anu manyO '@ 139/1983.

TA Szémitastechnikai és Automatizalasi Kutato Intézet Budapest

MAGYAR TUDOMANYOS AKADEMIA
SZAMITASTECHNIKAI ES AUTOMATIZALASI KUTATO INTEZETE

OPERACI0S RENDSZEREK ELMELETE
/. VISEGRADI TELI ISKOLA
1982

/TH CONFERENCE ON OPERATING SYSTEMS,
VISEGRAD

Tanulménvok 133/1983

Szerkesztdbizottsag:

GERTLER JANOS (felelds szerkesztd)
DEMETROVICS JANOS (titkar)
ARATO MATYAS, BACH IVAN, GEHER ISTVAN,
GERGELY JOZSEF, KERESZTELY SANDOR, KNUTH ELOD,
KRAMLI ANDRAS, PREKOPA ANDRAS

Felel®s kiadd:

DR VAMOS TIBOR

MTA Szdmitdstechnikai é€s . utomatizdldsi Kutatd Intézete

MTA Szdmitdstudomdnyi Bizottsdga

Konferencia szervezd bizottsaga:

ARATO MATYAS (elndk)
KNUTH ELOD (titkAar)
VARGA LASZLO

ISBN 963 311 148 X
ISSN 0324-2951

CONTENT

Tarnay, K.: Modelling and Measuring the Communication
Protocols

Eberbach, E., Janicki, R.: A Note on Infinite Set of
Equations and Fixedpoint Semantics of Vectors
of Coroutines

Just, J.R.: Synchronization and Communication in
Distributed Computer Systems by Means of
Coroutines

Janicki, R.: On Concurrent Systems and Concurrency
Relations

Jomier, G.: An Overview of Systems Modelling and
Evaluation Tendencies

Adamy, L., Micsik, J.: Program Optimization on
Ryad-22 Computer

Proszynski, P.: Properties of Concurrent Systems
Hernadi, A.: Implementation of Abstract Types in PL/I

Czachorski, T.: A Software for Computer System
Performance Analysis - One More Effort

Piwowarski, M.: Data Base Performance in a Paging
Environment

Duda, A.: Performance Evaluation of Computing System
Subject to Failures

Kerékfy, P., Ruda, M.: Automatic Programming System
Development on User Level

page

13

27

43

73
85
95

111

123

135

147

4
- [
= N i -
-
R
= »
. -
) "
- -
1
r
Y
w B .
#=
. . % .
" - o~
N * -
- " I
- .
. -
' n
d4n - & J r a .' n

MODELLING AND MEASURING THE COMMUNICATION PROTOCOLS

dr.Katie Tarnay
Central Research Institute for Physics

Budapest, Hungary

Abstract

A protocol model for data link layer of OSI keference Model is
introduced and the reaction of the network on protocol behaviour
is analyzed. The basic model is extended, taking the extrinsic
effects of other nodes and the intrinsic effects of other layers
into consideration. Finally a test program and a protocol analyzer
are discussed.

1. INTRCDUCTION

A computer network realizes a cooperation between open systems!}]
A system is subdivided into layers. Entities exist at each layer.
Semantic and syntactic rules and formats determine the communica-
tion behaviour of entities. The efficiency of the network operation
depends on the protocol comstruction and on its elements. Our aim
is to analyze these interactions step by step. The first step is

a simplified analysis with some neglections. Two nodes are pick
out from the network, peer layers are chosen of these nodes and a
typical protocol of these peer layers is examined. The influence
of other nodes and traffic, just as the effect of other layers are
taken into account by estimated weighting factors. The second step
is the determination of weighting factors based on topology, traf-
fic and resource demand. These results characterize the extrinsic
effects. Our third step is to analyze the influence of other lay-
ers, i.e. the intrinsic effects.

Three network parameters: the throughput, the delay and the util-
ization of resources build the measures of network operation for
all three steps.

2. THE BASIC MODEL
2.1 Selection of model components

The basic model is used in the analysis according to the above
mentioned first step.The connection is characterized by a dialogue
between the selected layers of any node pairs. Our choise is the
data link layer, because this is better revealed than the higher
layers and its behaviour, functions and services are more common
with the others than those of the lower layer. The dialogue is
described by a protocol. Many protocols exist in the data link lay-
er, in our model the HDLC[2] is applied according to the Recommen-
dation of Reference Model.

2.2 The protocol model
The HDLC protocol contains a basic repertoire of commands and re-

sponses, moreover optional functions. Our analysis is restricted
to the basic repertoire, its elements can be seen in Table 1.

Commands Responses
Information I I
Supervisory RR RE
RNR RNR
Unnumbered S==M R, -
DISC UA
DM

Table 1. Basic repertoire of the HDLC

The interpretation of the undetermined characters / S--M,---R /
depends on the operation mode.

The dialogue fulfilling the rules and formats of LEDLC is gene-

rated according to the formal grammar introduced by J.Harangozé
(37.

The first grammar is
G=(qu,VT,P,S)

where VN means the non-terminals

VT means the terminals

2 is the production rule

S is the start symbol
The VT terminal is a set of primary and secondary commands and
responses

The primary messages are
Vpq=(I,5--M,RR,RNR)
The secondary messages are
Vpo= (I,---R,RR,RNR)
Table 2. shows the basic production rules. The first grammar is

the simplest one, the others contain time relations and error
generation, too.

Terminal symbols
Non-terminals
snrm disc i rr rar uwa cmdr i rr rnr
S A - - - - - - - - -
A A - - - - B C L I L
B A G D E F B - - - -
C A G - = - - C - - -
D - - D E F L ¢C H J K
E - - D E - L C H J K
F - - D - F L C M J K
G - G - i @ C L 1L L
H A G D E F - - B 4 K
J A G D E F - - H J -
K A G N B F - - H - K
L A G - - - L L L L L
M A G D E F - - M M M
N - - N N N L C H J K

Table 2. Productions for grammar G

2.3 Dialogue generation

Estimated weighting factors belong to the commands and responses.
The estimation is based on experimental data. The elements of the
dialogue are generated by the grammar generator G and follow each
other according to the possible conversation. The frequency of
different frames depends on their weighting factors. The results
yield the throughput.

The throughput is

where
NI is the number of information frames

Ne is the number of control frames

WI is the weighting factor of information frames
WC is the weighting factor of control frames

-~ 1s the sequence error of information franmes

S

is the sequence error of control frames

Two other errors can be built in the basic model: link and node
errors.

3 .EXTENDED MODELS

3.1 Extrinsic effects

The activation of nodes and the proportion of information and
control frames depend on extrinsic effects. These are the follow-

ing:

topology

deterministic parameters related to topology

stocnastic parameters related to topology
traffic

The topology can be static /one-, two-, three-dimensional or hiper-
cube/ or dynamic. The nodes are active switches in the case of dy-
namic topology and the links are reconfigurable.

The topology is described by a channel matrix M characterizing the
corresponding channel and node pairs. The connectivity-, incidency-
and adjacency-matrices can be determined from the channel matrix.
The weighting factor of the control frames is a function of the
channel matrix, requirement matrix and routing table belonging to
the shortest path:

W= f(M,R,RT)

.lo.

3.2 Intrinsic effects

The intrinsic effects belong to the essential nature of the com-
munication protocols and form an integral part of the information.
Every information frame contains the information and control frames
of higher level protocols. Among the intrinsic effects the resource
allocation is of outstanding significance.The function of the re-
source sharing protocol within the information frame is the alloca-
tion of the resources according to the proper demand. The resource
table can be applied to determine the optimum of cost, time or hop
number., Thus the utilization of the resources is characterized by
the generated dialogue.

4. LESTING AND MEASUKING THE PROTOCOLS
4.1 Testing a protocol model

The comparator solution is selected from the protoccl testing meth-
ods. The essence of the method is the following [4 | . Arbitrary
message series are generated by means of a random generator, these
series form the input of a reference program prepared on the ground
of a verbal description on ocne hand, while that of the model to be
tested on the other hand.

ine compering analyeis of the reaction of the reference program

and the model is performed by & comparstor program at the output

of which the input and output series of the model as well as the
evaluating message obtained as the result of the comparison to

the reference, appears.

The advantage of the comparator solution is that it makes the auto-
mation of the checking process possible. The complexity of this
method is not sc much involved in ite structure as in the prepara-
tion of the reference program where all the restrictions and spe-
cifications referring to the syntactics and semantics of the pro-
tocol procedure in the verbal description should be taken into con-
sideration. '

w T1 s

4.2 A data- and protocol-analyzer

The analyzer allows for a direct monitoring of the data flow through
the remote data transmission line, on a display, it monitors and
counts, automatically, the important events of the physical line
and the logical data link. The user can follow the wide-spread
protocols by simple instructions and the special protocols in a
programmed mode.

The data- and protocol-znalyzer developed in the Central hkesearch
Institute for Physics is an appropriate tool to check the theoret-
ical analysis and tests mentioned above.

5. CONCLUSIONS

Our simplified model analyses the traffic between the peer layers
of two nodes and serves as a reference for the extended models.

The model comprising also the topologic characters gives a good
approximation of the weighting factors of the control frames. The
model completed with the upper layers supports a better utilization
of the resources. The complex model alloys the extrinsic and intrin-
sic effects and reveals the interactions between the frame classes
end the protccol overhead as well as between the formers ancé the
traffic.

REFEKENCES

@J Data processing - Open systems interconnection - Basic refer-
ence model
ISU/1LC 97/SCle D. 7498 March 31, 1981

[é} High Llevel Ueta lLink Control rrocedures
I8C 1254, 1255, 1256, 3309, 4335

J . Harangoz6: Formal language descripition of a communication

L=

: protocol

Report KFKI-1977-92, Budapest, Hungary
E@ M.Bohus private communication , Laboratory of Cybernetics Jé-
zaef Attila University, Szeged, Hungary

»

L IR =

A NOTE ON INFINITE SET OF EQUATIONS AND FIXEDPOINT
SEMANTICS OF VECTORS OF COROUTINES

Eugeniusz Eberbach x, Ryszard Janicki i

1,Introduction.

Proving properties of programs by means of fixpoints is
such 0ld as the theory of programming (see Blikle [3,4] , Be-
ki¢ [1), and many others)., The structure of a program is fre-
quently described by a finite set of equations, which can be
solved either directly from Kleene Theorem on approximation
or by means of the variable elimination method (see for exam-
ple [1,3,4,11]).

Unfortunately, not every program can be described by a fi=-
nite set of equations., For example, programs with recursive
coroutines require infinite sets of equations (see Janicki
61

This paper deals with a method of finding the least fix-
point for an infinite set of equavions,

The method is next applied to the description of the
fixedpoint semantics of vectors of PD-coroutines, Vectors of
PD-coroutines, introduced by Janicki [5,6], can be treated as
a mathematical model for a wide class of coroutine prograums,
The concept of coroutine vector is also useful to describe
some aspects of distributed computing systems (see Just [7,8)).

2.,Basic notions and results.

Let (U,4) be a complete lattice fixed for the rest of
this section, where JL1=N\U denotes the bottom element of the
lattice,

A set PcU 1is said to be directed if any finite subset
of P has an upper bound in P,

A function f£: U—U 1is said to be c—=continuous if for
any directed set PgU: f(UP)=U{£(p)/ peP}l.

Theorem 1, (Kleene 1)
If f£: U= U 1is c-continuous, then the least fixpoint ol £
exists and is equal to: _
: YW,
where: f£X)= £ (eoef (X) ees) i-times. W

- 14 -

For every function <£:U—U, its least fixpoint = if it exists
- will be denoted by the symbol WI£N,
Thus, fron "‘heorem 1 we have that for every c—continuous
function f: ||f|_Uf‘(.L)
Let UV denote the set of all functions from U to Ue Let £
be the relation in UV defined as follows:

(VE ,FetY) EKHR S (Vxel) EREICERRX.
Note that (UY,€) is also a complete lattice, where L=NUY
is the function defined by: (VxeU) JLEX)=1.
Let Xy4X,yeee Dbe an infinite sequence of elements of U,
liow, we recall the following well known notions (see for
exapple [10]) :

13
> 00
lim inf x_h kbx», .
l")m b ¥ k
Since (U,¢) is a cowplete latticc then elements E_i_.):go Sup X
and 1im inf x; exist for any sequence X, ,4Xggeee o
i i—>00
Of course lim inf x; C llm SUD X e
L"’ﬁ)
i l:.m inf x;= lim sup k then we shall write 1_1)1;3u Xy, @nd
L0 L
the eloment x = lim xy will be called the convergence of
L=>00

the secuence x4 3Xngeee o
Let N denote the set of numbers {1,2,3,¢00te
Lemna 2,
et X,4%yyeee Dbe a sequence of elements from U, such that:
(Vi,je N) (Ik e V) i<k & jgk & xu XXy .
Then: w
e =U =
Coroﬁé?;y 3, .
Let x,,Xp9e0s Dbe a sequence of elements Irom U, such that:
RE RTINS Ry

N

PHes

- o0

..L;'l;min = _Lqu; . B

L= = - - X 9 . .
Iet V oe a set, ané let (U,{) be a complete lattice with
the property: U & 2V s S 2

In this case it can be proved that (compare [10]), the S€=
quence 0f sets X, ,X,jes0 eEv is convergent to llm 1 Xy if
and only if the sequence of characteristic iunctlons of those
sets is convergent, in the usual sense of the mathematical

= 15 o

analysis, to the characteristic function of the set %im Xye

00
This fact allows frequently us to count &}g for sets by
means of the same methods as for real numbers,

3e.Directed approximations of functions.,

Let FeUY be a c-continuous function, and let
{F;,Ei,...} c 0¥ be a sequence of c~-continuous funchions.
The sequence {F, ,F,,...} is called a directed approximation
of ¥ ifts

a) (Vi,j%oN)(SkeN) i€k & jgk & IV F L F,
b) F=1 0
Theorenm 4, e

For every c=continuous function ¥, and every its directed
approximation {F, ,F, yeee} :
ie =0 Nl .m
Corollary 5, bt
For every c-continuous function F, and every its directed

approximation {F, ,F,,...} ¢
Pl = lim (RPN .W
Directed approx{agﬁions have rather theoretical sense,
For our purposes, special kinds of directed approximations =~
called nondecreasing approximations, are more useful,

4 ,Nondecreasing approximations of functions.,
et FeUY be a c-continuous function, and let

LE B yeeed € UV ve a sequence of c-continuous functions,

The sequence {¥, ,F,,...} is called a nondecreasing aporoxi-
mation of F iffs

b) F
Corollary 6,
For every c=continuous function F, every nondecreasing appro=-
ximation of F is a directed approximation of F. ®
Corollary 7,

For every c-continuous function ¥, and every its nondecrea-
sing approximation {F, ;Fp,ess} @

IFl= 1im NF) . w
The above corng;ry describes a method of finding of the

a) FQQF g--oéFkgooo [}

= HGe-

least fixpoint of a c-continuous function F, Namely, one
should find such nondecreasing approximation of the function
F, that for every i the least fixpoint of F can be described,
in a simple way, as a function of i,
Cther words, we must find such nondecreasing approximation
{F, yFyyeeef, and such function x:N— UV that:

1 ()= By 4

24 x(i) is defined as an evident parameter of i,
Then, in order to find WF| it is enough to count lim x(i).
an application of this method will be shevn in furégg;
sections,

Heinfinite sets ol equations.
Let (U,4) Dbe a complete lattice.

Define U%®= UXUX ... o
Let £ be a relation on U® defined as follows:
(Va=(ay485900e)y b={by,by,eea) € U®) agb & 2 by for
I=ls256me &
Note that (U%, £) is also a complete lattice, and, since all
results from previous sections hold for any complete lattice,
then they hold also for the lattice (U® ,4).
Consicer the following infinite set of equations:

%y = Ly (ZyeZyy nen)

X9 = I, (.X4 1Xngees)

%q = Eg (R 4% s 00's)
where: f;:U®—U for i=1,2,... are c-continuous functions,
Of course, this set of equations can be written as one infi-
nite "vectorial" equation:

x = F(x) ,
where fle“%—aU is a c=continuous function, x =(x4,x1,..3,
F(x)= (£,(x) (XY y00e)e
Now, we fix the equation x = F(x) <for the rest of this
section,
let 1i,,1,4ess Dbe an infinite sequence of natural numbers
with the following property:
1y & goan £ L ues »

- 17 -

For every k=1,2,..4 , let B, :U®—>U® be the following

functions (Y xe U®) B (X)=(£4(2) 9L (X) y0ea)
where:
(V X =(X4 1 X9 HHX'\,koxikﬂwﬂ) eU®) (YieN)
i’;l(x,‘,...,x;.k,__,_l_,...\ i & %,
fik(x) =
e > 5 TN

Thus, the cquation x = F,(x) written ac the set ol cqua-
tions, is the following:

%i = By 1% ""’X"k"\' . TL

Xy = fl(x«,...,}:lk,j_,_[_,...)

® 5 o o o s 8 8 s 8 s 2 e o @

X{, = fi’k(x“'”’x."k"\"l gii@)

Xiwed= L

Xi,k't'l.z A

Lemma &,
For every c—continuous function F:U®—U®, for any
increasing sequence of natural numbers 1i,,ig,.ss , the set
of functions A{F, ,F,,..0) delined by the zbove procedure is
a nondecrcasing approximation of F, and WFl=]E'E’L’Lol\b‘k\\ - B
Consider the equation x = T (x).
Let Fk'JLk—’U"k be the function of the f{orm:
(Vx el ¥ ()= (qu(X)y---,kak(X” ;
where: (VYi=1,...y1y) ka(X4 vesesXy) = I (¥ R s o Bws)
llote that in many cases the equation X = } « (X) can be
solved by the method of variable elimination (see [_1 29454,
11]) »
Leoma 9,
Por every k=1,25¢00 \\Fk_\a,‘,a,_,...,dlk,]_ L J——.
where (8, ,85,000,8() = IEN . m
For every 1i=1,2,.4. 4 let Wf{\ denote the ith coordinate of
NEN, W) denote the ith coorginate of WP\, and let "f’i,k“
denote the ith coordinate of |F.| .
Lemma 10,
Foxr every 1=1,2;%e¢0 ¢ N

Neh = Lio WEp N = lin HEl - W
From the abovéﬁc%nsiderat‘:(i%?x it follows a method of a solu-

- AR

tion (in the sense of the least fixpoint) of the infinite set
of equations, Namely, one shkould Tind such an approximation
by finite sets of equations {X_F(x\ ,x_lv,)_(x),... and so on},
that every l|ka|\ can easily be presented as a certain
function of the parameter k, Then |£fi| is simply the conver-
gence of “:’E'L\(“ for k-3« . This convergence can frequently
be counted by means of methods similar to those, which are
used in the classical mathematical analysis,

Note also that in many cases, the knowledge about the whole
vector |F| is not needed, and we are only interested in

a finite subset of coordinates of IFl.

Usually we are only interested in the form of the first
coordination, i.e. I£,l . This problem will be also conside-
red in the last section of the paper.

6eVectors of coroutines.
Vectors of coroutines introduced by Janicki L5,6] can be
regarded as mathematical models of programs with coroutines.

A vector of coroutines is a set of components, each component
is an algebraic object like the Mazurkiewicz algorithm [3,4]
with a mechanism which makes an interaction possible.
Vectors of coroutines are adequate models for programs with
the fixed in advance the number of components., In the case of
Simula language, it is equivalent to fix in advance the num=
ber of copies of classes representing coroutines,

By a net (Blikle net) we mecan an algebras
Net= (U,{ 40 41, €), where (U,{) 4is a complete lattice
with | asc the least element, (U,e,e,1) is a monoid with
zero L, unit e; and with composition o , The operation of
composition ¢ is c-conbinuous and additive (in the sense
that ao(bwv c)= acb v aec).
Basic examples of nets are the net of languages and the net
of binary relations.
By a net of binary relations over a set X we mean the
algebra (2x"x s Cso ;0,id), where ¢ is composition of re-
lationg, and 1id 1is the identity relation,
By a net of l__f'ueyzec over an alphsbet 3 we mean the

algebra 2E* ¢ s S ,0,0,7€}), where ¢ is concatenation of

w 19

languages, and £ 1is an empty word.

Let Net=(U, {,o,L,e) be an arbitrary net,

By a vector of PD-coroutines over Net we mean any system
C = (L5484 sene3ln)s

wheres
i, is an integer (14i,{ n), and iy is called the
number of initial coroutine,
Ay for i=1,2,.ss,n are triples (called gcomponents):
Ay =(W ,Gi,B) o where
V, is an alphabet (of control symbols of 43),
6,eVi » 2nd G is called the initial symbol of Yy
P; 1is a finite subset of the set:
({i}x{’l,...,n})x (V‘_X VL*)XU .
Instead of ((i,J), (a,v),2)e P, we shall write (i=>j,a—dv,r).
The set P; is called the set of instructions of Ay,
Define VS = {1,s0s,n}x V¥x...x V¥ . This set is called the
set of control states of C,
Each triple (i—j,a—v,r) defines the relation
T (i—=j,a>v,r)e VSx V8 in the following way:
(V¥ x= (19 yosesy)y ¥= (3w, v--uwh‘e Vs) (x,9)e T (i~ J,a—rv,T)
& [(Fwe v¥) ui=aw & wy=vw and uw=w for k=1,...,i=1,
e P
Other words, if (x,y)e T(iwj,a—Vv,r) and
X =(1y0)p000yl 98WyUiyy seeeyly) then
J = (fj,uqaunui.pvwvul“ yeeesln)o
Let VI C VS be a set such that (i,u,,ee0yuy)e VI & uj=€ .
The set VT is called the set of all terminal control states.
Let P = ,LQAP; ’ '
Consider a finite sequence of elements of ©P.:
(L4~ 3y 934=V, 1T)s o ooy (Ly—dyms8y—>Vp s Tyy) Such that exists
a sequence of control states (i.e. elements of VS): Iy veeerdng
with the following properties:
(1) (VeELm) (3, 2 Ti4q) € T(ikﬁjk 92,V 9Ty)
(2) Fpq€ VT
Each such a sequence of instructions (elements of Pc) can be
considered as one particular run of the vector of corouti-

nes C,
The. corresponding sequence of actions (i.e. the sequence

- 20 -

rq,...,rm) is called Yy —trace .
Elements of the sequence I, ,...,T, are actions that have
been periormed one after the other during the run,
The set of all y-traces will be denoted by Tr(y). -
et Tr(C)=\) {Tr(y)/ ye V81 , and let M:Tr(C)—U be
a mapping given by:
(V(zy s eeeymp)e Tr(C)) L(QXN'HQQ)=IPrﬁ"”r ;
Zach of y-traces produces its outcome, therefore the
finitistic outcome, of the whole set of y-traces will be the
joins Tail (3 =U {1 () / te (M} .
Note that Taily ((iy46,00096y)) defines the finitistic out-
come of the vector C,
Define Res.= Taily (1,46 404¢,00)) Of course Resce U,
The problem is, how to find Res; for a given vector C ?
Note that if Net is a net’ of binary relations then Res, is
a relation, and if Net is a net of languages then Res, is
a language. B
A vector C =(i,,4,,e00,4y) is sald to be a yector of FC-co-
routines iff:
(¥ 1) (i-j,a—>v,r)e P{ = v e ViuiF}.
Vectors of PD=coroutines describe properties of coroutine

programs Wwith monadic recursion, while vectors of FC-corouti-
nes describe properties of iterative coroutine piosrans,

wue fixedpoint semantics o vectors of FC-coroutines was
precisely described in [5], the fixedpoint semantics of
vectors of PD=coroutines will be described in the next
section,.

It turns out that properties of vectors of FC-coroutines can
be described by a finite sets of equations, while vectors of
ID=coroutines require infinite sets of equations.

7 Fixedpoint sewmantics of vectors of PD-coroutines.,
Let C =(ig,4,,¢00y4,) be a given vector of FD-corouti-

nes.,

Note that card(VS)=e ; then elements of the set of control
states of the wvector of coroutines can be numbered by natural
numbers,

Let Y:N— VS be a one-to-one mapping such that Y[{N)= VS,

= D =

and Y(1‘=(i0,64 ,000961‘) 3 where N ={l] ,2'3,000}0

The function Y will be called a numeration of VS,

Let R:VSX VS~—U, Q:V8S—U be the following functions:
r (1,2 -v,0)eB) (x,3e

(Vx,7e VS) R(x,) = € T(i—=j,a~>v,T)
L otherwise .,
e xe Vd,
(VY xe vs) Q(x)=
- xqg VT,

Consider the following infinite set of equations:
X, = 5'343(»0(13 WP (e xp v QPO
%y = BROPO P i v Q(PE)
Every set of equations of the above form will be called
a canonical set of eguations for the vector C,
Note that all canonical sets of equations for a given vector
C, are the same with exactitude to the function Y.
Every canonical set of equations will be written of the Zorm

of vectorial equation:
X=Tcy (®) »

Lemma 11,

Let C Dbe a vector of cD=coroutines over the net

(U, yo y1,e), and let ¥ be & numeration of VS,

Then the function Feyp :U®—U® defined as the right side

of the canonical set of equations, is c-continuous., W

From Lemma 11 it follows that IIFC‘,,\\ always exists,

Let £l denote the ith coordinate of WEFcyll .

Theorem 12,

Let C be a vector of PD=-coroutines, and let Y be a numera-

tion of VS, .

Then: (Y ie N) Tail(P(i) =1 £ . w

Corollary 13,

For every vector of PD-coroutines C, and every numeration ¥:
Resc = “fd\ . B

Now we introduce the notion of natural numeration of VS, and

we shall show how to find some W£{\ for a given vector of
FD=coroutines,
Let C =(ip,4,5000,4Ay) be a fixed vector of PD-coroutines,

e DD -

Now, we must introduce a new kind of relations,
For every k=1,25+00 , let T(k)QVSXVS be the following
relation: (i,Uyyeeeyly) D (5,0, yeeesmy) & there is
a sequence of elements of E ¢ SQ =(LJ 48V, yTy) yeeo,
(1~ Jpea;? Vs Ty) Such that:
To (8ol juneginm TilyonaTnldsMy soansind 5
where Tg = T(ig=yjz,a;~>vy,rg) for & =1,2,,.4,m ,
2, for every pe P, at most k elements of SQ is equal to
Po
For every k=1,2,e0¢ 5, let VSy denote the following set of
control states:
VS, ={(1suyyeeesin)eVs /(14,6 ,...,5,,)&*”" . 30 TP T
Note that VS, g VS G ...& VS.
Lemma 14,
vs=U VS, . m
Define ikk==4 card (VS,). Of course 1, 1;<¢ ees »
Let Y :N-—VS be such a numeration that:
(¢ k=1,25e00) Y (Ve) = {1y2)s000d)s
Every numeration with the above property will be called
natural,
The construction of a natural numeration is the following,
For every k=1,2,e00 5 let Y1 {1, +15000,41} = V5 = V5,
be a one=to=one function,
Since card (V8, - VS ;)= card(VS,) - card(VS, 4= ix = i, ,=
= card({ik_4 +1y00051y}) , then such a function always exists,
Let Y:N—N be the following functions:
(Vie N) VY (i)= k , where k is such number that i, (ii,.
Define Y :N—VS in the following way:
(VieN) Y(i)= Y’\Y(U(i) .
Note that Y is a natural numeration of VS,
Let Y be a fixed natural numeration of VS,
In order to preserve the nocation from section 5, we put
ch = F, So the canonical set of equations for the wvector C
and a natural numeration ¥ , is of the form:
x=F3 .
Consider the sequence of finite sets of equations:
X = ﬁ (X)y X = 'E\"z(gg‘;gn. defined on the basis of X = F(X)
by the procedure from section 5, where the sequence i“ivo.w

- D =

is defined by theNequality i, = card (VS,).
Note that every F,(xX) 1is defined precisely, so if we can
present W|F)0| as an evident runction of the parameter Xk,
then we can solve the equation x = F(X), because:
(V i=1,2,000) M2l = 1im N L0 (we remind that |F| =
= (WEd 5 Dl ,...\,\\'ﬁk\\‘—?mfm\,...,lli"hkkl\) - see section 5).
In order to illustrate the above algorithm, we consider the
following example.
Example
Let C = (1,B,,B,) be a vector of PD-coroutines over the
net (U, ,° 41 ,e), where the symbol o will be omitted,
{xy 92, 4Ty 974984 9509841 € U , ands
By, = ({64 131989 98303E}y 6,9 F))
Py ={_(’i—-)’],64--)g,r4), (1=+1,6, 6,2, srz\, (1—-1,8, "'"”39.91‘3) ’
(1->2,8,~%a,,6) , (1=31,2,~2€, 1)} ,
By =({67_ s b, 1b.l sEY 967_9}?1) ’
Py, ={(2-+2,6, ~»€,5,), (2=2,6, =3 ,s,), (21,1, =61, ,e) ,
(2=>2,by—r€,5,)}
where €& = the empty symbol,
In order to make our considerations more intuitive, instead
of X; we shall write X(P(d), i.e, instead of X, we shall
write X(1,6,,6,) and so on,
A canonical set of equations defined for C Dby the zbove
algorithm is the following:
r r— r;,t {X (1 964 96-7) =I'4X(/] & 161) v -‘-’"7_:; (1 a64 3y ’67)
X(y¢e ’67) =8
X (1,88, ,6,) =1, X (1,8 ,0,) v r,X(1,6, a, 2 165,)
X(1249 69) =I‘3X (1 vaq_,67)
k=2 < X (1,84,6,) =X (2,a3,61)
X (2y84,6,) =5, X(2,8,,€) v sQX(2,a3,b4)
X (B,ag, £) =e
X(2,a4,b) =X (1,8,,6,b,)
X (158458, b)) =14X (158, 6,D,)
. X, e 40,0, ==
X(964)8y !69) =Ty X(1 9348y 987) \Y I‘,lX (1 164 248484 952)
X(1ya42, 40y =I'3X(19258y 46,)
X(1y2934,6,) =X(2,2,3,,6,)
X (2,243 ,6,)=5,X(2,2,8, ,8) v 5,X(2,2,8, ,b,)

- D

X(2ya42, ,£)=e

X (248384 40y =X (1,848 46, b))

X (143928, ,6,b,) =1,X (1,2, ,621)7_)
Z (153, 46, by) =2, X (1,89,6,b,)

X (158446, b,) =X (2421446, b))

X (2,24,8, b)) =5,X(2,8440,) v 5,X(2,8,,b,by)
X (2485,D)) =8,%X (2,8, ,€)

X (2,a4,8) =€

X(2y84,0yb,) =X (1484,0, by by)

X (1524,6, byb,) =X (1,€,6,b, b))
_ X(1,€,6,b,b,) =e

£ (1964343,\34 169):' L

k=3 <

ks4<

® L] ° L L 3 L L a L] L .

After a solution the part of equatlons for k=3 we receive:
\h,‘,,,\\ =X (1,9, ,6,) _61'21'4(1'3 zr,‘\ v U UJ:-1 (rgs r,'\ 4 254 s"s’"" .
n=0

n=im=4
»Jc can prove by .knauctlon on k that for every ks

I gl =X (1,64,6,) = Urzr,\(rs 2T v U U< (raszr«‘ PO
A med

m=0
In the final step ve count llm \\f,‘k\\ , and we obtain:

A
e =x(1,8,,9,) = U ryo4(rysy T \ v U U & r1(r352*4\ TyS Sy s
then: P

Res, = T8il(1,%,,0)= Ur,_ Iy S 1) VG y’;‘l T2y 8, 2 ‘-%"4 st

Mn=q M=

Janicki [5,6) hes proved (using different method) that the
above result is reelly Res. of this vector of coroutines.
In this way we have counted X(1,6,,6,)s Other variables of
the equation x = F(X) can be calculated in the similar way.

References

[1] Bekié H.,Definable operations in general algebras and the
theory of automata and flowcharts (manuscript),
IBM Laboratory,Vienna 196G.

[2] Blikle A.,Equational lanpuages,Information and Control,
21 (1972) yppe134-147.

[3] Blikle }x.,An analysis of prograwms by algebraic wmeans,In:

(4]
[5]
L6l

L7

[8]

(9]

10}
g

- 25 =
A Mazurkiewicz,Z,Pawlak (ed,) ,Mathematical
Foundations of Computer Science,Banach Center
Publ,,vol.2,PWN,Warsaw,1977,0p«167=214,

Blikle A.,An extended approach to mathematical analysis

of programs,CC PAS Reports,169,1974.

Janicki R,,Results of the theory of wvectors of coroutinesg,
ICS PAS Reports,379,1979.

Janicki R.,Analysis of vectors of coroutines by means of
components,In: L,Budach (ed.),Fundamentals of
Computation Theory,Math, Research,Band 2,
Akademie=Verlag,Berlin,1979,pp.207=213,

Just J.R,,4An algebraic model of distributed computer

systems,Proc, of the 5th Conference on the
Theory of Operating Systems,Tanulmanyok 100/
1979,Budapest 1979, pp«311=323,

Just J.R.,Synthesis and analysis of distributed computer
systems by algebraic methods,Ph.D, Thesis,
Institute of Comp., Scie,Warsaw Technical Uni-

versity,Warsaw,198C,

Kleene S.Cey,Introduction to methamathematics,New York,

1952,
Kuratowski K,,Mostowski A.,Set Theory,Nord Holland Publ,
Comp.,1967,Ansterdam,
Leszczytowski J.,A theorem on resolving equations in the
space of languages,Bull, Acad. Polon.
Sci,,Ser, Sci, Math., Astronom. Phys.
19 (1971) ,pp.967-970.

Institute of Computer Science,Warsaw Tcchnical University,

ul, Nowowiejska 15/19, 00-665 Warszawa/Poland

Institute of Mathematics, Warsaw Technical University,

Pl. Jednosci Robotniczej 1, 00-661 Warszawa/Poland

~—

= &0 =

SYNCHRONIZATION AND COMMUNICATION IN DISTRIBUTED COMPUTER

SYSTEMS BY MEANS OF COROUTINES.,
Jan Rudolf Just
Poland

1. Introduction.

The main subject of the paper are problems of the communi-
cation and the synchronization in distributed computer systems.

Since virtual distribution is realized through software
support, the communication mechanism provided to realize the
interaction between the different system components may be adop-
ted to particular requirements. As a consequence, this mechanism
varies considerably from one system to another. Certain primiti-
ves for interprocess communication have been incorporated into
system programming language. Since they are effective and deter-
mine the order in which the actions of the system may be execu-
ted, we call such an primitives a synchronization mechanism.

The imortant concept is coroutine.

The concept of coroutines has been known for a long time
since it was firstly introduced by Conway 1) . Coroutines
essentially differ from subroutines in their calling relation=
ghip. Whereas a subroutine is call and return to the point of
call in the calling routine after having completed its task,

a coroutines may swap / sequencing / control to another one,

it is left with the current program position marked as its
activation point for a subsequent entry. Only at its first
activation is a coroutine entered at its head; any later exchan-
ge of control enteres its body at the resumptive activation

point of the previous activation.

To gain a theotetical understanding of distributed systems,
it is necessary to find mathematical models which reflect the
essential feature of these systems while abstracting away irre-
levant details. Such models allows problem to be stated preci=
sely and make them amenable to mathematical analysis.

In papers [8,9] it has been introduced a mathematical model
of distributed computer systems and a mathematical model of
their input/output behavior.

= 98

Our description of a distributed system include coroutine mecha-
nism, in order to process communication and synchronization.

Formally, our model is based on the notion of so called
vector of coroutines. This notion has been introduced by Janicki
{5] s, in order to describe the semantics of programs with corou-
tines.

The main subject of naper beining presented is the problem
of the synthesis of processes in distributed systems / DS /.
The synthesis of processes in DS problem solution will be a
distribution of processes in the system - an allocation of actio-
ns to particular processors -, and a synchronization of their
actions and a design of their communication mechanism, such
that the execution of these processes will be feasible in requ-
ired manner. -

In our approach communication and synchronization are
accomplished through the input and output constructs.

2. The model.
In this chapter basic facts, usefull for the problem exa-
mined, below will be presented. For more details the reader

is advised to refer to {8] .

For every n=1,2,... , let {n]

alphabet Z let 3'= 5 u{ty where ¢ denotes an empty word,
~F_

T szl =3">

i=0 = z =2 & -
The remaining notations are either standard or defined in sui=-

i1,2,...,n3 . For every

table sections.
By a model of distributed computer systems we shall mean

3=tuple:
pcs =(s , MP, AL) , where:

S - a structure of a system,
MP - a set of processes in a system,
AL - a mapping AL:MP—>S.

2.1, Structure of DCS.
By a structure of DCS we mean a dirscted graph:
S=(N, ng LT) , where:
N - a set of nodes / stations of a computer net-

work,

R

nOGN - an initial node,

IT< N«N - a set of edges / transmission lines /.

Example 2.1.
Cx == =0
n, , 'ﬁj 7. 3
2.2. Processes in DCS.

A task realization in DCS is the result of the activity
of processes distributed in the system and connected asynchrono-
usly. During the task realization a user of the system creates
so called virtual network of processes.The virtual network of
processes consists of a set of logically connected processes.
Each of coprocess for a given virtual process is executed in
different pr-ocessor of DCS. ‘

In order to describe the set of processes in DCS we shall
introduce a mathematical object, called a matrix of coprocesses.
This object describes the algorithmic structure / semantics /
of DCS.

2.2.1., Matrix of coprocesses.
By a matrix of coprocesses we mean a system:
MP = {fl » Iy) » where:

= {Aijgié[m] ; Ige [mls[n] .
Je\n]
Aij - are coprocesses / see below Ls I0 - indicates the start
process.

Aij - a 4=-tuple which represent j-th coprocess in i-th process.
Aij = (-E:ij’ Vij, G 40 Pij) or Aij=(¢,¢,153,¢)
1/ ij - an alphabet / of action names symbols /,
2/ Vij - an alphabet / of control symbols of Aij £'s
3/ G}jevij - the start symbol of Aij’
4/ Pij - a finite subset of the set:
(i, YA mlan))«(Vev") * I .
This mean that Pij is a finite set of 4-tuples of the form:
(i»r,j—~s,a—b,R) , where:
1/ i-sr ¢ {1y« [m], 3/ a-—b Vv,
2/ §—>s e {3f«[n], 4/ ReIi.

Pj_:j is called the set of instructions of Ay

je

- 30 -

let P = 1\"1 3"1 By iy
BEach of instructions consists of four parts:
1/ i—er indicates the process which will be active after the
execution of the instruction / r-th process will be active /,
2/ j—»s indicates the number of coprocess which will be active
after execution of the instruction,
3/ a—=b indicates the way of execution of the component Aij’
This part of the instruction indicates the current and the
next point of Aij component,
4/ R 1is the "action" of that instruction. It is an action name.
R in respect to an abstract character, we shall mean as the
program, the part of the program or an activity of the operating
system.

Every matrix of coorocesses can be represented graphicaly
using graphs: I, -

= o ¢

to denote instructioms: (i—i,j-»j,a—b,R) ,(i-ﬁi,j-os,a-+b,R)
and (i-br j—»s a-vb ,R) respectively.

Put = _)1 ;]\)1 Z . The set =2 is called the set of action
names of MP, i -
Let ms =£x1 5X1Vi3 / X - a cartesian product /.
For each elementet &€ ms = X 1j§1 a; , Where: ie[m] jen]
eV,
iJ ij°

The set MS = [mWn]xms is called the set of control states
of the matrix MP.

Let co:[m]x|n] x ms ~—>iLq ju%V . be a function such that:

b (i;5,0) = aij

Each(i_ar,j-»s,a_gb,R) can be regarded as a relation in
the set Rel(MS) / where by Rel(X) we denote the set of
Rel(X)= {RIRQ.X*XS /, defined in the following way:
v, (i—=r,j>8,2 b,R)y,e{Ix, 4 m8) y1=(i,j¢&) » ¥p=(r,8,4)
and co (i,j,%)=4a , co(r,s,B)=D.

The set MT ={(i,jmx)eMS| co (i,j,o)=£] is called the set

of terminal control states of MP,
The set ST = MS*S = is called the set of states of MP.
Let Tr ¢ STxST be the relation defined by the equivalence:

- 31 -

(7401,) Tr(yz,uz)@ﬂﬂ(i-—?r,j —s,a—b,R)EP (4,¥p)eMS & uy=u R 1.
We put y, =(10,j0, d-o) , where:

G
Gy for Aij¥9

'3 for A1°=Q
/By © we denote of the empty coprocess of the form (@,8,{¢y,8) /
The control state Yo is called the start control state of MP.
Put: L(MP) = {WGZ*kﬂyeMT)(yo,g)Trﬂy,w)j 5

The language L(MP) is called the language generated by the
matrix of coprocesses MP. This language is interpreted as a
description of the semantics of the matrix MP. In our the model
the language L(MP) expresses the outcome of the virtual process.
Example?.2.1. Consider the system which consists of two proce-
sses such the first process consists of two coprocesses. Let
this system be represented by the below flowdiagram.
i el R

A |C b oad 1E ! e - the reactivation point

PP

CO(i,j,oLO)= i

of process,

0 -~ the reactivation point
of coprocess.
L It can be proved that:
; L MP =ABCD EF GB D EH .

_process 4\ precessZ

2.3, Allocation function AL.

The mapping AL is the third element of the DCS model. To
describe the vparticular system it is necessary to specify:
1/ how to allocate processes to processors,
2/ how to allocate communication lines between that processors.
It is svecified by the mapping AL. The mapping AL is a certain
homomorphism among structure of DCS - the graph S and the
graph of given virtual process.This means that the structure of
logical channels between components of the given virtual process,
must be adequate to the structure of connections between proce-

ssors of DCS.

3, Communication and synchronization in DCS.
Proving properties of the system of processes /in our the
model/ is proving properties of the language L(MP). Properties

L

of these lenguage can be analysed by means of fixt-point metho-
ds / see 18,9) /.The language L(MP) does not contain much info-
rmation about the structure of the matrix of coprocesses. If we
know this language only we do not know anything about the number
and the form of components. We do not know anything about of
the component / coprocesses / synchronization and the communica-
tion in the system. Now we define.a language which defines the
language L\MP) , the number of components, sublanguages defined
by components and contain an information about the communication
and synchronization in the system.

Note that every component can be interpreted as certain
right-linear grammar.
Let MP=(&,1I), where: H'=[Aijaie[m] s Ip€[m}{n] and

1V Eyr ¥ SaiePay
We deflne the following alphabets: T+ —{tjsu...,tlr m} {

)be a je\n matrix of coprocesses.

-~ -

T%==Tiu{t%§ ; Torw i,re[m},j,sem]
J J J o n 4 & m n e
Let also: Te Y YT, D= YT,
The set T in our model represents the set of transmission
actions names. For example t;:E-T denote the action of tran-~
smission from j-th coprocess of i~-th process to s-th coprocess
of r-th process.
Let T(MP) be the matrix of coprocesses defined as follows:
T(MP) = (.ﬂT,I) , where: ﬂT:lA‘fj“ié[m]) Ioc[m'_]x)_n]
jeLn
(_lju'r Vi goloi b K;j,Pfa)J Laf}d
)_(i ->r,j-»s,a—-b, Rt;r)‘(l—’r j—-s,a —»b,R)€eP, J&(l;érvj;és)&
u[(i—»r,g-»s a—b,R) |{d—r,j—s,a—d R)cP Y(;~r Rj=g)} v
oAli=>1,5=3, 6 6] o)1t (1,3)=I then i = t;o ,
elsewhere /1—5-} . .
The language L(T(MP) consists all necessary information
about the structure of the matrix of coprocesses.

Let hpt \Iv'l‘) 2
. A
(VAEIvT) hyh) = P ¢§ .

be the following homomorphism:

£
Corollary 1. L(MP) = hp(L(T(MP)) .
A component Aij of MP is called final if there exists such an

= 33 w

instruction (i-*r,j~*s,a-*boR)éPi that b=:- .
The set of all final components oé MP will be denoted by FINAL,

We restrict our attension to the matrix MP with the property
card (FINAL) =1, Por i=1,.eesm , J=lj3..0o , let G(Aij) be
a right linear grammar defined as follows:
4 i -

Glhsy) = (ZyyvTyVige 6350 Qy)
Qij= {a-»Rbl (ier,j-ﬁs,a—qb,R)rPij)’u .

ir. i " ‘3

ula»Rtjsb)\i—or,J-»s,a—»b,R)cPiJ) Rii# ¢ v j#s)j v

uta—?Rt‘;g | (i»7,j—8,a—b,R)ePy, R Ay € FINAL} .
Let LLG(Aij)) denotes the language generated by the grammar
G(Aij) . It can be prove, that if we know grammars G(Aij)
/ it's mean that we know the languages L(T\Aij)) / we can defi-
ne the language L(T(MP)) .

4., Synthesis of processes in distributed computer system.
From the point of view our paper the synthesis of processes
in DCS problem solution, will be a distribution of vrocesses

in the system - an allocation of actions to particular process-
ors, a synchronization of their actions and a design of their
communications mechanism, such that the e¢xecution of these
processes will be feasible in required manner.

To solve this problem in the formal way, we shall present
some properties of regular expressions and regular language.

4.1. Some properties of regular expressions and regular langua-
Ees. ,
In this section we recall some theory from [7]and |9] .
By the set of regular expressions over an alphabet J , REX(Z)
we shall mean the least set of terms which fulfils the following

conditions: 1. i"[f} < REX(Z)
2. (Vu e REX(¥)) u; (u)eREX(Y)
3. (Vuy,u e REX(2)) ugu, , uvu, ¢REX(Z).
For every the regular expression WR, let | WR| denote the regu-

lar language defined by WR.
Assume that symbols 2, 21,..., 2 denote alphabets and

~2
1. Z:: Z ucocc,\l‘zz

1
= ¥ S . =

¢
5. (Vk € [2]) I, # 6.

o B o

By a segment of a word w we mean any word u such that:
H v, ,v2) W=V, v, . By a factor of a regular expression WR.we
mean every maximal segment of WR which does not contain charac-
ters (, _), v and does not begin from the character »~ . Let fac
(WR)denote the set of all factors of the regular expression WR.
For example, if WR=ABCD((EFvGB) D)’EH then fac(WR)={ABCD,D,EF,
GB,EH].
Thus, every factor is a word over the alphabet Z ¥ i+3.
Let X be the alphabet defined in the following way:
T=5 v lA"] AeEB , where every two characters A, # written
of the form A* are treated as one symbol.
Let ue¢I" . The word u can unambiguously be represented
as the concatenation: u=u1...up, where for every h=1_',...,p ’
is a maximal segment consisting of symbols from ~*k only.
HE U Upeeelly is a decomposition of the word u of tBe form
described above, and for k=1,...,2 ¢ A 1 “lﬂ"“’ /\kk-1’
xkk+1""’)‘kz } i » =k§’1-/1- x » then let AMuye (2o)t
be the word defined in the following way:

Aa) =u, A u, A W - A u_.
1 k1k2 2 k2k3 p=1 kp_1kp o)
Let k,1&(p] , and let u have the decomposition as the above.

Then fkl(u) denotes the word defined as follows:

Uy

A{u) k,=k and kp=l
) Ay M) k,#k and k =1
£ u) = 1 ~ p
k1! 1‘A(u)Ak 4 k,=k and k #1
P
)\kk1 }\?umkpl k,#k and k #1.

Let WR be any regular expression over an alphabet X,

Note that there always exists a regular expression WR' with
the following properties:
1. |WR'[= |WR]|
20 WR‘ _ 1 q1n1" e o e qupp V& :thR’
where pkefac (WR’) s Q€ REX(Z) for K=1,46009De
Let NREX(J)= | WR'|WR¢ REX(Z)}, where WR' is an expression
of the form defined above by points 1,2.
For every k,l<[z], let H,, be the mapping of the form:

HklzNREX('i)-‘bREG\ZuJL)which acts under the rules described below.

= 95 -

Assume that WR'=q1p1 8 o qpppV5 , where psé:fac(WR)for
s=1,...,P. We replace each of factors pg I 8=1yesis D L By
fkl(ps) , and in every fragment q_ / 8=1,...,p / we replace
every factor u =fac(qg) by flan) . If k#l then we replace
the symbol = by Akl‘ The result of these transformations

equal t? H, (WR') .

For WR=q,p,v ... qupp we proceed analoguosly.

4.2. Synthesis of communicating coprocesses.
Problem of communicating coprocesses synthesis - from
the point of view of our model - is the problem of synthesis

of the matrix of coprocesses. It can be formally expressed
in the following way. The process given is in the form of
the regular language / regular expression / WR. Taking into
considerations a technical constrains as a result of impossi-
bility of the executiom some particular parts of the process
by & given processor we define the mapping AL. This mapping
creat the partition of an alphabet Z ,2?11, i’12,..., fmn. 2'})
for Z”u 2—12“‘ "‘szn = S and

V(i,3) » (rs8)e [m}n) (L,)#(E8) $ T 50 Z =0

For given the problem we should build a matrix of coproce-
sses which contains of mn components and generates the langua-
ge |WR| = L(MP) and the alphabet / of action symbols /
of (i, j)-th component is contain in :Zij’

Now we fix IO - number of an initial coprocess , IO=(iO,jO)
e[mlxn], and Ip =CiF,jF)c[m].x[n'_\ - number of the final
conrocess.

For i=1,2,..,m , j=1,2,...,n we define the family of process
synthesis transformations .

FPST= [PST)], ..., POTST, (0, BSTRD §

described on NREX(WR), such that:

ir | ir _
(vfpsq:js ¢EPSY) BSTy. = B .. (0. 5ynumiz,s)

where: num: [m)x|n| -=[mn] is defined in the following way:
num (i, j) =@d-1)m + j.
/ The transformation H was defined in section 4.1 /

ioip (wR) .

Define Gﬁ = PST
JodF

- 3G -

Note that every the regular expression is a word over the
alphabet J v {(i)y Oy ,53 . Thus, it can be an argument of the
homomorphism hgp / definrd in section 3 /, which effaces
characters belonging to T
From the formal language theory it is follows that:

(V82 £ 2)(VWR € REX (2)) | hg(WR)| = no(IWR]) .
Let {WR11,...,WR } be the set of regular expre581ons of
the following form: v numg1,j)~num(m n) WR .Q (WR) ,

where: .Q =(Tvr)-(Z,
Example 4. 2 i

For the regular expression WR=ABCD«EFUGB)D)EH and for the
partition of the alphabet Z= {4,B}v{c,D,c§v {E,H,F} |,
let O=(1 1) » Iz=(2,1) . In this case WR'= WR.

j‘/T) J

WR=ABt] 20Dt 1 (t12EFt] ut'] Gt 1 B) £ Dt) 1) t12DH
A={a,3,%}2,4125 , 21 ={c,n,6,431,32% , .22 ={(g,u,F,
sl (44F e130) o)82 1402 3
R12—CDt (Gt z)th1
21_(13%?]»2)?311

From the formal language theory it also follows that for
every WR ; 1= 1,...,m yJ=1,...,n we can build a right linear

~ .
grammar: j—(7 UTj, G_ij’Qij) such, that:
1. LG,) = |WR, ijl
i
2 Va—»Rbc“Qij R & 713 T3

Of course, the above construction is ambiguous, and for every
i=1,000,m , J=1,...,n if Wﬁij contains the character &then
there exists an infinite number of grammars which fulfils

such conditicns.

For a given regular expressicn WR,IO,IF and for given partition
of the alphabet 3 let GRAM denote the family of all sets of
grammars {G11,..., Gmna'

Let TAB be the following set of matrices of coprocesses

MP & TAB<D (3{C;;,Gyp0 00 0) Gy] ¢ CRAMG, (=(2, 0I5,V o, 57,0,)

and MP:(&910) 1‘£ - { ijﬁivfm] ’ o e [m]x) n]
Jeln]

- 37 -

= (2, 915,V 50 GgoPyy)

P, | (i—vi,j-—’j,a-——)b,R)l a--;Rb €q;; and ReZ; Fv

\/{(1—>r,j—+s,a—7b,a)l a—’t;)s béb’i;} and Dbée& [}

v{(i—=r,j 8,85, £)| a-ﬁ*?i € Q and (i,j) =(1F,JF)S-

Theorem. For every matrix of coprocesses MP= (R,IO)eTAB

Ha {AijBi~[m] " Ioc[m]{n] :
Jen
1, (Veij 6 {Gyq9e0esCp b cGRAM Gij=G(Aij) .

2. L(MP) = |WR| .
Example 4.2.3. / compare example 4.2.1. /. The matrix of
coprocesses for this example of system can be graphically
expresses by the graph from fig.2 . '

4.2.1. The grapf of the DCS transmmision.

Let’s obtain so called the graph of transmission GT’ for
a given matrix of coprocesses. The graph of transmmision will
represent the structure of logical connections between - allo-
cated to separate processors - interacted copracesses. Let

GTz ’LT) s Where: NT - the subset of nodes of DCS structure -
determined by mapping AL. LTﬁNT‘NT - the set of logical channels
between coprocesses of MP, Having the expression WR / see sec-
tion 4.2. / we can obtain the set Ly.

Let <X{x) be the function defined as follows:

(V xe™*) X(x) ={ te? | 3 u,vc-';‘*, utv=x5

Now we define the set of symbols t; €T / actions of transmi-

ssion / belongs to the expression WR. This set will be denoted

by TOCHZs. L0CHz = L(h R))
~ We shall present an example illustrating the construction
described above.

Example 4.2.1. For exprsssion WR was defined in Examp.4.2.1.
11 12 21
e B {t12 s Baq 8 Byq 2 By J s
Let N = ln1,...,n } Note that for a given matrix of coproces-
ses and a given allocatlon function AL we have:
(Vielm] , 3¢ln]) Ig = | (n;0,)eNgely| 3 tlr €10CHZ § .

Example 4.2.1.2. The graph of transmission for the matrix of
coprocesses from an Example 2.2.1. has the form:

= 38 -

The interconnection structure
of the graph GT must be adequate
to the interconection structure
of the graph S = the structure
of phisical connections between processors of the computer net-
work. There have to exists the isomorphism between the graph
GT and the graph S. This requirement isn’t satisfied in our
an example system / compare Ex. 2.1. and Ex. 4.2.1.2. /.

Thus, the matrix of coprocesses must be modified - we must

change both the communication and synchronization machanisms.

4.2.2. The adaptation of the matrix of coprocesses to the struc-

ture of the system.
The definition of the graph of transmission of DCS is based

on the expression WR. Now this expression must be modified,
such that the requirement of an isomorphism among graphs GT
and S will be satisfied. This modification will be discusses
below.

Every the régular expression WR is an element of the set
REX(E*vﬁ) . Let, for 1<i <m , 1sj €n T be the alpha-
bet § g

i 2.4 i, i i i
{t 9 1 1 ¥ Ry tj1 1j Dtj1j2] tj1jz,ooo,t.m-1 m’
J 32 J2 93 n-19n 191 142 Jydo

i £ i3 i 4 B i i
t%m‘1 L L e I UL SR I T ﬁ
Jp 33 dgdy 3434 dgutdy’ dpdy

such that:
(Vtigef)ﬂ((nnum (a,c)’ nnum(b,d))eNTxNT) and (a,c), (b,d)efm]s[n].
Let W be the set of any sequences:
num(i, j) ,numﬁi1,j1) ; num\i1,jz),... 5 num(ik,jl), num(r,s)
for (i,J),r,s)[m]n} such, that every pair:
(numLi,j) " num(i1,jﬂ) ,(num(@k,jl) 5 num(‘r,s)) and
(num(ip,jh) § num(ip+1,jh+1l) for p=1,.e.ok=1,h=1,.,.,1=-1 =
is an edge of the graph S.
The sequence num{i,]) , num(i1,jo,...,numtik,jl) num(r, s)
can be interpreted as the path from num\l j) to num (r,s) .
Define the manping yxg 2 IF»(T) in the fellowing way:

i
+1r = 11
(v (-T) ‘Hu(t jJ 2 00 tjls

- 39 =

Let ", :(Zu"?‘)’(Zo%)rbe the homomorphism defined as follows:
' {ﬁ(a) for aeT
Yala) » a elsewhere °

Now, the matrix of coprocesses should be build on the basis of
the expression Yﬁ(ﬁﬁ) = WR , instead of the expression WR.

As a result we obtain a matrix of coprocesses, which satisfies
isomorphism among GT and S , requirement.

Example 4.2.2.1. For our an example system we can obtain:

V(WR) =ABt] JCDt, ((t1?_t;fEth;t;}ut126t21B)t12 i t}% 12EH and
WR,, =ABt] (t]) e b t]; .

Ry, =cDty; ((tg? ;_1"“;})“21) t57

WR.,. —(Ethn)EH.

The modified matrix of covorocesses can be graphically expressed

The graph of transmission GT
has the form:

Ce——X% Q
2, h 2 3
Both graphs G / see above fig./

and graph S /see fig.1/ are
isomprphic.

'prvrc*ss 2 LorIC eSS 2 |

453 The virtual raph of transmission in DCS.
Let's obtain so called the virtual graph of transmission in

DCS. Varius properties of DCS can be expresses in terms of
virtual graph of transmission / abbr. VGT /, which characterize
all votential communications. For example, if VGT is a tree
then DCS obviously a deadlock is impossible.

In order to obtain this graph we use the expression WR. This
expression represents all possible behaviors of the system
/ all sequences of both processing actions and communicating
actions /.

First, we define the regular expression which represent the
virtual communication. This expression we denote by VC.

vC = h (WR)

Example 4.3.1. For WR defined in EX.4.2.2.1. VC has form:

. AG -

11 12 21,11 11 11 11t12

Ve=tytyy Lty 08578758540t pt5) sty) Bists,
This expression can be represented graphically by below graph:

Expressions described local graphs of communication /abbr. LGC/
- for particular coprocesses, we can obtain by following way:

V(ieim] ,je[n]) LGCij = hzij(WRij) "
Example 4.3.2., For our an example system:
LGC1 =% 11 11;%11
| At
12 11 L TINe A2 11 % 7N, %
Tt (t21 21V%21/ Ty itn ,,OI i Oz
16C, ==(t o t,,@/ £, (M B 8L,
and granhically: " tﬁ lfu 2!
y :
L&C, L6&C,

5. Final comment.
Treating distributed systems as the superposition of sequen-

tial subsystems is, not only to author’s mind, the natural way
of analysis and synthesis of those systems. This paper is an ~
attempt to formal approach to this problem. Similar problems,
but from a different point of view are considered in Hennesy,
Plotkin [3] , Francez,Hoare, Lehan,de Roever (2] , Hoare [4] .

References.
[1] Conway M.E., Design of a separable transition-diagram
) compiler.Comm. of the ACM,vol.6,7,1963,pp.396-408.,
[2] Francez N., Hoare C.A.R., Lehmann D., de Roever W.,
Semantics of nondeterminism, concurrency, and communication.
J., of comp. and System Sci.,19,1979,pp.290-308,
[3] Hennesy M.C.B., Plotkin G.D., A _term model for CCS.Lecture
Notes in comp. Sci.,vol. 88,1980,pp.262-274.
[4J Hoare C.A.R., Communicating sequential processes. Comm. of
the ACM,21,1978,pp.666-677.

T

IS] Janicki R., Vector of coroutines. Lecture Notes in Comp.
Sci.,v0l.45,1976,pp.377-384.

[6] Janicki R., Results of the theory of vectors of coroutines.
Fundamenta Informaticae, vo0l.2,3,1979,pp.289-316.

[7] Janicki R., Analysis of coroutines by means of vector of
coroutines. ICS PAS REPORTS,379,1979 .

[81 Just J.R., An algebreic model of the distributed computer

i system. 5-th Conf. on the Theory of Oper. Syst.,Visegrad 79.
[9] Just J.R., Analysis and synthesis of distributed computer

systems by algebraic means. 5-th Conf. on the Theory of

Oper. Syst., Visegrad 80.

Jan R. Just

Warsaw Technical University
Institute of Electronic Fundamentals
ul. Nowowiejska 15/19 p. 230A

00-665 Warsaw

POLAND

- A3 -

ON CONCURRENT SYSTEMS AND CONCURRENCY RELATIONS

Ryszard Janicki
Poland

1., Introduction,

The notion of concurrency relation, introduced by Petri
in a paper [7] for so called nets of occurrences, seems to be
one of the basic notions of the concurrency theory. If we say
that two objects are concurrent, in fact we define the con-
currency relation for these objects., Properties of this rela-
tion were developed by Best[l], Petri 7,8 - on the process
level, and by Janicki [3,4,5| , Prészydiski [9] - on the system
level, This paper is a continuation of [3,4] and the comple-
ment of [5], although it can be read independently. In +the
paper we restrict our attention to nets decomposible into
gequential finite gtate machines, This follows from two rea-
sons, PFirstly, the author is convinced that peaple think
sequentially (cf, Brinch Hansen (2]), and the composition of
concurreni systems from sequential ones is one of the natural
methods of the construction (see Lauer and others [6]).
Secondly, it was proved in a paper [5| that if a well defined
marked net satigfied Petri‘s postulate that every se-
‘quential subsystem and every global gystem statsg had one
common element, then this net could be decomposed into a set
of sequential finite state machines,

2, Marked s-nets.
In this section we recall some necessary notions introdu-
ced in [3,4] . _
For every set X, let leftiX»X--X, right:X~X—>X be the
following functions:
(v(x,y)eXxX) left((x,y))=x, right((x,y))=y.

Kl v

By a simple net (abbr. s-net) we mean any pair
N = (T,P)
where: T is a set (of trangitions),
PQ;ZTxZT ig a2 relation (interpreted as a set of placesg),
(VaeT)(Ip,qeP) aeleft(p)nright(q).
We sheall only consider finite s-nets. Every s-net N=(T,P) can

be graphically represented uging the graph:

&

1 ¢ 00 n

b

1 oe¢ecw m

to denote the fact that ({ajycces8y}o{byycecsby}) e Pe

Thig definition differs from the standard definition of
Petri nets (ef.[7,8]). The approach presented here is luckiex
in the sense that it makes more easy to handle operation among
nets (cf.[3,4).

Let N1=(T1,P1), N2=(T2,P2) be s-nets. It can be proved
(cf. [3]) that the pair (T;9T,,PP,) is alsc a s-net.
Thus we can define the following operaticn:
NN, = (T39T,,PpUP,).
Let N=(T,P) be a s-net, and let Fc TxPuP«T be the following
relation: (vx,ycTuP) (x,y)¢F &> xcleft(y) or yeright(x).
The relation F is called the flow-relation. Note that the
triple (7,P,F) is a standard representation of the net N
(see [7,8]).
For every xe¢TvP, let °x={y(ny}, x‘={y[xFy} 5

A s-net N=(T,P) is said tc be connected iff

(Wx,y€ TVP) (x,y)eA(FuF-I)* "

Other words, a s-net is conunected if ite suitable graph is
connected.

A s-net N=(T,P) ies said to be quasielementary iff

(vacT) card(*a) = card(a®) = 1.

A s-net N is said to be elementary iff it is quasielemen-

tary and connected.

- A5 =

Elementary nets are equivalent with totally labelled sequen=-
tial finite state machines, and can be treated as & model of
sequential systems,
For every s-net N=(T,P), let:
elem(N)={N*| N*=(T",P") is an elementary s-net & T°¢T & P'¢ P},
We are interested in nets decomposible into a set of sequen-
tial finite state machines, called proper in this approach,

A s-net N is said to be proper iff N = _/ N,
Ntelem(l)
Note that N is proper if there ig & sget {ngooc,N 1 of ele-

m
mentary s-nets and N=N;v..~N (see alsc [3,4]).
: e P P
Let N=(T,P) be a s-net, and let Rl, CRLS 2°x2° be the
following relations:
(Ml,Mz)e‘Rl € (Jacl) My-*a=M,-a® & °acM, & a°cli, , and

(M; ;M,) € CR1 &= (FA<T) (Va,béA) (a#b =3 *an*b=a’ndb’=g) &
My-gzh 8 NMpmgch® & gy "acly & gJa .

The relation Rl is called the forward reachability in one
step, and CR1 is called the concurrent forward reschability in
cne step. It can be proved that for finite s=-nets:
(R1VR1™1) = (CR1vOR1™1)*. Tet R = (RLR1™1)*. This relation
is called the forward and backward reachability of N (ef. [7,8]).
Note that R is an equivalence relation, For every M 2P, let

M denote the equivalenve class of R containing M,
By & marked simple net (abbr. ms-net) we mean any triple
MN = (T,P,Mar),
wheret N=(T,P) is a s-net,

Mar < 2F is a set of markings of MN,

M&cMar
A ms-net MN=(T,P,Mar) is said to be compact iff
(vMcMar) Mar = [M]q.
Note that Petri‘s condition/event systems (cf. [9]) are

compact mg-net,
A transition acT is said to be fireable iff

(3M1,M26Mar) ‘aclMy & a® <M.

i G =

A mg-net MN=(T,P,Mar) is said to be gafe iff:
(vAe2®) (v aeT)
(®anA=fg & (IMeMar) °avAcM) &3 (a°nA=f & (IM‘eMar) a*vAsM),
For more details the reader is advised to refer to [3,4].

3. Sir-relations,

Our approach is based on the notion of a symmetric and ir-
raflexive relation defined by a fixed covering of a set,
Elements of a covering will represent sequential components
of a gyaten,

Let X be a set.

A relation C<¢X»xX is said to be the sir-relation (from
symmetric and irreflexive) iff:

(va,beXx) (a,b)eC &3 (b,a)cC & (8,b)EC = aFb,

Tet C be a sir-relation, id={(x,x)|x¢X} , and let kens(C),

kens(C) be the following families of subsets of X:
kens(C)={A|((va,bcA) (a,b)eCuid & (VcdA)(FacA) (a,c)dC] ,
kens(C)={A|((Va,bcA) (a,b)¢0 & CdcfA)(ﬁaEA) (a,c)EC} "

Note that kens(C), kens(C) are coverings of X, From the view-
point of the graph theory, the set kens(C) is the set of all
cliques of the undirect graph representing C, while the set

kens(C) is the set of all cliques of the complement of that

graph,

Let cov be a covering of X,
Let air(cov)c XxX be the relation defined as follows
(va,beX) (a,b)esir(cov) & a#gb & (VAccov) aﬁA or bfA,

In this aopproach, a covering cov represents an arbitrary set
of sequential zystem components, and the relation sir(cov)
represents the concurrency structure defined by that set.
Lot marsgzx be a covering of X satisfying the following
property Mar< kens(sir(cov)).
The family Mer represents the set of "global" system states
(marking class), The pair D = (cov,Mar) will be called the
double covering (abbr, d-covering) of X,

Thus, we have the following interpretations:
sir(cov) - the concurrency relation,
cov - the set of sequential system components,

- AT -

Mar - the set of all global system states,

kens(sir(cov)) - the family of all maximal locally dependent
sets, where by a locally dependent set we mean any set A such
that for every two elements a,bcA, the pair (a,b)csir(cov),
kens(sgir(cov)) - the family of ail maximal locelly concurrent
sets, where by a locally concurrent set we mean any set A such
that for every two different elements a,bcA, (a,b)esir(cov).

The family kens(sir(cov)) is a set of sequential system
components only if cov=kens(sir(cov)), and kens(sir(cov)) is
a set of global system states only if Mar=kens(sir(cov)).

A gir-relation sir(cov) is said to be consistent iff
cov=kens(sir(cov)), and it is said to be semicongistent iff
covg kens(sir(cov)).

The property of congistency means that the concurrency re-
lation describes precisely the set of sequential components,
while the property of semiconsistency means only that every
sequential component is defined by the concurrency relation
(compare [5,10]). In fact, the above properties are rather pro-
perties of the covering cov than the relation sir(cov), be-
cause many coverings can define the same relation. Neverthe-
less, in further considerations the covering will usually be
fixed, whereas speaking about consistency and semiconsgistency
as properties of the relation enable more uniform considera-
tion, The same remark concerns notions of KM—, and ClM-density

introduced below,

Considering nets of occurrences, Petri [7] has postulated
that for every real process, every sequential component and
every "case" (global state) have one element in common. This
is a generalization of the well known postulate of physics
that every time sequence and every space must have one common
element., Petri has called this property as E-density.
Although K-density is formally defined as a property of the
concurrency relation(see [7,8]), in reality, as it was justly
noticed by Best [1], it is a property of occurrence nets. The
E-density is formally defined as follows:

A gsir-relation C<XxX is said to be K-denge iff

(VAckens(C))(vBckens(C)) AnB # & .

- R -

In the case of occurrence nets, the notion of K-density is
adequate (ef, [1,7,9]), but in our approach it has a good in-
terpretation only if cov=kens(sir(cov)) and Mar=kena(sir(cov)).
Therefore, we have %o replace one by more adequate notions.
Let D=(cov,Mar) be a d-covering of X.
A sir-relation sir(cov)c XxX is said to be KM-dense iff
(¥ AeMar) (vBekens(sir(cov))) AnB # 4.
A gir-relation sir(cov)c<c XxX is said to be CM-dense iff
(v AeMar)(¥ Becov) AnB #£ 4.
If Mar=kens(sir(cov)) then KM-density is equivalent to K-den-
sity, and CM-density is equivalent to so called C=density de-
veloped in [9]. In the approach prasented, CM-density descri-
bes Petri‘s postulate on a common element, It will be proved
that CM-dengity is a strong property., KM-density has no such
a good interpretation, although it is also a strong property.

Corollary 1,
1. cov=kens(sir(cov)) =3 (KM=-density &= CM-density),
2. covc kens(sir(cov)) = (KM-density =3 CM-density).

Theorem 2,
If Mar iz a covering of X and sir(cov) is CM-dense,
then covc kens(sir(cov)).

Other words, if Mar covers X then CM-density of sir(cov)
implies its semiconsiastency.
Now we are going to come back to marked s-nets,

A, Seminaturally marked s=-nets.

In this section we shall deal with relationship between
atatic net structure (i.e. the pair (T7,P)), and the proper-
ties of marking class (i.e. the set Mar). Results of this
section are generalizations of those from [3,4].

Let N=(T,P) be a proper s-net, and let
¢ = {Nl,...,Nm}s; elem(N) be a set of elementary nets such
that: N = NfJ...va .

Agsume that Niz(Ti,Pi) for i=l,...,mM
Every set C of the above form is said to be an elsmentary
covering of N (abbr. e-govering).

- 49 -

Let covy = {Pl,...,Pm}é 2P. Note that cov, is a covering of C,

Lat Coex, < PxP be the following relation

coex, = sir(oovc),
Other words: (a,b)eooexc<é#>a#b & CVPiEOOyO) a#Pi or b%Pi.
The relation coex, is said to be the coexistency defined by
the e-covering C of N,

It turns out that the triple (T,P,Mar), where
Mar=kens(coexc), is a ms-net with regular properties.
Properties of such mg-nets were developed in a paper (4] . The
case when Mar=kens(coexc) and C=elem(N) was considerd in [3,9].

A ms-net MN:=(T,P,Mar) is called geminaturally marked
with respect to a set of elementary nets C iff:
1, C is an e-covering of N=(T,P),

2. Mar kens(coexc),
3« avery element of T is fireable.
Now we are going to characterize seminaturally marked s-nets.
Let MN=(T,P,Mar) be a fixed seminaturally marked s-net
with respect to the set C. Let also N=(T,P).

Theorem 3.
MN isg safe.®

Note that the notionst KM-density and CM-density can be defi-
ned in terms of this section, Namely, the relation coexq is
KM-dense iff (VAeMar)(VBéEEEE(coexc)) AnB £ ¢, and coexy is
CM-dense iff (VAcMar)(vBecovy) AnB “ B

Corollary 4.

coex, is CM-dense =z covcéékens(coexc).ﬂ
Let QEL denote the family of all quasielementary s-nets.
Theorem 5.

If coex, is KM-dense then: (VAEkens(coexC)) NA=(°AUA‘,A)6QEL..

0f course, by the congtruction we have that every element of
CoVey describes an elementary s-net, but we do not know any-

thing about elements of Esﬁg(coexc). Note that, in general,

we do not assume the property covcg;igﬁg(coexc).

The above theorem means that if coex, ig KM~-dense then every
element of Esﬁg(coexc), i.e., every maximal locally dependent

50

set, creates a sequential finite state machine (not necessa-
rily connected). It can be proved that the symbol QEL cannot
be replace by elem(N).

Compactness is the property, which is frequently required
from concurrent systems. For example, Petri has agsumed that
every condition/event system is compact (see [ﬁ]).

For compact seminaturally marked s-net, we can formulate the
following theorems,

Theorem 6.
MN is compact =3 coex, is CM-dense, E

Thus, if seminaturally marked s-net is compact then every
sequential subsystem and every global state have one common
element.

Corollary 7.
MN is compact =#~cov0§;kens(coexc)oﬁ

This means that in that case, every sequential subsystem can
be described as a clique of the relation COo8Xge

Corollary 8.
MN is compact and covcnkens(ooexc) ==§-coexO is KM=~dense. B

It turns out that for compact nets the result of Theorem 5
can be strengthened.

Theorem 9.
If MN is compact and coexq ig KM~dense then:

(v Ackens(coexy)) N,=("AvA®,A) € elem(N). E

0f course, if MN is compact then cov, Egﬁg(coexc), and every
element of cov, generates - by the definition - an elementa-
ry s-net. From Theorem 9 it follows that elements of
EEEE(coexc) generate also elementary nets.

In the case of C=elem(N), we can replace Corollary 8 by
the following theorem.

Theorem 10.
Let C=elem(N), Then:

MN is compact =3 (coex, is EKM-dense é%rcovc=kens(ooexc)).l

- 51 -

As it was poited out, the above results are a generalization
of theorems and lemmas from [3,4,9] . Under the assumption
Mar=kens(coaxc) we obtain results from [4], under the
assumptiom Marzkens(coexc) & C=elem(VN) we obtain results
from [3,9] .

Seminaturally marked s-nets seem. to be very interesting
class of marked s-nets, On the one hand this class is large
(for instance it contains the class of nets generated by
GE*-paths [6]), on the other it has conveniant properties,
since every seminaturally marked s-net is composed from a set
of sequential finite state machines and its marking class is
gtrictly connected with this composition, Furthermore, from
the paper [5] it follows that if a compact marked net sati-
gfies the mentioned above Petri's postulate on a common ele-
ment, then this net can be treated as seminaturally marked.

We are now gzoing to consider some examples, which illu-
atrate the above notions and results.

Let E;EECz(P P-coexc)-id.

Example 1.
Let N=(T,P), Ni=(Ti,Pi) for i=1,2,3 Dbe the following s-nets,

Note that N = NN,N, and elem(N)={N1,Np,N3}.
Let C = {NI,NZ,N3} . 0f course, C is the e-covering of N,
The graphs of coex, and coex, are of the following form,

@,
// \k\

© 3
@--Gf T coex,

- 52 =

Note that: kens(coex.) = {f1,3},{2,3,4}, (2,61, {4,5}] ,
'Ezﬁ:(coex) =1{{1,2,5},{1,4,6},{3,5,6},{1,5,6} ,
cov, =={{1 2,5} ,{1,4,6} ,{3,5,61} ,

thus cov, kens(coex) = cov U{l 5,61 .

Let us define Mar=kens(coexc),

Note that MN=(T,P,Mar) is a seminaturally marked s-net with

respect to the set C={N1,N2,N3}. The ms-net MN is safe and

compact, and every element of T is fireable. The relation

coexq is CM-dense, but it is not KM-dense, because

{1,5,6}n{2,3,4} = g. The statement (VAEEEEE(coexc)) N,€ QEL,

where NA=('AuA‘,A), is not true, because the set

{1,5,6}éiEEE§(coexc) does not define any s-net.

Since Mar=kens(coexc) then KM-density is equivalent to K-den-

sity and CM-density is equivalent to C-density (ef. [9]).

Example 2,
Let N=(T,P), Ni=(T Pi) for i=l,.¢.,5 be the follow1ng s-nets.

p:q [b:a] o] %
W
4

v
% :
5
7 = o —Z)
Note that N = Nyu...Ng, and elem(N)= {v, ,...,N}

Let C = {Nl,...,N } « The family C is obviously an e-cove-
ring of N, The graphs of coexy and coexC are the following,

5}7\@1\ .
QLR

~
L : /\t) N _coex,

7
N/ N

1

Here we have: kens(cosxy)= ﬁl 3, {1,6], {1 T s {2, 45 {2,5} {3 53

{4,6},{s, T},

- 53 -

m(coexc)= {{192} s 3,4} ,{5,6,71 ,{1,4,5} 9\(2;3)6:7” s

cov., = kens(coex.).
Let Mar = {{1,3},{2,47,{3,5Y,{4,6},{4,7} ¢ kens(coex,).
Note that MN=(T,P,Mar) is a seminaturally marked s=-net with
respect to the set C=€N1,...,N53. The ms-net is safe; but not
compact, and every element of T is fireable.
Since covC£EEE§(coexc) then KM-density is equivalent with
CM-density, but the relation coexq is not CM-dense, beacause
for example {1,3}”{5,6,7} = #. Note that every element of
EEEE(coexc) defines an elementary s-net (because cov,=

kens(coexc)), although coex, is not KM-dense.

Example 3.

Let N=(T,P), Ni=(Ti,Pi) for i=l,...,5 be the same s-nets as
in Example 2.

Let C ={N,,N,,N5,N,j ¢ elem(N) = Cu{N].,

0f course N = N‘JN N uN4, go C is an e-covering of N.

3
Here, the relations coexq and coexc are of the below form.

/a
T P\,
TR
pC v® //7J
@Xt \’ ‘* 2
\l

x ' @
\\@j ‘\\Mc QQGQCC/

C

-
‘."\
@ —-n.
~

In this case:

k9n9(°°9x0)={{1i3’7} ’{19316} ’{2'496} s {2;4:7} a{2:3v571 9{233:6} ’
e 5

m(coex)= {{ ﬁ :{314} 9{5s697} s{1’4:5}} s

covCJE—_E(coex)i

Let Mar —{{l 3,7 ,{1,3,6),{2,4,6},{2,4,7},{2,3 Sﬁﬁ;kens(coexc)
Note that MN=(T,P,Mar) is a seminaturally marked s-net with
respect to the set C={N1,N2,N3,N4}. The mg-net MN is safe,
compact, and every element of T is fireable. The relation
coeXy is CM-dense and KM=-dense.

- B

References,

Abbreviationst

LNCS = Lecture Notes in Computer Science,

GMD - Gesellshaft fur Mathematik und Datenverarbeitung.

[1] ®. Best, The relative strenght of K-density, LNCS 84,
Springer 1980, 261-276,

[2] P. Brinch Hansen, QOperating Systems Principles,

Prentice Hall, Inc,, New Yersey, 1973.

[3] R. Janicki, An algebraic structure of Petri nets,
LNCS 8%, Springer 1980, 177-192.

[4] R. Janicki, On atomic nets and concurrency relations,
LNCS 88, Springer 1980, 320~333,

Eﬂ R, Janicki, Analysis of concurrent schemes by means of
concurrency relations, Proc, of the AFCET Symposium on
"Mathematics for Computer Science", Paris, 1982,
to appear.

(6] P,E, Lauer, M.W, Shields, J.Y.Cotronis, Formal behaviou-
ral gpecification of concurrent gystems without globa-
1lity assumptions, LNCS 107, Springer 1981, 115-15l.

7] C.A. Petri, Non-sequential processes, ISF Report 70-01,
GMD, Bonn 1977,

[8] C.A., Petri, Concurrency, LNCS 84, Springer 1980,251=-260,

[9] P. Prészydski, Petri nets and concurrency-like rela-
tions, INGS 107, Springer 1981, 471-478,

Institute of Mathematics
Warsaw Technical University
Pl. JednosSci Robotniczej 1
00-661 Warszawa / Poland

AN OVERVIEW OF SYSTEMS MODELING

AND EVALUATION TENDENCIES

Geneviéve JOMIER

I . INTRODUCTION

During the last ten years a lot of papers about modeling and perfor-
mance evaluation of computer systems and computer networks have been pu-
blished. Now new distributed systems are being built, integrating compu-
ters and communications. This involves new modeling and evaluation pro-
blems. The goal of this paper is to present the main developments and

trends in this domain.

IT. MODELING AND PERFORMANCE EVALUATION OF COMPUTER SYSTEMS

On Figure | we show the different steps needed to evaluate a system,

and two ways to procede.

SYSTEM =3 MODEL =————3 PERFORMANCES

. 4
\\ //’
a /.

MEASURES

In the first one (solid afrows) a model is deduced from the system.
The model is used to determine parameters which are measured or estimated
from the system. There the measures are integrated in the model to obtain
performances which are supposed to be representative of the system. An
illustration of this procedure is the modelling of computer networks or
computer systems (or part of them as central [€our 77, Jomi 81] or secon-—

dary memory [Ge Mi 80, Bran 81, Arti 81] management etc...) using queues

and queueing networks [Klei 76] scheduling models [Coff 76] or Petri nets
[Zube 81, Br FN 82].

In the second case (dashed arrows)empirical models are deduced from
measures [Ferr 78, Svob 76, Fe Sp 80], using statistical techniques like
regression, multidimensional analysis [Rala 79]chronological series, etc...
They are mainly used in the study of systems workload.

In this part we will concentrate on computer systems modeling using
queueing networks because this approach has been very successful and has
produced a lot of important results. We begin by the fundamental theorem
of Basket Chandy Muntz and Palacios [BCMP 75] which characterizes queueing
networks with "product form solution'". This means that these networks
of queues with n nodes possess a steady state probability distribution PS

of the network state s of the form :
n
P = d; E(s): ¥

s L1 Fea) ti2

where d 1s a normalizing constant, Ps(i) is the steady state probability
of the corresponding state s(i) of the queueing system in the node i, and
f(s) is a function of the number of customers depending on the state s
[Ja Ko 80].

Two complementary approaches are developed to extend this type of so-
lution to other networks. In the first one it is shown that some particu-
lar queueing networks admit product form solution. A.Hordijk and N.Van Dijk
use it, for instance 1in [Ho VD 81] for certain cases of exponential queue-
ing networks with blocking. We find it too in [Ja Ko 80] where U.Jansen
and D.Konig use insensitivity properties to characterize an important fami-
ly of open, closed or mixed networks admitting product form steady state
probabilities. These results are based on the complementary approach in
which more powerful new mathematical tools are developed. The outstanding
works in this area have been made by Kelly [Kell 79] on reversibility and
quasi-reversibility, and by Schassberger [Scha 77, He & 79] on insensiti-
vity, connected with the last developments on point processes theory. A
synthesis of this theory based on Palm's measure is presented, in [FKAS 79]
by Franken, Koning, Arndt and Schmidt.

Due to the large number of states in the system, the computation of
the normalization constant din (1) may be untractable for real networks.

As a result some computational algorithms have been presented by Chandy

=~ B7 -

and Sauer [ChSa 80] and by Bruell and Balbo [BrBa 80]. Other algorithms,
possibly approximate, for large networks have been proposed by Mackenna and
Mitra [MKMi 81] and Lavenberg [Lave 80]. Approaching it another way, for
product form solution networks it is possible to directly obtain some para-
meters, thereby avoiding the normalization constant computation by the use
of "mean value analysis" [ReLa 80].

The product form solutions [Pujo 80] are connected with an idea of
"independence" between the different queues. This does not happen in some
cases of computer systems or computer networks modelling which jnyolve dependencies
between queues - The exact analytical solution for some of these problems
has been established, for instance, when it is possible to come to bidimen-—
sional markovian processus mcdels [FaKM 80] and for a particular case of two
coupled queues networks [Fayo 79].

However, at the present, in most cases the practical solution of such

systems may be studied using :

1) numerical techniques [Stew 79, KiMi 80]
2) approximations of the model by decomposition and equivalence
[Bran 80] or by decomposability-aggregation [Cour 77, VaGL 80]
3) or approximate solutions of the model by diffusion method [Koba 78],
or isolation [LaPu 80], or by iterative techniques [DoAS 81,Mari 78].
Different methods may be used simultaneously.

Some packages providing
the facility of describing and solving (with exact or approximate methods)

queueing networks have been developed, such as QNAP at INRIA [PoVe 797,
QMOD [Gron 81], RESQ and QNET4 at IBM [ReSa 78, SaMS 80]. Among other solu-
tion techniques QNAP and RESQ offer the possibility of obtaining results
using simulation.

To satisfy the needs of performance evaluation, important improvements

in simulation [Lero 80, BaSa 81] have occurred. The latest deal with

1) the simulation inputs : h;w to build random numbers generators, and
how to generate corelated number sequences [Bade 79]

2) the analysis of the simulator out puts : a lot of papers have been
published on the regenerative method [IgSh 80, Igle 78, LaMS 79]

and on the confidence interval accuracy [HeWe 81] .

IIT. MODELING AND PERFORMANCE EVALUATION OF COMPUTER NETWORKS

The same tools are often used in computer systems and computer netwerks
modeling, so its is difficult to draw a clear (and artificial) boundary bet-
ween them.

The use of queueing networks to model computer networks is widespread.
The importance of priorities, blocking (e.g. due to the limited size of
buffers), the possible packet desequencing, etc., often need the use of ap-
proximate solutions or simulation, they can be used only when the number of
system states is rather small. As a result other modeling techniques are
used [TGPM 78] such as the stochastic processes.theory (renewal theory,
Markov chains, semi-markov processes, regenerative processes) and the mar-
kovian theory of decision.

M. Reiser, in a very interesting report [Reis 811, classifies the per-
formance evaluation studies of data communication systems into four catego-

ries, (the first one being the most numerous) :

1) evaluation of a given protocol
2) design and configuration of real networks

3) performance evaluation of "

products’ (packets) of communication
networks
4) performance evaluation of real networks based on their "products”

and on workload measures.

It appears that the recent improvements in the performance evaluation
of general netwerks have occurred in the modeling phase (transition from
model to the expression of performance). The most important aspect in this
approach has been the structuring of protocols into layers (7 for ISO) and
their normalization [SRWG 80, ISO, PoZi 78, ZiPo 8!1lSuch structuring has
been very useful in understanding their functionning and, as a result, in
modeling them. Thus there are now results on the performance evaluation of
different level protocols, such as HDLC (layer 2) [Sere 8!, LaPu 79] or of
a set of layers such as X.25 (CCITT) [GiJM 81] which integrates the three
lowest layers. A special attention must be given to the interrelationship
between the different level protocccls [BuSc 81].

For the local networks the normalization is in progress, and the situa-
tion is characterized by a very wide variety of supports (and, as a conse-

quence of theoretical throughput), topologies and access protocols.

A taxonomy and comparison of random access protocols for computer net-
works have been proposed in [Mi Na 81]. Fixed and dynamic schemes are dis-
tinguished, and for the dynamic one they are separated in centralized, cen-
tralized polling, contention networks and decentralized. A new distinction
is made in the decentralized dynamic assignation schemes between the ran-
dom access (different types of ALCHA and CSMA) and the non-random access
(decentralized reservation, polling, round robin, alternating priorities,
random order, minislotted). Many papers have been published on that sub-
ject : references and protocol comparisons may be found in [Reis 81,

Mina 81, Bux 81], and studies on particﬁlar protocols in [To Hu 80, Ge Mi
81, Span 81].

Some special topics of networks gave rise to studies, such as the mes-
sages resequencing , a synthesis of which is in [Ba GP 81]. Yet, in other
domains the emphasis is placed on faisability more than on performance e-
valuation : the network interconnection [TSCA 80, ISCA 81,PWIN 80, FaMi 811
is an example of situation where very few papers appear on performan-
ce evaluation [Bern8l] despite a real need New performance evaluation pro-
blems arise with the use of networks to transport not only data but voice
or pictures, in applications like burotics (office automation) or telema-
tics. These uses involve different constraints in quality, speed and volu-

me of tranfered data.

IV . DISTRIBUTED SYSTEMS :

The evolution of technology particularly the miniaturization (micro-
processors) and the communications development (buses, local networks),
and the fall of hardware prices involves the development of distributed
systems. Beyond the versatility of such systems the idea is to use some
small cooperating machines to perform tasks formerly devoted to large
centralized systems [QED 78].

Therefore new systems oriented toward applications (like office au-
tomation, robotics, computer assisted instruction) are created. They are
completely different form the universal centralized systems of the prece-
ding generation.

These new distributed systems are sets of processors, specialized (li-

ke data bases machines) or universal, tightly coupled by buses or loesely

coupled by network (especially local network). In an application it is _
possible to distribute the computation and / or the data, and / or the con-
trol. For each of these cases a great variety of choices is possible in
distributing and in managing the distribution.

The diversity of distribution choices 1is superimposed on the diversi-
ty of applications. The performance evaluation must take into account the-
se two aspects : thus in a distributed system every site requires the ap-
plication software and the modules necessary to manage the communications
and the distribution. The different parts of the software are in conflict
for access to some ressources of the system (memory and computation time).
This has an impact on performance, particularly when synchronization bet-
ween processes involves forced idleness of some processors.

As a result the studies on modeling and performance evaluation evol-
ve along two axises : the evaluation of specific applications and the eva-
luation of the distribution.

The evaluation of applications poses the problem of the generality
of the studied applications. Also numerous papers published on this sub-
ject are devoted to data base management systems (DBMS) because they are
wide spread and increasingly used in the heart of new systems [DWHa 81,
Tsic 81]. They take an interest in the DBMS as a whole [Seve 81, LoMa 81,
HeWY 81] or in some specific point such as the concurency control [RiSt 77
ShSp 81, Ries 81, ChGM 81, Pdle 80], the access paths to data [AsKS 80],
and,when the relational model is used, the size of operations results
[GeGa 82, Rich 80] and the query optimization [Kim 81] etc. The large va-
riety of types of DBMS is an obstacle theéir modeling.

The quantitative evaluation of distributed systems is limited by lack
of tools to model the synchronization. However evaluation studies are pu-
blished on tightly connected architectures [Pate 81, Balk 80, Gele 80,
GnPa 80] and on loosley connected ones [BaFl 80] with a particular inte-
rest for distributed data bases [CoGP 80, Garc 79, Wilm 79]. Those papers
are mainly based on theoretical algorithms to manage distributed systems
and not on existing systems. Thus the count of messages necessary for the
correct execution of a two phase commit in a distributed data base is in-
teresting to compare different algorithms for maintaining concurrency
[Garc 79, Wilm 79] but it is clearly insufficient to determine the intri-

risic performance of one particular algorithm. So a lot of work is to be

done to obtain a clear idea of distributed system performance. This will
be possible with the implementation of systems and the development of ex-

perimental concrete models [BCEJK81] which will point out the crucial per-

formance problems by measures.

V. CONCLUSION

In the course of this study we have seen how the theoreticians began
with the modeling of computer systems and computer networks using queueing
networks, and how they were obliged to improve more and more their mathema
tical tools. Simultaneously the evolution of technology and the creation
of systems of increasing complexity, integrating processors and communica-
tions,raised new problems necessitating the development of new modeling

tools. Many problem problems are still open in these different areas.

BIBLIOGRAPHIE

LACMS

[AdBD

[Arti

[AsKS

[BaFl

[BaGP

[Bade

[BaWs

[BaSa

81]

81]

81]

80]

80]

811

79]

801]

81]

ACM/SIGMETRICS

Conference on Measurement and Modelings of computer Systems -
Sept. 1981 - Perf. Eval Review Vol 10, n° 3, Fall 1981 ,

pp 175-215.,

G.ADORNI, A.BOCCALATTE, M.DIMANZO

"Evaluation of Scheduling algorithms in the multiprocessor
environment'

Computer Performance Vol 2 n® 2 Juin 81 pp 70-76

H.P. ARTIS

"Predicting the behavior of secondary storage management systems
for IBM Computer Systems"

Performance 81 - Amsterdam Nov 81 pp 435-444,

M.M. ASTRAHAN, W.KIM, M.SCHKOLNICK

"Evaluation of the System access path selection mechanism"
IBM Research Laboratory, San Jose Californie 95 193 -

RJ 2797 - 4/10/80 - 18 pages.

F.BACCELLI et Th. FLEURY

"On parsing in a multiprocessing environment"

Rapport INRIA - 78153. Le Chesnay France, 1980 - To appear in
Acta Informatica.

F.BACCELLI, E.GELENBE, B.PLATEAU

"An End to End Approach to the resequencing problem"
Rapport de Recherche INRIA n° 97 - Nov 1981 ~ To appear in
JACH.

M.BADEL

"Generation de nombres aldatoires correlés"

Mathematics and Computer in Simulation (IMACS) Vol XX, n° 4,
1979.

E.E. BALKOVICH, G.WHITBY-STREVEWS
"On the Performance of decentralized software™
Performance 80* - Toronto - May 80 pp 175-180.

Y.BARD and C.H. SAUER
"IBM contributions to Computer Performance Modelling'
IBM J. Res. Develop. Vol 25 . n°5 Sept 1981 p 562-570.

= GR =

[BCMP 75] F.BASKET, K.MANI CHANDY, R.R. MUNTZ, F.G. PALACIOS
"Open, Closed, and Mixed Networks of Queues with Different
classes of customers"
JACM Vol 22, n° 2, April 75, pp 248-260.

[Bern 81] G.BERNARD ‘
"Interconnection of Local Computer Networks : Modeling and op-
timization problems"
Submitted toIEEE transactions on Software Engineering
Rapport de Recherche - LRI, Université Paris Sud - n° 77
91405 - Orsay France

[BCFJK81] P.BOUCHET, A.CHESNAIS, J.M. FEUVRE, G.JOMIER, A.KURINCKX
"PEPIN : An experimental multimicrocomputer database manage-
ment system'

2 nd International Conference on Distributed Computing S ystems
IEEE/IFIP/AFCET - Paris April 1981 pp 211-217.

[Bran 80] A.BRANDWAJN
"Further results on equivalence and decomposition in queueing
network models"
Performance 80" , ACM Symetrics Vol 9, 2, Summer 80, p 93-104.

[Bran 81] A.BRANDWAJN
"Multiple paths versus memory for improving DASD subsystem
performance'
Performance 81 - Amsterdam Nov 81 - pp 415-434,

[BrFN 82] C.BREGER, G.FLORIN, S.NATKIN
"Un outil d'aide 3 1'évaluation de la sureté et des performan-
ces de systemes informatiques i
Colloque AFCET "Mathematics for Computer Science"
Mars 1982 - CNAM - Paris France

[BrBa 80] S.C. BRUELL and G.BALBO
"Computational Algorithms for Closed Queueing Networks'
North Holland, NY 1980.

[BuSc 81] A.BUTRIMENKO, G.SCOLLO
"Protocol parameters and network characteristics : classifica-
tion and some interrelations'
Proc. of the meeting "Evolution of Computer Networks Theory
and Experience" Ed. Petrentko 3Sept. 1981 -
TIASA - Laxenburg Austria. le Dec 1979,

[Bux 81] W.BUX
"Local Area Subnetworks : a Performance Comparison Research
Report RZ 1057 , 2/24/1981.
IBM Zurich Research Laboratory, CH-8803 Ruschlikon Switzer land
Or Proc fo the IFIP WG 6.4 International Workshop on local
Area Networks Zurich - 27.29 Aug1980, to be published by North-
Holland, Amsterdam 1981.

[ChSa

[ChGM

[Coff

[CoGP

[Cour

[Deno

[DWHa

[DoAS

[FaMe

[Fayo

80]

81]

761

80]

771

81]

81]

811]

81]

K.M. CHANDY and Ch.H SAUER

"Computational Algorithms for Product Form Queueing Networks"
Toronto May 1980 Performance 80

Performance Evaluation review

Vel 9 n°2 - pp 1 - 10.

A.CHESNAIS, E.GELENBE, I.MITRANI

"On the Modeling of concurrent access to shared data"
Applied Probability / Computer Science : the Interface
Boca Raton, Florida , Jan 1981.

E.G: COFFMAN
"Computer and Job-shop Scheduling Theory"
John Wiley 1970.

E.G. COFFMAN, E.GELENBE, B.PLATEAU

"Optimization of the number of copies in a Distributed Data
base System" N

Performance 80 -~ pp 257-264.

P.J. COURTOIS
"Decomposability : queueing and computer system applications"
Academic Press - New York 1977.

L.A. DENOIA

"An Approach to the Cost / Performance comparison of distribu-
ted Systems"

Proc - 5th Berkeley Workshop on Distributed Data Management
and Computer Networks.

University of California Berkeley Feb 3-5, 1981 - pp 38-66.

D.J. De WITT, P.B. HAWTHORN

"A Parformance Evaluation of Data base Machine Architecture"
Proc 7 the Very Large Data Bases - Cannes France 9.11 Sept. 81
Ed Zaniolo Delobel - pp 199-213.

S.L. DODD, D.F. Mc ALLISTER, W.J. STEWART

"An Iterative Method for the Exact Solution of Cecxian Queueing
networks"

Performance Evaluation review Vol 10 n°3 Fall 1981 - p 97-
104.

A.FARO and G.MESSINA
"Internetworking analysis"
Computer communications Vol 4 n°4 August 81 - pp 169-173.

G.FAYOLLE
'""Methodes analytiques pour files d'attente couplées"
Thése d'Etat - Université Paris 6, Paris France, Nov 79.

[FakM 80] G.FAYOLLE, P.J.B. KING, I.MITRANI
"The solution gf Certain two Dimensional Markov Models'"
Performance 80 - Toronto - pp 283-289.

[Ferr 78] D.FERRARI
"Computer systems performance evaluation”
Prentice Hall, Englewood cliffs, NJ, 1978.

[FeSp 80] Ed. D.FERRARI and M.SPADONI
Experimental Computer Performance Evaluation
Lecture Notes of the 2nd Summer School on Computer Systems
Performance Evaluation - Sogesta, Urbino Italy
16-27 June 1980 - North Holland 1981.

[FKAS 79] ©P.FRANKEN, D.KONIG, U.ARNDT, V.SCHMIDT
"Queues and Point Processes'
Akademie - Verlag - Berlin 1979.

[Garc 79] M.GARCIA MOLINA
"Performance of update algorithms for related data in a dis-
tributed data base"
Stanford University . 1977, Ph D Thesis, USA

[Gele 80] E.GELENBE
"Parallel computation of partial differential equations a mo-
deling approach'
19 th IEEE Conf. on Detision and Control - Nov 1980.

[GeGa 82] E.GELENBE and D.GARDY
"On the size of Projection I"
"On the size of ProjectionII"
Researchreport to be published
LRI Univ. Paris—Sud Orsay France - 1982

[GeMi 80] E.GELENBE and I.MITRANI
"Analysis and Synthesis of Computer System'
Academic Press — London - 1980.

[GeMi 81] E.GELENBE and I.MITRANI
"Analysis of retransmission control policies in CSMA local
area networks'
Rapport de recherche INRIA, 78153 Le Chesnay Cedex France
1981.

[GiSM 811 A.GLIESSLER, A.JAGEMANN and E.MASER
"Simulation of an X25 Network Providing Throughput Guarantees'
Performance of Data Communication Systems and their Applications
G.Pujolle Ed. Paris Sept 81 - North Holland - pp 279-290.

[GrPa 80] D.H.GRIT and R.L. PAGE
"Performance of a multiprocessor for Applicative Programs'
Performance 80" - ACM Sigmetrics Vol 9, n°2, Summer 80 -
pp 181-190 - Toronto.

[Grow 81]

[Grub 81]

[HeWe 81]

[HeWY 81]

[HeSc 79]

[HoVD 81]

[Igle 78]

[IgSh 80]

[ISCA 80]

[IScA 81]

[Iso]

L.H. GRONER

"QMOD : a system for automatically generating and solving analy-
tical queueing network models"

APL 81 - Conf. San Fransisco - 21.23 Oct. 81 - pp 125-128.

J.GRUBER

"Performance considerations for integrated Voice and data net-
works"

Computer Communications Vol 4 n®°3 - Juin 1981 - pp 105-126.

P.HEIDELBERGER and P.D. WELCH
"A spectral method for confidence interval generation and run

length control in simulations"
C.A.C.M. 1981 24, pp 233-245.

P.HEIDELBERGER, P.D.WELCH and P.C. YUE
"Statistical analysis of data base systems measurements"
Performance 81 - Amsterdam - Nov 81 - pp 335-344,

W.E HELM and R.SCHASSBERGER

"Insensitive Generalized Semi-Markov Schemes with Point Process
Input"

Preprint n°502 October 1979.

A.HORDIJK and N. VAN DIJK
"Networks of queues with blocking"
Performance 81 - Amsterdam - Nov 1981 - pp 51-65.

D.L. IGLEHART

"The Regenerative Method for Simulation Analysis"

Current Trends in Programming Methodology"

Vol III : Software Modeling and its Impact on Performance -
Chandy-Yeh Editors = Prentice hall - 1978.

D.L. IGLEHART and G.S. SHEDLER

"Regenerative Simulation of Response Times in Networks of
Queues"

Springer-Verlag , New York 1980.

ISCA 7
7th Symposium on Computer Architecture.
La Baule France - 6.8 May 1980.

ISCA 8

8th Symposium on Computer Architecture.
Mimeapolis (Minesota) USA - May 1981

in SIGARCH Newsletter wvol 9 n°3 - ACM.

ISO

"Data Processing - Open — System interconnection Basic Reference
Model"

IS0 TC 97 - sous comité 16

Proposition de standard ISO/DP 7498.

[JaKo 80]

[Jomi 81]

[Kell 79]

[Kim 81]

[KiMi 80]

[Klei 76]

[Koba 78]

[LaPu 79]

[LaPu 80]

* %

[LaMS 79]

[Lero 80]

- 67 -

U.JANSEN and D.KONIG

"Insensitivity and Steady - State Probabilitics in Product Form

for Queueing Networks"
Journal of Information Processing and
EJK 16 (1980) 8/9 pp 385-397.

cybernetics

G.JOMIER

"A Mathematical Model for the Comparison of Static and Dynamic

Memory Allocation in a Paged System'
IEEE Transactions on Software Engineering
Vol SE-7 - n°4, July 1981,- pp 375-385.

KELLY
Reversibity and Stochastic Networks
Wiley - 1979.

W.KIM
"Queueing Optimization for Relational Data base Systems"
IBM Research Report RJ 3081 - San José (Ca) USA - 3/10/81.

P.J.B. KING and I.MITRANI
"Numerical methods for Infinite Markov Processes"
Performance 80" - Toronto - PP 277-282.

L.KLEINROCK
"Queueing Systems'
Wiley - 1976.

Vol 1 and 2

H.KOBAYASHI

"Modeling and Analysis : an introduction to system performance

evaluation methodology
Addison Wesley - 1978.

J.LABETOULLE , G.PUJOLLE

"Modeling and Performance evaluation of the protocol HDLC"
Proc. Symp. Flow Control in Computer Networks

Versailles, France 12.14 Fev 1979

J.L. Grangé, M.Gien - Eds - North Holland.

J.LABETOULLE and G.PUJOLLE
"Networks of queues"
IEEE Trans. Software Engineering , 6, 4, 1980.- 373-381.

S.S LAVENBERG, T.L. MOELLER, C.H. SAUER
"Concomitant Control Variables Applied to the Regenerative

mulation of Queueing System'
Open. Res. 27, 1979 - pp 134-160.

J.LEROUDIER
"l.a Simulation & &vénements discrets"

Ed. Hommes et Techniques - (France) 1980.

[LoMa 81]

[MKMi 81]

[Mari 78]

[MiNa 81]

[pate 81]

[PoLe 80]

[PoVe 79]

[Pozi 78]

[PWIN 80]

[Pujo 80]

[QED 78]

B.J. LOWNDES and J.W. MARTIN

"A Comparative Study of form data base management systems'
Data bases - Proc 1st Brit. Nat, Conf. on data bases
Cambridge 13.14/7/81 - pp 187-205.

J. Mc KENNA and D.MITRA)
"Integral representations and asymptotic expansions for closed
markovian queuteing networks : normal usage'

Amsterdam - Nov 1981 - Performance 81 - pp 67-84.

R.MARIE

"Methodes itératives de résolution de modéles math. de systémes
informatiques"

RAIRO Informatique 12 2 1978.

D.MINOLI and W.NAKAMINE

""A Taxonomy and Comparison of Random Access protocol, for Com-
puter networks"

Data communication and Computer Networks

S.Ramani (Edition) = North Holland

CSI/IFIP - 1981 - PP 187-206.

J.H. PATEL 2

"Performance of Processor-Memory Interconncetions for Multiproces-—
sors"

IEEE on Computers Oct 81 - Vol c30 n°l10 - p 771-780.

D.POTIER and Ph.LEBLANC '
"Analysis of Locking policles in data bases management systems"
ACM 23,10 (Oct 1980) pp 584-593.

D.POTIER and M.VERAN
"QNAP : a Modeling Tool for computer Performance Evaluation'
7th European Conference on Computer Measurement, Paris, Oct 79.

L.POUZIN and H.ZIMMERMANN
'""A Tutorial on Protocols"
Proc IEEE =~ Vol 66 - n°11 = Nov 1978 - pp 1346-1370.

Proceedings of the Workshop on Interconnection Networks for pa-
rallel and distributed processing
April 21-28 1980 - pyrdue University Howard Jay Siege] Editor.

G.PUJOLLE
"Réseaux de files d'attente en forge produit"
RAIRO - Vol 14, n°4 - Nov 1980 - pp 317-330.

"Distributed Processing : current practice and future develop-
ments'" Vol 2 Technical Report
QED Information Sciences, 141 Lindon Street, Wellesley MA 02181

[Rala

[Reils

[Rela

[ReSa

[Rich

[Ries

[RiSt

[SaMS

[Scha

[SRWG

80]

78]

801

81]

77]

80]

77]

80]

= (0 =

H.RALAMBONDRAINY

"Application de 1'analyse multidimensionnelle 3 1'é@tude de 1la
charge d'un ordinateur™

Th8se = Université Paris 6, France - Juin 1979.

J M.REISER

"Performance Evaluation of Data Communication Systems"
RZ 1092 - 8/19/81 = IBM Zurich Research Laboratory.

M.REISER and SS. LAVENBERG
"Mean Wlue Analysis of Closed multi Chain Queueing Networks"
JACM - Vol 27 - n°2 - April 1980 - pp 313-322.

M.REISER and C.H. SAgER

"Queueing Network Models : Methods of Solution and their Program
Implementation"

Current Trends in Programming Methodology -

Vol III : Software Modeling and its Impact on Performance.
Chandy-Yeh Editors - Prentice Hall - 1978 - pp 115-167.

Ph.RICHARD

"On the Evaluation of the size of the answer of a relational que-
ryll

Rapport INRIA 78153 Le Chesnay France - n°5] - Dec 80.

D.R. RIES

"The effects of concurency control on the performance of data
base management system'

Rapport Univ. California Berkeley, CA, USA

Electronics Research Laboratory - 222p.

D.R. RIES, M.STONEBRAKER

Effects of Lecking Granularity in Data base Management system''
ACM Transaction Data base Systems - Vol 2 n®°3 = Sept 1977 -
PP 233-246.

C.H. SAUER, E.A. MACNAIR, S.SALZA
"A Language for Extended queueing Network Models'
IBM J. Res. Develop., 24 , 1980, pp 747-755.

R.SCHASSBERGER

"Insensitivity of Steady - State Distributions of Generalized
semi-Markov Processes"

The Annals of Probability

1977, Vol 5, n°1 - pp 87-99.

G.D. SCHULTZ , D.B.ROSE, CH.WEST and J.P.GRAY
"Executable Description and Validation of SNA"

IEEE Transactions on Communications, COM.28,
n°4, April 1980, pp 661-677.

_Sere

[Seve

L ShSp

" Span

[Stew

[Svob

[TGPM

[ToHu

[Tsic

81]

81]

81]

81]

791

761

78]

80]

81]

D.SERET

"Influence du degré d'anticipation sur les performances de la
procédure HDLC"

Performance of Data communication Systems and then Applications.
G.Pujolle (ed) - Paris - Sept 1981 - pp 291-304 - North Holland.

K.C. SEVCIK

"Data base System Performance Prediction Using an Analytical
Model"

Proc. 7th Very Large Data Base - Cannes, France - 9.11 Sept 1981
Ed Zaniglo-Delobel - pp 182-198.

A.W. SHUM and P.G. SPIRAKIS
"Performance analysis of concurency control methods data base
systems'
8th International symp. on Computer Performance modeling
and Evaluation
4.6. Nov. 1981 - Amsterdam - p 1-20.

0.SPANIOL

"Analysis and Performance Evaluation of Hyperchannel Access Pro-
tocols"

Proc 2nd International Conf. on Distributed Computing Systems,
Paris, France - April 8-10 1981.

W.J. STEWART
"A Direct Numerical method for queueing networks'
4th International Symposium on Modeling and Performance Evalua-

tion of Computer Systems
WIEN (Austria) - Feb 1979.

L.SVOBODOVA

"Computer Performance Measurement and Evaluation methods :
Analysis and Applications"

Elsevier - New York - 1976.

F.A. TOBAGI, M.GERLA, R.W. PEEBLES, E.G. MANNING

"Modeling and Measurement Techniques in Packet Communication
Networks'

Proc. of the IEEE - Vol 66, n°l1, Nov 78, pp 1423-1447.

F.A. TOBAGI, V.B. HUNT

"Performance Analysis of Carrier Sense Multiple Access with
Collision detection"

Computer Network - Vol 4, n°5, Oct.Nov 1980.

TSICHRITZIS

"Integrating data bases and message Systems"
Proc. Very Large Data Bases

Cannes - Sept 1981 - pp 356-362.

[VaGL 80] H.T. VANTILBORGH, R.L. GARNER, E.D. LAZOWSKA
"Near complete Decomposability of Queueing Networks"
Toronto May 1980 - Performance 80 - pp 81-92.

(Wilm 79] P.WILMS
"Etude et Comparaison d'algorithmes de maintien de la cohérence
dans les bases de données réparties"
Thése - I.N.P. Grenoble , France - 23/11/1979.

[ZiPo 81] H.ZIMMERMANN and L.POUZIN
"The standard Network Architecture Developped by ISO"
Data Communication and Computer Networks
S.Ramani Editor - North Holland
CSI/IFIP 1981 - pp 1-~15.

[Zube 81] ZUBEREK
"Timed-Petri Nets and Preliminary Performance evaluation"
Perf. 81.

x* [Lave 80] S.S. LAVENBERG
"Closed Multichain Product Form Queueing Networks with Large
Population Sizes"
IBM Research report — RC 8496, Sept 80.

performance 80 - Toronto - May 80
ACM Sigmetrics - Vol 9, n°2
Summer 1980.

- 73 =

Program Optimization on Ryad=-22 Computer,
L.Adamy and J., Micsik, Hungary

Abstract
The author’s aim was to optimize the main memory usage of a

program written by a third person,

The original program which was written in PL/I lLevel F lang-
uage was recompiled using PL/I optimizing compiler to exploit

its main memory requirement optimizing options.

With both versions the large program was split into smaller
program parts without rewriting the whole program and
compiled by applying the overlay structure,

Another experiment was to form from these program parts
independent 0S jobsteps, the necessary linkage between them
being supplied by a parameter file,

All program versions were run on Ryad=-22 /EC lo022/ computer
/its main memory was 512 kbyte/ in O0S/MFT Rel 21.8F and HASP/.

Because of the constraints of this task /an already existing
large program with complicated control/ the optimal solution
was found to be the program variant with independent 0S job-
steps, whose performance was only approached by the versions
with the overlay structure,

l, The Original Program

The original DISCNT program is part of the SAA /System
Analyzing and Accounting/ program package, Its task is to
generate the cumulative utilization and account values sorted
by "systems" /i.e. type of the computer, of the operating
system e.ge. R-22/0S, R-22/D0S, RC3600, etc,/, by account

. 7

numbers and by departments, and to make the desired discount
on the basis of the already analysed universal resource
utilization and accounting records /in this system the so
called Q records/.

The DISCNT program is able to initially generate the so called
file C /which contains the cumulative account information
organized index-sequentially/ and to update it in the sense

of above mentioned procedure.

The result of the necessary discount or transfer /from an
account number to another account number/ entry /record

"EROL"/ is the logical deletion of the original "Q" record

and, = depending upon the total or partial discount of the
resource utilization = one or two new "Q" records are generated,
During discount the cumulative account informations are updated
appropriately. The flowchart of the original DISCNT program

is on Fige. le The control function in the program is performed
by the five-bits variable FLAG using the label array TEDD
/FLAG/ .

The bits of the FLAGA / variable have the following meanings
Bit F5 is 1 at end of file of sorted EROL /ESTROUT/

Bit F4 is 1 if there is any "EROL" record

Bit F3 is 1 at end of file of sorted Q /QSRTOUT/
Bit F2 is 1 if there is any "Q" record

Bit F1 is 1 if there is any "C" record

2, Partitioning the Program

It is impossible to split the program into small new parts
/subprograms/ owing to the application of the TEDD /FLAG/
label array. Only the reading and the sorting activities of
the "EROL™ and "Q" records can be separated from the whole
program, the overwhelming majority of the program remaining

unchangeda

75

< DISCNT)

T T i e, Y
| |
; FLAG=p) o
| |
| Y |
l I
l SELECT O !
| |
l r———=——=]=- = = — =
l ' ‘ Y
|
l |
| EQBE ! SORTQ QseT
[I
I B i o e ol we i s e ek e
| _!
l PARM ,
|
' - NEW | MOD ' | mMoDQ
: Y |
1 Y |
! I T
| FLAG= |
| FLAG+16 SELECT |
EROL |
L_‘: P o =i T g O _'] A
4 I 7y — !
' upDT o 1) SORT EROL | ESRT
| \f/ O e e iy - SR |
[m S ALAL L
Is. " " 9l14,17 10,18 | 13,21 | 20 12 19 11 :
S| [| 1 | [1 ‘———:I—-—
([READ | [READ| | READ| WRITE DELETE Q PROH [DIS- :
EROL Q » o | [EROL LIST | |CESS=~| |[COUNT[
|| FLAGY WRITE| FLAG=| FLAG= ING UP- |
| FLAGH ¢ | FLAG+| FLAG+ FLAG=| |DATE |
8 1 20 FLAG+| |C
' 29 |
' |
|
I

D00 0@®mO 00

_____ SRR =~ P s s o CON P v g s Gl e e (s e el eyl

Figele The Original Program

= TG

The subprogram doing the read selection and verification of
the "EROL" and "Q" records is called EQBE, The sorting of the
selected "EROL" and "Q" records is made by the subprograms
ESRT and QSRT respectively.

The subprogram called UPDT performs the majority of the tasks
i.,e. generates cumulative account values, discounts and gene=~
rates or updates the file "C",

Our original intention was not to rewrite the whole program

but to examine how its main memory usage can be reduced:

by

- splitting the program into smaller subprograms,

- recompiling the program applying the overlay structure,

- at PL/I Optimizing compiler using the main memory require=
ments optimizing option /OPT(TIME)/, and

- transforming the subprograms into independent OS jobsteps.

The files cf the subprograms EQBE, ESRT, QSRT and UPDT can

be seen on Figs 2.
3. The Program Version Using Overlay Structure

The program version compiled applying the overlay structure

is on Fige 3,

The root segment /called VEZER/ gets the parameters PARM
/can be "NEW" or "MOD"/ and PHC /@l..l1l2/ at run time and it
is here, that the declarations necessary for calling the
SORT/MERGE program can be found.

First, the root segment /VEZER/ calls subprogram EQBE then
the SORT/MERGE program and finally the processing subprogram
UPDT.

4, Program Version Using Independent OS Jpbsteps

All the subprograms /EQBE, UPDT, ESRT, QSRT/ are the same one

as at the earlier program versions usere. The necessary

= G o

MODQ

EQBE
SAA/51.
TABLEM
TABLED ESRTIN
QSRT QSRTOUT
ESRTIN ESRT

nanaaG
1 A

QSRTOUT UPDT OSRTIN OSRT

3

- SAA/51 .

0

Fig. 2. Data Sets of EQBE,QSRT,ESRT,UPDT subprograms

- T -

VEZER

EQBE IHESRTA UPDT

Fig. 3. Program version using overlay structure

PARM=NEW PARM=MOD
EQBE EQBE
QSRT1
QSRT
ESRT
UPDT
UPDT1
QSRT2
UPDT2

Fig. 4., The independent 0OS jobsteps

- 79 -

linkage between subprograms EQBE and UPDT is supplied by a
parameter file /called PARF/ and its elementsare all the common
/PARM, PHO, FLAG, QMARK and QR/ variables. At the end of the
subprogram EQBE the values of the above variables are written
into file PARF and subprogram UPDT starts with reading file
PARF, The independent 0OS jobsteps in case of PARM=NEW /to
generate file "C"/ and PARM=MOD /to update file "C"/ can be
seen on Fig. 4.

5. Experimental Results

All program-versions were run on Ryad-22 computer with main
memory of 512 kbyte undef 0S operatingsystem /MFT Release
21.,8F and HASP/, The compilers were the PL/I-F version 5.5
and the PL/I Optimizing version 1 Release 2.2. The results

of the program runs under PL/I-F compiler are shown in Tables
l, and 2., and those under PL/I Optimizing compiler in Tables
3.and 4,

On the tables can be seen the following run data for the
selected best program-versions:
version = original: the original program
overlay: compiled with overlay structure
jobsteps: version with independent OS
jobsteps
job=identifier = the identifier /name,date/ of the job in
which the program was run
number of jobsteps = number of jobsteps in the job
BUFNO - the value of the BUFNO /number of buffers/ parameters
of the DCB in the DD card
The following data charakterize the sort properties of file
"Q v
QS/cyls/ - the primary space in cylinders of the QSRTOUT file
QSW/cyls/ = the primary space in cylinders of the QSRTWK work
file
QSW/pcs/ = number of QSRTWK work files

Q SORT Console CPU main
o time time memory
o
(0}
1
(]
Version Job =
identifier| Qs |osw |Qsw| RcD IN | CORE
- cylsicyls |[pcs kbyte
L &5
[0}
21 2
S L
= =
@ : g
min min sec |kbyte
original | ZPSSNT 1112112 |5 6 | 9514 55 25 5m 11,48s| 154
Overlay DSC/ 30 Ll {30 12 3 10752 25 24 7m 2Q38s 110
Jobsteps ON/22 3|12 |24 10 3 10752 60 19 6m 37.92s| 108

Table 1, Results with PL/I-F and PARM=NEW

08

Q SORT Consol¢ CPU main
time time memory
0]
S min min sec ktyte
)
Version Job g QS QSwW | Qsw RCD IN | CORE
. o 0
LaELTTer] cyls| cyls|pcs kbyte
©
1
ol O
Q| =z
E| L
T
Zl o
Original TDSCNT 1l}]2 12 5 6 5973 55 32 6m 54,18s 180
Overlay DSC/ 36 1 |1 40 16 3 5619 18 32 9m 1l.82s 128
Jobsteps |ON/23 6 /1| 30 12 3 5619 60 20 7m 32,70s 120

Table 2, Results with PL/I-f and PARM«MOD

'['8

Q SORT
v . Job Con= CPU ISA/ main
PSRN © 5 sole time OUTSIDE | memory
identifier o QS (osw(Qsw CORE time ISA

o cyldq cylg pcp kbyte | min min, sec kbyte/ kbyte

5 RCD IN kbyte

U

o

L &5

o| O

ol =z

=

3|3

Z|m
Original |OPTD/23 1|2 48| 24| 3 |10752 40 22 7m 19,68s 12/0 134
Overlay FATDP/34 1 (2] 30| 12| 3 | 10762 18 39 8m 23,88s 8/0 96
Jobsteps |ONOP/13 3 |2 48| 10| 3 (10752 60 16 6m 03,84s 6/0 92

Table 3e

Results with PLIOPT and PARM=NEW

_Zg—

Q SORT CoNn- cPU ISA/ main
Veraien Job sole time OUTSIDE memo=-
indentifien 8 time ISA ry
o
)
-8 QS pPSW |QSW|{RCD IN|CORE
Hon g
=
o
| &
)
o'
5 kbyte/
Zz| |cylsfcylspcs kbyte vte
min min,sec |kbyte kbyte
Original |OPTD/23 112148 124 | 3 (5619 40 17 5m 16.80s 12/0 140
Dverlay FATOP/35 1121 30 |12 | 3 |5376 18 36 8m 44.,22s 8/3 116
DJobsteps |ONOP/14 612 | 48 |24 | 3 |5376 60 .19 7m 10,16s 10/0 110

Table 4,

Results with PLIOPT and PARM=MOD

88

= B4 =

RCD IN -~ the number of "Q" records read in by the SORT/MERGE
program
CORE -~ the main memory necessary for the SORT/MERGE program
in thousands of bytes
Console time = the console time of the job in minutes
CPU~time - the actual CPU~time of the job in minutes and
seconds
ISA/OUTSIDE ISA - /only at PL/IOptimizing compiler/
Initial Storage Area /ISA/ and the amount of
storage obtained outside ISA in kbytes
main memory - the amount of the main memory occupied by the

job in kbytes

The data in Tables 1, and 3. are for PARM=NEW /generate "C"
file/ and in Tables 2. and 4. for PARM=MOD /update file "C"/.

Considering the amount of main memory occupied by the job,
the best results are given in all cases by the program-ver=
sion using independent 0S jobsteps.

Enterprise for Computing Application, Hungary
H-1536 Budapest. P.0.B, 227.

o BE -

PROPSRTISS OF CONCURRSNT SYSTHEMS

Piotr Prészynski, Poland

Introduction.

Our goal is to present some results concerning the properties of con-
current systems. These results was obtained on the basis of investigation
of concurrency-like relations defined for the systems.

We want to pay attention that the concurrency relation notion was
introduced by CeA.Petri in the case of concurrent processes (occurrence
nets) [2]. In that case concurrency relation can be defined as the comple-
ment of partial order. Thus, the most interesting results follow from
the partial orders theory. An extention of concurrency relation notion
to the case of systems (represented by non-deterministic and cyclic nets)
and methods of its investigation are not obvious.

The present paper is based on the approach presented in [1] sy and uses

some notions and results described in [1,5,6].

1.Basic notions.

In this section we recall some notions and results from [1,5], discar-
ding the formal notation, if it is possible. The reader interested in
more formal approach is advised to refer to these articles.
1e1.5imple and proper nets.

Let X be a set and let leftiXxX « X, rightsX«X = X be the functions:

(V (x,y)€eX=xX) left((x,y))=x, right((x,y))=y -
Df. By a simple net we mean any pair N=(T,P), where:

T - is a set of transitions,
Pg2T~2T is a relation (interpreted as a set of places),
(VaeT)(Ip,qeP) aeleft(plright(q) .

We shall consider finite simple nets only.

We accept the standard graphical representation of Petri net. In this
representation places will be numbered or described by [a ,...,antb1,...,b¥]
to denote the fact 851""’35 {b1,...J3§}EP (ajseeeya = are input,

and b1""’bm - are output transitions for a given place).

We will say that the net N1=(T1,P1) is a subnet of N=(T,P) and write

N1SN PP P1SP. It was proved that “%¢“”“ is a partial order relation and
that the set of all simple nets with this relation is a lattice.

We have? NiVNE = (T1Vl2'P4UP2) .

- 86 -

Df. A simple net N=(T,P) is called elementary iff
1) (Y a€T) [|"al=la’l =1 (every transition has exactly one input
and exactly one output place)
2) N is connected (a graph representing the net N is connected).
An elementary net (equivalent to finite state machine) represents sequen—
tial system - in general non-deterministic and cyclic one.
Df. A simple net N=(T,P) is said to be proper iff it is an union of
its elementary subnets.
Our further considerations will be restricted to proper nets only.
Furthermore we will consider also the dynamic structure of the net.
1. 2.Marked nets.
Let N=(T,P) be a simple net and R1s2%¢2p be the following relation:
(M, M,)R <=2 (JaeT) M ~‘azM-a" & “agM, & a¢M, .
The above relation is called reachability relation in one step.
The relation RN:(d1vR1'1f’
is an equivalece relation and for every MGZP the equivalence class of RN

o called reachability relation of the net N,

containing M will be denoted by [MGRN‘

More formally we shall define a different reachability relation in one

step [3]. The relation Ck1c2hc2¥ defined as follows:

(Mq,M2)60R1 &> (JaeT)((Ya,bed) aZb 3 "an"bza’md’=a’n’b="anb’=g)

& M‘I-akc-JA.a = M2-aL6JI-\ a’
& MJtan, &« L aten,

is called concurrent reachability relation in one step.

It can be easily proved that the relations %¥ defined on the basis of the

R1 and CR1 are the same,i.e. RN:(R1UR1-1fL =(CR1UCR1-1f‘ .

Df., By a marked simple net we mean any triple MN=(T,P,Mar), where:

N=(T,P) is a simple net,
Mar SZP is a set of markings and

Mar:\u){&ﬂnn |M6Mar} .

we will say thatt
A transition a T is fireable iff (3M1.M2) 'asM,l & a‘snz .
A marked net is locally fireable iff svery transition of this net is
fireable.
A marked net is safe iff (\fCe2®)(Yaer)

(*anC=@ & (I MéMar) "awCgM) &=D (a*hC=p & (I M%epar) a'vCsM”).
1e3.Coexistancy relations.

The relations we are going to use as a model of concurrency-like rela-

tions are symmetric and irreflexive (called in [1] sir-relations).

= BF =

For any proper net N=(T,P) we can define these relations in the follo=
wing ways

Let N (T P) (i=142,40.m) be @ll elementary subnets of N and let
covy= '{Pk ,...,P 3 (k <m) be a covering of P.

Df. The relation coexp, defined as follows?

(Wpsa€P) (p,a)ecoex, &> (VAecov,) p€h or aqea
is called the coexistancy relation defined by the coveringﬁcovd.

In words: Places p and q are in the relation coex, (are “‘coexisting”’”)
iff they don’t belong to the same subnet of N.
According to [1.2] the family of maximal sets of places being in the

relation coex, we denote by kens(coexﬁ).

B
Df. A marked simple net MN=(T,P,Mar) is called naturally marked iff

N=(T,P) = is a proper net, and
Mar:kens(coexE) (for any covering cov
Theorem [’I] °
Every naturally marked net is safe and locally fireable..

P defining the relation coexﬁ).

Let us observe that every marking of naturally marked net and every
elementary subnet may have at most one common place. Thus, in this case,
the set of markings represents the set of all permissible global states
of such the system,whose sequential subsystems cannot be in two different
states at the same time.

In the case of naturally marked nets there was introduced the notion
of C-density, which save the interpretation of Petri’s K~density for this,
wider class of nets:

(R.Janicki, see also [5,6])

The relation coex, is C=dense for covering cov defining this
relation iff

(\/AecovE)(\fBekens(coexE)) AnB # 0 .

We can say that if the relation coex_ is C~dense for the given covering

covp, then every global state of the ststem represented by naturally mar-
ked net is an union of local states of all sequential subsystems.
The following, very useful property of covering was defined in [5,0]:
Df. Let cov be a covering of X, where X is finite set.
The covering cov is said to be replete set covering (abbr.KS-cove-
ring) iff
(VSEcov)(VRCCOV) [((VAeR) AnSED) & ssiHA > L\x Ass] .

The following theorem is valid?

i QY

Theorem [5] *
If a covering covy ig not KRS-covering, then the relation coexy defined

by this covering is not C-dense.]

2.Various notions of fireability.

In the previous section we have recalld from [ﬁ] the definition of
locally fireable net. Note that the local fireability is very important
property. The lack of local fireability means that the static and the
dynamic. structure of the system are inconsistent?: there exist transitions
which never be fireds. For naturally marked nets, however, the request
of local fireability is always fulfilled. On the other hand, the request
of local fireability is too weakj it is possible that there is no firing
sequence, that markings allowing to tfire different transitions belong to
different equivalence classes of reachability relation.

In [1] it was defined notion of the fireability of the net - the fireable
net that is the net which is locally fireable and the set of markings
consist of exactly one equivalence class. However, such the condition
is difficult to satisfy and, in addition, in more cases it cannot be as-=
sumed because of interpretation of the net.

Let us now introduce another notions, which allow us to describe desir-
able properties of nets.

Df. A marked simple net N=(T,P,Mar) is called weakly fireable iff
(Juerar) (\Vael) (I8) Mae[M] & *atM &« a'n(M="g)=@ .

Df. A marked simple net N=(T,P,Mar) is called semifireable ifl
\l r L (i . . = ~
(Vi dar)(Ya 1)(Tn) M €M « *ach «_a’n(M="a)zp_

(If the net is safe, then underlined conditions can be omitted.)

The weak fireability means that there exists marking which enable us
to reach (in the meaning of forward and backward reachability relation)
the possibility of firing of every transition of the net. If the net is
semifireable, then each marking has such the property.

Let us observe that the net is “‘coherent’’ - from the point of view
of the dynamic structure of the net - if it is at least weakly fireable.
The necessary conditions of weak fireability and semitireability are
the following:

Theorem 1.

If the covering cov, defining the relation coexy is not KS-covering,

B
then the naturally marked net (T,P,kens(coexﬁ)) is not weakly fireable.

- §G -

Theorem 2.
If the relation coexp is not C-~dense, then the naturally marked net
(T,P,kens(coexE)) is not semifireable. I
Note that C-density is neither necessary nor sufficient condition of
weak fireability.

““well-defined’’ concurrent system should

Postulate. The net representing
satisfy the following conditions:
1) it should be weakly fireable
2) every elementary subnet representing real sequential subsystem and
every marking (global state of the system) should have common ele-
ment.l]
Of cours, in the case of naturally marked nets the second conaition is
equivalent to C-density. So, a naturally mar<ed net may represent the
well-defined system only if the places of its subnets corresponding to
real sequential subsystems form a RS-covering.

Lxamplee.
Let us consider the following net:?

The decomposition into elementary subnets gives us five subnets with the
following sets of placos.

p1 = (1,243} » {4,5,8} {3,4,0,63

P, = {6,7,8 {1257.8}
a). At first let us consider the covering cov -{91.P2,P3,P4,PSS

This covering is not RS=covering,because?

P1AP AP &« P,thS#i?) and:

P
S LA sl AR = {8} &£¢, .
Thus the net (T,P,kens(coexu)), where coexy is defined by the covering

ovN,is not weakly fireable and is not C-dense.

- O) =

b)e Now, let the covering defining relation coex_, be the following onet

covp = {P1,P2,P#} e This covering is a minimal Eovering, and we can sta=
te immediately that coex, is C~-dense (see [5,6]).
The investigation of semi= and weak fireability is arduous because of
the lack of sufficient conditions. At first we have to construct the fa-
mily kenSCCOexE) on the basis of the graph representing the relation

coex, (see [1])e This family is of the forms
kens(coex) -{{1 4, 6} {1 B I {’l 5,7} (‘l 4.7} {1 8} {2 4,6} {2 4, } .

{2.5.6} {20574 {3o408)s (307} s 52507 o {2084 {308 1}
Further we have to investigate the reachability and fireability.

We can observe that there are four equivalence classes of KN

K —{{5 4, 6})
= (b3 fous. 7}
K = {8:46)s 248} 4 30407 1 305,94 (3, 8])
{{1 51, bt ot o5i6f 180 8 (35,73 -

Because K3 (or K4) allows us to fire all transitions of the net - the
net is weakly fireable. It is not semifireable, however the net (I,P,Mar),

where Mar=K, v K, (it is not naturally marked net) = is. O

3. Concurrencye.

The concurrency-~lixe relations,which have been considered in previous
sections of this paper,describe only the coexistancy of the local states
of the system. In this way, however, we are able to describe all permissi-
ble global states of the system, and consequtively, to describe the notion
of transitions’concurrency. we will accept the following definition:

Df. The transitions @ peeesdy of marked simple net (I,P,Mar) are

said to be concurrent iff

1) e (\fa ,a «T) id] > af\ ag:§1~5 ——1——J—§1—— 5 =0 .
:-]x-mxar; k) & 1K=J1 aln(-"a)0 .

(If the net is safe one, then the underlined parts of the above definition
can be omitted). '

Let us observe that first condition of the definition concerns the sta-
tic structure of the net, second - the dynamic structure of it. Because
in the case of naturally marked nets the dynamic structure is also built
on the basis of the static one, thus the concurrency of transitions in
this case is completely described by the static structure of net.(However,

it is dependent on the choice of the covering covE) .

= O =

Let coexy and coexé be the coexistancy relations defined by the cove-
rings (of the net (T,P)) covg and cové respectively.
Theorem 3.

It covﬁsicov; then all transitions concurrent for the net

('I‘,P,kens(coexé)) are concurrent for the net (T,P,kens(coexm)) too. Wl
Theorem 4.

The greatest number of concurrent transitions (which can be simulta-

neosly concurrent) of the net (T,P,kens(coexm)) is not greater than

cardinality of the least covering cov;.scovm..l
Theorem 5.

If every two transitions belonging to a set {a1,...,ak}ggT are con-

current and the net (I,P,Mar) is naturally marked, then all transit-

ions a1,...,za1k are concurrent..
Note that in the case non-naturally marked net Theorem 5 is not true,
so in this sense the natural marking gives us the ‘’‘maximal’’ concurrency.
We want to pay attention that the fact that k transitions can be non-con-
current - in spite of every n<k of them are concurrent - points out that
binary relation of transitions’concurrency cannot be (in general) extended
to more complex structure.
At the end we want to present some comments concerning the aefinition
of transitions’ concurrency accepted here.

First comment. The fact that transitions a and b are concurrent meauns

only the possibility of concurrent executions of them. However, Ior some

initial states this possibility may be lost. This situation is shown by
sxample, where we can find two pairs of concurrent transitionss a,d
and a,e « But concurrent execution is possible only for markings belong-
ing to equivalence class K4. If we start from any marking belonging to
3, then no transitions can be fired concurrently, although all of them
will be executed. M

Second comment. We will pay special attention to the understanding of

concurrency phenomenon in the case of non-deterministic systeums.

Let us consider the following nets

Here we have: =-only one covering covq—{£1 3 5 2 4,5}}

- the family kens(coexs) {I1 a} {é J} {1 Q} {),43 {D}}

- 92 -

On the basis of the definition we can state that transitions a and b
are concurrent. However, looking closer the philosophy of concurrency
we can say that this result is not so clear, as seems at first.
In [4] the authors consider differents between non-determinism and con-
currency on the basis “‘how the decisions are taken’’. l'hey suggest
that concurrency - interleaving of many interactions - ““is not decision
at all, since the actual interleaving cannot have any influence on tne
future behaviour of the system”’. From this point of view we can dispute
if the transitions a and b are really concurrent.
These considerations arise the following questions
Maybe .the stronger definition of transitions’ concurrency is necessary %
The author propose the following explanation, which let us save the
definition in the previous forms
The global nondeterminism [4] is represented by the (non-deterministic)
evolution of a global state of the system. Thus, the behaviour of the
system is the result of the global decision, how the actual state will
be transformed. The single decision, of course, can concern only the

transformation of the actual state in another state reachable in one step.

In our example we have:

the actual state - h,a} (any action - a or b -can be fired) and

the states reachable in one step = {j,#},{a,j} and {5,4} .

Note that the last one is reachable by the simultaneous firing of trasi-
tions a and b (it is reachable in the meaning of the relationCk1).

when the decision that the output state is the state {3,4} has been taken,
then a and b can be fired concurrently (simultaneously or in arbitrary
sequence).

So, we can say that in the case of non-deterministic system the possibi-
lity of concurrent executions of transitions may depend on the (global)

decision ol the system.n

4. Final comment.

The results presented here, obtained for proper simple nets, seem to

be helpful in the case of synthesis of concurrent system on the basis
of the sequential components of this system. dowcver, it is obvious
that some sufiicient conaitions of weak fireability and C-density will
be more convinient {the necessary and sufficiznt condition of C-aensity
has been described in [j])+ lo resolve this .roblem we have to look
closer the description of places for simple net - till this aescription

is used only during the decomposition of the net into elementary subnets.

- 93 =

Acknowledgement.

The author would like to thank R.Janicki for invaluable discusions,

stimulating papers and for help in the formulation of many problems.

References.

[1]

[2]
[3]

[4]

(5]

[6]

Janicki R., On Atomic Nets and Concurrency-like Relations,

Lecture Notes in Comp. Scie., vol.70, Springer-Verlay,
1980, pp. 320-333.
Petri C.A., Non-Sequential Processes,
ISF Report 70-01, GMD, Bonn, 1977.
Petri C.A., Concurrency as a Basis of System Thinking,
ISF xeport 78-06, GMD, Bonn, 1978.

Montanari U., Simonelli C., On distinguishing Concurrency

from Nondeterminism,

Progetto Finalizzato Informatica C.N.K. 7,
Cnet, ETS/Pisa, 1980.
Prészynski P.,Petri Nets and Concurrency-like Relations,

Lecture Notes in Comp. Sci., vol.107, Springer-Verlag,
1981, ppe. 471-478.
Prészyriski P.,Remarks on the Notion of Concurrency Relation

in the case of Systems,
Lecture Notes in Compes Sci., vol.117, Springer-Verlag,
1981, pp. 311=320.

Mailing address: Piotr Prészyiski

Institute of Mathematics
warsaw Technical University

Pl. Jednosci Robotniczej 1
00-601 Warsaw / Poland

B e e o .
i e

- 95 -

IMPLEMENTATION OF ABSTRACT TYPES IN PL/I
A. Hernadi
Hungary

1. Introduction

A main problem in the design and delevopment of large software
systems is reducing the amount of complexity or detail that
must always be considered. Two common and effective solution
methods are:
- decomposition, that is factoring a task into separable sub=-
tasks, and
-~ abstraction, that is providing a mechanism for separating
attributes relevant in a given context from those which are
not.,

Procedural abstraction enables defining new mechanisms operat=-
ing on old values,

Type abstraction enables defining new values and mechanisms to
operate them,.

A program should be able to define data of any type - either a
primitive type of the base language /such as real, integer or
string/ or a user-defined type such as a set, graph or other
more complex objects such as a personal file, symboltable or
the like, With these types certain operations are defined., For
the primitive types the operations are defined by the language
itself, For the user-created types the user must also specify
the available operations, For example, the operations on a
variable of type symboltable may be to add a new name, search
or delete from the table,

Most of the recent work on embedding abstract data types into
programming languages has emphasized the use of strong typing

- A -

and class=like constructions to provide isolation for the
implementors of abstract types. Only those operations defined
for a certain type, and no others, are permitted on data of
that type. This is where most existing languages fail., General-
ly speaking, not only the creator, but any other routine has
access to the contents of a variable of a new type. For examp-
le in FORTRAN the type stack may be simulated as an array.

This array may be passed to subroutines which implement the
various operations allowed on stacks, However, there is no=-
thing to prevent any routine from modifying the array, and

hence accessing the contents of a user-defined type.
To avoid these problems new languages have been devised, for
much of which the class construction of SIMULA 67 has been

used /e.g., CLU, Alphard and Euclid/.

2. Specification of Abstract Types

There are many possible approaches to specifying the semantics
of the operations of abstract types., By a well-known classifi-
cation ‘most of them, however, can be placed in one of the two

categories: operational or definitional.

In an operational specification, instead of describing the
properties of the abstract type, a model should be built up

for the type in terms of some well-understood language or dis-
cipline. The operational specifications often force one to
overspecify the abstraction by introducing extraneous detail.
In operational specification one must infer the properties of
the abstract type from the properties of the operational model,

so there is the risk of inferring unnecessary properties.

In a definitional specification one explicitly lists the pro=
perties that the values and operations forming the abstract
type are to have. Only essential characteristics need be spe-
cified, thus the specification is an abstraction encompassing
a relativly large class of implementations. In addition the

absence of superfluous detail tends to increase the clarity of

- 97 -

the specification, The ability to state explicitly the proper-
tieS of the operations makes the specification a better tool
for formal reasoning.

One of the most prominent approaches to construct definitional
specifications is the axiomatic specification of Hoare BO'SQL
which is the most widely used as well, We shall look at two
axiomatic approaches to the specification of abstract types:
the approach suggested by Hoare [HO’7é] and the algebraic
axioms |GU’78a] .

2.1, The Hoare Approach

Hoare'’s approach has enjoyed widespread use, Most of the users
have departed in some ways from the notation originally used
by Hoare., Here we shall use the notation of Alphard. We begin
by looking at an example, a definition of the abstract notion
of a stack independently of the kinds beig stacked[WU'7é]. In
this case we shall allow only four operations:

"push" makes a new entry at the top of the stack,

"pop" deletes the current top element of the stack,

“top" returns the value of the current top element of the

stack, and

"empty" returns "true" iff the stack is cmpty.
Alphard’s abstraction mechanism, the form, provides encapsula-
tion and support of type abstraction, The definition of the
objects of an abstract type and the operations on them consists
of three parts:

- the specifications, which constitutes the user’s sole source

of information about the form,

the representation, which describes the representation and

related properties of an object of this
type, and

- the implementation, which contains the definitions of the

functions that can be applied to an
object,
All of the representational information in a form is inacces=

sible to the abstract program using the newly defined notion;

- 98 -

only those properties defined in the formal specification are
accessible.

form stack (T:form¢e)n:integer)= *
beginform

specifications

requires n»0;
Tet stack=<...X.s..> where x; is T;
Tnvariant 04len§th (stackyén;
initially stack=nullseq;
function push(s:stack,x:T) pre O¢length (sKn post s=s’~X,
pop (s:stack) pre Odlength (s¢n post s=leader (s’ ,
top (s:stack) returns(x:T) pre 0< ength(i&n
ost x=last(s’) ,
empty (s:stack) returns(b:boolean) post b=(s=nullseq);
representation
unigue v:vector(T,l,n),sp:integer init sp<0;
rep(v,sp) =seq(v,1,sp);
invariant Oéspén;
states mt when sp=0,
normal when 0<sp<n,
full when sp=n,
err otﬁerwise;
implementation
body push ggg(s.sp:s.sp’+lAs.v=u(s.v’,s.sp,x»=
mt,normal:: (s.spes.sp+l;s.v[s.sp*Xx);
otherwise: :FAIL;)
pop out (s.sp=s.sp’=1)=
normETTéullz: S.spes.sp~-1;
otherwise: :FAIL;
top OUt (X=S.V [S.SP])k=
normal, full::x=s.v [s.sp] ;
otherwise: :FAIL;
empty out (b= (sp=0))=
normal,Tull::b- false;
mt::b«true;
otherwise: :FAIL;
endform;

O
o
Q.

o
o]
Q

o
®]
),

The relation between a concrete object and the abstract object
represented may be expressed by the representation function,
rep. Once a stack form is defined, instances of abstraction
may be introduces into Alphard programs, for example, by dec=
larations such as

local si:stack(integer,35),sr:stack(real,lA);
which makes "si"™ a stack of integers and "sr" a stack of reals,

Nvpr 15 the maximum permissible depth of a stack, The primed
symbols in the post conditions and gut assertions refer to the
value of the symbol prior to the execution of the operation.

- 99 -

The important property of the language is the ability to sepa-
rate the use of an abstraction from its concrete representa-
tion. The verification technique exploits this separation and
permits the implementation /the form/ to be verified indepen-
dently of the abstract program in which it is used.

Let us consider how to define this abstract type in CLU. In
this language the cluster supports type abstraction. The first
part of a cluster definition provides a very brief description
of the interface which the cluster presents to its users. The
remainder of the cluster definition contains three parts:

- the object representation,

- the code to create objects and

- the operation definitionse

stack=cluster[t:type] is create,push,pop,top,empty
at=array [t
rep=record sp:int,v:aﬂ
create=proc(n:int) returns (cvt)
return (repBisp:n,v:atgnew()})
end create
push:proch:cvt,x:t) si nals(étackoverflow)
if s.sp=at@size (s.v) then signal stackoverflow
__ else atgaddh(s.v,x)

en
end push
pop=proc (s:cvt) signals(stackunderflow)
atgremh(s.v)
except when bounds: signal stackunderflow
end
end pop

top=proc (s:cvt)returns (t) signals (stackunderflow)
return(atgtop (s.Vv))
except when bounds: signal stackunderflow
end

end top
empty=proc (s:cvt) returns(bool)
return(at$size (s.v)=0)
end empty
end stack

————

Within a cluster cvt can be used to "convert" the viewpoint

between the abstract type being defined and the internal rep-
resentation. We can introduce an object of stack, for example,
by

is:stack [int]:=stack[ig£]$create(35}

= YOO -

which is equivalent to
is:stack[int
is:=stack[int]Bcreate (35).

CLU uses compound namesfor operationse. The first part of the

compound name identifies the type to which the operation
belongs while the second component identifies the operation.
As it seems CLU declarations include just the information that
the compiler can check with reasonable efficiency. Other in-
formation required for proofs should be expressed in a sepa-
rate "specification" language. Various specification language
processors could be added to the system. Verification is de=-
composed: one module at a time is studied to determine whether
it implements*its abstractione.

Despite the fact that the various operations of type stack are
intricately related to one another, these relationships are
not directly expressed in the specifications of the type.
Rather, stand-alone pre- and postconditions are supplied for
each operation. This leads us to introduce a third domain of

discourse in which to express the meanings of the operations.

2.2 Algebraic Specifications

An algebraic specification of an abstract type consists of
three parts:

- a syntactic specification to provide syntactic and type
checking information: the names, domains
and ranges of the operations associated
with the type;

- a semantic specification which is a set of axioms to define
the meaning of abstractions by stating their
relationships to one another; and

-~ a restriction specification which deals with preconditicns

and exception conditionse

type Stack[t:"xge,n:Natual number] where ()

syntax

newstack: -+ Stack
push: Stack » t =Stack
pop: Stack —Stack

top: Stack —+Stack

= 10X ~

empty: Stack —+Boolean (2
depth: Stack -+Integer
semantics

declare s:Stack,x:t

1/ pop (push (s,x))=s

2/ top(push (s,x)=x

3/ empty (newstack)=true

4/ emptyépush(s,X»:false

5/ depth (newstack) =0

6/ depth(push(s,x))=1l+depth (s)
restrictions
pre (pop,s)=Tlempty (s)
empty(s)=>failuregtop, s)
failure (push,s,x) =depth(s)>n

*

The questions of consistency and completeness of axioms are
discussed in‘bU'78é]o The axioms are used as rewrite rules and
proofs can be established via a series of reduction[bU'?Sb].
It is important to note that the techniques developed in the
above papers are essentially independent of a specific prog-
ramming language.

Thus the presence of axiomatic definitions of abstract types,
either Hoare-like or algebraic specifications are used, pro=-
vides a technique for factoring the proof into manageable
sections. The main program expressed in terms of operations on
abstract objects natural to the problem is verified by tradi-
tional methods, treating the specifications of the abstract
objects and operations as if they were primitive, Then we have
to verify whether the concrete implementation of each abstrac=-
tion is consistent with its specification,
The Hoare-~like approach is more convenient when the type ab=
straction is closely related to a type available in the under-
lying specification language.
The algebraic technique is more convenient for a type abstrac-
tion that is not readily represented or modelled by a well-
known types

@ The ¥ indicates that depth is an auxiliary /"hidden"/ func=-
tion, which may not appear as part of programs using the
abstractione. Auxiliary functions are part of the specification
of the abstraction but not of the abstraction itself.

- 102 -

3. Proposal for Incorporating Abstract Data Types into
Language PL/I

While CLU,Alphard, Euclid, Ada and other such languages hold
great promise experience, however, proves that a new language
to get widely spread takes 15 to 20 years. It could help pro=-
grammers today to add such facilities to existing languages =

where possible.

In the socialist countries most commercial programming is done
in PL/I. We defined a data definitional facility for the PL/I
language that preserves most of the desirable features of data
abstraction., Since our ultimate goal is to implement this with
a preprocessor, we designed this mechanism to involve as few

changes to PL/I as possible.

Now we describe the programming object whose preprocessing
provides an implementation of a type. Let us consider the ab-
stract data type stack again. In the extended language DEF_TYPE

modules support abstraction mechanisme

STACK: DEF TYPE(N);
/% TOCAL VARIABLES FOR SHARED INFORMATION AND
OBJECT INITIALIZATION IF REQUIRED %/
DCL N BIN FIXED;
DCL 1 STACK,
2 SIZE BIN FIXED,
2 ELEMENT(SIZE REFER (N)) ,
2 SP BIN FIXED INIT(O) ;
DCL S TYPE (STACK) ,
E;
PUSH: FUNCTION (S,E);
IF S.SP>=S,SIZE
THEN SIGNAL CONDITION (STACKOF) ;
S«SP=S.SP+1;
S.ELEMENT (S.SP)=E;
ENDFUNCTION;
POP: FUNCTION (S) ;
IF 1EMPTY (S)
THEN S.SP=S.SP-1;
ENDFUNCTION ;
TOP: FUNCTION gs) RETURNS (DEC FLOAT (6));
IF EMPTY (S)
THEN SIGNAL CONDITION (STACKUF) ;
RETURN (S.ELEMENT (S.SP)) ;
ENDFUNCTION;

= 103 =

EMPTY: FUNCTION (8) RETURNS(BIT(1)) ;
RETURN (S.SP<=0);
ENDFUNCTION;

END_DEF STACK;

The abstraction module specifies the representation as a struc-
ture variable having the same name as the type abstraction.
Each FUNCTION-ENDFUNCTION pair defines a separate function
/excluding GOTO statement/. So the abstraction mechanism is
defined as several functions with shared information via any
local variables of the DEF_TYPE module.

Abstraction modules can have generic parameters too. Generic
parameters play the same role in DEF_TYPE modules as macro
variables in macro definitions, and must be enclosed in
brackets,[], immediatly after the keyword DEF_TYPE,

STACK: DEF_TYPE[T] (N);
/% TOCAL VARIABLES FOR SHARED INFORMATION AND
OBJECT INITIALIZATION IF REQUIRED %/
DCLT T;
DCL N BIN FIXED;
DCL 1 STACK,
2 SIZE BIN FIXED,
2 ELEMENT£SIZE REFER (N)) TYPE (T),

2 SP BIN IXED INIT (O);
DCL S TYPE STACK[T]
E TYPE(T) ;

PUSH: FUNCTION (S,E) ;

ENDFUNCTION;
POP: FUNCTION (8);

s e

ENDFUNCTION;
TOP: FUNCTION (S) RETURNS (TYPE (T));

ENDFUNCTION ;
EMPTY: FUNCTION (S) RETURNS (BIT(D)) ;

ENDFUNCTION;
END_DEF STACK;

These abstractions cannot be used directly compared to ordinary
ones. Instances /that is copies/ of such an abstraction are
obtained by binding the generic parameters to generic argu-
ments in a special declare statement of the abstract program
using the type:

DCLT STACK I STACK [BIN FIXED] ;
DCL SI TYPE(STACK I (35)) ;.

To

- L0D4 =

declare names for abstract data types and to bind generic

parameters to generic arguments in PL/I programs we introduced
the DECLARETYPE /abbreviation DCLT/ statement, which has the

following general format:

DECLARETYPE identifier typename “bl ,g?J...]J

Lidentifier typename L@l ,gZJ...]“...; (3

Syntax rules:

WwWe

Any number of identifiers may be declared in one DECLARETYPE
statement,

The name "identifier" is to be used in the PL/I program for
the user-defined type "typename" with generic parameters
substituted with the specified generic arguments, if there
are anye. A DECLARETYPE gtatement is vaiid iff "identifier®
is a unique name and there is an abstract type "typename"
defined, which has at least so many generic parameters as
many generic arguments appear in this declaration.

One need not supply generic arguments for each generic pa=-
rameters, because an empty string is assumed as a default
value. If no generic argument is to be specitied, brackets
may be ignored.

The corresponding generic argument must match whenever a
generic parameter is declared to ke a type., If the corre-
sponding generic argument is an abstract type itself, only
that type is available in the invok-

the COPY operation of
ing abstraction, if there is anye

For generic parameters not declared to be types generic
arguments are not checked to match, and generic arguments
are managed as if they were character strings starting with
the first character after terminators [or comma and ending
at the next terminator comma or J.

For each zbstract type used tnere must be a DECLARETYPE
statement, even if it has no generic parameters, and the

program uses the name c¢f the abstraction module.

added a new attribute TYPE to specify the abstract type and

arguments matching the parameters, if there are any in the

o ————

3

Ibrackets denote options, because square brackets,[] 5
“enclose generiz arguments,

= 105 =

DEF_TYRE module., Dimension attribute which specifies bounds
evaluable at preprocessing time, alignment attributes /ALIGNED,
UNALIGNED/, scope attributes /INTERNAL,EXTERNAL/, and storage
attributes /AUTOMATIC,STATIC,BASED,CONTROLLED/ may be supplied
with the attribute TYPE,

The extended language, like CLU, uses compound names for the
operations. For example:

DCLT STK_I STACK[BIN FIXED (31)]
STK_R STACK[DEC FLOAT];
DCL SI TYPE (STK_I(35)) , SR(5) TYPE(STACK:R (14)STATIC;
CALL STK_ISPUSH (SI,2) ;
® 50
A=STK_RBTOP (SR (3)) ;

29
To implement the above facility the preprocessor must match
two considerations:

~ to generate correct PL/I code for correct programs

~ to detect errors in the improper use of type abstractions.

We use the PL/I procedure as the basic structure to group data
definitions and operations defined with ENTRY statements. The
skeleton of a data abstraction modul produced by the prepro-
cessor is the following:

typename : PROCEDURE ,,, RECURSIVE RETURNS (POINTER) ;
ALLOCATE typename SET $PTR ;
/% LOCAL VARIABLES FOR SHARED INFORMATION AND
OBJECT INITIALIZATION IF REQUIRED %/

DCL 1 typename BASED $PTR ,
RETURN (#PTR) ;

opl: ENTRYsss;
BEGIN:
END;
RETURN ;

op2: ENTRYsoas;
BEGIN;
END;
RETURN ;

op3: ENTRY e 0s;
BEGIN;
%0
END;
RETURN ;

END typename;

- 106 =

In this case "typename"” is the name of the abstract type being
created and the entry points /opl, op2, and op3/ define the
operations on this new data. The main entry point cf the ab-
graction module has the special significance for the initializa=-
tion of the abstract objects. Since the ALLOCATE statement is
inserted immediatly after the preprocessed DEF_TYPE statement,
and RETURN statement is inserted on scanning the first FUNCTION
statement, additional initialization specified by the user,
will be performed for each-allccation of an abstract object.
Information required for creating an object is passed in the
parameterlist of the main entry point. To prevent control to
pass around ENTRY stetements in normal sequential flow /by
forgetting the RETURN befcre the ENDFUNCTION/, the preprocessor
inserts a RETURN statement for ENDFUNCTION., Thec representation
of the data abstraction is restricted to this procedure, so
other modules may only manipulate the object via ist defined
operations, and may not alter its representation in any other

manners.

The basic data abstracticn is nothing more than a pointer
variable, To prevent the "outside world"” from gaining an

access to the storage referenced by such pointers, their values
are hidden in a static tables Tc add protection to TYPE point-
ers, it was necessary to store some mcre information with

these pointers to identify the allocating abstraction module at
run time, As a result a TYPE(aO@) attribute ie substituted

with CHAR(8) INITIAL((...)) attributes., The INITIAL attribute
calls the main entry point of the abstraction module, thus TYPE
variables are all initialized at the start cf procedures, and
each represents a unique storage stiructure, However the basic
mechanism of PL/I, that is storage allocation on procedure
entry and deletion on procedure exit in the case of AUTOMATIC
variables, cannot be implemented as a whole, because upon

exit from a procedure, storage allocated for abstract objects
and not refereced anv more cannct be freed. Since abstract
objects are really pointers, in order to eliminate several

variables sharing the same representation we do not allow

} 4 g S o 2l oy S E W T W I ([-
avstract, ocbjects as rardget variaples O

assignnent statements

= o7 =

Instead a COPY operation should be specified for each abstract
type - if desirable,

The preprocessor implementing these facilities accepts a
series of modules as inpute. A module will usually be a DEF_TYPE
abstraction module or a PL/I procedure,
In the course of preprocessing PL/I procedures
-~ two ON~units are inserted to maintain run time errors such
as incorrect use of an abstraction /when PL/I compiling and
running is forced despite the error signalled during pre-
processing/ and overflow of the static table hiding TYPE
poiniers;
~ DECLARETYPE statements are ignored, and declarations of the
entry points of abstract types defined correctly are insert=-
ed instead, if there are any., The original names appear in
comment only, because internal names must be generated to
satisfy the restrictions for external names;
- TYPE attributes are substituted as above mentioned, but
INITIAL attributes are not given for parameters;
- names of abstract operations are substituted with the
corresponding internal names;
b
-~ instances of abstract types defined correctly are attached
to the PL/I program produced by the preprocessor as exter=

e checking is performed for TYPE wvariables

]
rt
U

nal procedures,

In the course of preprocessing DEF_TYPE mcdules

- "DEF_TYPE" is substituted with “PROCEDURE", generic param-
eters are ignored, and RECURSIVE and RETURNS attributes

- ALLOCATE and RETURN statements are inserted as above dis-
cusseu;

- "FUNCTION" is substituted with "ENTRY'; and a BEGIN state-
ment. is inserted immediately after each ENTRY statement;

~ ENDFUNCTION is implemented by END; RETURN; statements;

~ abstract types other than the one being defined may be in-
volved, and are managed in the same way as in PL/I modulés;

~ pointer values referring to storage allocated for abstract
objects must be handled through the static table hiding

= 10§ =

TYPE pointers;

~ a description=unit must be built to contain information

needed during preprocessing a module involving this type,

The preprocessor implementing these features is under develop-

ment. The version which currently eXists maintaines only the

PL/I procedures using abstract types. For this first approach

we

introduced some restrictions such as

a name declared for an abstract data type may not appear as
a generic ﬁarameter, so an abstract data type may not refer
to another one;

description~units containing information about the abstrac-
tion modules are in an index-~sequentially organized file., A
description-unit holds complete information about the ge=
neric parameters of the abstraction module, all parameter
and returned value types of each operation in the abstrace
tion module;

the source code of the abstraction modules is in a parti=-
tioned file, in semi-~preprocessed form;

TYPE attribute is valid only for variables which are of
first level with a level number implicitly declared. TYPE
attribute cannot be factored, and EXTERNAL attribute may
not be specified for TYPE variables;

some keywords are considered to be reserved words, and their
declaration as an identifier would lead to a meaningless

resulte These are the following: BEGIN
DECLARE and DCL
DECLATETYPE and DCLT
DO
ELSE
END
ENTRY
LE
ON
PROCEDURE and PROC
RETURNS
THEN,

Conclusion

It is certainly possible to use abstract types as a program=-
ing tool without actually making provision for them in the

programming language. There are, however, several advantages
to be gained from having a facility for the definition of

abstract types within a programming language: the programs

= 1Q9 =

which result are more modular, easier to understand, modify,

maintain and prove correcte

References

DA*70Q

GuU?*77

GU?*78a

GU’78b

GuU?80

HO’69

HO?*72

LI*7Z7

LT*78

wu’ 76

ZE*78

Dahl,0.Js,Myhrhaug,B.,Nygaard,K,:

SIMULA 67 COMMON BASE LANGUAGE

Publication S-22 Octe. 1970, Norwegian Computing
Center. Forskningsvien 1B Oslo 3, Norwaye

Guttag,JeVe:

Abstract Data Types and the Development of Data
Structures

CACM, Vole 20, ppe396=404, June 1977

Cuttag,JaVe,Horning,JsJe:
The Algebraic Specification of Abstract Data Types
Acta Informatica, Vol., 10, pp. 27=52, 1978

Guttag,JdeVe,Horowitz,E, ,Musser,DoRs:
Abstract Data Types and Software Validation
CACM, Vole, 21, ppe 1048-1064, Dec, 1978

Guttag,Jd.Ve:

Notes on Type Abstraction /Version 2/ '
IEEE Trans., Software Eng., Vol, SE-6, pp. 13-23,
Jan, 1980

Hoare ,CeAeRe:
An Axiomatic Basis for Computer Programming
CACM, Vol. 12, ppe. 576~580, Oct, 1969

Hoare,CesAeR,s:
Proofs of Correctness of Data Representations
Acta Informatica, Vol. 1, No, 1, pp. 271-281, 1972

Liskov,B,,Snyder,A,,Atkinson,R,,Schaffert,C,:
Abstraction Mechanisms in CLU
CACM, Vol. 20, ppe. 564-576, Aug, 1977

Liskov,B. et ale:

CLU Reference Manual

Massachusetts Institute of Technology, Laboratory
for Computer Science, Computation Structures
Group Memo 161, July 1978

Wulf ,W,A,,London,R,L,,Shaw,M,:

An Introduction to the Construction and Verification
of Alphard Programs

IEEE Trans., Software Engs,, Vol, SE=-2, pp., 253-265,

Dece. 1976

Zelkowitz,M.V,,Larsen,H,J,:

Implementation of a Capability-Based Data Abstraction
IEEE Trans, Software Eng.,, Vol, SE-4, pp. 5664,

Jan, 1978

Enterprise for Computing Application
Budapest, Pf, 146.

H-1502

Hungary

- 111 -

A Software for Cemputer System Performance
Analysis - one more effort

P« Czachbérski, M.Kowaldwka, A.Wilk
Poland

1. Introduction

Queueing network models have proven toc be cost effective
tools for evaluating computer systems. During the last two
decades a variety of queueing models, including analytical
/exact and approximate/, numerical and simulation ones,
was developped and implemented. A practical use of these mo-
dels involves generally a large amount of computations
and the support of a computer is unavoidable, so every new
conception is followed by its software counterpart. The qua=-
lity of a model cannot be disputed in abstraction of its
realization because even in the case of exact analytical
modele theoretically existing solution may be hardly obtain-
able in practice within reasonable time /cf, normalization
constant calculation in preoduct=forw wmodelg/. In our opinion
mere effort was recently directed towards more effective
computational algorithmg for already existing medels than
towrdsg creating conceptually now models.

Mverybedy who starts modelling real compnter systems by
means of queucing theory has to pogugess a software toel made
more or lese methedically at his digposal. Although numerous
programs and program packages /reviewed in the next .section/
were already developped and the descriptive literature of
the subject ie abounding, no code is cbilainable fwith - up
to our knowlcge - two exceptions: MARCA and SNAP, weniionecd

= Lld =

later/. Thus we are obliged to start the work once again
and build our own software.

We present here our project at the first stage of develop-
ment. It is not decent to announce projects instead of reali-
zations, we are perfectly aware of it. Nevertheless we think
that possible reactions on this communiqué may influence our
work and information that such a package will be available
in not too far future may be of interest.

2. An overview of existing packages.

kaking a brief survey of queueing network software one is
obliged to come back to mid-sixties when RQA program [Wallace
66] was designed. RQA generated and solved Chapman-Kolmogorov
equations /global balance equations/ for queueing networks
which may be represented by a continuous-time lMarkov chain.
Sowme other programs as MARCA [Stewart 76] and QSOLVE [Levy 77]
were then constructed for the sameburpose. As the steady -
state solutions were sought, the question wag reduced to so-

lution of a system of linear algebraic equation and the nume-
rical problems envisaged by the programs concerned dimensity
of the equatione ag well as operations on sparse matrices.
The use of the prograws is obviously restrained to relative
gimple networks whose number of states does not exceed few
thousands.

New possibilities arose when the product-form-golution
models were developped. Soon after Buzen’s algorithms for
computing steady-state probabilities in Gordon-Newell model
/closed network with exponential servers and FIFO queues/
were published, the ASQ package [Keller 73} based upon these
algorithms was developped{ the extension of Jacksonian models
due to Baskett, Chandy, Muntz and Palacios /BCLP wodel/
[Baskett et al. 75] resulted in several packages: QUNET4
[l{eiser 75], SWAP [Krzesinski and Teunissen 77|, PNET [Bruell

78]. As for approximate methods, most popularity gained
the iterative one, proposed by Chandy, Herzog and Woo /CHW
model/[Chandy et al. 75] which stimulated packages CADS
[caps 77] and Iaa [Reiser 78] .

- 113 ~

The discrete-event simulation has its own history and tradi-
tions. In this survey the programs QSIM [Gehearty 74] and
APLOMB [Sauer 75| have to be mentioned. In addition to simu-
lation they cope with the run length and confidence interval
problems.
Multi-model packages, comprigimg programs for more than
one model, opened a new generation of queueing software.
The IBM s RESQ [Sauer et al. 77] is the union of QNET, APLOLB
and IQNA programs, so it includes analytical, simulation
and iterative modules. BEST/1 of BGS Systems [BEST 77} has
/as one way guess knowing its functional scope/ an analytical
part with BCMP model and the other with some approximate
models. The French package QNAP [!erle et al. 78] includes
BCIIP model as well as iterative, diffusion approximation,
llarkovian and simulation modules. Recently the module based
upon the mean value analysis was attached [Drix and Becker 8@
The input = ouput module is an important part of every pac-
kage. In packages destinated for user with little prior kno-
wledge of queueing models the module covers majority /e.g.
90% in BEST/1 / of the whole code and is considerably smaller
/e.g. 20% in PNET/ in university packages written for inner
purposes. In the first case the interface module provides
an interactive dialogue, in the latter case a model specifi-
cation language is elaborategd.
The language used to write a package is either Fortran
/e.c. SNAP, QSIM, APLOLB, QUAP / or PL/I /e.y. RESQ, QSOLVE,
IQNA/.

3. AKOK - the new package
Fig.1. presents the structure of our package.

Description of a considered model, written in a gqueueing
network description language, is analysed by the program
“converter and translated into a set of data available %o
resolution modules representing various queueing network
medelling methods.

The description language distinguishes a certain number

" ’ - ’ - ’ ~ ’ -~
of objects, such as source , queue , server , resource ,
’ R ~ . A o .
station /i.e. server with queue/, each of them having its

queueing
network
model

114 -

model description

*
DIATLOG CONVERTOR
\u\\\\\ %/

input data file

in the QNDEL language

TRANSLATOR

oA =
marcovian iterativ diffusion extended
approxi- product
module module
mation m. module
o mean * | decompo- discrete
BCMP
noiule value sition event
module module simulat.
_\>\— / / e

c_’f

output data file

on
no

tput
dule

'
1

L__,/”““J

Fig. 1. The structure of AMOK.
*/ modules implemented at the first stage

of the project

= 11§ =

parameters which express features of the object as well as
the routing of customers among the objects.
Let us present the idea of the language using an exanple.
The structure of the network and its parameters are shown
in Fig.2. There are terminals represented by infinite servers
with Coxian and Erlangian service time distributions; CPU
and disc are modelled by I/M/1 stations.
bi/x/ denotes probability density function of service time
at service station i, i=1,e¢4.,43 r}j is routing probability
between stations 1 and j within subchain 1, 1=1,2, as two
classes of customers are circulating.
This network has the following description in our language:

¥ DESCRIPTION
/SERVER/ NAME = FIRST TERMINAL

SERVICE = COX [0.5,0.5,0.3,10]

ThANSIT = CPU : K1
/SERVER/ WAME = SECOND TERMINAL

SERVICE = ERL [10,8]

TRANSIT = CPU : K2
/STATION/NAME = CPU

SCHEDULING = FIFO

SERVICE = EXP [1.0]

TRANSIT K1) = [0.5]FIRST TERMINAL, [0.5] DISC

TRANSIT (K2) [0.3] SECOND TERMINAL, [0.7] DISC
/STATION/NAME = DISC

SCHEDULING = FIFO

SERVICE = EXP [1.5]

TRANSIT CPU

» END »*

Then the specifications for execution are matched.

When analytical models are concerned the language is similar
to the realization which is in QNAP but has wuch more possibi-
lities in the case of simulation models.

BCMP module implements well known and the most general of
analytical product form solution models due to Baskett, Chandy,
Muntz and Palacios [Baskett et a1.75] with the job routing
extention to the case of multiple chains as presented in

116

FIRST TERMINAL

N 1
Tyg™
IS r;1-0.5
b1 (X)=S CPU
=leg (x); FIFO
+ 0.5-0.7-5¢ 7%+ = 3 —
-10x R
+ 0.5:0.3:10e
-X
ol gal® b3(x)= e
SECOND TERMINAL 43 43 Ty ,= 0.5
DISC >
el = W - rrro 734707
23 |
4
1S -1.5x _2
bz(x)= b4(X)=1oSe r323003

- 10-8(10»8-x)9-e:"m'sx / 9!

Fig. 2. An exemplary network

- 117 =

[Reiser, Kobayashi 75]. The algorithms of the model make also
use of [Merle 78], [Bruell 78] , [Chandy,Sauer 80] and are
based on the discrete conveolution technigue.

Mean value module is destined for the analysis of closed multi-
chain queueing network and is based on computational algorithms
developped in [Reiser, Lavenberg 80], [Chandy, Sauer 80] .

The numerical appreoach is represented in our package by

Markovian module which solves the system of linear equations
for the state occupancies of a closed queueing network that
may be modelled by a continous time llarkov chain

ETE = 0 where R is the matrix of transition rates among
states and P2 is the vector of the steady state
probabilities.

As R is often sparse, the iferative wethods are typically
used to solve the equations. They do not change the content
of the matrix which is therefore allowed to be remembered in
a compact foru [stewart 78]. In ANOK however,a direct method
was chosen /it is modified Jordan’s elimination method with
pivet element/; the use of a file handler for quick writing
and retriving record vectors makes this realization relati-
vely efficient [Nakecki 80].

The next three modules refer ito approximation techniques
which impose preduct form solutions in cases when it is not
true. They are:

Extended preduct form /EPF/ module based on the scheme pro-
posed by [Shum 76] where the joint distribution of a general
queueing network is approximated by the product of M/G/4q/N

queues, the parameters of each Leing iterated until a set
of thruputs satisfying flow balance is discovered.
Iterative module - implementing the device complementi proce-
dure proposed by [Chandy et al. 75] /CHW model/ with a wodi-
fication [Marie 78] where A(m/C, /1 siation serves as the
equivalent server. The equivalent network is sought itera-
tively until conditions:
- sum of mean lengths of queues equal to number of cusio-
merg in the network,

- 118 ~

- Chang-~Lavenberg theorem [Chang, Lavenberg 74]
are sagtisfied.

Diffusion module is based on a diffusion approximation of
GI/GI/1 station; the position of the diffusing particle cor-
responde to the number of customers present in the systen.
The version of instantaneous return process [Gelenbe 75]

and of product form solution for the whole network [Gelenbe,
Pujolle 75] were chosen., The extension to the medel with
priority scheduling will be provided [Czachérski 80].

The posibilities of decompogition of a network/to deter-
mine the cases where the above three models are uore appli-
cable/ will be checked by
Decompogition module, following criteria of [bourtois 77].
A1l cases non-tractable by the described modules will be
treated by the Discrete event simulation module.

All the resolution modules are being wriiten in standard
Tortran and the package will be run on ODRA 1305 computer
/equivalent of ICL 1900/ under George3 operating system.

The modules are wutually independent so new oneg, representing
new methods or more eflficient algorithms may be added.

It is our intention to develop and maintain a program library
gathering software representation of all outstanding methods
Tor statistical modelling ol couwpuier systems.

Any type of cooperation in this field will be interesting
for us.

REFERENCES

¥.Baskett, R.luntz, Li.Chandy, J.Palacios, "Open, Closed and
liizxed Ietworks of wueues with Different Classes of
Customers", Journal of the ACM, Vol. 22, No 2,pp.248-260
1975,

"Best/1 Procduct Description", BGS Systems, BE 77-010-2,
Lincoln, liasgachuseis, 1977.

S.Ch.Bruell, "On Single and Iiultiple class Queueing Network
licdels of Computer Systems", Ph.D.Thesis, Purdue Univer-
sity, 1978.

w 1LY =

"Ugers Manual for the CADS Computer Analysis and Design
Systems", Austin, Texas, 1977.

K.ll,Chandy, U.Herzog, L.Woo, "Approximate Analysis of Geneial
Queueing Networks', IBHM Journal of Researcu and Develop-
went, Vol. 19, No 1, pp.43-49, January, 1975.

K.il,Chandy, C.H.Sauer, "Computational Algorithms for Product
FPorm wueueing Networks", Comm. of ACLk, Vol. 23, Wo 10,
PP.573-583, 1980.

A.Chang, S.S.Lavenberg, "Work rates in closed queueing net-
works with general independent servers', Operatiing
Research, Vol. 22, pp.838-847, 1974.

P.J.Couriois, "Becomposability, Queueing and Computer Systen
Applications", Academic Press, INew York, 1S77.

T.Czacndéreki, "A liultiqueue Approximate Computer Perflormance
ITodel with Priority Scleduling and System Overhead",
Podstawy Sterowania, Vol. 10, lioc 3, pp.223-240, 1980.

P.Drix, M.Becker, "Implantation dans JWAP & algorithues et
d ‘heuristiques bases sur mean value analysis", Rapporti
de 1‘Institut de Programmation, Paris, 1981.

P.F.Gehearty, "<SIM - An Implementation oi a language for
analysis of queueing models", Ii.A.Thesis, Dept. of Conp.
Sciences, University of Texas, Austin, Texas, 1974.

Ee.Gelenbe, "On approximaie compulter system models", Journal
of the ACM, Vol. 22, No 2, pp.261=269, 1975.

E.Gelenbe, G.Pujolle, "The Behaviecur of a Single Queue in
& General Queueing Network", Acta Infermatica, Vol. 7,
Fasc. 2, pp.123-136, 1976.

T.W.Keller, "ASQ Manual", Dept. of Computer Sciences Report
TR 27, Univereity of Texas, Austin, Tx.1973.

A.Krzesinski, P.Teunissen, "Efficient Computatiocnal forus
for the rormalizing censtant anéd the statistical measu-
res of mixed multicless queueing networks"; Repert
RW 77-04, University of Stellenbosch, Depte. of Coupe.
Science, 1977.

4.I.Levy, "QSCLVE: A Queueing Network Solutien System",TN-6,
Cemputer Systems Research Greup. University of Terento,
10T

- 120 =

R.larie, "Modelisation par réseaux de files d attente",
Ph.D. Thesis, Universite de Rennes, 1978.

D.Merle, "Contribution a 1°étude d”un analyseur de modeles
a reseaux de [iles G attente, algorithmes de calcul
et applications" ,these de docteur ingenieui, 1“Univer-
sité National Polytechnique de Lerraine, 1978.

D.Merle, D.Potier, M.Veran, "A tool for computer system per-
formance analysis", in Performance of Computer Instala-
tions", Worth Holland, Amsterdam, 1978.

K.NaZgcki, "Numerical determination of the steady-state solu-
tion in a system modelled by a lMarkov chain", Podstawy
Sterowania, Vol. 10, No 3, 1980.

M.Reiger, "QNET4 User‘s Guide", IBM Research Report R4A-T1,
Yorktown Heights, New York, 1975.

M.Reiger, H.Kobayashi, "Queueing Networks with lMultiple Closed
Chains Theory aund Couputational Algorithms", IBM J. of
Research and Development, Vol. 19, No 3, May, 1975.

lieReiger, C.H.Sauer, "Queueing Neiwork lodels: llethods of
Solution and their Program Implementation", in K.Mani
Chandy, R.T.Yeh, /Edts./ "Current Trends in Programuliug
Liethodology, Vol. III Software liodeling", Prentice Hall,
Englewood Cliffs, 1978.

li.Reiger, S.S.Lavenberg, *“Mean Value sAnalysis of Closed
Mulvichain yueueing Network", J. of the ACL, Vol. 27,

o 2, pp.313-322.

CeHe.Sauer, "Simulation Analysis of Generalized Queueing Nei-
works", Proceedings of 1975 Suumer Computer Simulation
Conference.

C.H.Sauer, M.Reiser, E.A.MacNair, "RESQ - A Package for Solu-
tion of Generalized Queueing Networks", Proceedings of
1977 Tational Compuier Conference, 1977.

WedeStewart, "MARCA: llavkov Chain Analyser", IRISA, Rapport
o 45, Rennes, 1970,

WeJ.otewart, "4 comparision of numerical techniques in lMarkov
wodelling", CACL, Vol. 21, No 2, 1978.

V.L.Wallace, k.S.Rosenberg, "lMarkovian kodels and Numerical
Analysis of Computer System Behavior", Proc.of Spring
Joint Computer Conf. , 1966.

- R2d, =

J.Zahorian, A.I.Levi, "An overvue of the QSOLVE system",
TR CSRG-83, Comp. System Research Group, University
of Toronto, 1977.

Polish Academy of Sciences
Complex Automation Depte.
44-100 Gliwice, ul. Bazxtycka 5
Poland

w Y23 =

Data Base Performance in a Paging Lnvironment

Marek Piwowarski - Poland

Abstract, Performance of the data base systems for real time
applications can be defined as a steady-state expected num-
ber of page faults per one data base request, Using the con-
cepts of buffer fault and terminal page reference it is pos-
sible to apply known models of paging memories to the analy-
sis of such a data base, This enables the evaluation of the
general expression for data base performance as a function of
Buffer Replacement Algorithm and Search Strategy., Finally, the
detailed explicit expressions of data base performance for
LFU and LRU algorithms are evaluated,

1.Introduction

Performance of data bases for real time and process control
system applications depends largely on the cost introduced

by the I/0 activities performed during the operation of a
data base, It is so because applications programs utilizing
the data base usually must satisfy some given time constraints
i.e, maximal response time or minimal system throughput,
Since the data base is usually stored in the auxiliary mass
storage, transmissions between processor memory and storage
constitute the main part of the data base I/U activity, When
the physical data base is organized in pages such a transmis-
sion takes place during a page fault and frequency of page
faults determines the I/0 activity of the data base,
Consequently, the expected number of page faults per data

= 124" =

base request can be chosen as an indicator of the data base
performance,

During the run time the applications processes issue a string
of record referoences /RitS/ to the Lata Management 3System
/ukiS/, sach record reference /request/ is directed to a re-
cord stored in the data base storage.sc VNS must bring it to
the memory before processing, To do so LS maintains the
intermediate main memory buffer into which records are being
hrought from the data base,. Since the buffer always contains
sonie data, subseguent I'cqucsts are serviced by first sear-~
ching the buffer, If the referenced record is not found in
the buffer the LS must find and bring it from the data base,
During this search process the pagoe reference string /PRS/

is generated.

2.ata base bulfer cperations,
i.et?s assume that the data base cousists of n pages coniain-
ing d records and that the buffer maintained by the bLiMS has

m page frames, /Pig. 1/.

we

BUFFE DATA BASE

2
Data : BRA

o et ‘ e “1opages

SS

requesl’“s

e

S

Main memory Paging device

m

Fig, leAlporithms inveolved in the data base

buf fer operations,

When a regquest occurs the DMS first determines whether the

= 1Z5 =

referenced record resides in the buffer, If the page comntai-
ning the record is in the buffer, it is accessed by the
roquesting prograni, Ltherwise the buffer fault occurs and two
LMS mechanisms are being activated, “he Search Strategy /58/
generates the sequence of page references searching the data
base for the requested record, if the page roferenced in the
search sequence is not in the buffer the page Tault occurs
and the buffer page has to be replaced by the referenced
page, The corresponding algorithm is called the Uuffor depla-
cement Algorithm /BRA/ and is responsible for choosing the
buffer page for replacement, In case the buffer page choson
for replacement has been modified by the awnplication progsgran
DA must bring it back to the data baso before relecasing its

buffer page framo,

3. The model,

T

suppose that I = {1,,..,d} is the set of database records,
N = {1,...,n} is the set of data base pages and M={1,...,m}
is the set of buffer page frames, 1{m&n{d,

We will assume that records do not move within the data base
/at least betweon data base reorganizations/. This can bo
described by the record placement mapping [:L - whero
£/3i/=i means that record j resides on page i,

The model of‘applicution progranis behaviour under which th
data base porformance will be evaluated is the known Inde-
pendent Reference Hodel /ILili/ [1,2,3] o« An this model the 1.5
is described by the sequence of independent identically

distributed random variables

X,!,xz,.oo,xt,o-o /1/
where t denctes the t-ih record reference, t=1,2,,,, , wWith

¥ [xtzi] =a, 144 &d 5/

£

Let TysTpyees T denote the XS, For each RS woe have the

t
terminal page reference string /T¥aS/ given by PyaPpyesa Dy

= 120 =

where psz/rk/ 5 1<k £t.
It is easy to show that TPRS can be also modeled by the IRM

in the form:

y1)y250009yt’0'0 /3/

where t denotes the t-th terminal page reference with

ply,=i] =v, = > a 1¢i¢n /4/
k:f/k/=i

Since the TPRS satisfies the IRM requirements we may apply the
Aho, Denning and Ullmann model [1] of the BRA, Let r €D be
the t-th record request, BRA processes each RXS from initial

state S0 by generating the sequence of configurations

{/St’qt/} z:o such that /St’qt/ = g/St_1,qt_1,pt/ where
pt=f/rt/ is the terminal page reference in moment t,
SteIJis a buffer state in moment t,
qte;Q is a control state in moment t,

g 1is the allocation map given by the DBRA,

Ior such a description we have that buffer fault occurs iff
p, ¢S, , and that in order to minimize the long-run buffer-
-fault rate BRA must be a demand algorithm with respect to

TPRS,

L, Cost of algorithms,

Let pt=f/rt/ be a terminal page reference in moment t,
Unlike in the virtual memory systems where is calculated
in a single step by the address mapping hardware, DMS must
find P according to the SS utilized., This results in a

search page reference string /SPRS/ as below:

Pl,Pi,...,pt‘:f/rt/ buffer fault occurs
SPRS/rt/ = /5/

none otherwise

Note, that the SPRS is uniquely determined by the SS for a

given record and constant for each record, Hence, the number

- 127 -

of search page references /length of the SPRS/ n,_ depends on

t
both record being searched and the SS, Ubviously, the number

of scarch page faults m,Z depends additionally on the Bia and

t
satisfies the following inequality:

mt/rt,ss,zsm/ < n,/r,,58/ /6/

In a steady state the expected number of page faulis perfor-
med during the search for terminal page 1L denoted by si/ss,nnn/

is the following:
si/ss,m'u;/ = n1t/rt,ss,zzm/] ,f/ri_/:i L2

The number of page transmissions from the buffer to tiie data
base /page removals/ is equal to 1 when the buffer page cho-
sen for roeplacement has been modified and O otherwise,

Taking all this into account it is easy to show that the ste-
ady state expectod number of page faults per data base rcquost

is given by the following expression:
n

C = Z bi-xi/mm/-[si/s:s,m‘t.-;/ + Ri/BilA/] /8/

=1
where Xi/BRA/ is the probability of buffer fault due to the
reference to page i, Ri/BAA/ is the removal probability for
the buffer fault due to the terminal reference to page i,
The above general exprossion for data base performance is of
course subject to evaluation for each specific Bla and 55,
liereafter we present such an evaluation for two most often
used BRas: LFU /Least Frequently Used/ and LRU /Least Recen-
tly Used/ because Golenbe has shown [2} that Rt /Random Repla-
cement/ and FIF(G /First-In-First-Uut/ algorithms have equal

and the worst performances of all Ditas,
5. Lvaluation of Xi/BRA/.

Let?’s number the data base pages such that b1) bok—...)ﬁbn.

Theorem 1,

Ki/LFU/ = _ /9/

= 128 -

n
where Y = 1/Zbk

K=m
PYroof - in the Appondix,

Thecorem 2,

Ai/la(U/ =1 - b,oW, /10/

where
n=1 m=1-j
k n-1
¢ o X SN
3=0 k=0 !
wherae
b & z : 1
Qn 1,m = 1= - -X
=1 41 - - . e« .
J1< vee <J n 1 J1 Jm

where X = {XLL% "{ 1)bzgoooyb 1,b1+1,-o¢’bn}

rroof=- in the Appendix,

Corollary 1,

LU is thie optimal BRA with respect to the expected number of
buffer faults,

’roof -~ in the appendix,
6. Bvaluation of the Si/BRA,SS/.

sxact evaluation of S, /mlu,.m/ thouglh possible for any combi-
nation of BRA and 35 is often quite laborious, For some cases
it is very simple as in the below uLxample,

wxample 1.

Q 1 $iiém—1
5,/LFU,sequential/ = 1-b ¥ &= /11/
i-m+1-me m<ifn

where Y is given by /9/,

in especially difficult cases we may apply the expected num-
ber of search papge references for page i, i, /ss/ instead of
the expected number of search page faults bi/Uhh,oo/ accor-

ding to the below inequaiity

max [l"_j/f.%::'/] > 1«‘1/55/ > 5i/mm,.ss/ y14ign /12
i ¥

= [29 =

In this case we obtain the upper bound for the data baso
performance, It is especially advantageous because Fi/SS/
has been widely investigated for various data structures and

access methods,
7. Lvaluation of the Ri/BRA/.

Lach request may either change a record’s contents /modifi-
cation/ or leave it unchanged /retrieval/, assuming that the
probability of retrieval is constant , equal for all requests

in the R2RXAS and denoted by Pr, we have

Theorem 3,

ii b I = bij/

Ri/LbU/ =1 = P X 4 1 - b.*Y - b,+X+P /13/
J=m L J r
J#i

where Y is again given by /9/,

Proof - in the Appendix,

Theorem 4,

n

X./LRU/
Ri/LRU/ ~1 =P, ZE: J : /14/
3= 1 + xJ./LRU/aPr - P
J#i

where XJ/LRU/ is given by /10/,

Proof - in the Appendix,
8, Conclusions,

Results of the above analysis show the impact of the DBRA and
the buffer size on the data base performance, This provides
better support especially at the physical data base design
stage giving at least the upper bound of the data base per-
formance, In case when the DMS buffer is itself in the vir-
tual memory /such as in the IBM’s IMS/ the above approach
yields input information for appropriate models /e.g. Lang,
Wood and Fernandez [6] or Sherman and Brice [7] models/.

- 130 =

The arcea of practical implementations will of course depend
on the extensive simulation support needed for verification

of* the above approacl,

vy A} " 1 A MATY ™ s
T ADDPWRELXR

i'rool of Theorenr 1.

in steady-state 0% keeps m-1 page frames constantly occupied
with m=-1 most freqguently accessed pages, lience, the buffer
fault probability duc to the reference to pages 1,eeeym=-1 is
egual to C, keference to page i, m £i $€n, causes the buffer
fault iff the last reference to page- j, m < \<n, was such

that j # i. srobability of sucl: an cvent is equal to

Il

= iy / i
1 i i/ Z b, y

[t T
=1

irvoof of heorem 2,

jlercafter we will apply the inuth’s approach [ll] to the ana-
lysis of the selforganizing files, Instead of saying that
page i m=th recently used we will say that page 1 is in posi-
tion ¥ in the buffer,

Let 1‘”:/fx1,x2,.u:xm/ be the sum of all distinct ordered pro-

ducts X5 ,',:ii 1eee X, such that 1€ 11 & seany il' £ m where
2 ~
i P te

cach of X13X5se00yX appears in every teru,
Horice, L. 1/x_. . Faess. /+b. are probabilities of pos-
M= 1.1 12 il 1

sible sequences of requests leaving page i in position .,

L ZE: £ /%, reeerXy b /a1/

1151 N o & 11
B 1€3,€d5%0ne {J_4£n J 1 m

Setting

hnuth shows that page i1 will be in position k in the buffler

with probability bi'171i1-1 =1 where

X:'{b1’b2""’bi-1’bi+1’°°"bn}- /“2/

Again inuath proves thav

- 31 -

i 5 nem+ 1 i m [-m+m i
P = Q= o + + /=1/" 3 43/
1 “nn 1 i1 ves e m “no /437
X : - | 0 L ; _ 5
where by convention Plo= %o = 1 5, iy = 1,2,400

and where

; E 1
!,l -

2 - N N
s 1$J1< noo<. $n 1 - x, » o0 X, /x #/

where X is given by /i2/.
Probability of page fault due to the reference to page i is
equal to 1 = Xrobability that page i is in the buffer,
ilence,

I

X, = 1 = Z b .uj" 5 & o

i . N

(o
1
-

Substituting /a3/ to /ali/ and reversing the order of sunuua-
tion finally yields /10/,

I’roof of the Corollary 1.

The steady-state probability of the buffer fault is

o]

F/B/ = 2] bye X, /BRA/ /A6/

i=1

after substituting /9/ to /i6/ we have :

n (Z' b) Z‘(b)
F/H/LFU = :E: bi./1 - bi/Y e i=m i=m

i=m 11

b.
¢ G I
L=nl

which is equal to the expression obtained by ing [] and

Gelenbe [] for the algorithm proved to be optinal in []

Proof of Theorem 3,

Suppose that buffer fault in moment t was caused by thie refe-

= ‘132 -

rence to page i, Thus, if the page to be replaced is page j
m<$j&n Jj# i, its conditional probability of reference in
Jd] ’

moment t-1 is equal to

b
J

1/Y = b, /a7/

Therefore, probability that page j was exactly k times

retrieved before replacement is :

Kk

o 0D SRR
J ¢ M - bY/ /48/

1 = b,«Y
- §

lience, probability that page to be replaced leaves buffer un-

modified during the buffer fault due to page i is :

k
J#l +

Finally, we obtain /13/ after the evaluation of the infinite

geometric series,
¥Proof of Theorem 4,

Suppose; as before, that buffer fault is due to page i and
that page to be replaced is some page j#i. For n >m we may

write that page j leaves the buffer after exactly k succesive

/k-1 Pk
) Wik

lience, probability that psge to be replaced leaves buffer un-

retrievals with approximate probability KJ/LRU/-/1-XJ

modified after k succesive retrievals is approximately

n -
3 X /LRU/ /1 - XJ/LRU//k-1'Prh /A10/
j=1
j#4
Finally, probability that page to be replaced leaves buffer

unmodified may be estimated as

1 - R,/LRU/ Zj Z:k /1 - X /k_ .
- k=1 j5=1
J#L

[1]
(2]

[3]

[u]

(5]
L6]

[7]

- 133 ™~

1 Xj/LRU/

H
o

/511/

£ - . s
j=1 1 P& B Aj/Lnu/

REFLERSNCES

Aho ,A,V,,F,Denning ,J.D,Ullmann, Principles of optimal
page replacement, J, Assoc, Comp, Hach, ,v.18,1971

Geienbe,if,, A unified approach to the evaluation of a
class of replacement algoritims, IS Trans, Comput,,
Ve22,1973,

Aven,0, ,L,Boguslavsky,¥ ,Kogan, Some results on distri-
bution=free analysis of paging algorithms, Iiol
Trans, Comput,,v.25,1976,

Knuth,D.E,, The art of computer prograrming /Volume 3
Sorting and Searching/, addison-Wesley Publishing Co,
Reading, Mass, 1973.

King,W,F,, Analysis of paging algorithms, Proc, IFIP
Congress /Ljubljana, Yugoslavia/,1971,

Lang,T.,C,Wood, &,B.Fernandez, Database buffer paging in
virtual storage systems, ACH Trans, on Database
Systems,v,2,1977.

Sherman,S.%W.,R.S,Brice, Performance of a database hana-
ger in a virtual memory system, ACH Trans, on batabase
Systems,v,.1,n,4,1976,

Marek Piwowarski

Polish Academy of Sciences

Dept, of Complex Control Systems
Baltycka 5

L4.100 GLIWICL, Poland

- 135 =

Performance Evaluation of Cemputing System

Subject to Failures

Andrze]j Duda, Poland

Abstract. The paper presents an analysis of program perfor-
mance in the cemputing systewm subject teo failures. Prograuw
checkpointing is considered as a methed to reduce the overhead
due to restarts after failures. The distribution and the ex-
pectation of the elapsed time are derived for prograwms with
and without checkpeinting. The optimum interval between check-
peints is given. A comparison between performance of a program
with and without checkpointing is provided and shows when the
use of checkpointing is beneficial.

1. Intreduction

Continuous and reliable operation of computing systems
depends not enly on relisble hardware but also on the opera-
ting system and software mechanisus which enable error tole-
rance [DENN 76] , [RAND 75| . It is interesting to study the per-
formance of computing systems that use recovery tecnniques to
cope with failures. Traditienal approach te perfermance evalu-
ation [?ERR 76] often dees not take into account the impact
that system reliability has on the system performance. The
performance measures such as threughtput, elapsed time, res-
pense time reflect the efficiency eof a system for various
workleads. However the system perfermance may be degraded due
to failures and also such techniques as dynamic testing, error
detection, recevery decrease the computation capacity of the
system. It is impertant from the user viewpoint te characterize

= 136 =

both perfermance and reliability of computing systems. Several
attempts have been made to develop the reliability and perfer-
mance characteristics of computing systems [?EAU 7@], [yEYE 8@
We want to deal with a measure that gives the infermatien
aboult the execution time of a pregram in the computing system
subject to failures.

A program may not teruinate its execution because of fail-
lures which can force the pregram to be restarted. The model
of the couputing system considering such performance measures
a8 apparent capacity and expected elapsed time required to
correctly execute a given program was propesed by Casillo and
Siewiorek @AST 8@]. This model assumes iwo types of erreors
fatal and nonfatal. After fatal errors the program is restarted
The time to the program termination depends alse on the system
workload. Statistics of the workload gathered from a real sys-
tem are used to derive the distribution of the apparent capaci-
ty and the expected elapsed time. The analysed scheme of the
system s operation necessitates starting a fresh run after
the fatal error from the beginning of the program. The work
that was done is repeated and therefore effectively wasted.

We analyse a program checkpointing as a methed te reduce
the overhead due to restarts. Checkpeinting allows ithe program
to be resumed from the ealier point in its execution and not
from the beginning. Brock [?ROC 7ﬂ has analysed and evaluated
the expected executien time of programs with and without check-
peinting. In this paper we derive the distribution and the ex-
pectation of the elapsed time assuming program checkpoeinting.
We consider the optimum interval between checkpeoints. Finally
a comparison between performance of the program with check-
pointing and the program without checkpoiniing is presented.

2. leasures of system performance

Let us define the elapsed time TE ag the time required to
correcily execute a program in a given computing system. The
minimum execution time TMin is the time needed to the program
execution in a eingle~ prograuming system when ne failures are
present. Assuming that the program is executed in the multi-
programuing,uultiuser system and it may stop because of system

= 130 =

failures, the elapsed Ty depends on

a/ frequency and duration of failures,

b/ worklead of the systen,

¢/ winiwuw execution time Tytin®
The apparent capacity [CAST 80]

_ _Ipin
Ac = -Tg 2.1/

determines whal is the fraction of the total system capacity
that the user receives. Since TE is a randou variable whose
distribution depends on the sististics of the system reliabili-
ty, the statistics of the workload,and the time TMin sy Lthe
distiribution of the apparent capacity can be calculated. In
order {0 make our model simpler we congider only the influence
of the system reliability and the execution time on the elapsed
time. The influence of the workleocad we take into account impli-
citly through the execution time T. Then we assume that T is
the tiwe of continued system operation required in the given
multiprogramming environment /the system shared with other
users/ to execute the prograu. Below we consider the distri-
bution and the expectation of the elapsed time in order to
compare quantitatively the performance of the program with
and without checkpointing and te obtain the parameters that
optimize the expecied elapsed time.

3. Program wituout checkpointing
The execution of a program in the compuiing system is illu-
strated in Figure 1.

failuve " failure
f vestart restayt
Stavt | l — .
Vi % 13 1 & g T i time
P S ™ I
- |

Figure 1. Execution of a program without checkpointing

The program requires the time T to its execution. The i-th
failure is detected after the time ti gince the lasl restart.

= 138 =

The program can be restarted afier the time R necessary to

reestablish the normal operation of the system. The prograw

terwinates after the time T of continued operation.

In order vo Gerive the distribution and the expectation of

we adopt the following assumptions:

1. The instants of the failures’ occurences form a homoge-
neous Poisson process of parameter ¥ .

2. TFailures do not occur when the system is receovering from

=

a failure.

3. We regard the instants of the failures detection as the
instants of their occurences.

4. Ry, T,% are constants and do not change during program
execution.

Under these assumptions the sequence of intervals t1, t2,
oy ti,... forme a renewal process i.e. the periods of tiume
between a restart and the rext failure form a sequence oif inde=-

pendent, identically distributed random variables.
The probability density function ef TE can be written as

DB AT f5:1/
where
Pl s (A <) /3.2/

is the probability of k occurences of failures during the exe-
cution time T and £&h=k is the p.d.f. /probability density
function/ of TE given that the program is restarted k times.
We have
k
Te=T+t+kR , t=21, . 1337

i=1
The interval ti is the time between a restart and the next

failure provided the next failure occurs before the time T.
S0, the distribution {t; is a truncated exponential distribu-
tion

'&J@*W:iﬁﬁrféqP[“ﬂ-ﬂrTﬂ) /3.4/

where 1(p) is the unit step function.

Since t is the suumation of k independent, identically dis-
tributed random variables ti, the Laplace transform of its
distribuiion can be expressed as

T (1 Tl K
'Ftln-k(s)'{_4_e—‘*7"r:s h-e™ sﬁ /3.5/

- 139 =

that is
n N L ~LT (¥+s)
B) &) T /3.6/

Then, the Laplace transform of the p.d.f. fr) \is given by
T = -(T*kR)s 4 i 3 K & k _4L ‘LT(’J+S) -~ ™/
{-\TEWK e (4-6" 'ws) 2 (e _ /374
The transforwm of FE oan ve written as

- S 4T ~(T+kR) -LT(WS)
o= ZETe™) 2 (0

After computing the 1nverse_Lapluue vransform we obtain

R |
Pe‘)ze Z kZ()(f-_&‘_—}l(’.%k_gl_ -"([dl T(L+4) kp],1[£~T(l+4)-hR] . /3.9/

ln ocrder to COmpute the expected elapsed time we derive first
4.
v

the expected value of ti tharough the deiferentiation of
Lapluce transform ﬂ$$ and setting s—=0

4 Tt /
E(ti')= §—1_i_,‘,r, /3.10/
50, We have
A Te ki
E(Teln=k)= T+ L (R+5 -5 /3104
and the following expre991on can be obtain
-'xT ~4T
e =2 € (=) [rek(red - L) /3.12/

Finally tue suwmation yields
E(Te)= R+‘—)(-4) /3.13/

This expression shows thai ine expected elapsed time depends
strongly on the failure rate and may attain large values. Liote
tuat B(Ty) is an exponential function of ihe execution time 1.

4. Program with checkpointing
Checkpointing consicts in writing an approprate information
to checkpoint file /usually stored in the auxiliary wemory/ at
gome inegtants during the run of a program that allows its exe-
cution to be resumed not from the beginning. The creation of
the checkpoint includes the following information:
a/ program store image or data areas if the prograu area is
not altered,
b/ contents of relevant registers,
¢/ current positions reaclied in the files accessed by tue
program.
When the system is repaired aifter a failure , the state of the

= 140 =

program is reestablished by:
a/ recostitution of the prograuw store iuage,
b/ resetiing the relevant registers,
¢/ repositionning the files,
d/ resuming the execution of the pregran.
The execution of a program with checkpeinting is presented in

Figure 2.
checkpoint failure ith failuve
creation

Lsta'rt

T =t e | R+C ReC o L ' time
| e L I e an e I !

| b= ?T] o) |

e -

Figure 2. Execution of a program with checkpointing

The checkpoint is created after the constant time a of con-
tinued system operation. The i-th failure occurs after time ti
gince the resuming of the program from the last checkpoint. The
system is down during the time R. The checkpoint creation as
well as the program resuming last the time C. TEC cdenotes the
the elapsed time of program with checkpointing.

We adopt the following assumptions:

1. The instants ol the Tailures occurences form a homogene-

ous Poisson process of parameter ¥ .
2. Failures deo not coccur when the systeum is recovering from
a faillure and when it is creationg a checkpoint.

3. We regard the instants of the failures detection as the

instants of their occurences.

4. R, T, C, ¥, a are constants and do not change during

program execution.

5. N checkpoints are created during the time T i.e. T = N-a

Under these assumpiions the sequence of intervals iy ¥

2’...
yees and also the sequence of total tiuwes betiween the ends

.t'

i

of consecutive checkpoints T1, T2,...,Tj,... form renewal pro-
cesges. iWe begin with calculation of the p.d.f.-ﬁr
i

- /4.1/
b= 2. P09 £

- L4L =

where
o k :
Pln=k) = € ¥ (1-™) /4.2 /
is the probability of k oeccurences of failures during the inter-
val a and Fﬁh=k is the p.d.f. of Tj provided the program is re-
sumed k times from the lasi checkpoint.
We can write

k
Tj =a+ k(ReC)+E +C t= -Z’ih /4.3/
The p.d.f. ﬁ‘ is a truncated exponential distribution
O M L O (GO /4.4/

where ’Nﬁ) ig the unit step function. The Laplace transform of
the p.d.f. fi,ox can be written as

~a(v¥+ k
{tlnsk) {1 e va 1:0-5 [1*& “ S)l} /4:57

because t is the sum of k independent, identically distributed

random variables ti. Then we have

k & ey, (L _la(ys9)
¥ :
‘Fil'l “(i (1 - e ¥ «+s) é(L)('A) g . /4.6/
The Laplace {ransform of the p. d : 4 ¥Th -« 1s given by
-b+c k()]s 4 L —Lla (¥+9) -
{ﬁm(g_ (4 a7’ ~+s) Z: /4.7/
So, the transform of fT can ve explessed as
-“VO— _[a_+C+k(R§C\]5 k koo l ~Lla.(¥+s) C‘.-
‘FT(s\ k’O (A‘.ps) L'Zé(l')(-'{) e /40‘-4/
We obtain the p.d.f. of Tj after computing the inverse Laplace
transforu S g
r a(l+)-C-k(Rec) -tfe-a(tei)-C-k(rec
£ =e'°‘§«“§(yetenesed g fle-o(ted-c-k(esdl] /4.5/

Since LEC is the sum of N identically,independent random varia-
bles Tj, the laplace transform of the p.d.f. {T‘c is

—¥a .[_a+C&k(RvC)]s kX ok AL —la (¥ _
{':r,cs) [kz‘; ('Hs) ,?;-,(t)(‘) =] /4.10/
and we obtain the(dlstrlbutlon of the elapsed time TEC
N(%)
frol=[{5=] /4.11/
where N =-%? and N(¥) denotes N-fold convolutvione.

Let ue consider the expected elapsed time E(2;.). We cal-
culate first the expectation of 6y

E(t‘)=i-—2-£:: 412/
Yy {-e)

- 142 =

Then we have
A ae ¥ ;
E(Tj\n=k)=o,#C+‘<(R-rC+?—-W . [413/
he expectation of the total time between checkpoints Tj is the

following

o ~¥a
(T = 2 e (-) arCri(Recef- 2o /4.14/
k=0
that is
E(T) = C+ (ReC+ 1) (e7-1). /4.15/

This expression is siwilar to &q./3.13/ where T is replaced by
the checkpoint interval a. It follows that the mean total time
between the ends of consecutive checkpoints depends on the va-
lue of a aud Gues uuvt depend on the execution time T.

Finally we obtain

E(Tee) = o [CH(ReCYE™-A)] . /4.16/

liote that E(TEC) ig a linear function of the execution {tiwe T.
In order to winimize the expectied elapsed time we can couwpuie
the optimal checkpoint interval a that gives éé{E(Ecﬂ=0.

This leads to the equation

e«o'(?a.*{)’i_,,%%{ﬁ'i L4:TS

The approximate soluiion yields

A 2C
C1=V7B+*w4ﬂ : /4.18/

5. Ceomparisons and results

Trom the user viewpoiutv it is very important to know how un-
reliability of the computing system increases the execution
tiwe of a program anc what i1c the effect of program checkpoint-
ing. It follows from previous seciions theat the expected ela-
psed iiwe of ihe prograw without checlipointing increases as an
expouential function of the execution tlue T, wuieas tue use
of cueckpointing causes the linear increase. The relative in=-
crease ol the expecled elapsed time for two cases = program
without cueckpoiniing ana program with cueckpointing is compared
in Figure 3.

It is seen from curves in Figure 3 iuatl checkpointing is not
beneflicial Tfor swall values of 1. But for long i(imes T the use
of checkpointing is advantageous.

15

| E:_(‘E\' E(Tec)

- 143 -

vooyaw without
T % kelpocn’ciug
I ‘V!QO’.!”; ‘{=40—“§ =R vam with
eckpomting
R=300s5 C=A4s

Figure 3. Relative increase oI expecied elapsed time

The influence of itue failure rate % on the expecied elapsed

time is iliustrated in Figure 4.

14 1

4.0

J

]

-

E(T) E(T) withoot
) & b
e we with
P“"ﬁ"‘}

R=40s T=600s

A

e P o 10® :[%]

Figure 4. Influence of the failure rate on the expected

elapsed time

- 144 -

It is also seen there exist valuegs of the failure rate % for

which the use of checkpointing is
both values of ¥ and T decide
than E(TEC) : the greater value
which the use of checkpointing is

It is interesting to study the

not beneficial. In general
whethex E(TE) is greater
of T, the smaller ¥
not beneficial.

relative iumportance of the

for

failure rate and the down time R. The notion of availability

defined as A
L S v
i :'1Y_+p_ 1 +#4R /5-1/

determines the fraction of the time the system is up. Pigure U
presents the increase of the expecied elapsed time for const-
ant values of availability.

| E() ElTee) ithout
oA -———————-ﬂﬁﬂﬁ&é&a
e vam with
Po.‘.y{\'ihg
T=600s C=1s

13

12

LE

1.0 4

ME!

Figure 5. Increase of the expected elapsed time for the

107¢ AcS

congtant values of the availability

The failure rate for the program without checkpointing is
the dominant factor. That meaus [CAST 80| that no matter how
short the down time period is made, the expected elapsed time
will still be very long. In the case of checkpointing tne rela-
tive importance of the failure rate is compengated and the ex-
pected elapsed time rises slightly according to the failure

rate.

= ldh =

6. Conclusions

The presenied analysis of the program performance provides
quantitative resulis about how the elapseud tiwe increases due
to system failures. \WWe have considered checkpeinting as a we-
thod to reduce an overhneada caused by restarts of a program in
the computing system subject to failures. It follows from the
analysis that the advantage of checkpointing depends wainly on
the executlion time T and the failure rate ¥ . Long programs or
execution of programs in unreliable computing systems require
the use of checkpointing. Let us remember {that in our investi-
gation the execution time T is the time to execute a given
program in a multiprogamming, multiuser gystem i.e. a shori
program of the 10 minutes execution tiwme in a single=-program-
ming system may require the execution time T increased several
times. By wmeansg of the time T we have implicitly taken iuto
account the workloaG of the systen.

The equation /4.17/ for the optimal checkpoint interval is
more accurace versivi of the Ysquare root law" wiiich nas veen
often investigated [YouN 74] , [cHaN 75|, [vomi 77], [eeze 79],
[BROC 79] . Ve must point out some assumpiions adopied in tho
analysis. We assuwed vhat the failure rate and the systiem work-
load are constauis. However it is not realistic assumption for
long programs. We considered that the Tallure ratie is indepen-
dent of the workload. It has been reported BUIN 80 +tnat in-
creased utilizailon of the gystem results in a degradation in
reliability. In our analysis of checkpointing we nave nol iakel
invo accovunt other factiors than the processor s time. The cou-
plete model must congider siore occupancy and peripheral activ-
ity increased by the use of checkpointing. All these assumptions
made our analysis simpler and allowed to obtain quantitative
results.

BEAU

BROC

BUTN

Q
&
=3

CHAN

MEYT

RAND

YOUN

78

12

80 :

75

.

[T}

- 146 -

References

Beaudry, M.D. "Performance-Related Reliability lica=-
sures for Computing Systems", IEEE Trans. on Com-
puiers,Vol.C-27,N0.6,June 1978

Brock, A. "An analysis of Checkpeinting", ICL Tech-
nical Journal,Vol.1,No0.3,llovember 1979

Butner, S.E. Iyer R.K. "A Statistical Study of Reli-

ubility and System Load at SLAC", Prec. 10°P
Int. Conf. on FTC,1980

Castillo, X. Siewiorek D.P. "A Performance-Reliabili-
ty Liodel for Couputing Systems", Proc. ‘IO.bh Int.
Conf. on FIC,1980

Chandy, XK.l. "A Survey of Analytic Models of Roll=-
back and Recovery Strategies", Couputer,Vol.S,
No.2,1975

Denning, P.J. "Fauliv Tolerant Operaiing Systems",
ACH Comp. Surveys,Vol.8,No.4,December 1976

Ferrari, D. "Computer Systems Performance Evalua-
tion",Prentice-~-Hall,Englewood Cliffs,1975

: Gelenbe, E. "On the Optimum Checkpeoint Interval',

Journal of the ACM,Vol.26,No.2,April 1979

Lohman, G.li. luckstadt, J.A. "Optimel Folicy for
Batchh Operations: Backup, Checkpointing, Reorga-
nization and Updating", ACM Trans Database Syst-
ems,Vol.2,No.3,September 1577

lieyer, J.Fs "On Evaluating the Perlformability of
Degradable Computing Systemsg", IEEE Trans. on
Computers,Vol.C~-29,0.8, August 1980

Randell, B.R. "System Structure for Software Fault
Toulerance", I1EEE Trans. on Software Ingineering,
Vol.SE=1,No0.2,June 1975

Young, J.W. "A First-Order Approximation to the
Optimum Checkpoint Interval®™, Communications of
the ACM,Vol.17,N0.6,1974

drzej Duda : Polish Acadeuwy of Sciences

Dept. of Cowplex Coutrol Sysiews
5, Baltycka
44-100 Gliwice, Poland

= 147 =

AUTOMATIC PROGRAMMING SYSTEM DEVELOPMENT ON USER LEVEL
Kerékfy, Pal Ruda, Mihaly

Hungary

1.0 Introduction

Software development, beside the analysis of theoretical
problems, concentrates mainly on producing new programming
languages, problem oriented languages and complete, closed
systems of programs., In this way a bulk of languages,
systems and theories overwhelmes the user., There is a lot of
valuable theoretical results and software based on them that
can be wutilized properly for certain purposes. However it
seems that the efficiency of the wusage of the programs was
sometimes not considered to be important while creating them.
Perhaps, a qualitative change similar to the appearance of
the high-level languages in indispensable. (over and above
creating "ready-made” programs and packages, producing
software tools for wide-ranging applications is indispensa-
ble.) The primary aspect of software development must be the
efficiency of usage - there is no other aspect, indeed. Of
course, efficiency depends on many factors. Therefore the
complexity of the process of software development, applica-
tion and maintanance must be taken into consideration, for
this aspect see e.g. [4). First, some of these factors will
be 1looked over without claiming for completeness. Then
usefulness of a program generating method of the authors will

be summarized.

= 148 =

2.0 Some practical experiences

First, let some experiences be mentioned that turned the
authors’ attention to the problems of software engineering
described in section 4.0, The authors and their collabora-
tors have performed a lot of tasks of desciptive and mathe-
matical statistics. Though there is a plenty of statistical
program packages available (such as the well-known SPSS and
BMDP), a significant proportion of the applications cleims
for extensions of these tools. (This need can be caused by
e.g. special data structure of the input, unusual output
requirements, an enormous mass of data.) It has been noticed
e.g. in a time series analysis program package (see [1]) and
in BMDP, Concerning this latter one, attention is drawn to a
common aspiration observed requently in software develop-
ment., While designing a program or a program package, far
from taking into account later development of the system, the
designer often aspire to prevent the end-user from modifying
the system, It is an extremely important requirement in a
system utilized simultaneously by more than one user (such as
operating systems). But it is extremely disadvantageous in a
system that each user dispose of a separate copy of.

In computer processing of the data of the Hungarian
Hospital Morbidity Study the matter of program manipulation
and optimization became particularly important. This
involves detailed statistical processing of the data of
several hundred thousands of inpatients every vyear [2] A
characteristic of this system, like of many other "living"
systems, is the continual change of the demands. The changes
can affect almost every part of the system. E.g. having new
data collection, preparation and coding methods initiated the
structure of the input data file can be altered. The most
important change affecting the system is just brought about
by the wutilization of the information system itself. The
demand of information can be changed, it affects both the

form and the contents of the information required.

= 149 =

‘In the beginning, the insufficient computer resources (a
small and overloaded CDC 3300) gave rise to special difficul-
ties. Thus, we had no other choice but to apply procedures
that guaranteed both the optimal utilization of the configu-
ration and fulfilling the needs of the continually changing
demands [3].

Later we have tried to make wuse of our experiences in
general,

3.0 Some remarks on software development

Nowadays the term “"software crisis” is being used
frequently, see e.g. [5]. The authors just mention some
experiences that can support the usage of this term. Atten-
tion will be focused on the efficiency of usage. Here,
efficiency is not 1limited to efficient wusage of computer
resources but it includes efficient usage of human efforts
during all the tasks connected to computer usage (e.g.
software development, programming, debugging, etCy) s Now,

let some aspects of the crisis be mentioned.

a) It must be realized that the demand of generality is
sometimes inconsistent with the convenient usage (the optimum
of all variables cannot ever be reached in a multivariate
system), Systems providing the user with the possibility of
the most convenient usage are ususally rigid, they serve a
predefined purpose and can hardly be developed further.

b) As there is a plenty of specialized software products
available, choosing the most suitable one is a complicated
task., To determine if a program really meets all the
requirements then implement it and learn its usage needs hard
efforts of the user.,

c) The matter of conscious usage. Undiscerning use of
a program product is a great convenience and can be accom-
plised without special expertness while well-considered and
fruitful use of a complicated system makes great demands on

— 150 -

the end-user’s power., Note that it is equally advantegous in
computer applications and in the scope of technical develop-
ment to utilize the applicable means given their full know-
ledge and the utilization is not based merely on the
"instructions for use",

d) Systems constructed from elementary "building blocks"
(as e.g. macro languages, preprocessors, problem-oriented
languages, subroutine libraries) get the user to apply them
consciously, nevertheless they need much programming.
Applying a complicated, closed system and having no good
grasp of its logical structure one can easily make conceptual
mistakes while, however, elementary programming may cause a

lot of elementary errors.

e) Having a system applied the wuser may want to modify or
develop it and to make its results attainable for other
systems,

Summing up what has been said it can be stated that closed
systems providing the end-user with convenient usage usually
can be applied in a 1limited scope of problems only. 1In a
field requiring dynamic wuser activity (examples can be
planning or statistical information retrieval procedures) it
is a vain hope that a "prefabricated" system can be applied
successfully. The situations and demands changing continual-
ly and the new tasks evolving during the process require

tools supporting software development in general.

.The authors submit for consideration a method supporting
software development and usage of software products as well,
therefore having applications in users’ tasks conforming to

varying conditions.
In the light of the above considerations the requirements
of efficicency can be stated as:

A system or method is efficient if

a) It is not so general that much power is to be devoted
to learn its usage or the operation occupies too many compu-

ter resources,

= 161 =

b) its structure is clear and easy to survey for the
end-user,

c) the results obtained are reliable,

d) the operation does not need much elementary program-
ming,

e) it is open to other systems, can be developed or
modified.

In the following the authors show how they attempted to
fulfil the above programme. The proposal is based on a
simple program generator procedure called GENERA [6] that was
first applied in statistical processing of large data bases,
see [3,7]. The first aim of generating was to create
programs that are very efficient on general conditions. The
meaning of efficiency is not limited to efficient computer
usage but it includes flexibility and convenient usage as
well. System GENERA which is going to be described here
serves this purpose.

4,0 The generator system GENERA

GENERA supports processing of problem-oriented directives
embedded in a host language. Macro and subroutine libraries
can be utilized and programs or jobs are generated. Besides,
it assists the system programmers in creating generator
procedures and in adding them to the system.

In the following, the basic ideas are summed up. The most
expedient way to describe the great variety of elementary
tasks is an elementary way: use of a high-level language such
as e.g. FORTRAN, PL/1, ALGOL, etc. Typical tasks that can be
specified in advance and demand much work are to be solved
by prefabricated procedures. Subroutine libraries, macro
libraries and problem oriented languages serve this purpose.
However, the organization is the end-user’s task and it can
be a rather complex work, It is the main point supported by
GENERA .

= 1§52 =

Beside preprocessing, generator procedures can aspire to
produce optimal solutions of the problem. To find the
optimal solution is especially important when a large and
complex system is to operate in conversational mode. GENERA,
also, gives the system programmer assistance in producing the
prefabricated procedures. This is accomplished partly by
providing standard procedures (e.g. for error handling,
listing, etc.) and partly by specifying a uniform framework
for the prefabricated procedures.

GENERA is a framework to build generator programs. An
extended file handling facility and a preliminary syntax
analyzer (preprocessor) is established in it. The input
processed is a program written in a host language (such as
PL/1 or FORTRAN) and contains directives that drive the
generator system. The requests expressed by the directives
are fulfilled by installation-defined subsystems. This
method provides the wuser with full control of the system
since the programs are built from elementary parts (host
language statements) and generator directives that can cover
a large set of typical tasks. The environment (e.g. JCL
statements, external program calls, etc.) required to
execute the generated program is produced by the system as
defined at installation time or by the user. As the set of
directives can be widened any time by installing new subsys-
tems, and the user can code any host language statements,
generated programs can be made consistent with any other
program product and the set of generated programs can be
extended.

The systems built up using GENERA are of clear structure,
they get the user to use them consciously and can be connect-
ed to other systems easily. As & consequence they give
solutions to the above problems and, besides, provide means
for generating efficient programs. The efficiency is empha=-
sized since modest demands to computer resources (CPU time,
memory, etc.) 4is important in conversational mode of
processing. The generated programs are of clear and well
arranged structure and they exist in the moment of their

= 153

utilization only. This latter feature facilitates the

maintanance of the system.

summary paper of
the
is

The reader can be referred again to the
Lehman [4]. Having GENERA applied, the
whole process of program and utilization

efficiency of
development
improved significantly. The main features are: accommodation
to the varying conditions, a uniform framework for program
development, simple system management. Among those types of
programs defined in the above referenced paper of Lehman, the

system GENERA has the closest relations to the E-programs.

The figure illustrates

input and

output files

with the data transfer in a generator system based

The left hand side

consists

shows structure of

the input

of program fragments to be copied to the

! |
output'fo‘r‘ flrther
GENERA runs

: i -
- : :
aiasiias | application Aput
fragments to program or
be copied GENERA Jjob
oenerator N b copied or
directives Sy ﬁ{stems generated
fragments
- "
load | — outht
a ufis 3 jor other
e \ s M‘S
[
i e
[A ey
i reports
| l T l |
J | ~
|
L

together
on GENERA.
file that
output

- 154 =

without any modification and generator directives driving the
subsystems together with file selection statements defining
parts of the input file stored on external media. The right

hand side exhibits structure of the output file that usually

contains a program or a job including input and output file
definitions needed for execution. The generated program can

interact with any other system or with the generator system

based on GENERA as well,

During the process of building the input file or generat-
ing, the designer can make use of procedures and data created
by a previous run. Results of generating (the output file)
or those of the generated program or job can be wused in a

subsequent step.

Finally, an example of the applications of GENERA is
shown. It is an input file of SIS79 (Statistical Information
system ‘79) developed for medical statistics.

#0OPTION
$PARAM LIST="ERROR" ,SYSTEM="FORTRAN"$
INTEGER AGE ,HYEAR,BYEAR,bSEX,PROFS,
xCODE ,MAINCD , SUBCD,ERROR (1)
1 CONTINUE

LECTOR
$ PARAM FC=5,END=500,ERR=600%
$DESCR PATIENT
NAME 30X
BYEAR 14
SEX Il
COUNTY 2X
PROFS I4
HDATE
2 HYEAR I4
2 HMONTH 2X
2 HDAY 2X
1 CODE 14

T i e

~ 1558 —

2 MAINCD I3
2 SUBCD Il

b4
AGE = HYEAR - BYEAR

GRAPH
$PARAM GRAPH="AGE CODING" ,DATANA="AGE",
NEWDAT="CDAGE" ,SACKNO=1 ,LEVELS=1,
UPPBOU=100 $
IF (NUMERR.NE.O) GOTO 100
GRAPH
$PARAM GRAPH="CONTROL" ,DATANA="CDAGE" ,
"SEX" ,"MAINCD" ,"SUBCD" ,SACKNO=34 ,LEVELS=
1,10,15,8,UPPBOU=10,10~10,896,788,
104999,618,528,496 ,2%7 ,6«9,
LOWBOU (2)= 10»1,LOWBOU (15) =125 $
IF (NUMERR,NE.O) GOTO 101

GOTO 1

100 WRITE (6,10) ERROR(1)

10 FORMAT (' ERROR IN AGE:’',I4)
GOTO 1

101 WRITE (6,11) ERROR(1)

11 FORMAT (' ERROR:’,I4)
GOTO 1

600 WRITE (6,12)

12 FORMAT (' READ ERROR')
GOTO 1

500 STOP
END

The program contains FORTRAN statements and SIS79 direc-
tives intermixed. There is a directive #OPTION containing
declarative statements for GENERA. 1In this example output
listing will contain error messages only and a FORTRAN
program will be generated (LIST="ERROR", SYSTEM="FORTRAN").
The meaning of the set pPARAM after the directive #LECTOR
goes without saying. The set DESCR 'gives format for reading

= 186 =

a record named PATIENT (COBOL-style level numbers and FORTRAN
format items are used). The subsystem LECTOR generates a
fast input procedure in FORTRAN, The directive #GRAPH 1is
described in [7]. It is a method to describe and evaluate
multivariate functions. The first #GRAPH directive of the
example generates procedure named "AGE CODING"., Argument of
the function is variable AGE while the function value is
assigned to variable CDAGE. The parameters SACKNO and LEVELS
indicate the structure of the graph that is a single table of
values in this example., The table gives function values for
independent variables 1 - 100 (UPPBOU=100). The procedure
generated by the second directive is named CONTROL. It has
four independent variables CDAGE, SEX, MAINCD and SUBCD.
SACKNO=34 means that the graph contains 34 vertices (elemen-
tary tables, "sacks"). There are 1, 10, 15, 8 vertices on
the levels corresponding to the independent variables,
respectively. The minima and maxima of the independent
variables are stored in arrays LOWBOU and UPPBOU. The
parameters NUMMER and ERROR are the names of variables for

error processing.
5.0 References

l. M, Ruda, L, Szeidl, G. Tusnady, "Time series analysis on
CDC 330C", Progress in Statistics, ed. J. Gani et al.,
North-Holland, 1974, Vol. 2, pp. 661=-665.

2. M, Csukéas, L, Greff, A, Kramli, M, Ruda, "An Approach to
the Hospital Morbidity Data System Development in
Hungary", Colloques IRIA, Tome 1, Informatique Médicale,
IRIA, 1975, pp. 381-390. (paper presented at the
Symposium on Medical Data Processing, Toulouse, 1975.)

3. A, Kradmli, M, Ruda, M, Csukéas, M, Galambos, "Large
Sample Size Statistical Information System for HwB",
Data Analysis and Informatics, ed. E. Diday, North-Hol=-
land, 1980, pp. 457-462.

- 157 -

M. M, Lehman, "Programs, Life Cycles, and Laws of
Software Evolution", Proceedings of the IEEE, Vol, 68,
1980, No. 9, pp. 1060-1076.

J. Foisseau, R. Jacquart, M, Lemaitre, M, Lemoine, J.C.
Vignat, G. Zanon, "Program Development With or Without
Coding", Software World, Vol. 12, No., 1, 1981, pp. 9-12.

P. Kerékfy, "GENERA - A Program Generator System",
Progress in Cybernetics and Systems Research, Vol. 1ll.,
Hemisphere, Washington (to appear). (paper presented at
the Fifth European Meeting on Cybernetics and Systems
Research (EMCSR'80), Vienna, 1980.)

P. Kerékfy, A, Kramli, M, Ruda, "SIS79/GENERA
Statistical Information System”, Progress in Cybernetics
and Systems Research, Vol., 1ll., Hemisphere, Washington
(to appear). (paper presented at the Fifth European
Meeting on Cybernetics and Systems Research (EMCSR’80),

Vienna, 1980.)

A, Kramli, P, Lukécs, M, Ruda, "Probabilistic Approach
to the Performance Evaluation of Computer Systems”,
Third Hungarian Computer Science Conference, Budapest,
1981, Invited Papers, pp. 51-63.

Authors’' address:
Computer and Automation Institute
Hungarian Academy of Sciences
Budapest P. 0. Box 63, H-1502

A TANULMANYOK SOROZATBAN 1982-BAN MEGJELENTEK:

130/1982

131/1982

1321982

133/1982

134/1982

135/1982

136/.1982

137/1982

138/1982

Barabas Mikldés - Tdkés Szabolcs: A lérez printer

képalkotas hibai és optikai korrekcidjuk

RG-II/KNVVT "Szisztemli upravlenija bazani danniih
i informacionniie szisztemii"
Szbornik naucsno-iszszledovatel’szkih rabot
rabocsej gruppi RG-II KNVVT, Budapest, 1979.
Tom I.

RG—-II/KNVVT TR 4 i
RG-II KNVVT Teom I E X

Knuth E18d - ROnyai Lajos: Az SDLA/SET adatbazis

lekérdezd nyelv alapjai (orosz nyelvil)

Néhany feladat a tervezés-automatizalas terlile-

térdl. Ormény-magyar kozos cikkgyijtemény

Somldé Janos: Forgacsold megmunkdlasok folyama-
tainak optiméalasi és iranyitasi problémai
KGST I-15.1. Szakbizottsag 1979. és 80. évi

eldadasai

Kovacs Laszl16: Szamitdgép-haldzati protokollok

formalis specifik&lasa és verifikaléasa

	Tartalom
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������

