

Magyar Tudományos Akadémia
S z á m í t á s te c h n i k a i é s A u to m a t i z á lá s i K u ta tó I n t é z e t e

Computer and A u tom ation I n s t i t u t e , Hungarian Academy o f S c i e n c e s

PROCEEDINGS OF THE WINTER SCHOOL ON

C O N C E P T U A L M O D E L L I N G

VISEGRÄD
27-30 January, 1986.

Előd. KNUTH
András MÁRKUS

(editors)

Tanulmányok 187/1986
Studies 187/1986

Felelős kiadó:

REVICZKY LÁSZLÓ

ISBN 963 311 216 8
ISSN 0324-2951

3

C O N T E N T S

LIST OF PARTICIPANTS Page

Tomiyama, T.: Integrated data description scheme ... ̂'

Knúth, E., Hannák, L., Hernádi, A.: Foundations
of conceptual representations 3̂

Brückler, H., Fritz, W., Haase, V. , Kalcher, R. :
Intelligent databases ^5

Sikl&ssy, L.: Active collaborative systems g1

Hernádi, A.: Abstraction and data structuring 39

Davis, M., Mitchell, R.: Semantic data models:
A software technologist3 s perspective 111

4

WINTER SCHOOL ON CONCEPTUAL MODELLING

Visegrád, 27-30 January, 1986

LIST OF PARTICIPANTS

A U S T R I A :

Brueckler, Helmut
Institut für Maschinelle Dokumentation
Steyrergasse 25 a
A- 8010 Graz

Geymayer, Barbara
Institut für Digitale Bildverarbeitung und Graphik
Graz, Wastiangasse 6.

Haase, Volkmar H.
Institut für Maschinelle Dokumentation
Steyrergasse 25 a
A- 8010 Graz

Kalcher, Robert
Institut für Maschinelle Dokumentation
Steyrergasse 25 a
A- 8010 Graz

CZECHOSLOVAKIA:

Kelemen, Jozef
Department of Theoretical Cybernetics
Faculty of Mathematics and Physics
Comenius University
842 15 Bratislava

5

Tóth Attila
INORGA
Moyzesova ul. 24.
Kassa, 04001

FRANCE:

Ganascia, Jean-Gabriel
Laboratoire de Recherche en Informatique
Beit, 490, Université Paris-Sud
91405 Orsay

Vrain, Christel
Laboratoire de Recherche en Informatique
Bat. 490, Université Paris-Sud
91405 Orsay

HUNGARY:

CHINOIN Gyógyszer és Vegyészeti Termékek Gyára Rt.
Budapest, 1045. Tó u. 1-5.

Greguss Pál
Gödöllői Agrártudományi Egyetem
Gödöllő, Pf.303., 2103.

Hernádi Ágnes
Központi Statisztikai Hivatal Számítóközpontja
Budapest, 1023. Budai L.u. 1-3,

Farkas György
Majtényi Edit
Somogyi Péter

Magyar Tudományos Akadémia Automataelméleti TKCS.
Szeged, 6720. Somogyi Béla u.7.

Simon Endre
Toczki János

Magyar Tudományos Akadémia Központi Fizikai Kutató Intézet
Budapest, 1525, Pf.49.

Krauth Péter
Molnár Bálint
Nicholson Dávid
Papp Mikós

Magyar Tudományos Akadémia Számítástechnikai és Automati
zálási Kutató Intézet
Budapest, Pf.63., 1502.

Bach Iván
Bajza János
Bernus Péter
Éltető László
Farkas Ernő
Kelen Miklós
Knuth Előd
Krammer Gergely
Lakatos Péter
Létray Zoltán
Márkusz Zsuzsanna
Máté Levente
Muzsik Gyula
Naszódi Mátyás
Réti Zoltán
Ruttkay Zsófia
Váncza József

Marx Károly Közgazdaságtudományi Egyetem
Matematikai és Számitástudományi Intézet
Informatikai Osztály, Budapest, 1092. Kinizsi u.1-7.

Barna Gyula
Országos Tervhivatal Számitástechnikai Központja
Budapest, 1149. Angol u.27.

Alcziebler Veronika
Asztalos Domonkos
Kiss Zoltán
Krekó Béla
Ulbrich Péter

Országos Vezetőképző Központ
Budapest, 1087. Könyves Kálmán krt.48-52.

Breznay Péter Tamás
Kiss László Nándor

7

Számitástechnika Alkalmazási Vállalat
Budapest, 1119. Szakasits Árpád ut 68.

Aszalós János
Eiben Ágoston
Kakas Károlyné
Koch Péter
Kovács Kálmánná
Laczay István
Sebestyén Ferenc
Szily Márta
Sztanev Ivánná
Völker-Müllner Ildikó

Számítástechnikai Koordinációs Intézet
Budapest, 1015. Donáti u.35-45.

Balogh Kálmán
Bedo Árpád
Bogdánfy Géza
Domán András
Domokos Mária
Farkas Zsuzsa
Garami Péter
Harányi Annamária
Losonczi Ilona
Móri Judit
Nagy Zsolt
Sándor Gábor
Sántáné-Tóth Edit
Solti Gabriella
Sziray József

ITALY:

Guarini, Nicola
LABSEB
CNR - Padova

JAPAN:

Tomiyama, Tetsuo
Centre for Mathematics and Computer Science
Interactive Systems
Kruislaan 413, 1098 SJ Amsterdam /NETHERLANDS/

NETHERLANDS:

Silóssy, Laurent
Vrije Universiteit Informatica
Postbus 7161
NL- 1007 MC Amsterdam

RNMANIA:

Barbuceanu, Mihai
Institute of Computer Technique and Informatics
Bucharest

UNION OF SOVIET SOCIALIST REPUBLICS:

Salikov, Leonid
Moscow University

Trishina, Elena
Laboratory for Computer Science
Siberian Division of the USSR Academy of Sciences
Lavrent'eva av. 6.
Computing Centre
630090 Novosibirsk - 90

9

UNITED KINGDOM:

Davis, Megan
The Hatfield Polytechnic
School of Information Sciences
POB 109, College Lane
Hatfield, Herts.
ALIO 9AB

Seel, Nigel
STL
London Road
Harlow, Essex
CM17 9NA

UNITED STATES OF AMERICA:

Whinston, Andrew
Krannert Graduate School of Management
Purdue University
West Lafayette
IN 47907

1 1

INTEGRATED DATA DESCRIPTION SCHEMA

- Issues on Representation of Knowledge for CAD Systems -

Winter School on Conceptual Modelling

January 27-30, 1986, Visegrad

Tetsuo Tomiyama

Interactive Systems

Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands,
Telephone +31-20-592 9333, Telex 12571 mactr nl.

ABSTRACT

In this memo we discuss a knowledge representation schema for future CAD systems namely
fo r mechanical design. First, we present an idea o f 11ICA D (Intelligent Integrated Interactive
CAD) systems. These systems will be realized by using techniques o f knowledge engineering
which are necessary to make the system intelligent and integrated. Among the elements o f a
IIIC A D system, IDD S (Integrated Data Description Schema) is most important, because this
is the mechanism to allow free and smooth information flow between system elements and
because using IDDL, the language o f IDDS, we describe the design objects and the design
knowledge fo r IIICAD. In this memo, we try to derive the specifications fo r ID D S and IDDL
from various discussions, such as formalization o f design process, representation o f machine,
etc., in the context o f the conceptual modeling o f the design objects and their knowledge
representation problem

12

1. INTRODUCTION

CAD systems are now not optional but necessary for most of industries. In this paper, we try
to clarify many problem s and troubles around conventional CAD systems. However, it is difficult
to do so in general, because designing activities and philosophy for CAD systems are completely
dependent on the target area. Thus, those problems should be discussed in a particular field. We
consider machine design as the subject area in this paper.

A typical problem of conventional CAD systems is, for example, that CAD systems do not
check errors or m istakes of the designer. Usually, the final drawings are so impressive that no one
can detect those errors.

Another problem is integration of different models; this problem is especially significant in
case of mechanical design which must deal with complicated structures. A design object must be
viewed from many points o f view, which means in the whole design process one object is represented
in manv models, such as a geometric model, a kinematic model, a dynamic model, etc., each of
which is allowed to have different attributes.

An idea of product modelling was proposed [KSH83] to integrate information for all through
CAD/CAM activities and it seems very powerful. However, we have not yet seen a final solution
which unifies all those models and guarantees the integrity and consistency of the inf''; ation. We
may call such a model virtually metamodel and it is a great concern for researchers in this field.

In geometric modeling, the problem of separation of the topology and the geometry of objects
have been often discussed. Most of geometric modeling systems have a feature for this separation,
and quite often the dimensions can be also separated. This issue would be generalized to the dis
tinction between structure and value. Sometimes, we want to separate the structure of an object
from the values of attributes, because what we must first decide is the structure, for instance. On
the contrary, quite often structural constraints influence values. In this case, separation of structure
from value is not necessary. Therefore, we have two contradicting propositions which are causing a
big problem in CAD fundamental research:

• How can we get a language which distinguishes structure from value?

• On the other hand, how can we unify’ them for expressing the constraints?

In order to solve these problems of conventional CAD systems, we must avoid ad hoc
approaches, because m ore or less designing is an intellectual process of human which may require a
deep investigation. Therefore, we need a theory of CAD which would indispensably consist of the
following three elements to make our direction of investigation firm.

(1) First of all, we need to know what are designing and design processes; i.e., we need a
theory of design.

(2) We need something for expressing the design objects; i.e., we need a theory of design
objects which, in our case, is translated into theory of machine.

(3) How to implciin-m ui u.aiiy a matter of investigation recently in
the field of knowledge engineering, pattem recognition, and computer graphics, for exam
ple. So, we need knowledge engineering as an implementation technology. Moreover,
because a future CAD system must be implemented as a tool for an intellectual process,
we need theories of knowledge, action, learning, etc., that are more directly related to
human thinking process; or, we need philosophy, cognitive science, psychology, etc., some
thing epistemological which may contribute to establishing a theory of design or a theory
of machine. Traditionally in the database engineering field, this aspect has been also
called conceptual modeling (BMS84).

In this paper, we first describe in Chapter 2 the direction of future CAD systems that are sup
posed to solve the problems of conventional CAD systems. Secondly, we will point out require
ments for future C A D systems coming from discussions on design theory.- philosophical considera
tion. and consideration about design objects, i.e., machinery in Chapter 3, 4. and 5. respectively.

T. Tomiyama Integrated Data IV-M-np<x.n SchMM

Among the elements of our future CAD system configuration, the meet: an tom to describe
objects in an unified way is most important, because we need to realize ability u> describe -neumo-
dels. for example. In this paper, we call this mechanism Integrated Data Description Schema
(IDDS) and its language Integrated Data Description Language (IDDL). In those chapters »e gra
dually clarify the requirements for IDDS and IDDL In Chapter 6, those requirements result in
IDDL specifications, and we will show an example of its highly experimental version. The language
itself is still under development.

2. DIRECTION OF FUTURE CAD SYSTEMS
The direction of future CAD systems is deduced from problems of conventional CAD systems

[ToY85a, ToY85b] The followings are the requirements for future CAD systems; the system should
be

• intelligent;
• integrated;
• interactive.

Due to these requirements, our future CAD systems will be called IIICAD (pronounced as
three-CAD) standing for Intelligent Integrated Interactive CAD systems. To realize a IIICAD sys
tem, knowledge engineering is regarded as one of the key technologies, because those requirements
are deeply concerned with the nature of human intellectual activity such as designing. This means
that future CAD systems will be realized to be knowledge based CAD systems and that they have
considerably different configuration from the conventional ones.

Figure I shows our configuration of a IIICAD system1. It has several important components.
(1) Supervisor (SPY): First of all there must be an intelligent supervisor which watches all the

operations in the system, for example, user behavior, information flow, status of the sys
tem, etc. By doing this, it at least tries to understand the intension of the user. And, for
instance, when the user made an obvious mistake, the supervisor should detect it by

LAN
I/F

SPY

SCENARIO

IDDS (IDDL is spoken)

___-

DB1 K B l

r — - : ------ --

rr~~ ; ------ -—*
D B 2 KB2

:: ■ .—_____ -s

API

A PI

AP2

AP3

AP4

Figur.e I. Configuration of IIICAD

! The author is no* preparing a material about the IIICAD system concepts.

January 27-30, 1986 Winter School on Conceptual Modelling

14

comparing the user's actions with a scenario which describes a standard designing pro
cedure. This would give intelligence to the system, although the supervisor itself does not
have the initiative for the whole design process because the final responsibility for the
design should be held by the designer.

(2) Integrated Data Description Schema (IDDS): Another important element is IDDS. One
of them is to provide an integrated and unified method for describing models, i.e., a
metamodel, in the system. IDDS is also a gateway for the databases and knowledge bases
(DB/KB). Normally, the user does not have to pay attention to where and how to store
and retrieve information. All the information, therefore, comes in and out through IDDS,
which means databases and knowledge bases are transparent to the user. IDDS has a
language called Integrated Data Description Language (IDDL), and the features of IDDS
will be described as those of IDDL. SPV is drived in IDDL.

(3) Intelligent User Interface (IUI): The interface between the system and the user is con
trolled by several interfacing systems controlling from very low level input/output to very
high abstracted level. The highest level interfacing system is called IUI which accepts
messages from the supervisor or other application programs written in IDDL and sends
them to lower level input/output systems like GKS which controls the hardware (HIV) or
physical devices. It also accepts user’s inputs from, for instance, GKS and translates them
to descriptions in IDDL which in turn will be sent to the supervisor.

(4) Application Program Interface (API): There must be an interface between IDDS and
application programs. Following a scenario, SPV may invoke necessary and proper appli
cation programs for the situation. All the information which will be required by the
application should be supplied by somebody; it can be the user, one of the databases, or
another application programs. That information will be fed to the application program
from IDDS in IDDL. and API should translate it from IDDL to proper data format.

(5) Scenario: A scenario is given beforehand to describe a chunk of procedures necessary' to
complete the design task, including from abstracted descriptions to very low and simple
ones. It may refer to other scenarios to perform a set of prodedures. According to the
progress of the design, most suitable scenario will be selected by SPV dynamically. The
whole set of scenarios selected during a design process may become a record of the design
and may be used next time. A set of scenario is normally provided by the system designer
and stored in the knowledge bases.

As you see, a 11ICAD system is controled in coorperation of SPV using scenarios and the
user. Its basic actions are described as follows.
(1) Each system component, such as IUI, API, etc., reports its own status or requests to SPV.
(2) SPV asks KB whether there is a proper scenario for the situation created by the status

reports from the subsystems.
(3) Having a proper scenario, SPV then passes requests from one subsystem to the most

proper one. For example, data request from the application program might be passed to
IUI, i.e., the user.

(4) The response will be returned to the subsytem which originally asked it. If the subsystem
is satisfied with the provided data, it reports satisfaction to SPV and SPV will proceed
according to the scenario. If not, SP V must take next procedure which might or might
not be described in the scenario.

(5) If the scenario does not have description what to do next, SPV tries to find another
scenario which looks valid in that situation. If it fails, SPV returns the system control to
the user, reporting the system status, etc., and asks the user what to do.

Now. we have following two design policies for IDDL. These design policies (abbriviated DP)
will be turned into the specifications later in Chapter 6.

T. Tomiyama Integrated Data Description Schema

January 27-30, 1986 Winter School on Conceptual Modelling

15

T. I (minania integrated Data Description Schema

DP 1: It must be possible that IDDL describe status information of the system.
DP 2: It must be possible that IDDL describe control information of the system, i*' origin and

destination and the lime stamp.
As Figure l suggests, there exist a couple of layers or boundaries in the system. According to

the kind of information flowing around, there is a boundary called semantics/syntax boundary
between the supervisor and the rest which separates the semantics layer and the syntax layer. The
meaning of these two layers or of this boundary will be described later in Chapter 4.

Another important boundary is the intension/extension boundary [T0Y86] which will be
described more precisely also in Chapter 4. The extensional layer is a domain where all the infor
mation is described in relationships with other entities. Therefore, each entity may have no extra
meaning other than being a symbol. On the other hand, in the intensional layer an entity is
represented as a set of attributes; thus, an entity itself can be decomposable. This boundary exists
between systems which care the information about entities themselves and systems which care the
information about relationship among entities.

These two boundaries influences the implementation, because in a particular layer a particular
tvpe of information is favored or required and because there exists a certain type of implementation
techniques suitable for that particular layer. Thus, we have also several implementation layers in our
IIICAD system.

As a result of having these layers, descriptions (or in conventional terminology, programs) for
the supervisor only contain semantical and extensional notations, while descriptions for IUI and
API are mainly occupied by transformation rules from semantical description to syntactical one and
from extensional description to intensional one, respectively. This means there is a complete separa
tion between higher level description of the user’s intent and lower level description for the system
control.

As we already pointed out, in order to build a II1CAD system, we need to introduce a tech
nique like knowledge engineering which has several important issues, such as knowledge representa
tion, knowledge acquisition, and inference, in appling it to real problems. When we consider a
design problem, for example, we can find several knowledge representational problems; such as
knowledge representation of machine, of design process, and design knowledge. Then, a very simple
question may anse:
• Is it really possible to represent a machine in any computer language?
• I f possible, how do we do that?

This is a very philosophical question; in order to answer them, we need a theoretically sound
basis to handle the knowledge. This means we need a design theory [ToY86],

3. ISSUES COMING FROM DESIGN THEORY
A good design theory is necessary from the following reasons.

(1) In order to build a CAD system that can support and help the designer in all the design pro
cess, we need to formalize a design process.

(2) In order to implement a IIICAD, we need knowledge engineering to handle our knowledge
about design. This requires a theory to formalize our design knowledge.

General design theory proposed by Yoshikawa [T0Y86, Yos81] is a theory that can fulfill these
two requirements. It is based on axiomatic set theory and assumes three axioms; and then we can
derive theorems which are supposed to explain real design processes. From the result of general
design theory, we can also deduce several important issues for the designing of a IIICAD system.
In this chapter we attempt to interpret important results of general design theory from a viewpoint
of building a IIICAD system.

January 27-30, 1986 Winter School on Conceptual Modelling

16

T. Tomiyama Integrated Data Description Schema

3.1. Interpretation of Axioms of General Design Theory
Now, we try to show important issues coming from the axioms of general design theory.

These issues are not necessarily relevant to the theory itself but to the usage of the theory.
AXIOM 1: (Axiom of recognition) Any entity can be recognized or described by attributes and/or other
abstract concepts.

In general design theory, an entity itself is not defined; thus, it is a rather symbolic existence
and anything can be an entity. Instead of defining directly what an entity is, we just guarantee the
observability of entities, which made this axiom look rather trivial. However, in fact, it yields a
further philosophically big issue, because it says that the representation of an entity is given by its
attributes and that this is the only way for describing an entity (Figure 2). Actually, it says the
description method of an entity concept must be extensional (or denotative), but not intensional (nor
connotative). In other words, an entity is classified into some category according to its relative posi
tion to another entity, such that its relationships with other entities should be described. Here,
classification is carried out by counting up of entities that belong to the same attribute concept,
although it might be done in an either subjective or objective way.

Suppose we have a watch. This watch can be described as an integration of all the parts, from
a metal case to a quartz oscillator. Then, it is possible to regard a list of those parts as the whole
watch. But this is strange, because the list itself does not construct a watch. A watch is a watch
because it is not a üst of parts. Therefore, extensional representation means something hohstic and
all the attributes, including so-called structure, do not define the entity. Because attributes are gen
erated by observation followed by abstraction, they do have nothing to do with the real structure or
whatever an entity has as its properties. Thus, we have:
DP 3: The expression of 1DDL should allow an extensional description.

Before proceeding to the next axiom, we define two terms, entity set and concept of entity.
DEFINITION 1: The entity set is a set which includes all entities in it as elements. B y all entities, we
mean entities which existed in the past, are existing presently, and will exist in the future. This set is
denoted by S '.

DEFINITION 2: A concept o f entity is a concept which one has formed according to actual experiences
with an entity. This concept is different from an abstract concept, t.e., a concept o f attribute or function,
which is abstracted from the entity.

AXIOM 2: (Axiom of correspondence) The entity set S ' and the set o f entity concept (ideal) S have
one-to-one correspondence.

January 27-30. 1986 Winter School on Conceptual Modelling

17

T. Tomivama Integrated Data Description Schema

This axiom indicates that it is enough only to think about the set of entity concept S instead
of the entity set S ', because between these two sets there is a perfect one-to-one mapoing. How
ever, by definition, S may include even entities which will exist in the future, and this ideal
knowledge is far from our real knowledge. We have to consider the relationship between the logical
world and the real physical world. In this context, this axiom guarantees the existence of a super
man who knows everything; in other words, it just shows an ideal and ultimate state of our
knowledge, and that we have only imperfect design knowledge. This forces us to check the feasibil
ity or compatibility of the knowledge with the realities besides the completeness, soundness, and
inconsistency checks in our realistic world.
DP 4: lDDL should provide facilities or a mechanism to check the completeness, soundness, and

feasibility of the knowledge.
Now, we have the third axiom.

AXIOM 3: (Axiom of operation) The set o f abstract concept is a topology o f the set o f entity concept.

This axiom signifies that it is possible to operate abstract concepts logically, as if they were
just ordinary mathematical sets. Accordingly, we get set operations, such as intersection, union,
negation, etc. From a mathematical point of view, because axiomatic set theory is based on predi
cate logic which is normally associated with traditional two-valued logic or natural deduction, gen
eral design theory must also follow natural deduction. In natural deduction, a proposition

P V -J>,

generated from any logical term, P, is always true by the law o f the excluded middle.
But, it is sometimes happens that we cannot decide between true and false in designing, unless

we have another information or proposition Q to decide it. In fact, in everyday inference at least
distinguishing known from unknown is necessary, which means introduction of intuitionism.
DP 5: It is necessary to introduce three valued logic (or intuitionism) to IDDL.

3.2. Useful Results of General Design Theory
Two important and useful results of general design theory [T0Y86] are described here. One is

introduction of distance into the attribute space; the other is formalization of design processes with
the metamodel concept.

3.2.1. Distance in the Attribute Space
Two theorems tell the following:

THEOREM: In the real knowledge there exists a distance between two different entities.

THEOREM: In the real knowledge an attribute has a value.

When you read these two, you might feel that these two sound trivial. However, they have
significant meanings and should be interpreted as follows:
(1) Given a certain metric, different entities, í i and s 2, can be measured differently; here, the

metric will be given by a function

f:S->[0, 1], (S: Real knowledge),

and attributes have values, if we have a proper distance function, d, such that

0 < d(s\, s2) = | / (i |) ~ /(J 2) | < 1

(2) We may use attributes as the metric as far as attributes are second countable. That means all
the attributes cannot be always measured. In order to clarify what kind of attributes can be
measured, we probably need a study on representation methods of physical phenomena.
Only from this study, we will obtain a guide line about how to represent things rationally.

January 27-30, 1986 Winter School on Conceptual Modelling

l ü

T. Tomi) ama Integrated Data Description Schema

(3) When we have two candidate design solutions, A and B. it is possible to judge whether A is
nearer to the specifications than B or not.

(4) It is also possible to measure the convergence speed of the design solution.
(5) There exists a mule between a horse and a donkey. However, it never guarantees the existence

of a donkey nor gives how to creat a donkey, but it simply explains its existence.
In addition to these issues, the theorems indicate another important aspect about how to

describe a value of an attribute. Usually, a triple of

[attribute name, type, value]

is used for describing an attribute and its value. However, this notation is vague because it is not
clear whether this notation specifies the structure of an attribute or the value itself.

The theorem tells that there exists only a distance between two different entities and that the
value of a particular attribute is generated from the function which gives this distance and a particu
lar standard entity which we can naturally set to 0. This means that the value, v, of an attribute, A,
of a particular entity, e, is given by a function (or a predicate),

v = A(e).

We also distinguish two cases; one is when e has an attribute a, and we write this as

A(e).

The other is when we want to say that A of e has value v. In this case, from now on we use a nota
tion.

v = A(e).

Note that the first notation suggests only that e has an attribute A of which value is e but not that e
has a structure which is represented by A. As we discussed in Section 3.1, simply gathering attri
butes together does not constitute the structure.
DP 6: 1DDL should have a distinction between the fact that an entity has an attribute and the

fact that an attribute has a value.

3.2.2. Formalization of Design Processes
Another important result of general design theory is that it can give good explanations of a

design process together with a reasonable definition of metamodel. In fact, in general design theory
we can derive a design process model called evolution model which indicates a design process is an
evolution process of the metamodel [T0Y86].

A metamodel can be defined as a finite set of attributes and the metamodel set is defined as an
intermediate space between the function space where specifications are written and the attribute
space where solutions are obtained. A design process, in the evolution model, is explained as fol
lows.

Given the specifications functionally described, we may imagine a rough description of an
entity concept as a candidate. The attributive description of this candidate will be detailed accord
ing to the progress of the designing. The whole design process will be explained as successive single
steps. Each step corresponds to a single design procedure such as finite element analysis, motion
analysis, data analysis of a specific experiment, etc. In this way the designing proceeds and accord
ingly the amount of information of the metamodel increases.

This evolution model suggests many important issues.
(1) A design process can be decomposed into small basic design procedures. The whole design

process will be realized and simulated in a CAD system by a set of those basic procedures,
which in turn means the whole process will be described by a scenario.

January 27-30, 1986 Winter School on Conceptual Modelling

19

Integrated Data Description Schema

(2) The metamodelxiuces models lot evaluation of functions [ToY85b], At each design step,
the metamodel i.m um s attributive ...formation which has been decided so far. The design
procedure for that step extracts s...... mteresting attributes from the metamodel and creates a
model for an evaluation. This poness w.ll be formulated as follows. Let M, be the metamo
del at a design step i and d be a pi.nedűre or function to extract information for the creation
of a model m, under a specific cm umstance or field / , . Here, functional evaluation of a
design solution is equivalent to evaluate the model

in, I = d (M , , f j) .

Therefore,

would give the design decision, wl.e.e e is an evaluation function.
(3) By using the mcin.nodel concept, we can integrate all the models which appear in a designing

process This means that in a design process the meiamodel is the central database from
where we can get the necessary ...formation for creating models. And. as shown in the
definition, a meiamodel should be described by a finite number of attributes expressed in a
wav described in the previous so non

DP 7: I DDL should be used for des. nb.ng also for scenarios.
DP 8: IDDL should have an ability to describe metamodels, so that we get a model for an

evaluation in a particular condition.

4. ISSUES COMINU I KOM PIIILONOPIHGM- (METAPHYSICAL) CONSIDERATION
In this chapter we discuss issues about our philosophical view, because it is necessary to

decide our standpoint f.n descnb.ng Hungs In whatever way the user may want to describe a thing,
/ DOS should provide a framework and a mechanism to complete it. In other words, IDDS must be
flexible enough to make the user free to describe anything he wants.

We employ here Hist order preda ale logic for notation. Although IDDL does not necessarily
' ^ / h ' i n t p r u / p m e t 11c p i t f n r f A n v p n i p n p p

have to employ logic pn»gramming, in 11 ns chapter we just use it for convenience.

4.1. Syntax and Semantics
A IIICAD system should be inlrllty.ent by definition. Then, what is an intelligent workstation?

Because there is no consensus about intelligence, we can use our own definition2.
• An intelligent astern is one that ran handle user’s semantics.
• Semantics in a particular domain is what gives or defines (meaningful) relationships, names,

etc. to the symbols used in thai domain.
• Syntax is defined to he equivalent to the topology on the set o f the symbols.

These definitions are more precisely denoted as follows. Let Sb and Op be the set of symbols
and of operators, respc lively. The set of formulae F can be defined as the set of lists of symbols
and operators; i.e.,

f = ((/, 12 • • ■ I, 1 .V/, V 4 6 Op, and grammatically valid}.

Relationships among symbols will be .Mined as predicate logic formulae as follows; this is the
definition of syntax.

S, {<r,l)\r E R , I e f } ,

where R is the set of relationship Ol «ourse, R cannot be arbitrary; if we want to have first order

This also indicates il.ai -he .erm,nol..,Y n «■«' deftn),,on “ P°ssible

January 27-30, 1986 W inter S< luiol on Conceptual Modelling

20

T. Tomiyama Integrated Data Description Schema

Table 1. Various Layers in a II1CAD System
Description Implementation Example

Intensional Notational function Object oriented GKS, AP, IDDS

Extensional
Syntax Sy Predicate oriented IDDS, IUI

Semantics Sm Predicate oriented IDDS, SPV

predicate logic, we need to restrict it such that

R C]Sb = 0.

Otherwise, we will have higher order predicate logic (see Section 4.4).
Then, semantics Sm should be defined as a subset of syntax Sv by the user, i.e.,

C Sy,

so that it must have a specific meaning for the user under a specific circumstance. This is necessary,
because a predicate cannot make sense unless the term (or subject) belongs to a particular category.
For instance, a fact,

weight(x, 50),

has no meaning, if x is not an object in the three dimensional world. If it is a point or a line, this
fact is totally nonsense.

This distinction of syntax from semantics results in the following distinction of input checking,
for instance. Suppose we have an input x , and there may exist three types of checking.
(1) x G Sb, x G Op , or x G F is a lexical check.
(2) x G Sy is a syntactical check.
(3) Xj, *2, ' ‘ ‘ e is a semantical check, because usually we must take the sequence of

inputs into consideration.
This means that input checking and error recovery should not executed by one subsystem.

For example, lexical checks should be done by a lower level subsystem like GKS or IUI, whereas
syntactical checks should be done by IUI , and semantical checks by SPV (see Table I).
DP 9: In IDDL, the semantics should be defined by the system designer; i.e., the system designer

should be allowed to implement application dependent semantics.

4.2 Extension and Intension
As we have already pointed out in Chapter 2, there is a boundary called the

in tension/extension boundary in a II 1C AD system. In Section 3.1, we have discussed that the world
view of general design theory is extensional which at the same time means somehow holistic view.
Here, we think about this issue for further details, especially, from a viewpoint of CAD application.
Figure 3 shows a comparison of the extensional description and the intensional one in a set nota
tion.

4.2.1. Extensional Description
An extensional description is defined as a situation where an entity concept is an element of

the entity concept set and an attribute concept is its topology (see Figure 3 (a)). This description
method has the following properties.
(1) Mathematically, the situation in Figure 3 (a) is defined as follows. Let e, and Aj be an

entity concept and an attribute concept, respectively. Then, Aj is defined extensionally,

January 27-30, 1986 Winter School on Conceptual Modelling

21

T. Tomiyama Integrated Data Description Schema

Abstract Concept Entity Concept

(a) Extensional Description (b) Intensional Description

Figure 3. Extensional/lntensional Descriptions

using e, , as

*j = {e i , e2, • • • }.

(2) As the definition above suggests, an attribute is a description found common to all those
entities; this means first a common property is found by an observation and then this pro
perty is named an attribute, Aj. In other words, an attribute, Ajy is telling a relationship
between entities, e iy e2,

(3) In this context, an attribute concept is a product of abstraction following observation and
recognition of entities. Moreover, it is influenced by the sense of value which was dom
inant at the time of abstraction and also by the entire entity set. Therefore, an attribute
concept is relative, but not absolute.

(4) On the other hand, an entity concept is philosophically a symbolic existence. It is nothing
else but a symbol e,.

(5) An entity concept is only identified and described by attribute concepts defined to be a
topology of the set of entity concepts. Thus, an entity concept is also relative (to other
entity concepts), which means it will be only described in the relationship between that
entity concept and others.

(6) An entity concept cannot be decomposed, because it is a symbolic existence and because
it is not described by small parts. Therefore, the extensional description is holistic, which
implies everything in the domain world will be denoted only by a collection of facts about
relationships among (symbolic) entities. (From this, the description method can be called
also fact oriented description.) Actually, in this metaphysics, existence of entities is not
observed; there exist only relationships.

4.2.2. Intensional Description
On the contrary, an intensional description is defined to be a situation where an attribute con

cept is an element of the attribute concept set and an entity concept is its topology (see Figure 3
(b)). This description method has the following properties.

January 27-30, 1986 Winter School on Conceptual Modelling

22

T. Tonmama Integrated Data Description Schema

(1) The situation in Figure 3 (b) is defined as follows. Let a, and Ej be an attribute concept
and an entity concept, respectively. Then, using a,, Ej is defined intensionally by

Ej = {a], a 2, • • • }.

(2) The definition is based on a metaphysics that an entity should be described by its attri
butes. Sometimes, attributes may represent so-called structure of an entity, which may
further suggest an entity is decomposable into small particles.

(3) An entity concept in the intensional description is generated from attributes which will be
given somewhat existing beforehand and hence absolute. Therefore, an entity concept can
be often described by a fixed number of attributes as a Cartesian product set, like

Ej = {(a,,a2, • •)| 2(a,,a2, ■ ■ •)},
where 2 is an additional set of constraints.

(4) Philosophically, in an intensionally description, an entity concept is equivalent to a collec
tion of attributes, which will be regarded as an object. This is one of the properties of
famous object oriented programming paradigm. In this paradigm, there exit no abstract u
relationships among entities but concrete objects.

4.2.3. Further Notes on Extensional/Intensional Descriptions
The reader may have been confused by the terminology. The author admits that it is not so

easy to understand the difference between an extensional description and an intensional description.
To solve this problem, let us consider a concrete example.

The implementational advantages and disadvantages of these two description methods will be
further discussed in Section 4.2.4 and in Chapter 5, especially, when they are employed to CAD
applications.

4.2.3.I. Hierarchical Example
Suppose you have a car which consists of lots of parts, from an engine to a radio, and the

engine itself can be decomposed into thousands of small parts. We traditionally call these part-
assembly relationships hierarchy shown in Figure 4 as a result of abstraction which is a typical
human ability. Note that all the names appearing in this figure refer to concrete entities or
instances; they are by no means generic names. Figure 4 is showing more or less something specific
to your car.

Figure 4. An Abstraction of a Car (Some Part of Hierarchy)

Januarj 27-30, 1986 Winter School on Conceptual Modelling

23

T. Tomiyama Integrated Data Description Schema

In an extensional description method, probably the most natural interpretation of Figure 4 is
as follows:
(1) First, we regard a symbol, such as CAR. as an atom which cannot be decomposed any

more; thus, CAR is an identifier and can be replaced by another meaningless string such
as @AB 5306.

(2) Then, an arrow that connects two symbols is regarded as the relationship between them.
Maybe, we can use consistsof relationship for the moment, although its meaning cannot
be directly defined right now.

(3) For example, the relationship between CAR and ENGINE will be interpreted such that
CAR and ENGINE make a subset in the entity set as a topology;

consists o f = (CAR. ENGINE).

(4) Because the relationship consists o f here is specific to CAR and ENGINE, we need to
introduce different names as many as the relationships. But, this is not necessary and we
can use the same name for all other relationships, as far as we understand implicitly the
meaning of these relationships are basically the same.

(5) Therefore, this hierarchy will be denoted in a following way, using a predicate consists of.
consists of(CAR. ENGINE),
consists of(CAR, BODY),
consists_of(CAR, WHEEL),
consistsj)f(CAR, SEAT),
consists_of(CAR, RADIO),
consists~of(ENGINE, CYLINDER),
consists of(ENGINE, PLUG).

On the other hand, in an intensional description method. Figure 4 will be interpreted in a
totally different way.
(1) In this description method, there is a strong belief that a CAR is decomposable into frag

mental parts such as ENGINE, BODY, etc. A CAR is built from combination of those
parts.

(2) A symbol, such as CAR, is not a mere identifier, because it has an inner structure which is
strongly related to a string “CAR.”

(3) Each part can be further decomposed, like ENGINE is decomposed into CYLINDER,
PLUG, etc. Therefore, an intensional description method may lead us to ideas such as
typing (or class, subclass, etc., any equivalent concept), object and its instance, etc.

(4) The relationship, consists_of, we have discussed is hiding in the structure of entities.
(5) The following is an intensional notation of this hierarchy.

CAR = (ENGINE, BODY, WHEEL, SEAT, • • • , RADIO)
ENGINE = (CYLINDER, PLUG)

4.2.3.2. Meanings
It must be noted that concepts of syntax/semantics and extension/intension are very much

alike but completely different (see Table I). It is possible that both of intensional and extensional
descriptions have meanings.
• Intensional meaning is defined to be meaning o f a symbol.
• On the other hand, extensional meaning is defined as semantics which was defined in Sec

tion 4.!

January 27-30, 1986 Winter School on Conceptual Modelling

T. Tonmama Integrated Data Description Schema

The meaning o f a symbol is further explained in Section, 4.4, and it is in fact defined by the
concept of object oriented programming paradigm.

4.2_3_3. Comparison of Extensional/Intensional Descriptions
It is interesting to compare the extensional description method with the intensional one. We

can compare these two from various points of view.
Figure 5 shows one of the disadvantages of the intensional description method. Figure 5 (a-E)

shows that two different abstract concepts are denoting an entity. This situation can be also identi
cally described in the intensional description as in Figure 5 (a-I). However, as in Figure 5 (b-E), if
two similar or hierarchical abstract concepts are denoting an entity, the similarity or the hierarchy
cannot be expressed so well in the intensional description (see Figure 5 (b-I)); they are just
represented in the same way as in Figure 5 (a-I).

The whole story tells that, in case of the intensional description method, slight differences in
the meaning would be lost or ignored; or quite similar concepts would be recognized differently.

This type of loss of data would also happen in an exchange of information between an exten
sional description method and an intensional one. This can be pointed out mathematically Sup
pose jjc be an intension of x, and j\x be an extension of x. Mathematically,

U-* = *
always holds; but, the other way around

(a-E) Extensional Description
Entity Concept

(a-I) Intensional Description

(b-E) Extensional Description (b-1) Intensional Description

Figure 5. Comparison of Extensional/Intensional Descriptions

January 27-30, 1986 Winter School on Conceptual Modelling

25

T. Tomi) ama Integrated Data Description Schema

it* =*
does not always hold.

A famous example is the morning star and the evening star. The morning star has an exten
sion, Venus. The evemng star is an intension of Venus. Thus, an intension of an extension of an
entity is not always identical to the entity. Therefore, when these two data description methods are
necessary and when we need to exchange information between these two, we must be careful for loss
or twist of information caused by the exchange.

4.2.4. Implementations! Notes on Extensional/Intensions! Descriptions
Although this chapter is for discussions from a philosophical or metaphysical point of view, it

might be useful to compare implementations of extensions! and intensional description methods
from a practical point of view. Let us examine it problem with a concrete example.

Figure 6 shows a cube, and the following facts denoted by predicates are its extensional
representations, because in an extensional representation system the subject is an entity and the
predicates are its attributes.

4

NB: Roman numbers indicate vertices. Italic numbers indicate edges. Bold numbers indicate sur
faces.

Figure 6. A Cube

January 27-30, 1986 Winter School on Conceptual Modelling

26

T. Tomiyama Integrated Data Description Schema

vertex(1).

vertex(8).
line{l).

line{12).
surface) 1).

surfaced),
consists ofil, 9).
consists ofi5, 9).

consists ofil, 1).
consists ofi2, 1).

consists ofil, cube).

consists ofift, cube).

On the other hand, the intensional representation of this cube would be

«<*{(1.2, • • • ,6 ,7 ,2 , • •• ,72, 1,2, • • • ,8) |2 (1 ,2 , • , 6, 7, 2, • • • ,72, 1,2, • • ■ , 8)},

where 2 implies the necessary conditions for this object to exist as a cube. Here, the entity, cube, is
regarded as the predicate and its attributes are the subjects. Usually, this data structure can be real
ized in CAD systems as a set of data connected by pointers illustrated in Figure 7, or sometimes as
a tuple of a relational database [Lor82] (Table 2).

In an extensional representation system, the data would be described by a set of facts (e.g., by
predicate logic formulae) independent from each other. Even the constraints will be expressed gen
erally by a set of predicates. Generally speaking, to change or to add-new facts in this data
representation scheme is not difficult. To modify a particular data is just a matter of checking the

1

2

3

4

5

6

Surfaces

Figure 7. Example of Data Structure of a Cube

January 27-30, 1986 Winter School on Conceptual Modelling

27

T. Tomiyama Integrated Data Description Schema

Table 2. Relation Type Data Structure of a Cube

Surface line line fine line
1 1 2 3 4
2 5 8 7 6
3 1 9 5 10
4 3 11 7 12
5 2 10 6 11
6 4 12 8 9

data integrity using constraints, because all facts presented by predicates are independent.
Values of attributes are implemented as follows. For example, we regard a predicate,

point(P),

as a function, and the value of this function becomes the coordinates, such as

[X, Y, Z] = pomt(P).

This means we can treat an entity, its attributes (i.e. predicates), and their values individually.
On the contrary, in an intensional representation system, the data would be totally described

in a chunk of data strongly and mutually connected by pointers together with the constraints 2 (see
Figure 7). In this case, dependencies between the data become so strong that it is difficult to change
or to modify the data schema. But, the meaning of a symbol can be easily decided by its relative
position in the data structure.

Moreover, there is no separation of an entity, its attributes, and their values. For example, in
a relational database system, we can separate relations and tuples like in Table 2. But, this separa
tion of the relation and the tuple can be so complete that there will be inevitable mutual dependen
cies such as the order among the data in the relation.

To sum up, an extensional representation system has the following implementational advan
tages.
EA1) It is easy to add new facts about entities, i.e., subjects.
EA2) It is also easy to modify facts and predicates.
EA3) Assertion of a proposition can be done by a simple search with pattern matching.

Disadvantages of an extensional representation system can be pointed out as follows.
EDI) It is rather difficult to grasp the entire meaning of what the logical formulae as a whole

are saying, because we need to interpret logically all of the descriptions and because fairly
large amount of computation would be required.

ED2) Predicates may loose their meanings; they only can have meanings defined by each other.
This is one of the typical disadvantages of formal logic and not particular to the exten
sional representation.

ED3) As far as implementation is concerned, it is not so easy to realize an efficient processing.
On the other hand, an intensional representation system has the following implementational

advantages.
1A 1) Normally the meanings of each predicate can be easily understood, because the con

straints. 2, define them clearly.

January 27-30, 1986 Winter School on Conceptual Modelling

28

T. Tomiyama Integrated Data Description Schema

IA2) What a piece of data says can be easily understood from its position in the data structure,
i.e., by its address.

1A3) As far as implementation is concerned, it is not so difficult to realize an efficient process
ing-

Disadvantages of an intensional representation system can be summarized as follows.
ID1) It is difficult to modify the data schema totally due to its strong mutual dependencies.

Adding new facts is easy.
ID2) Modification of the structure of propositions requires changing the constraints, 2. This is

also difficult.
1D3) Assertion of a proposition may contain considerably complicated calculation of the con

straints, 2.

4.2.5. Summary
DP 10: IDDL should basically use an extensional data description method.
DP 11: From an implementational point of view, IDDL may be obliged to have also an inten-

sional data description method because of performance, for example.
DP 12: When in IDDL both an extensional data description method and an intensional data

description method are combined we need to carefully design it, because it is possible to
have unexpected loss or twist of information in a data exchange between those two
methods..

4.3. About Names
In this section, we would like to get rid of misunderstandings concerning names and attributes.

Generally speaking, names are considered to be attributes; or there is a saying that the simplest
attribute is a name. However, this idea is doubtful.

Since IDDS is more or less a database system, it must have identifiers to distinguish entities
(or entry records). An identifier, or any similar concept such as a key, are desired to be unique in
one system [Lor82]; therefore, it should be created automatically by the system.

An entity concept must be identified in some way, although we cannot use attributes to iden
tify it because attributes will be created after entity concepts. Therefore, an entity concept will have
an identifier which should be unique in the system and which is different from either a name or an
attribute. However, a name system containing nouns in a natural language is normally used as an
identifier, because under a certain circumstance nouns can be unique3.

On the other hand, an attribute can be regarded as a qualifier which describes properties of a
thing. Sometimes, it happens that a concrete value of a name is filled with a qualifier which is not
at all an identifier. For instance, you can call your dog like blacky because he is black. But, it is
easy to find thousands of black dogs and, therefore, in this case his name blacky is less a name but
more a qualifier. Nouns in a natural language is a monster, because they imply being qualifiers.
DP 13: Generally speaking, names are not attributes; nouns can be attributes, although they must

be distinguished from identifiers.
DP 14: Names are categorized into two groups. System name is internal and should be unique.

User name is external and can be modified.

4.4. Predicates, Objects, and Functions
As we discussed heavily in Section 4.2, an extensional description method looks better than an

intensional description method. We will later try to compare these two from a view point of

' Of course, this is not guaranteed for aJI the situations. People may have the same name!

January 27-30. 1986 Winter School on Conceptual Modelling

29

T. I (Kimarna Integrated Data Description Schema

machine design or CAD application in the next chapter. To do so, in this section, we elaborate our
idea along this distinction from a rather practical point of view.

An extensional description method is concentrated only in an aspect of relationships among
entities, while an intensional one is focused on the structures of entities. Unfortunately, we cannot
use exclusively either of them because of practical reasons discussed in the next chapter. Thus, we
need to combine these two methods which look totally contradicting (see Design Policy 11).

As we have suggested in the previous discussions, an extensional description method is fact
oriented which will be further transformed to predicate oriented, because it is heavily concentrated
on the relationships of entities. On the other hand, an intensional description method is object
oriented, since it forms closure.

Then, a question may arise:
• Is it possible to integrate these two (programming) paradigms?

A famous work to answer this question is conducted by 1COT, Japan, as an implementation
of Concurrent Prolog [ShT83], Similar work is also carried out in University of Edinburgh [Bij86],

Figure 8 shows our paradigm combined the object oriented programming paradigm with the
logic programming paradigm (in our terminology, predicate oriented), which will be discussed in
Chapter 6 as the language IDDL.

Suppose small circles in this figure correspond to crosses in Figure 3 (a) which indicate enti
ties. and arrows to topology which indicates relationships between entities. An object may have
internal memory spaces to store information just like slots in Minsky’s frame theory [Min75], but the
internal structure of an object really does not matter because the user is interested not in how to
store the information but in how to use it. We also introduce concepts such as message, class, inher
itance, etc., but in different terminology from the frame theory or from object oriented languages
[GoR83]. For instance, note that here the message mechanism is realized only to get perfect infor
mation enclosure.

This paradigm is also similar to entity-relationship model in database theory [Che76], but there
is a big difference that in our paradigm relationships can be created, modified, and deleted all the
time during the execution. In conventional database systems once we fixed the data schema, it may
never changed.

Entity Set: S

Januars 27-30. 1986 Winter School on Conceptual Modelling

30

T. Tomiyama Integrated Data Description Schema

Each object, which actually semantically represents an entity and is represented syntactically
by a symbol, is treated as Prolog’s [C1M81] term or variable. Therefore, for instance, a fact that an
object A is an automobile is denoted by

automobile(A).

We can naturally introduce the concept of class into our syntax; for example, a fact that all the
automobiles are vehicles can be denoted by

vehicle(X) : — automobiléiX),

where a symbol ” is supposed to have the same meaning as in Prolog*. This must be inter
preted as

I f X belongs to automobile-class, then it belongs to vehicle-class.

It also naturally corresponds to an idea that the set of vehicles is a superset of the set of automo
biles. It is easy to understand that this notation provides natural inheritance mechanism of proper
ties together with exception handling.

An object has its internal structure and it is possible to store information which might be not
only simple data but also complex procedures. An access to that information is done by invoking a
function, such as

function(object) —> value

for inquiry, or

functioniobject) «— (any procedural definition)

for definition. In fact, here functions are used exactly in the same meaning as messages. Note that
in IDDS the value obtained by issuing an inquiry to a function should be consumed immediately by
other process, i.e., it flows out of IDDS to application programs, or should be used by program con
trol. i.e., it is absorbed into the predicate logic world. In any case, they never remain because they
are not objects.

Now, we have two different things around objects;

functioniobject)

and

predicate(object).

In the predicate world, we can generate complex clauses by combining simple clauses. In the object
world, we can define a complex function by combining simple functions. During the execution, a
complex function should be decomposed into primitive predicates or functions so that they are exe
cuted by SPV.

In this context, we may have the following distinctions:
(1) A function is an intensional description of an object. It will be defined functionally (or

sometimes, procedurally) by using primitive functions. Those primitive functions should
be built-in functions so that they are executable finally. Thus, a function, fo(o), for an
object, o, is expressing the value of an item f 0. It is also possible to express constraints
among items, such as

/ , (o) = / 2(o) + / , («) / 2

(2) A predicate is an extensio.nal description of objects. It will be defined declaratively by
using primitive predicates. Thus, any predicate should be deductible (or decomposable) 4

4 It does not mean that we use also this symbol in an actual implementation.

Januan 27-30, 1986 Winter School on Conceptual Modelling

31

T. Tomi) ama Inte^raled Dala Description Schema

into primitive predicates which are defined by single facts, system predicates, or functions.
For example, a predicate greater than can be delined by

greater_than(x,y) = if val(x) > val{y) then true else false,

using a function, va/5.

An instance of an object is created, when a variable denoting an object is instantiated by
assertion, or when a function is invoked and it accessed to the object. Also, an instance is removed
from the scope when it is clearly deleted by a system predicate. It is important that changes in the
internal information of an object by an application program or by the user creates a new object; an
object with the old information should remain in the sco|<c until they are declared to vanish. How
ever, it must be also possible to have an object which is varying according to the changes of the
environment. An example of objects of this type is one which is linked to an application program
and which has a possibility to be changed by an application program. This means that information
of an instance is rigid; otherwise, it is very difficult to keep the integrity or the consistency of
objects with the constraints.

Anyhow, it should be noted that system functions or system primitives must be well designed
so that IDDL would meet requirements of applications.
DP 15: In IDDL, there must be objects denoting entities, predicates which represent relationships

among entities, and functions to bridge objects and predicates.
DP 16: An object is created by assertion of a predicate or by a function. Whenever a new asser

tion is earned out, a new object is created without changing the old one. Therefore, we
need time stamps for objects and predicates.

5. ISSUES COMING FROM CONSIDERATION ON DESIGN OBJECTS
In this chapter, we discuss issues for IDDL aiming from consideration on design objects.

Since we are now talking about machine as the design target, we discuss specifically how to
represent machinery, machine design, CAD applications in machine design, etc.

5.1. Attributive Representation of Machine

What are the characteristics of machinery which differentiate it from other entities in the
world? That is structure which is regarded as a part of attributes. First, we discuss the issues
relevant to structure and then those relevant to attnbutes in general.

5.1.1. Representation of Structure of Machine

Usually, because we can observe the following things in machinery, it is said it has so-called
structure. (See Figure 4 for an example.)
(1) Existence of parts.
(2) Existence of relationships among the parts.
(3) Existence of sub-structures, i.e., hierarchy.

In most of cases, those relationships change dynamically due to motion of the mechanism.
Moreover, relationships are multidisciplinary' such as geometrical, kinematic, hydraulic, magnetic,
electric, etc.

Therefore, a hierarchical structure as in Figure 4 is not the only one in an automobile. The
figure merely shows the part-assembly hierarchy of an automobile. It has another network, e.g., in
an electrical aspect, which may require another system of parts and categorization for giving rela
tionship. For instance, a part WHEEL may never appear in the electrical aspect. Sometimes, an

This shows onls a possibility. It never means this should he done

Januarv 27-30, 1986 Winter School on Conceptual Modelling

3?.

T. Tomiyama Integrated Data Description Schema

identical entity may have different names depending upon the aspect; a connector used for electric
wiring could be called a bolt, if you looked at it from mechanical engineer’s eyes. What we need is
probably a kind of aliases.
DP 17: 1DDL should represent multidisciplinary nature of structure of machinery.

We can point out another important issue [ToY85a] relevant to the structure problem. In the
situation of Figure 9, let us define a binary relationship

on(X, Y)

which should read

X is on Y.

The following four relationships describe the state of Figure 9 (a);

on(B,A), on(C,A), on(D,A), on(D.C).

Now, to examine the relationship between A and D more precisely, we need to have another rela
tionship such as

above(X, Y) = on(X, Z) A on(Z, T>

Although this is a more precise and general expression because it is not restricted to a rela
tionship meaning touching on the surface, it is doubtful whether these two relationships, on and
above, are practically useful projections of this world to the mathematical world. A much more
natural expression will be to introduce a unique expression like

upper(X, Y)

w hich would read

X is somewhere in the upper space above Y ,

and which would be defined by

upper(X, Y) = on(X, Y) V (on(X, Z) A on(Z, Y)).

This story tells that we need to pay good attention to interpretation or semantical definition of
predicates. Because there is no concrete definition for a predicate, on, (such as one by the position
of objects) other than simple four facts here, a predicate system is heavily dependent on interpreta
tion. Thus, it can easily acquire ambiguity which is recommended to avoid.
DP 18: IDDL must maintain the compatibility of predicates with the application world.

D D

B C B ’

A A

(a) (b)

Figure 9, Relationship in Parts

Januan 27-30, 1986 Winter School on Conceptual Modelling

T. Tonmama Integrated Data Description Schema

Figure 9 tells another important fact. In Figure 9 (b), the role of B' is identical to the role of
B and C in Figure 9 (a), because they are both together supporting D. We sometimes want to treat
a couple of parts as one chunk. This requires us to do either of following two things.
(1) We extend n-ary relationship formulae to m-ary relationship formulae in a natural way.
(2) We have a way to produce a chunk created from several things, which is by no means a

kind of part-assembly relationship.
DP 19: In IDDL, an object can be regarded as a chunk of other objects (kind of part-assembly

relationship).

5.1.2. Representation of Attributes of Machine
In the previous discussion, we are concentrated too much on so-called part-assembly relation

ship. However, that is not the only thing we have to think about machinery. From a practical
point of view, we can count up those attributes such as roughness of a surface, tolerance in dimen
sion, weight of a part, material description of a part, etc., which are called technical information. In
fact, geometrical information is merely one of those attributes.

A machine has many properties other than structure, and structure should be ultimately
expressed by attributes in terms of geometrical information. This means that structure can be by no
means the center of attributive expression of a machine, although it does play an important role in
machine design. Therefore, the metamodel concept (see Section 3.2.2) must not be constructed on
top of so-called geometrical models.
DP 20: IDDL should not be designed as a geometric modeling system.

This issue is also supported by following facts. For example, in the traditional drawings 'of
mechanical parts, a dimension is defined usually by a relative distance between two parallel surfaces
or, in case of a cylindrical surface, between two diameters (Figure 10). It would never be defined by
the length of an edge. On the other hand, a geometrical model might have data describing such
length. In most of geometrical modeling systems, consequently, the information about dimensions is
added and separated from information about both the geometry and the topology. And, most of
technical information is relevant to surface information, because what we can create with machine
tools is a surface. Accordingly, even for representation of structural information, geometrical

January 27-30, 1986 Winter School on Conceptual Modelling

3 4

T. Tomiyama Integrated Data Description Schema

models need additional attributes.

5.2. Functional Representation of Machine
Not only representation of attributes but also representation of functions is a big problem in

machine design. Generally speaking, there are many unsolved problems in this issue, because we
have not yet obtained any satisfactory definition of function itself.

First of all, we can define or explain what a machine is [Rod71] (see Figure 11). It seems that
many researchers have accepted this definition [HuP85].
• A machine, receiving information (/), energy (E), and material (A/), transforms them into a new

state.
Tins is a definition of a machine, but it also defines the function of machine. (Probably, we

can call it a functional definition of a machine.) However, although it might be theoretically per
fect, it leaves many questions.

For example, it is difficult to say that a pair of a bolt and a nut transmits something, although
obviously it has a function of fixing or binding. In fact, because it transmits nothing, it K. „ func
tion. It is possible to say it transmits a resisting power or force against the external force. How
ever. we cannot say this is an acceptable explanation. Probably, definition of functions can vary
from application domain to domain, and even in one domain it is difficult to get unified agreement
on what is a function. Function can be very subjective.

This tells us that we must give up to describe a function in a unified and systematic way and
that we need to introduce a very flexible framework to describe any type of functions. Furthermore,
because of this lack of uniformity, we will be obliged to describe our knowledge about function frag
mentary. (Thus, the use of production rule based systems might be justified where we have to deal
with functional expressions [ToY85a].)
DP 21: To allow descriptions about functions, IDDL should be flexible and user-definable.

5.3. CAD Applications in Machine Design
Problems concerning modeling for CAD applications in machine design have been long dis

cussed (for instance, see a literature [EnK82]). There are several issues specific to design and/or
machine design. Followings are characteristics which should be taken into consideration in design
ing CAD systems.
(1) Diversity: As we have pointed out in Section 3.2.2, there are many ways of representing

machinery, i.e., models. In other words, most of design works lack uniformity; this is why
we need so many models. Nevertheless, they must keep integrity and consistency of the
information.

(2) Dynamic changeability: Models are changing dynamically during the design process from
very vague initial one to detailed final drawings.

h
E i MACHINE

Figure 11. Definition of a Machine

January 27-30, 1986 Winter School on Conceptual Modelling

35

T. Tomivama Integrated Data Description Schema

(3) Bulkiness: Usually, amount of information used in a CAD system is enormous.
Another thing quite specific to machine design is that there exists a traditional description

level or one chunk for knowledge representation of machinery. Traditionally, mechanical engineers
have developed the concept of machine elements, such as bolt, nut. screw, spring, key, shaft, etc.
They are standardized in most cases and are dealt with as untouchable things, so to speak. Probably,
this also applies to designing in other fields, such as VLSI, aircraft, architecture, etc.

This means that those elements should be treated as a kind of chunk and their structure, for
example, should never be changed. Therefore, the information about those elements should be
stored and retrieved in chunk, because their internal structures have already fixed as industrial stan
dards. Actually, traditional database systems are suitable for this type of information. In this con
text, we can also treat much higher level machine parts as chunks, such as motor, gear box, etc.,
which are usually bought from specialized manufacturers. Generally speaking, once information is
catalogued, we can use any type of conventional database systems.

In Section 4.4, we have discussed a lot about objects which will describe entities intensionally
and relations which will describe entities extensionally. Now, we can compare these two from a
viewpoint of the abovementioned machine design.

First, we have found the following issue in a discussion of Section 4.2.
• An intensional description method is suitable for applications where information does not

change its structure, while an extensional description method is good where information
changes dynamically.

Therefore, because of dynamic changeability of models, we shall use an extensional description
method to describe models appearing in a design process. However, for machine elements and
existing parts we will use an intensional description method, because these things have prefixed
information and because we never change them. And also, the problem of diversity will be solved
by employing an extensional description method, because it provides descriptions that allows a mul
tidisciplinary point of view (Section 5.1.1).

There still remains a problem of bulkness which is essential. However, because this will be
only solved by implementation and/or by hardware development, we are not going to discuss it
here.
DP 22: ln IDDL, both intensional and extensional descritpion methods should be employed and

they are realized as objects and predicates, respectively.

6. IDDS AND ITS LANGUAGE IDDL
Here, we describe the functional specifications for IDDS and IDDL. Firstly, we summarize

functions required to IDDS. Secondly, we clarify necessary properties of IDDL. summarizing the
design policies for IDDL which have been pointed out so far. Next, we describe temporary
specifications for IDDL. Although its minute syntactical specifications are not fixed, we will find an
example of a block manipulating program written in an experimental version of IDDL in the
APPENDIX.

6.1. Functions of IDDS
In Chapter 2 we have discussed the concepts of a IIICAD system. Followings are the func

tions required to IDDS.
(1) By speaking the common language IDDL, IDDS should provide a mechanism to exchange

and utilize information smoothly. This means IDDS not only passes information through
from one subsystem to another but also translates the format and syntax together with
IUI and API. Let us call it transparent mechanism for data transfer and storage.

January 27-30, 1986 Winter School on Conceptual Modelling

36

T. Tomiyaina Integrated Data Description Schema

(2) IDDS itself is a database system (or a knowledge base system). In fact, IDDS may have
some databases and knowledge bases for real data operations; it works as a gateway or an
entrance to those systems. And, it will be given rules and facts in I DDL, and based on
them it will answer to queries using those database systems. This indicates IDDS is a
database as theory, but not a database as implementation.

(3) Although system components directly communicate with IDDS by speaking IDDL, they
do not necessarily speak the same terminology. SPV may say, “give me a shaft,” which
must be passed to IUI as “create a cylinder with diameter X, heigh* H, and name
@A321001.” This means IDDS must provide a transformation system from user-oriented
semantical expression to system expressions. This can be done by rules that are given as
the domain knowledge and working in the background of information flow.

(4) In a 11ICA D system, it is important to distinguish extensional descriptions from inten-
sional ones. They must be diligently and completely separated, but there should remain
linkage between those two. Therefore, IDDS must provide a mechanism for
intension/extension linking.

(5) IDDS must also know about the system itself; in other words, it should have metak
nowledge. For example, it must know who knows what. Besides this purpose, it should
record the history of system activities, automatically. This can be used for undoing,
replaying, making new scenarios, etc., as well.

6.2. Necessary Properties of IDDL
As the basis of discussion, we employ (first order) predicate logic to describe IDDL. Although

it is not necessary that the syntax of its real implementation is based on first order predicate logic,
we use it for the purpose of discussion. In fact, as pointed out in Design Policy 20, IDDL or IDDS
will not be designed as a geometric modeling system; it is a schema to describe data in an integrated
way.

From the discussion of the previous section and design policies clarified so far, we will discuss
necessary properties of IDDL in this section. We have obtained in all twenty two design policies
some of which are identical. Removeing those doubles, we may get the following eight design
guides for IDDL.
(1) IDDL should be possible to describe status information of the system, control information

of the system, its origin and destination, and the time stamp. It should be used for
describing also for scenarios. This means we need to design IDDL to have a uniform syn
tax to express those meta-information besides facts and rules to define the information
schema, to answer queries, etc.

(2) IDDL should have objects to represent entities intensionally, predicates to represent rela
tionships among entities extensionally, and functions to bridge objects and predicates.
This is necessary for implementation and performance.

(3) Predicate logic should be based on three-valued logic; i.e., there should be (at least)
UNKNOWN or UNDEFINED besides TRUE and FALSE. For the moment, very classic
(and primitive) three-valued logic seems sufficient.

(4) An object should express class-subclass hierarchy as well as part-assembly relationship.
Every time either an assertion or an access by a function is done, a new object is created.
There is a distinction between the fact that an object has an attribute and the fact that an
attribute has a value. The object world and the predicate world are completely separated,
so that unexpected loss or twist of information in a data exchange may not happen.

(5) An object has a unique system name which cannot be modified and a user name which
can be modified freely. Names are not attributes but identifiers.

January 27-30, 1986 Winter School on Conceptual Modelling

37

(6) The system designer can implement predicates depending on the target application to
describe a multidisciplinary world where metamodels are described.

(7) IDDL should provide facilities or a mechanism to check the completeness, soundness, and
feasibility of the knowledge. This is possible, only if we have a formal (mathematical)
logic sy stem.

(8) Finally, it is important to introduce user-friendlyness, readability, etc., to IDDS for the
sake of programming productivity, bug-free-programming, etc.

6.3. Temporary Design of IDDL
According to eight design guides in the previous section, we can proceed the design of IDDL.

(1) A string beginning with a lower case character means a constant, whereas one beginning
with an upper case character means a variable.

(2) A predicate begins with an alphabet. An object is a string beginning with A func
tion is a string beginning with A query is indicated by “?” placed at the end.
Therefore, a sentence

s h a f t (# s ,) .
should read as

IDDL should define that an object # s 1 is a shaft.
If a sentence

s h a f t (# s ,)?
is given, it must be interpreted as a query. In the same way, a rule

IF shaft (# X) THEN c y l i n d e r (# X) ,
transmi t_power(#X) ,
supported_by(#X, #Y).

means that
i f NX is a shaft, then #X is a cylinder, transmits power, and is supported by #Y
(something else).

This means that IDDL is designed as a database as theory.
(3) In order that SPV should accept a user input or a report from a subsystem in the same

way as the scenario, IDDS must allow dynamic definition, deletion, and modification of
predicates. By allowing it, we have a problem of priority. Here, we simply say that any
last modification has the priority.

(4) If a predicate is sent to IDDS, it will look at rules whether it is possible to apply one of
them or not. For example, if a fact

shaf t (# s ,)
is sent to IDDS, then a rule

IF shaftCHfX) THEN cy l i n d e r (# X) ,
transmi t_power(#X),
supported_by(#X, #Y).

is applied and new three facts
c y l i nder(#s1)
transmi t_power(#s1)
s u p p o r t e d b y U f s , , Hs2)

are added. Here, if IDDS does not know # s 2, it will ask the user.

(5) There are some predicates that have special meaning to the system (built-in predicates).
(6) Every object has its own system name and user name. The system name is usually not

known to the user and cannot be modified. In case of a constant object, like # sr the
system name is something like (a)34AEC, and the user name is # sr In case of a variable

T. Tomi) ama Integrated Data Description Schema

January 27-30, 1986 Winter School on Conceptual Modelling

3B

T. Tomivama Integrated Data Description Schema

object, like #X. the system name is something like (a2~UFF. and the user name is #X
System names are maintained by the system automaticalh. so that thes are alwass unique.
If a sanable object is instantiated, it mas be treated as a constant object without specific
constant name.

(7) We do not restrict I DDL to Horn logic which can contain only one negative clause at
most, because we would like to express a rule like if P. and/*; then Q and R. This would
be denoted in I DDL by

IF P , , P2 THEN Q, R.
Disjunction, i.e., “ V ,” is expressed by " I." Anyway, the mechanism of 1DDS is more or
less similar to that of production rule ss stems [New 73].

(8) The reasoning method of I DDL is a simple deductive reasoning without backtracking,
which implies width first search. Unfortunately, it also implies that it is space-consuming
and that even to get the first simple answer we need to wait for ends of other searches.

(9) I DDL is based on so-called open world assumption which implies the introduction of intui-
tionistic logic or three valued lope. There remains a matter of discussion about the sys
tem behavior when it meets a negative result or an unknown result.

(10) To control the information flow, in IDDL. we can describe the origin, destination, and
time stamp of the event. Therefore its basic syntax is as follows;

p r e d i c a t e : : = " s t r i n g b e g i n n i n g wi th an a l p h a b e t "
o b j e c t : : = # " s t r i n g b e g i n n i n g wi t h an a l p h a b e t "
o b j e c t _ l i s t : : = o b j e c t C, o b j e c t _ l i s t D
u n i t _ c l a u s e : : = p r e d i c a t e (C o b j e c t _ l i s t 3)
c l a u s e : := u n i t _ c l a u s e c l a u s e]
s e n t e n c e : := CIF c l a u s e THEN] c l a u s e C ?] ;

FROM o r i g i n TO d e s t i n a t i o n AT t i me_s t amp.

(11) The intensional description is supported as follows. There is a declaration part to declare
use of objects. This is done by declaration of functions to get information about objects.
The syntax is something like this.

Ob j e c t d e f i n i t i o n : o b j e c t _ c l a s s _ n a m e ;
Xf, : r e a l ,
Xf2: r e a l ,
Xf3 = Xf, + Xf2: r e a l .

These are the definition of an object clause and its internal structure. The value of each
items is assigned somewhere like

Xf ,UX) := 3 . 0 .

Ktr r.Kt .M r

[Bij86] BlJL, A.. An Approach to Design Theory, in Design Theory for CAD, Proceedings of
1FIP W. G 5.2 Working Conference 1985 (Tokyo), H. Yoshikawa (ed), to be published
from North-Holland, Amsterdam, 1986. (in English).

[BMS84] Brodie, M. L„ J. MylopouloS and J. W. SCHMIDT (eds.). On Conceptual Modelling
Perspectives from Artificial Intelligence, Databases, and Programming Languages, Springer,
New York. Berlin, Heidelberg, Tokyo, 1984.

[Che76] Chen, P. P., The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems I, 1 (March 1976). 9-36. ACM.

[C1M81] CLOCKSIN, W. F. and C. S. Mellish. Programming in Prolog, Springer, Benn.
Heidelberg, New York, 1981.

[EnK.82] ENCARNACAO. J. and F.-L. KRAUSE (eds). File Structures and Data Bases for CAD,
Proceedings of IFIP WC5.2 Working Conference in 1981 (Seeheim), North-Holland,

Januars 27-30, 1986 Winter School on Cooceptual Modelling

39

T. Tomiyama Integrated Data Description Schema

Amsterdam, 1982.
(GoR83] GOLDBERG, A. and D. ROBSON, Smalltalk-80: The Language and its Implementation,

Addison Wesley, 1983.
[HuP85] Hubka, V. and Programme Committee (eds), WDK 12, Proceedings o f ICED 85

(Hamburg) -Theory and Practice of Engineering Design in International Comparison,
Heurista, Zurich, Í 985.

(KSH83] Kjm ura , F., T. Sata and M. Hosaka, Integration of Design and Manufacturing
Activities Based on Object Modelling, in Advances in CADI CAM, T. M. R. ELLIS and
O. I. Semenkov (ed.). North-Holland. Amsterdam, 1983, 375.

[Lor82] Lorie, R. A., Issues in Database for Design Applications, in File Structures and Data
Bases for CAD, Proceedings o f IFIP WG5.2 Working Conference in 1981 (Seeheim), J.
EncarnaCAO and F.-L. Krause (ed), North-Holland, Amsterdam, 1982, 213.

[Min75] Minsky, M., A Framework for Representing Knowledge, in The Psychology o f Computer
Vision, P. H. Winston (ed.). McGraw-Hill, New York, 1975, 285.

[New73] Newell, A., Production Systems; Models of Control Structure, in Visual Information
Processing, W. C. Chase (ed.), Academic Press, New York, 1973, 463-526.

[Rod71] RODENACKER, W., Methodisches Konstruieren, Springer, Berin, Heidelberg, New York,
1971.

[ShT83] Shapiro, E. and A. TaKEUCHI, Object Oriented Programming in Concurrent Prolog,
New Generation Computing, 1983, 25.

[ToY85a] Tomiyama, T. and H. Yoshikawa, Requirements and Principles for Intelligent CAD
Systems, in Knowledge Engineering in Computer-Aided Design, Proceedings o f IFIP W.G.
5.2 Working Conference 1984 (Budapest), J. S. GERO (ed.), North-Holland, Amsterdam,
1985, 1-23. (in English).

[ToY85b] Tomiyama, T. and H. Yoshikawa. Knowledge Engineering and CAD, FGCS l, 4
(June 1985), 237-243, North-Holland. (in English).

[T0Y86] Tomiyama, T. and H. Yoshikawa, Extended General Design Theory, in Design Theory
for CAD, Proceedings of IFIP W.G. 5.2 Working Conference 1985 (Tokyo), H.
Yoshikawa (ed.), to be published from North-Holland, Amsterdam, 1986. (in English).

[Yos81] Yoshikawa, H., General Design Theory and a CAD System, in Man-Machine
Communication in CADI CAM: Proceedings of IFIP WG5.2/5.3 Working Conference in
1980 (Tokyo), T. Sata and E. Warman (ed.). North-Holland, Amsterdam, 1981, 35.

APPENDIX

== DESCRIPTION OF THE BLOCK WORLD ============================

+------- + ♦---------+ +-------- +
I Red I IGreenl iBlue I
+------- + +-------- + +-------- +

Suppose you have a world of b l o c k s something l i k e a tower of Hanoi .
You can move t h e s e t h r e e boxes t o a c e r t a i n p l a c e by i s s u i n g a
command l i k e

Red s h o u l d come (on top of I unde r) Green.
There can e x i s t c e r t a i n r e s t r i c t i o n s l i k e

Blue must n o t come under Red,
but f o r the moment we d o n ' t t h i n k about i t .

January 27-30. 1986 Winter School on Conceptual Modelling

4 0

T. Tomiyama Integrated Data Description Schema

== DESCRIPTION OF APPLICATION =================================r===

Funct ion INIT(POS): Bo o l e a n ;
{ Gi ves an i n i t i a l p o s i t i o n t o boxes . >
{ R e t u r n s TRUE i f s u c c e s s , o t h e r w i s e FALSE. >

Out : POS = a r r a y [(r e d , g r e e n , b l u e) , (x , y , z)] of r e a l ;
< ex . POSLred, y] => t h e Y c o o r d i n a t e of t h e >
{ red b o x . >

Funct ion MOVECIND, X, Y, Z, POS): Bo o l ean ;
•C Moves a box IND to a new p o s i t i o n (x , y , z) , >
•C and r e s e t t he p o s i t i o n d a t a POS. >
{ In t h i s f u n c t i o n , c o n s t r a i n t s can be w r i t t e n . >
•C R e t u r n s TRUE i f s u c c e s s , o t h e r w i s e FALSE. >

I n : IND = (r e d , g r e e n , b l u e) ;
I n : X, Y, Z = r e a l ;
Ou t : POS = a r r a y [(r e d , g r e e n , b l u e) , (x , y , z)] of r e a l ;

Funct ion GETPOSUND, X, Y, Z, POS): Bo o l e a n ;
{ Le t s t h e u s e r know t h e p o s i t i o n of a box IND. >
Í R e t u r n s TRUE i f s u c c e s s , o t h e r w i s e FALSE. >

I n : IND = (r e d , g r e e n , b l u e) ;
Out : X, Y, Z = r e a l ;
I n : POS = a r r a y [(r e d , g r e e n , b l u e) , (x , y , z)D of r e a l ;

== DESCRIPTION OF USER I/O

Output F u n c t i o n DRWCUB(X, Y, Z, CL): Bo o l e a n ;
■C Draws a cube a t p o s i t i o n (X, Y, Z) in a c o l o r >
{ CL. R e t u r n s TRUE i f s u c c e s s , o t he r wi s e FALSE.>

I n : X, Y, Z = r e a l ;
I n : CL = (r e d , g r e e n , b l u e) ;

Input F u n c t i o n GETCOMÍCOM, ARG1, ARG2) : Bo o l ean ;
{ Gets a command from t h e u s e r . COM i s a >
{ v e r b , ARG1 and ARG2 a r e i t s a rgument s . >
•C Re t u rns TRUE i f s u c c e s s , o t h e r w i s e FALSE. >

Ou t : COM = (o n , u n d e r , d i s p l a y , e n d) ;
Ou t : CL = (r e d , g r e e n , b l u e) ;

== OBJECT DESCRIPTION FOR IDDS ======================*

Object d e f i n i t i o n : box;
XColor : (r e d , g r e e n , b l u e) ,
/ (Coord i na t e : p o i n t .

January 27-30. 1986 Winter School on Conceptual Modelling

41

T. Tomiyama Integrated Data Description Schema

Objec t def i ni t i o n : p o i n t ;
1: X X = XR * cos (XTheta) : r e a

X X = XR * s i n (XThe t a) : r e a
X Z = XC23Z: r e a l ;

Z : X R = s qr t (XX**2 + XY** 2) : i
XTheta = Ci f XX = 0 t hen

{ i f XY > 0 t hen
PI / 2

e l s e i f XY = 0
Undef i ned

e l s e
- P I / 2 >

e l s e i f XX > 0 t hen
arctan(XY/XX)

e l s e i f X X > 0 t hen
PI + arc t an(XY/XX)>: r e a l ,

X Z = XC13Z: r e a l .

I n s t a n c e :
box(f l r edbox) ,
box(f lgr eenbox) ,
b o x (# b l u e b o x) ,
XColor i t f r edbox) := r ed ,
XColor (f lgreenbox) := g r e e n ,
XCol or (#bl uebox) := b l ue .

E q u i v a l e n t :
XX(XCoordinate(#A)) = POS(XColor(#A) , x) ,
XY(XCoordinate(#A)) = POS(XColor(#A) , y) ,
XZ(XCoordinat e(#A)) = POS(XColor(#A) , z) .

== INTERFACE DESCRIPTION FOR IDDS ============================

AP/IF i n i t i a l i z e = C INIT(POS) 3.

on(#A, #B)? = C GETPOS(XColor(#A), X1, Y1, Z1, POS);
GETPOS(XColor(#B) , X Z , Y2, Z2, POS) 3;

i f Z1 > Z2 t hen return(TRUE)
e l s e return(FALSE) .

on(#A, #B)? & on(#B, # A)
= C GETP0S(XColor(#A), X1, Y1, Z1, POS);

GETP0S(XColor(#B), X Z , Y2, Z2, POS) 3;
swap(CX1, Y1, Z1) , (X Z , Y2, Z 2));
C MOVE(XColor(# A) , X1, Y1, Z1, POS);

MOVE(XCol or (#B) , X Z , Y2, Z2, POS) 3.

UIF d i s p l a y (# A) = [DRWCUBCXX(ZCoordinate(U A)) , XY(XCoordinate(H A)) ,
XZ(XCoordinat e(#A)) , XColorOYA))] .

displayOYA) = C GETCOMldi s p l a y , XColorOFA), DUMMY) 3.

January 27-30, 1986 Winter School on Conceptual Modelling

4 2 12

T. Tomiyama Integrated Data Description Schem a

e n d = Í GETCOMCend, DUMMY, DUMMY)] .

move(#A, # B , LOC) = C GETCOM(LOC, #A, #B)] .

== SCENARIO FOR SUPERVISOR ==================================

FLOW: i n i t i a l i z e «) ; FROM SPV TO AP ONLY_ONCE.
on(#X, #Y) ; FROM SPV TO AP.
di s p l a y (# A) ; FROM UI TO SPV.
d i s p l a y (# A) ; FROM SPV TO UI .
move(#X, # Y, Loc) ; FROM UI TO SPV.
end() ; FROM UI TO SPV.

R U L E S : i n i t i a l i z e () .
IF u n d e r (#X, #Y) THEN o n (# Y , #X) .
IF move(#X, #Y, o n) , b o x (# X) , b o x (# Y) , “o n (# X , #Y)

THEN o n (# X , #Y) .
IF move(#X, #Y, u n d e r) , b o x (# X) , b o x (# Y) , “u n d e r (# X , #Y)

THEN u n d e r (#X, # Y) .
IF e n d () THEN END.

January 27-30, 1986 W inter School on Conceptual Modelling

43

FOUNDATIONS OF CONCEPTUAL REPRESENTAT IONb

El>5d Knuth, Lasslo Hannák, Agnes Hernádi

Computer & Automation Institute
Hungarian Academy of Sciences

Budapest 112, POB 63, H 1502 Hungary

a b s t r a c t

A number of excellent design methodologies have been
proposed for data and knowledge intensive applications.
Most techniques, however, focus on the middle third of
the design process only (i.e. conceptual and logical
schema desi gn) .

Our paper examines the extendibility of such modelling
techniques to the design stages not yet fully covered. We
distinguish acquisition-, conceptual— , infological-, and
data structure oriented layers of modelling. A coherent
hierarchy of modelling concepts is introduced in accor
dance with the above layering phylosophy.

Based on these concepts a computer aided technique is
purposed to support the mental processes of acquisition,
conceptuali2 ation, and knowledge transfer in close asso
ciation with the design of data and knowledge intensive
application systems.

44

Introductory r emar ii'i

Conceptual iza t ion tends to become the central headache
of modern computer science. Not sur pr i s i ng l y . Computer
programming, the everyday's abstraction, is now open for
housewives. At the other end, large sophisticated
distributed software systems demand higher and higher
levels of abstractions, reference models, i.e. adequate
concepts as keys to manage complexity.

At the same time, computer manipulation of conceptual
level information is becoming increasingly common in
several fields of computer science. Its story began at
the mid sixties covering then the birth of abstract data
structures, knowledge representation techniques, and
database conceptual schemas, as captured by the slogan
of conceptual modelling recently [BMS 843.

This paper attempts to outline a top-down scheme of
concepts necessary for the conceptualization process
itself. The reader is supposed to be familiar with
abstraction mechanisms, knowledge representation
schemes, conceptual languages, and data abstractions,
see e.g. respectively CG 853; [ML 843; CMW 803; tSFL 813
[KM 823; CSH 843.

i.i.1 The r_i_ght Lüter_r^el_öti_on of conceptual modet^l_i^ng
areas

"Conceptual modelling" recognized the need for higher
level abstract concepts, tools, techniques. The book
CBMS 843 surveys new achievements of AI, databases, and
programming languages in this respect. We suggest to
refine this comparison in the following way.

All the three fields mentioned employ concepts which
are, in a degree, specific to the particular goal ad
dressed. In fact, however, there are far more general
concepts, which are common for all kinds of conceptual
representati ons, and hence it is important to deal with
them distincti vel y and explicitely. Conceptual modelling
could therefore be built up as shown:

45

general means for
conceptual representations

information systems AI knowledge PL data
conceptual schemas representation abstraction

GPECIFIC
MEANS

F i gur e 1.

Partition of conceptual modelling areas.

Jl.s.2 Fonc egtual^ m o d e l i n g and i n formát ion systems design

A version of the commonly accepted reference framework
for information system's design consists of the stages
shown below:

Requirement analysis
Requirement specification
Conceptual model
Logical model
Access model
Implementation model

_L

phase addressed
by known
conceptual languages

Fi gur e 2.

ISDM modelling stages.

As indicated, most conceptual design methodologies (mod
els, languages) e.g. TAXIS CMW 803, ADAPLEX CSFL 813,
Event Model CKM 843, etc. address roughly the "middle
third", that is they do not suit for the work to be done
at the li]itXal^ phase where everything is vague, uncer
tain, and changing from day to day. In our belief,
conceptual means applicable at the initial stage should
be

- far more general than those offered by present
days conceptual languages;

- flexible enough ensuring the dynamics of the
modelling process;

- compatible with and well connected to the
techniques proposed and adequate at the midd
level (see references above).

2 ^ Concepts for top l̂ evel̂ ?Qodel_l_i_ng

2.1 General version

A major practical difficulty of modelling and conceptual
descriptions is avoiding going into details irrevelant
on certain given levels. It is therefore essential, that
modelling tools applied on top levels be stimulating for
the concentration on relevant issues only. Possibly, the
vaguest form of a conceptual model is the semantic
network, see e.g. CQUIL 683, CBRAC 793. We think how
ever, that in order to start with, even weaker concepts
are needed.

Hence, at the top level we suggest to use three concepts
only, namely

- "concept“ itself (at this level still not distin
guishing between abstract and concrete ones!);

- "properties" in general (at this level replacing
"attributes", "constraints" and a lot of other
possible constructs);

- a relation over concepts called "case—of" (at
this level replacing both the usual "is-a" and
"instance-of" relations).

4 7

E jÜ 2l^í2^Ü £'!2i

(i) A "concept" is given by an identi fication
constraint (e.g. a nam<?) and a (possibly empty)
set of properties associated.

(ill A "property" — at this level — is anything (e.g.
a natural language sentence) what we consider
necessary to mention to define a concept.

(iii) The relation "case—of" is used to connect pairs
of concepts whenever one of them has (in some
sense) all the properties of the other.

E x a m p l e —1^.

When thinking about e.g. an "enterprise"» at the vaguest
stage we might only say things like these:

concept enterprise;
properties:

Has a management board:
Has a scope;
Has departments;
Obeys tax laws;
Must be rentable;
. . . etc

concept steel work;
case—of enterprise;

Note that from a certain viewpoint "steel work" might be
an "instance" of "enterprise" (in the traditional sense)
and at the same time from another- it might only be a
special version of it (i.e. an "is-a" one). What we
think most important» however, is that such a refining
decision must not be made until reaching an appropriate
stage within the modelling process itself!

Fix amp I e—2.

Of course, our modelling concepts are themselves "con
cepts" in the very sense introduced here. So, we may
even write our specifications as:

48

concept concept;
properties:

Ident ifi a b le;
Has a set of properties;

concept property;
case—of concept;
properties:

Has a content;

concept case-of;
case—of concept;
properties:

Has an object and a subject which
together identify it;

Constitutes a loop free directed
g r a p h ;

Thus we have

concept

Figure 3.

Interconnection of initial concepts.

2^2 Revised version

At this point we could slightly revise and refine our
initial mod e l :

(a) We might explicitely distinguish between the two
main types if identification (e.g. by a name versus
a key). That is, we can early distinguish between
entities and relationships in the sense of CCHEN 763
i.e. def i ning

concept entity;
case-of CONCEPT;
propert i es:

Has a name;

concept relationship;
case-of CONCEPT;
properties:

Has an object and a subject which
i dent ifi es i t ;

and then rearranging the hierarchy as shown below:

CONCEPT

entity relation ship

case-of
concepts redefined
for top level
mod elling

Figure 4.

Initial concepts» revised version.

(We remark that transformations of existing
conceptual schemes like the one leading from fig.3.
to fig.4. are frequent in the practice of top level
modelling. Therefore it is important that a computer
aid should support such model-transformations.)

(b) We can distinguish between two main types of
properties namely those possessed and of those
_f u ü i ü e d . It is usual to call the former ones
"attributes" and the latter "constraints":

concept attribute;
case—of property;

50

properties:
Its content is "value";

concept constraint;
case—of property;
properties:

Its content is a "predicate";

Thus we get

CONCEPT

entity relationship

Figure 5.

Concepts proposed for top level modelling.
Final version.

51

Now we can reformulate Example— 1 as

concept enterprise;
propert i es:

(has) Management hoar d ;
(has) Scope;
(has) Departments;
(fulfils) Tax requirements;
(ful fils) Eentabi l i ty;

or by using a more aesthetic formalism:

concept enterprise;
attr i butes:

Management board,
Sc op e ,
set of Departments;

constraints:
Ta.v i.aws,
Eentabili ty;

More exactly, attributes are introduced in the following
way:

(a) Names of attributes locally identify them with
respect to the concept they belong.

(b) Each attribute has a value which is supposed to be a
concept (allowing "pregiven" ones too, e.g. "number",
"text", etc.)

(c) An attribute might also have a "mode" (which can
e.g. be "individual", "set", "list", "array", "tuple",
etc.)

Formally:

concept attribute;
case—of property;
attr i bute s :

name: identifier;
value: concept;
mode: («‘numeration);

constraints:
"Name" locally identifies the attribute.

5 2

3^ Leveli o_f information syst emj.s traditional^ ^onceßtuai
schemes

Having a top-level model of a phenomenon (system) we are
then to refine it gradually. These transformations are,
however, far from mechanic since abstraction levels
differ not only in their degree of details but, in
nature, in their conceptual bases too, see e.g. CLUD
84 3 .

Hence refinement means not only making design decisions,
but gathering and adding new information. Nevertheless,
it is important to ensure "smooth" transitions between
modelling levels by the compatibility of conceptual
models belonging to different layers.

The top-level model outlined previously - because of ts
openess - can now be enriched and refined into several
particular directions. One way of refinement is obtain
ing one of the well known conceptual schema description
models e.g. TAXIS CMW SOI, DAPLEX CSH 813, Galileo
CAC 833. Below we outline this way.

3^J, f nst an£e

Classification the historically first postulated and
most important abstraction mechanism is widely used
since the birth of SIMULA 67 CD 703 and in some form it
is adopted by all conceptual languages. (We do not quote
the definitions here, these can be found elsewhere, e.g.
in any of our references.)

In this sense we can say that one concept can be an
instance of another, the former being an "abstract" one
in comparison with the latter. Hence, "instance-of" can
be considered as a special case of our "case-of" rela
tionship with the following important property (called
the "homomorphism rule" of attribute selection):

If P is an attribute of concept C, C.P denotes is value,
and C is an isntance of C, then C'.P must be an instan
ce of C.P:

5 >

C ---------------*- C.P

instance
-of

instance
-of

C' P c :p

Figure 6.

Homomor ph i sm rule of instanciati on

(Note that
"case-of" it
attribute P.)

from the definit
foilows that C

I n our not at i on s

i on o f
1 must

the
a l so

r el at i onshi
possess th

concept instance-of;
case—of case-of;
constraint:

Attributes of its "object" are instances
of the corresponding attributes of its
"subject" (homomor phi s m);

(Note that
- namely an
explicitely
"case-of".)

the concept "
"object" and
— which wer

instance-of" has t
a "subject" not wr
e already defined

wo attributes
itten above
in case of

3^2 Is-a

The second most important abstraction mechanism is the
generalization (implemented also early in SIMULA 67)
usually denoted by "is-a". For two concepts A and B "A
is-a B" if a subset of A ’s properties are identical with
B ’s entire set of properties. Hence

concept is-a;
case—of case-of;;

and therefore

a <ii

54

case-of

instance-of

Figure 7.

Cases of "case-of".

L^t us denote the transitive closure of "is-a" by "is
a ", and define the relation "instance-of”" by

instance—of° = instance-of © is-a*.
where denotes the "circle product" (natural join) of relations.
Obvi ously

case-of

in stsnee-of

Figure 8.

Multiple "case—of".

Hence, when speaking about^instances in general (i.e. by
"instance-ofu ") if "A is-a " then the set of A's instan
ces is necessarily a subset of B's ones. This fact may
lead to wrong conclusions. One may define "is-a" rela-

55

tionships by "subsetting criteria" applied on the set of
instances. We do not accept this and insist upon that
definitions of "is-a" relationships among concepts must
not *L ejf er to instances .

(Remark: In case of is-a* and instance-of’ relations the
attribute homomorphism rule should be weakened using the
formalism offered by CH 813» CAGN5 803 and can be stated
in a new form called the "convexity rule". We do not
detail this here» see. e.g. CKR 853» CDKR 863.)

3.3 Universes

We have not yet made any restrictions about the use of
relationships "is—a" and "instance-of" (disregarding the
general constraint of loopfreeness declared at the level
of "case-of"). There are several possible ways for such
restrictions in order to obtain a meaningful and discip —
lined model.

a) Uniqueness assumption for

A instance of'“' B

and

A instance of'“' C

instance subjects:

B i s-a

’ =?> or

J C is-a

C

B

(including C = A» i.e. the relation
generates classes. This assumption is
known conceptual models.)

"instance of"
adopted by all

b) Layering assumption:

First we define "abstraction levels" in the follow
ing way. Let L^ be the set of concepts which are not
instances of other ones. Let L the set of in
stances of concept belonging to L ^ . Assumption:

(i) Lj is a classi fication over the entire set of
concepts.

(ii) If A is-a B then A and B belong to the same
abstraction level.

(iii) Attributes values of a concept must belong to
the same level the concept belong.

(This assumption is also adopted by all conceptual

5 6

methodologies. It is a common belief that at most 3
levels are sufficient for all kinds of modelling. In
fact, some methodologies employ three - e.g. TAXIS
CMW 801, while others only two.

c) Uniqueness assumption for is-a subjects:

A is-a B and A is-a C =*> B = C.

(Some methodologies do not apply this restriction. In
this paper, we do not suggest its acceptance or
refusal. It is a possibility. Refusing the assumption
has a cost, of course.)

d) Restriction to two levels:

Finally we may restrict the number of abstraction
levels to two, thus obtaining a level of "abst act"
concepts (classes, — the meta level), and "concrete"
objects. Hence objects are instances of classes, and
we make the following supplementary assumption:

Relation "is-a" is applicable at the level of
classes only.

concept

Figure 9.
Division into "abstract" and "concrete".

(In fact, this division is essentially adopted by known
methodologies. So called "meta-meta" level introduced in
some models serves only a "subsidiary" role. We remark
also that SIMULA G7 obeys exactly a), b), c), d).>

At this point we have the following full set of
concepts:

57

CONCEPTS OF CONCEPTUAL MODELLING: ABSTRACT LEVEL

CONCRETE LEVEL

INSTANTIATION

' r

Real world phenomena to be modelled

Figure 10.
Summary of modelling concepts: level 1 and 2.

SB

4^ Level. o_f ÍL!l2H!D̂ Í.Í!9í] system^s t r ad_i t i_onal logical
m o d e l s

We can go further into directions of any of the known,
more detailed models. In case of information systems it
is most important to distinguish between "information"
structures and "transactions" and to provide specific
means for handling them both. Hence we can refine the
"class" concept as:

class

F i gure 11 .

Information system's basic modelling classes.

4.1 Information structures and transactions

To describe information structures at the logical level
of modelling specific attributes are used. For instance,
TAXIS introduces "keys", "constants", "variables" (names
changed here). Therefore, we can e.g. define the concept
"information" as:

class information;
is—a class;
attributes:

key: information;
constant: attribute;
variable: attribute;

Remarks:

a) Attributes in general (without further restriction)
are multi valued. This applies to the above defini
tion too, i.e. an "information" structure may have
any number of keys, constants, variables.

5 9

b) The "key" can be an arbitrary compound information
structure according to the above definition. (See
a L so 4.3 later.)

c) One might propose to represent "keys" "constants"»
variables" as is-a versions of the concept "attri
bute". We intentionally did not choose that way.

Similarly we can write e.g.:

class transaction;
is—a class;
attributes:

parameter: information;
local: attribute;
function: action;
returns: information;

constraints:
prereqs: predicate;
results: predicate;

Here we used two undefined concepts namely "action" and
"predicate". In fact, algorithmic and logical expres
sions do not really belong to logical or conceptual
levels of modelling. At this stage, for the convenience
of the real user, these should better be expressed
verbally, or aided by a few well chosen specification
formalisms, but certainly not fully formally (i.e. not
by presently available formal mathematical specification
tools.)The right selection of formalisms really needed
at this level is a research to be done.

4^2 Attribute properties

For information systems design purposes it is convenient
to define a number of a properties of attributes. A
particularly useful selection is the one proposed in CKM
843 including

- multi valued
— single valued
— unique
- exhausting
- non null
— reverse
et c .

ones. These can be modelled either by adding new attri
butes and constraints to the definition of "attribute"

60

itself or by defining attribute—subtypes. We do not go
into details here.

4^3 Attribute modes

As mentioned earlier, to each attribute a mode can be
associated (e.g. "set—of", "list—of", etc.). These can
serve to express secondary abstraction mechanisms namely
"aggregation" and "association" see e.g. CBMS 843, CG
851.

One might wish to apply "aggregation" and "association"
as s e i fcontained separate tools to create new concepts
and use concept definition constructors like "is a set
of", e.g.:

directorial board is a set of persons;
We do not accept
"being a member"
this way, i .e.:

this way however. Instead, we say that
is a property and should be represented

concept directorial board
attributes:

members: (set of) person;
(further possible properties);

A number of other "modes" can be suggested ("array—of",
"tuple", etc.). We do not fix them here. There is a
question however, whether the modelling person is al
lowed to define his own new modes (as concepts) himself?
This question is not answered in the present paper.

A final remark concerns "set properties". Some models
introduce separate mechanisms to handle properties asso
ciated to sets of object instances (with variable mem
bership, of course. This is for instance, one reason of
introducing meta-classes in TAXIS.) We have different
opinion. Merely a set of objects is not a conceptual
level construct. If it is, then it must be setfcontained
concept with a name and defined in the normal way (e.g.
as "directional board" above. And then we may well
declare:)

concept directional board;
attributes:

members: (set of) person;
average-sal ary: numeric;
etc.

61

5^ Open puest j,onsi rriodeĵ transformations

For practical use of computer aided conceptual m o d e ü i n g
the key is the dynamics with respect to the modelling
processing itself in two ways:

5^i E£Í2 HH'í=!.l atign an existing model

The knowledge process acquisition is iterative in nature

1
COLLECT KNOWLEDGE

COMPARE WITH
EXISTING KNOWLEDGE

UNDERSTAND,
CONCEPTUALIZE

interaction with the
"concept base"
built interactively

Figure 12.

Knowledge acquisition process.

It is typical that new knowledge sometimes leads to the
need of radical changes in the knowledge base not al
lowed by presently used models (e.g. changing or even
cancelling classes having instances). Of course, depend
ing on the exact model used there is always a well
definable set of transformations preserving the integri
ty of the knowledge base in a way. To give precisely
these transformations is an important work to be done.

6 2

5^2 Ma22j_03 between

Using a multi-layered technique of top-down modelling w
have se l f contained models in each level (each one shoul
be "complete" according to appropriate criteria which
are characteristic at the given level). Hence we must fre
quently handle sane concepts on different levels (in
different degree of abstraction) .

Therefore an adequate mapping mechanism is needed to
connect levels guaranting the compatibility among
interdependent concepts. This is also an area of further
work (in addition to the lot of others mentioned in the
sequel) .

a

6 3

EIEIBINCES

CAGNS 803
AndrékajH., Gergeiy,T . , Németi,!., Sain,!.: Theory
morphisms, stepwise refinement of program specifica
tions, representation of knowledge, end cylindric
algebras. Preprint 1980.

CAC 833
Albano, A. , Car dielli,L., Or si ni , P , : Gali!eo: A
Strongly-Typed Interactive Conceptual Language. ACM
TODS, Vol 10, No.2, pp.230-260, June 1985.

C BRAC 793
Brachman,R.J.: On the Epistemological Status of Se
mantic Networks. In: Findle r ,N .V.: Associative Net
works: Representation and Use of Knowledge by Compu
ter, p p .3-50. Academic Press, 1979.

CBMS 843
Brodie,M.L., Mylopoulos,J., Schmidt,J. W. (E d s .>: On
Conceptual Modelling. Springer Verlag, 1984.

CCHEN 763
Chen,P.F.S.: The Entity—Relationship Model: Toward a
Unified View of Data. ACM Transactions on Database
Systems. Vol.1, No.1, March 1976.

CD 703
Dahl,0.J., Myrhaug,B., Nygaard,K.: SIMULA 67 common
base language. Norwegian Computer Center, Oslo, 1970.

CDKR 863
Demetrovics,J., Knuth,E., Rad6,P.: Computer aided
specification techniques. World Scientific, Series in
Computer Science Vol.1, pp.1— 114, Singapore, 1986.

CG 853
Gibbs, S.J.: Conceptual Modelling and Office Informa
tion Systems. In: Tzichritzis, D. (Ed.): Office Auto
mation p p . 194-224, Springer Verlag, 1985.

CH 813
Henkin,L., Monk?J.D., Tarski,A., Andréka,H., Néme
ti, I.: Cylindric Set Algebras. Lecture Notes in Math
ematics 883, Springer Verlag, 1981.

CKM 82:
King,R., McLeod,D . : Semantic Database Models. In:
Yao,S.B.(ed.) Principles of Database Design. Prenti
ce-Hall, Englewood Cliffs,N.J.(to appear).

CKM 841
King,R., McLeod,D.: A Unified
for Conceptual Database Design. In: Brodie,M.L.,
Mylopoulos,J., Schmidt,J.W. (Eds.): On
Modelling, pp.313-327, Springer Verlag,

Model and Methodology
Brodi e,M. I

Conceptual
1984.

CKR 85:
Knuth,E., RAnyai,L.: Closed Convex Reference Schemes.
In: Teichroew, D . , David, G. (Eds.): System Descrip
tion Methodologies, pp.435—453, North Holland, 19B5.

CLUD 841
Ludewig,J., Mitchell,R.: Incompleteness and A t t r a c
tion in Program Descriptions. International Workshop
on Models and the Languages for Software Specifica
tions and Design. Orlando, Florida, 1984.

cm w b o :
My l opoulos,J., Wong,H.: Some Features of the TAXIS
Data Model. Proc. 6th International Conference on
Very Large Databases. Montreal, Canada, October 1980.

CQUIL 68:
Qui l l i a n , M. R. :
(E d .):Semant i c
1968.

Semantic Memory. In:
Information Processing.

Mi nsky,M.
MIT Press,

CSH 81 :
Shipman,D.W.: The Functional Data
Language DAPLEX. ACM TODS V o 1.6,
March 1981.

Model
No. 1,

and
PP

the Data
. 140-173,

65

Intelligent Databases

H. Brückler, W. Fritz, V. Haase, R. Kalcher
Institut für Maschinelle Dokumentation

Forschungsgesellschaft Joanneum
Graz/Austria

How to use existing databases to build
intelligent question-answering systems

(Requirements and an outlook)

Most existing and planned expert systems use a knowledge base together
with inference mechanisms especially designed for the specific task. This
implies that the basic facts which constitute the knowledge base have to
be entered into the system during the building period. Not much is known
how to use existing machine readable data and databases to build
knowledge bases. In this paper we want to discuss mechanisms how to use
existing textual relational databases as knowledge bases for expert
systems, and report on some experiences in the intelligent use of
literature databases.

This field is especially interesting as enormous amounts of referral data
have been and are continuously stored in internationally accessible
databases. CUADRA ASSOC, lists approx. 2700 databases, several dozens
of different query languages are used, almost none of them allows a really
intelligent dialogue with the user. On the other hand to reenter all these
data into an expert system manually is not possible. Typically a database
(e.g. INSPEC /l/) holds more than 2 500 000 records, each of them
consisting of up to approx 1000 characters grouped into 10 to 20 fields,
classified by 10 to 50 relevant keywords. We need an intelligent interface
to existing databases, an interface that gives the user as much help as
possible.

Up to now investigations and limited tests have been performed to find
out how AI principles could help to make searching in databases -
especially literature databases - easier. We can identify two methods to
follow:

a) An "Expert-System-Black-Box" as interface to one or more online
databases.

66

b) A two 3tep method which first transforms conventional databases
into a knowledge base which then can be accessed via an expert
system.

L An "Expert-System-Black-Box”

In many cases a person who is interested to retrieve information from a
database - especially from a literature database - is not able to use this
database without any help. Therefore specialists must be involved to
satisfy the wishes and requests of the user. These specialists represent an
interface between the enduser - typically not a computer or database
specialist - and the database management system.

But this present method has disadvantages. On the one hand there is a
first group of disadvantages for the enduser:

1) To get the information the user must meet the expert physically.
That means that the user has to go to the office and this implies the
next disadvantage:

2) The enduser must pay attention to the office hours especially at
weekends, holidays,... no information retrieval is possible.

3) An human expert can only serve one customer at a time. This fact
causes high costs to the enduser.

On the other hand also the expert is troubled with this method of
information retrieval.

67

4) The expert must be familiar with different query languages because
each database must be served in a different manner, as well as

5) with the structure of many databases covering various different
scientific disciplines.

As long as you are working only with one database there are no great
problems for an expert to learn the usage of the system. But as soon as
you are working with more than one database management system there is
a great danger in mixing up different queries.

One example: To find documents with a special keyword you have to use
for instance f "KW" (for Find) in one language, or s "KW" (for Search)
in another, or 1 "KW" (for Locate) in the third one. And if you use a
dozen of different systems almost each character of the alphabet is
used for this function. What is even more difficult is to change to a
language that uses context sensitive queries (different meanings in
various operation modes (e.g. Search mode, Print mode, etc.)).

These problems arise for an information retrieval expert who uses more
than one database. On the other hand if an enduser wants to use the
database himself (e.g. he is a scientist and he has the opportunity to use a
terminal e.g. for his daily mathematical work, and now wants to use this
equipment for information retrieval without help of a specialist) he may
have these problems already with just one database. Therefore it makes
no sense for a casual user to learn a special query language only for a few
retrievals.

But now a little remark to the upper topic: Query languages do not differ
very much in their principal functions but more in small - but nevertheless
important - syntactic features.

Therefore the idea comes up that these syntactic differences could be
filtered out by building an interface between the operator and the
different database systems. The updated version of our first picture may
look as follows:

68

The difference to picture 1 is that the operator has to learn only one
query mechanism to work with different databases. Such systems do
already exist. E.g. the DIALOG database consists of about 300 databases
which are combined and use only one query language. Using this system
we get the following picture.

D B M S

d a t a b a s e s

The improvement to picture 1 is that the operator has not to serve each
database with a different query language but can use a group of databases
with one unique manipulation mechanism. This means that about 2700
existing databases worldwide can be accessed with some dozens of query
systems.

But the situation today is not optimal because only two different query
languages can be troublesome for an human operator. Even the idealistic
idea of picture 2 does not solve the problem for the enduser if he wants to
use the system by himself, because - as said before - one query
formulated in a special syntax is one query too much for a casual user.

Therefore the idea in picture 2 must be changed in such a way that the
enduser should be able to serve the information retrieval system without
learning any special query language. We should alter picture 2 to picture 4
by adding a new function unit: the black box in the following diagram.

69

e n d u s e r Pic. 4

Now we want to point out the ways the enduser will have to communicate
with this database without using special query mechanisms.

1) A very fine realisation of this communication would be the
unrestricted use of spoken natural language just the way you would
speak to an human expert. But you will certainly agree with us that
this is a little bit Utopie today.

2) Just the same as above but query input is performed using a normal
keyboard. In this case we can assume that a person who has the
technical equipment (e.g. a terminal, a teletype or a videotex
computer) can make his/her own retrievals if he/she is familiar with
the handling of a keyboard.

3) Another method to realise such a communication is by the use of
computer graphics. As an example we may look at the new type of
operating systems such as on Apple Macintosh or PAM (abbreviation
for Personal Applications Manager) /2 / on Hewlett-Packard
computers or GEM (Graphics Environment Manager) from Digital
Research which is available for CP/M and MS-DOS and therefore for
nearly all types of personal computers. Using this method the user
sees ideograms on the screen and can formulate his requests with the
help of a mouse or a touch screen.
An additional advantage of this third method is its independence of
any natural language. You can build one unique system for different
countries and different languages, because there is no difference
between e.g. german, english, or hungarian systems because pictures
are understood everywhere. Up to now we have done no

70

investigations until now whether a communication based only on
ideograms is possible or not.

Certainly other concepts are also thinkable ...

Let us now have a look on the advantages and disadvantages of these
three principal possibilities:

1) Speech 2) Alphanumerics 3) Graphics

terminal expensive; very cheap; expensive
hardware teletypes hardware
not available and typewriters (bit map
commercially;
software
expensive;

possible display)

bandwidth only few characters either: much data
for data 300 baud will be enough and no terminal-
transfer
from/to
terminal

(both directions) software
or: few data and a
great deal of
software (the host
sends a coded
character which
causes the
terminal to draw a
whole diagram)

intelligence +++++ - +
of terminal very essential not necessary not forced to be

intelligent

today available - ++ +
will come in use existing but
several years terminal, limited
from now videotex,

teletype
commercial usage
until now

Pic. 5

71

The most practicable way of the realisation of such a black box seems to
be method 2. We will discuss the further problems of implementation on
this model because it seems that with this method the user will get a
practicable system which satisfies our first requirements, and it can be
realised without a great deal of hardware because all the necessary
hardware is available and not too expensive.

As there are no bigger problems with the hardware, all the difficulties
arise in the software of this realisation. Let us now have a look inside the
black box and the interface.

n a t .

Lang.

database
i n t e l l i g e n c e dependent

B L A C K INTER-

BOX s \ FACE C____:v - ;
one

query

Pic. 6

First we start with the less complex part of this black box interface
system: the interface box.

There are two possible solutions for the realisation of such an interface:
1) 1 1:N - Convertion
2) n 1:1 - Convertions

To illustrate these facts some pictures:

•
1 : N

/ > 1 : 1

1 :1
f > ^ ' 1 : 1S T
r____ x

1 : 1

Pic. 7.1 Pic. 7.2

72

Currently when using widespread hardware techniques only one connection
to a database may be active at the same time. If there are requests to
more than one database the system must spool these requests and must
serve them sequentially one database after the other. For future
requirements one user request may be split up into several queries
(semantically identically, syntactically different) to different databases.
By support of powerful communication hardware these queries can be
processed parallelly and handling with the user can be done comfortable
(speed, costs,...).

Pic. 8

The first implementation would be an overall translation program which
can transform the standard query into any of the special database queries.
A great disadvantage of this version lies in the wish to add a new database
to the system because it could be that the whole program must be
changed in this situation, that means that already existing transformation
algorithms must also be tested for correctness once again.

On the other hand version 2 has dedicated modules for each database
management system, and therefore some syntactic features are listed in
each module (problem of redundancy). But when you want to communicate
with a new database you have to add only a new module to your interface.
A welcome side e ffec t of this second version is that the enduser can
configurate a system for his own special personal requirements. This
means that the modules for those databases he is not interested in are not
added to the interface.

73

This shows that the second method seems to be preferable to the first
method. At this point we should investigate how these modules are to be
realised. Two practical ways are thinkable:

1) Each module is implemented as a whole program.
2) It is also thinkable that these modules only contain the rules for the

transformation which are used by the black box to translate the
standard query to the special database dependent queries.

The second way is very realistic in so far as you will certainly have to use
an expert system to realise the black box and in this occasion this expert
system can also manage the rules of the modules.

This has the consequence that our interface modules are no more
independent programs but only a collection of data and facts which are
used to control the translation of the standard query.

We can explain our results until now in the following picture:

d a t a b a s e x y

Pic. 9

The rules for these procedures can be stored in the databases themselves
and are downloaded if they are needed.

After we have seen the function of the interface modules we now want to
change the black box into a "white box".

Let us resume the features of this unit:

74

1) It must handle the communication with the enduser in or near natural
language (e.g. english, german, hungarian,...).

2) The requests formulated in natural language must be translated into
the standard query language.

3) And as just said before this standard query syntax is to be
transformed into the special database dependent query format with
the use of the rules in the interface modules (see also picture 9).

The third aspect seems to be not so problematic as the other two because
you have only to change one fixed syntax to another well defined syntax.
The rules for these grammars are stored in the above discussed interface
modules.

The real problem are the points 1 and 2 where it is to decide whether
these two points are really two independent functions or must be seen as
one global component.

A beginning in this direction is already done by some existing systems like
HAM-ANS /3 / which is an intelligent hotel manager system for booking
hotel rooms by natural language. Another system would be INTELLECT
/4/ which is a natural language interface to a database. Another example
for a natural language interface is implemented in the geographic
database CHAT /5/ which can answer questions formulated in natural
English.

Systems such as SHRDLU /6 / and ELIZA /7/ are certainly a good help for
investigations on this topic too. Let us just list some of the most
important features of such a communication system.

1) First of all the system must be able to explain all the functions and
possibilities of the system itself. It must offer also information about
all administrative functions to the user such as accounting, general
costs,...

2) The whole man-machine dialogue must be an iterative process
because in most cases the answers of the system will not match with
the aims and the requirements of the user and vice versa.

7 5

3) Another important aspect is that the system should ask only as much
as necessary to reach the next user's aim to help him to shorten his
work for input. An example of this way would be MYCIN /5, 8/.

4) Moreover the communication system must test the user input for
some semantic correctness as for example questions formulated too
weak would lead to an enormous mass of data. For example when you
are searching for all books written in English.

5) Another point is an explanation function. E.g. if you use boolean
operators the system should show how the endresult is constructed
out of the subresults.

With this small table of desired functions we will finish this aspect of
intelligent retrieval systems. In the second part we want to discuss a
completely different way to make databases more intelligent.

IL A two step method which first transforms conventional databases
into a knowledge base which then can be accessed via an expert
system

Today a great number of databases exist all over the world. They offer
enormous amounts of data in various fields. We may also get the
knowledge of experts to use these traditional databases, but not in such a
manner as we need such knowledge of an expert for building a knowledge
based system.

It seems there are two main reasons why we cannot use existing data
immediately for setting up a knowledge base.
1) Traditional databases are in most cases not well structured as far as

semantic relationship of the content is concerned. Stored data are
more or less a loose collection of facts in fact databases or of
referral data in literature databases.

2) Knowledge bases (intelligent databases) as needed for setting up and
working with expert systems are structured in different ways. As
commonly known there are several ways to represent knowledge in a
knowledge base. Some ways of representation are frames, semantic
networks and ruled based production systems.

76

In the next years we can expect a great evolution in different fields of
artificial intelligence in general and in special fields of expert systems -
or more general - knowledge based question answering systems.

On the other hand usual searches in traditional databases often do not
satisfy customers due to different reasons as already mentioned above.
The main reason seems that there are many different and inflexible query
languages which are inefficent even if you are able to describe your
questions precisely in natural language.

One possible way to build an expert system for literature searching
nevertheless is to use existing databases and not to start from seraph.

For such an approach two main components of an expert system are of
great interest. First the knowledge base and second the knowledge
acquisition module.

For the representation of knowledge in the knowledge base which is to be
built we may sta rt using rules of the common known kind: "If condition
(and condition ..) then action". As inference engine we may use a
production system working independently of the contents of the
knowledge base.

The kernel of our considerations is the construction of a knowledge
acquistion module.
Its aim is the acquisition of knowledge from various sources including
existing databases. We want to find a way to support the knowledge
acquisition process using an intelligent program.

One important aspect is that work should be done automatically or at
least half automatically with as little as possible interaction by human
experts. Essentially knowledge should be extracted and filtered out of
existing databases.

77

new way of knowledge
acquisition (using
existing databases)

traditional way of
knowledge acqusition
(interaction to
human experts)

existing traditional databases

Pic. 10

At present the use of data of a literature database for building a
knowledge base seems to be difficult. The main question is how knowledge
of an expert can be extracted from record fields as title , author,
classification codes, index terms, abstract, etc. /9/

As in fact databases a knowledge base does not exist only of facts resp.
citations but also of knowledge "how to use this information".

As an example we may use chemical substances. Each substance has
characteristics such as molecular formula, synonyms, extraction
procedures, colour reactions, gas and thin layer chromatography, infra red
and mass spectrum, etc. /10/

These facts are stored in some structured way in an existing database.
This structure is known to the transformation program or at least to an
human expert working with the system.

78

So one way to get data out of a conventional database into a knowledge
base is the following half automatic process:

1) An human expert sets up a set of rules how incoming data is to be
manipulated if the transformation program does not know the "special
proceeding" for a particular database so far.
The structure of incoming data and the restructuring mechanism are
defined and stored in a library. In the case that the transformation
program knows how to handle incoming data nothing has to be done
by the expert. / I I /

2) The transformation program restructures the incoming data
according to the rules se t up and fills the knowledge base.

Conclusion

This is a very rough model as you see but it is only a first theoretical
investigation and we hope that when we will meet next we can show you
runable preversions of the today's discussed black box or the
transformation program.

79

Literature;

/ l / DIALOG Information Services, Inc.,
DATABASE CATALOG 1985

/2/ COM - Das österreichische Magazin für Computer Anwender
Jänner 1986, S 18ff

/3/ Hahn, W. von, et al.
The Anatomy of the Natural Language Dialogue System HAM - RPM,
In: Natural Language Based Computer Systems
Carl HANSER Verlag, München 1980

/4/ Simons, G. L.
Introducing Artificial Intelligence
NCC Publications, Manchester 1984

/5/ O'Shea, T. and Eisenstadt, M.
Artificial Intelligence
Harper a. Row, New York 1984

/6/ Winograd, T.
Understanding Natural Language
Academic Press, New York 1972

/7/ Weizenbaum, J.
ELIZA - A Computer Program for the Study of Natural Language
Communication Between Man and Machine
CACM 9 (1966), pp 36

/8/ Shortliffe, E. H.
Computer - Based Medical Consultations: MYCIN
Elsevier, New York 1976

/9/ Yakubowitz, Z.
Linkage Retrieval System
University Campus-Beth Hatefutsoth, Israel

80

/1G/ Battista, H. J. et al.
Ein modernes Informationssystem für die toxikologische Analytik
auf der Basis des (IV+V) - Systems
Zeitschrift für Rechtsmedizin
Springer 1985, S 235ff

/ll/In s titu t für Maschinelle Dokumentation
Aufbau und Einsatz medizinisch - bibliographischer Datenbanken
Graz 1986

81

ACTIVE COLLABORATIVE SYSTEMS

Prof. dr. L. Siklóssy
Vrije Universiteit
Subfac. Wiskunde en Informatica
Postbus 7161. 1007 MC Amsterdam

ABSTRACT
Active collaborative systems (ACS) not only answer questions from the user,
but will give additional information not directly requested by the user,
and might suggest other questions that may be more pertinent to the user’s
goals. In addition, active collaborative systems include a component which
broadcasts information that may interest the user, even when the user did
not request any information or ask any questions. ACS incorporate a model
of the user to guide the transfer of information. Metric relationships
among data play an important role in the strategy of an ACS.

1. INTRODUCTION
Data bases are becoming essential components of modern organizations. They
can be accessed by specialized programs, by queries written in a query
language, or (within some limitations) by queries expressed in a natural
language. Several investigators have pointed out that systems which only
answer a query are unfriendly, unsatisfactory and much less helpful than
they could be.
A goal of our research is the development and mastery of techniques which
will permit the rapid and efficient implementation of certain types of
knowledgeable, friendly and helpful assistants to decision makers. These
assistants will make use of data bases in an active, collaborative way:
they are Active Collaborative Systems (ACS). By contrast, a data base sys
tem which only answers queries can be viewed as passive: it waits for a
question, and has finished its task after providing the answer.
In section 2, we review three different ways in which passive question-
answering systems have been judged unsatisfactory. The solutions that have
been suggested to render the systems more satisfactory have lacked general
ity. In section 3, we propose a general framework which may remove all the
inadequacies mentioned. This framework is based on a descriptive topology,
both quantitative and qualitative, of the space of topics that is stored in
the database. Section 4 outlines an extension of ACS to what we have called
Active Data Bases. An Active Data Base provides a user with the sort of in
formation that he would have requested, had he taken the time to request
it. (But in fact, for a variety of reasons -lack of time, lack of
computer-related skills, etc.- the user did not formulate the queries.)
Thus, we see that an active data base broadcasts information to the user.
It can be seen as responding to a set of latent questions that describe a
u s e r ’s interests. (Sometimes, we include active data bases under the term
ACS, since the two types of systems have the same goal: inform and help the
u s e r .)
User models are needed by both of the above active systems: the systems’
reactions must be adapted to the user’s goals. Section 5 discusses user
models. Section 6 is centered around the need for automatic restructuring
of the storage structures of existing data bases to increase the efficiency
with which the topological neighborhoods can be accessed from one particu
lar topic.
2. INADEQUACIES OF PASSIVE QUESTION-ANSWERING SYSTEMS
We call passive those question-answering systems which simply answer a

8 2

question (see Siklossy f 10] . ̂ Wahlster [12] discusses the inadequacies of
such systems, namely:
a) the system m ay fail to inform the user that a modified question, closely
related to his initial question, has a ’'significantly better” answer, which
would help the user better to achieve his goals.
b) the system m ay fail to inform the user that his question includes
presuppositions which are not actually valid, so that the answer given may
be misleading or meaningless.
c) the system m ay fail to provide the user with additional information
which the user would normally expect, and which he must now request expli
citly.
To these categories, we add a fourth one:
d) the system m ay fail to inform the user of the additional, related topics
that the system is ready to pur su e at the u se r ’s request.
We shall now g iv e short, illustrative examples for each of these inadequa
cies .
a) A company ask s its decision support system about the cost of receiving a
shipment of 30C widgets on Monday. The system answers, but fails to point
out that an interesting quantity discount is available for orders of 1000
or more widgets, and that delivery on Wednesday or later would avoid the
heavy "rush” surcharge.
Here is another similar example:
A company asks its decision support system about the cost of manufacturing
10000 widgets in its plant at location A. The system answers, but fails to
point out that plant A has a considerable backlog and therefore the order
may be much delayed. Another possibility (in addition, or separately from
the above) is the failure of the system to mention that plant B could have
the order ready sooner and/or at less cost, or that the order could be sub
contracted to Company XYB at advantageous terms.
Siklossy [8,9,11] was the first to discuss the above type of inadequacy. He
developed a theory, based on discontinuities, which tells a question
answering sys te m when it should provide similar additional information.
The theory has been implemented in such diverse areas as: air travel and
airline tariffs, shipment of goo ds by truck or air, manpower assignment to
projects, s e l e c ti on of a restaurant, selection of commercial real-estate
for investment, distribution of tools and machines to various jobs and
sites in a large corporation, vacationing, ordering spare parts for
machines, etc.
b) Kaplan [A] and Webber [13] give examples of user presuppositions and
misconceptions which are not usually detected by question-answering sys
tems. Let us illustrate their points by considering the two short
question/answer sequences:
-How many women teach in the Department of Information?
-Zero.
-Is John at the meeting?
- N o .
The first query assumes that there is a Department of Information, and that
it has teachers. If there is no Department, or if there is one but no
teaching within it, then the answer ’’zero” is correct but misleading. The
second query a ss umes that there is a John, that there is a particular meet
ing and that J o h n could come to the meeting. If any of these suppositions
is false, the response is again misleading.

8 3

Here is another small dialogue first answer is somewhat misleading,
w h i l e the second one is not.
-How many boxes of computer cards do we have in stock?
- Z e r o .
-Zero. We no longer use computer cards here.
c) Wahlster [12] describes a system which gives answers that are typical of
those expected by human users when the minimal answer would be yes or no.
To the question:
-Is there someone in room S5.23?
the minimal answer would be : -Yes. or -No. A more acceptable answer would
b e :
-Yes, George and Martha both entered S3.23 at 10.32 am. or -No. George and
Martha left the room at 6.45 am.
A similar example is:
-Have you started on Project XBY?
-No.
-No. I dont even know anything about Project XBY.
We could expect a good ACS to be even more helpful, as for instance in the
following:
-Have you started on Project XBY?
- N o .
-No. Our department does not handle project XBY. The project is handled by
the Archetypes department,
or :
-No. Our department does not handle project XBY. We handle design problems.
Project XBY is a security project; these projects are usually handled by
the Confidentiality Department. Shall I check whether they are indeed work
ing on this project?
d) One problem in giving additional, not specifically requested information
is: how much information should be given? A user model will help, but some
times it is important to let the user decide so as not to annoy or bore
her. Also, it is important to bring to the use r ’s attention additional in
formation, pertaining to the u s e r ’s question, which the user may wish to
explore. This information would not always interest the user, and therefore
it should not be broadcast every time. Instead, it makes the user aware of
other directions that she may wish to explore.
We shall not try to provide a complete bibliography of work touching on
this area. Additional works in natural language processing which can diag
nose presuppositions, and respond accordingly, include Lesmo [5,6]. The
references mentioned in this section contain pointers to other relevant
works. Of particular relevance are the developments of plan based theories
of dialogue, which try to understand a use r ’s goals, and which will be tak
en up briefly in section 5, User Models.
3. A TOPOLOGY OF TOPICS FOR ACTIVE QUESTION-ANSWERING SYSTEMS.
The four types of inadequacies in responses that were mentioned in the
preceding section can all be removed by the introduction of a topology of
the topics that are known to the system. The topology describes the multi
dimensional structure of the topics and their neighborhoods. We shall out
line the form of the topology for each of the examples of the preceding
section.
a) The topic here is a shipment of goods. The description of a shipment
includes such dimensions as: what is shipped, quantity, dates for pick-up
and delivery, route followed, carrier, itemized costs, likelihood of de-

04

lays, etc. Given a partiéul v ic, i.e. a particular shipment, the system
searches for discontinuities that are favorable to the user, i.e. where a
small change in the topic along some dimensions can result in large, favor
able changes along some other dimensions. Thus, we notice that the topology
includes metric information. As mentioned, this technique of discontinui
ties has been implemented in a variety of domains (see section 2.a.)
b) In the first example of section 2.b, the topic concerns departments (of
a university, say). Information about departments includes their name, com
position. leadership, location, function, budget, etc. Certain aspects are
dependent, and therefore may presuppose others. For example, an ’’empty”
department, i.e. one with a name but no budget or staff, has no leader. If
a department has no teaching function, there are no teachers teaching in
it, etc. Neighboring topics include departments with similar names
■'Department of Information Science), similar functions, some or consider
able overlap of staff, etc. Therefore, a possible answer to the question:
-How many women teach in the Department of Information?
could have been:
-There is no such Department. The Department of Information Science has 3
women teachers out of 11 teachers. or:
-There is no teaching within that Department. Many of the Department
members teach in the Department of Information Science.
In the second example, the topic is a meeting. The description of a meeting
includes place, time, expected and invited attendees, whether the meeting
is open and to whom, etc. Neighborhoods include other relevant meetings
say over the same topic, both in the past and future), meetings scheduled

for the expected attendees, etc. Therefore, possible answers to the ques
tion: -Is John at the meeting? could be:
-No, it is a closed meeting, and he was not invited.
-No, John is away. He is expected at the following meeting of the ’’Widget
advertisement g r o u p ” on July 8th.
c in the example of the query: ” -Is there someone in room 55.23?,” the to
pic is rooms, or perhaps, more generally, locations. (Actually, there is a
second topic: the activities of John.) The dimensions of the topic include
identification of the room, uses (with dynamic values), contents, etc.
Neighboring topics include similar rooms (with similar functions, or occu
pied by similar occupants -persons or objects-), rooms which are geographi
cally close by, etc. Descriptions of the dimensions can be bundled (prefer
ably in a hierarchical way, which would be user dependent) so that
responses which touch upon one dimension within a bundle will trigger
further explanations along the other dimensions of the bundle. In our exam
ple, a request about occupancy of a room would search automatically (if the
occupancy is not zero) for number and identification of the occupants, and
for some information about times of arrival. So an answer could have been:
-The room is occupied by members of the ’’Widget advertisement group.” They
have occupied the room since 10 am.
Here is another example in a similar vein:
-Do you have S m i d ’s book on Computer Networks?
- N o .
A helpful ACS might say:
-No. In fact, we have no books by Smid.
And an even more helpful ACS would elaborate:
-No. We have no books by Smid on Computers. We have books on Computer Net
works by A. S. Smit, and one book on Computer Communication by B. T. Smith.
Here are the references:...
d) The mechanisms required for informing the user of additional information
that the system may provide, if the user wishes to have it, are similar to

35

those required for part c) ai . t o r example, one of the previous answers
could have been:
-The room is occupied by members of the ’’Widget advertisement gro up . ” I can
further tell you about:

A. when they started occupying the room.
B. until what time they have reserved the room.
C. which members of the group are present.
D. which members of the group are absent. etc.

Here is another example where the ACS indicates where it could be helpful,
if the user so chose:
-Did Smid finish his program for the Widget Project?
- N o .
An ACS could do better:
-No. Smid left the company ten months ago, before the beginning of the
Widget Project. Would you like to know where he now is?
- Y e s .
-He works for Outstanding Software Inc. I can tell you more about that com
pany if you wish.
Therefore, it suffices to indicate, in the description of the topic, which
dimensions or related neighborhoods will be specifically searched, with
their values printed, and which dimensions or related neighborhoods will be
simply mentioned as areas that the system could further explore. Again,
these indications can be user dependent.
The topology provides a methodology for describing active question-
answering systems and active data bases (see section A). The topology pro
vides a systematic approach to the design of these systems. We envision a
simple man-machine interface which will allow the user to describe the to
pics of his domain, their dimensions, metrics, neighborhoods, etc. We hope
that, with the use of this methodology, it will be possible to build, rela
tively rapidly and easily, high quality active systems.
A. ACTIVE DATA BASES: INFORMATION WITHOUT QUESTIONING.
Some persons find that they do not have the time or the desire to access a
question-answering system. They may not wish to learn about the use of com
puters and terminals, or they find that their time is better spent in other
pursuits. Such potential users of question- answering systems, for example
high level managers, medical doctors, etc., could profit greatly from in
formation in data bases. It may even appear that those who would profit
most from the use of databases, due to the importance of their decisions,
are the ones least likely to use them!
Active Data Bases may be the solution. An Active Data Base (Siklbssy [10])
broadcasts information to a user without requiring the user to actually ask
for information. In practice, from a user model (section 5) we generate a
set of temporary or permanent latent questions that are used as queries to
the data base. Ideally, these questions would be precisely, those that the
user would have generated. They could be implemented as questions, filters
or demons (equivalently, triggers.) Active Data Bases would inform the user
of new, relevant developments on a timely basis, in the areas of interest
to the user, and at the level of detail that the user would want. (Active
Data Bases could have other uses too, such as occasional reviews of activi
ties in a field of interest.)
5. USER MODELS AND GOALS.
The inadequacies of question-answering systems that we have discussed can
be understood as follows: users have goals and expectations. Their goals
are often not well formed. They ask questions to be able to gather informa
tion to achieve their goals. They have expectations about the level and
amount of detail of an answer, the inclusion of relevant information, etc.
They want to be informed of relevant new developments. The active systems

I

86

t h a t we have d e s c r i b e d attemr ' . u m a k e it e a s i e r for the u se r to achieve
h i s goals.

A c t i v e systems w i l l require user m od el s. We i n t e n d to d e v e l o p frame wo rk s
w h i c h will p e r m i t the d e s c r i p t i o n of user m o d e l s . Much work h a s been done
r e c e n t l y in the a r e a of mod el s o f user plans, in p a r t i c u l a r to u nd e r s t a n d
d i a l o g u e : S c h m i d t [7], Cohen [l], H a y e s - R o t h [2], J ac ks on [3], etc. For us,
it is p a r t i c u l a r l y i mp ortant to h a v e user m o d e l s w h i c h can i n t e r a c t s m o o t h
ly w i t h the t o p i c s t op ol og y that w a s des cr ib ed in s e c t i o n 3.
6. A U T O M AT IC R E S T R U C T U R I N G OF D A T A TO SUPPORT THE TOPOLOGY.
A c t i v e systems m u s t not only f i n d a ns we rs to a p a r t i c u l a r q u e r y , but must
a l s o search t h e n e i g h b o r h o o d s of the query. The t e c h n i q u e s d e v e l o p e d in
d a t a base r e s e a r c h have e m p h a s i z e d the d e v e l o p m e n t of t e c h n i q u e s of stori ng
d a t a and s u b s e q u e n t l y r e t r i e v i n g suc h data g i v e n specific, s i n g l e queries.
To suppo rt e f f i c i e n t l y the s e a r c h w i t h i n n e i g h b o r h o o d s , we m u s t look into
n o v e l t e c h n i q u e s for data s t o r a g e . Present s t o r a g e t e c h n i q u e s , left u n
c h a n g e d , can no t p r o v i d e an a d e q u a t e support to t he d e v e l o p m e n t active
s y s t e m s .
T h e topology t h a t we have d e s c r i b e d can be v i e w e d as d e s c r i b i n g c e r t a i n
t v o e s of r e l a t i o n s among dat a items. We can v i e w this t o p o l o g y as an e x
t e n s i o n o f the c o n c e p t u a l s c h e m a o f a data base. The t o p o l o g y i n t ro du ce s
additional considerations not f o u n d in current c o n c e p t u a l s c h e m a : r e l a t i o n
s h i p s among n e i g h b o r i n g e l e m e n t s in a data base. Some of t h e s e r e l a t i o n
s h i p s are Q u a n t i t a t i v e and a r e b a s e d on m e t r i c s ; others a r e q ua l i t a t i v e .
D a t a base t e c h n o l o g y does nor p r o v i d e f ac i l i t i e s for easy a n d e f f i c ie nt
p a s s a g e from o n e d a t u m to a n e i g h b o r i n g datum, e s p e c i a l l y w h e n the n e i g h
b o r h o o d s can be a l o n g several d i m e n s i o n s . (Th er e are some e x c e p t i o n s : for
e x a m p l e , n e i g h b o r h o o d s d e f i n e d by ’n e x t ’ or ’c l o s e b y ’ keys in r el a t i o n a l
d a t a bases.)

7. C ON CLUSIONS.

T h e Active S y s t e m s that we h av e d e s c r i b e d fall i n t o two c a t e g o r i e s : Active
C o l l a b o r a t i v e S y s t e m s and A c t i v e D a t a Bases. T h e s e two types o f s y s t e m s are
c o m p l e m e n t a r y . A c t i v e C o l l a b o r a t i v e Systems w i l l p r o v i d e p e r t i n e n t and, in
a c er tain s e n s e , p r a c t i c a l l y c o m p l e t e a n s w e r s to q u e st io ns . A c t i v e Data
B a s e s will k ee p u s e r s informed o f d e v e l o p m e n t s in a c h a n g i n g e n v i r o n m e n t .
T h e s e systems w i l l be bui lt w i t h the help o f a single, u n i f o r m tool: a
d e s c r i p t i v e t o p o l o g y of the t o p i c s known to the dat ab as e. The u se of a s i n
g l e tool is a far cry from the diverse, o f t e n a d - h o c t e c h n i q u e s that have
b e e n used to r e m o v e the i n a d e q u a c i e s of p a s s i v e d a t a base s y s t e m s . The t o
p o l o g y is u s e r d ep endent, a nd u s e r models p l a y an i m p o r t a n t role. One of
t h e goals of t h i s p r o p o s a l is t he d e v e l o p m e n t of p r a c t i c a l , e f f i c ie nt
f r a m e w o r k for t he d e s c r i p t i o n o f users. F in ally, the p r a c t i c a l i t y of active
s y s t e m s r e q u i r e s n e w d e v e l o p m e n t s in data s t o r a g e t ec h n i q u e s to s u p p o r t the
d e s c r i p t i v e t o p o l o g y .

87

8. REFERENCES

Cl] Cohen, P.R. and C. R. Perrault: Elements of a Plan-Based
Theory of Speech Acts (Cognitive Science, 3, 1973, pp.177-212).

C2] Hayes-Roth, B. and Hayes-Roth, F.: A Cognitive Model of
Planning (Cognitive Science 3, 1979, pp.275-310).

C3] Jackson, P. and Lefrere, P.: On the Application of Rule-Based
Techniques to the Design of Advice-Giving Systems (Int. J. Man-
Machine Studies, 20, 1984, pp.63-86).

C4] Kaplan, S. J.: On the Difference between Natural Language and
High Level Query Languages (F'roc. Association for Computing Ma
chinery 1978 Annual Conference, 1978, pp.27-38).

C5] Lesmo, L., Siklóssy, L. and Torasso, P.: A Two-Level Net for
Integrating Selectional Restrictions and Semantic Knowledge.
(F'roc. IEEE Int. Conf. on System, Man and Cybernetics, India,
1983, pp. 14-18).

16] Lesmo, L., Siklóssy, L. and Torasso, P.: Semantic and Pragma
tic Processing in FIDO; A Flexible Interface for Database Opera
tions. (Information systems, 1984, has appeared).

[7] Schmidt, C. F., Sridharan, N. S. and Goodson, J. L. : The Plan
Recognition Problem (Artificial Intelligence, 11, 1978, pp.45-
83).

18] Siklóssy, L.: Quest ion-Asking - Question-Answering Systems
(Proc. Int. Seminar on Intelligent Question-Answering and Data
base Systems, I.R.I.A., Rocquencourt, France, 1977).

19] Siklóssy, L.: Impertinent Question-Answering Systems: Justi
fication and Theory (Proc. Association for Computing Machinery
1978 Annual Conference, 1978, pp. 39-44).

1102 Siklóssy, L.: Passive vs. Active Question-Answering (Proc.
First Int. Symposium on Policy Analysis and Information Systems,
Durham, NC, USA, 1979, pp.271-276).

[112 Siklóssy, L.: Experiments with a Query Adjusting Knowledge
Based System (Proc. Fifth Int. Congress on Cybernetics and Sys
tems, World Organization of General Systems and Cybernetics,
Mexico City, 1981).

C12] Wahlster, W., Marburger, H., Jameson, A. and Busemann, S.:
Over-Answering Yes-No Questions: Extended Responses in a NL
Interface to a Vision System (Proc. 1983 Int. Joint Conference on
Artificial Intelligence, Karlsruhe, 1983, pp.643-646).

88

[133 Webber, B. L. and Mays, E.: Varieties of User Misconcep
tions: Detection and Correction (Proc. 1983. Int. Joint Conferen
ce on Artificial Intelligence, Karlsruhe, 1983, pp.650-652).

R9

ABSTRACTION AND DATA STRUCTURING

Ágnes Hernádi

Abstract
Abstraction mechanisms such as classification/instantiation,
aggregation/decomposition, lambda abstraction (procedure
formation), specification/implementation, specialization/
generalization, association/membership etc. have gradually
developed with our increasing knowledge about the matter of
programming. Four of them, namely classification, aggrega
tion, generalization and association, provide organizational
axes to structure a data space and are fundamental to most
semantic data models.
Regardless of the specific structure of domains of database
applications the above organizational principles seem to be
widely applicable.

1. Introduction
Recent research in data modelling is confronted with the par
adox :

- at the application level one generally perceives unrepre
sentable details, and

- at the representation level one generally represents
unperceivable details.

The abstraction mechanisms cope with this problem by sup-
pressing unnecessary details, and by structuring and formal
izing relevant information.

1.1 Abstraction and modelling
What we mean by abstraction, is called modelling in the areas
of natural and social sciences. Both of them require a deci
sion of the important features in the system, the variability

yo

involved, the formal specification, the way of validation and
so on to be applied.

Modelling comprises three intellectual tasks;
- the perception or reality from a certain aspect,
- the choice of the appropriate model, and
- the representation of the perceived reality according

to the given model.

A representation is obviously some kind of reality, and as
such it is a target for another representation according to
another model.

Owing to the incompleteness of human observation and our lim
ited ability to represent reality completely, any representa
tion is an abstraction of reality.

1.2 Structure and semantics

There are a number of different abstraction mechanisms sup
ported in various models, although none of them is supported
in each model. These models have developed gradually with our
increasing knowledge about the matter of programming. Some of
the most frequently applied abstraction machanisms are;

- classification/instantiation,
- aggregation/decomposition,
- generalization/specialization,
- association/membership,
- lambda abstraction,
- specification/implementation, and
- mapping or multiple views.

We use the notion of relationship in the sense of combining
several units into a large single unit. So we can think of a
model as consisting of units of some sort related by rela
tionships of various kinds, and an abstraction mechanism aid
ing data structuring as a kind of relationship.

91

Plenty of open problems conseming structure are addressed
both in database and in programming language areas, such as

- features to be checked statically and the ones that
have to be checked dynamically;

- the features that cannot be represented structurally;
and

- the problem of defining and implementing complex con
straints by means of structure.

Due to the large number of complex constraints and the amount
of data values in databases, these problems may be more se
vere for database applications than for programming language
applications. In recent databases persistent structural prop
erties of data are emphasized instead of operations changing
in the course of time. A structural description can be more
simple and terse than its behavioural variant. It is easier
to understand and to analyse a structural description than a
behavioural one, accordingly it is usually more convenient to
verify structural properties than to prove that programs are
correct. Finally we already have well-known tools to de
scribe, analyse and implement structural properties. There
fore it is important to make a study of how far these exist
ing structural tools can express semantics.

2. Abstraction mechanisms aiding data structuring
2.1 Cla s£if ica_t ionéin s tan t Fal ion
The application of classification in programming can be
traced back to the early autocodes where the concept of type
traditionally referred to the internal structure of data
structures implementing language symbols instead of referring
to relationships between things represented by those symbols.
Programming languages, databases and artificial intelligence
systems all presume that entities or objects can be classi
fied into "types". As one might expect however, "type" has
not got the same meaning neither in different nor within in
dividual areas.

92

Types have got a powerful mathematical foundation [g o ’75] »
[g o » 77] , [g o ’77a] , , [e h ’78] , [tH ’78] and there is no doubt of
them being useful for many purposes. Types are primarily
used in classifying objects or entities. The manner of clas
sification however varies considerably. Neither fixed concept
nor standard way of usage has evolved for types as yet. It
seems as though types are tools in solving various problems
in the above mentioned areas.

On designing a type system or a set of types at will, we have
to choose a particular meaning for the undefined notions in
the type definition such as objects, properties and so on.

For example objects in the type HORSE (Fig. 1J have proper
ties such as name, sex, owner, date of birth, measurements,
species, colour, marks and utility.

data type HORSE with
attributes
name: HORSE NAME;
sex: {Mare, Stallion, Gelding] ;
owner: OWNER;
date-of-birth: DATE;
measurements: set of MEASUREMENT;
species: SPECIES;
colour: COLOUR;
marks: set of MARK;used-for: set of {Racing,Sport,Breeding,Slaughter,Others];

end HORSE;
Figure 1.

The "objects" should not be limited to data. Type systems can
be defined for procedures and for relationships too. There
are different ways of building a type system for procedures
or transactions. For example on the pure functionality of
procedures or on any other abstract information belonging to
the procedures. We can think of a sorting procedure as a type
of procedures, independently of types of its arguments and
outputs. One can organize procedure specifications into types
based on the relationships of the pre- and postconditions.

93

Then again jnstances of these types can be considered as ac
tual applications of the procedure. The operations applicable
to the instances of a type of procedures present the parame
ters and local variables for procedures.

For example in describing REGISTER, the action of registering
a foal (Fig. 2) , we may have two parameters for the foal and
its dam respectively, with constraints stating, that for each
instantiation of REGISTER
- the two parameters have to be of type HORSE;
- moreover a mare with her foal at foot;
- there has to be a registration of covering this mare

at a stud-farm 11 month before foaling; and
- finally there must be a birth-certificate issued

for the foal when an instantiation terminates.

transaction REGISTER with
parameters

f: HORSE;
m: HORSE;

prerequisites
Mare-with-foal-at-foot?;
Sire-known?;

actions
a: register f ;

postrequisites
Birth-certificate-issued-for f;

end REGISTER;

Figure 2.
In the presence of a lot of constraints it could be sensible
to group these into types of their own. A type of assertions
would have free variables and one of its instances would re
place these free variables by constants.

Our example (Fig. 3) could be instantiated by replacing Z by
any type for which "name" is a one-to-one mapping; so Z can

94

be replaced by the type THOROUGHBRED.

V x , y e Z (name (x) =name(y) =4>x=y)
Figure 3 <

A type can also be considered as an object, and as such can
itself be classified.

Considering types as classes of objects together with collec
tions of operations on objects of the corresponding class,
seems to be suitable to support modelling. This concept of
type involves a notion of the composition of types ~f'~om the
more primitive ones and as a consequence the notion of object
composition and that of operation composition. Using this
notion of type aggregation and generalization may be repre
sented as a type composition. The operation and the applica
bility constraints associated with a type may be considered
the representation of the dynamic properties of objects.

In practical applications there are a plenty of problems
addressed and not referred to by all definitions of type.
Such problems are among others:

— the issue of subtype,
— the matter of nominal versus structural equality of

types,
— the possibility of multiply typed objects.

Types got their full power by the concept of parameterization
[jTH’78] which has lead to the concept of "parameterized types"
or "type constructors". This allows to specify classes of
abstract data types with different objects and even partly
different operation semantics.

There are at least as many purposes of applying types as many
users exist. From the middle of 1970’s in programming lan
guages there is a strong emphasize on binding operations up

9 5

with abstract data types and protecting integrity of repre
sentation. So types are used to check whether the use of an
operation is valid or not and to select a particular instance
of a generic operation required by a given application.
In database systems types are used also for checking the va
lidity of operations - Codd has used such a concept of type
to justify that join operations are meaningful in databases -
and for describing information about objects or entities.
In the areas of artificial intelligence one can find all the
uses of types applied in programming languages and databases.
In those systems types give incremental descriptions about
the objects of the real world and types are used to control
the search space. Types are introduced in order to remove
certain properties of objects from the general purpose infer
ence machinery, and to utilize them more efficiently.

It is not only the definition of type that matters, but the
structure of type system in particular. The basic purpose of
a type system is to allow us to partition the universe ob
jects to reflect distinctions relevant to the user, the de
signer or both. When required partitions may be allowed to
overlap.

Let me mention some basic kinds of type systems.
- In the simplest case every object has a single type and

all types are mutually exclusive. Most present-day type sys
tems in programming languages - with no abstract or user-de
fined data types - belong to this category. If a number is
of type INTEGER it cannot also be of type REAL.

- Next we can think of a tree hierarchy. In such a case a
data structure D can be of type QUEUE, but that does not pre
clude it from being of type BUFFER with the same first-in-
first-out properties.

- The included hierarchy may be a directed acyclic graph
instead of a simple tree. In this case each object can belong
to more than one type, and there is no mutual exclusion en
forced among types. This kind of type system is used in se-

96

mantic networks. For instance the object representing a
horse named "KEMAL" can belong to the types STALLION,
THOROUGHBRED and STUD_HORSE.

- Finally we could permit a general graph - with cycles
and potentially high connectivity - rather than a strict
hierarchy.

2.2 Aggregation/decomposition
Aggregation has long been used in programming languages to
express the structure of data types. Aggregation is a funda
mental composition rule used to define structured tyres such
as records and arrays, from simpler constituent types. The
methodology of step-wise decomposition is a basic abstraction
mechanism in software engineering.

Aggregation - on the basis of PART_OF relationships - ena
bles a relationship to be considered a higher level aggregate
object. At the level of the aggregate object specific details
of its parts are suppressed. For example the aggregate "horse"
as a physical object consists of parts such as head, legs etc.
From an other point of view a horse could be thought of as an
aggregation of its brand, date of birth and sex. Considering
the aggregate object however suppresses the details of its
parts.

Each instance of an aggregate object can be decomposed into
instances of the component objects:

Let A be an aggregate with components P^,...,Pn
A(x)<±=> 3yx , . . . (x,y£ A. ..APn (x,yn))
xe{z| A(z)}<=> x e j z p y ^ iz»y^} A • • ‘Ax€ {zP ynPn^Z,yn)}

In the Limited Generic Database Model [^BRO,8oJ aggregation is
expressed via Cartesian product operator. This operator pro
duces an aggregate of attributes from two or more attributes.
Instances of the resulting type are tuples instead of rela
tions resulting from the extended Cartesian product in the

9 7

relational algebra.

Let us consider an example for the application of aggrega
tion. We have got two types, the type of mares and the type
of stallions, and an operation or act involving an object of
each,the operation of covering a mare (Fig. 4).

For almost no database model supports considering transac
tions themselves as pieces of data, it is the result and not
the action what is modelled. There are two ways of modelling
this same thing:

- It could be considered as an aggregation relationship
between the types MARE and STALLION. So another type, say
REGISTRATION_OF_COVERING should be introduced, the in
stances of which are records of covering events (Fig. 5) .

- Alternatively a datamodel with the concepts of object and
attribute should be used. STALLION would be defined as an
attribute of the objects of type MARE, or MARE would be
defined as an attribute of objects of the type STALLION,
or both (Fig. 6).

MARE

REGISTRATION_OF_COVERING
----------------------------4 _ _ -------------------------------------- ,

STALLION
Figure 5 .

MARE
mare-property

stallion-property
STALLION

Figure 6

98

In the first case individual coverings can be distinguished,
but in the second case it cannot. The first solution models a
fact as a data object and the second one as an operation.
There are many considerations which would prefer one of our
solutions. One prefers to invoke an operation and give it a
couple of parameters, someone else can ask for all the in
stances of covering events that happened over the year and so
may want to view them as entities.

On the other hand step-wise decomposition can be adapted to
describe the components of a transaction too. In this view
some operations applicable to the instances of a transaction
have actions as their value, and the constraints specify

- the type of each of these,
- the order of invocation of components, and
- the relationship between the parameters of the transac

tion and its components.

For example, REGISTER could have parts (Fig. 7) generate-reg-
istration-number, record-parents and fill-in-birth-certifi
cate. For each instantiation of REGISTER record-parents may
even be wanted to mark the covering certificate as resulting
a foal. This could be stated easily.

transaction REGISTER with
parameters
f: HORSE;
m: HORSE;

prerequisites
Mare-with-foal-at-foot? ;
Sire-known?;

actions
a^: generate-registration-number;
a^: record-parents;
a^: fill-in-birth-certificate;

postrequisites
Birth-certificate-issued-for f;

end REGISTER;
Figure 7

9 9

The recursive application of aggregation results in an aggre
gation hierarchy which has an upward inheritance property.
Each property of a constituent becomes a constituent property
of the aggregate. Decomposition, the inverse process produces
a hierarchiai breakdown. Therefore aggregation defines an
organizational principle for objects.

2.3 Generalization^/specifi£ation
In programming languages generalization has scarcely been
used. Some similarity can be found between the concept of
union types in programming languages and the concept of gen
eralization, as both embed types into other types. Unions
consist of a finite collection of explicitly identified types,
which may share no operations.

Generalization relates a type to more generic ones. Generali
zation - on the basis of IS_A relationships - enables similar
types to be thought of as a single generic type. At the level
of the generic type the similarities of the constituent types
are emphasized and their differences are ignored,

A generic or super type can be decomposed into its constitu
ent types, considered as specializations or subtypes of the
generic:

Let G be a generic type with subtypes C^,...,Cn

Ci (x)=4>G(x) i=l,...,n
jz|c± (z)jc [z |g (z)] i=l,...,n

The strict interpretation of specialization only requires the
introduction of additional or new operations in defining a
subtype. For example a MARE is a HORSE. Objects in the type
MARE (Fig. 8) will have an additional constraint stating that
their sex is Mare, and a new property stating the date of
last foaling or possibly their being barren.

100

data type MARE i£ a HORSE with
attributes

sex; [Mare] ;
last-foaling: DATE U(No , Barren] ;

end MARE;
Figure 8.

Similarly we can define the subtypes STALLION and GELDING.
The same applies on specializing a transaction. Additional
constraints can be asserted on existing parameters and local
variables and/or new parameters and local variables can be
introduced with their related constraints. Addition''1 con
straints involve strengthenin too. For example registering
a thoroughbred is a REGISTER for any instance of which the
foal cannot be more than two—days-old, and each parent has
to be of type THOROUGHBRED, the postrequisite states that
the foal should be branded and there would be also an addi
tional component, recording the brand mark (Fig. 9).
specialize REGISTER (f:HORSE, m :THOROUGHBRED)
add

prerequisites
Not-too—old?;
Sire-thoroughbred?;

actions
a^: record-brand-marks;

postrequisites
should-be-branded;

end ;
Figure 9.

Since instances of a type must also be instances of all its
supertypes, consistency in description requires a specialized
transaction to cause at least the same "changes" to any state
as its general counterpart. This requirement is explicitly
presented in our example for pre- and post-requisites, but is
harder to describe and to implement for components.

101

The IS_A hierarchy for constraints would be based on implica
tion ,
It is this strong sense of specialization that is present in
TAXIS. However this simple intuitive notion of inheritance is
insufficient to represent a substantial fraction of all the
information we would like to represent. For instance, let us
consider a classical problem, exemplified by the task of rep
resenting the following information in a type hierarchy:

Birds fly, penguins are birds, penguins do not fly.
This exemplifies the simplest form of non-monotonic inference
in the inheritance process. Clearly, it is useful to store
typical information with the type and note the few exceptions
on the instances. Most birds fly, and if we did not know that
penguins specially do not fly, we would have concluded other
wise. Non-monotonicity means that the addition of new infor
mation can invalidate previously valid inferences. Here the
inheritance algorithm chooses the information stored lowest
in the type hierarchy when conflicting information is found.
A generic type is defined by choosing a subset of the opera
tions applicable to the type being generalized. In this con
text an operation may simply return a property of or a piece
of the object, or the operations may change the state of the
object. So the generic type HORSE may have operations to ob
tain an owner, a species etc. These are a subset of the oper
ations applicable to STALLION (Fig. lo) which would also have
operations to obtain and modify fertilizing capacity and
other stallion properties. Obviously multiple generalizations
on the same type are possible by choosing different subsets
of the operations to be preserved.
Generalization as defined above is openended; if a new type
having the operations required by a generalization is de
fined, then it automatically becomes a subtypes of the gener
ic type.
In the Limited Generic Database Model generalization is ex
pressed via union, intersection, difference and division set

102

operators and by restriction and projection as long as one
key is projected [jBRO’SO^.
The union, intersection and difference operators each pro
duces a type with a value set being respectively the union,
intersection and set difference of the value sets of the two
argument object types. For example, the generic type HORSE is
the union of the common properties of subtypes MARE, STALLION
and GELDING; the generic type STUD_HORSE is the intersection
of STALLION and USED_FOR_BREEDING (Fig. lo) . The generic type
HEAVY_CROSSED_BY_LIGHT is the difference of HORSE and the
union of WARM_BL00DED_H0RSE and C0LD_BL00DED_H0RSE (Fig. lo) .
The division operator produces a type with a value set com
puted by applying the relational division to the arguments
based on some specified, compatible attributes.
The type restriction operator corresponds to the relational
restriction.
The projection operator corresponds to the relational projec
tion .

USED_F0R BREEDING

WARM_BL00DED_H0RS E

HEAVY CROSSED BY LIGHT STUD HORSE

Figure 10.

Generalization can be applied repeatedly to types resulting
in a partial ordering. Accordingly the generalization rela
tionship organizes types into a generalization or IS_A hier
archy, which has a downward inheritance property. Each prop

1 0 3

erty of a generic type is inherited by all its subtypes, how
ever, a subtype may have properties distinguishing it from
the other subtypes. Due to this inheritance property IS A
hierarchies have a common use in semantic networks to mini
mize storage requirements.

Not all approaches treat generalization in the same way. Some
of them consider classification as a form of generalization
saying: A class of objects or tokens can be abstracted using

generalization over instances, to form a type repre
senting the class [bRO’SoJ .

2.4 Association/membership
Association has not been widely used in programming lan
guages.
Association - on the basis of MEMBER_0F relationships - en
ables a set of similar objects to be considered a higher lev
el set object. At the level of the set object the details of
a member object are suppressed, and the properties of the set
object are emphasized.
A set object type is a powerset of the member object type.
Each instance of a set object can be decomposed into a set of
instances of the member objects:

Let S be a set type with member type M
S (x) V y (y £ x (y))

x € j z | S (z)]<£=> x £P(m) where P (m) is the powerset over M
Association is used to group or partition a variable number
of objects of a given type, for example a set of stud-horses
forms a stud-farm (Fig. ll) . A stud-horse might have as at
tributes fertilizing capacity, breeding ability and so on,
whereas the set stud-farm would not have these attributes,
but would have an income from stud-fees and other properties.

104

STUDJFARM
]STUD ho r s:STUD HORSE
i

fertilizing-capacity breeding-ability • • •

Figure 11.

The recursive application of association results in an asso
ciation hierarchy, so that if set object A is below set ob
ject B, then everything visible or present in B is also visi
ble in A unless other wise specified. So association emphasizes
set-oriented design as a special case of composition/decompo-
sition.

3. Design tools
3.1 A graphical tool
Most models provide some kind of graphical design tools to
represent the objects and structural relationships of a data
base application, like a data structure diagram or an E-R
diagram, and to aid rough design of structure. SHM+ provides
objects schemes for this purpose. An object scheme is a di
rected graph, in which the nodes are strings denoting objects
and the edges identify aggregation, generalization and asso
ciation relationships between objects (Fig. 12).

A is an aggregate of components P-L,..,,Pn
A

P1 • 9 0 P.X Pn
G is a generic of C , . , • , C

G

1 i n

1 0 5

S is a set of members from the object type M
S

Figure 12.

Due to the application of object schemes the rough design of
structure makes use of abstraction and modularity. On design
ing an object detailed infoimation about constituents can be
suppressed and structural properties can be assumed through
property inheritance.

Object schemes opposed to data structure diagrams, E-R dia
grams and relational schemes support semantic relativism and
the principles of abstraction and localization, and distin
guish aggregation and association. These features are only
implicitly represented in relations and in one-to-many rela
tionships of data structure and E-R diagrams. In addition
even higher order relationships can be expressed by object
schemes.
Although object schemes have originally been introduced for
aiding SHM+ databases, they can be used with most other* data
models too. SHM+ object schemes can be effectively mapped to
all "classical” - hierarchic, network and relational - data
models, and can be used with semantic data models supporting
semantic ralativism - SHM, TAXIS, SDM, RM/T - [b r o ’8^].

3.2 The princi£le of_localization
To manage the complexity of database design there is one more
principle used in SHM+ in addition to the principle of ab
straction. It is the principle of localization. A designer
should model each property of an application object independ
ently - localized - and then to integrate the properties to
produce a complete design.
Due to the principle of localization the result of applying
the three forms of abstraction to an object can be repre-

106

sented in one on more object schemes (Fig. 13). Additional
properties of objects can be modelled by extending available
or by designing independent object schemes. Combining the
object schemes of all independent objects produces an object
scheme containing each object and relationship.

STUD_FARMfSTUD_H0RSE

r---------------- ^ -------------------
fertilizing-capacity breeding-ability

STUD HORSE
^ i ~

IELITE FIRST_CLASS

Figure 13.

4. Summary
Classification, aggregation, generalization and association
are fundamental tools for most semantic data models. Classi
fication, aggregation and generalization are being used in
various forms — SHM, TAXIS, RM/T, SDM/Event Model — while on
the other hand association has only currently been formalized
in SHM+.
Due to the orthogonal nature of aggregation, generalization
and association an object can simultaneously take part in
all three kinds of hierarchies.
We have argued that data, transactions and constraints can
all be structured by aggregation, classification and general
ization, furthermore they can be interrelated. This can be
applied among others to requirements specification and veri
fication (bOR.’ 8lJ .

1 0 7

One of the most important advantages of abstraction mecha
nisms is however the fact, that there is a reasonably small
set of uniform tools suitable in describing both the static
and dynamic aspects of a system.

i o n

REFERENCES
BOR* 81 Borgida,A.T.

Data and Activities: Exploiting Hierarchies of
Classes
Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modelling;
Pingree Park, Colorado, June 23-26, I98O;
SIGPLAN Notices, Vol. 16, No. 1, January 1981,
pp. 98-IOO

BRA’83

BRO»80

BRO* 81

BRO1 82

BRO*84

CAR*81

CO* 79

Brachman , R . J.
"What IS—A Is and Isn’t; An Analysis of Taxonomic
Links in Semantic Networks
Computer, Vol. 16, No. 10, October 1983, pp. 30—36
Brodie,M.L.
The Application of Data Types to Database Semantic
Integrity
Information Systems, Vol. 5, No. 4, 1980, pp. 287-296
Brodie, M. L.
Data Abstraction for Designing Database-Intensive
Applications
Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modelling;
Pigree Park, Colorado, June 23-26, I98O;
SIGPLAN Notices, Vol. 16, No. 1, January 1981,
pp, 101—103
Brodie,M.L.
Axiomatic Definitions for Data Model Semantics
Information Systems, Vol. 7, No. 2, 1982, pp. 183-197
Brodie,M.L. ,Mylopoulos, J, ,Schmidt ,J.W, (eds.)
Conceptual Modelling
Springer Verlag, 1984
Carbonell, J .G .
Default Reasoning and Inheritance Mechanisms on Type
Hierarchies
Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modelling;
Pingree Park, Colorado, June 23-26, I98O;
SIGPLAN Notices, Vol. l6, No. 1, January 1981,
pp. 107-109
Codd, E. F.
Extending the Database Relational Model to Capture
More Meaning
ACM Transactions on Database Systems, Vol. 4, No. 4,
December 1979» PP. 397-434

109

EH* 78

go *75

GO* 77

GO»77a

GU’80

HAM’ 78

HAM* 81

LI’74

MA’8l

Ehring,H. ,Krekowski,H. J . ,Weber,H,
Algebraic Specification Sheraes for Database Systems
Proceedings of the Fourth International Conference
on Very Large Databases, 1978 West Berlin, September
13-15, PP. 427-440
Goguen, J.A. ,Thateher,J.W. ,Wagner,E.G. ,Wright,J.B.
Abstract Data Types as Initial Algebras and Correct
ness of Data Representations
Proceedings of the Conference on Computer Graphics
and Pattern Recognition and Data Structures,
PP. 89-93
Goguen,J.A.
Abstract Errors for Abstract Data Types
Semantics and Theory of Computation Report 6, UCLA
Goguen,J.A.
Algebraic Specification
Semantics and Theory of Computation Report 9, UCLA
Guttag,J.V.
Notes on Type Abstraction /Version 2/.
IEEE Transactions on Software Engineering, Vol. SE-6,
January 1980, pp. 13-23
Hammer,M.,McLeod,D.
The Semantic Data Model: A Modelling Mechanism for
Database Applications
Proceedings of ACM SIGMOD International Conference
on the Management of Data, 1978 Austin TX,
31 May-2 June 1978, pp. 26-35
Hammer.M.,McLeod,D.
Database Description with SDM: A Semantic Database
Model
ACM Transactions on Database Systems, Vol. 6, No. 3,
September I98I
Liskov,B.,Zillés,S.
Programming with Abstract Data Types
SIGPLAN Notices, Vol. 9, No. 4, April 1974, pp. 50-59
Mayr,H.C.
Make More of Data Types
Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modelling;
Pingree Park, Colorado, June 23-26, 1980;
SIGPLAN Notices, Vol. 16, No. 1, January 1981,
pp. I58-I60

1 10

ML* 81 McLeod,D. , Smith, J.M.
Abstraction in Databases
Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modelling:
Pingree Park, Colorado, June 23-26, 1980;
SIGPLAN Notices, Vol. Í6, No. 1. January I98I,
pp. 19-25000 Mylopoulos,J. ,Bernstein,P.A.,Wong,H.K.
A Language Facility for Designing Database-Intensive
Applications
ACM Transactions on Database Systems, Vol. 5» No. 2,
June 1980

MYJ 83 Mylopoulos, J.,Shibahara,R.,Tsotsos,J.K.
Building Knowledge-Based Systems; The PSN Experience
Computer, Vol. 16, No. 10, October 1983, pp. 63— 89

SHA’81 Shaw,M .
Abstraction, Data Types and Models for Software
Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modelling;
Pingree Park, Colorado, June 23-26, I98O ;
SIGPLAN Notices, Vol. Í6, No. 1, January I98I,
pp. 189-191

SHI*81 Shipman,D.W.
The Functional Data Model and the Data Language DAPLEX
ACM Transactions on Database Systems, Vol. 6, No. 1,
March 1981

SM’77a Smith,J.M. ,Smith,D.C.P.
Database Abstraction: Aggregation
Communications of the ACM, Vol. 20, No, 6, June 1977,
pp. 405-^13

SM* 77b Smith,J.M. , Smith,D.C.P.
Database Abstractions: Aggregation and Generalization
ACM Transactions on Database Systems, Vol. 2, No. 2,
June 1977, PP. 105-133

TH’78 Thatcher,J.W.,Wagner,E.G.,Wright,J.B.
Data Type Specification: Parameterization and the
Power of Specification Techniques
Proceedings of the SIGACT Tenth Annual Symposium on
Theory of Computing, May 1978, pp, 119-132

University of Agricultural Sciences,
GÖDÖLLŐ Pf. 303,
H-2103, Hungary

I l l

Semantic Data Models: A Software Technologist's Perspective

Megan Davis and Richard Mitchell

Division of Computer Science

The Hatfield Polytechnic
PO Box 109, Hatfield, Herts ALIO 9AB, UK

Abstract

The terminologies associated with programming languages and data
model languages often hide similarities between the two classes of
language. A number of concepts associated with semantic data model
languages are described using the terminology normally associated with
programming languages. Developments in programming languages are
examined as a source of inspiration for the development o f data models.

112

Introduction

Software technologists are concerned with the specification, design and implementation of software

systems, and must therefore concern themselves with modelling aspects of the real world by data
and associated algorithms. Database designers are concerned with the specification, design and
implementation of database systems and they, too, model aspects o f the real world by data and

associated algorithms. The universes of discourse of the software technologist and the database
designer overlap considerably, yet they have evolved different languages of discourse. This paper
aims to show that the different languages frequently describe the same ideas, and is motivated by
the belief that mutual understanding between workers in the two areas will benefit both.

We concentrate particularly on describing concepts associated with data mode1c of the database
world using the terminology o f programming languages. Taking the software technologist's point
of view, we begin by looking at a well known data model, the relational model. Then we consider
some features of semantic extentions proposed for the relational model. Lastly, we consider recent
develoments in programming languages, and the implications for semantic data models.

The term sem a n tic data m o d e l is potentially misleading: all data models capture some of the
semantics o f the world being modelled. W e can only properly say that one data model captures
more or less semantics than another, or possibly just different semantics from another. We follow
the typical usage of the term semantic data model, to denote a data model designed to capture the
concept of an object, or type o f object, as opposed to a data model that clearly has the concept of a
record in its parentage.

The Relational Model

There is no universally agreed definition of the term relational model. There are many
implementations of database systems which have relational features. There are many
implementations which claim to be relational. There is the ANSI draft SQL standard (ANSI 1985).
The discussion in this paper will be based on the model outlined in (Codd 1980), which lists the

following three components o f a data model:

objects

operators or inferencing rules which may be applied to the objects

1 1 3

general integrity rules w hich constrain the valid database states or changes o f state. T h ese

are d istin ct from any ap p lication dependent in tegrity rules (su ch as salary can n o t

decrease, or n o-on e earns m ore than their m anager).

W e shall illustrate these com p on en ts o f the relational m o d el by con sid er in g a sm all ex a m p le ,

con cern in g the parts o f a door (F igure 1). W e can start to m odel th is w orld o f doors b y the

fo llow in g relations:

Parts

partid partName

p37 doorw ay
p4 frame
P i door
p3 hinge
p2 m ounting
p l0 7 pivot
p9 handle
p l2 3 screw

A ssem bly

majorPart minorPart quantity

p37 p4 1

p37 P i 1

P i p3 2

P i p9 1

p3 p2 2

p3 p l0 7 1

p3 p l2 3 8

1 1 4

The m o re general w o r ld o f w hich the d o o r is an exam p le can be d escrib ed by the fo llo w in g

relational schema:

SC H E M A C om ponents

DO M AIN P artid S T R IN G

DOM AIN PartNam e S T R IN G

DO M AIN C ou nt IN T E G E R

RELATION Parts

A T T R IB U T E partid DOM AIN Partid

A T T R IB U T E partName DOM AIN PartName

RELATION A ssem b ly

A T T R IB U T E majorPart DOM AIN Partid

A T T R IB U T E minorPart DOM AIN Partid

A T T R IB U T E quantity DOM AIN Count

E N D SCHEM A C om ponents.

There is a number o f q u estion s concern ing such schem as that w e w ish to answ er from a softw are

technologist's point o f v iew :

what does it m ean when w e u se w ords such as IN T E G E R and ST R IN G ?

what does it m ean when w e declare a DO M A IN ?

what does the identifier Partid identify ?

what does it m ean when w e defin e a RELATION ?

IN T E G E R , STRING and so on are the the pre-defined types o f the language. T h ese are typical o f

types in current database languages.

To an sw er the question o f what it m eans to declare a D O M A IN w e shall lo o k briefly at another

exam p le which m akes the point more clearly.

1 1 5

Compare the data m odel declaration

DO M AIN

DO M AIN

Sh oeS ize IN T EG ER

C hildsA ge IN T EG ER

with the programming language declaration

TYPE

ShoeSize

C hildsA ge

1 . . 13

1 . . 13

In the program m ing language declaration both ShoeSize and ChildsAge rename the ty p e 1..13. In

program m ing terms then, declaring a dom ain renam es a pre-defined type. O ne question th is raises

is w hether or not ShoeSize and ChildsAge are the sam e type. In the data m odel w h ich w e are

consid ering , they are not; typ ing is by nam e rather than by structure. I f in reality it m ak es little

sen se to com pare a ch ilds age w ith a shoe size , this can be reflected in the m odel b y m aking it

illegal to com pare a value o f type ChildsAge w ith a value o f type ShoeSize.

There is a sm all difference betw een type renaming in a general purpose programming language and

type renaming in the relational m odel; in the relational m odel this renam ing must be done.

W e now turn our attention to the declaration o f relations. C om pare the declaration o f the relation

called Parts w ith that o f the fo llow in g array o f records :

RELATIO N Parts

ATTRIBUTE partid DO M AIN Partid

ATTRIBUTE partName DO M AIN PartName

TYPE

Part = R ECO RD

partid

partName

Partid;

PartName

E N D

Parts = A R R A Y [1 . . n] O F Part

1 1 6

R E C O R D is not itse lf a ty p e , unlike, say , IN T E G E R , but it a llow s types to be constructed. In this

exam p le a type ca lled P a r t is constructed. S o , R E C O R D is a type constructor. T he operations

asso cia ted w ith any typ e constructed u s in g the R E C O R D type constructor are fie ld referencing

operations. Sim ilarly A R R A Y is a type constructor, constructing, in th is exam p le, a type ca lled

Parts.

Just as R E C O R D and A R R A Y are type constructors in program m ing languages, so R E LA TIO N is

a type constructor in the data m odel la n g u a g e , constructing, in this exam p le , a type ca lled Parts.
The w ord A T TR IB U T E is sim ply part o f th e syntax o f a relation declaration.

T here is , in fact, m ore to a relation d ec lara tion than w e have u n covered so far. C onsider the

fo llow in g program declarations:

V A R

w : Parts

x : Parts

y : Partid

z : Integer

If w e lo o k for so m eth in g eq u iva len t in the data m o d e l, w e se e n o th in g w h ich o b v io u sly

corresponds, because variab les are not ex p lic it ly declared in the relational m odel. There are tw o

reason for this. First, there are no variables w h ich are not relations, so there is no analogue of:

y : Partid

z : Integer

S econd ly , there is no co n cep t o f two variables o f the sam e type and so no analogue of:

w : Parts

x : Parts

In the relational m odel there is exactly o n e variable o f each type. Thus declaring a relation declares

both a type and a variable o f that type, w ith o n e name for both:

relation declaration = type declaration + variable declaration.

117

T he operations associated w ith relations constructed u sin g the R E L A T IO N type constructor are

largely based on the relational calculus or relational algebra, and vary from one data m odel language

to another. T hey m ay include operations on relations o f d ifferen t types, such as the un ion o f two

relations. O perations associated w ith the base types, such as IN T E G E R , from w hich a relation is

constructed, and type transfer operations that map betw een values o f a relation type and va lu es o f a

non-relation type are external to the relational ca lcu lus or algebra. S o a lso are operations that

acknow lege that relations are variables. Consider the fo llo w in g relational algebra expression:

JOIN

Parts

W ITH

A ssem bly

OVER

Parts .partid, A ssem bly.m ajorPart

This is an expression , and the relations Parts and Assembly in it m ay be thought o f as v a lu es, just

as a and b m ay be thought o f as values in the follow ing program fragment:

PR O C ED U R E sum (a, b : IN T EG ER) : INTEG ER ;

B E G IN

R E TU R N a+b

E N D s u m ;

T o understand such a sub-set o f a program m ing language w e do not need to know that a and b are

the nam es o f variables, just that they denote values o f type INTEG ER. Sim ilarly, in order to define

queries or v iew s in a data m odel language, w e do not n eed to know that identifiers such as Parts
and Assembly are nam es o f variab les. H ow ever, w e a lso n eed the ability to update a w orking

database, that is , to be able to store, m odify , or delete inform ation . In this context w e are clearly

dealing with variables. A statem ent such as

A P PE N D TO Parts

(partid = p l 1,

partName = w in d o w)

in a data m odel language has properties in com m on with an assignm ent statement in a programm ing

1 18

lan gu age such as:

average := su m (a, b) / 2 ;

T he relational m odel provides integrity rules (D ate 1986) that constrain the va lu es o f such variables

in the presence o f updates. A s applied to the Components exam ple, these rules are:

R u le 1: Entity integrity: T he attributes partid , majorPart and minorPart m ay not take null

values.

R u le 2: R eferential integrity: every va lu e w hich occurs for the attribute minorPart and every

value w h ic h occurs for the attribute majorPart m ust a lso occu r as a value o f the

attribute partid. That is, an assem bly m ust consist o f know n parts and must constitute

a know n part, where by know n w e m ean know n to the m odel. W e see that in the case

o f referential integrity, the values o f the variables are constrained with respect to each

other.

In o th er words, the relation types o f a sch em a are not independent; w e can consid er the w h ole

sch em a Components as a sin gle type (constructed using the pre-defined type constructor SC H EM A

and con sistin g o f th e tw o relation types Parts and Assembly). R eferentia l integrity can then be

considered as an invariant on this type, in the sam e w ay as a type stack m ay co n sist o f an array type

and an integer cursor w ith an invariant constraining the position o f the cursor.

T o sum m arise, the relational m odel g ives :

base type renaming

pre-defined type constructors, R E L A T IO N and SC H E M A

pre-defined operations on constructed types

im plicit declarations o f variables (one variable for each relation)

an expression sub-language based on relational calculus or algebra

a m eans to assign values o f expressions to relation variables.

Semantic Models

In what way do sem antic m odels d iffer from the relational model just described? A sem an tic model

captures m ore o f the m eaning o f the data by, in so m e w ay , a llow ing m ore m eaningful abstractions

to be m ade. W e take as an ex a m p le one aspect o f the sem antic m od el R M /T (Codd 1 9 7 9) which

builds on the relational m odel to provide a richer set o f m odelling constructs.

C onsider a w orld o f em p lo y ees , so m e o f w hom are doctors, som e o f w hom are ty p is ts , som e of

w hom are both, and som e o f w h o m are neither. S o m e com m on inform ation w ill be record ed about

typists and doctors. For exam ple, w e may wish to store the name and address o f each em p lo y ee , or

pay each em p loyee . W e m ay a lso w ish to handle so m e different inform ation about ty p ists and

doctors. For exam p le, w e m ay w ish to record a doctor's sp ecia lism but a typist's sp eed . Doctors

and typists have som e attributes in com m on and so m e w hich are peculiar. W e need th e ability to

define that typists and doctors are sub-sets o f em p lo y ee , and to d efin e whether or not th ese sub-sets

overlap (Codd 1979).

Inform ally, w e want to construct tables with irregular shapes:

N am e A ddress S p ecia lism S p eed

Such a structure could be described in an R M /T-like language as fo llow s:

120

R E LA TIO N em ployee

ATTRIBUTE name DOM AIN String

ATTRIBUTE address DOM AIN String

R E L A T IO N doctor IS em p loyee W ITH

ATTRIBUTE specialism DOM AIN String

REL A T IO N typist IS em p lo y ee WITH

ATTRIBUTE speed DOMAIN Integer

An analogue in program m ing language terms c o u ld be a set o f records o f the fo llo w in g type:

em ployee = R E C O R D

name : ST R IN G

address : ST R IN G

CASE

doctor

OF

true, specialisation : ST R IN G

EN D

CASE

typist

OF

true, sp eed : INTEG ER

END

E N D

in w hich som e form o f varian t or discriminated union mechanism is used. W e see that again we are

dealing w ith a type constructor.

Thus R M /T builds on th e relational m odel and provides a richer se t o f m o d ellin g constructs by

p ro v id in g a more c o m p le x pre-defined ty p e constructor. A n an a logou s d ev e lo p m en t in

121

program m ing lan gu ages is , for exam p le, that Fortran provided the type con stru ctor AR RA Y

whereas Pascal provided the type constructors A R R A Y and RECO RD .

Developments in programming

W e have d escrib ed the relational m odel in term s o f a P a sca l-lik e language. In th e nature o f

analogies, it is not exact (for exam ple w e appreciate that a relation is m ore abstract than a record or

an array). H o w ev er , let us persue the an a lo g y a little by co n sid er in g the d e v e lo p m e n t o f

program m ing lan gu ages. T he nature o f a database w orld is that it is concern ed w ith regular,

persistent, shared, y e t changing data. Can sem antic m odellin g o f such a world incorporate ideas

from the program m ing com m unity? In the d evelop m en t o f program m ing languages the m ove has

been away from defin ing a data structure in term s o f a representation and towards d efin in g it in

term s o f the the op eration s that can be p erform ed on it, and im p lem en tin g it s o that its

representation is hidden from those parts o f the program that use the data structure.

W e take as an exam p le a stack o f characters. T he fo llo w in g specifica tion defines the typ e stack of

characters by defin ing the operations that m ay be perform ed on values o f the type and by defining

the properties o f these operations. The specification in no way indicates an im plem entation.

CharStack =

Char + Boolean +

sorts CharStack

op s nullCharStack : -> CharStack

push : CharStack , Char -> CharStack

top : CharStack ->Char

empty : CharStack -> B oolean

delete : CharStack -> CharStack

eqns s : CharStack , ch : Char

empty (nu llC harStack) = TR U E

em pty (push (s , ch)) = F A L SE

top (push (s , ch)) = ch

delete (push (s , ch)) = s

1 22

T he table b e low gives a very inform al picture o f developm ents in the w orld o f program m ing, in the

m ore m athem atical world o f specifications, and in the database world.

nroeram m ine specification database

subroutines

(e.g . Fortran)

subroutines model based relational

and specifications m odel and

user-defined (e.g. V D M) extensions

types (e.g . R M /T)

(e.g. P ascal)

subroutines

and

m odules

(e.g. M odula 2)

property oriented

specifications o f

functions and abstract

data types (e .g . OBJ)

?

The question mark in the ta b le stands for "what sign ifican ce is there for the database w orld o f the

m ove in the programm ing and specification w orld s towards separating abstract and concrete v iew s

o f data?". W e do not attem pt a full answer to th is question, but w e propose on e partial answer

based on the fo llo w in g argum ent. A sch em a in , for exam p le , R M /T is exp ressed in terms o f

concrete data types (co n stru cted using typ e constructors such as R E L A T IO N). S im ilarly , the

internal w orkings of, for ex a m p le , a M odula 2 m odule are expressed in terms o f concrete data types

such as array and record ty p e s . But an abstract v iew o f the m odule can be d e v ise d before the

concrete details are w orked ou t. This abstract v ie w can be expressed using sp ecifica tion languages

for defin ing functions and abstract data types. In the database w orld, an abstract v ie w o f a schem a

cou ld be dev ised in terms o f abstract data ty p es. T he database design er cou ld d efin e w hat sorts o f

123

data va lu es the database is to m anipulate (for ex a m p le , nam e and typ in g sp eed), and what

operations are to be perform ed on these values (for exam ple, enter n ew sp eed against g iv en nam e),

and later m ap this abstract v iew to a m ore concrete on e expressed in term s o f the types provided in

a data m odel language.

Summary

Com parisons o f relational database schem a with program m ing language declarations sh ow that the

database design er is working with a sm all num ber o f w hat a program m er w ou ld call bu ilt-in types

and type constructors, w ith im plicit declaration o f variables o f the d efin ed types (one variable per

relation type). A relational database language provides an ex p ressio n su b -lan gu age based on

relational ca lcu lus or relational algebra, together w ith im perative constructs to express changes o f

state. Sem antic m od els such as R M /T differ from the basic relational m od el in that they offer a

slightly w ider range o f type constructors.

T he trend in program m ing towards separating the definition o f the perm issib le operations on a data

structure from the actual representation details o f the structure has n o im m ediate parallel in the

relational m od el and its sem antic ex ten sion s. It is proposed here that techn iques for sp ecify in g

abstract data types d evelop ed in the w orld o f program m ing can find u se in the database world in

form u latin g the requ irem en ts on a database prior to d ev is in g a sch em a to s a tis fy those

requirements.

References

(A N SI 1985)

X 3H 2 (Am erican National Standards Database Com m ittee)

Am erican National Standard Database Language SQ L

W orking Draft D o c X 3 H 2 -8 5 -1 , A N SI, January 1985

(C odd 1979)

E F C o d d

Extending the database relational m odel to capture m ore meaning

A C M Trans. Database S ys t . 4 , D ecem b er 1979, pp. 397-434 .

124

(Codd 1980)

E F C o d d

Data m odels in database m anagem ent

Proc. W orkshop on Data Abstraction, Databases and Conceptual M odelling

A C M , June 1 9 8 0 , p p l 12-114

(Date 1986)

C J D ate

An Introduction to Database S ystem s, V ol. 1

A ddison W e s le y , 4th Edition, 1 9 8 6

1 2 5

HINGE

S C R E W

-*aazJ
Mounting

Pivot

Figure 1. A door and its parts

1985-ben m e g j e l e n t e k :

166/1985 Radó Péter: Információs rendszerek számitógépes
tervezése

167/1985 Studies in Applied Stochastic Programming I.
Szerkesztette: Prékopa András /utánnyomás/

168/1985 Böszörményi László - Kovács László - Martos
Balázs - Szabó Miklós: LILIPUTH

169/1985 Horváth Mátyás: Alkatrészgyártási folyamatok
automatizált tervezése

170/1985 Márkus Gábor: Algoritmus mátrix alapú logaritmus
kiszámitására kriptográfiai alkalmazásokkal

171/1985 Tamás Várady: Integration of free-form surfaces
into a volumetric modeller

172/1985 Reviczky János: A számitógépes grafika terület
kitöltő algoritmusai

173/1985 Kacsukné Bruckner Livia: Mozgáspálya generálás
bonyolult geometriáju felületek 2 1/2D-S NC meg
munkálásához

174/1985 Bolla Marianna: Mátrixok spektrálfelbontásának és
szinguláris felbontásának módszerei

175/1985 Hannák László, Radó Péter: Adatmodellek,
adatbázis-filozófiák

176/1985 Számitógépes képfeldolgozási és alakfelismerési
kutatók találkozója.
Szerkesztette: Csetverikov Dmitirj,

Főglein János és Solt Péter

177/1985 Gyárfás András: Problems from the world surrounding
perfect graphs

178/1985 PUBLIKÁCIÓK' 84
Szerkesztette: Petróczy Judit

1986-ban e dd i g m e g j e l e n t e k :

179/1986 Terlaky Tamás: Egy véges criss-cross módszer és
alkalmazásai

180/1986 >✓K.N. Cimev: Separable sets of arguments of functions

181/1986 Renner Gábor: Kör approximációja a számitógépes
geometriai tervezésben

182/1986 Proceedings of the Joint Bulgarian-Hungarian Workshop
on "Mathematical Cybernetics and Data Processing"
Scientific Station of Sofia University, Giulecica
/Bulgaria/, May 6-10, 1985 /Editors: J. Denev, B. Uhrin
Vol I

183/1986 Proceedings of the Joint Bulgarian-Hungarian Workshop
on "Mathematical Cybernetics and Data Processing"
Scientific Station of Sofia University, Giulecica
/Bulgaria/, May 6-10, 1985 /Editors: J. Denev, B. Uhrin/
Vol II

184/1986 HO THUAN: Contribution to the theory of relational
databases

185/1986 Proceedings of the 4th International Meeting of Young
Computer Scientists IMICS'86 /Smolenice, 1986/
/Editors: J. Demetrovics, J. Kelemen/

186/1986 PUBLIKÁCIÓK - PUBLICATIONS 1985
Szerkesztette: Petróczy Judit

Készült az Országos Széchényi Könyvtár Sokszorosító
üzemében,Budapest .Felelős vezető: Rosta Lajosné
Példány szám: 320
Terjedelem: 16 A/3 iv
Munkaszám: 86 301

	Tartalom
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������

