, for every Mod’\B,E Fo,
if there exists a model #feMod:/‘_ such that LettéAft}.

We can represent formula @ in PROLOG programming language in a

very natural way:

differ (X,Y) = length (X,L!),

length (Y,L2) ,

LI + L2.
differ (X,Y) <« full () , window (Y).
differ (X,Y) ® full (), window (X).

window (@ « window! (Z,C!) .
window (2 - windows (Z,C2, C2) .

Strings beginning with capital letters denote variables (e.g.L!),
the other strings denote constants. Note that we used one-sorted
variables, but this does not make any difference, since the
pattern matching mechanism built into the deduction system of
PROLOG automatically fulfils the requirement that only the terms
of the corresponding sorts should be substituted for each other.
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wb fr
sd sf

Sw
Sp|p

o0 ?
py P2

Figure 7. Weak and strong submodel

2. 3 Submodel

Let us consider model & 1in Figure 6, i.e. the representation of
all the different kinds of panels needed for the apartment in
Figure 3. A production engineer in the house building factory
should schedule the manufacturing of elements, considering the
different technology of different production units. One unit can
manufacture full panels only, and the other panel with openings
for windows or doors. In Figure 7 mod,el £° £ Mod™ represents the
elements produced by the TfTirst unit, and model eMod® repre-
sents the elements produced by the second unit. Note that both
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rland L" are proper empty-sorted models, since e.g. C'

C*b, Cd are empty, and , C’b are also empty. It is easy to see>
by Definitions 6, 7, that £' is a weak submodel of & and t" 1is

a strong submodel of fy.

2.4 Direct product

Let us study the connection between wall panels and doors, con-
sidering three points of view: materials, manufacturing, and
architecture. First of all we define a similarity type t' which
is very simple: t'=<S3t'yH> where

7 Jn 3
S={Wjd}3 t*={<r6,<w,w>>3<r4,w,d»}s H=0

P Otl=&-
163

<zl.W1.€‘>.
O <2, wWie0 e
<2’|w4183>
<§4- W2)el;.\\
1r»W2,e W\
O <z2,W3,e§>. _‘\\\
<Z.2, yg,e:;)’

Figure 8. Direct product

1. From the point of view of matherials two*wall panels are to be dis-
tinguished: concrete with strong reinforcement (s?), and
concrete with weak reinforcement (s2). Doors are of two
qualities: main door made of first class wood (s®) and doors
connecting rooms within the apartment, made of glass and
second class wood &593 We define a model t)toe Mold’\ , which
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represents these elements and the relations on them (Figure

8).

From the point of view of production planning we consider

the

Thus

dimensions of wall panels and their openings for doors.
in model a 7eMod”™ , there are three elements of sort

w: Wj, w2, wr . Wall panels w* and w* have the same dimensions

(say big), and w® has an opening for a door, but w* has not.

Element Wi has different (say small) dimensions from that of

Vi2

and w» . In model 012 we have only one door. The essential

feature of a door iIn this model 1i1s its dimensions.

From the point of view of architectural design vie should con-

sider the arrangement of openings for doors in wall panels.

Each of them has the same dimensions but the first has an

opening for a door (e ), and the second has an opening for a

door, too, but with a different arrangement (e”) , and the

third i1s full (") = The essential feature of a door in model

tX2

is the design of the door.

Let us define the model f)tQ precisely:

CE=<<R s3es—* T FeDbm 12> Wwhere Ay, ={z1.20}, A, J={sSp 58

1K 6 o
rR°={<21,21>,<22,22>}, 14 °={<1{,§7>,<29,59>,<29,5{>,<29,S,>

The definitions of models $ , &2 can be given similarly (Figure

8).

Let us see the direct product of models C% , 0% , O :

g

Npn — — N
B3 P —& =<Be g <IN 3dhm r2 > Where

B =
W

PAL , 1.e. the set of all the sequences with length 3
les  1LW of sort w (e.g. <z ,w2.,e >).
p AN i.e. the set of all the sequences with length 3

of sort d (e.g. <s ,c3,0>)-
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The elements of direct product X represent complex information
from all the three points of view at the same time. For example:
g=<z”,w”,e2> is a wall panel with strong reinforcement ("),
with dimensions 4.8x2.7x0.25 (w”), and with an opening for a big
door, being in a distance of 1.2m from one side of the panel
Ce2) . k=<sj,C2,9> is a door, which is made of first class wood
(s™), with dimensions 0.95x1.96 (c”), and with design denoted by

g_

Direct product & is a model representing all the possible t'-
type relations on the complex objects of our world. Let us have
some example:

« WV - </ "Ve2>frs > since
M
<zJ}z:>ers ° , <wd,wo> rfi 1, <e?,e9> rt 2

&
But <<z2 2,e2>, <z2,w3>.>3Ar 6 , because in model
, OL
<w2,w3\r6 J (see Definition 11).
Another example:

<<zl ,w2,e2>, <s2,c3,0>> r4b and

<<z2 ,w2,e2>, <s2,c3,g>

It means that the wall panel <z2,w2,e2> may have either a main door
<s2,c3,0> or another door <s2,c3,g> (Figure 8).

3. ACKNOWLEDGEMENT

I would like to express my appretiation to Hajnal Andréka, Istvan
Németi, I1l1diké Sain and Dezs6é Holnapy for the numerous helpful
and inspiring discussions we had about this subject.



4. REFERENCES

Cl: SZEREDI,P., SANTANE, E.: PROLOG applications in Hungary.

In: Proc. "The Fifth Generation: dawn of the second
computer age." London, 1982.

C2] GERGELY, T., SzZOTS,M.: Logical foundation of problem solving.
Proc.11_IMAI, Leningrad, Repino, USSR, 1980.

C3: RONYAI,L.: On basic concepts of query language SDLA/SET.
Working Paper 11/24, 1981, Computer Automation Institute
Hungarian Academy of Sciences.

[4: ANDREKA,H. , NEMETI,l., SAIN,l1.: A complete logic for
reasoning about programs via nonstandard model theory.I-11.
Theoretical Comp.Science, Vol.17,1982 Part 1: No2, pp-
193-213, Part I11: No3, pp- 259-278.

C5: MONK,J.D.: Mathematical logic. Springer Verlag 1976.

C6] MARKUSZ,Z.: Different validity concepts in many-sorted logic.
Manuscript, 1982.

[7: MARKUSZ,Z.: Knowledge representation of design in many-sorted
logic.
In: Proc. 7th Int.Joint Conf. Artif. Intell. Vancouver,
Canada, pp. 264-269.

c8: MARKUSZ,Z .: Design in logic.
Computer Aided Design, Vol.1l4, No6, 1982. pp. 335-343.

[9: MARKUSZ,Z .: On first order many-sorted logic.
Manuscript, 1982.



1986-ban

179/1986

180/1986

181/1986

18271986

183/1986

18471986

185/1986

186/1986

187/1986

eddig megjelentek:

Terlaky Tamas: EQgy véges criss-cross modszer és
alkalmazasai

7. -
K.N. Cimev: Separable sets of arguments of functions
Renner Gabor: KoOr approximacidja a szamitdgépes
geometriai tervezésben

Proceedings of the Joint Bulgarian-Hungarian Workshop

on "Mathematical Cybernetics and Data Processing”
Scientific Station of Sofia University, Giulecica
/Bulgaria/, May 6-10, 1985 /Editors: J. Denev, B. Uhrin/
Vol 1

Proceedings of the Joint Bulgarian-Hungarian Workshop

on "Mathematical Cybernetics and Data Processing”
Scientific Station of Sofia University, Giulecica
/Bulgaria/, May 6-10, 1985 /Editors: J. Denev, B. Uhrin/
Vol 11

HO THUAN: Contribution to the theory of relational
databases

Proceedings of the 4th International Meeting of Young
Computer Scientists IMICS"86 /Smolenice, 1986/
/Editors: J. Demetrovics, J. Kelemen/

PUBLIKACIOK - PUBLICATIONS 1985
Szerkesztette: Petroéczy Judit

Proceedings of the Winter School on Conceptual
modelling /Visegrad, 27-30 January, 1986/
/Editors: E. Knuth, A. Markus/



188/1986

189/1986

190/1986

191/1986

Lengyel Tamas: A Cluster analizis néhany kombina-
torikail és valdészinlségszamitasi problémgja

Bernus Péter: Gyartérendszerek funkcionalis
analizise és szintézise

Hernadi Agnes: A tipus fogalma, és szerepe a
modellezésben - Absztrakt adattipusok alkal-

mazéasanak uj elveir6l -

VU DUC THI: Funkcionalis flgg6séggel kapcsolatos
néhany kombinatorikai jellegl vizsgalat a relécid
adatmodel lben



Készult az Orszagos Széchényi Konyvtar
Sokszorositd lzemében (Budapest)
320 példanyban, 9,0 A/5 iv terjedelemben.
Felel8s vezet6: Rosta Lajosné
Munkaszam: 87.002












	Tartalom
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������


