




MAGYAR TUDOMÁNYOS AKADÉMIA SZÁMÍTÁSTECHNIKAI ÉS AUTOMATIZÁLÁSI KUTATÓ INTÉZETE 
COMPUTER AND AUTOMATION INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES

P A P E R S

ON

M A N Y - S O R T E D  L O G I C  A S  A T O O L  F O R  M O D E L L I N G

ZSUZSANNA MÁRKUSZ

Studies 192/1986 
Tanulmányok 192/1986



A  kiadásért felelős:

REVICZKY LÁSZLÓ

Osztályvezető:

BACH IVÁN

ISBN 963 311 221 4 
ISSN 0324-2951



C o n t e n t s

DIFFERENT VALIDITY CONCEPTS IN MANY-SORTED LOGIC

0. INTRODUCTION ....................................................................................................  7
1. NOTATION ...................................................................................................    9
2. MANY-SORTED CLASSES OF MODELS ....................................................... 15

2.1 Many-Sorted Similarity Type ....................................................................  15
2.2 Many-Sorted Models .......................................................................................  16

3 SYNTAX OF FIRST ORDER MANY-SORTED LANGUAGES ............ 19
4. SATISFACTION AND VALIDITY RELATION IN TARSKIS SENSE.... 22
5. FIRST ORDER MANY-SORTED LANGUAGES WITH TARSKI’S

VALIDITY RELATION .......................................................................................  26
6. SATISFACTION AND VALIDITY RELATION IN MOSTOWSKl’S

SENSE .......................................................................................................................  27
7. FIRST ORDER MANY-SORTED LANGUAGE WITH MOSTOWSKl’S

VALIDITY RELATION .........  32
8. EXAMPLE FOR DIFFERENT VALIDITY CONCEPTS ...................    33
9. LOS LEMMA ..................................................  36

10. THEOREMS OF AXIOMATIZABILTTY ...............................................i........... 40
10.1 Notation ..............................................................................................................  40
10.2 Theorems for Normal Models ....................................................................  43
10.3 Theorems for Empty-Sorted Models ....................................................... 44

11. ACKNOWLEDGEMENTS .......................................................................................  48
12. REFERENCES .......................................................................................................... 49

ON APPLICATION OF MANY-SORTED MODEL THEORETICAL OPERATORS 
IN KNOWLEDGE REPRESENTATION

0. INTRODUCTION .....................................................................................................  53
1. MANY-SORTED MODELS AND OPERATORS ...........................................  54
2. APPLICATION OF MANY-SORTED MODELS AND OPERATORS .... 59

2.1 Similarity type ................................................................................................  59
2.2 Homomorphic image .......................................................................................  60
2.3 Submodel .......................................................................................................... 64
2.4 Direct product ................................................................................................  65

3. ACKNOWLEDGEMENT............................................................................................ 67
4. REFERENCES .......................................................................................................... 68





5

DIFFERENT VALIDITY CONCEPTS IN 

MANY-SORTED LOGIC

ZSUZSANNA MARKUSZ 

Visiting

Department of Computer Science 
The University of Calgary 

Calgary, Alberta, Canada T2N 1N4

1983



6

ABSTRACT

Many-sorted logic is used in several branches of computer science. This 

paper deals with a special feature of many-sorted logic: the problem of

the so-called "empty-sorted" models. These models may have sorts with 

empty universes, too. The using of the classical validity relation in 

Tarski's sense for the class of empty-sorted models gives logical para­

doxes. That is why we define a new validity concept which is based on 

an old idea of A. Mostowski. In this paper the detailed definition of 

both (Tarski's and Mostowski's) validity concepts are presented. The 

many-sorted language which is defined by the validity relation in 

Mostowski's sense, as it will be demonstrated, "works well". Los lemma 

and some axiomatizability theorems illustrating the advantages of this 

many-sorted language against the classical one are presented.
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Many-sorted logic is used in several branches of computer science.

See e.g. Andreka-Nemeti [0]. Its mathematical formalism is applied for 

logical foundation of computer-aided problem solving, for definition of 

semantics of programming languages, in the theories of program verifica­

tion and data bases, in knowledge representation, etc. The fundamental 

difference between many-sorted models and classical models is that the 

universes of many-sorted models are not homogeneous but consist of dis­

joint sets of different sorts. Thus, when defining the types of functions 

and relations, we must give not only the number of arguments but also the 

sort of every argument.

This paper deals with a special feature of many-sorted logic, namely 

with the problem of the so-called "empty-sorted" models. In most published 

works /e.g. Monk [9]/ all the models having a sort with empty universe 

are excluded. This exclusion restricts essentially the area where many- 

sorted logic can be used, that is why we omit this restriction. We intro­

duce the class of t-type normal models /Mod / which is identical~u
with the class of many-sorted models defined in Monk [9], and we define 

the class of t-type empty-sorted models /Mod°!, which contains Mod as aIs V

proper subclass: Mod̂ _ ^  Mod° .

Using the classical validity relation in Tarski's sense /notation: f= / 

for class of models Mod° gives logical paradoxes. The reason of logical 

paradoxes is that the set of valuations of variables into a non-normal

0. INTRODUCTION

model is empty.
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I. Nemeti suggested using an old idea of A. Mostowski [10] for many- 

sorted logic in order to avoid logical paradoxes. Mostowski utilized 

essentially the fact that the value of a formula in a model depends only 

on the free variables occurring in the formula. Tarski defined his valu­

ation function in another way. The domain of a valuation function is the 

set of all variables /in general: w/ independently of the number of free

variables in the formula in question.

We introduce a new validity relation /notation: ^ / which is called 

validity relation in Mostowski's sense.

In this paper the detailed definitions of both validity concepts are 

presented. In order to be self-contained we give the definitions of many- 

sorted models and syntax of first-order many-sorted languages as well. A 

simple example is presented to show the difference between two validity 

concepts. Finally, we investigate some well-known theorems from the point 

of view of empty-sorted models.
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Throughout the paper = denotes the fact that the concept standing on

the left-hand side of the symbol is defined by the expression standing on
dthe right-hand side. For example, = \jj means that X is equal to y by 

definition. Similarly, "x y" means that formula <p is defined by formula 

\|r, and (p is defined to be true if and only if \|r is true. Throughout the 

paper "iff" is an abbreviation of "if and only if". Brackets (,) and [,] 

play the same role and they are used simultaneously.

The following notation is given for arbitrary sets.

1. NOTATION

UA = ix: (3y € A)x € i/}. 

fl A = (a:: (V-y € A)x € y).

A U B = UÍA, 5}.

A n B = fl {A> B}.

J
A ~  B = {a € A: a X B}.

Natural numbers are used in von Neumann's sense.

0 denotes the empty set.

a + l = a U { a } .

j á
co = fl {H: 0 £ H and (Vn € H)n + 1 € H} and (Vn € wjn = {0, 1, ..., n-1}.

|a | denotes the cardinality of the set A.

Sb A = {J: X £  A }. Sb A is the set consisting of all the subsets of A. 
Sb A is called the power set of the set A.
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(a3 b) = {{a}, (a, b}} is the ordered pair of a and b, where the first

member of the pair is a, and the second one is b.
cl clNotation: (a, b)q = a and (a, b) ̂ = b.

A x B = {(a, b): a € A and b € B}. A x B is the Cartesian product of A and B.

Dorn A = {a £ UU A: (3b) (a, b) £ A}. Dorn A denotes the domain of the set A.

Rng A = {b £ UU A: (3a) (a, b) £ A}. Eng A denotes the range of the set A.

^41 B = A (\ (B 'x Rng A) = {(a3 b) € A: a £ B}. A  ̂ B denotes the restriction 

of the set A to the set B.

Let f be an arbitrary set. f is a function or a mapping or a 

sequence iff all the elements of f are ordered pairs and 

V-a, b, o [((a, b) € / and (a, o) € f) -*■ b = o].

If / is a function and i € Dom f, then there exists exactly one

set b such that (i, b) € f.

b is said to be the value of the function f at the argument i and 

is denoted by 

f(i) or

f i or

A d
B = {/ € Sb(A x B) : f is a function, Dorn f = 4}.

A
B denotes the set of all the functions from A into B.

A
f: A -*■ B denotes that f € B.

A
f: A ^ B  denotes that f £ B and /  is a one-to-one mapping, i.e.

[/: A >+B] » [f: A -+ B and ( fa, b £ A)(f(a) = f(b) -> a = b)] .
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f: A +*B denotes that ft B and f is a mapping from A onto B, i.e. Rng f = B.

4
f: A »+B denotes that ft B and f is a one-to-one mapping from A onto B.

Let P-j . . .., p and S be fixed sets.rn
Let t(x, Pj, ..., p ) be an expression, which assigns a unique

set denoted by i(s3 p^} . .., p^J to every s t S. Then
ci ct<t(s, pv  Pn)> 8 € s = <t(s, pr  Pn): s t S> =

(TSj T(s, p } S € S'}.

That is <t(s, p2, . .., Pn)>s € s is a function with the domain S.

If n = 0, i.e. there are no parameters p̂ , . .., Pn then

<Tfs;>s ( S ^ V s t S - (3 3
For example, suppose t(s, p) = s fl p. Then f = <8 fl p: s t S> 
is a function for every fixed parameter p and S, otherwise f is 

not defined. That is the function f depends on the choice of 

the parameters p and S.
d dA further example: Suppose S = to and p t to. Then g = <p + s: s t <o> 

is a function g: to -* to and (■¥x t to} g(x) = p + x. Obviously 

function g depends on the choice of the parameter p.

In particular, if / is a function and Bom f = S, then

<fs: s t S> = f3

<fs>3

Let n t to, and let / be a sequence of the length n.

The sequence f may be given by "enumeration" as follows:
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f = fl> •••■» 4 - 2 > '

E.g. / = <5, 3, 8, 7> = {(0, 5), (1, 3), (2, 8), (3, 7)} .

That is f is a sequence with length 4, /: 4 -»- go such that 

/ W  = f0 =5, f(l) = f2 = 3, f2 = 8, f3 = 7.

g+ = U{ng; n € a) and n ^ 0}. denotes the set of all finite nonempty

sequences of the elements of S.

Let A be a function. The direct product of A is as follows:

PA = P A. = {f € D ° m  A rU Rng A): fci € Dorn A)f. € A.}.
iSDom A t i i

CONVENTION 0

Throughout the paper each symbol denotes a set unless it is declared 

to denote a class or a metaclass. All the notations introduced are used 

for classes and metaclasses as well as for sets in the usual way.

REMARK 0

Set theory, which is based on the hierarchy of sets - classes - 

metaclasses, is described e.g. in Herrlich-Strecher [6], where "conglomerate" 

is used instead of "metaclass". The main point of the hierarchy is

Sets £  Metaolasses such that Sets € Metaelasses and

<Sets,  ̂> h ZFC and <Metaclasses, € > (= ZFC.

The difference between metaclasses and classes is that elements of a 

metaclass can be metaclasses classes or sets, while a proper class may have

no elements but sets.
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1.1 From now on the ordered pairs and the 2-length sequences will not be 

distinguished. More exactly, <x, z/>will denote both the ordered 

pair (Xj y) and the function {(0, x), (1, y)} for every set x and y, 
though they are not identical. The reason behind this convention 

is that it is not so important from the point of view of this paper, 

which meaning of the symbol <x, y> is to be considered. The only 

requirement is that condition

¥ Xj y, u3 w [<x3 y>=<u, w> » (x = u and y = w) ]

holds for both meanings, and it obviously holds for both the ordered 

pairs and the 2-length sequences.

CONVENTION 1

An important consequence of this convention is that A x A is identical
2

with A for every set A.

This convention (which is improper in principle) is very wide spread 

in mathematics, see e.g. Henkin-Monk-Tarski [5] p. 33, or Levy [7] Def, 

4.15. p. 58. In these works one can also find the consequences of 

the convention above, and a technique which helps to avoid false 

results.

Yl1.2 Let A be a set and n € to. Then A x A is considered to be identical
. , n+lAwith A, i.e.

nA x A = n+1
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Therefore the ordered pair ( < s . ... s , s ) is considered to be iden-0 n-1 n
tical with the sequence <s • • •.» sn sn> > anc* the Cartesian product is 

considered to be associative

(A x B) x C - A x (B x C) £  3 (A U B U C) .

j
Hence j4 x ^ x y} = A.

DEFINITION 0 (n-ary relation, function)

Let B be a set and n € w. By an n-ary relation over 5 we understand a set
YLR c B, i.e. an n-ary relation is a set of sequences with the length n.

< vBy an n-ary function over B we understand a set / € B. If is an

n-ary function, we write

f: nB - B.

□

COROLLARY 0

Due to Convention 1, n-ary functions over B are n+l-ary relations over B, 

since
(nJ

"n-ary functions over B" = B ^  f^B) B = W J B.

This corollary is utilized essentially throughout the paper.
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2. MANY-SORTED CLASSES OF MODELS 

2.1. MANY-SORTED SIMILARITY TYPE 

DEFINITION 1 (many-sorted similarity type)

A set t is said to be a many-sorted (or heterogeneous) similarity type

if

t € 3(Rng t) and

t̂ '.Dom t1 -* (£q)+ and c. Dorn f 1.

NOTATION

Generally t is denoted by S and t2 by H, so

t = <S,tl,H> .

In Definition 1

= 5 is the set of sorts,

is arity function,
1

t2 = H is the set of function symbols,

Dom (tĵ ) ~  H is the set of relation symbols of the type t.

CONVENTION 2

From now on t denotes a many-sorted similarity type. 

NOTATION

Let t be a similarity type and let r € Dorn .
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tr =  t (r) = tj (r) .

REMARK 1

If r 6 Dom ~ H, i.e. r is a relation symbol, then Dom (tr) is the number 

of the arguments of the relation symbol r. For example, let t = <S,t̂ ,H> be 

a fixed similarity type such that

S = ip3q3k}, t = {<r,<q3p3k » 3 <f3<q3k»}3 H = {/}. tr = <q3p3k> .

Then Dorn (tr) = 3 = {0,1,2}3 and

tr(0) = q, tr(1) = p, tr(2) = k .

Let n = Dom (tr)-1.

If / € H, i.e. f is a function symbol, then n £  Z?cw? (tf)-l is the number 

of the arguments of the function symbol f .

2.2 MANY-SORTED MODELS 

DEFINITION 2 (t-type model)

Let t be a many-sorted similarity type.

By a many-sorted t-type model we understand a pair = <4,1?> iff the fol­

lowing (1)—(2) hold:

(1) A is a function such that

Dom A = S .

(2) £ is a function, and conditions (i) - (ii) hold:

(i) Dom R = Dorn t
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dn =  Dorn (tr)-l. Then:

R* ~ i & A**vy i-e*
R £  A , x .. . x A , . . .v tvi0) tv in)

(ii) Let v € Bom t be an arbitrary symbol and

Furthermore, if v € H, then

R : P 4 A. . s, i.e.z* i<n tK'O tr(n)’
i? : Wj. x •••x X, . -v) ->->4. . i.e. relationr tr(0) tr(n-l) tr(n)’

tion with domain

Dom(R ) = P 1,, , - , r „•_ (tir)).

By Definition 2 öí is a t-type many-sorted model iff

€Jt = «A  > , <ff > ,, N>, i.e.s s€£ * r viDomit̂ ) *

= <o4 > _ and (ft = <R > f . and0 s sf5 1 r vZDomitJ

the conditions (1) and (2) above hold.

NOTATION

Let Ct be an arbitrary t-type model and let r € Bomit̂ ) be an 

symbol. Then the set R  ̂is denoted alternatively by v ~̂, too.

dt% = <A, R> = « A > , <R > _n N>—* s s£S ’ v vtDomit̂ )
d . erc,= « A > „ rC, <r > rT. f, .> . s s6? vZDomit̂ )

A is € S) is said to be the universe of the sorts s , ands

R is a func-V

arbitrary

Thus



is said to be the system of universes of the model ül .

DEFINITION 3 (normal t-type model)

Let Ci be a t-type model.

01 is a normal model iff (Vs- € S)A f 0 .s
That is 01 is a normal model if and only if there is no sort s such that the

corresponding universe A is empty.s
□

NOTATION

Modj_ — {Ot : 01 is a normal £-type model } . 

Mod®_ — {OC : t)i is a i-type model } .

Note that Mod, and Mod 0 are not sets, but proper classes. Mod £ Mod 0,

i.e. Mod is a proper subclass of class Mod!_V 0
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3. SYNTAX OF FIRST ORDER MANY-SORTED LANGUAGES 

DEFINITION 4 (variables)

Let t = <S,t^,M> be a similarity type and let V : to * S >— >->- Rng V be a 

one-to-one function. Let set Rng V be disjoint from any other set occurring 

in this paper, e.g. Dom (t^) D Rng V = 0 .

Let <i,s> € to yS . Then

s d , . .v . =  y(<^.,s>) .
Is

Q
V. is called the i-th variable of the sort s.^ ----------------------------
Def ine

Vs =  {u® : i € to} .

Vs is called the set of variables of the sort s .

Def ine

7 =  U y3 . 
s6S

7 is said to be the set of the variables.

D

DEFINITION 5 (set of i-type terms : T̂ )

Let t = > be a similarity type, and let Vs be a set of variables

of the sort s 6 5 . Let G be the smallest sequence such that Dom G = S, and

conditions (i) - (ii) hold:

(i) (Vs € 5) /  c G(s) .
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(ii) Let f £ H and n = Dom(tf)-l.

Suppose (V- i € n) x . € ff (tf(£)) . Then
Is

f(x0, ...,Tn_1) € G(tf(n)) .
/

Obviously, there exists such a function ff, and only one exists.

Let define

TSt = G (s)

for every s£S .

T , is said to be the set of t-type terms of the sort s .
Is

✓7 o
Let T_i_ =  iím? ff, i.e. Tt = U . 

is called the set of t-type terms.

□

DEFINITION 6 (set of t-type first order formulas : F )

The set of t-type atomic formulas is a set Af̂_:

si ÍsY* (.'is'}Af, —  {r(x , . . . ,x ) : v € Dom(t ) ~  H, n- Dom(tr)-l and x . € T. for
u 0 Yl 1 'Is "Is

every £ 5 n} U {(x=a) : x,a € rf for s£S}.V

The set of t-type first order formulas is the smallest set F, such that
Is

(i) Aft c Ft.

Q
(ii) Let (p,\p € F and let V. € V for any s€ff and Thent 'Is

{(cp A^), 1(p, 3u1<p} C Ft .

□
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CONVENTION 3

Q

Let (p,\p € F be arbitrary formulas and let V. € V be a variable for any fixed~G Is
SOS' and iCcu. Then

(cp V ip) = lOcp A 

(cp -> il>) =  (lq> V \p),

(*v%) = (1 3 vS. V -
Is Is
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4. SATISFACTION AND VALIDITY RELATION IN TARSKI’S SENSE

The concept "satisfaction" in Tarski's sense (notation: |=) is a 3-ary 

relation which connects a class of models, a set of formulas and the corres­

ponding set of valuations. In the case of many-sorted logic, considering

class of model Mod set of formulas F, and set of valuations P A )
* * SIS 3

(see Def. 7 below), the satisfaction relation is:

Mod° X F, x P f̂ A ) . 
t * slS 3

Let öt € Mod j <p € F . 3 k £ P (A ) .
t * stS 3

Then b ,<)>,& > means, that the valuation k satisfies the formula <t> in 
the model 01, or the formula <i> is true in the model 01 with respect to the 
valuation k. Usually, we write (= <{>[&] instead of b k>, i.e.

PA b <t> W  = b <&> k>

(see e.g. Andreka-Gergely-Nemeti [ll or Monk [9]).

By convention (sloppily), symbol b denotes the validity relation in Tarski 's 
sense} too (see Monk [9]).

The validity is a binary relation, defined on a class of models and on a 

set of formulas. In our case:

b c Mod° x F .—  U u

Thus the sequence of symbols &t b <f> means, that the formula <J> is valid in 
the model 01 or is a model of the formula <t>.

We define the satisfaction and the validity relation in Tarski's sense 

for many-sorted logic in details below.



23

DEFINITION 7 (valuation)

Let Vi € Mod£ .

By a valuation of the variables into a model ÜÍ (shortly by a valuation) we 

understand a sequence of functions k = <k > such that
s ses

s s s

That is k € ) for every s£S.s s
Therefore the set of all the valuations of the variables into ÜL is

P
siS s

□

DEFINITION 8 (-zU [k]).

Let X € T.,QU Mod° k € P (®(A )). t t , _ s

The meaning of the term x in the model Vi with respect to the valuation k
ot(notation: x [&]) is defined by recursion

(i) If x is a variable V f € Vs (s€S and itu) ̂ then“Is

S r 7 -I d - / # )v. [k] = k (%) . ^ L J s (k (i) € A ). s s

(ii) If x is a term of the form /(tg, . Tn_q^ ’ where / € H, n = Dom(tf)-l and 

(Vi £ n)[x. € T^f^^ and x. ^  [k] has already been defined ] , then”Z' 1/ 1s

.ötr, , á  W  0( rin
•••> Tn_q t̂ ] — f (Tg [^]> •••> Tn_]̂ [k]) •

□
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Let cp € F+, a  € Mod° , k € P (“4 J).
* t s^S S

"The valuation fe satisfies the formula cp In the model

Ql h «P [&]) is defined as follows:»

1. Atomio formulas

(i) Let t , a  € T^. Then

a H  (T = a) [7c] s T [fc] = 0  [fc].

(ii) Let r ? Dom(t̂ ) ~  E, n = Dom(tr)-l and £nji. €J. Is

t t k T  , t J[fc] «<T [fc], .... T [fe]>€:C/ f U L/ I P

2. Formulas

Let <p, if £ F, and V . € V .Is 1s
Suppose (%|= cp [fc] and St (= ip [&] has already been defined 

(i) £)í^"l<p[k]«(öí|=<p[fc]is not true) .

(ii) 0l|= (cp A \Jf)[k] « ( fX |= cp [fc] and Qt f= \|/ [fe]).

(iii) enh 3i^cp[fc] » (there exists a valuation g € P ('

f-Pis £ S ~ {s})k = g and2 2

k r (u> ~  {í}J = g (ü) ~ {£}) and s s

Ol\= Q[g]).

DEFINITION 9 (satisfaction: ül ^ <.p [k])

(notation:

T*r(i> . Then

Then

(A )) such thats

□
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DEFINITION 10 (validity: Ol (= <f>)

Let Ol £ Mod° , cp € F̂ .

The formula cp is valid in the model P# or Pfc is a model of the formula cp iff

01 H <P «  € P  ^ ( A  ) ) ) W \ =  cp [k].
siS S

□
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5 .  F IÄ S T  O RZ® ? MAM-SORTED LANGUAGES WITH TARSKI'S VALIDITY RELATION 

DEFINITION 11. (L 3 L° )

The triples

dL, = <F,i Mod j  =̂> and~u ~C t

L° = <Ft, Mod° j (=>

are said to be first order many-sorted languages.

□

Note that both languages have the same syntax and vaJ Lty cLation, 

however, L is defined on the class of normal t-type models (Mod̂ _) and 

L° is defined on the larger class of empty-sorted t-type models (Mod°) .
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6. SATISFACTION AND VALIDITY RELATION IN MOSTOWSKI'S SENSE

Below we define a new validity relation which is different from that of 

Tarski. This validity relation is defined also by defining first satis­

faction of formulas in models at valuations, but the definition of 

valuation is different from that of Tarski. Here the valuations depend 

on the formulas themselves. The crucial part of the definition of the 

satisfaction in Mostowski's sense is that one defines the set of valua­

tions for each formula cp and each modell, val (cp , £ # , )  gives

evaluations only of those variables which freely occur in c p .

DEFINITION 12. (var (a)).

Let t = <Sj t7j H> be a fixed similarity type. Let a € T U F , and
Q

var(a)s £. V . (s € S). Let us denote the set of free variables occurring

in a by var(a).

d Svar(a) = <var(a) : s € S> € (Sb toj.o

The definition of var(a) is given by a recursion below:

1. Terms
Q

(i) Let a € V be a variable of the sort s and let a be denoted by

(ii) Let a be a term of the form f(x t ) where f t H,V7 Jn
n = Dom(tf)-1 and (Yi € n) (t. € T^^^  and var(x J  has already“Ts L/ V
been defined). Then

var(f( n-1)) = <U{var(T.) : i f n}: s £ S>.^ s• • J
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2. Atomic formulas 

(i) Let X, a € T8.

dvar(x = o) = var(x) U var(o).

(ii) Let r € Dom(tj) 

fri 5 n) T . € T 
Then

var(r( .. . ,

~ H be a relation symbol,
tr(i)
t

U
isn var (x .).

n = Dom(tr)-1 and

3. Formulas

Let <p, ^ € F and V? € V8.~C'■
Suppose var(t.p) and var(\|0 have already been defined. Then

(i) var( \p)  = var(<p).
<d(ii) var((p a \|c; = var(q>) U var(ty). 

s d(iii) var(3 v . (p) = var(<p>) ~ {<s, {•£}>}.

DEFINITION 13. (val(x,<%))

Let Tm̂_ =U {T8 : s € 5} .

Let T € Tm̂  and ©b € Mod° . Then

1 r d n var(x)(s) . „ , evaltTjVt) = P< A . s € £>.

□

j
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Let cp € Ft, Vt i Mod° .

Let us denote the set of valuations of the formula (p into the model Wj,

by val ((PjV0).

valh.tK) d ?<VarM(s)
s

DEFINITION 14. (set of valuations of formulas: val (<v} t)t))

□

DEFINITION 15. (T[k]JM

Let T i Tm̂ _,3X>i Mod°, k € val(T,W,).

The meaning of the term t in the model Vl> with respect to the valuation k 
&c(notation: x[fc]^) is as follows

(i) Let T = v f j  V? € VS.

s dv. [fci = k (i). (k (i) € A ).^ M s s s

(ii) Let t be a term of the form fixQ» •••» Tn where f £ H,

n = Dom(tf) -1 and suppose

t ('ii in) (t . i T ^ (’Z) such that ^ t
•?J6

(ig € val has already been defined^].

Let k € val(f( t , ..., x ,),W>) .J o n-1
Then

&C dT = f <T.[<k rYl—± M J s) L c?JA7 v a r ( j . ) :% s
QV

s i S > ] i  i n>. M

□
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<p € Fj_, 0t € Mod° 3 & € uaZfcp

The valuation fe satisfies the formula cp in the model tfC (notation: 

t)C \p <p[fc]) is defined as follows:

1. Atomic formulas

(i) Let I, a € .

. d ex or.0(,l= (t = a) [Zc] « T[kg f' var(i)]M = a[ks h var(a)]M.

(ii) Let r € Dom(t̂ ) ~ E, n = Dom(tr)-l and

(Mi < n)T. € Then
'ts Is

01» 1= • •• j ^  [k] Í

«. w.
<t [k h var(i )]wJ t [k P var(i )]„_> € v .o o M  n n M

2. Formulas

Let ^ , X € F and V f € VS .
Is 'Is

Suppose 0C|s \Hi7] and ö(|=X[?z] have already been defined for all 

valuation g € val(ty,Gt) and h € val(X, ) .  Then

(i) 0í|= 1 \|f[fc] ö (£í^ \|/[]  is not true).

(ii) a M t A X)[fe] « (flth W *  « 0*010] and 'jl\= X[Z;P i*zr(X)]).

(iii) 01 ̂  3 V? ̂ [k] » (there exists a valuation <7 € ya£(\j/,ö£) such that
'Is

(k = g [ (var(\|/) ~  {<Sj {i}>) and

0 Í   ̂ ^ [^ D ) -

DEFINITION 16. (satisfaction in Mostowki’s sense: |= cp[k])

Ü
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DEFINITION 17. (validity relation in Mostowski 's sense: &t |= cpj 

Let <p € F̂_ and € Mod°.

The formula cp is valid in the model (% ^notation: Of. |= cpj is defined 

as follows:

PK |= (P » (Vk € val (<p,'QL) ) -öt |= cp [k] .

□
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7. FIRST ORDER MANY-SORTED LANGUAGE WITH MOSTOWSKI'S VALIDITY RELATION

DEFINITION 18. (many sorted language L°̂ )

The triple

Mod°,

is said to be the first order many-sorted language with validity relation 

in Mostowski's sense.

□
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8. EXAMPLE FOE DIFFEEENT VALIDITY CONCEPTS

Let t = <Sj  H> be a fixed similarity type such that S = {(?_, 2̂  2}^ 

= {<r, <0, 2»}, H = 0.

Let €JC€ (Mod° ~  Mod̂ _) be a non-normal empty-sorted model, defined as 

follows (Fig. 1):

0001 = <4, R> = «A > ^ < r  > ,> such thats s€5 r£Dom(tj)

A = <An, 4„> whereU i z

Aq = (a, M., A2 = 0, A2 = {a}.

dC «Jt2? = {<Tj v >} where v = {<a3 o>}. 

Consider the following formula <p: *<Vjt vf)

Claim

(i) a  1= cp i.e. the formula cp is valid in the model W- in Tarski's sense,

(ii) ^ cp i.e. the formula cp is not valid in the model Cfc in Mostowski's

sense.
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PROOF of (i)

Ql f= cp Í m  € P(a(A s i S)&\* cp [k].

P(“(A3): s € S) = ( \) x (^A2) x (“a2) =

= (“{a, b}) x A ;  x r“{c>; =

= (“fa, b}) x 0 x = 0J i.e.

the set of all valuation functions is empty. Thus

(Vk € (?) <3t(= cp[?c] is true, so Cv (= cp.

QED of (i).

REMARK 2

We can prove CJt-1= (~kp) in a similar way. It n.. ns t ■ '’6 J= (cp a 1 cp) 

which is a logical paradox.

PROOF of (ii)

Qt\s cp «  m  €  p<Var((f)(s)A ; 8 €  5> ;  f x [ =  < p [ f e ] .

P<uar*rcp;rs;4 . s € 5 > =  rU } {a, m ; x r V  x r{I}{C }; =

= {<2, a>, <2, £»} x {0} x { d 3 a>} = X.

The set of all valuation function K has two element - 

K = {kj g} where k = « 1, a>, 03 <1, a»

g = «1, b>, 03 <1, o»  .

Remember, that in the present example cp is equivalent to the formula

r(Vj, V .
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, 0 2 . r7 , r ( v2, v 2 ) [k]

r(v2, i)2 ) \g] 

So Qt Jí cp.

v(a, o), 

r(b, a)j

and v(a,

and r(b}

a)

a)

, Űtis true, since «x, o  € r .

$x,
is not true since <b3 o> £ r .

QED of (ii) .
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9. LOS LEMMA

THEOREM 1 >. jenevalxzation of Los lemma)

1. tos lemaa holds in Mod with Tarski's validity, that is tos lemma 

holds for <F̂ _, Mod |=>. In more details:

Let I la an arbitrary set, üt € ^Mod, let U be an ultrafilter over I 
and let <p € F̂_ be an arbitrary formula. Then the following propo­

sition (i) and (ii) hold:

(i) P ÜL/U h <P « G Y Z U) (Mi € Y) ft. h <P .

(ii) I t  p e p  P (“4 . ;, i.e. let k. <E P A .  ) be a
i a  sZS ^ s€S

valuation into^'., i.e. (Vi f U  's (■ S)k. € Â .

‘ :t (Ms € SjF": Ü) -> P A. /U
S . .T XySxtl

= « P . (n): x £ I>/U : n € (jj> .s ^Js
_ ̂  __

Let k = <k : s (■ S> be a valuation into VÜt/U. Thens

PÜÜ/U h tpEfej « G Y  6 V)(U € YJÖL. (= (p [G].

2. tcs lemma does not hold in general for <F̂ y Mod°, f=>, namely

I S' j < on «=> Los lemma holds for <F'̂ 3 M , 1= ■.

3. Los leir.ma holds in Mod° with Mostowski's v..Liditv, that is tos lemma

hold for <F+} Mod° , |=>.

«
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PROOF

1.

2 .

is proved as Theorem 3 in Markusz [8].

First we prove direction«., that Is we prove |S| > «, - hos lenma

does not hold for <F Mod°,\=>.
~b

Let t = «!)_, 0, 0>.

Let “Mod+ be, such that for every n € oj

- ^ yi cd’c.c where yi Ylj S S 6cj0

(Ms 5 n)A - {0} and (Me > n)A = 0. See F i g .  2n, s

A k v a j u
h 6UJ

Figure 2
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Let U be a nontrivial ultrafilter over to. Then

P ftln/U = «{(?}; s € 0> where
n£to

0 = <0, 0, Oj ..• > .

Now

P Cfcn/Z/ 3 v° v ° 1 (V° = v °  ) and 
n£ to

fVn € to,) 6^  f= 3 V® Vg 1 (vj=V2  ̂ since any tp €

is valid in Tarski's sense in every model which has at least an empty 

universe. We have proved direction <=

It remains to prove direction =>. To this end assume |£| < to.

Let «&= P W./U be fixed with an ultrafilter U.
• £ T■j X € J

Let 7 = U  £ J: A A. £ 0}.
S€5

Case 1 : Y £ U.

Then (3s € S)B = 0 since S is finite. s
Then Thk=F_L. and (Mi € J ~  Y) Th(&.) = F,

Ls 'Is Is

I ~ Y £ u.
Hence Los lemma holds.

Case 2: Y € U

Then <$- = P ?X./U+ where £/+ is the restriction of U to Y, that is
U+ = {X € U: X c Y}.



Now no sort of Ip and (Vi € Y) no sort of ■ is empty. Thus the classical 

version of Eos lemma can be applied e.g. using Andreka-Nemeti [3] or 

Markusz [8] .

QED 2.)

3) Follows from Andreka-Nameti [3], e.g. see a similar proof in Andreka- 

Nemeti [A].

QED Theorem 1.
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10. THEOREMS OF AXIOMATIZ.ABILITY

10.1. NOTATION

Having two different validity concepts we should introduce new notation for

the well-known metafunctions Th ("theory of") and Mod ("model of") . Let t
, M -Mbe an arbitrary similarity type. Metafunctions Til and Mod. are defined via 

Mostowsky validity |= ;

(VK c Modi) ThMUO =  (<p € F : K |= cp }
U Is

(VT £  F ) ModK(T) = Mod°t : üí |= T }

and metafunction MocF  and Tlfi are de ined via Tarki style validity f= :

(VK £  Modp ThT (K) =  {cp € F : K (= <p}

(VT £ F , )  Mo<f(K) = {Vt € Modi : €£ (= T} .
U ~ts

Note that MocF and TiF are equivalent to metafunctions Mod and Th, respectively 

see e.g. Markusz [8] .

Let In

o •

K is an iff

K is an
<

iff

Let V - Ft and

such that

K = MocFtíFk and 

K = MocFT\FK .

K — Mod®. We define metafunction 1 : Sb(Mod®)-+Sb(Y)
Is is is

(VK £  Modp YM(K) = Y D ThM(K) . 

is defined in a similar way and metafunctions F~ and Y are equivalent.
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We recall the definitions of sets of formulas Eq , A f , Qeq , Qaf 3 Ude 3
U  U  Is U

Uda , Uhf' Unv £ F (see Markusz [8]):
Ls Is u

Eq — (<Tjo> : TjO € T } (equalities)

Aft á  m-* .... t ^ ) :  R * Dorn ^  ~  tz and V  * * '' Tt(R)-l * Tt} U

U {(t=o ): t ,ct € T^}. (atomic formulas)

Qeq = {(A e . e ) : n € w and (Vi < n ) e . € Eq }
~ts <̂2 'Is Yl 'Is is

(quasi-equalities)

Qaf =

U d e =

Uda, d

{.A i?. (x . .. ) -* R (onJ..,,a,):^<n i ^,£(Ä)-l 0J * k
n3k € to j (Vi S n)i?̂  € Com ~  and

(?£ € n)(i*7 € t(R.)i. . f f  and (Vi S k) a. € 21 } .
^  'Z'j tJ Is 'Is Is

(quasi atomic formulas)

{ .v es. (Vi < n) e . € Eq and n € w } .t-n t ' i t
(universal disjunction of equalities)

{ .v a. : (Vi < n)a. € Af, and n £ w} . t<n t ^ J t
(universal disjunction of atomic formulas)

Uhf, —  {.V 0.: at most one of the formulas 9 . is an atomic formula
t  t<n z- z-

( W  < n)0. is an atomic formula or negation of atomic
'Is

\

formula, n € w}.

(universal Horn formulas)
clUnv — {cp *- ; cp is a formula without quantifier }.

Is

(universal formulas)

According to the definition of the metafunction f ,  Eq , A f ,  Qeq43 Q a f3 
UdeM3 U d f 3 U h f3 Uhv‘ are also metafunctions.
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The definitions of many-sorted operators

Hw (weak homomorphic image)

(strong homomorphic image)

w

P

?r

Up

Uf

(weak submodel) 

(strong submodel) 

(direct product) 

(reduced product) 

(ultraproduct) 

(ultrafactor)

see in Markusz [8].

Let K £  Mod,Q.

V+K = ( P K ~  P 0) U K .

We recall the definitions of the metafunctions

■S+ andw s

S+ =  {Mod, n S K : K c Mod,} w t  w t

S+ =  {Modx n S K : K £  Mod,} . s t  s t
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THEOREM 2 (axiomatizability theorems for normal models Mod  ̂

Tarski's style validity)

1) U6 Up = Mod Th

2) H S+ P = Mod Eqw w H
3) H S+P = Mod Af

uJ S

4) S+ P Up = Mod Qafs
5) S* P Up = Mod Qeq

6) S+ P + Up = Mod Uhfs
7) H S+ Up = Mod Udew w
8) H S+ Up = Mod Udaw s
9) S+ Up = Mod Unv . 's

PROOF

The proof follows from Theorem 1 and 3 in Németi-Sain [11].

10.2. THEOREMS FOR NORMAL MODELS

with

QED
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THEOREM 3 (axiomatizability theorems for empty-sorted models Mod® with 

Mostowski style validity)

(i) H S P^ = Mod4 E q4w s H

(ii) S = S P Up = Mod4 QeqMs s

(iii) H S Up = Mod4 Ude4M S

(iv) Sg Up = Mod4 UnvM

PROOF

The proofs follows from Theorem 3 on p. 562 and Section 5 at the end of pp. 

570 - 573 of Németi-Sain [11]. See also proofs in Sain [12].

QED

REMARK 3

10.3. THEOREMS FOR EMPTY-SORTED MODELS

By using Nemeti-Sain [11] axiomatizability theorems similar to Theorem 3

can be obtained for all the operators H. S. Prj S. Prj H. S. Up ,
i 3 3 T' 3

S. Up (with 6 {s,w} arbitrary chosen) and the corresponding infini­
te

tary versions for H. S. Pft 3
U. S. and also for pkU. S . f v where

^ 3
P̂ denotes fc-complete reduced products. Next we show that THEOREM 3 cannot

be generalized to (= .
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Let d {s,w} , and let K c. Mod£ . H. S . P** K, S . P2" K. H . S . Up Kt v q x 1 3

and S . Up K are not EC?'a (i.e. they are not axiomatizable in f= ) for
"V (X

some K (this holds even for algebras).

PROOF

Let t be arbitrary such that 0,1 € S . Let (X d Mod° be such that 

AQ = 0 and A1 = 2. Then Mocf ThT{QL} = { &  : (3s € 5) Bg = 0} =  L .

E.g. there is <£ d L with S = 3 and C, = 0. Cleary £  í H S Pr{g£}0 1 ' w W
(We note that (3 ti d P {ft} (-Fs € S)tf = 1).s

QED

PROPOSITION 5

Let I S'I >1. Then S Up K is not EC? for some # .11 s'  A

PROOF

Let a,s € S with a ^ s. Let be such that A = A = 0. Thenu U S
3 &  ,Sl d Mod^ Th^ {fit} such that S = 2, C = 3 and 5 = S = Ö.CZ 9 o u ,
Clearly A , X  £ SgUp K.

QED

THEOREM 4
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Even if we assume I*?! < co , the algebraic characterization of EC ̂  s as well 

as the Keisler-Shelah isomorphic ultrapower theorem fail for [= (i.e. for

Tarki style validity). In more detail:

Let t be arbitrary with |5| >1. Then

(i) (3K c Modp K = Ui UP K £ Mocf ThT K.

(ii) (3 VI , £y € Mod̂ _) Th? Ot = Tlx Jr but they have no isomorphic 

ultrapowers, i.e. Up {(%} f\ Up {&} = 0 .

Moreover, Ufi Up Cfi 0 Ufi UpJp = 0, too.

PROOF

(i) Let t and S as above.

Let s,q $ S with s i q. (They exist by the assumption |.S'| >1).

Let K = { a  € Mod ° : A = 0  and A =1}.t s q
Then K = K. Since Tlx'K -  F̂ _ we have (3«&, £ € MocFThK) = 2 and Cg
and £?s = 0 and = 0 are allowed. Clearly £ K.

QED of (i).

(ii) For these models we have Jy Jb that is T}?Jy - F̂_ = . But

€ (Xf CCh =» (^ = 0 and \N | = 2 )  and

t € UfUp jr =» (|Cs | = 3 and ^  = 0).

Hence Uf Up j? D Llf Up £  = 0.

THEOREM 5

QED of (ii).
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PROPOSITION 2

H S P K and H S P K are not axiomatizable (neither in k nor in (= )s s w w F 1
for some Z. There is such a Z without relation symbol, too. In other words,

H S P K is not an EC. even for algebras.s s A 6

PROOF

Completely analogous with that of Lemma 3 of Section 3 in Andreka-Németi [2].

Actually the quoted abstract model theoretic Lemma 3 implies the present

proposition. Hint: Let t be arbitrary with S infinite and

Z =  { Vi € Mod.0 : (38 £ S) A = 0} .t s

QED
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ABSTRACT

Finding the appropriate form of knowledge representation is 
an essential problem of most Computer-Aided Design (CAD), 
Computer-Aided Manufacturing (CAM) and expert systems. In 
this paper it is shown how the tools of many-sorted logic 
can be used for knowledge representation and a practical 
application of this method is presented. After giving pre­
cise mathematical definition of many-sorted models and many- 
sorted classes of models, we introduce some many-sorted 
operators such as weak and strong submodel, weak and strong 
homomorphic image and direct product. The main point of this 
paper is to show how one can give many-sorted operators 
practical (technical) meaning. All the abstract mathematical 
concepts are illustrated by practical examples from the area 
of production engineering in a house building factory. A 
small example shows, how naturally and easily one can trans­
fer the knowledge represented by logical models to a PROLOG 
program using logic programming.

Keywords: knowledge representation, logic programming, 
many-sorted logic, CAD/CAM.
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0. INTRODUCTION

As the popularity of logic programming is increasing, more 
and more computer-aided/computer-manufacturing and expert 
systems are written in PROLOG or in other logic based 
programming languages cl]. In solving complex engineering 
problems the first and very important task is to find the 
form of representation of engineering knowledge. Among seve­
ral knowledge representation tools (semantical networks, 
frames, etc.) it is mathematical logic which is the most 
appropriate to logic programming. In this paper we show how 
the many-sorted model theoretical concepts can be used for 
modelling certain engineering abstractions.

The fundamental difference between many-sorted models and 
classical logical models is that the universes of many-sorted 
models are not homogeneous but consist of disjoint sets of 
different sorts. Thus, when defining the types of functions 
and relations, we must give not only the number of arguments 
but also the sort of every argument. These models give us 
better and finer modelling possibilities than classical 
models c7□.

Many-sorted logic is used not only for knowledge represen­
tation but in several other branches of computer science. Its 
mathematical formalism is applied e.g. for logical foundation 
of computer-aided problem solving [2], for definition of 
semantics of programming languages, in the theory of program 
verification [4] and of data bases :3]. Yet there are several 
areas of many-sorted model theory which are full of unsolved 
problems. One of them is the question of the so called "empty 
sorted" models. In most published works (see c5□) all the 
models having a sort with empty universe are excluded. In thi 
paper we omit this restriction, because these empty-sorted 
models can be well applied for knowledge representation (see 
Section 2.3). Another paper is to study the theoretical 
problems of the class of empty-sorted models c6□.
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This paper consists of two parts. In the first part 
(Section 1) we define many-sorted models, normal and empty- 
sorted classes of models, and introduce some many-sorted 
operators such as weak and strong submodel, weak and strong 
homomorphic image and direct product. In the second part 
(Section 2) we show how one can give the abstract mathema­
tical concepts practical meaning in knowledge representation 
of a CAD/CAM system. In previous papers : 7,8 ] we have 
introduced an architectural CAD program written in PROLOG. 
This program generates different versions of ground-plans of 
apartments according to the special needs of the customer. 
Then it designs a multistorey living-house. The architectur­
al foundation of this program guarantees that these apartment 
houses can be built from prefabricated elements. The next 
step towards a CAD/CAM system is to design a production 
planning program for a house-building factory. All the 
examples taken from this area illustrate a new kind of know­
ledge representation tools and they could be very useful for 
a real application.

1. MANY-SORTED MODELS AND OPERATORS 

DEFINITION 1 (many-sorted similarity type)

A set t is said to be a many-sorted similarly type if t is a
triple <t where t, : Dorn t,->-(t )+ and t_£Dom t.,r o 1 2 1 l K o 2 1

NOTATION

Generally t is denoted by S and t̂  by H, so t-<S,t^,H>. In 
Definition 1

t =S denotes the set of the sorts (t )+=(S)+ theo o
set of all finite nonempty sequences of 
elements of S,
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t j  denotes the arity function,
denotes the set of function symbols,

Domft^)!# denotes the set of the relation symbols of 
type t .

REMARK

Let t be a similarity type and let re-Domt^ 

t r - t (r) - t  j (r) .

If reDomt^ltf, i.e. r is a relation symbol, then Dom(tr) is the 
number of the arguments of the relation symbol r.

For example, let t  = <S3 t ^ 3H> be a fixed similarity type such 
that S={p3q3k } 3 t ={<r,<q,p,fe>>, < f 3 <q3k>>}, H={ f } . Then

j
t ^ = <q 3p 3k >3 Dom ( t r ) = 3  = { 0 3 13 2} and t r ( 0 ) = q 3 t r { l ) = p 3 t r ( 2 ) = k  . 

dLet n=Dom(tr)-I. The natural number n denotes that the relation
symbol r has n + 1 argument, for Dorn(tr)=n + l . If f s H , i.e. f  is a

dfunction symbol, then n= Dorn( t f ) - l  is the number of arguments 
of function symbol f .

DEFINITION 2 (many - so r t e d  t - t y p e  mode l)
Let t be a many-sorted similarity type. By a m a n y - s o r t e d  t - t y p e  
model we understand a pair CX=<A,R> such that (1), (2) hold:

(1) A is a function such that Dorn A = S.
(2) R is a function,, and conditions (t), (xx) hold:

(t) Dom R = Dorn t 7.■L 3
(£•£) Let reDom t  ̂  be an arbitrary symbol and n = Dom(tr)-l

Then: R S.P A, , ... , i.e. R SA,X . x...xA,, .r x4,n t r y x )  r  y t r ) (tr)
Furthermore, if r€rH , then n

R : p A, , .-,+A, , i.e. R : (Ar, . x. . .xAr , . )->A1 tryx) tryn)’ r ytr) r + jr x <n (tr)n-1 (tr) n
i.e. relation R̂ . is a function with domain
Dom (R ) = .P A r , .. .K r J x<n f t, fr) J .v 1 K J x
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NOTATION

Let Vt be an arbitrary t-type model, and let reDomCt^) be an 
arbitrary relation symbol. Then set is denoted by r ^  , too. 
Thus

d eit
OC =<A,R> = <<A > , <R > >-<<A > , <r > > .

s s&S v reDom(t^) 3 s«S reDom(t^)

A (s&S) is said to be the u n i v e r s e  o f  s o r t  s and =A=<A > s o s  seS
is said to be the sys t em o f  u n i v e r s e s  o f  model  .

DEFINITION 3 (normal  t - t y p e  model)

Let ÜL be a t-type model. Vt is a normal  model iff (VseS)A f 0.s
That is Ct is a normal model if and only if there is no sort s
such that the corresponding universe A is empty.s

DEFINITION 4 ( c l a s s e s  o f  m a ny - so r t e d  mode l s )  

ciMod = { : a  is a normal t-type model}.t d
Mod° = {t)t : OC is a t-type model}.

Note that Mod^^LMod3 , i.e. class of normal  models Mod^ is a 
proper subclass of class of e m p t y - s o r t e d  models Mod3

The syntax of the first order many-sorted language has similar 
rules as that of predicate calculus. The definition of set of 
first order many-sorted formulas F can be found in [5,9:.

The connection between many-sorted formulas and models is defined 
by the "satisfaction" and "validity" relations. In this paper we 
use the validity relation in Tarski’s sense O  c  Mod3
defined in [9: .

X
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DEFINITION 5 (f i r s t  o rd e r  m a n y - s o r t e d  l anguage)

The triple L -<F , Mod^, > is said to be a f i r s t  o r d e r  many-
V  V  u

s o r t e d  language.

DEFINITION 6 (weak submodel)

Let «Í , Mod^ be two models. &  i s  a weak submodel  o f  model tK
(notation: &  e S or^-c £j£) iffw w

( i ) (VseS)BfiAs .
( i i )  (Vr€Dom ( t  ̂ ) ) r  r*.

DEFINITION 7 ( s t r o n g  submodel)

Let 'Ót , & € Mod®. i s  a s t r o n g  submodel  o f  model "Ct
(notation: So{^0 or A- <C J X  ) iffo _ o

(t) (VscS) BgS A g .
(ff) (VreDom (t ̂ ) ) C (n=Dom(tr) -1) -* (-£) ) : *

DEFINITION 8 (homomorphism)

Let Qt ,<fr'£Mod^. By a homomorphism from 'Oi into we understand
a sequence of functions /=</ > such that

? se.S
i i ) (VseS) f s : As + Bs .
( i i )  (VreDom(t7)) (V<a , . . . ,a >srÄ )</, r -.(a (a )>€r^.v v I o n J t r ( o )  o J t r  (n) n

NOTATION

f  : fX &  denotes that / is a homomorphism from ~0t into &  .
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DEFINITION 9 (weak homomorphic image)

Let VC , h- € Mod^ . j y is said to be a weak homomorphic 
model VC
(notation: J y e W A W )  iffW

image of

(t) there exists a homomorphism +
(H ) (VseS)Rng /s=Bg .

DEFINITION 10 ( s t r on g  homomorphic image)

Let 'ÖCjjk'^Mod^ and f  :&->■<& is said to be a s t r o n g  homomorphic 
image of model 'VC
(notation: fy £ H i®0) iffs

(t) J^,e\\ {VC} (i.e. &  is a weak homomorphic image of Ct ).w
(i i ) for every reDomft^) if rc = Dom(tr)-1 , then

IA = { <f  ra ) f (a )>:<a , , a > e r ^  }.J t r { o ) o Jtr(n) n o n

DEFINITION 11 (d i r e c t  p r o d u c t)

Let I be an arbitrary set and Vt£^Mod°. By the d i r e c t  p ro d u c tLs
o f  models (teI) we understand a t-type model
& = < < B > O » <*■*"'s seS ’ " reDom(t )> such that

(t) (VseS)B =P<A. :t£l>.S t j  s
(i i ) VreDom(t^) if n=Dom(tr)-I then

Vbe(B^ , .x...xB , . ) Lber^ 4=*-(Vtel )< £ (t) , . . . ,b (t)>€ r *3 ̂ t r { o )  t r { n ) J o v
The direct product of models Vi . (tel) is usually denoted by

Ptf or R '
tel
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2. APPLICATION OF MANY-SORTED MODELS AND OPERATORS

2.1 S i m i l a r i t y  t y p e

Let us consider the world of a house building factory where 
prefabricated elements for apartment houses are to be produced. 
Our aim is to describe this world, formalize its rules and 
write a computer program which optimizes the production 
planning. We shall represent the world of this house building 
factory by a class of many-sorted models. The type t of the 
models is defined as follows: t  = <S3 t j 3H> where
d,S={u>3f r 3w3p 3wb3d 3s f 3sw3s p 3s d 3a}

to - numbers, o f  ~ sequence of front panels,
f r - front panel, su - sequence of wall panels,
w - wall panel, sp - sequence of floor panels,
P - floor panel, sd - sequence of doors and windows,
d - door or window, a apartment

are the sort of type t .

H={f2> ^5^ are the £unctions>
Dorn 11\HŰ{r 13r 2, r 2, r 4, r 5, r 6, r ? ) are the relations,

11 = { <f o f ,  s f » 3 <f 2, <w3 sw3 s w » 3 <f^3 <p3 s p 3 sp>>3 
< f 4 3 <d3 s d 3 s d » 3 < f 5, < s f 3 s p 3 sd ,  sw,wb3 a>>3

<vl * <f r >d>>, <r2> <f r >d>d>>> < r3* <f r >>3 < r4 , <w3d » 3 
<r5, <w3 d 3 <d>>3 < r6, <w3w » 3 < r ?3 < f r 3w>>] .

Functions f 4, f 2, f s , f 4 construct sequence of front panels, 
floor panels, windows and doors, respectively. Function f .  
constructs an apartment from the sequences of front panels, 
wall panels, floor panels, windows and doors, and a waterblock 
(Figure 1). Let us have a simple example with seven relations 
only, which, obviously, should be extended in the case of a 
real application.
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r - a front panel with one opening, connected with a window, 
v 0 - a front panel with two openings, connected with two

Ci

windows,
v - a full front panel (without opening),«5
v 4 - a. wall panel with one opening, connected with a door,
r - a wall panel with two openings, connected with two doors,
0

Vq - two wall panels have the same length, 
v 7 - the length of a front panel (Figure 2).

2.2 Homomorphia image

Let us consider one of the apartment variants designed by our 
computer program in C 8□ (Figure 3). Figure 4 illustrates a l l  the  
p r e f a b r i c a t e d  e l e me n t s (panels) which are needed for the 
apartment in Figure 3. The corresponding many-sorted model repre­
senting all the relations we know about these elements is denoted 
by tteMod^ in Figure 6. There are many elements in this apartment, 
which are quite alike. We should know which the d i f f e r e n t  e l e ­
ments are.

The elements are different if their dimensions are different, or 
their dimensions are the same, but one of them has some openings

Figure 1. Many-sorted functions Figure 2. Many-sorted relations
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for windows or doors, but the other has not. 
This "definition of being different" can be 
formalized by a homomorphism h from ^  into 
a certain model This model Mod0 has
the elements we have defined as different 
elements, and all the relations holding in 
tX/ hold on the corresponding elements in &■ . 
It is easy to see by Definition 10 that $y is 
a s t r o n g  homomorphic image of model .

twin
bed

room

living study

bath
k- wc

V *

double N 
bedroom

kit­
chen

-I—

Figure 3. An apartment

Figure 4. All the prefabricated elements for the apartment in Figure 3.
f4

h

P2

P i PiP2

Pi

Figure 5. Different prefabricated elements for the apartment in Figure 3.
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M.

Figure 6. Homomorphic image
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Let us formulate the concept of "being different" for the front 
panels in a many-sorted formula <p :

p: V vfr  v^r (CV v“ u“ ( l e n g t h 3 ^length(v^r 3 *\ v ^ = v*£))]v
V (full (û r) ̂ window! ( y ^  ŷ ) v window^ (v^r 3 v^, v^) D p  > ~[ (ŷ r=ŷ r’) )

where relations r^,  r^ 3 r 4 are denoted by window!, window2 ,
full and length, respectively. A many-sorted variable is denoted 
by v . (seS and fel)."Is

Obviously, & |= cp and Oi cp. Generally, for every Mod^ , £  |= co ,
Q iS

if there exists a model #feMod“_ such that L e t t  A f t } .
V S

We can represent formula (o in PROLOG programming language in a 
very natural way:

differ (X,Y) +■ length (X , L!) , 
length (Y , L2) , 
LI + L2.

differ (X, Y) «- full (X) , window (Y).
differ (X, Y) ■*- full (Y) , window (X).

window (Z) «- window! (Z,C!) .
window (Z) - windows (Z,C2, C2) .

Strings beginning with capital letters denote variables (e.g.L!), 
the other strings denote constants. Note that we used one-sorted 
variables, but this does not make any difference, since the 
pattern matching mechanism built into the deduction system of 
PROLOG automatically fulfils the requirement that only the terms 
of the corresponding sorts should be substituted for each other.
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)

Figure 7. Weak and strong submodel

2. 3 Submodel

Let us consider model &  in Figure 6, i.e. the representation of 
all the different kinds of panels needed for the apartment in 
Figure 3. A production engineer in the house building factory 
should schedule the manufacturing of elements, considering the 
different technology of different production units. One unit can 
manufacture full panels only, and the other panel with openings 
for windows or doors. In Figure 7 mod,el £' £ Mod^ represents the 
elements produced by the first unit, and model e Mod° repre­
sents the elements produced by the second unit. Note that both
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r íand L" are proper 
Ĉ b , C'd are empty, and , C 
by Definitions 6, 7, that £ '  
a strong submodel of f y .

empty-sorted models, since e.g. C'
”b are also empty. It is easy to see 
is a weak submodel of & and t "  is

>

2.4  D i r e c t  p ro d u c t

Let us study the connection between wall panels and doors, con­
sidering three points of view: materials, manufacturing, and 
architecture. First of all we define a similarity type t '  which 
is very simple: t ' = < S 3 t ' y H> where

7 j n J

S={Wjd}3 t  ̂  = {<r 6,<w,w>> 3<r 4, w , d » }  s H = 0 .

P OtL=<&-Í63

Figure 8. Direct product

1. From the point o f  view o f  matherials two'wall panels are to be dis­
tinguished: concrete with strong reinforcement (s^), and 
concrete with weak reinforcement (s2). Doors are of two 
qualities: main door made of first class wood (s^) and doors 
connecting rooms within the apartment, made of glass and
second class wood (s0). We define a model t)t e Mod^ , whichK 2 J o f
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represents these elements and the relations on them (Figure
8).

2. From the p o i n t  o f  v iew o f  p r o d u c t i o n  p lann ing we consider 
the dimensions of wall panels and their openings for doors. 
Thus in model a 7e Mod^ , there are three elements of sort 
w: Wj, w2, w^ . Wall panels w^ and w^ have the same dimensions 
(say big), and w^ has an opening for a door, but w^ has not. 
Element w„ has different (say small) dimensions from that ofó
vi2 and w^ . In model 012 we have only one door. The essential 
feature of a door in this model is its dimensions.

3. From the p o i n t  o f  v iew o f  a r c h i t e c t u r a l  d e s i g n  vie should con­
sider the arrangement of openings for doors in wall panels. 
Each of them has the same dimensions but the first has an 
opening for a door (e ), and the second has an opening for a 
door, too, but with a different arrangement (e^) , and the 
third is full (e^) • The essential feature of a door in model 
tX2 is the design of the door.

Le t  us d e f i n e  the  model f)tQ p r e c i s e l y :
@CoCt =<<A > _ , <r > n , ,> where A ={z1,z0}, A J={s,,sri},o o , s s eS  re  Dom 12 o,w 1 ’ 2 ’ o , d  1 * 2 *

fK Cfc
r R ° = { < z 1 , z 1> , < z2 , z 2> } , r 4 ° = { <z 7 , s7>,<z9 , s9> , <z9,s7>,<z9 , s „>

' 1 * 1  ’ 2 * 2 * 2 * 1 * 2 * 2 '

The definitions of models $  , &2 can be given similarly (Figure
8). Let us see the direct product of models Oi , 01 , Ot :

O  J. dj

P ^i - &  =<<B > ̂ „ , < r ^ > n , „ > wherev€3 s seS reDom 12

B = P A. , i.e. the set of all the sequences with length 3
W ie3 'l ,W of sort w (e.g. <z ,w2 ,e >).

B^= p A^ i.e. the set of all the sequences with length 3
"i, £ 3 of sort d (e.g. <s ,c3,g>).
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The e l e m e n t s  o f  d i r e c t  p r o d u c t  Js- r e p r e s e n t  complex i n f o r m a t i o n  
from a l l  the  t h r e e  p o i n t s  o f  v iew a t  the  same t im e . For example: 
q=<z^,w^,e 2> is a wall panel with strong reinforcement (z^), 
with dimensions 4.8x2.7x0.25 (w^), and with an opening for a big 
door, being in a distance of 1.2m from one side of the panel 
Ce2) . k=<s;Z,C2 ,g> is a door, which is made of first class wood 
(s^), with dimensions 0.95x1.96 (c^), and with design denoted by 
g-

D i r e c t  p ro d u c t  &  i s  a model  r e p r e s e n t i n g  a l l  the  p o s s i b l e  t ' -  
t yp e  r e l a t i o n s  on the complex o b j e c t s  o f  our wor ld . Let us have 
some example:

« W V -  <V ' V e2>>£rs >
Mo

since
<zJ}z2 > er s ° , <wJ,w9> r fí 1, <e?,e9> r t 26

&But <<z 2 2 , e  2 > , <z2,w 3 >e 2 >:>\ r  6 , because in model
, ÖL

<w2 ,w3 \ r6 J (see Definition 11).
Another example:

b'<<zI ,w2 ,e2>, <s2 , c 3 ,g>> r 4 and
<<z2 ,w2,e2> , <s2,c3,g>>

It means that the wall panel <z2,w2,e2> may have either a main door 
<s2,c3,g> or another door <s2 ,c3,g> (Figure 8).
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