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Chapter 1.

The elementary Gaussian processes

1.8 Definition and properties of elementary Gaussian

PIrocCesses

A k dimensional stochastic process j}t) is called ele-
mentary Gaussian process if it is Gaussian, stationary and
Markov. In continuous time case we suppose that it is a dif-
fusion process /see Part I. Ch.l/.

In the following we shall examine first the connection
between the elementary Gaussian processes and the stochastic
difference resp. stochastic differential equations. In the
sequel we shall suppose that the process is not degenerated
and it is linearly regular /see I. Ch. 2/. By the phrase

§(ﬁ is not degenerated we mean that its components are
p;;ntwise linearly independent.

In the discrete time case the connection between the
elementary Gaussian processes and the stochastic difference
| equations is characterized by the following two theorems. Let
€ (n) be normally and identically distributed independent k-
dimensional random variables, with

Eeln)-0, E(&lm), €)= B,

where Rank B; > 1, Let Q denote a k xk matrix with eigenvalu-
es Ki, where]lq ] < 1, i=1,2,...k. Then the equation
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(1. B(Q) = ABO)Q + Be

has nonsingular positive definite solution B (0) /see
Gantmaher [1] /. Let f0) be normally distributed k-dimensi-

onal random vector va;'iable with the parameters
E§(0) -0, E§, §£Q) =B0)

and independent of £(n).
Under these conditions there holds the following.

Theorem 1.1 Let {(n) be defined recursively by the

equation

(1.21 §(n) =Q §(n1) + gn),  n=12,
where the eigenvalﬁés of Q are in the inside the unit circle,
n-1
£(n) is independent of 7’5 (§) = 61500, §(n-14), §(0)
is normally distributed with € i ©=0 and covariance
B (0) satisfying (1.1) . Then §{(n) is an elementary

Gaussian process with EE(nPO and covariance matrix
(1.3) B(t) = E(5tn+ 0 §1n) = Q7B(O)-

Proof. The normality follows directly from the linearity of
(le2) by induction.
By repeated application of (1l.2)



g(”) 4 é(n)*gé(h—i%—.. 0 g('l)*Qng(O)

from where (using the independence of the variables £(n)
and (1l.1))

B, Fin-0) = Q1B+ QB + . +Q B@™™ =

s~ .

-1 +QBO - +Q (B QBOQIA) ]

and by induction( in 1)

E(fn), §Tn-0) = QBIO)

which proves the stationarity. The Markov property will be

proved after lemma 1.

Lemma 1,
If m(n) is a Gaussian process /n=0,1, ...,/ with the

properties
;: and
/1’2/

Em ml?f ) (_ Elqn] B %"

~where C(n) and B(n) are deterministic matrix functions,

-1
(—

then 7 (n) is a Markov-process.

The proof is trivial, as a Gaussian distribution is

determined by the first two moments.

The proof of the Markov property. As §(n)=A E(n—4) + £(n),

n-4
where £(n) is independent of % (€)



L
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2 0

[T]
-

so the conditons of lemma l. are satisfied.
In the precedings we examined the one side process /n> 0/
but it is interesting to consider a stationary process from

—00

Remark 1, Let &n) ©be a sequence of independent identically
distributed /in the sequel i.i.d./ k-dimensional Gaussian
random vectors with nondegenerated covariance matrix B and
Q a k x k matrix, such that its eigenvalues are all either
inside the unit circle or outside the unit circle. Then the

equation

(1.1 §(n) =Q§(n-1 + &(n) (n=0,t41 . )

has a unique stationary solution with finite second moments.
This solution is a regular Gaussian Markov process.

For the proof we need the following.

Lemma 2. The series

(1.4) :io Q" e(n)

is convergent if and only if |A,|< /4 , where A; are the
eigenvalues of the matrix Q.
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Proof. The convergence of (1l.4) holds if and only if the

% n
series h@ BgQ of the variance matrices is con-
vergent, /Kolmogorov’s 3 series theorem is true also for
vector variables/. The above series of variance matrices is
convergent if and only if |A| <L for every i.
Proof of remark l. By lemma 2 the series

§ ZQ € (n- 1)/ 7@ E(n+1i) is convergent

if the eigenva.lues of Q are inside /outside/ the unit circle.

We can see directly that §( / E (n) / is a regular
stationary Gaussian Markov—process and satisfies the equation
(1.1?) . Let @(n) / ni(n)/ an another solution, then

3 S ~m(n) J € E % \ "”f(”)/ satisfies the equation
§ Q§ pe-id ) i.ee 3 Q §(0 for every n,-co<n<oco.

Therefore there exists a real number q>4. (Of < /L)- the minimum
( maximum) of the eigenvalues of the matrix Q (Q!) such +that

F(g(n)‘iﬁn)) = CYY’\E(E(O) §*(O)) for 6 O

(: (g\(h)\ §*(l"1)) = of” E(i\(o)\ §*(O)> P N <O )

e

i.e. the uniqueness of the solution is proved.

Remark 2, From the proof we can see that - depending on the
eigenvalues of Q - the best forward /backward/ extrapolation
of §(*’\+45 is @i(h) and the coveriance matrix of the error
is —Bg .

Remark 3. The random vector E("\) /g(h)/ is q:.:a(&)
/¢:o(u / messurable and therefore & (n+4) /E(V\*’L) £ Aa
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independent of /{o:(ﬁ ) / /Fnoo(f) / : . The proof shows
that ?:o:(ﬁ) - Fole) . The £(n) process is called

innovation process.

Theorem 1.2 Let §(n)/n=0,71..,/  be a k-dimensional
stationary Gat;ssian Markov process with O mean and
coveriance matrix function P ({) , Then there exists a k x k
matrix Q with eigenvalues inside the unit circle and a sequ~
ence of i.i.d. Gaussian vectors t¢(n) such that the equation

(1.1’) with Q and £(n) holds for §(n).

Proof. As in the case of random variables witﬁ joint Gaussian

distribution the regression is always linear, it follows from
- n— \

the Markovity that with some Q t(g(n)\ T t§))=Q_§(n_1).

§(n) may be written in the form Qg(h—i) + Q(”) , Where

%(n)zg(n)__@g(n_q , &{n) is independent of

) ';C::o' (§) , therefore the random vectors é(n) are

independent. It follows from the stationarity that the matrix
Q and the distribution of e(n)  do not depend on n.,

Remark 4. This representation of elementary Gaussian proces-
|
ses shows that the process i(n) in remark 1. satisfies

another difference equation

5

£ (n) =@ §h-t) + 3(n).

From the explicit form of the solution of equation (1l.1') it
-1
is easy to see, that Q= @ and



Slh) = Q_Lé(n-i) - Q—f _oi Qi efi+n).

It is well known that the reversed process f(—h) of a

Markov process §(h) is also Markov. Therefore, on the basis

of theorem 1.2 § (h) satisfies the equation

flt) = Q§n) + Eln]

~
where £(n) is a sequence of i.i.d. Gaussian random vectors

~

with covariance matrix Bg, , and 8(n) is independent of

oo

Tn (f) . More about reversed processes see in Andel’s

paper [ 2] .

Remark 5. The parasmeter matrices Q  ena B can ve
calculated from the matrices O and Dg of equation (1.1
by solving the system of equations

n+4

H ZBEQk*'QBerz*'-“* Qnt(@) ;
Q =Be+QH) = H,

BE =9B§~©‘_X+—B£7

3§ :QB§Q*+B5-

Proof, The proof is straightforward using the representation

gl -2, & £l
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Althought the observations of a real process give a
diserete time process, it is useful to consider continuous
time processes, because some phenomena can be described more
adequately in that way, and also the results have simpler
form. In theorem 1.5 - on the basis of Doob’s results we shall
formulate the exact correspondence between the two cases.

The analogon of the sequence of i.i.d. Gaussian vectors
is the multidimensional white noise: the non-existing "deriva-
tive" of the multidimensional Wiener process. To stochastic
difference equation corresponds the stochastic differential
equation, which was introduced in Part I.

Let(gAt),?it) be a k-dimensional Brownian motion
process, possibly degenerated, with the local parameters
Ewit)=0 4 Eldw(®) , dwlt) =By dt , and let the
k x k matrix A have eigenvalues only with negative real
parts. Let us consider the stochastic differential equation

(1,50 d§(t) = Aglt)dt + owlt)

and let B UD) the unicque solution of the matrix equation A
matrix equation of the type AX “XB: C is uniqually solvab-

r

le if and only if A and B have no common eigenvalues |see

Gantmakher [lj) .

(1.6)  ABO)+ BOIA = -B,,
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Theorem 1.3 The only stationary solution f(t} with

continuous sample paths of (1.5 is an elementary Gaussian

process. Its covariance matrix function has the form

3(t) = BO) &

Remark 5. The solution of (1.5) has the integral representa-

tion (see example 3. too)

| F At -
(1.7)  §(t) :59 ’ S)dN(

- 0a

where the existence of integral (1. 7) is equivalent to the

/-\s

N ds . * The exis-—

-A
finiteness of the integral | e B, e
tence of the integral is eauivalent to the condition

lim g”AB“,= 0 . This representation is analogous to the sum
S > o0
in remark 1., and shows that i( ) is ?{ measurable. yg(t)

is the innovation process of f't\ « It is well known from
-A%s

the matrix theory that f E) EB ds exists, and
gives the unique solutlon of equation (1.6) if and only if
the real parts of the eigenvalues of A are all negative.
The existence of integral (1.7) follows from the definition
of the stochastic integral of a deterministic function on a
finite interval.

Proof of theorem<3. and remarkAS. First let us notice that

fle-t)-e fe wt+s) 12 §(t) 1s

defined by( D As the second term on the right hand side




. -

is independent of ?::(f ) 80 eAC—S(t) is the best
extrapolation.Exi(t+“t)/§;f(§)) of the process f(t)
From this repreééntation and -
FIE b+ -E(Ec +ThEL ENE b vty -EEb+DIE O TEL )] -
_ At/ Q_ATD —A*vdv

the markovity of the process g(t) and the formula for .P)("C)
is straightforward. | )

By a direct computation we may convince that the integral

( 1.7) satisfies the equation (1.5) :

A ftf(‘c)d’t =/—\J/CJEA(R)C1\L/(S)CJT ZA(M; & owls)dT +
0 0~

¢ T-s . -s) T\ 4
A [T Yyllor- (€ -Tdwle) ¢
[t) - §(0) ~wit) +w(0),

where I denotes the unit matrix.

The stationarity and the continuity with probability 1 of
§(t) is obvious from the representation (1.7) . The unique-
ﬁ;ss follows from general theorems for the stochastic diffe-
rential equations /see Part I./, but it can be verified simi-

larly to the discrete time case.

Remark 6. An analogous statement is true for matrices with

eigenvalues having only positive real parts. Then f( )
oo A(t—-

f 2 VV(SS) will be the desired solution.®

*But f(t) does not solve the equation ( 1.5) in strict sense,

because i(tﬁ is not ?; measurable.
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The converse of theorem 1.3 is also valid:

Theorem 1.4  If the k-dimensional process §(t) with O mean

and continuous sample paths is a stationary Geussian Markov
one, then there exists a matrix A with eigenvalues in the

left halfplane and a Wiener process yyﬂt) s 8uch that

Proof. From Gauss-Markov property we get the existence of a

matrix function Q(‘cz\tﬂ two variables, satisfying the
relation
(1.8)E(§(5) | ji_ Qltaty) §(te), for >4

Applying (1.8) succesively we can deduce the functional
equation for T = ty=ty:

(1.9) Q(tytﬂ:@(tytz) X Q(tz‘fﬂ)

This relation is valid for non-stationary processes too. If
moreover j(t) is stationary: Cl(tQ){H) =Q(t t)-

As the process E(t) is continuous with probability 1,
and therefore - being Gaussian - it is continuous in mean
square too, the matrix function.CMt2'“t1) is continuous. The
unique continuous solution of ( 1.8) under the initial condi-

- Alt, -t1)
tionClM])— I is the matrix function € S with some
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constant matrix A . For 5>O let us take the sum

sl - - ( ke JC
110 2 L) - °E (i~ ) - 6T3]) -50)-82, £()+er5),

¢
which almost surely tends to S(t)-g{@\‘ﬁj i(S)dS 12 0>0),
As, by (1.8) the terms on the left hand sfde are i.i.d.
Gaussian random vectors, the limit process will be a multidi-
mensional Gaussian process with independent, stationary
increments, i.e. a multidimensional Wiener process. So we
have provéd that E(t\ satisfies the equation (1.5) . Theorem

1.3 involves the condition on eigenvalues of matrix A .

Remark 7. It turns out from the above proof that a Gaussian
process is elementary if and only if its covariance matrix
function has the form B(O) @Altvtll s Where eigen-
values of A are all in the left halfplane.
On the basis of 1.8 and 1.9 a stationary Gaussian
process is Markov if and only if for H >4
Aty —t1)

E(f(t)) = e £ (t1)

For non-stationary Gaussian processes the necessary and

sufficient condition of markovity is the relation

' * - X
sk, ) = E(EeE), §ep). Q) &)

]

where Q(tz‘tl ) satisfies the equation (1.9) .
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The following theorem explains the connection between the

discrete and continuous time elementary Gaussian processes.

Theorem 1.5 /Doob’s paper [ l} / The continuous time process
g(f) J— oo < t<oo/ with continuous sample paths is
an elementary Gaussian one if and only if for each 3> O

the discrete time process E(né ) is elementary Gaussian.

Proof. Necessity is trivial. For the proof of sufficiency
let us first notice that the joint distribution of random
> T X i -~ O
vectors E_(‘MO )’ « ¥ s \g(:\nO ) for every © ~ and
| , .

every finite sequence {V\M wueg ’rﬂn} of integers is Gaussian.
Hence, by the continuity of sample paths the process §_( t) is
Gaussian. Stationarity is obvious. There remains to prove
markovity. For this purpose - on the basis of remark 7. = it
is sufficient to prove that for t» > t1 E[f(ta) ] 3tq) =
__Altz-t4) £
=e §( 1 ) . By Gaussity there exists a matrix function

Q(t,-t4)  for whien E (K £2) ] §(ta) = QL{b2-t4 1§ (k)

As the process E( ) is Markov for every S > O
Q(m5 )—Q( ) Q(VYWh ) Because of the continuity of sample
paths Q(tz’t1 ) is also continuous, and so - satisfying

the equation (1.9) and the initisl comditionm (Q(0)=1 -
has the desired form.

Theorem 5.2 of Part I. asserts that two k-dimensional
Wiener process \/_vg 4)(t) and \/_\_;L)(t) can be distincted with

probability 1 observing them on an arbitrary small intexval

[O ,T] because



We may ask now if distinction on this way is possible
with probability 1 for any two elementary Gaussian proces-
ses. By theorem 1.6, see e.g. Baxter 1), answer is no; if
S A es oF @ibteion B ol Do e Uhe ik
Moreover, later we shall see that there is no possibility to
distinct them almost surely on a finite interval.

Theorem 1.6 Let g(t\ be a k-dimensional elementary

Gaussian process with parameters A and B, . Then with pro-
bability 1 11m L(§ =8 ) (B8 - Sl ) B oy
i=1 "= - -
where U= ‘%
Proof. On the basis of (1.10) we can write that

5 (505 - §rtim (5t - Ertima) = 2 lwik ) -wik i) )wrt 0 -wikip) +

+§‘ Il/‘\ E (t\lcjt(“/(tl)—\’\/\t\—‘\))**— ‘Z ( e wd:‘ ! ] E (_t A CH: L
i=4 t.‘,_1 = 1=1

2\’\ | 1 .
LS Atk)gt [ FR)AGE

=% gy i1

t
As for almost all sample path the vector functions éAE

and j § s)A ds have bounded variation the last three
terms tend to O with probability 1 if n—> o«

In the sequel we give some examples for non-stationary
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Gaussian processes, defined by stochastic differential equa-

tions.

Example 1. If A(JC) and D(JC) are deterministic vector resp.

matrix functions, then the process nz( ) with stochastic dif-

ferential d m ( )dt D( ) (Jo

is a Gaussian one with independent increments, where

v v .
=y 5 -m0) = [ Als)ds, Eﬁmm—gwﬂ:jggfjgws
- : 0 0

N

Example 2, The solution of the homogeneous linear stochastic
equation /if nz@)ﬁ O d”(:B(JC) ”’[(.t)Jr D(t)”l('t)dw(t)

has the following form
1= (0} e [B ﬁc+jD ﬂ.

The proof follows immediately from the Ito formula for

the process §(t): {? "z“b) , Which states that

d§{b)= 75 BE6) m bt - gy O T It
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The last formula is true until n(t) does not become zero. But

the right side does not do it in case 1(0)> 0 . And, so each
solution may be written in this form. In case nl0)<0  the
situation is the same for -m (t)

Example 3. The solution of the inhomogenous linear stochastic

equation

dn(6)= Blb) m{t)db+ Fb)dw's,

may be wrltten in the form
t s

”& = exp I/B = dQJL (O) jem {/ggan)dn} ["—(Q)C}\/\/’\S‘/]

To prove this let

£6) = m (B1 %),
where ( £ d
t)=exp {- (S
“Zo( ) 1 Of B(s) 5}

It is easy to calculate that

C'ﬂzg(t) -—m(5)B(t)db

and
d§‘\t\ = n(t) .d/ylo(t\, + fqo(t)drr((t)iqo(t)f-—(t)dr\(t)

From here we get
Y

£(t) - §0) +| F (s)gfsidwis) = §(0) ‘“O/ (s )ersl- | Binidrldwis),
0 0

s

and finally

m(t) - —% . {g B(S)ds} {”{@)*JF (<)exn|- g B(u?du?dw’s)}
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Specially the one dimensional elementary Gaussian process
[
(where Bﬁﬂ == A = const. and?fit)='< has the form (see

remark 5.))

Exercises
1. Compute the correlation function of a one dimensional
Gaussian Markov process starting fromtthe origin.

| Hint: use the representation fI(t] =/ & dwls) -)
0
2. Prove that if §(fj is a one dimensional stationary Gaussi-

an Markov process with parameters o« < 0 , and i%/> 0 » then
the process
~2Gt 1 \
wit) = ™ %( o4 ’&?’t/
w
is a standard Wiener process,

(Hint: compute the correlation function of VJ({ﬂ'>

3. In the same way as in examples 2 - 5 prove that the stoc-
hastic differential equation

dn(t) - [Alb)+B(E)q(Edb 4F(t) D (t) m{tldw(t)

has the solution

plb)-ex { {)EB(S)“% D (silds %B(s)dw(g)}[q@ +£pr {—OﬂB(u) :
-4 Dluldu- g SD(U)CM(U)} ) -FeDis/ds +fen |- é [Blu) -

A DW)ldu - g Diu)dw (u)} Fisidwlis]] .
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4, For the multidimensional case prove that the process f(t)
with differential

dfib) - Blt) § (b)cb + dwit)
has the explicit fofm

+ S
t(v 'wplfB Csng\'Jew{’JEﬁukM}dgﬁgﬂ.
- 0 0
5. Let §, ) be - non necessarily stationary solution of (1.5)

Prove that its mean value vector function gzkb) satisfies the

equation
m () = A mly)
and its veriance-matrix function~|U) satisfies the equation
it
R'(t) = A" Rit) + REA +Bw

6. Prove that the only homogeneous probability density functi-
on which describes a continuous Gaussian Markovian process

has the form, fort > 5 |

! | 4 [ (y-m—g(x—rﬂzl ) -A(t-5)
iD\y‘ta X,S>={ﬁfﬁaf§§i?aEXP~(~ 2A1-9%) 62 j) S

where 6, m, A, are constants. This means that the process

g@t) is the solution of the differential equation

AEl) = —A € [)+ Amdb + dw ) ( see Eramii[1])
7. Prove relation (1.6) assuming gft) is a continuous solu-
tion of (1.5)

(Hint: Multiplying (1.5) by g{t) and taking the expectation
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we get

(¥ Bldt) = B(0) +A BO)dt.

. \ *"/
Using the fact that E_g’,tﬂ:b)dw (%) = B, db
multiplying the transposition of (1.5) by € (t+db) and
taking the expectation we get

1« %) B(0)-Bldb) = Bldtl+ B, db,

(%] ena (% %) prove the statement.)

8. Prove Theorem 1.3 by the differential equation (1.5)
and the integral representation:

Elb)=§(c) + A [ Els)ds+ wit)-wlt), 0=c=t

AT
where § (T) is {;n measurable.( Hint: Stationarity

follows from

B(t,T) = £ (&) ) =Blr,T)+A g B(sT)ds,

with the only continuous solution

t-T)

gt )= FR(TT).

Markovity is the consequence of

o 1% 53
S(EM L) = £+ [EI8(9)E, )ds

T

with the solution

A tE-T) .
ElE%e) =€ £ (%))
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9, Prove theorem 1l.4 using Levy’s theorem( Part I. Ch.BJ

lo.Prove theorem 1.5 by the martingal convergence theorem
see Doob’s paper ii ).

1ll.Prove directly that the solution of 1.5 is a diffusion

type process( see exercise 3% in I Ch. 12.).
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2.§ Radon-Nikodym derivatives with respect to Wiener

measure.

In the statistics of elementary Gaussian processes - simi-
larly to the statistics of independent observations - the
maximum-likelihood principle has an important role. For this
purpose it is desirable to determine the Radon-Nikodym deri-
vative of the measure generated by this process with respect
to some standard measure. Theorem 1.6 suggests that the ele-
mentary Gaussian processes with common matrix of diffusion
generate equivalent measures, and these measures are equivae-
lent to the Wiener-measure with the same local variance mat-
rix. Theorem 2.1 expresses our heuristic argument in an exact
form. Before this we introduce some notations.

Let :{:k be the metric space of k-dimensional vector-
valued continuous functions on the interval [0,T] with the uni-
form metric| |.It will be convenient to assume }€¢§ as a
direct product of the space (:J[)]~j of k-dimensional con-
tinuous functions X={x(t) O=t<T| with the initial condition
x[0]=0 and the k-dimensional Euclidean space RS,

For the sake of generality we shall consider a Gaussian
Markov process f () satisfying the stochastic differential
equation ( 1.5) and Beving Tixi0l) as dniiia) prebsbility
density function. Let i be the probability measure on:yak
generated by the above process .g(t) and ) be the "conditio-
nal" product of the k-dimensional Lebesque-measure and the
measure generated by the Wiener process on the right hand
side of (1.5) .



Theorem 2.1 The measures / and ) are equivalent and their

Radon-Nikodym derivative has the form
E i

|
(X1 £(% ) explf (Cx (520 (1))~ ['_Amtz’\jyt))dt}
0

(2s1) T
0

¥
<

where C = B\j\; A T

The value of stochastic integral /(é (%) dx (t))
can be determined for almost every Wi?ener sample path W (JC') -
The symbol /l(cﬁ(b)ﬁ.)ﬁ(t)) means this value; so formula
(241) givesoi) -almost everywhere the Radon-Nikodym derivative.

Proof. The proof is based on a variant of the invariance

principle due to Prohorov '1] y Which will be cited in the

course of the proof ( see Aratd [5] or Kramli-Pergel [2] )
First let us notice that the conditional measures W

and v generated by processes g(t) and w(U) on the space

C;X)‘(D )T |  under the conditions é(O) =X . WD) = %,

may be treated in a simpler way. Our theorem v}ill follow from

the statement about these conditional measures:

The measures (. and » are equivalent, and

T N
(2.2) 9L [x (1) = exp f} Cx (b dx(tﬂ—ﬁz— (Ayt)@mt))o\t}
dd = P
0 0
n ; (cln) (dn)
Let [d } be a sequence of divisionso=t4 »--->J0£ =T

\ =
of the interval[ ,Tu . Let us suppose that for n = m An

refines dy, . Introduce now the new stochastic process gd” (t)

recursively as follows:



= BT

L2+2) oln; dnjpdn, A I dn L +) w/to{h) if

§ \JG) - g \ti—'l / *'/—[g »,.JC»_A)('t~ fiag) T MLE] =0 By

- o tiz - t;_,
The process § “t)is the so called Euler approximation of

the process §_(t> + The sequence { gdn(t)} (n=42...)
has two basic properties.

(1) Let 94‘ ; s “9L be a finite set of time points. The
joint conditional distribution of random vectors
é‘d”@4))._.)§dm(@£> under the condition gdh@) =5
Eends to tl:e corresponding distribution of 5(94), & S@L) :

(1i) The\formula (2.3) can be understood as a transformation

[D of the space Ci[O,T ] into itself: for every

Wiener sample path corresponds a sample path of the process
€(t) . If K is a compactum of CZ'FO,T] , then

{D(K) is a compactum too.

Proof. As the processes are Gaussian, for the proof of pro-
perty (i) it is sufficient to show, that the conditional mean
value vector and covariance matrix functions of the processes
§dn(b) under the conditions gdn(o\ = X tend to the
c—orresponding functions of g(t) « This can be obtained by
direct calculations.

For the proof of property (ii) we have to show - on the
basis of the theorem of Arzela - the uniform boundedness and
the equicontinuity of functions defined by (2.3) under the
condition that the functions on the right hand side of (2.3)

have these properties. The uniform boundedness follows from
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AT+ [xtE)l)
IDIx bl =] xit) )| ~e™ . Taking

into account this the equicontinuity follows from the equi-

the inequality

continuity of functions X (tre K.

From Levy'’s theorem on the modulus of continuity of the
Wiener process (see exercise © in Part I Ch. 3) and from
property (ii) we can derive the fundamental property.

(iii1) For every 28 J there exists a compactum Kg of the
space Ci 10 ,TT such that  /[cn (Ke)> 1-€ , where [in
is the conditional measure generated by the process Edn(t)
under the condition gdh( ) = A*

Proof. From Levy’s theorem follows the existénce of such
Ké for the Wiener process. Set Kg - (D ( Ké) .

The properties (i) and (iii) give by-a variant of
Prohorov’s theorem (see Gikhman-Skorokhod [1] ch. IX. § l.)a
necessary and sufficient condition for the weak convergence
of the measures /¢, to i . In other terms these properties

provide that for every bounded continuous functional f(ﬁ(t))

on L’k OTW f‘f t) ditn ﬁ/ f t))d/w.
_OIT] Ck.rC,T]
As we have collected all the necessary preliminaries to

the proof of theorem 2.1, we can begin the proper calculation
of the Radon-Nikodym derivative of measure ,Lln with respect

to V . The first step for this purpose is the following

lemmsa.

Lemma 2,1 The measure i, is absolutely continuous with res-

pect to Y and
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(2.) 27 - Pl e*p{J Cogt Bg)=2.[ A1 Cog- 5|

a dn dn cln dn

where A xj = §(J6jn) - x b=y ) and  ALTT =L7 -t
R

Proof. Let d” be a refinement of d" i.e.:

77 i b) dn
O =t§n:todh /‘t?né"'Lti’l :tq oo 2

By a direct calculation we get

dn
e A —A At
7()(({7)) EK\O —Cxi-1 AT, .731
pn,h B ‘l?/‘ l;_‘ 1 At"dn
(2’5) \ -1 dn ) ’ 5
5 ‘BwAéidn },At. L p e X ()5,
[ Ati 5?” = ﬁ(tj n)
for the ratio of joint density functions of random vectors
. dr’ dn?
£067™), ., 8 (607) ama  witi) o w (BET).
Letting n’ tend to o (2.5) turns into (2.4) for almost every
x(t), As p,. (x£) is the ratlo of density functions of random
vectors § 1)) |§ and wl(Uy ), ... ,wi(lm].

Therefore we can apply the martingale convergence theorem
(theorem 7 of Part I.Ch lo.) te the sequence P ‘N(é‘t));
which completes the proof of lemma 2.1 .

As the terms in the exponent of formula (2.4) tend to the

1 |
integrals I(Cgkt), dé\t)) —%/(A.é(t),cla(t)dt
in mean squgre norm, we can choose a subsequence d of
sequence d in such a way that the limit p(x(t)) E]'kx (t))

L =00 "

exists for a.e. X (6]

Let us consider the compactum KE such that



for every n. As the elements of Kg are uniformly bounded
tuncttons 4| (Ax Cxy ) A4 = NS 1A11ICH

(where [\g is ‘t;he common uplper bound. for the norms of x(l)g Kg)
fig we Laye [pn(é(b)ﬂz =g e IA“CID;D (x b)) for every
ﬁ(t) - KE' (p(:) means the probsbility <(1le)nsity function
obtained in the same way for the process g () with parameters
2/ and B,). From this inequality | and theovea 3 of Pevt
1. Ch lo.) we can deduce the uniform integrability of the
sequence pn( é(b)) on the compactum KS with respect to the
measure Y . /We notice that the uniform integrability is
valid on the whole space GE[LO ,T but its verification
is not so simple as on the compact subsets of Cao ‘T ],-

this is the advantage of the application of Prohorov'’s theorem.

From (2.6) on the basis of Fatou'’s theorem we get

f D(x ) dV =1-¢ .
Let f . be a non—negative bounded cont_:inuous functional on

CX er 'T 1 . Also by Fatou’s theorem we get
(2.7) ]f>_< pX(t)dV‘IQm/f‘x(tp(—t))dt.
c, o1l £ = 00Cyx, T] i,

Using (2.6) and (2.7) and the uniform integrability of the
sequence P”Lbi(t)) on K¢ we obtain
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b | Hlxibip, (x5 AP = L ffr «b)p (x(b))dP + € =
L%WCD] L —=>oc 5 k
2.8)

= ]’%(é(t))Fﬂ(étt))Cﬂﬁ + 876}[ {(&(tﬂ P(é(tﬂ)dl)f €
3 c,[or]
where £ is max H, xkt))l
x(tre K &
Analogous considerations are valid for negative functionals

too. So relations (2.,7) and (2.8) involve

g [ £{x) p, (x15) dv= [ tud) plyd)dv

&% (e C 0T] L C\i[o*ﬂ

for arbitrary continuous, bounded functional LX) i.e.
the measure P f p(x(0)dP is the weak limit of
measures [in e On the other hand - as we have mentioned -
from properties (i) and (iii) follows that the sequence Hen
has the weak limit (. But a sequence of measures has no two
different weak limits, so the measure /[L generated by the
density function P()}_ (t)) coincides with /(L. The equiva-
lence of measures /L and v follows from the fact that the
stochastic integral fv;/(t) dw () is finite with proba-
bility 1. ’

Remark 1. In real applications we observe a trajectory of the
process SLJU) . But, by the just proved equivalence of measu-
res it and Y the value of fcé(t)dé(t) for/&/({s)
almost every trajectory does not depend on the regarded
measure on JC, , as it is defined as an a.e. limit of a

sequence of measurable functions on }€k' In the literature



there is often used the following formula for
ds__( d )‘4
Sy dv 2

T

T
j_\;_(g) = exp {—Of_(cg_(t)d £ (b)) +4 [(Asth, Cet)dt |

0

correctness of which is garanteed by the above remark.

Remark 2. The proof of theorem 2.1l. may be carried out in the

case when g = {§_<t>, T{;} is a diffusion type process,
i.e.
¥
£(b)= [ ot (s,E)ds +wit)
a 0
where ?—((t) %_ ) is a measurable vector functional not

depending on ?he future and
Pl fla (5,8)] db < oo} =1
PAERIS f

(see Lipcer - Shiryayev’s book [1] or Benczur - Szeidl [1]) .
The concrete formulas - suitable for computational

purposes are given in the following exercises.

Exercises.

l. Prove that in the one dimensional stationary case, when

d§(t)=—A £ (t)db + dw(t)
Ewlt) = 0, E(dwh)= 6'db

0) = 2%
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|
ol gl ge 4 [ » -2 Lo AT A TR oH 11.
S /3 e (g J X DA B0,

Obtain this formula from the ratio of probability density
functions of Gaussian vectors {g(%)} ) {W Ln )}
k=1,.,n letting n tend to infinity. This ratio can be

calculated using the relz tion
A

flk) e g ket) e £ (Tre (k)= 1)

following from theorem 1.5. | See Araté [5] or Striebel [1])

2. Let £(U) be as above, and
£ (t)=§(t)+m . Let ( and (L the probability
measures generated by processes £(U) and £ () on 3

respectively. Prove that (see Grenander [1])
T
AT
XM exp f\—%ﬂf[x@) +x(T) + 7\0/ x (t) db +m{1+ 5 )]I

=

(Hint: Let Ym be the direct
product of the Lebesque measure and the measure generated by

the Wiener-process W(l)rm, Notice that Vim and Y

. d v
coincide on X (‘~e- d—;n=1) » and use the '"chain-rule"
A _dpm | _dvem | dv )
dp AP oy o

3. Prove that in the two-dimensional case, when



N —w
A=(_ _3) , Eldw) =6"db (i=12)
then
A A o2
fAb_«(ow) - or oo - 32 410) -4 0))
and
%}g—z?ﬁ'—z 7_6'2 jx + % (B)]db 26’ 7elxi M %z (M
O
+x20) + 0]+ AT +f[xq(’0)o\x7_(t) xz(t)dx1(t)]} .
0
4., In the previous example let we take the complex valued
19(t)
process —lX(t)l where x(U)= X (B)+ix,(0)
[x (’G)l?_ Xy (JC) ¥ X;_ (6). Prove that

17 i "
[[xthrdxg ) = %, b dx1(t) -ﬂxm do

0]
and %-Wexp{ 1T /[x(t dt+—?_—/| (B[ oo + AT —

1

[Ix(T +|x(O)|Z]I-

(Hint. Use the relations

Z[x(tj) E) - X (tj—A) XHIJ)] =

]
== 20 (%, b (B)) = %4j-1) = x4 (6 (%0 B}) = x5 (Bj-1)]
J

and

Z! X (tj)lx(t —
J

=2 |xlE)x( 1) 2i sinlg( 0(t)-0o(tj-1 )’V?_l}—lx tj )-0(j-1).
s
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For further details see Araté [5] , Araté — Kolmogorov -

Sinay [1] . The following exercises are concerned to the
calculation and the asymptotic behaviour of the maximum-
likelihood estimator for the matrix Q of the k-dimensional

discrete time autoregressive process.

5. Assume that the components En), Egln)d, s of the
right hand side process of equation (1l.1l) are independent with
dispersion Ci=ly s o %)

A, Prove that the joint conditional probability density

function of random vectors 5(4),~-,§UV) - under the condition
£(0) = x(0) has the following form
ML k-1 -N
220 o, xE0) = x0) - (27T T (1) a4
k-1 A ) JAN 2
Z%i% [x;tjeh G0 %U) + G g Xeli Fo oy Xeey (1] }
=0 " 0 ! :

(5. The conditional likelihood equations for parameters G

has the form:

(2.11) §~O[§a(3+‘)'(%o Sl 9 S 5 =0,
)= '
S TE (1)~ (q10 Sl -+ Fimt Bes M Bal])= 0,
1=
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6. Denote by aw the solution of equation (2.11). Calculate
the elements of klx kz covariance matrix of the random
variables %qd P q”d

| Hint: Define the random variables

qiLUV) as follows

=

'Zi.&(N) W%(ah,o‘%‘o)

i

=
1%

EO(J ) §L(J )+_ o A iVN—‘(%/i'k_4—q/glk_4)j gk_,l(‘\)g&(‘})

0

—
n

A
Express them by %EJ—(%ij , and prove that their co-
variance matrix has the form

.8

(sz(O) 0 \ Em ¢ (Nl ,(N)= 677y, g,
O ) qy:‘B(O)/ E ni,M(N)){QJ’,LZ(N):O for i#J

whereB() satisfy the equation (1.2).

Remark,

From the ergodicity of the process S(”) follows the asymp=-
totic efficiency of the conditional maximum=likelihood esti-
mator. The strong mixing property, prqvide its asymptotic

normality. This theorem was proved first by Mann-Wald [1].

7. On the basis (2.,2) it is possible to get estimate for the
unknown matrix A(BW is known). The method of least spuares

minimizes the functional

|

(Bl 5is),dgts) -+ fIAEs), By, A ) ds -

0 0
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=i2 [(B:AE(S))AE_(S)) ds + J(B: A (s), dw ().

0 0

Prove that the solution(C1pq,) of the linear system of

equations

d 5))d 3 dw l
Sore 1}B Ag(s) A& (s) s+O[A (S)B (S))J 0

P\Q/=Q>"r"'k‘“; ( - )

gives the minimum, and

}

ng(sfi‘ i V(8- o) &1[5)ds
0

_A & ) P i
Ve oj éq(s)ﬁ: \odewJ(S) = QPQ/\T) ] (plo( —()).. o k=1),
where

Enpq{( T)-0.E /qpq ). (T f o B 5q(5)8(t)db .

As the elementary Gaussian process is ergodic

N 4 o5
brp/ EQY (5)§;(5) db —> brp by , if T—>eo
and 'qu ~is asymptotically (if T—>e) normally distri-
buted (see J. Rozanov’s book.[I],Taraskin [1]). Prove that
A -
the random variables VTTOpq-qu) are asymptotically
normally dlstributed with O mean and covariance matrix

. _ =i
A {54 } ‘ (see Araté [4], Pisarenko iil).
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3.§ Autoregressive-moving average processes.

Definition 1. We call a stationary Gaussian process g(”)

with discrete time an autoregressive moving average /ARMA/

process if it satiéfies the equation

P 9
(3.1) g(h)=Zoi §(ﬂ’i)*'z bi a(h-‘")"'e(h)
i=A i

where {E(hﬁ is a sequence of i.i.d. Gaussian random variab-
les, and &) is independent of 75;— (§).

In case b;=0 (i>1) the process is an autoregressive one
and in case ai=O (ii4) the process is a mpving average

onee.

Theorem 3.l. Equation (1) has a unique stationary solution if

and only if no one of the roots of the characteristic poly-

nomial

R(z)- 7 2_ oz
=1
In this case £(n) is the first component of a k=max {p q+4}

p-t
lies outside the unit circle (zI>1).

dimensional stationary Gaussian Markov process.

k
(%) - {g(“(t),..., £ ()}

Proof.lLet us assume that g(h)= § (n) and consider the

system of equations

i i+ 1) '
g() §( (n-4)+ C;_, E(M if i=1 < p,
12 g H ()
§ (n):;_ ap+i-i § (n-Hr 4b}_1§ (n-1) + Cp-q Eln),
1=1 1=pt



= S

A
P %h)= £(n),

§

(3.2)

(p+i—-1)

(P+I)(n) ___g (n—1) if 4+p & | = Cf/-f—'1

/Naturally in the case of Qg<p the suitable terms and
equations are omitted./

If the constants Cj U'=O‘-~)(p—4)) satisfy the equations

gg =1
(303) 0/1—0’\'C0:b1
Cp-4~O4Cpa™ - ~Qp_4 G = bp-1,

then the system (2) is equivalent to the equation (1) . It is
easy to see that the characteristic polynomial Pz(z) of

. P . g+ .
(2) is equal to £(2) if g<p, and Z P(z)otherwise. So
the system (2) of stochastic difference equations has a
unique stationary solution, which is a k-dimensional Gaussian
Markov process and its first component will be the unique
stationary solution of the equation (1).

Q.E.Do

Remark 1. The -solution of the equation (1) can be obtained in
a constructive way similarly to the first order autoregressi-

ve process (see remark 1§ 1 and exercise 5. in thisg).

™8

(g Blnk= L ey Bin=kl:

=
N

0



o
Proof Indeed, if the coefficients Cy satisfy the infinite

recursive system of equations

\']
o

a
?ku.‘M'Ck—h-4=bk L

/notice that the first < equations coincide with system (3) /,
and Eélckﬁ'< 0o then the process (4) is a correctly
defiégg stationary Gaussian process satisfying (1).

As  b=0 for k>g and the roots of characteristic
polynomial D1CZ) are inside the unit circle system (5) has a
unique solution of desired property.

Remember that a multidimensional k-dimensional Gaussian

(ee] .
Markov process £(n) has the representation £(nN)=) Q & (n-i).

= Ve

As the matrix Q satisfies its own characteristic equation:

k

a

k Kk —i
e -
.onl[g 0 , all the elements
|\ =
o ’
of{cl } satisfy a recursive system of equations similar to

(5) therefore the components of §(h)'are sums of ARMA pro=-

L2
L (k)
cesses. Notice that if E(n=) d, £ "(n) , where
- 9
gw%n)=2]m§(n—1)+2:b i) € (n-1)
i=1 l=0
( (k) ' '
and \5 (r”} is a sequence of i.i.d. Gaussian vectors,

then g(n) is ARMA process. So we get the converse of

theorem 1:



o
Theorem 3.2. Any component of a multidimensional stationary
Gaussian Markov process is ARMA process.
In the continuous time case the equation

(q,+—7_-l—i)

P =1 Y
(329715 - E}Qiéw)kt)* 2. biw b+ w'(6)

would correspond to equation (1) . Before giving an exact
meaning to (1°’) we try to solve it formally. For this purpose
we need the following

Lemma 1. If function f(V) is differentiable and

,ﬁ%WWW-Wwﬁdt<m, o

t+h £

/‘% b+h-s) dwl(s )‘/ Ht-s)dwls) =
(3.6 t+h i

ST s dnls) + Ol +h)- ]
The proof can be carried out by changing the order of integ-

ration., The relation (6) formally can he considered as a

"rmile of differentiation':

(347) [/tf(t-ﬂ dw({s)] =—£jffﬁ:—s)dw(5)+~fﬂ])wwt)

-0

We are looking for a solution of (1’) in the form
17

=/ fib-s)dwl(s),

9 <;é:7 then there exists a unique function | (%)

suggested by the first order case. If

satisfying the homogeneous differential equation



& AP -
(p) (p=1)

(3.8) {(t)-ioif (¥) =0,

and the initial conditions

+0) =1
13.9)

f0)er F(0) - br
P01 -F ot 0] = by (32 i5g bi=0)-

1=

Using the formal differentiation rule (7) we may convinced
that

t
(3.10) g(t) =/ {_(t—s) dw(s)

is a formal solution of (1?).

If the roots of the characteristic polynomial P ; (A) =

= 7\P~i Qi N has negative real parts, then

T‘f(i)izjz dt « = for every i=0,1,... « In this case the
process E(t) given by (lo) 1is a correctly defined stationary
Gaussian process. We may assume (lo) as the definition of
continuous time ARMA process. /We notice that for g 7p (1’)
has only generalized solution./ For continuous time ARMA
processes theorems corresponding to theorems (1) and (2) are

valid too:

Theorem 3.%3. A continuous time process §(t) is ARMA if and

only if it is a component of & multidimensional stationary

Gaussian process §(t h
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Proof. The first part of the proof is tobv:i.ous.
(i) (i)
The p-dimensional process {g (t)} = {/ t (£-5) dw (5)}
[i=0,... p=4/ satisfies the system of equations
dg(|)=§(i+4)(t)db+cidw(t)) | =10 oz -3 =L
(3.11)

dg(p—4):§i;cxp_i ém(t) av + Cp-1 dw (1) )
where C; = 1E(l (O) ;

The converse assertion can be obtained similarly to the
discrete time case, using the integral representation (1l.5)
of & multidimensional Gaussian Markov process, and the fact
that the matrix fgnction (eAt satisfies the differential
equation (eAt>(P):§j Q- e(Aﬂl) where the coefficients a; co-

incide with +the coefficients of the characteristic polynom
of A.

Remark 1. If we suppose that g>p we would have to add
further equations to system (11) among them the equation

(p+4)
d§
the reason of the additional condition Ci/ < i,

(5) = dw(t), which has no stationary solution. This is

Remérk 2. The system of equation (1l1l) has the following
visual meening: an ARMA process £(T) is not differentiable
in general - but by the addition of a suitable Wiener process
it becomes differentiable. Tﬁis procedure can be continued up

to the (p—-1)-th derivative of g(t) :

Remark 3. Combining theorems 1., 2. and 3. with Doob’s
theorem (see Doob’s paper [1]) we get that the discrete time



Al
sample process &(nO) of a continuous time ARMA process £ (T)
is also ARMA. But, the sample process £(nd) of a pure auto-
regressive process isn't generally a discrete time pure auto-

regressive process, because if a matrix A has the form

01 ... ©
1
0  Baed
04 . . Qp

its exponent eAg has not the same one.

In this work we have avoided the spectral approach to
stationary processes because of the necessity of deep analy-
tic tools. But in some technical applications'the spectral
density function has a simple visual meaning and it can be
easily measured. For this reason we breefly summarize
without proofs +the basic facts concerning to the ARMA
processes. A regular discrete (continuous) time stationary

Gaussian process has the representation (see Rozanov’s book [1])
2T

(3.12,) Elm= f @mhpga“?)o\w(@),
Oco .
Fe 13,5 g(t) =/ @'tklf\()\)d\/\/(Kj '

o0
where W(J) W(A)  are standard wiener processes "random
measures" , and functions g(\) resp. h(A) can be analitically
continued to the open unit circle resp. upper halfplane. The
sequence of i.i.d. Gaussian random varisbles (resp. the white
noise process) corresponds to the identically constant
function on the interval (0,27) (resp. (—oco, o0)) . Using

this fact we can easily find the connection between the
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"moving-average" representations (4) and (10) and the
spectral representations (12) and (13):

(3() ch :
h(X) - /4‘— ~5)e™ds

Using the formal correspondences

() ~ g (¢ @‘”“", (4) ~hi(A
§t)’vh k)IA@ )

) lkt

wlt) ~ e'm we get for ARMA process the correspondencees
Q/ !
> bpe™ > byl
qu) = 20— hih) =5
S a.e Zoah(m”

In continuous time case we can see from the form of h(A)

that in the case ¢ =P the integral of the spectral density
2

function |h(M|” would be infinite. By physical reasons such

a system can’t exist.

Exercises.

l. Prove Theorem 2 in another way:

Writing the sequence of equations

g(n—k+'1) - QS(n—k)%—g(n—k + 1)
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(1) (2) (2) (2)
for the k unknowns £l & A, § (n-4), ..., § “"‘k),

(3) (K) k)

& s o5 o S e

we have Kk’ equations. Show that they can be solved
uniqually if det ((J)Z(0) - If Det((J)=(J , then the dimen-

sion of the elementary Gaussian process §(n) can be reduced.

2, We say that a k-dimensional process E£(t) with discrete
time-parameter is generalized autoregressive one if the

equation

P
gy =) A E(n=)) + £ (n) holds
= J=4 55

with i.i.d sequence {@“")} of nondegenerai:ed Gaussian

vectors (see Andel [1] ). Prove that equation (3.14.)
has a unique solution £(N) which does not depend on &(1)8

for '<n if and only if the zeros of the polynomial

, P i
det dzP + ) AJZP J) are inside
the unit c:i.:cc:leJ .=1
( Hint: prove that the above zeros are the same as the
characteristic roots of the pk x pk matrix

01 O
00
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3. Calculate the inverse of the covariance matrix
R=[E(En-i) . En-j)]]  for a
p —order discrete time parameter autoregressive process, if
i, 2 N and p<N . (Hint: consider €(n) as a component of

a p dimensional elementary Gaussian process and solve the
—1
of R

. L 01... 0
R -GRQ-RT'BRQ (mere Q4 00.--0

ey

equation for the left upper pxp minor R

A
0. 0 U
and B; ( - G)) derived from equation (1.1). Check the

following result by direct calculation

-3 Cond T

o |0 i il e
i'j Ymin(ip-iti) _ '
) LZ‘O ) Y QYM—J;,‘ , 1T =y
and 1= THE] Al gom

(See e.g. Siddiqui (1], Araté [1].)

4, Calculate 8—4(0) for continuous time parameter autoregres-
O gl
sive process too, where D(0) ={E (§ (), §7 )} »
=42, p (See e.g. Hajek (11, Araté [51)
#=i] (=4)
(Hint: check the following result: B (0) = bi.j :

where



= -

g JO , it =)+ 4 (mod 2)
bi,j ¥
%Z(—M’“Q‘_L Gisaet 3f 02 ] (mod 2),
Qp:4 and g;=0 for | >p )

5. Let g‘m) be an autoregressive stationary process with
discrete time

P
€ (n) = Y a;§(n-1) + &)
) i=4
where all the roots of

b P p—!
(%) Rz) = 2" -} iz
i=14
are inside of the unit circle. Prove the Wold’s expansion

( e ) € (n) =o§ G & LA=1)
+=0

and calculate the Ci coefficients. L Hint: There are D

roots, say X4, - XP of equation (%) , with
[xi|<'1 ’ then(Zi=4/Xi and 'Zl < min lzil)
4 _ ) _ ﬁ g Z P — 15
5 - =1 D_O('?i) = ZG Cy Z
-y aiz' TT(-Z) =7 "
i=1 i=A4

converges absolutely. From this for the coefficients
we obtain the equations (c10= 1)

1 = ag¢p = Cp
(m) O: Q0C1—Q1CO=C1"Q1

O = Qo Cp-17OyCp-2~ ... Ap~-1 Co

(IV) O = OoCt'C\1Ct_4"-.4OpCt_pl t:p}p-{—",-..
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If the roots (%) are different the general solution of thé

homogeneous difference equation (IV) is

p
I
Cr =2 Bi x|

=1

The 5/, coefficients are determined from the boundary

conditions (=) of cy,]

6.

in exercise 5.

Prove the Wold’s expansion in the case of multiple roots

7. In exercise 5. if p=1 we get c*=qT « If p=2 and X4
and X, are different prove
and (e
Cp = ——2 4 +=20,1,...
Xq— X2
(0
In this case if the roots are complex, Xp=Qae and
Xy = Qeie ) then
" Q/i@ ’6 B 519
e 2 = oi0_ 1O
and
B By XT + Cg )J; = o Sn (;;9«)9
8. Let £(U) be a 2-order moving average process
g(t) = BALY % by ELG-1),
where [CE(D)=EE(t) =0 and Ee*t) = (o then
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B =B, g =ES() S0/ L B

umot )

Prove that the density function of random variables

€(1),..., §IN) . has the form
(%) PUXg,.y xy) = ()EN( N/ZIBNI exp{ 2—16'%2%}‘;\ x(.xJ‘};
where |Byl=det By and B—,:f {Toiﬁ;lde I, N . The
elements S

| —\o,J =("\)J“<§J—||B,'_4||BN_3| WjTN“ if <],
and L+ i+

[Bi- = g

where

ur-u+ Q=0 £ o u1=4+V4~2Lts>2_7u7_:4——\14~2491

The determinant |B\| fulfils the difference equation
Byl = Byl 8% [Bn-21 -

From (%) we get that the sufficient statistics for
parameters (bj Q) is the only (§(1), ..., §&(N)) (gee
Araté [1] , Shaman [1] , [2]).
9. Let g(t) be a second order autoregressive process satis—
fying the equation

de'(b) = (o §h) - ap§ b)) db + dw ).
It was proved (see theorem33) that g(t) is the first com-

ponent of a two dimensional elementary Gaussian process



o BY -
L5, 8,0} with matrices
O 1 O O
A - , R =
"‘Clo "Q4 O /]

We suppose that the matrix A has complex eigenvalues

. . 1
)\4= A+ 1w, 7\Z=X—"—°) where /\=~%L)w=\/j(%"oo)'

Then from equation AB(0) +B(0) A*- - Bw we get
the following explicit form
‘ | 0
b (A2 + w?)
B(O) -
1

0 R
In §1l. we proved that (§4(nc§)} §2(n<§))7 the discrete

time process, is also an elementary Gaussian one. Prove

that the matrices Q and Bg has the following form:

A5 Xé/ W €05 WA — A sin w&/ sin @J
e _ e

o )

1 2®50%) s wd W €05 wd+Asinwd

Q;

o5
i Ve

B, = B (0).

Applications of this description the reader may find in

papers Gy. Németh, T.(l) and Mehra, R. K.(2).

(g

y.Németh, T.: On estimates of parameters of the second
order autoregressive process with continuous time
SzTAKI Kozlemények, 10 (1973) 33-43 (in Hu.ngarians.

(2)Mehra, R. K.: Optimal input signals for parameter estima-
tion in dynamic systems = Survey and new results,
IEEE Trans. Automatic Control, AC-19 (1974) No.6, 753=-
768.



=50 e

4.§. Parametrization of the discrete time

autoregressive process by partial correlations

The most natural parameters for autoregressive processes
are the coefficients 4O figuring in equation (5.1l) and the
dispersion 6 of the right hand side sequence of i.i.d.
Gaussian veriables. But the domain (L < R of sAmiseible
parameters is very complicated, although in cases p = 4, 2,3
it is possible to give rather simple eriteria which are
expressed directly in the coefficients O; (see exercise 3.)

For this reason in the literature ( see e.g. Ramsey’s
paper [1] or Box-Jenkins [1]) there is often assumed another
natural parametrization of the autoregressive processes,
namely the partial autocorrelation.

Let T| denote the |-th partial autocorrelation (j70),
i.e. the conditional correlation between £(n) and §(n-j)

n-1

with respect to the 6 -algebra ?;_JM generated by §&(n-1)
EU’\—Z),---\ g(\’\—\j +4 Y,

i.e.

E (5 ~E Gl Bl a ) (Btn-— E L&Dl )
Els - Egml £ )

n—5+4

IJ—-

It follows from the p-order Markov property, that for
j>p =0
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This parametrization has the advantage that the variation
domain ¥ of U = {74,--» QTP} 1is the simple product
set (-11)x...x(=41).
N
p—times

The mapping @ y Which tramsforms a,, .. -, Gp to

’7;) o Tp can be easily given by a system of linear
equations, analogous to the Yule-Walker equations.

Let us introduce the notations

gl - 32, E<§<n>.q§2<w)

(& iy =0 ) By the normality of the process E(h),

:gj,

we can write

- J
(4.1) E(ém)lﬁ_i ) = f{%oijﬁ Eln-i)

e | L
It is easy to calculate that 7] = ——qi—J—

Multiplying (1) by %(n-i) for i=l,...,J and taking

expectation we get the desired system:

0%‘4 *84°<j|2+" .+ 93_4 O‘JJ = Qg 3
(4.1?)

94 djy" + O(j:-l . 4—%_2 O(JJ = 97_ ,"

BLaS i Qg BT TSR] L

j : 1’ 200 L) p
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Especially - by the Yule-Walker equations O(pi = Qj .
If the coefficients

C\Ov cee) QP are admissible

—4
P—-qup —-.. 7 CGp @&are all

(the roots of polynomial Z
inside the unit circle ),
then there exists a unique stationary process satisfying
(1)e From this fact follows the existence and unicity of
the solution of system (1) especially the existence of

—~) |~ /
'js, moreover 'AJng < A. (If for some j

process g(n) would be deterministic.)

vl J = the

We can prove the converse of this assertion.

Theorem 1. The mapping n » Which transforms

(]'—'(C],l,...,()p) to T;(TM)%)

one-to-one and onto to (-1,1)X ¢..xX(-1,1). Furthermore,
both || and its inverse (D P-times g1e continuously
differentiable.

Before the proof we recite a criterion for the
polynomial having zeros only inside the unit circle
( see Duffin [11).
Criterion 1.

Let f(z) be the polynomial

bizy = ag+ oz + » » - onzn

where O, # O, an# 0O and n # O.
Let -\F/(Z) the reduced polynomial



= 55
v - _ _ - - . n
‘F (Z) = (QHO4FOO Qn_/‘)‘f" (OQQ?_’O‘OQV}’rZ)Z—*' . .+(Onan—%ao)z
of degree "—1 . Then {(Z) has zeros only inside the unit

v
circle if and only if |ayl < la,| and f(z) do so.

Proof. Consider the polynomial

&{,(z): 4 = Q1Z'“...—CZPZP

It is easily seen that ae if and only if
1
Y(z) = Zpkf(j) has zeros only inside the unit circle and,

according to Criterion 1, this is equivalent to the oonditions

1

=
v 92 P—/i
‘V(Z)=(4“Qp)k/30+/54z+. , )

| ap |
2
.+—ﬁp_y_z + Z

has zeros only inside the unit circle, where

7_ v
{97 = (Op_4—:'+oi+4a|o)/(4'0p)) P=0y4, .- p-2L.

Next it will be proved that

(4.2) ﬁ] = O<P“"]\p_4/i )

The equations
(#e3)  Ap,j =Rp=t,j = Xpyp Xp-4, p=jy =Pt

determine, for Xp,p fixed, a transformation of

(Oﬁp)4)<--)dp)p—4) tO (O(P—4,4)"'7 O(P—4'P—4)

with the Jacobian matrix



0-%0 1 0
50 O 1

(recall that Tp = Xp, p ) where the central element is
5 1
41— TP if p is even. Since the value of ,pr/x | is

[T] L,‘ i TP )[(P—U/Z}

2
e
-4

which is £ 0 if and only if Ip 3 it suffices to prove

that the (3-8 satisfy (3).

Thus (2) is established.
Observing that

/50 - OKP'—'“ P-‘I’

a repetitive use of Criterion 1 immediately shows that T (Z)

—

/P_,1

i\

has zeros only inside the unit circle if and only if
T <4 & Tl <4 &...& |7y < 1,

and thus
Po=-4,4) x.x (=1,1).
p—times

From the definition of partial correlations it follows that

U

7/7 S are uniqually determined by the coefficients a; and

dispersion 0 .

On the other hand from recursive formulas due tc Durbin (see

Exercise 2 ) we get
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Rp,j = Xp ] T EPP Fp-a, b -
Bp=2,] "dp—4,p—4O‘p—z,p%«J'O(P)PO(P'MP’J B

0

L4.l+) =

f § ™ Ryt jet4%d - T Fpp S pea pf s

j: 47.-~7P——4.

) )
The right hand side of (4) contains /j$ and <qunw

I\

S

with rn<:1<p and we can continue using (4), ending up

g
with a polynomial in the W] S

can be correctly defined, and there-

« S0 we get that the inverse
(0 of the mapping T

P
fore /! 1is one-to-one.

i~ 9
Since (), defined by (4), is a polynomial in J; S,

continuosly differentiable, it is therefore, by the inverse
function theorem, sufficient to show that

(A* denotes the transposed of A). As was pointed out by

Daniels [1], the Jacobian (5) can be found by repetitive use

of the transformation (3) , yielding

‘aw* 4(4_M) ](4+JU} '
Exercises
1. Prove that 1| = O] /¢

[Hint: use the relation

-1 /__)’1’4
ElewmE ) =0, EEm-0i T )],

—~J+1
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2. Prove the recursive formulas
i = ORI~ Rjen, ot Tjufrt-
: J
SRE TS ST P (U R 1)

e !
which are due to Durbin [1].

[Hint: use the geometrical picture expressed by equation (l).]

3, Prove that in the 3-dimensional case the domain (I of
admissible parameters is determined by the inequalities

By + By gy = A
03(05“ 01)’“ 02_ < 4

4, Prove the following statement: the wide sense stationary
process § (Nn) (h=0,%4, = 2)--4) with partial autocor-
relation function 71] (| >0) 4is regular if and only
b i

(=) -4 =l =1 for all  |>0.
Furthermore the autocorrelation function R( ) in regular

case is strictly positive definite. So (#) is fulfilled if
and only if R(j) is strictly positive definite ( see Ramsey
(11)e

5. Prove that the stationary process is singular if and only
if ( Ramsey [11)



6.

7

8.

Prove that g(h) is a p-order autoregressive process if

and only if ﬁj‘C) when |>p -

Prove theorem 1 by the help of exercises 4. and 6.(Ramsey

[11).

Let £(n) a stationary Gaussian process with
E§(n) = ;o E(gm)—/c)2 =f,r2-
Prove that ’
- k
E(§(k+0] F, ) = o+ §1o<k'J.(§(l<+4~J)~,w)
k k s .
E(LE ke - E(§ keI F DT )= U-T - 1-72),

where Cik\l are given in (4.17).
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