tanulmányok 36/1975

MTA Számitástechnikai és Automatizálási Kutató Intézet Budapest

MAGYAR TUDOMÁNYOS AKADÉMIA SZÁMITÁSTECHNIKAI ÉS AUTOMATIZÁLÁSI KUTATÓ INTÉZET

Renner Gábor

ELEKTROMÁGNESES TÉR SZÁMITÁSA NAGYHŐMÉRSÉKLETÜ ANYAGBAN

Egyetemi doktori disszertáció

Tanulmányok 36/1975.

A kiadásért felelős: Dr. Vámos Tibor

> Jelen dolgozat az 5.8.1. "Mágneses terek nomografikus és digitális szimulációja" c. intézeti alapkutatási téma keretében készült.

757494 MTA KESZ Sokszorosító. F. v.: Szabó Gyula

TARTALOMJEGYZÉK

	Oldai
Bevezetés	5
ÁLTALÁNOS RÉSZ	9
I. Alapegyenletek	9
l.Kvázistacionárius elektromágneses tér	9
a./ Maxwell egyenletek inhomogén nemlineáris kö-	
zegben	9
b./ Határfeltételek	12
c./ Integrális mennyiségek	13
2. Hőmérsékleti tér	15
a./ A hővezetés differenciálegyenlete inhomogén	5
nemlineáris esetben	15
b./ Határfeltételek	16
c./ Hőáram, hőtartalom	17
d./ Halmazállapotváltozások	17
II: Differenciaegyenletek módszere	19
l. A rácsháló feltételének szempontjai	19
2. Differenciegyenletek felirása	21
3. Határfeltételek érvényesitése	30
4. Az egyenletrendszerek megoldása	32
a./ Pont iteráció	33
b./ Csoport iteráció	35
5. A megoldás konvergenciája	37
a./ A konvergencia feltétele	37
b./ Konvergenciagyorsitás	40
6. Hibabecslés	47
SPECIALIS RÉSZ	49
1. A probléma megfogalmazása	49
2. Fizikai jellemzők	53
a./ Villamos vezetőképesség	53
b./ Hővezetési tényező	53
3. Hőmérsékleteloszlás	56

		Oldal
4.	Örvényszámitás	59
	a./ Differenciál-differenciaegyenlet	59
	b./ Határfeltételek	63
	c./ Iteráció	65
5.	Az összetett hővezetési és elektromágneses prob-	
	léma	68
6.	Numerikus eredmények	71
Irc	odalom	77
Me	lléklet	79

BEVEZETÉS

A stacionárius és kvázistacionárius elektromágneses teret leiró Maxwell egyenletek megoldása zárt alakban csak igen speciális feltételek mellett sikerül. Általában ki kell kötnünk, hogy a vizsgált tartomány határvonala geometriailag egyszerü alakzat, e határon a térjellemzők változása matematikailag egyszerüen irható le, és a tartomány belsejében vagy résztartományonként az anyagjellemzők /vezetőképesség, permeabilitás/ állandók. Mivel ezek a feltételek a gyakorlatban korántsem teljesülnek, a zárt alaku megoldásokról legtöbbször le kell mondani, illetve ezek a valóságnak csak sok egyszerüsitést tartalmazó közelitését adják.

Még inkább igy áll a helyzet, ha a vizsgált anyagban az elektromágneses jelenségekkel együtt másfajta fizikai jelenségek is lejátszódnak, amelyek azonban valamilyen uton visszahatnak az elektromágneses jelenségekre. Ez az eset áll fenn pl. akkor. amikor a térben folyó áramok jelentősen növelik az anyag hőmérsékletét, miáltal annak minden fizikai paramétere megváltozik. A hőfejlődés mértéke a kialakuló áramoktól függ, az áramok viszont a hőfejlődés mértékétől függően megváltozó anyagjellemzőktől. Igy tehát a két jelenség-csoport anyagjellemzőkön keresztül megvalósuló kölcsönös egymásra hatásában alakul ki az elektromágneses és hőmérsékleti tér, amelyet most már nemlineáris, inhomogén, másodrendü, parciális differenciálegyenletek rendszere ir le. Ezek zárt, analitikus megoldása még egyszerübb peremfeltételek és anyagjellemező függvények esetén is reménytelen. A térszámitási problémák között viszont sok olyan létezik, amelyeknél valóban jelentős hőmérséklet-emelkedés jön létre, esetleg épp ez a cél, mint pl. az indukciós hevitésnél, vagy a zónás olvasztásnál.

Nemlineáris problémák megoldására már régebben kidolgoztak olyan matematikai módszereket, amelyek a zárt analitikus megoldást lehetővé tevő feltételeknél jóval általánosabb feltételek mellett alkalmazhatók. Ezek a módszerek viszont nagy menynyiségü számolási munkát igényelnek, ezért kiterjedt alkalmazásuk a nagy sebességü elektronikus számitógépek megjelenésével vált időszerüvé. Másrészt a gépi számitástechnika uj problémákat vetett fel, sok esetben a már meglévő módszerek megváltozásához, tökéletesedéséhez és általában e számitástechnika sajátos szempontjaihoz való alkalmazkodáshoz vezetett. Mindezekben nagy szerepet játszik a numerikus analizis utóbbi években végbement fejlődése.

A térszámitásoknál előforduló matematikai problémák számitógépes megoldása szempontjából szóbajövő eljárásokat alapvetően két csoportra oszthatjuk:

- nem zárt alaku analitikus módszerek, és
- diszkrét módszerek

Az analitikus módszerek esetében – ide tartoznak a sorfejtések, integrálreprezentációk – a megoldást jelentő függvényt analitikus függvényekkel kifejezve kapjuk meg.

A diszkrét módszerek – a véges differencia módszer, a variációszámitási módszerek – a megoldást a tér kijelölt diszkrét pontjaiban numerikus eredmény formájában szolgáltatják. Ebből következik, hogy ez utóbbi esetben, bár a numerikus eredményt megkapjuk, általánosabb következtetések levonása többnyire nem lehetséges. Analitikus tárgyalásnál általában áttekinthető a paraméterek változásának hatása, az eredmények pedig felhasználhatók hasonló feladatok tárgyalására, egyszerüsitési lehetőségekre utalhatnak. Mindezek következtében a problémakör mélyebb ismeretére vezetnek, mig a diszkrét módszerek csak a konkrét problémát oldják meg. Ehhez járul még, hogy diszkrét módszerek esetében a hibabecslés, konvergencia és a megoldás stabilitásának kérdései nemlineáris esetben még nem tisztázottak kellőképpen, analitikus módszereknél pedig a megoldás pontossága áltelában tetszőleges és előre megadható. Mindezek mellett van egy szempont, amely a diszkrét módszereket, és ezen belül különösen a véges differenciaegyenlet módszerét előtérbe helyezi. Nevezetesen az, hogy mig analitikus módszerek speciális feladattipusokra adhatók, a véges differenciaegyenletek módszerével csaknem valamennyi probléma tárgyalható, illetve csak technikai feltételek /idő, memóriakapacitás/ korlátozzák a megoldható problémák körét.

Általában tehát maga a probléma dönt, hogy melyik módszert célszerü alkalmazni. De az alapvető módszereken belül is több eljárást lehet használni. A véges differenciaegyenleteket például meg lehet oldani szimultán módon, iterációval, Monte-Carlo módszerrel. Ezen eljárások tekintetében igen sokszor külső körülmények döntenek /pl. hányszor kell hasonló problémát megoldani és milyen változtatásokkal/.

Az emlitett numerikus módszerek alkalmazása elvileg ugyan egyszerü, a bonyolultabb fizikai problémák megoldásánál mégis olyan kérdések merülnek fel, amelyekre pontos feleletet adni sokszor nem tudunk. Ezért a numerikus analizis eredményeinek ismerete mellett sok ötletre és fantáziára van szükség a gyakorlatban előforduló feladatok megoldásánál /pl. a rácsháló felvételének módja, konvergenciagyorsitás, hibák megbecslése és általában az iterációs folyamat megtervezése tekintetében/.

Jelen disszertáció általános részében összefoglaljuk a kvázistacionárius elektromágneses teret nagyhőmérsékletü anyagban leiró differenciálegyenleteket és peremfeltételeiket, majd a figyelmet az ezen egyenletek számitógépi megoldásánál leginkább szóbajövő módszerre, a differenciaegyenletek módszerére irányitjuk. Itt sorra jönnek a speciális kérdések, amelyeket az adott fizikai problémakör vet föl a módszer alkalmazásánál. Ezekre részben a meglévő elmélet kiterjesztése, részben az elvégzett számitások közben szerzett tapasztalatok alapján igyekeztünk választ kapni. A speciális rész egy, a félvezetőtechnológiában felmerülő térszámitási probléma megoldását ismer-

- 7 -

teti; a mikrokristályos szilicium rud indukációs hevitése közben kialakuló elektromágneses és hőmérsékleti tér meghatározását. Itt kerül tárgyalásra néhány eljárás is, amely az adott problémakörben általánosan használható, de bemutatása e konkrét példán látszott célszerünek.

ÁLTALÁNOS RÉSZ

- I. ALAPEGYENLETEK
 - 1. Kvázistacionárius elektromágneses tér
 - a./ Maxvell egyenletek inhomogén nemlineáris közegben;

Térben eloszló váltakozó áramok elektromágneses terének számitására a kvázistacionárius esetre érvén^yes Maxwell egyenletek szolgálnak. Ezek az általános Maxwell egyenletekből az eltolási áram és a tértöltéssürüség elhagyásával nyerhetők:

rot
$$\overline{H} = \overline{J}$$
 /1/

rot
$$\overline{E} = -\frac{\partial B}{\partial t}$$
 /2/
div $\overline{B} = 0$ /2/

131

141

A térjellemzők között fennállnak még a közeg tulajdonságait figyelembe vevő $\overline{B} = \mu \overline{H}, \overline{J} = \gamma \overline{E}$ egyenletek, ahol általános esetben a μ, γ anyagjellemzők a helytől és a térjellemzőktöl függenek. Mivel div $\overline{B} = 0$, az elektromos és a mágneses térjellemzők kiszámitása visszavezethető a

$$\overline{B} = rot \overline{A}$$

egyenlettel bevezetett vektorpotenciál számitására. Ezzel a /2/ Maxwell egyenlet igy alakul:

$$rot \overline{E} = -\frac{\partial}{\partial t} rot \overline{A}$$
 /5/

Mivel tetszés szerinti q / r / skalártérre:

rot grad $\mathcal{P}(\bar{r}) = 0$

/5/-ből a következőt kapjuk:

$$\overline{E} = -\frac{\partial \overline{A}}{\partial t} - \operatorname{grad} f(\overline{r})$$
 /6/

$$\overline{J} = -\Im \frac{\partial \overline{A}}{\partial t} - \Im \operatorname{grad} \varphi(\overline{r}) = -\Im \frac{\partial \overline{A}}{\partial t} + \overline{J}_{0}$$
 /7/

ahol

A /4/, /6/, /7/ egyenletek megadják a térjellemzők kiszámitását, ha az Ā vektorpotenciál már ismert.

Vezessük be az /l/ Maxwell egyenletbe is az Ā vektorpotenciált. A mágneses térerősséget a vektorpotenciállal kifejezve, a J áramsürüséget pedig /7/-ből helyettesitve, a

$$\operatorname{rot}\left(\frac{1}{\mu}\operatorname{rot}\overline{A}\right) = -\gamma \frac{\partial \overline{A}}{\partial t} - \gamma \operatorname{grad} \varphi \qquad /8/$$

egyenlethez jutunk, amely az Ā vektorpotenciál meghatározására szolgál. / J előre tetszés szerint megadható skalártér./

A /8/ egyenlet teljes általánosságban irja le a kvázistacionárius elektromágneses terek viselkedését; benne az anyagjellemzők változására semmiféle kikötés sincs. μ és γ változhat térben, vagy időben, függhet maguktól a térjellemzőktől vagy egyébb fizikai mennyiségektől. Mindezen tulajdonságai alapján a továbbiak számára kiindulási egyenletként szolgál.

Sok esetben a vizsgált tér egyes résztartományai vagy a jelenségek időbeli lefolyása speciális tulajdonságokat mutatnak. Ez esetben a /8/ egyenlet is egyszerübb alakot ölt.

A gyakorlatban leginkább előforduló esetek a következők:

Nem vezető résztartományban: $\gamma = 0$

 $\operatorname{rot}\left(\frac{1}{\mu}\operatorname{rot}\overline{A}\right) = 0 \qquad \qquad /9/$ Szinuszus időbeli változás esetén: $\frac{\partial}{\partial t} = j\omega$

$$\operatorname{rot}\left(\frac{1}{\mu}\operatorname{rot}\overline{A}\right) = -j\omega\gamma\overline{A} - \gamma\operatorname{grad}\varphi \qquad /10/$$

ahol Ā komplex térvektor Térben állandó permeabilitásu résztartományban: µ= állandó

rot rot
$$\overline{A} = -j\omega\mu\gamma\overline{A} - \mu\gamma\text{grad}\varphi$$
 /11/

Ezt az egyenletet a

rot rot
$$\overline{A}$$
 = grad div \overline{A} - $\Delta \overline{A}$ /12/

vektoranalitikai összefüggés segitségével egyszerübben is irhatjuk. Válasszuk az Ā vektor divergenciáját nullának;

igy /11/-ből /12/ felhasználásával:

$$\Delta \overline{A} = j \omega \mu \gamma \overline{A} + \mu \gamma \operatorname{grad} \rho \qquad /13/$$

Itt azonban ψ már nem tetszőleges. Vegyük ugyanis /7/ mindkét oldalának divergenciáját:

div
$$\overline{J} = -\Im \frac{\partial}{\partial t} (\operatorname{div} \overline{A}) - \Im \operatorname{div} \operatorname{grad} \mathcal{P}$$
 /14/

Mivel azonban kvázistacionárius esetben az áramsürüség forrásmentes /div $\overline{J} = 0/$, valamint az előbbiek szerint div $\overline{A} = 0$,

div grad $f = \Delta \psi = 0$, /15/ tehát ψ -nek ki kell elégitenie a Laplace egyenletet.

Numerikus számitásokban célszerü lehet a /8/ alapegyenlet integrális alakjából kiindulni. Ehhez ugy jutunk, hogy vesszük az egyenlet mindkét oldalának felület menti integrálját, majd a bal oldalon a felületi integrált vonalintegrállá alakitjuk a Stokes tétel segitségével:

$$\oint_{\ell} \frac{1}{\mu} \operatorname{rot} \overline{A} \, \overline{d\ell} = - \int_{F} \mathcal{J} \frac{\partial \overline{A}}{\partial t} \, \overline{dF} - \int_{F} \mathcal{J} \operatorname{grad} \mathcal{J} \, \overline{dF}$$
/16/

b./ Határfeltételek

Az alapvető /8/, illetve /16/ egyenletek megoldásához ismernünk kell az \overline{A} vektorpotenciál változását a vizsgált térrész határán. Mivel azonban a vektorpotenciál nem szemléletes jelentéssel biró fizikai mennyiség, csak az indukció, a térerősség, esetleg az áramsürüség kerületmenti változásából következtethetünk \overline{A} -ra. Ez is meglehetősen nehéz feladat, mert a téreloszlás legalább is kvalitativ ismeretét tételezi fel.

Bizonyos esetekben járható ut, hogy a vizsgált tartomány határát a végtelenig terjesztjük ki, ahol a térjellemzők természetesen zérus értéket vesznek fel. Ezután felveszünk egy zárt belső határt és a külső, végtelenbe nyuló teret alkalmas transzformáció segitségével a belső térbe transzformáljuk. A felvett határ az egész vizsgált tér szempontjából belső határ, igy itt a térjellemzők változása folytonos, vagy az ismert töréstörvényeket követi.

Ha a végtelen teret a végesbe átvivő transzformációt az adott feladatnál nem sikerül megtalálni és a probléma az örvényáramok elhanyagolásával megoldható, alkalmazhatjuk a következő módszert. Olyan távol vesszük fel a határt, ahol az örvényáramok hatása már elhanyagolható. Itt meghatározzuk a térjellemzők eloszlását a stacionárius esetre, és ezt tekintjük a kvázistacionárius eset peremfeltételének.

Nagymértékben egyszerüsödik a helyzet, ha a véges tartományt ugy vehetjük fel, hogy határán ismerjük valamelyik térjellemző változását. Ez az eset áll fenn, amikor pl. igen nagy permeabilitásu anyag határolja a teret, vagy amikor a szirmetria-feltételek irják elő a térjellemzők viselkedését.

A térjellemzők kerületmenti változásának ismeretében a /8/, ill. /16/ egyenletek megoldásához meg kell határoznunk a vektorpotenciál eloszlását a peremen. Erre szolgálnak elvileg a /4/, /6/, /7/ egyenletek. A /4/ egyenletre tekintve azonban láthatjuk, hogy a B indukció egyszerü változása, vagy még állandó volta is bonyolult összefüggést ad a vektorpotenciál komponensei között. Ennél egyszerübb a /6/ és /7/ összefüggés A és E valamint J között, ezért jelen problémakörnél előnyös, ha a villamos térerősség vagy az áramsürüség kerületmenti változását adhatjuk meg. A sokszor előforduló kétdimenziós téreloszlás esetében az indukcióeloszlásból is könnyen következtethetünk a vektorpotenciál eloszlásra, mert bizonyitható [1], hogy ekkor az állandó vektorpotenciálu vonalak egyuttal indukcióvonalak is.

c./ Integrális mennyiségek

A társzámitás eredményeként a /8/, illetve /16/ egyenletekkel és a peremfeltételek által meghatározott vektorpotenciált nyerjük. Mérnöki számitásokban azonban többnyire integrális mennyiségekre van szükségünk mint pl. a fluxus, áram, feszültség, energia, stb. A meghatározásukra szolgáló összefüggésekben a villamos és mágneses térjellemzők szerepelnek, de a /4/, /6/, /7/ kifejezések segitségével közvetlenül a vektorpotenciálból számithatjuk ezen integrális mennyiségeket. A következőkben megadjuk a vektorpotenciállal kifejezett alakokat. F felületen átfolyó áram:

$$I = \int_{F} \overline{J} d\overline{F} = \int_{F} \left(-\gamma \frac{\partial \overline{A}}{\partial t} - \gamma \operatorname{grad} \varphi \right) d\overline{F} = \int_{F} -\gamma \frac{\partial \overline{A}}{\partial t} dF + I_{O}$$

$$/17/$$

ahol

$$I_{o} = \int_{F} -\gamma \operatorname{grad} \varphi \, \overline{dF}$$

A és B pont közötti potenciálkülönbség:

$$U_{AB} = \int_{A} \overline{E} d\overline{\ell} = \int_{A} \left(-\frac{\partial \overline{A}}{\partial t} - \operatorname{grad} \rho \right) d\overline{\ell} = \int_{A} -\frac{\partial \overline{A}}{\partial t} d\overline{\ell} + \left(\rho_{B} - \rho_{A} \right)$$

$$/18/$$

F felület fluxusa:

V térfogatban hővé váló energia:

$$W_{J} = \int_{V} \frac{\overline{J}^{2}}{\overline{T}} dv = \int_{V} \gamma \left(\frac{\partial \overline{A}}{\partial t} + \text{grad } \rho \right)^{2} dv \qquad /22/$$

Szinuszos változás esetén $\frac{\partial}{\partial t}$ helyébe mindenütt j ω -t helyettesithetünk.

2. Hőmérsekleti tér

a./ <u>A hővezetés differencálegyenlete inhomogén nem-</u> line**á**ris esetben

A hővezetés differencálegyenlete általánosságban azt mondja ki, hogy a hőáramvonalak az időben változó hőmérsékletü anyagi részekben és a hőforrások helyén keletkeznek, illetve tünnek el:

div
$$\overline{f} = - \operatorname{mc} \frac{\partial T}{\partial t} + q(\overline{r}, t)$$
 /23/

Itt m az anyag tömegsürüssége, c a fajhő, q az általános esetben helytől és időtől függő hőforrássürüség.

Az f hőáramsürüség /hőfluxus/ viszont a hőmérséklet gradiensével arányos:

 $\overline{\mathbf{f}} = -\mathbf{K}$ grad T

ahol K a hővezetési tényező. T kifejezését a kiinduló /23/ egyenletbe helyettesitve kapjuk:

div (K grad T) = mc $\frac{\partial T}{\partial t}$ - q(\overline{r} ,t) /24/ Mivel a hővezetőképesség általában éppen hőmérséklet-függése miatt függ a helytől: /K(T(\overline{r}))/,

grad $K = \frac{\partial K}{\partial T}$ grad T

és a /24/ egyenlet igy alakul:

$$\frac{\partial K}{\partial T} (\text{grad } T)^2 + K \Delta T = \text{mc} \frac{\partial T}{\partial t} - q(\overline{r}, t), \quad \text{vagy}$$

$$\Delta T + \frac{1}{K} \frac{\partial K}{\partial T} (\text{grad } T)^2 + \frac{q(\overline{r}, t)}{K} = \frac{\text{mc}}{K} \frac{\partial T}{\partial t}$$
 /25/

A hővezetési differenciálegyenlet ezen alakja igen általános, mert a fentiek szerint figyelembe veszi a hővezetőképesség hőfokfüggését, a hőforrások jelenlétét, az m és c anyagjellemzők változását, és alkalmas a hővezetési folyamat időbeli vizsgálatára. Ha a stacionárius állapotot vizsgáljuk, a jobb oldalon nulla áll, állandó hővezetési tényező esetén elmarad a bal oldal második, hőforrásmentes térben pedig a harmadik tagja.

Ha kvázistacionárius térproblémákhoz kapcsolódó hővezetési problémát vizsgálunk "állandosult" állapotban, akkor általában használhatjuk a stacionárius esetre vonatkozó hővezetési differenciálegyenletet, mert bár a q hőforrássürüség az időben szinuszosan változik, ezt a változást nem tudja követni a hőmérsékleteloszlás /a hővezetési időállandó nagyságrendekkel nagyobb az elektromágneses periódusidőnél/.

$$\Delta T + \frac{1}{K} \frac{\partial K}{\partial T} \left(\text{grad } T \right)^2 + \frac{q(\overline{r})}{K} = 0 \qquad /26/$$

b./ Határfeltételek

A /25/ hővezetési differenciálegyenlet megoldásához is meg kell adnunk a hőmérséklet viselkedését a vizsgált térrész határán. A határoló felület fizikai viszonyinak megfelően a következő esetek fordulnak elő:

1./ ismerjük a felület hőmérsékletét annak minden pontjában,

2./ adott a felületen a hőgrandiens: $\frac{\partial T}{\partial n} = f$ Ekkor a differenciálegyenlet egyértelmű megoldásához meg kell még adni a felület egy pontjának hőmérsékletét, valamint teljesűlnie kell az

$$\oint \frac{\partial T}{\partial n} dF = \int q dV$$

feltételnek.

3./ hőelvezetés van a felületen;

$$- K \frac{\partial T}{\partial n} = H(T - T_{o})$$

Itt H a felületi hővezetési tényező, T_o pedig a környezet hőmérséklete.

4./ a felület sugárzással ad le hőt a környezetébe:

$$- K \frac{\partial T}{\partial n} = 6 \mathcal{E} \left(T^4 - T_0^4 \right)$$
 /27/

ahol $6 = 5,67.10^{-12}$ W/cm² K⁰⁴, Epedig az emissziós tényező.

5./ a felület érintkezik egy tőle különböző hővezetőképességü felülettel:

$$K_{1} \frac{\partial T_{1}}{\partial n} = K_{2} \frac{\partial T_{2}}{\partial n}$$
és
$$T_{1} = T_{2}$$

c./ Hőáram, hőtartalom

A hőmérsékleteloszlás ismeretében közvetlenül meghatározhatjuk az itt szóbajövő integrális mennyiségeket. Valamely felületen átmenő hő mennyiségét időegységenként az

ĝ = ∫ - K grad TdF

összefüggés adja,

a V térfogat hőtartalmának megváltozása az időegység alatt pedig a

$$Q = \int_{V} mc \frac{\partial T}{\partial t} dV$$

képletből számitható.

d./ Halmazállapotváltozások

Két különböző fázist /pl. folyékony és szilárd/ tartalmazó problémáknál a megoldásnak a fázishatáron ki kell elégitenie a fázishatár hőegyensulyát kifejező egyenletet [2].

Az l. ábrán látható egydimenziós esetben a fázishatárhoz felületegységenként és időegységenként érkező, illetve távozó hőmennyiségek különbsége az ott felszabaduló /vagy elnyelt/ hőmennyiséget adja:

$$K_1 \frac{\partial T_1}{\partial x} - K_2 \frac{\partial T_2}{\partial x} = \operatorname{Im} \frac{dx}{dt}$$
 /28/

ahol L a halmazállapotváltozás látens hője, és m a tömegsürüség.

Mivel a fázishatáron a hőmérséklet nem változik és $T_1 = T_2$, itt

$$\frac{\partial T_{1}}{\partial x} dx + \frac{\partial T_{1}}{\partial t} dt = 0; \quad \frac{\partial T_{2}}{\partial x} dx + \frac{\partial T_{2}}{\partial t} dt = 0$$

$$K_{1} \frac{\partial T_{1}}{\partial x} - K_{2} \frac{\partial T_{2}}{\partial x} = -Im \frac{\partial T_{1}/\partial t}{\partial T_{1}/\partial x} = -IM \frac{\partial T_{2}/\partial t}{\partial T_{2}/\partial x}$$
/29/

Általános esetben /29/ a következő alaku lesz:

$$K_{1}|\operatorname{grad} T_{1}| -K_{2}|\operatorname{grad} T_{2}| = \pm \operatorname{Im} \frac{\partial T_{1}/\partial t}{|\operatorname{grad} T_{1}|} = \\ = \pm \operatorname{Im} \frac{\partial T_{2}/\partial t}{|\operatorname{grad} T_{2}|}$$
(30/

ahol a gradienseket a fázishatáron kell venni.

A jelen megitélésünk szerint számitástechnikailag még követhető esetben, amikor a fázishatár görbült, de alakját megtartva v sebességgel halad tovább, a következő egyenletet kapjuk:

$$K_1 | \text{grad } T_1 | - K_2 | \text{grad } T_2 | = Imv$$
 /31/

II. DIFFERENCIALGYENLETEK MÓDSZERE

Az elektromágneses és hőmérsékleti teret leiró /8/, /16/, illetve /25/ egyenletek általános esetben inhomogén nemlineáris másodrendü parciális differenciálegyenletek. Ilyen jellegű egyenletek megoldásának hatékony módszere a differenciaegyenletek módszere. E módszer alkalmazásakor először elkészitjük a szóbanforgó tartomány koordinátavonalakból, illetve koordinátafelületekből álló beosztását. Igy a a tartomány belsejében és határán metszéspontokat kapunk. A differenciálegyenletet ezen pontokban felirt differenciaegyenletekkel helyettesitjük, aminek eredményeként algebrai egyenletrendszert nyerünk. Ezen egyenletrendszer megoldásai szolgáltatják a keresett függvény értékét a kijelölt pontokban. A módszer bár elvileg egyszerű, alkalmazása mégis több problémát vet fel, amelyek közül a legtöbb általánosságban nem is oldható meg. A következőkben vázoljuk azokat a problémákat, amelyek a módszernek kvázistacionárius elektromágneses terek számitására való alkalmazásakor felmerülnek, ismertetjük ezek megoldásának lehetőségét az elméleti eredmények és a számitások közben szerzett tapasztalatok alapján.

1. A rácsháló felvételének szempontjai

A módszer alkalmazásakor a rácspontok és az azokat összekötő rácsvonalak hálózatát teljesen szabadon választhatjuk meg. A számitás technikáját tekintve azonban, / különösen számitógépek alkalmazásakor/ igen előnyös, ha ez a pont- illetve vonalrendszer valamilyen

szabályosságot követ. Ez a szabályosság legcélszerübben azt jelenti, hogy a hálórendszer valamely ortogonális koordinátarendszer koordinátavonalainak felel meg. Hogy melyik legyen ez a koordinátarendszer /Descartes, polár, henger, gömbi stb/ abban rendszerint maga a feladat dönt, mert a feladat jellegéhez alkalmazkodó kcordinátarendszer használata természetesen a numerikus számitásokban is előnyt jelent. Ebből a szempontból különösen a határvonalak lényegesek; ugy kell felvenni a koordinátarendszert, hogy annak hálóvonalai, illetőleg csomópontjai a határoló vonalakra essenek, vagy jól megközelitsék azt. Természetesen nem szükséges a szóbanforgó koordinátarendszer koordinátavonalaival egyenletesen behálózni a teret, hanem ebből a szempontból is célszerü alkalmazkodni a feladat jellegéhez; ahol a tér erős változása várható, vagy valamilyen szempontból lényeges a térszerkezet pontos ismerete ott sürübb, ahol nagyjából állandó vagy előre ismert a tér, ott ritkább beosztást készitünk. Bonyolultabb geometriáju feladatok megkövetelhetik, hogy egy problémán belül több különböző koordinátarendszert használjunk. Ez esetben azonban a koordinátarendszerek találkozásánál a differenciaegyenletek alakja eltér a koordinátarendszereken belüli alakjától.

Fontos kérdés a rácshálótávolságok helyes megválasztása. Egyrészt a pontosság növeléséhez minél sürübb hálóra van szükség, mert a differenciálhányadosoknak a differenciahányadosokkal való helyettesitésekor elkövetett hiba a rácstávolsággal csökken. Igy tehát a megoldás kivánt pontossága adja meg a választható legnagyobb hálótávolságot. A diszkretizációs hiba rácstávolságtól való függése a vizsgált esetben jó közelitéssel meg is adható /lásd később/, ugyhogy ennek segitségével kiszámithatjuk a rácstávolságok felső korlátját. Másrészt a pontok süritése növeli azok számát, ami nemcsak a számitási idő nagymértékü megnövekedését jelenti, hanem számitógépi számitásnál a kerekitési hibák halmozodása miatt még rontja is az eredmény pontosságát.

Általában tehát e két szempontra való tekintettel gondos mérlegelés tárgyát kell hogy képezze a hálórendszer felvétele. A jól felvett hálórendszer pontos megoldást szolgáltat, a pontok száma mégis ésszerü korlátok között van. Ennek megszerkesztéséhez a fenti határok kiszámitásán és korlátok betartásán kivül ismerni kell az alkalmazott számitási eljárás tulajdonságait, az igénybevett számi-

tógép bizonyos jellemzőit, sőt a probléma megoldásáról is kvalitativ képpel kell rendelkeznünk.

2. Differenciaegyenletek felirása

Tételezzük fel, hogy elkészitettük az előzőekben leirt szempontok figyelembevételével a tartomány koordinátavonalakból álló felosztását. Általános koordinátarendszert figyelembevéve a vizsgált 0 pont környezetét a 2. ábrán láthatjuk.

2.ábra

Az O pont általános koordinátái $\{i, j, n\}_k$ a függvény értéke itt F_o. A koordináták megváltozását \propto -val jelöltük, tehát a környező négy pont koordinátái:

$$F_{1}\left(\xi_{i} - \alpha_{1}; \eta_{k}\right)$$

$$F_{2}\left(\xi_{i} + \alpha_{2}; \eta_{k}\right)$$

$$F_{3}\left(\xi_{i}; \eta_{k} - \alpha_{3}\right)$$

$$F_{4}\left(\xi_{i}; \eta_{k} + \alpha_{4}\right)$$

Ha felirjuk az F függvény Taylor sorát a O pontban, ebből a O pontbeli differenciálhányadosokat kifejezhetjük a O pont környezetében felvett függvényértékek $/F_1,F_2,F_3,F_4/$ segitségével [3]. A Taylor sor első három tagjának felhasználásával:

$$\frac{\partial F}{\partial \xi} = \frac{\alpha_{4}}{\alpha_{2}(\alpha_{4} + \alpha_{2})} F_{2} - \frac{\alpha_{2}}{\alpha_{4}(\alpha_{4} + \alpha_{2})} F_{4} - \frac{\alpha_{4} - \alpha_{2}}{\alpha_{4}\alpha_{2}} F_{0}$$

$$\frac{\partial F}{\partial \eta} = \frac{\alpha_{3}}{\alpha_{4}(\alpha_{3} + \alpha_{4})} F_{4} - \frac{\alpha_{4}}{\alpha_{3}(\alpha_{3} + \alpha_{4})} F_{3} - \frac{\alpha_{5} - \alpha_{4}}{\alpha_{3}\alpha_{4}} F_{0}$$

$$\frac{\partial^{2} F}{\partial \xi^{2}} = \frac{2}{\alpha_{2}(\alpha_{4} + \alpha_{2})} F_{2} + \frac{2}{\alpha_{4}(\alpha_{1} + \alpha_{2})} F_{4} - \frac{2}{\alpha_{4}\alpha_{2}} F_{0}$$

$$\frac{\partial^{2} F}{\partial \eta^{2}} = \frac{2}{\alpha_{4}(\alpha_{5} + \alpha_{4})} F_{4} + \frac{2}{\alpha_{3}(\alpha_{3} + \alpha_{4})} F_{3} - \frac{2}{\alpha_{3}\alpha_{4}} F_{0}$$

1321

Tekintsük továbbá a nagyhőmérsékletü elektromágneses teret állandó permeabilitás esetén leiró /13/ és /26/ differenciálegyenleteket. Ezek a Laplace operátort és a változó első deriváltjait tartalmazzák. Mivel a Laplace operátor is minden koordinátarendszerben a függvény első és második deriváltjait, valamint a változó meghatározott függvényeit tartalmazza, a /32/ összefüggések segitségével megszerkeszthetjük a differenciálegyenletnek megfelelő differenciaegyenletet . Az O pontra vonatkozó differenciaegyenletet ugy kapjuk, hogy a differenciálhányadosok helyébe a /32/ differenciahányadosokat irjuk. a µ, γ, K anyagjellemzőket, valamint a q, J függvényeket pedig a O pontban felvett értékkel vesszük számitásba. Ilymódon F és a környező négy függvényérték között algebrai összefüggést kapunk, amely az adott differenciálegyenletet közelitőleg helyettesiti.

Tekintsük például a /13/ egyenletet. Mivel a jelenlegi legmodernebb számitógépek kapacitása és gyorsasága általában a háromdimenziós tér tárgylását nem teszi lehetővé, a differenciaegyenletet is a kétdimenziós mágneses tér esetére vezetjük le. A mágneses térerősség vektora feküdjék tehát az x-y sikban. A rá merőleges villamos térerősség és áramsürüség vektorának ekkor csak egy, z irányu összetevője van, és bebizonyitható [1], hogy ekkor A vektorpotenciál is z irányu. Ez viszont azt jelenti, hogy e vektorok egyetlen skalár mennyiséggel jellemezhetők, amelynek az x-y sikon való eloszlását kell meghatározni. Descartes koordinátarendszert alkalmazva az $\alpha_1, \alpha_2, \alpha_3, \alpha_4$, koordinátaváltozások közvetlenül a hálóvonalak távolságát adják meg, amit h1 h2 h3 h4-el jelölünk. A /32/ differenciahányadosokat a /13/ egyenletbe helyettesitve a következő algebrai összefüggést kapjuk:

$$\frac{\frac{2A_1}{h_1/h_1+h_2/}}{\frac{h_2/h_1+h_2/}{h_2/h_1+h_2/}} + \frac{\frac{2A_3}{h_3/h_3+h_4/}}{\frac{h_4/h_3+h_4/}{h_4/h_3+h_4/}} -$$

$$-\left(\frac{2}{h_{1}h_{2}} + \frac{2}{h_{3}h_{4}}\right)A_{0} = j\omega\mu_{0}\gamma_{0}A_{0} - \mu_{0}J_{0}$$
 (33/

Hasonlóképpen irhatjuk át a /26/ hővezetési egyenletet is:

$$\frac{2T_{1}}{h_{1}/h_{1}+h_{2}/r} + \frac{2T_{2}}{h_{2}/h_{1}+h_{2}/r} + \frac{2T_{3}}{h_{3}/h_{3}+h_{4}/r} + \frac{2T_{4}}{h_{4}/h_{3}+h_{4}/r} - \left(\frac{2}{h_{1}h_{2}} + \frac{2}{h_{3}h_{4}}\right)T_{0} + \frac{1}{K_{0}}\left(\frac{\partial K}{\partial T}\right)\left[\left(\frac{h_{1}T_{2}}{h_{2}/h_{1}+h_{2}/r} - \frac{h_{2}T_{1}}{h_{1}/h_{1}+h_{2}/r} - \frac{h_{1}-h_{2}}{h_{1}h_{2}}T_{0}\right)^{2} + \cdot\right] + \left(\frac{h_{3}T_{4}}{h_{4}/h_{3}+h_{4}/r} - \frac{h_{4}T_{3}}{h_{3}/h_{3}+h_{4}/r} - \frac{h_{3}-h_{4}}{h_{3}h_{4}}T_{0}\right)^{2}\right] + \frac{q_{0}/x_{0}y_{0}/r}{K_{0}} = 0$$

Más koordinátarendszerekben is teljesen hasonló módon lehet megszerkeszteni a differenciaegyenleteket. /A hengerkoordinátarendszer esetét a speciális rész tartalmazza./

/34/

Ha az inhomogenitások és a tartomány alakja lehetővé teszik, igen előnyös minden irányban egyenlő rácstávolságu hálót felvenni, mert ekkor a /33/ egyenlet a következő alakra egyszerüsödik: $/h_1 = h_2 = h_3 = h_4 = h/$

$$A_1 + A_2 + A_3 + A_4 - 4A_0 = j \omega \mu_0 \gamma_0 h^2 A_0 - \mu_0 h^2 J_0$$

Fokozhatjuk a differenciaegyenlet pontosságát, ha a differenciahányadosok felirásánál a O ponttól egyre távolabb levő pontok függvényértékeit is figyelembe vesszük. Descartes koordinátarendszer és ekvidisztáns háló esetén pl. a következő sémákat irhatjuk fel [3]:

$$\frac{\partial F}{\partial x} = \frac{1}{12h} \left(\begin{array}{c} 0 & h \\ 0 & 0 & 0 \end{array} \right)$$

$$\frac{\partial^2 F}{\partial x^2} = \frac{1}{12h^2} \begin{pmatrix} 0 & h & 0 & 0 & 0 \\ -1 & 16 & -30 & 16 & -1 \end{pmatrix}$$

$$\Delta u = \frac{1}{h^2} \begin{pmatrix} 1 & 4 & 1 \\ 4 & -20 & 4 \\ 1 & 4 & 1 \end{pmatrix}$$

A Laplace operátort, vagy a /26/-beli grad kifejezést görbevonalu koordinátarendszerben felirva olyan kifejezésekhez juthatunk, amelyek a tér bizonyos pontjaiban nem értelmezhetők /pl. az l/r függvény az r = 0 helyen/. Mivel ezek a kifejezések a differenciaegyenletben is szerepelni fognak, az szintén szingularitást fog mutatni az emlitett helyeken. E szingularitások kiküszöbölése az adott esetben rendszerint külön meggondolást igényel, és általában a differenciaegyenlet megváltoztatását jelenti. Egy példát a speciális rész mutat be hengerszimmetrikus esetre.

Mint emlitettük, a differenciaegyenlet a O pont közelében helyettesiti a differenciálegyenletet, és alkalmas térben változó vezetőképesség és hővezetés, valamint változó J és q figyelembevételére. Definiáljuk a vizsgált pont /0/ környezetét, mint az $\alpha_1/2 \alpha_2/2 \alpha_3/2$ a,/2 "távolságokban" haladó koordinátavonalakból álló tartományt / az l ábrán vonalkázva/. Ekkor a differenciaegyenletben szereplő 7, K, J és q a térben folytonosan változó függvényeknek a vizsgált pontban, illetve annak környezetében felvett értékeit jelenti. A rácsháló mérete éppen akkor van helyesen megállapitva, ha e függvények változása a rajzolt területen elhanyagolható. Ez a feltétel azonban semmiképpen sem teljesül, ha a szóbanforgó függvényeknek a 0 pont környezatében ugrásszerü változása van. Ilyen esetben a differenciaegyenletbe a O pontban esetleg nem is értelmezhető függvényérték helyett / ha az elválasztó határ épp a O ponton megy át/ a függvények O pont környezetére vett átlagát kell helyettesiteni:

Pl. a γ függvényre, ha a 3. ábrán látható módon halad a határ:

$$\gamma_{o} = \frac{1}{f} \int_{f} \gamma (xy) df = \frac{\gamma_{1}f_{1} + \gamma_{2}f_{2}}{f_{1} + f_{2}}$$
 /35/

Az eljárást célszerü alkalmazni akkor is, ha pl.a $\gamma/xy/$ függvénynek nincs ugrásszerü változása, de valamilyen ok miatt nem célszerü vagy nem lehet a rácstávolságokat olyan kicsire választani, hogy a 0 pont környezetében $\gamma'/xy/$ már ne változzék. Ebben az esetben:

$$\begin{aligned} \mathcal{X}_{o} &= \frac{1}{f} \int_{f} \mathcal{Y} / xy / df = \frac{4}{h_{1}h_{3}+h_{3}h_{2}+h_{2}h_{4}+h_{4}h_{1}} \left(\frac{h_{1}h_{4}}{4} \mathcal{Y}_{1} + \frac{h_{1}h_{3}}{4} \mathcal{Y}_{2} + \frac{h_{3}h_{2}}{4} \mathcal{Y}_{3} + \frac{h_{2}h_{4}}{4} \mathcal{Y}_{4}\right) \end{aligned}$$

ahol γ_1 , γ_2 , γ_3 , γ_4 a O pont környezetében megadott négy vezetőképesség /ld. a 4. ábrát/.

Ha minden ponthoz az előbbi módon négy különböző értéket rendelünk, ez megfelel annak, hogy a vezetőképesség szempontjából a teret egy feleakorra rácstávolságu hálóval háloztuk be, ami az előbbinél még akkor is pontosabb eredményt ad, ha a csomópontok száma nem is változott, mert az inhomogenitásokat jobban figyelembe vettük. A tapasztalatok azt mutatják, hogy az inhomogenitás figyelembevétele még akkor is javul, ha az állandó anyagjellemzővel biró tartományok számát ugyan nem növeljük, de a γ_0 , K₀, J_0 , q_0 számitására a /36/-nak megfelelő képleteket alkalmazzuk. Ekkor azonban az előbbi függvények értékeit nem a O pont környezetében hanem a hálóvonalakból alkotott tartományokban kell megadni.

Külön kell foglalkoznunk a változó permeabilitás esetével. Az ekkor érvényes /8/ differenciálegyenlet bal oldalának átirása a fenti /32/ differenciahányadosok segitségével most nagyon körülményes és áttekinthetetlen, ezért a /16/ integrális alakot használjuk fel [5]. Állandó permeabilitásu tartománynak most célszerü nem a O pont környezetét, hanem a rácsvonalak határolta tartományokat venni. Az ezekhez tartozó anyagjellemzőket, valamint a O pontot körülvevő zárt vonalat /ℓ/ amire a /16/-ban szereplő integrált számitjuk, a 4.a. ábra tartalmazza.

4.a. ábra

Mivel jelen esetben $\overline{A} = A\overline{k}$

$$\operatorname{rot} \overline{A} = \frac{\partial A}{\partial y} \overline{J} - \frac{\partial A}{\partial x} \overline{J} \quad .$$

Az a és b pontok közti integrálásnál csak $\frac{\partial A}{\partial x}$ szerepel, amiről feltesszük, hogy e kis szakasz mentén nem változik, és az I pontban számitott értékével vehető figyelembe.

Igy e szakaszra vonatkozó integrál:

$$\int_{a}^{b} \frac{1}{\mu} \operatorname{rot} \overline{Ad\ell} = \int_{a}^{b} -\frac{1}{\mu} \frac{\partial A}{\partial x} d\ell = -\left(\frac{\partial A}{\partial x}\right)_{I} \int_{a}^{b} \frac{dy}{\mu} =$$
$$= \frac{A_{0}^{-A_{2}}}{h_{2}} \left(\frac{h_{3}}{2\mu_{a}} + \frac{h_{4}}{2\mu_{b}}\right)$$

Hasonlóképpen végezhető el az integrálás az ab, bc és a cd szakaszokra. A /l6/-ban szereplő integrált ℓ mentén ezekkel felirva, a jobb oldalon szereplő γ_o^{-t} pedig a már részletezett modon figyelembevéve, végül a következő differenciaegyenlethez jutunk:

 $D_1A_1 + D_2A_2 + D_3A_3 - D_0A_0 = j \odot G_0A_0 - I_0$ /37/ ahol

$$D_{1} = \frac{1}{2h_{1}} \left(\frac{h_{4}}{\mu_{c}} + \frac{h_{3}}{\mu_{d}} \right)$$
$$D_{2} = \frac{1}{2h_{2}} \left(\frac{h_{4}}{\mu_{b}} + \frac{h_{3}}{\mu_{a}} \right)$$
$$D_{3} = \frac{1}{2h_{3}} \left(\frac{h_{1}}{\mu_{d}} + \frac{h_{2}}{\mu_{a}} \right)$$
$$D_{4} = \frac{1}{2h_{4}} \left(\frac{h_{2}}{\mu_{b}} + \frac{h_{1}}{\mu_{c}} \right)$$

$$D_{o} = D_{1} + D_{2} + D_{3} + D_{4}$$

$$G_{o} = \frac{h_{2}h_{3} \mathcal{J}_{a} + h_{2}h_{4} \mathcal{J}_{b} + h_{1}h_{4} \mathcal{J}_{c} + h_{1}h_{3} \mathcal{J}_{d}}{4}$$

$$I_{o} = \frac{h_{2}h_{3}J_{oa} + h_{2}h_{4}J_{ob} + h_{1}h_{4}J_{oc} + h_{1}h_{3}J_{od}}{4}$$

A differenciaegyenlet másfajta ortogonális koordinátarendszerben is ugyanilyen felépitésü csak a D_i együtthatók mások; levezetése ugyancsak az integrális alakból célszerü.

3. Határfeltételek érvényesitése

Az eddig tárgyalt differenciaegyenletek a vizsgált tér belső pontjaira vonatkoznak, és összefüggéseket állapitanak meg egy belső pont és a környező pontok függvényértékei között. A vizsgált tér határán azonban legalább az egyik irányban nem találunk "szomszédos" pontot itt tehát az előbbiektől eltérő egyenleteket kell felirni, amelyek a határoló felületek vagy vonalak fizikai viszonyait is tükrözik. Ezeknek az un. peremfeltételeknek a figyelembevétele annál jobb, minél több rácspont van a peremen, ami az eddigi felépitésü hálóknál azt jelenti, hogy minél finomabb a háló a perem közelében. Másrészt azonban az inhomogenitások és a kivánt pontosság nem feltétlenül teszik indokolttá a finomabb háló használatát. Ezért itt követhetjük azt az utat. hogy megtartjuk az eredeti rácshálót és a határon kiegészitő pontokat veszünk fel /az 5. ábrán P1, P2P3/. A határ melletti pontokban való számoláskor a /33/, /34/, /37/ képletekben a módositott rácstávolságokat /h', h'', h'''/ vesszük figyelembe, a határfeltételeket pedig az utóbb felvett pontokban /P1, P2. P₂/ érvényesitjük.

Ahogy ezt az 1.b/és 2.b/ fejezetekben láttuk, a határfeltételek matematikai szempontból algebrai egyenletek amelyek a térjellemzőt /A,T/, illetve a peremgörbe normálisának irányában vett deriváltját tartalmazzák. - Az első esetben igen egyszerü a helyzet, mert a megadott peremérték ismert mennyiségként fog szerepelni az egyenletekben, mig a második esetben ismeretlenként, de kapcsolata a többi /belső/ pont függvényértékeivel megállapitható, ha a peremfeltételt leiró egyenletben a derivált numerikus kifejezését irjuk. Ez görbült ha-

tár esetén a 6. ábra jelöléseivel:

- 31 -

 $\frac{\partial T}{\partial n}$ kifejezése egyenesvonalu határra/38/ speciális esetenként adódik.

4. Az egyenletrendszer megoldása

Az előbbiek szerint minden csomópontra felirva a differenciaegyenleteket, lineáris algebrai egyenletrendszert kapunk, amelyben az ismeretlenek száma / a csomópontok száma/ és az egyenletek száma megegyezik. Igen álatalános feltételek mellett bebizonyitható [3], hogy az igy kapott egyenletrendszernek létezik egyetlen megoldása, és ez a differenciálegyenlet megoldásához tart. ha a rácstávolságot minden határon tul csökkentjük. Az algebrai egyenletrendszer megoldása azonban számitástechnikailag nehézséget jelent. Ugyanis a pontosság fokozása érdekében a rácstávolságokat célszerü minél kisebbre választani ami a rácspontok számának növekedését jelenti. De ezt követeli az inhomogenitások megfelelő figyelembevétele, és a határgörbe jó megközelitése is. Igy végeredményben az ismeretlenek száma nagyon megszaporodik, nemritkán eléri az ezres nagyságrendet. Ilyen sokismeretlenes egyenletrendszerek direkt megoldása még nagysebességű számitógépeken is nehézségekbe ütközik.

A Cramer szabállyal vagy a Gauss-féle eliminációs módszerrel történő megoldásoknál ugyanis igen sok adatot kell tárolni a számitás során későbbi felhasználásra, és a müveletek száma is óriási. N ismeretlenes egyenletrendszer esetén legalább N²/2 tárolóhelyre van szükség és a számitási idő arányos N³-bel. Mindezek miatt a jelenlegi számitógépek általában csak akkor tudnak direkt módszerekkel dolgozni, ha a rácspontok száma kisebb száznál. A gyakorlatban előforduló szinte valamennyi esetnél azonban a jóval nagyobb ismeretlen-szám miatt iterációs módszerrel célszerü dolgozni. Itt a szükséges memóriakapacitás a rácspontok számával lineárisan, a számitási idő pedig négyzetesen arányos, ami az előbbinél lényegesen kedvezőbb értéket ad, és lehetővé teszi bonyolult nemlineáris /bár többnyire csak kétdimenziós/ próblémák megoldását a modern számitógépeken.

Az iterációs módszereknél a számitani kivánt térjellemzőre /A, vagy T/ először kiinduló értékeket veszünk fel. /Bebizonyitható, hogy ez tetszés szerint történhet, de sokkal gyorsabban elérjük a kivánt eredményt, ha a megoldáshoz közelebb eső értékeket sikerül felvenni./ Ezután a kiinduló értékeket a differenciaegyenletekbe helyettesitve kiszámitjuk az első közelitést, majd ebből a másodikat és igy tovább. Aszerint, hogy egy számitási lépésben csak egy pontban végezzük el a koorekciót, vagy a pontok egy csoportjában, pont vagy csoport-iterációt különböztetünk meg.

a./ Pont iteráció

Rendezzük át a /33/, /34/, /37/ differenciaegyenleteket ugy, hogy a bal oldalon az ismeretlen /A, T/ lineáris kifejezése álljon:

 $\beta_{1}U_{1} + \beta_{2}U_{2} + \beta_{3}U_{3} + \beta_{4}U_{4} - \beta_{0}U_{0} = M$ /39/

Itt β_i a /33/ és /37/ differenciaegyenletben A_i együtthatója, a /34/ hővezetési differeciaegyeletben pedig az elsőfoku T_i -k együtthatója, M a /33/, /37/ egyenletek A_o -t nem tartalmazó tagja, illetve a /34/ hővezetési differenciaegyenlet $\frac{\partial K}{\partial T}$ -t és másodfoku T_i -t, valamint q_o -t tartalmazó tagja. /39/-ből U_-t kifejezve:

$$J_{o} = \frac{\beta_{1}}{\beta_{o}} U_{1} + \frac{\beta_{2}}{\beta_{o}} U_{2} + \frac{\beta_{3}}{\beta_{o}} U_{3} + \frac{\beta_{4}}{\beta_{o}} U_{4} - \frac{M}{\beta_{o}}$$
 (40)

A legegyszerübb pontiterációs módszernél a Jakobi módszernél U_o első közelitését ugy kapjuk, hogy a /40/ egyenlet jobb oldalába a felvett kiindulóértékeket behelyettesitjük. A pontokon valamilyen rögzitett rendszer szerint végighaladva ezt a számitást pontról pontra elvégezzük, és ennek eredményeit ismét behelyettesitjük /40/ jobb oldalába; igy kapjuk U_o második közelitését. Általában a k-adik iterációt U_o^{/k/} -val jelölve:

$$U_{o}^{/k/} = \sum_{i=1}^{4} \frac{\beta_{i}}{\beta_{o}} U_{i}^{/k-l/} - \frac{M}{\beta_{o}}$$

$$(41/)$$

Ha, mint a /37/ egyenletnél, az együtthatók maguk is függenek a térjellemzőtől, egy ujabb iteráció számitása előtt kiszámitjuk a megváltozott térjellemzőnek megfelelő uj együtthatókat, és az iterációs egyenlet a következő alaku lesz:

$$U_{o}^{/k/} = \sum_{i=1}^{4} \frac{\beta_{i}^{/k-1/}}{\beta_{o}^{/k-1/}} \quad U_{i}^{/k-1/} - \frac{M^{/k-1/}}{\beta_{o}^{/k-1/}}$$
(42/

A Jakobi módszernél valamivel hatásosabb - kb. feleannyi iteráció szükséges ugyanolyan pontosság eléréséhez - az ugynevezett Gauss-Seidel módszer, amelynél a k-adik iteráció számitásakor felhasználjuk az ezen iterációban már korrigált értékeket. Ha a számitást soronként balról-jobbra haladva végezzük:
$$U_{0}^{/k/} = \frac{\beta_{1}^{/k-1/}}{\beta_{0}^{/k-1/}} U_{1}^{/k/} + \frac{\beta_{2}^{/k-1/}}{\beta_{0}^{/k-1/}} U_{2}^{/k-1/} + \frac{\beta_{3}^{/k-1/}}{\beta_{0}^{/k-1/}} U_{3}^{/k-1/} + \frac{\beta_{4}^{/k-1/}}{\beta_{0}^{/k-1/}} U_{4}^{/k/} - \frac{M}{\beta_{0}^{/k-1/}}$$

A számitás iránya tetszés szerint választható meg, anélkül, hogy ez az eredményt befolyásolná. Erősen eltérő tulajdonságu / μ / résztartományokat tartalmazó tereken végzett numerikus számitások mégis azt mutatták, hogy a módszer konvergenciája akkor a legjobb, ha egymás után váltakozó irányban végezzük a fent leirt korrekciót. Ha pedig a program egyszerüsége miatt az egyirányu számolás mellett döntünk, akkor ennek célszerü a permeabilitásváltozására merőleges irányt választani.

b./ Csoport iteráció

A pontiterációs módszereknél mindig egy-egy pontban /0/ korrigáljuk U-t, a körülötte levő pontokhoz tartozó, már előzőleg kiszámolt értékek felhasználásával A csoportiterációs módszereknél egy előre kijelölt ponthalmazon hajtjuk végre egyidejüleg a korrekciót.

Legyen például ez a halmaz az egy koordinátavonalon fekvő pontok összessége; tekintsük ismeretlennek az ezen pontokhoz tartozó U értékeket. Ekkor a szóbanforgó pontokra /39/-ből a következő egyenletet irhatjuk fel:

 $\beta_1 U_1 + \beta_2 U_2^{/k/} - \beta_0 U_0^{/k/} = M - \beta_3 U_3^{/k-1/} - \beta_4 U_4^{/k-1/}$

1431

- 35 -

Itt U₁, U₂, U₀ ismeretlenek, U₃, U₄ az előző iterációból vett, ismert mennyiségek. A vonalon levő összes pontra felirva ezeket az egyenleteket, olyan egyenletrendszerhez jutunk, amelyben minden egyenlet legfeljebb három ismeretlent tartalmaz és a következő formáju:

$$b_{1}x_{1} + c_{1}x_{2} = d_{1}$$

$$a_{2}x_{1} + b_{2}x_{2} + c_{2}x_{3} = d_{2}$$

$$a_{i}x_{i-1} + b_{i}x_{i} + c_{i}x_{i+1} = d_{i}$$

$$a_{m}x_{m-1} + b_{m}x_{m} = d_{m}$$

azaz együtthatómátrixa tridiagonális. Ennek szimultán megoldása a következő algoritmussal könnyen elvégez – hető:

 $g_{1} = \frac{c_{1}}{b_{1}} \qquad g_{i} = \frac{c_{i}}{b_{i} - a_{i}g_{i-1}} \qquad i = 2,3 \dots m$ $p_{1} = \frac{d_{1}}{b_{1}} \qquad p_{i} = \frac{d_{i} - a_{i}p_{i-1}}{b_{i} - a_{i}g_{i-1}} \qquad i = 2,3 \dots m$ $x_{m} = p_{m} \qquad x_{i} = p_{i} - g_{i}x_{i+1} \qquad i = m-1, m-2, \dots 1$

Miután igy kiszámitottuk az egy koordinátavonalon levő pontokhoz tartozó U értékeket az előző és a következő vonal meglévő U értékeiből a következő vonal számitására térhetünk át, és igy tovább. Természetesen mint a pontiterációs Gauss-Seidel módszernél, itt is felhasználhatjuk az előző vonal folyamatban lévő iterációban már korrigált értékeit.

Elméleti megfontolások [4] azt mutatják, hogy a bemutatott "vonaliteráció" nagyobb konvergenciasebességgel randelkezik, mint a poniterációs módszerek. Számitógépen való alkalmazásakor azonban figyelembe kell venni, hogy a számitási idő a konvergencia gyorsaságán kivül az egy iterációhoz szükséges számitási müveletek számától is függ, ami az egyenletmegoldás miatt a vonaliterációnál nagyobb. Ezért nem minden esetben előnyös a vonaliteráció használata. Legkülönbözőbb próblémák numerikus vizsgálata azt mutatta, hogy e módszert akkor célszerü előnyben részesiteni, ha a rácspontok száma nagy /ezer körüli/, vagy a rácstávolságok igen különbözőek.

5. A megoldás konvergenciája

a./ A konvergencia feltétele

A differenciaegyenletekből álló lineáris egyenletrendszert a

mátrixalakba foglalhatjuk össze, amelynek bármelyik sora, mint láttuk, a következő alaku:

 $\beta_1 \mathbf{U}_1 + \beta_2 \mathbf{U}_2 + \beta_3 \mathbf{U}_3 + \beta_4 \mathbf{U}_4 - \beta_0 \mathbf{U}_0 = \mathbb{M}$

az egyenletrendszernek létezik egyértelmű megoldása, ha teljesülnek a következő feltételek: [4]

1./ a β_{2} együtthatómátrix irreducibilis 2./ $|\beta_{0}|^{\geq}|\beta_{1}| + |\beta_{2}| + |\beta_{3}| + |\beta_{4}|$

Az első feltétel azt jelenti, hogy nem lehet kiválasztani N_1 ismeretlent $/N_1 < N/$ ugy, hogy azokat N_1 számu M érték teljesen egyértelmüen meghatározza. Ez nyilvánvalóan teljesül, mert az M oszlopvektor a peremfeltételeket és a gerjesztéseket tartalmazza, és a helyesen megfogalmazott térszámitási feladatnál bármely pont térjellemzője függ az összes peremfeltételtől és gerjesztéstől. Az együtthatókra vonatkozó második feltétel teljesüléséről meggyőződhetünk, ha a /32/ /34/ /37/ egyenletek együtthatóit összehasonlitjuk. Végeredményben tehát megállapitható, hogy a /33/ /34/ /37/ differenciaegyenletekből álló egyenletrendszernek egyértelmü megoldása van.

> Az iterációs folyamat konvergenciavizsgálatát Young alapján [6] csak a lineáris, stacionárius iteráció esetére tudjuk elvégezni, amikor is a fizikai paraméterek az iteráció folyamán nem változnak, vagyis az iterációs egyenletek együtthatói állandók. Mégis a levont következtetések támpontot adnak a változó együtthatók esetére, illetve a kidolgozott konvergenciagyorsitó módszerek jó eredményre vezetnek.

> A fenti lineáris stacionárius iteráció esetében az iterációs folyamatot a következő mátrxiegyenlet irja le:

$$\underline{u}^{k} = \underline{G} \underline{u}^{k-1} + \underline{v}$$
 (44/

Ahol \underline{G} az egyes iterációs módszereknek megfelelő iterációs mátrix. Az iteráció konvergál, ha bármely kiinduló vektor /<u>u</u>^o/ mellett az

$$\underline{e}^{k} = \underline{u}^{k} - \underline{u}^{k-1}$$
(45/

különbségvektor a zérushoz tart, miközben k→∞. A /45/ egyenletet /44/-be helyettesitve

$$\underline{e}^{k} = \underline{G} e^{k-1}$$
(46)

vagyis az iterációs folyamat lefolyására <u>v</u> nincs semmiféle hatással.

Állitsuk elő az $\underline{e'}^{\circ} = \underline{u'}^{\circ}$ kiinduló vektort a \underline{G} mátrix sajátvektorainak lineáris kombinációjaként.

$$\underline{e}^{\prime \circ \prime} = \sum_{i=1}^{m} a_{i} \underline{z}_{i}$$
 (47/

ahol \underline{z}_i a \underline{G} mátrix sajátvektorait, \hat{k}_i a hozzátartozó sajátértékeket jelöli:

$$\underline{\underline{G}}\underline{\underline{z}}_{i} = \Lambda_{i}\underline{\underline{z}}_{i} \qquad (48)$$

Ha most az $\underline{e}^{/o/}$ kiindulóvektort k-szor megszorozzuk a <u>G</u> mátrix-szal, /46/ szerint $\underline{e}^{/k/}$ -hoz jutunk:

$$\underline{e}^{k} = \underline{\underline{G}}^{k} \underline{\underline{e}}^{0} = \underline{\underline{G}}^{k} \sum_{i=1}^{m} a_{i} \underline{\underline{z}}_{i} = \sum_{i=1}^{m} a_{i} \kappa_{i} \underline{\underline{z}}_{i}$$
(49)

A /49/ egyenletből levonhatjuk a következtetést, hogy a stacionárius lineáris iteráció akkor konvergál, ha a <u>G</u> iterációs mátrix minden sajátértéke egynél kisebb abszolut értékü. <u>G</u> legnagyobb sajátértékét az iterációs mátrix spektrális sugarának nevezik:

$$\int /\underline{G} / = \max \int_{-1}^{\infty}$$

amivel a konvergencia feltétele:

 $|\Lambda/\underline{G}/| < 1$

/50/

 $\begin{array}{l} $ \ / \underline{G} \$

A spektrális rádiusz ismeretére mindezek ellenére szükség van, mert \mathcal{K} egyuttal azt is megmutatja, hogy milyen gyors a konvergencia, milyen gyorsan csökkennek a hibák. Ha ugyanis /49/-ben a legnagyobb sajátérték dominál, irhatjuk, hogy

$$\frac{\| e^{/k} \|}{\| e^{/k-1} \|} = \frac{\| u^{/k} - u^{/k-1} \|}{\| u^{/k-1} - u^{/k-2} \|} \cong \mathcal{K} / \underline{G} /$$
(51/

ahol bármilyen Euklédes-i normát vehetünk.

Az /51/ egyenletből látható, hogy annál gyorsabb a konvergencia minél kisebb $\mathcal{K}/\underline{G}/.$

Másrészt a spektrális rádiusz /továbbiakban £/ meghatározására elméleti uton a számitás előtt, csak igen speciális körülmények között van lehetőség. Nevezetesen Laplace egyenlet Dirichlet feladatának Gauss-Seidel módszerrel való megoldása esetén, amikor a tartomány téglalap alaku [6].:

$$\mathcal{L} = \frac{1}{2} \left[\left(\cos \frac{\mathcal{U}}{R} + \cos \frac{\mathcal{U}}{S} \right) \right]^2$$
 /52/

/R és S a csomópontok száma a két irányban/. Az /51/ összefüggés azonban módot ad \mathcal{K} kisérleti meghatározására. E szerint nem kell mást tenni, mint az iterációs folyamat elején /a tapasztelat szerint néhányszor 10 iterációban/ képezni az $\| \mathbf{u}^{/k'} - \mathbf{u}^{/k-1} \|$ mennyiségek két egymásutáni iterációban vett hányadosát. E hányados határértéke adja \mathcal{K} közelitő értékét /az a feltételezésünk, hogy $\mathcal{K}/\underline{G}$ / dominál/. A numerikusan megállapitott \mathcal{K} -ból bonyolultabb esetben is megitélhető, hogy konvergál-e az eljárás és milyen gyorsan, illetve erre támaszkodva tehetünk intézkedéseket az eljárás stabilizálására, illetve a konvergenciasebesség növelésére.

b./ A konvergencia gyorsitása

Az /52/ képletre tekintve azt látjuk, hogy a csomópontok számának növelésével \mathcal{K} erősen tart az egységhez, vagyis a konvergencia egyre lassubb lesz. De erre utal általánosabb esetekben is a numerikus tapasztalat, mely szerint az itt előforduló problémáknál az 1%-ra pontos megoldás eléréséhez kb. a pontok számával megegyező számu iterációra van szükség. Ez pedig a néhány ezer pontot tartalmazó tereknél a modern számitógépeket is figyelembevéve már órás nagyságrendű számitási időt igényel a fenti iterációs eljárásokkal. Ezért rendszerint szükség van a konvergencia gyorsitására.

A konvergenciasebesség hatékonyan növelhető a szukceszsziv hiperrelaxáció módszerével [6]. E módszer alkalmazásakor – ugy mint a Gauss-Seidel módszernél – először meghatározzuk u^{/k/} értékét, de a további számitás számára nem ezt tartjuk meg, hanem u-nak egy relaxált értékét:

 $u_{relaxált}^{k/} = u^{k-l/} + \omega [u^{k/} - u^{k-l/}]$ /53/

Az ω relaxációs tényező helyes megválasztása a konvergenciagyorsitás központi problémája.

Varga [7] bebizonyitotta, hogy az /53/ szerinti iteráció csak akkor konvergál, ha $0 \le \omega \le 2$, mert ekkor lesz a szukcessziv hiperrelaxáció spektrális rádiusza / κ_{ω} / egynél kisebb.

A következőkben lényeges szerepet játszik a $\underline{GU} = \underline{M}$ differenciaegyenletrendszer \underline{G} mátrixának egy bizonyos tulajdonsága, amit az irodalom [6], [7]." A tulajdonság" néven jelöl /Property A/. Ez azt jelenti, hogy a \underline{G} együtthatómátrix az oszlopok és a sorok megfelelő cseréjével a következő alakra hozható: ahol \underline{D}_{i} diagonálmátrix /rendje: r_{i} /, \underline{S}_{i} és \underline{Z}_{i} téglalapmátrixok, amelyek mérete $r_{i} \times r_{i+1}$, illetve $r_{i+1} \times r_{i}$.

Ha $\underline{\beta}$ -ra teljesül az /A/ feltétel, ω , $\hat{\Lambda}_{\omega}$, valamint a Jakobi módszer spektrális rádiusza ($\hat{\Lambda}_{j}$) között a követ-kező összefüggés áll fenn:

$$\left(\lambda_{\omega} + \omega - 1\right)^{2} = \Lambda_{\omega} \omega^{2} \Lambda_{3}^{2}$$
 /55/

1561

Ebből meghatározható a konvergenciagyorsitó tényező optimális értéke, amely mellett Λ_{ω} a legkisebb. A számitásokat elvégezve kapjuk, hogy

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - \kappa_{3}^{2}}}$$

és

$$\min(\mathcal{K}_{\omega}) = \omega_{\text{opt}} - 1$$

A Λ_{ω} spektrális sugár ω -tól való függését különböző Λ_{3}^{2} mellett a 7. ábra mutatja $/\omega = 1$ esetén /53/ szerint a Gauss-Seidel iterációt kapjuk, amelyre /55/-ből $\Lambda_{\omega=1} = \Lambda_{GS} = \Lambda_{3}^{2}/$

- 43 -

7.ábra

Ha $\omega_{opt} \leq \omega \leq 2$; akkor $\Lambda_{\omega} = \omega - 1$ és ω_{opt} közelében Λ_{ω} gyorsabban nő ω_{opt} alatt, mint fölötte. Ezért ω_{opt} közelitő meghatározásánál ω_{opt} alulbecsülése jobban csökkenti a konvergenciasebessége mint ω_{opt} felülbecsülése.

Az előbbi megfontolások valós relaxációs paraméterre vonatkoztak. Kézenfekvőnek látszik, hogy a /33/, /37/ komplex változóju differenciaegyenletek esetében a konvergenciagyorsitó tényező is komplex legyen. A $0 < |\overline{\omega}| < 2$ feltétel azonban ez esetben még nem biztositja a konvergenciát. Adott \overline{k}_3 mellett /ami független $\overline{\omega}$ -tól/ ugyanis csak olyan $\overline{\omega}$ értékeket engedhetünk meg, amelyekkel az /55/-ből kiszámitható \overline{k}_{ω} -ra $|\overline{k}_{\omega}| < 1$ fennáll.

A megengedhető co-k tartományának határait tehát ugy kapjuk, hogy az /55/ képletből nyert

$$\overline{\omega} = \frac{1 - \overline{\kappa}\omega}{1 - \overline{\kappa}_{3}\sqrt{\overline{\kappa}\omega}}$$
 /57/

összefüggés jobb oldalába az adott $\overline{k}_{\frac{1}{2}}$ -t és különböző \overline{k}_{ω} -t helyettesitünk, amelyekre $|\overline{k}_{\omega}|$ = 1. Néhány $\overline{k}_{\frac{1}{2}}$ értékhez tartozó határgörbét – amelyen belül kell lenni tehát $\overline{\omega}$ -nak – a 8. ábra mutat:

8.ábra

A megfelelően hatásos konvergenciagyorsitó eljárás alkalmazásának elengedhetetlen feltétele, hogy a Jakobi iterációs mátrix spektrális sugarát / κ_3 / ismerjük. Ez határozza meg ω_{opt} értékét az /56/ képlet szerint, de ettől függ kopmlex ω esetén is, hogy milyen $\overline{\omega}$ -ig konvergál az eljárás.

 $\mathcal{K}_{\mathfrak{z}}$ pontos meghatározása azonban a legtöbb gyakorlati térszámitás esetében nem sikerül, közelitő kiszámitása pedig sok tapasztalatot, körültekintést és intuiciót igényel, és leginkább a feladat jellegétől függ. Ha például nem kritikus a számitás időszükséglete, alkalmazni lehet az /52/ képletet egy a tartományt befoglaló téglalapra, majd az igy adódó \bigwedge -ból számitjuk ∞ -t az /56/ képlet szerint. ϖ igy nagyobb lesz a valóságos optimális értéknél, aminek eredményeként egy gyorsitott, bár nem optimálisan gyorsitott iterációs folyamatot kapunk.

Ha a feladatot sokszor kell megoldani változó peremfeltételekkel, ésszerü lehet az is, hogy néhány próbafutást végzünk különböző ω értékkel, és figyeljük az adott pontosság eléréséhez szükséges iterációk számát. ω optimális értékét ott kapjuk, ahol ez a szám minimumot mutat. Más kiinduló feltételek esetén természetesen $\omega_{\rm opt}$ értéke nem változik, a geometria kismértékü változása is csak kevéssel befolyásolja, a nemlinearitások változására azonban érzékenyen reagál.

Meghatározhatjuk Λ_{i} -t közelitőleg az iterációs folyamat közben is az /51/ képlet szerint, majd ebből ω -t /56/ szerint. Igy végeredményben egy változó ω -ju iterációs folyamathoz jutunk, amit ha megfelelően irányitunk, ω értéke ω_{opt} -hoz konvergál. A módszer részleteivel a speciális részben foglalkozunk.

Elméleti vizsgálatok [9] és numerikus tapasztalatok igazolják, hogy a fenti konvergenciagyorsitás akkor is alkalmazható, ha az ω_{opt} kiszámitása előtt tett feltevések nem teljesülnek, igy például nemlineáris esetekben is. Ekkor - ha egyáltalán konvergál az eljárás - az iterációs folyamat gyorsul, ha nem is abban a mértékben, mint ahogy az elméletből az várható volna. Ez azonban komoly veszteséget jelent, ha a Gauss-Seidel iteráció spektriális sugara nagy / Λ_{GS} > 0,9/. mert az ábrából láthatóan a szukcessziv hiperrelaxáció spektrális rádiuszt csökkentő hatása $\kappa_{\rm GS}$ növekedésével erősen csökken / $\kappa_{\rm GS}$ = 0,8-nál $\kappa_{\rm wopt}$ = 0,38, mig $\kappa_{\rm GS}$ = 0,98nál $\kappa_{\rm wopt}$ = 0,76/

Ilyen esetben hatékonyan lehet alkalmazni a fizikai kritériumok alapján végzett konvergenciagyorsitást.

A gerjesztési törvény szerint bármely zárt görbére

$$\oint_{\ell} \overline{H} \, \overline{d\ell} = \int_{F} \overline{J} \, \overline{dF}$$
 /58/

ahol F a görbe által bezárt felületet jelenti. Igy tehát a pontos megoldásnál a

$$C = \frac{\int_{F} JdF}{\oint HdC}$$
(59)

együttható értéke tetszőleges görbére kiszámitva egység, mig az iterációs folyamat közben C értéke eltér egytől. A valóságos megoldáshoz közelebb eső értékeket kapunk, ha a vektorpotenciálokat az iteráció közben ugy módositjuk, hogy az /58/ egyenlőség teljesüljön.

A C együttható értéke a /7/ és /20/ képletek felhasználásával:

$$C = \frac{\int_{F} (-\gamma_{j\omega}\overline{A} + \overline{J}_{o}) d\overline{F}}{\int_{L} \frac{4}{\mu} \operatorname{rot} \overline{A} d\overline{l}}$$

tehát a vektorpotenciálnak a görbén felvett, illetve görbén belüli értékeiből kiszámitható. Mivel C nevezőjében a térerősség görbementi összetevője, tehát \overline{A} görbeirányra merőleges változása: $\frac{\partial \overline{A}}{\partial n}$ szerepel, az /58/ egyenlőség teljesüléséhez a vektorpotenciálokat ugy változtatjuk meg, hogy $\frac{\partial \overline{A}}{\partial n}$ értéke a görbe mentén C szeresére növekedjék.

6. Hibabecslés

Elektromágneses és hőmérsékleti terek számitógépes számitásakor a megoldást jelentő függvényt csak bizonyos pontossággal kapjuk meg. A számitás jellegéből következő hibák ismerete két szempontból igen fontos; egyrészt ismerni kell hogy mitől és milyen mértékben függnek a hibák, hogy a számitást ugy tervezzük meg, hogy lehetőleg kis hiba adódjék, másrészt az iterációs folyamat lépéseinek a számát is csak a hibákra vonatkozó valamilyen becslés birtokában tudjuk megállapitani.

A differenciálegyenlet differenciaegyenlettel való helyettesitésekor adódó hibát homogén rácsháló esetén az egész tartományra vonatkozóan megbecsülhetjük. E célból a tartományt befoglaló ellipszis tengelyeit; t, s kell ismerni. Ezekkel [3]

$$r \leq \frac{M_4 / h^2 + k^2 / s^2 t^2}{24 / s^2 + t^2 / s^2}$$

ahol h és k az x és y irányu rácstávolság, M₄ pedig a megoldásfüggvény negyedik deriváltja abszolut értékének maximuma a vizsgált tartományban. Mint ilyen előre nem ismeretes, de pl. Ā kiszámitott csomópontbeli értékei alapján meghatározható [3]. Igy utólag tudjuk ellenőrizni, hogy a felvett rácstávolságok megfelelőek-e. Másrészt viszont ha valamilyen kézenfekvő feltevésünk van a megoldásfüggvényre /pl. örvényáram területen

$$|\overline{A}| = A_0 e^{-z/d}$$

ahol d'a behatolási mélység z irányban/, akkor ebből az adott pontossághoz szükséges átlagos rácstávolság előre meghatározható.

Ha az utólagos kiértékelésnél a diszkretizációs hiba túl nagynak adódik, célszerü megoldani a feladatot feleakkora rácstávolságokkal. A két megoldásból egy mindkettőnél pontosabb megoldás szerkeszthető Richardson módszerével [10].

A differenciaegyenletrendszer iterációs megoldásánál adódó hibát nehéz becsülni. Ha egyenletesen konvergál az eljárás, a pontosság mértéke lehet

$$\max_{i} |A_{i}^{/k/} - A_{i}^{/k-l/}|$$

vagy a következő normák:

$$\sum_{i} |A_{i}^{/k/} - A_{i}^{/k-l/}|$$

$$\sum_{i} | (A_{i}^{2}) / k / - (A_{i}^{2}) / k - 1 / |$$

Az iteráció befejezésének a feltétele ekkor az, hogy e mennyiségek egy előre megadott hibakorlát alá csökkenjenek.

A térszámitásokban előforduló igen sok müvelet miatt számitógépi számitásnál a kerekitési hibákkal is számolni kell, amely itt nagy lehet, sőt bizonyos esetben az egyébként stabil eljárást instabillá teheti. Mivel e hibák nagysága az adott számitógép számábrázolási pontosságától függ, a kerekitési hibák jelentőségét minden esetben különkülön kell mérlegelni.

SPECIÁLIS RÉSZ

1. A probléma megfogalmazása

A félvezető anyagok technológiájában lép fel a következő probléma:

Adva van egy félvezető rud /pl. szilicium/, amelyen a belső anyagstruktura és igy a fizikai paraméterek megváltoztatása céljából helyi melegitést kell létrehozni. Ilyen esetek pl. a polikristályosból egykristályos rud készitése, a félvezetőrud szennyezőkoncentrációjának beállitása zónás olvasztással, hengerszimmetrikus p-n átmenetek létrehozása, vagy a különböző céllal végzett hőkezelések. Az igen nagy tisztasági követelmények miatt azonban általában nem járható ut, hogy a nagy hőmérsékletű fütőanyagról hővezetéssel vigyük át a hőt a félvezetőre, mert a fütőelem párolgása beszenynyezné a félvezetőt. Ezért a fenti esetekben az indukciós hevités a célravezető hőközlési mód, amikor is magában a félvezetőben keletkezik a hő, a környezetében lévő indukciós tekercs pedig alacsony hőmérsékletű /általában átfolyó vizzel hütött/. igy számottevő párolgása nincs.

Indukciósan hevitett félvezetők hőmérsékleteloszlásának számitása több problémát vet fel. A hőmérsékleteloszlás meghatározásához ismerni kell a hőforrás-sürüség eloszlását a félvezetőben. Ez viszont a kialakuló örvényáramoktól függ, amit adott gerjesztő mennyiségek mellett a villamos vezetőképesség befolyásol. Félvezetőanyagok villamos vezetőképességeazonban erősen függ a hőmérséklettől, tehát előre nem ismert. Ha ehhez még hozzávesszük, hogy e hőmérsékletfüggés nemlineáris jellegü, akkor könnyen megállapithatjuk, hogy a probléma megoldása analitikusan reménytelen. Viszont a kialakuló hőmérsékleteloszlás ismerete igen fontos, mert ettől függenek az anyagban létrejövő strukturális változások; a diffuziós profil alakja, a diszlokációs hibahelyek sürüsége és eloszlása, valamint a félvezető számos fizikai tulajdonsága a szóbanforgó müvelet után.

A fenti nehézségek miatt a problémakör vizsgálata csak numerikus módszerekkel lehetséges, és az igen nagy számitási munkák miatt gyakorlatilag csak számitógéppel lehet kivitelezni.

Félvezető rud indukciós melegitését vázlatosan a 9. ábra

y.ábra

A T tekercsben nagyfrekvenciás áram folyik, amely változó fluxust hoz létre maga körül, igy a félvezető rudban is. Ennek hatására a rudban örvényáramok alakulnak ki, amelyek a rud melegedését idézik elő. Célunk az egyensulyi állapotban kialakuló hőmérsékleteloszlás meghatározása.

Shaskov [16] analitikusan számitja ki a z irányu hőmérsékleteloszlást annak feltételezésével, hogy a felület sugárzással ad le hőt, radiális irányban nincs változás és a hővezetési tényező állandó. Billig [17] kétirányu hőmérsékletváltozást vesz figyelembe, a hővezetési tényező azonban nála is független a hőmérséklettől.

Kis hőmérséklettartományban ezek a megoldások jó közelitést adnak. A félvezetőtechnológiában gyakran előforduló hőmérséklettartományban azonban $/\Delta T = 700-1200 \text{ C}^{0}/\text{ a fi-}$ zikai jellemzők itt már igen erősen jelentkező hőmérsékletfüggésének elhanyagolása miatt félrevezető eredményt adnak.

Digitális számitógéppel végzett számitásról számol be K.Akiyama és J.Yamaguchi [18] . Ők figyelembe veszik a hővezetés hőmérsékletfüggését, de vizsgáltuk a hővezetési differenciálegyenletre korlátozódik. A benne előforduló hőforrássürüség előre felvett mennyiség, aminek ilymódon a villamos vezetőképességtől, illetve végső soron magától a kialakuló hőmérséklettől való függését nem lehet figyelembe venni.

Jelen dolgozat célja a kapcsolt hővezetési és elektromágneses térszámitási probléma megoldása, miközben mindkét fizikai jellemző /hő és villamos vezetés/ nemlineáris hőmérsékletváltozását tekintetbe vesszük.

Az elektromágneses teret egyértelmüen meghatározzák a 9. ábrán látható elrendezés geometriai adatai, az anyagjellemzők, és a tekercsben folyó áram jellemzői. A hőmérsékleti tér számitásakor a felület hőmérsékleteloszlását vesszük adottnak, hogy a félvezető és a környezet bonyolult termodinamikai kölcsönhatásától eltekinthessünk, és a számitást magára a rudra végezhessük. Mérési szempontból is ez a leghozzáférhetőbb kiinduló adat, sőt jó közelitéssel ki is számitható [16], mert a z irányban a tekercs sikjától gyorsan csökkenő felületi hőmérsékleteloszlást csak igen kevéssé befolyásolják a rudon belüli radiális hőmérsékletváltozásek. Ennek megfelelően egy adott kisérletnél /I = 73,5A, f = 1,8MHz/ az elmélet és a mérési eredmények összevetésével adódó felületi hőmérsékleteloszlást a 10. ábra szemlélteti, ami tehát a továbbiak számára kiinduló adatul szolgál.

A rud végén /z = { / külső körülmények /rendszerint vizhütésü befogó/ biztositják az állandó hőmérsékletet.

Az elrendezés szimmetriájából következik, hogy a tekercs sikjától felfelé és lefelé ugyanolyan magasságban egymással megegyező hőmérsékletek vannak. Ezért elég a rúdnak csak az egyik felét vizsgálni. Vizsgálatainkhoz a félvezető szilicium anyagot vettük alapul. A számitások elvégzéséhez szükség van ezen anyag hő- és villamos vezetőképességének ismeretére.

a./ Villamos vezetőképesség

Mivel vizsgálatunk a nagy hőmérsékletek tartományába esik /10. ábra/ a villamos vezetőképesség számitásánál eltekinthetünk már a szennyezések hatásától, és az intrinsic vezetést vehetjük alapul. Szilárdtestfizikai meggondolásokból le lehet vezetni a villamos vezetőképesség hőmérsékletfüggését, de az adódó kifejezés nehezen meghatározható állandókat és mennyiségeket tartalmaz. Ezért kiindulásul az irodalomban megtalálható mérési eredményeket [12] tekintettük, és az elmélet szerinti függvény együtthatóját ugy határoztuk meg, hogy e függvény a legkisebb négyzetes hibával a kisérleti értékeket adja. Az ilymódon kapott villamos vezetőkéképesség-hőmérséklet függvény a következő:

$$\gamma'/T/ = 2958, 6e^{-\frac{1}{2kT}}(\Omega cm)^{-1}$$
 /61/

Itt T az abszolut hőmérséklet, k a Boltzmann állandó

/k = 8,69 ·10⁻⁵ eV/K⁰/, E pedig a sávszélesség, ami szintén hőmérsékletfüggő [12] :

$$E = (1, 21 - 3, 6 \cdot 10^{-4}T) eV$$
 /62/

b./ Hővezetőképesség

Szilicium esetében feltehető, [13] hogy a hővezetési folyamatban résztvevő hő-hordozók /fononok, elektronok, fotonok/ egymással csak igen gyenge kölcsönhatásban vannak, úgyhogy a hővezetési tényezőhöz való hozzájárulásuk additive vehető figyelembe:

$$K = K_{f} + K_{e} + K_{s}$$

ahol K_f a hővezetés fononos, K_e az elektronos és K_s a sugárzási összetevője, és mindegyik más és más hőmérsékletfüggést mutat.

Az elmélet és a kisérletek [14] továbbá azt adják, hogy K_s még az olvadáspont közelében is K-nak legfeljebb 2%-a lehet; ettől tehát eltekintünk. A fononos hővezetés hőmérsékletfüggését I.Glassbrenner és G.Slack [13] mérték ki, és az elméletileg is alátámasztott félemprikus formulát kapták:

$$\frac{1}{K_{f}} = 1,56 \cdot 10^{-3} \text{T} + 1,65 \cdot 10^{-6} \text{T}^{2} + 0,03 \quad \frac{\text{cmK}^{0}}{\text{W}} \quad /64/$$

Az elektronos hővezetés /K_e/ hőmérsékletfüggését, bár sok egyszerüsitő feltevéssel vezették le [15], mégis jó egyezést mutat a mérési eredményekkel. E szerint

$$K_{e} = K_{ep} + K_{eb}$$
 /65/

$$K_{ep} = 2\left(\frac{k}{e}\right)^2 \gamma T$$
(66)

$$K_{eb} = \frac{b}{(1 + b)^2} \left[\frac{E}{kT} + 4\right]^2 \left(\frac{k}{e}\right)^2 \gamma \cdot T$$
 /67/

ahol a K_{ep} poláris összetevő a Wiedemann-Franz törvénynek felel meg, a K_{eb} bipoláris összetevő pedig az elektronlyuk párok diffuziójának. A képletekben k a Boltzmann állandó, e az elektron töltése, b pedig az elektron és lyukmozgékonyság aránya; b = 2,6. Szerepel még a γ /T/ villamos vezetőképesség, amit /61/ szerint számitunk.

Meg kell még jegyezni, hogy az olvadáspont /T = 1685 K° /fölött a rácsszerkezet összeomlása miatt K_{f} és E_g nulla

lesz, K_e-nak pedig csak T>800 K⁰ felett van észrevehető hozzájárulása K-hoz.

A fizikai jellemzők /61/ illetve /63/, /66/, /67/ képleteknek megfelelő hőmérsékletfüggését a ll. ábrán láthatjuk.

ll.ábra

3. Hőmérsékleteloszlás

A szilicium rudban létrejövő hőmérsékleteloszlást az l. pontban leirt feltételek mellett számitjuk ki. A számitás alapjául a /26/ differenciálegyenlet szolgál, amely mint láttuk figyelembe veszi a hővezetőképesség hőfokfüggését, és a hőforrássürüség térbeli változását. Mivel elrendezésünk hengerszimmetrikus, a differenciálegyenletet hengerkoordinátákban irjuk fel:

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} + \frac{1}{K} \frac{\partial K}{\partial T} \left[\left(\frac{\partial T}{\partial r} \right)^2 + \left(\frac{\partial T}{\partial z} \right)^2 \right] + \frac{q(r,z)}{K} = 0$$

ahol már figyelembe vettük, hogy a harmadik koordináta $/ \varphi /$ irányában nincs változás.

1681

Ezután elkészitjük a vizsgált tartomány /az előzőek szerint a rudnak a tekercs sikjától pl. fölfelé eső része/ koordinátafelületekből álló beosztását. A koordinátafelületek most z = állandó sikok és r = állandó hengerek. A hengerek és a sikok egymástól való távolsága a számitás egyszerüsitése miatt mindenütt állandó. Ezt a távolságot - a rácstávolságot - az örvényáramszámitás követelményeinek megfelelően állapitottuk meg /h = 1 mm/ és megtartottuk a hőmérsékleteloszlás számitásához is. A rácshálórendszert, illetve egy pont környezetét a 12. ábra szemlélteti.

12.ábra

A hőmérséklet számitását a differencia módszer szerint az ábrán látható hálóvonalak metszéspontjaiban végezzük. Ehhez a /68/ differenciálegyenletet differenciaegyenletté kell alakitani. A /68/-ban levő első és második deriváltak helyébe a /32/ differenciakifejezéseket irva a differenciaegyenlet iteráció számára alkalmas következő alakját nyerjük:

$$T_{o} = \frac{1}{4} \left\{ T_{1} \left(1 - \frac{h}{2r_{o}} \right) + T_{2} \left(1 + \frac{h}{2r_{o}} \right) + T_{3} + T_{4} + \frac{1}{K_{o}} \left(\frac{\Im K}{\Im T} \right)_{o} \left[\frac{\left(T_{2} - T_{1} \right)^{2} + \left(T_{4} - T_{3} \right)^{2}}{4} \right] + \frac{h^{2}q_{o}}{K_{o}} \right\}$$

$$/69/$$

Mivel a K hővezetési tényező függ az ismeretlen hőmérsékletektől, az iteráció nemlineáris.K értékét a számitás alatt folyamatosan korrigáljuk ugy, hogy minden iterációban a megfelelő iteráció T_o értékéhez tartozó hővezetőképességet használjuk fel. $\left(\frac{\partial K}{\partial T}\right)_{0}$ értékét szintén az előző iterációban

nyert T_o hőmérséklethez számitjuk, mégpedig K bonyolult hőmérsékletfüggése miatt a differenciàhányadost képezve:

$$\left(\frac{\partial K}{\partial T}\right)_{0} = \frac{K/T_{0} + \Delta T/ - K/T_{0} - \Delta T/}{2\Delta T}$$
(70/

A numerikus számitásban $\Delta T = 1K^{\circ}$.

Nem használható a /69/ differenciaegyenlet a tengelyben /AD/ levő pontok hőmérsékletének számitásához, mert itt $r_0 = 0$. Másrészt a /68/ differenciálegyenletben az $\frac{1}{r} \frac{\partial T}{\partial r}$ tag $r \rightarrow 0$ esetén;

$$\lim_{r \to 0} \frac{1}{r} \frac{\partial T}{\partial r} = \lim_{r \to 0} \frac{\partial^2 T}{\partial r^2}$$

tehát az első taggal összevonható. Ennek megfelelően szerkeszthetjük meg a tengely pontjaiban érvényes differenciaegyenletet, figyelembevéve azt, hogy a tengelyszimmetria miatt itt $T_1 = T_2$:

$$\mathbb{T}_{o} = \frac{1}{6} \left[4\mathbb{T}_{2} + \mathbb{T}_{3} + \mathbb{T}_{4} + \frac{1}{\mathbb{K}_{o}} \left(\frac{\partial \mathbb{K}}{\partial \mathbb{T}} \right)_{o} \left(\frac{\mathbb{T}_{4} - \mathbb{T}_{3}}{2} \right)^{2} + \frac{h^{2}}{\mathbb{K}_{o}} q_{o} \right] /71/$$

A határfeltételek érvényesitése jelen esetben azt jelenti, hogy a DC vonalon minden hőmérséklet állandó és előre megadott /T = 300K⁰/, a palástfelületen pedig /BC vonal/ szintén előre ismert és a lO. ábrának felel meg. Az AB vonal /a tekercs sikja/az elrendezés szimmetriavonala. Ezért egy itt levő csomópontra /O pont/ a l2. ábra jelöléseivel:

$$T_3 = T_4$$
 /72/

ahol T₃ az AB vonallal párhuzamosan h távolságban haladó A' B' vonal T₄ oszlopában levő pontjának hőmérséklete. A szimmetriafeltételt tehát úgy érvényesithatjük, hogy felveszünk egy potlólagos A'B' vonalat, amelynek hőmérsékletei az AB-t megelőző sornak az iterációban már kiszámitott hőmérsékleteivel egyeznek meg. Az A'B' vonal hőmérsékleteinek segitségével az AB határvonal hőmérsékletei már /69/-ből számithatók.

Az iterációs folyamat alapjául a pontiterációt választottuk, és a viszonylag jó konvergenciatulajdonságok miatt állandó relaxációs tényezőt alkalmaztunk. A számitás eredményeit a 6. fejezet tárgyalja.

4. Örvényáramszámitás

a./ Differenciál-differencia egyenletek

A szilicium rudban és környezetében kialakuló elektromágneses teret a vektorpotenciálra vonatkozó

rot rot
$$\overline{A} = -j\omega\mu\gamma \overline{A} + \mu J$$
 /73/

differenciálegyenlet alapján számitjuk. Az egyenletben szereplő γ villamos vezetőképesség a rudon belül változik, a rudon kivül nulla, a μ permeabilitás – sziliciumról lévén szó – mindenütt a vákum permeabilitásával egyenlő, és a külső gerjesztő áramsürüség /J_o/ csak a tekercs helyén különbözik nullától.

Elrendezésünk hengerszimmetrikus, a gerjesztőáramnak és a kialakuló örvényáramoknak csak egy, f irányu komponensük van, a mágneses térerősség azonban kétirányu /r és z/. Mindezekből következik [1], hogy a vektorpotenciálnak csak f irányu összetevője van. Ennek meghatározására /73/ hengerkoordinátákban felirt alakja szolgál, amely az előbbiek figyelembevételével a rudon belül:

$$\frac{\partial^{2}\overline{A}}{\partial r^{2}} + \frac{1}{r} \frac{\partial\overline{A}}{\partial r^{2}} + \frac{\partial^{2}\overline{A}}{\partial z^{2}} = j \omega \mu \gamma \overline{A}$$
 /74/

és a külső térben:

$$\frac{\partial^2 \pi}{\partial r^2} + \frac{1}{r} \frac{\partial \pi}{\partial r} - \frac{A}{r^2} + \frac{\partial^2 A}{\partial z^2} = -\mu J_0$$
 (75/

/A /74/ és /75/ egyenletekben A komplex értéket je-101/

A /75/ által meghatározott elektromágneses tér a rudon kivül a végtelenig terjed, és elvben a számitást is a végtelenig kellene végezni, ahol is A már eltünik. Numerikus számitásokban azonban végtelenbe nyuló tartományt nem tudunk kezelni, ezért azt egy végesben fekvő tartományba transzformáljuk.

Tekintsük tehát az

$$r = \frac{R^2}{\varrho}$$

transzformációt, ahol R a rud sugara, g pedig az uj változó.

1761

E transzformáció a rudon kivüli tartományt $/R < r < \infty /$ a rud belsejében /0 < g < R/ viszi át, miközben a palástfelület helye nem változik, a végtelen pedig a tengelybe kerül.

A /76/ transzformációs egyenletből:

$$\frac{\partial \overline{A}}{\partial r} = -\frac{\partial \overline{A}}{\partial g} \frac{g^2}{R^2}$$
 /77/

$$\frac{\partial \bar{A}}{\partial r^2} = \left(g^2 \frac{\partial \bar{A}}{\partial g^2} + 2g \frac{\partial \bar{A}}{\partial g}\right) \frac{g^2}{R^4}$$
 (78/

A /77/, /78/ deriváltakat /75/-be helyettesitve, megkapjuk a transzformált külső tartományra vonatkozó alapegyenletet:

$$\left(\frac{g}{R}\right)^{4} \left[\frac{\partial^{2}\bar{A}}{\partial g^{2}} + \frac{1}{g} \frac{\partial\bar{A}}{\partial g} - \frac{\bar{A}}{g^{2}}\right] + \frac{\partial^{2}\bar{A}}{\partial z^{2}} = -\mu \bar{J}_{o} \qquad (79)$$

és itt $0 < g \leq R.$

Mivel ilymódon a végtelenben levő felület a végesbe került, itt határfeltételeket is megadhatunk, majd az eredményként adódó $\overline{A/g}$ / függvény változóját visszatranszformálva a külső térben kialakuló vektorpotenciáleloszlást nyerjük.

A /74/ és /79/ differenciálegyenleteknek megfelelő differenciaegyenleteket a /32/ képletek segitségével szerkesztjük meg. Az iteráció számára alkalmas alakok a következők:

a rudon belül:

$$\overline{A}_{o} = \frac{1}{4 + \frac{h^{2}}{r_{o}^{2}} + j\frac{2h^{2}}{\sigma^{2}}} \left[\overline{A}_{1} \left(1 - \frac{h}{2r_{o}}\right) + \overline{A}_{2} \left(1 + \frac{h}{2r_{o}}\right) + \overline{A}_{3} + \overline{A}_{4} \right]$$

$$/80/$$

és a rudon kivül;

$$\overline{A}_{o} = \frac{1}{2/1+b/+\frac{bh^{2}}{g_{o}^{2}}} \left[b \left\{ \overline{A}_{1} \left(1 - \frac{h}{2g_{o}} \right) + \overline{A}_{2} \left(1 + \frac{h}{2g_{o}} \right) \right\} + \overline{A}_{3} + \overline{A}_{4} + \mu h^{2} J_{o} \right]$$

$$+ \overline{A}_{3} + \overline{A}_{4} + \mu h^{2} J_{o} \right]$$

$$/81,$$

ahol

$$d^2 = \frac{2}{\omega \mu \gamma}$$
 és $b = \left(\frac{S_0}{R}\right)^4$

Az itt szereplő mindkét irányban azonos rácstávolságot /h/ a következő gondolatmenet alapján állapitottuk meg.

Feltételezhetjük, hogy a vektorpotenciál a rudban a palástfelület mellett közelitőleg az

$$-(R-r)/d$$
 /82/

függvény szerint változik, ahol d' a "behatolási mélység" ezen a helyen. Másrészt amikor /32/ alapján a differenciálegyenletben szereplő deriváltakat differencia kifejezésekkel helyettesitjük, az elkövetett hiba Ā Taylor sorának első elhagyott tagja /a negyedik deriváltat tartalmazó tag/:

$$H \leq \frac{1}{24} \frac{\partial^4 A}{\partial r^4} h^4$$
 /83/

Ez a hiba még a differenciaegyenletrendszer exakt megoldása esetén is fennáll, mert a függvény diszkrét és nem folytonos kezeléséből következik, ezért diszkretizációs hibának nevezzük. Mivel nagysága elsősorban a rácstávolságtól függ, ismeretében az alkalmazható rácstávolságok felső korlátját kapjuk.

A vektorpotenciálra tett /82/ feltevés felhasználásával

$$\frac{\mathrm{H}}{|\mathrm{A}|} \leq \frac{1}{24} \left(\frac{\mathrm{h}}{\mathrm{d}}\right)^4$$

$$/84/$$

ami a kivánt pontosságtól függően a következő rácstávolságokat adja:

$$\frac{H}{|A|} = 0,01 \text{ esetén } h \le 0,7 \text{ d}$$

$$\frac{H}{|A|} = 0,001 \text{ esetén } h \le 0,32 \text{ d}$$

A legnagyobb hőmérsékletü helyen, ahol a behatolási mélység a legkisebb, d = 8,3 mm adódik, és igy ezrelékes pontosságot választva /85/ szerint h-ra a h < 2,66 korlátot nyerjük. Számitva még az iteráció hibájára a h = 1 mm rácstávolság választása látszott célszerünek.

Ezt a rácstávolságot tartottuk meg a transzformált külső tér számitásánál is a 9 koordinátában. A 13. ábra a csomópontok elhelyezését mutatja sugár irányban, a /76/ transzformáció figyelembevételével

13.ábra

Amint az ábrán is látható a külső térben nem egyenletesen helyezkednek el a pontok, mert hiszen az ezeknek megfelelő transzformált pontok a \mathscr{G} tartományában $/0 < \mathscr{G} \leq \mathbb{R}/$ helyezkednek el egyenletesen.

b./ Határfeltételek

A tekercs sikjában a szimmetria folytán $\frac{\partial \overline{A}}{\partial z} = 0$, ami azt jelenti, hogy itt $\overline{A}_2 = \overline{A}_4$ /ugy a külső, mint a belső térre/. A tengelyben /r = 0/ $\overline{A} = 0$ mert általában

$$\overline{A} = \frac{1}{4\pi} \int_{V} \frac{\mu \overline{J}}{r} dv$$

és igy hengerszimmetrikus térben minden áramelemhez található egy megfelelő másik, amely a vektorpotenciál előbbivel megegyező nagyságu, de ellentétes előjelü járulékát adja. Másrészt a transzformált térben is a g = 0 helyen A = 0, mert a transzformáció folytán a tengely a végtelenbe kerül, ahol természetesen a vektorpotenciál eltünik.

Az elektromágneses teret tengelyirányban a rud magasságában határoljuk le /DC vonal a 12. ábrán/, vagyis az ezen magasságon kivül eső erővonalakat elhanyagoljuk. Ez azt jelenti, hogy a DC vonalon, és meghosszabitásán a külső térben $\overline{A} = 0$.

Külön megfontolást igényelnek a palástfelület viszonyai. Bár itt az anyagjellemzők ugrásszerüen változnak, a rot $\overline{H} = 0$, rot $\overline{E} = -\partial \overline{B}/\partial t$, div $\overline{H} = 0$, div $\overline{E} = 0$ egyenletek teljesüléséhez elegendő, ha \overline{A} és első deriváltjai folytonosan változnak, ami magából a módszerből már következik. Az a tény azonban, hogy a paláston találkozik a külső és a belső tér, a következő problémát veti fel. /lásd a 14. ábrán/

14.ábra

Ha például a nyil irányában számolunk /80/ szerint, a O pontban szükség lenne növekvő r irányban is egy pontra h távolságban - 2 -. Azonban mint láttuk, a transzformáció miatt, csak valamivel nagyobb távolságban áll rendelkezésre pont - 2' -. Ezért azt a megoldást választjuk, hogy a O pont vektorpotenciálljának számitása előtt lineáris interpolációval határozzuk meg A₂ értékét. Ehhez a O és 2' pontban az előző iterációban felvett értékeket használjuk fel.

Megjegyezzük még azt is, hogy mivel a palástnál a villamos vezetőképességének ugrásszerü változása van, a /80/ egyenletben %-t a /35/ képlet szerint kell figyelembe venni.

c./ Iteráció

A differencálegyenleteket pontiterációval oldjuk meg. Ennek során sugárirányban haladva először a rudban számolunk /80/ szerint, majd a rudon kivül /81/ szerint. Ez utóbbi a transzformáció miatt természetesen azt jelenti, hogy a g változót tekintve ugyancsak a rudon belül számolunk.

A tapasztalatok azt mutatták, hogy a villamos vezetőképesség hely szerinti változása – a hely szerint változó hőmérsékleteknek megfelelően – igen kedvezőtlen hatást gyakorol az iterációra; az /51/ alapján számolt spektrális rádiusz ingadozik, a konvergencia nem kielégitő. Ezért az eljárás stabilizálására és a konvergencia gyorsitására a következő módszert alkalmaztuk:

A normák hányadosa /51/ szerint akkor adja \mathcal{K} helyes értékét – amivel ω_{opt} -t számithatjuk – ha az iterációs mátrix / $\underline{G}(\omega)$ / legnagyobb sajátértéke dominál, vagyis ha a legnagyobb és az utánakövetkező sajátér-

/86/

$$\omega_{\rm s} = \omega_{\rm opt} - \frac{2 - \omega_{\rm opt}}{4}$$

Ennek megfelelően az iterációs folyamatot ugy befolyásoljuk, hogy először ω_s -nek minél pontosabb értéke álljon elő, majd az ekkor kapott ω -ból számitjuk ω_{opt} tényleges értékét.

Mindezek kivitelezéséhez a program minden iteráció végén kiszámitja & közelitő értékét /51/ szerint, de kiértékelése előre megadott számu /N₁/ iteráció után történik. Ekkor kiszámitjuk $\&lambda_j$, ω_{opt} feltételezett értékeit, majd ebből /86/-nak megfelelően ω_s -t. Az iteráció ezzel a relaxációs tényezővel folytatódik, aminek eredményeként ujabb N₁ iteráció után a normák hányadosaként / /51/ képlet/ $\&lambda_\omega$ -nak a valósághoz közelebb eső értékét nyerjük. Ez az eljárás folytatódik addig, amig ω_s változása elfogadhatóan kicsiny nem lesz, amikor is $\&lambda_\omega$ a normák hányadosaként, $\&lambda_j$ es ω_{opt} pedig az /55/ illetve /56/ képletekből pontosan meghatározható.

Az eljárás folyamatábráját a 15. ábra szemlélteti.

15.ábra

A vektorpotenciáleloszlás ismeretében minden pontban meg lehet határozni a hővé váló elektromágneses energia sürüségét, ami a hőmérsékleteloszlás számitásához szükséges:

$$p = \gamma \omega^2 \left[(\text{Re}\overline{A})^2 + (\text{Im}\overline{A})^2 \right]$$
 /87/

Itt γ a villamos vezetőképesség az illető pontban, $\omega = 2\pi f$ pedig a generátorfeszültség körfrekvenciáját jelenti.

A módszerek alkalmazása során szerzett numerikus tapasztalatokat, valamint az eredményeket a 6. fejezet ismerteti.

5. Az összetett hővezetési és elektromágneses probléma

Az eddigiek ismeretében meg lehet tervezni a nagyhőmérsékletü sziliciumban kialakult elektromágneses és hőmérsékleti tér számitásának folyamatát.

A számitás egy kezdeti hőmérsékleteloszlásból indul ki, amelyet az egyszerüség kedvéért ugy választunk, hogy a rudon belül sugár irányban nem változik a hőmérséklet, tehát minden pontban az adott magassághoz tartozó palásthőmérséklettel egyezik meg. A kezdeti hőmérsékleteloszláshoz kiszámitjuk a 2.b/ fejezet szerint a kezdeti hővezetőképességeloszlást. Ezekkel a kiinduló értékekkel és a hőforrás sürüséget mindenütt nullának véve történik a hőmérsékleteloszlás számitása a rudon belül a 3./ fejezetben leirtaknak megfelelően. Az eredmény egy minden pontban változó hőmérséklet, amelyhez tartozó hő és villamos-vezetőképességeket a 2./ fejezet összefüggései adják.

Ezután következik a vektorpotenciálelcszlás számitása a 4./ fejezet szerint, miközben felhasználjuk az előbbi villamos vezetőképesség eloszlást. A vektorpotenciálok kiinduló értékei mindenütt nullák. A vektorpotenciálelcszlásból adódik azután minden pontban az ott felszabaduló elektromágneses energia a /87/ képlet szerint. Ez az energiasürüség /p/ egyuttal a hőforrássürüség /q/, - megfelelő mértékrendszerben szászerüleg is - amely a hőmérsékleteloszlást a továbbiakban befolyásolja.

A hőforrássürüség meghatározása után tehát ujra indul a hőmérsékleteloszlás számitása, most mér az uj p, K értékekkel. Ezt követi a vezetőképességek korrekciója és a vektorpotenciál ujbóli számitása.

Az összetartozó hőmérséklet és vektorpotenciáleloszláshoz ugy jutunk el, hogy a fenti eljárást folytatjuk addig, amig két egymásutáni számitásban a hőmérsékletek és a vektorpotenciálok – adott pontossággal – meg nem egyeznek egymással.

A számitás folyamatábráját a 16. ábra mutatja.

16.ábra
6. Numerikus eredmények

Az előző fejezetben leirtak alapján megszerkesztett számitógép programot FORTRAN nyelven a melléklet tartalmazza. A konvergencia sajátságok megismerésére, és igy a megfelelő iterációs eljárás meghatározására numerikus kisérleteket végeztünk. A tapasztalatok azt mutatták, hogy a nemlineáris hőmérsékleteloszlás számitásánál egyenletes és elegendően gyors konvergenciát biztosit az állandó relaxációs tényezővel végzett pontiteráció. $\omega = 1,2-t$ alkalmazva a spektrális rádiusz 0,96-nak adódik. Az iteráció befejezésére azt a feltételt választottuk, hogy a hőmérsékletek átlagos változása tizedfokon belül legyen:

ahol N a csomópontok száma. Ez, mivel a legkisebb előforduló hőmérséklet is T = 300K^o, azt jelenti, hogy a hőmérsékletek változása már kisebb, mint 0,33 ezrelék. Az iteráció gyorsaságát az mutatja, hogy e pontosságot is legfeljebb 32 iterációs lépésben elérte a számitás.

A numerikus kisérletek a vektorpotenciáleloszlás esetében arra a meglepő eredményre vezettek, hogy az iterációs mátrix spektrális rádiusza gyakorlatilag valós szám, annak ellenére, hogy \overline{A} komplex értekeiből lett számolva az /51/ összefüggés alapján. $\omega = 1$ esetében pl. $\mathcal{K} = 0,982 - j 0,0005$. Ennek megfelelően az optimális konvergenciagyorsító tényezőt is a valós számok közt kerestük. A különböző konvergenciagyorsító tényezővel végzett kisérletek szerint az iterációs folyamat konvergencia tulajdonságai az előbbinél rosszabbak. Kis ω esetén a konvergencia lassu / \mathcal{K} tul nagy/ nagyobb ω -nál pedig egyre erőteljesebb ingadozások lépnek fel. Mindez jól látható a 17. ábrán ahol a tört viselkedését ábrázoltuk az iteráció számának (k) függvényében, különböző ∞ mellett.

Az emlitett hátrányok kiküszöbölésére – az iterációs folyamatnak stabil lefutást és ugyanakkor nagyobb konvergencisebességét biztositani – a 4. fejezetben leirt módszert alkalmaztuk. A \bigwedge illetve ω kiértékelésének periodusa 20 iteráció volt. A \bigwedge spektrális rádiusz változásából, ami a 17. ábraán szintén fel van tüntetve – megállapitjuk, hogy az iteráció lefutása az előzőeknél kedvezőbb. Az iteráció befejezéséhez a

$$\frac{\sum |\underline{A}^{/k/} - \overline{A}^{/k-1/|}}{N} \leq 0,001|A|_{\max}$$

feltételt választottuk.

Az egymásután következő hőmérséklet és vektorpotenciáleloszlás számitások eredményeként /16. folyamat-ábra/, amikor tehát egyidejüleg teljesül az emlitett két feltétel, kapjuk a végleges hőmérséklet és vektorpotenciáleloszlást /kiszámitásához CDC 3300-as számitógépnek 17 percre van szüksége/. Ennek jellemzésére a 18. ábra a fizikai kiértékelés szempontjából lényeges, tengelyben adódó hőmérsékleteloszlást mutatja, valamint a rudba hatoló elektromágneses energia sürüségét a felületen. A 19. ábrán ugyancsak az energiasürüség látható a tekercs sikjában sugárirányban, és a tekercs sikjától 2 mm távolságban szintén sugárirányban.

18.ábra

19.ábra

A 18. és 19. ábrán bemutatott függvények jól jellemzik a rudban kialakuló elektromágneses és hőmérsékleti viszonyokat. A kiértékelés szempontjából mégis az bir különös jelentőséggel, hogy az elrendezés konstrukciós adatai /geometriai méretek, áramerősség, frekvencia/ a programban könnyen változtatható bemenő adatok, igy a végeredményt jelentő eloszlások ezek függvényében vizsgálhatók. Meg kell jegyeznünk, hogy ez az összefüggés nem olyan szemléletes mint egy analitikus megoldás esetében, ahol is függvénykapcsolatokkal lehet leirni, mig a számitógépes módszernél uj kiindulóadatok esetén az egész számitást meg kell ismételni. Ezt azonban ellensulyozza az a tény, hogy számitógépes módszerekkel a tárgyalható problémák köre jelentősen kibövül az analitikusan tárgyalhatókhoz képest.

Befejezésül utalni szeretnék arra, hogy a bemutatott fizikai probléma két irányban is általánositható. Egyrészt a hőmérséklethatároknak az olvadáspont fölé való emelésével a fázisátalakulás viszonyit is figyelembe lehet venni az I.2/d fejezet szerint, másrészt a környezet és a rud termodinamikai kölcsönhatásának figyelembevételével /I.2/b/ a palást hőmérsékleteloszlásának mérése /ami az olvadáspont környékén már sok nehézséget vet fel/ elhagyható.

Az anyagjellemzők olvadáspont környékén történő változása azonban mélyebb vizsgálatot igényel.

4 18. de 19. Abrán hemutatott föggvények jól jellemeik a ronben kininkuld elektronágnese és hőnéreékiett viezokroket. A hielikéneis azerondijéből négis og bir különös halantőssenei, neg 22 elrondesve konstrukciós vie el /ge eventel tertő de elektronése konstrukciós vie el /ge elektró de 21 ce esek függvén fen ringsinett. Ke jelentő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinett. Ke tertő de 21 ce esek függvén fen ringsinette. Ke tertő de 21 ce esek függvén fen ringsinette. Ke tertő de 21 ce esek függvén fen ringsinette. Ke tertő de 21 ce esek függvén fen ringsinette. Ke tertő de 21 ce esek függvén fen ringsinette. Ke tertő de 21 ce esek függvén fen ringsinette. Ke tertő de 21 ce esek függvén fen ringsinette.

~ 75 ~

IRODALOMJEGYZÉK

[1]	Simonyi: Elméleti Villamosságtan. Tankönyvkiadó 1960
[2]	Carslaw: Conduction of Heat in Solids. New York 1959
[3]	Kantrovics-Krilov: A felsőbb analizis közelitő módszerei. Akadémiai Kiadó 1953.
[4]	Ames: Numerical Methods for Partial Differential Equations. N.Y. 1969
[5]	Reichert: Über ein numerisches Verfahren zur Berechnung von Magnetfeldern und Wirbelströmen in elektrischen Maschinen. Dissertation 1968
[6]	Young: Itereative Methods for Solving Partial Difference Equations of Elliptic Type. Trans. Amer. Math. Soc. <u>76</u> p. 92 /1954/
[7]	Varga: Matrix Iterative Numerical Analysis. New York 1962
[8]	Carré: The Determination of the Optimum Accelerating Factor for Successive overrelaxation. Comput. J. <u>4</u> p. 73 /1961/
[9]	Garabedian: Estimation of the Relaxation Factor for Small Mesh Size. Math. Tabl. Aids Comput. <u>10</u> p. 183 /1956/
[10]	Berezin: Computing Methods. New York 1966
[11]	Smith: Semiconductors. Camb. Univ. Press 1959
[12]	Morin and Maita: Phys. Rev. <u>96</u> p. 28 /1954/
[13]	Glasbrenner and Slack: Phys. Rev. A. 134 p. 1058 /1964/
[14]	Slack and Glasbrenner: Phys. Rev. 120 p. 782 /1960/
[15]	Drabble and Goldsmid: Thermal Conduction in Semicondu- tors Pergamon Press. London 1961

[16] Shaskov: The Metallurgy of Semiconductors N.Y. /1961/

- 77 -

[17]	Billig: Pr	00.	Roy.	Soc	. /Long	lon	A235	p.	37	/19	956/
[18]	Akiyma and /1962/	Yan	nagucl	hi:	Journ.	of	Appl.	Phy	ys.	p.	1899

MELLÉKLET

ANSI	FORTRAN	(2.2) / MASTE	R INTEGER WORD SIZE = 1 , * OPTION IS ON , O OPTION IS	OFF 05/14/75
	00.04	C & 000004	A A MARRA 22 A VENTOR REACRANGED TOPDAT	
1.41	ULUI I	C A FROOTA		
LN	0002	COMM	ON/1/ AV/21 1061 AT/21 1 61 CAN/24 1 61	
L IN	0000	2640	(m. 1) THU. P.H. OV. 70. F.K. CI	
1.11	1205	1 EUPM	ATIED 0. E. 1. E. 1. E. 1. E. 1. E. 1. E. 11	
LN	1000	1 FURA	2 C	
LN	0007	Jei Ti	E (61 . 399) THU, N. H. AKEZO, F. K. C.	
- N	0.08	TOP FORM	AT(1H1.1Y.F12.4.1Y.F0.1.1Y.F5.1.1Y.F5.1.1Y.F1T.1Y.T3.1Y.F8.	
- IN	169	=}		and the second
IN	2:10	5G=3	15159*0.001	and the second
N	0.11	51=3	14159*1.8+15	
L N	1.17	DGA=		
LN	0.213	S=M0	*3.1415926*F	
LN	3314	AKE 7	Dard - 0	and the second second second second
N	1.15	OM/=	1.6 million and a second s	
LN	. 10	RAMO	A=0.0	
LN	4017	ROMS	=	
LN	1018	OMOP	T=0.0	
N	0019	00 3	5 J=48,105	
LN	0 20	00 3	5 [=1,21	
- N	1.21	AVII	(J) = AKE ZD	
LN	2502	35 AI(1	J) = AKEZO	A REAL PROPERTY AND A REAL
LN	0 23	00 1	2 J=46,104	and a second second second second
LN	0024	00 4	2 I=1.11	
LN	6125	42 Q(I,	J)=0.	
LN	0326	12 CONT	INUE	
LN	0027	RX=1	the second se	
LN	0928	F19=	5.07E+12	• • • • • • • • • • • • • • • • • • •
L N	00 29	TKR=	1685.15	
LN	J. 30	00 7	4 L=48,104	
LN	10 31	READ	(6u , 73) OS	
LN	0 32	WRIT	E(61,800) OS	
- N	0133	8. FORM	AT (3X,F11,4)	
LN	3-34	73 FORM	AT(FA:1)	
- N	0035	00 1	6u I=1,11	
ĻΝ	0036	100 A(I,	L)=05	
~ N	0037	74 CONT	INUE .	
LN	0:38	RHVA	=1.7	
LN	0039	RSA#	1+0	
LN	0040	RSZA	=1,0	
N	0,41	00 1	303 NAGY=1,10	
LN	0042	WRIT	C(51,114) NAGY	
LN	3343	114 FORM	AT(1H1,////15X,13,11H=D1K CIKLUS//////)	
LN	0044	KSIZ	=1.0	
- N	0045	×S=1	· The second	
LN	0746	×S1 =		
LN	0441	×52×		
LN	0040	×11/=		
- N	0049	KHI=		
LN	0 50	LA=	TABLE	
LN	0.21	Tat COMI	THOT	
LN	6052			
* 14	0020	6 00 4	10-11-11T 10-21	
- N	0024	A 4 61 1	LUT-ALLIA OF	

ANSI FORTKAN	2.2)/MASTER INTEGER HORD SIZE = 1 , * OPTION IS ON , 0 OPTION IS OFF 05/14/75
LN 0055	LOFLA
- N 6056	HVA=0.
-N 6 57	SUMMAA= .
-N 8.58	SU14AZA=
LN 0059	TP=0
LN 0000	KST=0
-N Juni	GYUJ T=J + B
-N - p2	00 10 1=49.124
LN	0 11 I=1.10
LN 4304	S / 4 = A (1 + J)
-N J065	KST=KSI+1
LN 0 00	1P=1P+1
LN . 67	Ri=I-i
LN 0068	S /+=A(I, J)
LN 6969	IF(1+1) 48,90,48
-N 0070	9. SV2=+. + A(I+1, J) + A(1, J+1) + A(I, J-1)
UN 1471	CALL KAPPA(A(I,J), DER, CK, EPS)
-N 1372	5/3=1.0/CK*DER*((A(1.J+1)-A(I.J+1))/2.0)**2+0.01/CK*Q(I.J)
-N 0 73	$A(1, J) = (5\sqrt{2} + 5\sqrt{3})/6.3$
LN 4.74	$A(1, J) = SV_{4} + OGA^{*}(A(1, J) - SV_{4})$
LN 4 75	GYUJT=GYUJT+A(I,J)
LN 0370	CALL HIBA(SV4,A(I,J),HVA,SUMMAA,SUMMAZA)
-N 0 77	60T0 41
-N J 78	68 H=1
-N 0.79	X=A(I-1,J)*(1.u-1.u/(2.0*R1))+A(I*1,J)*(1.0+1.u/(2.0*R1))+A(I,J+1
LN JUBR	-)+A(I,J-1)
LN 0.81	CALL KAPPA(A(I,J), OEK, CK, LPS)
N 2 82	Y=1.J/CK*DER*({A(I+1,J)-A(I-1,J))**2+(A(1,J-1)-A(I,J+1))**2)/
N 88	-(-+.u)
LN ULB4	S/7=0.11/CK*0(I,J)
-N 0085	A(1, J)=(X+Y+5V7)/4+0
LN 0 86	A(1, J)=SV4+0GA*(A(1, J)=SV4)
LN 0.87	· SYUJT=GYUJT+A(I,J)
LN 0088	CALL HIBA(SV4,A(I,J),HVA,SUMMAA,SUMMAZA)
LN 0089	11 CONTINUE
_N 0.90	1 CUNTINUE
LN 0091	SUMS=0
+ LN 6192	00 13 4=49,104
LN 0093	1r (M-105)14,15,14
_N 0 94	1+ H=++1
LN 45 95	6010 16
LN 0096	15 H=u.05
-N 0397	16 CALL KAPPA(A(11,M), DER, CK, EPS)
-N 0 98	S(M)=2*LPS*F19*A(11.H)**4*3.14159*H
LN 0.99	13 SUMS=SUMS+S(M)
LN 0100	HVRA=H/A/RH/A
_N 0101	SURA=SUMMAA/RSA
LN ULUZ	SUK2A=SUMMA2A/RS2A
LN .143	LAI=LA
LN, 0104	ST=FLOAT(KST)
- N -1-5	IF (ABS(SUHMAA) + LE+U+1*ST) GOTO 8
LN 0100	RSA=SUMMAA .
LN 0107	RSZA=SUHMAZA
_N 0108	KHJA=HVA

ANSI	FORTRAN	(2.2)/MASTER	INTEGER WORD SIZE = 1 , * OPTION IS ON , O OPTION IS OFF	\$5/14/	75
LN	41.9	5 GUTO 1	144		
LN	11. COL	S WRITE (61	L.58u) LO		
LN	4111	580 FORMALL	//>X,I3,12H-DIK T-TOM9//)		
LN	0112	00 600	J=98 • 1 ° 5		
LN	4113	WALTE (61	$(601) J_{+} (A(1, J), I=1, 11)$		
LN	0114	5 1 FORMAT(1	X,I3,11(1X,F9,4)/)		
LN	u115	WRITE(of	1,614) (0(1,104) ,1=1,11)		
LN	0116	614 FORMAT	(///11(1X,EL1,4)////)		
LN	6117	WRITE(6)	1.602) LO.HVA, SUMMAA, HVRA, SUNA, GYUJT, SUMS		
LN	3118	602 FORMATCA	////1X,1HT,8X,13,4X,5(1X,E11+4),8X,E11+4////)		
L N	J119	DO 174 L	. = 48,100		
LN	0120	00 173 1	1=1,11		
~ N	0121	61=1.21	-3.6L-4+A(I.L)		
LN	2226	62=17.3	82-5*A(I,L)		
_ N	u123	01=01/01	2		
LN	-124	Q0=3.381	E+4*EXP(C1)		
LN	01.25	SAM (I,L)=1.%/R0		
LN	0126	DELTA=1	00/(OM+TMU+GAM(I,L)) .		
LN	1127	173 CONTINU			
LN	0128	174 CONTINUE			
LN	0129	1.=0			
_ N	0130	00 20	NJ=1,1		
LN	0131	141 CONTINUE	E		
. N	0132	L=L+1			
LN	0133	SUNV=J.	0		
_ N	0134	ENERG=0	. 0		
ĻΝ	0 4 35	LL#L			
LN	.136	HV=0			
LN	013/	H1=0.3			
LN	0138	SU-MA=			
- N	0139	SUMMA2=	J • L		
- N	91.40	SUMMAL=			
LN	0141	SUMAI2=	2.0		
L N	0142	00 6 1=	2,20		
L N	0143	RV(1,1)	2) # A V (+ 11/3/		
LN	01.44	b AI(1,10	11=A1(1+1))		
L (4	01.45	54-0.0			
- ru	0140	14-U		•	. *
	01.69	00 38 7	#7,28		
	04.74	TE-TALL			
	0150	Sub=411	T, D		
- 14	-151	SUNEATO			
2	0152	TELTAIT	111.6010 888		
I N	Rein	IF(I,FO	11) GJT0 118		
N	0154	Risjei			
1.0	41.55	2=181/8	1444		
1.4	0156	H=1.1			
L	0157	SAVEAJ	I=1+J)*(9-(H*8)/(2+0*R1))+AV(I+1,J)*(8+(H*8)/(2+0*R1))+AV(I		
- 1	0158	-, 1+1)+4	V(T, J-1)		
N	01.59	SAL=AI(I+1, 3)*(8-(H*8)/(2,0*K1))*4I(I*1,3)*(8*(H*8)/(2,0*K1))*AI(I		
LA	1168	-, J+1)+1	E(1,J-1)		
1	1 1 1 1 1 1	TE (Joed)	(104, AND, 1, ED, 13) GOTO 30		
1	and the lot of				

ANSI FORTRAN	(2.2)/MASTER INTEGER WORD SIZE = 1 , * OPTION IS ON , O OPTION IS OFF 0	5/14/75
LN 1163	60TO 31	
-N 0164	3L S#TMU#CJ	
LN 0105	34 54294544	
N 6100		
LN GILD		
LH SIGO		
N .17	$\frac{1}{2} \frac{1}{2} \frac{1}$	
LN 1171	$A_{\mathcal{A}}(1, 1) = S_{\mathcal{A}} + OMU^* (A_{\mathcal{A}}(1, 1) - SV^*)$	
LN 0172	$H_{6}=SORT((AV(I, J) * AV(I, J)) + (AI(I, J) * AI(I, J)))$	
N 0173	SV=S/+HG	
LN 0174	CAL, H13(SV5, SV4, A1(1, J), AV(1, J), HV, SUMMA, SUMMA2)	
-N 0175	= (I, J)=GAM(I, J)*OM*OM*(AV(I, J)*AV(I, J)+AI(I, J)*AI(I, J))	
LN 0170	(1, 1) = P(1, 1)	
_N 0177	GO TO 35	
LN 0178	11. R1=I-1 ·	
_N 1179	P*0*((L+1)IA+(L+1+1+)-(L+1)IA+(L+1)IA+(L+1)IA+(L+1)IA+	
LN 0180	€ * 3* ((L * 1) VA) - (L * 1) VA) - (L * 1) VA = VXA	
LN 0181	5A=GAM(1, J)/2.0	
LN 0182	H=1.0	
LN 8183	0=10=*1/(OH*THU*GA)	
LN 0104	SV2=A/(1-1, J)*(1+u= H/(2+0*R1))+AXV*(1+u+H/(2+U+P1))+AV(1, J+1)+AV(
LN 0185		
LN 0180	5v3=R1(1-1,3)*(1:0-H/(2:**R1))+AX1*(1:0+H/(2:0*R1))+A1(1:J+1)+A1(
N STRG	0521144507(07)(02)	
N .193	01 20271 +0271 +0271 2+05712	
IN 195		
IN BIG2		
LN 0193	$A_1(1, 1) = S_1 + S_1 + S_2 $	
- N -194	$AV(T, 1) = SV(a + OMJ^{*}(AV(T, 1) - SV(a))$	
LN 0195	HG=SORT((AV(I,J)*AV(I,J))+(AI(I,J)*AI(I,J)))	
N 0196	SV=SV+HG	
-N 01.97	CALL HIG(SV5, SV4, AI(I, J), AV(I, J), HV, SUMMA, SUMMA2)	
LN 0198	((L,I) IA*(L,I) LA+(L,I) VA*(L,I) VA)*MO*HO*(L,I) MAE=(L,I) A	
LN 0199	Q(I, J) = P(I, J)	
_N 0200	1F(J.EQ.1.4) GG TO 115	
LN 0201	V=1:01*3.14159	
LN 0202	2047=2047+4	
LN 0203	ENERGEENERG*P(1,J)*V	
-N-0204	60 TO 38	
LN UCUS	115 9=0.005*3.14159	
LN 8280	2044=204444	
LN XGUI	CALKG TALKGTP (1, J/TY	
IN JOO	496 01-7-1	
1.0 1210		
LN 0211	$SV2=aV(1-4)$ $b^{+}(1) = (1) = b(2) = b^{+}(2) = b^{+}(2) = b^{+}(1-2) = b^{+}(2) = b^$	
-N. #212	-) +AV (1, J-1)	
- LN 0213	SV3=AT(I=1,J)*(1,U=H/(2,0*R1))+AT(T+1,J)*(1,0+H/(2,0*R1))+AT(T,1+1)	
LN 0214	-) +AI(1, J-1)	
.N 0215	0SZT1=4, +(H*H)/(R1*R1)	
LN 1216	03272=(H*H)/0	

- 83 -

ANSI FORTRA	N (2+2)/	MASTER INTEGER WORD SIZE = 1 , * OPTION IS ON , 0 OPTION IS OFF 05/14/75
LN 2217		0L=05211*05211+05212*05212
LN UC18		AV(1, J) = (SV2*05211+SV3*05212)/0L
LN 0219		A1(1, J) = (5V3+05/11-5V2+05/12)/0L
LN HEZU		AV(1, J) = 544 + 044 + (AV(1, J) = 544)
LN #221		
LN UZZZ		HU-SURFICEAV(1,J) TAV(1,J) TEAL(1,J) TAL(1,J)
LN UCCO		CAL HERICUE SUM ATTE D. AUTE THU STIMMA STIMMAS)
IN 3225		$D(T_{-}) = -AM(T_{-}) + M + AM + AM + AM + AM + AM + AM + AM$
IN 6226		All DEP(1, 1)
IN 3227		1F(1)=F0-3(F4) 50 T0 116
LN 0228		
LN 0229		V=1.02*31*3.14129
-N 0230		SUMV=SUMV+V
LN #231		ENERG=ENERG+P(I,J)+V
LN 1232		GO TO 38
LN 0233	+10	N1=R1/10 . 0
LN 0234		V=1.31*R1*3.14159
LN 0235		SU4V=SU4V+V
LN 0236		LNERG=ENERG+P(I,J)+V
LN 0237	38	CONTINUE
LN 4238	504	FO <mat(1x,)<="" 11(1x,="" f9.4)="" t3,="" td=""></mat(1x,>
LN 0239	1	CONTINUE
LN 1240		IF(L+LT-51+AND+NAGY+EQ-1) GOTO 999
LN 0641		oss za=0 +
-N 0242		00 34 J=49,151
LN 0243		DO 34 1=2,10 .
LN 6244		R5=I-1
LN 0245	34	0SSZ3=0SSZ3+P(I,J)+R5+66
LN 9246		00 36 J=49,151
LN 0247	Children of the	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
LN 1248	36	DSSZ3=DSSZ3+P(11,J)+61+R5
LN 0249		00 37 1=2,10
-N 0250		x5=1+1
LN 0291	31	05223=05523+P12+1527*G1*K5
LN CCCC		3010 494
LN 0250		
N 0254		Calle (Calpacedonue) (Calpacedonue)
LN 0296		
N 0257		ONJ=AMOA+1-D
LN 258		
N		CHUE CHOPT
LN 265		60TD 357
LN 3261	304	TE (ARS(AM0A-PANDA), GT
N .262		OMOPT=2.0/(1.0+SORT(1.0-GMU))
N 265		CMS=OMUPT-((2, -UMOPT)/4.0)
LN 0264		IF ((OMS-ROMS).LE.U.UI) GOTO 302
LN 0265		G010 303
LN 0266	3 2	OMA= 040 bt
N 0267		6010 35>
LN 0268	363	044=042
LN 4269	355	IF (ON/.GT.ROMV.AND.OHV.LT.2) GCTO 357
LN 6270		OM/=ROM/

ANSI	FORTRAN (2.	27/1	MASTER INTEGER HORD SIZE = 1 , * OPTION IS ON , O OPTION IS OFF US/14/75
6 M	#271		6010 357
LN	3272	30	ONA=KONA
LN	4273	397	HRITE(61,373)L,HV,AHDA,GHU,OHOPT,OMS,SUMMA,OHV,OSSZ3
LN	4674	373	FURMAT(22,13,23,E11,4,4(22,F10,4),22,E11,4,12,E11,4,12,E11,4,12
LN	8275		E DA S=04S
-N	0276		R AM DA=AMOA
2 N	3281	999	R5=SUIMA
- 14	7278		K32=304MA2
PA	1419		Kuit-Summai
L N	0200		KOIC-SUMALE
	0282		The state of the s
I N	283		1.1.2.1
N	6284		TERLIT, STUDNO NACY LO 31 COTO 110
I N	8285		TELEVISION CONTRACTOR CONTRACTOR
N	1650	119	GOTO 111
N	1287	2	CONTINUE
	9285	769	WRITE(61,998)CL
LN	8239	456	FORMAT(//5X,13,9H-ITERAGIO//)
C N	0290		00 440 Ja100 1 5
L N	0291		WRITE(01+445) J.(AV(I+J)+I=1+1)
LN	\$292	445	FORMAT(1X,13,11(1X,E11+4))
LN	0293		HRITE(61+447) (AI(I+J)+I=1+11)
ц N	0294	447	FORMAT(4X,11(1X,E11,4)/)
L N	\$295		HRITE(51+443) (AV(I+J)+1=12+21)
L N	0296	443	FORMAT(4X,10(1X,E11+4))
L N	92.97	4 16	ARITE(01,447)(AI(I,J),I=12,21)
N	92.98		HR17c(51,501)
. N	0299	500	FORMAT(//5X,7HP TOMB//)
LN	4040		00 501 J=100+105
- N	4302	261	HELIE(01, 504) Jy(P(1, J) = 1, 11)
CN.	2992		MKLIE (D1, 140) LANV, SUMMA, SV, ENERG, SUMV
14 iV	0.200	193	<pre>////////////////////////////////////</pre>
	9344		IFILIVELALAANDALAIAEUAIP SIUP 63
	87.00		
- 14	4460		ENU

- 86 -. 05/14/75 ANSI FORTRAN (2,2) /MASTER INTEGER WORD SIZE = 1 , * OPTION IS ON , 0 OPTION IS OFF SUBROUTINE HIBA(REGI;UJ;H,SUMMA,SUMMA2) SV8=ABS(UJ-REGI) SUMMA=SUMMA+SV8 SUMMA2=SUMMA2+SV8**2 IF(ABS(SV8):GT.ABS(H))GO TD 5 RETURN 5 H=SV8 RETURN EWD LN 0 01 LN 0102 LN 0103 LN 0404 LN 0405 LN 0100 LN 0107 5 LN 0108 LN 0108 LN 0109 USASI FORTRAN DIAGNOSTIC RESULTS FOR HIBA NO ERRORS

ANSI	FORTRAN(2.	2) /MASTER	INTEGER WORD SIZE = 1 , *	OPTION IS ON + O OPTION IS	OFF 05/14/75
- N	6501	SUBROUTIN	NE KAPPA(T+OER+CK+EPS)		
_ N	U.UC	TKR=1085.	.15		70
L N	0.03	ZK= 8.09E-	·5		
LN	0004	0=1.0			
LN	0005	F1=T=0		and the second	
LN	0006	F2=T+0			and the second second second second second second
LN	0007	IF(T.LT.1	1085.15.AND.F2.GE.1085.15)G	010 22	
LN	0008	6010 23			
- 14	0209	22 U=1005+1;	2-1-0:07		
	111	PZEITU PZEIT CT	ALAR AR AND FAIT ACAR ACAR	45.070	
I M	0.12	60 TO 25	7003+13+440+11+C1+1003+1310	010 64	
N	0013	24 DET-1685.	45-0.01		
C N	- 14	F1= T=0			
ŪN.	0.15	25-TELT-TKR	21.20.20		
LN	0.16	2" E=0.		and the second	
LN	0 17	E1=D.			
_ N	- 18	26=			100 C
LN	0019	GO TO 33			
LN	0020	21 E=1.21-3.	.6E+4*T		
LN	0.21	E1=1+21-3	3.6E+4*F1		
LN	2222	L2=1.21=.	3.6E=4*F2		
LN	0.23	33 IF (T+TKR)	12,3,3	and the second	
LN	0.24	2 ×0=3.38E.	-4*(EXP(E/(2.0*2K*T)))		
LN	25 29	×1=3.35E.	-4*(EXP(E1/(2+L*ZK*F1)))		
	¥ 20	12-3+332"	*** (EAP(EC) (C+#* LK*P 2)))		358
LN	8728	3 20=815=03	*(1,0+0,0010*(T-TKP))		268
N	0.29	R1=81r=61	*(1.8+		
E.N.	0 30	\$7=81E=51	* (1.0+8.8014* (F2-TKR))		and the second se
LN	0.31	6 IF (T-TKR)	5.4.4	and the second s	276
LN	6132	> SV1=1.561	E-3*T+1.65E-6*T*T+1.03		280
LN	0033	SV4=1.501	E-3*F1+1.058-6*F1*F1+0.03		The second s
N	0 34	SV5=1.901	E=3*F2+1.65E=6*F2*F2+J.83		
LN	0035	Y1=1/SV4			
LN	0036	Y2=1/S/5			
LN	0337	CKPF=1/SI	V1		291
_ N	0038	50 10 8			300
LN	0.39	4 GKMF=U.			310
	0.41	V 2-1-1-1			
LN	10.42	B TETT- dun.	9.9.916		3.28
LN	0:43	10 CKEL=4.0			330
L N	8844	SV8=0.0			and the second second second second
L.N.	0045	547=4.0		the second s	and the second se
LN	0040	GU TO 11			340
LN	6047	9 CKEL=1.49	9E=8*(T/RO)*(1.9+0.105*((E/	(ZK+T))+4.8)**2)	and the second
_ N	0848	SV6=1.498	E+8*(F1/R1)*(1.0+0.105*((21	/(ZK*F1))+4.)**2)	
LN	0349	SV7=1.+91	L=0*(F2/R2)*(1+0+1+5*((E2	/(2K*F2))+4*.)**2)	
LN	0050	11 CK=CKPF+0	CKEL		366
LN	0051	Y1=Y1+3/t	A second s		
LN	10.25	Y2# Y2+SV1			
LN	9 93	UER=(12-)			
LN	04.24	11(1+11+1	1500-01 0010 28		

A TANULMÁNYOK sorozatban eddig megjelentek:

- 1/1973 Pásztor Katalin: Módszerek Boole-függvények minirális vagy redundáns,{^,V, ¬} vagy {NOR} vagy {NAND} bázisbeli, zárójeles vagy zárójel nélküli formuláinak előállitására
- 2/1973 Вашкеви Иштван: Расчленение многосвязных промышленн процессов с помощью вычислительных машины
- 3/1973 Ádám György: A számitógépipar helyzete 1972 második felében
- 4/1973 Bányász Csilla: Identification in the Presence of Drift
- 5/1973^{**} Gyürki J.-Laufer J.-Girnt M.-Somló J.: Optimalizáló adaptiv szerszámgépirányitási rendszerek
- 6/1973 Szelke Erzsébet-Tóth Károly: Felhasználói Kézikönyv /USER MANUAL/ a Folytonos Rendszerek Szimulációjára készült ANDISIM programnyelvhez
- 7/1973 Legendi Tamás: A CHANGE nyelv/multiprocesszor
- 8/1973 Klafszky Emil: Geometriai programozás és néhány alkalmazása
- 9/1973 R.Narasimhan: Picture Processing Using Pax
- 10/1973 Dibuz Ágoston-Gáspár János-Várszegi Sándor: MANU-WRAP hátlaphuzalozó. MSI-TESTER integrált áramköröket mérő, TESTOMAT-C logikai hálózatokat vizsgáló berendezések ismertetése
- 11/1973 Matolcsi Tamás: Az optimum-számitás egy új módszeréről
- 12/1973 Makroprocesszorok, programozási nyelvek. Cikkgyüjtemény az NJSzT és SzTAKI közös kiadásában. Szerkesztette: Legendi Tamás

A x -gal jelölt kivételével a sorozat kötetei az Intézet könyvtáránál megrendelhetők /Budapest, I. Uri u. 49./

- oszlopok vegyészmérnöki számitására 14/1973 Bakó András: MTA Kutatóintézeteinek bérszámfejtése számitógéppel 15/1973 Adám György: Kelet-nyugati kapcsolatok a számitógépiparban 16/1973 Fidrich Ilona-Uzsoky Miklós: LIDI-72 LIstakezelő rendszer a DIgitális Osztályon, 1972. évi változat Gyürki József: Adaptiv termelésprogramozó rendszer 17/1974 /APS/ termelő mühelyek irányitására Pikler Gyula: MINI-Számitógépes interaktiv alkat-18/1974 részprogramiró rendszer NC szerszámgépek automatikus programozásához 19/1974 Gertler, J.-Sedlak, J.: Software for process control Vámos, T.-Vassy, Z .: Industrial Pattern Recognition 20/1974 Experiment-A Syntax Aided Approach A KGST I.-15-1 .: Diszkrét rendszerek automatikus ter-21/1974 vezése c. témában 1973. februárban rendezett szeminárium előadásai 22/1974 Arató, M.-Benczúr, A.-Krámli, A.-Pergel, J.: Stochastic Processes, Part I. 23/1974 Benkó Sándor-Renner Gábor: Erősen telitett mágneses körök számitógépes tervezési módszere 24/1974 Kovács György-Franta Lászlóné: Programcsomag elektronikus berendezések hátlaphuzalozásának tervezésére 25/1974 Járdán R. Kálmán: Háromfázisu tirisztoros inverterek állandosult tranziens jelenségei és belső impedanciája 26/1974 Gergely József: Numerikus módszerek sparse mátrixokra 27/1974 Somló János: Analitikus optimalizálás
- 28/1974 Vámos Tibor: Tárgyfelismeréi kisérlet nyelvimódszerekkel

13/1973

Jedlovszky Pál: Uj módszer bonyolult rektifikáló

- 29/1974 Móritz Péter: Vegyészmérnöki számitási módszerek fázisegyensulyok és kémiai egyensulyok vizsgálatára
- 30/1974 Vámos, T.-Vassy, Z.: THE BUDAPEST ROBOT -Progmatic intelligence-
- 31/1975 Nagy István: Frekvenciásos, középfrekvenciás inverter elmélete
- 32/1975 Singer Dénes-Borossay Gyöngyi-Koltai Tamás: Gázhálózatok optimális irányitása különös tekintettel a Fővárosi Gázmüvek hálózataira
- 33/1975 Vámos, T.-Vassy, Z.: Limited and Pragmatic Robot Intelligence

Mérő,L.-Vassy,Z.: A Simplified and Fastened Version of the Hueckel Operator for Finding Optimal Edges in Pictures

Галло В.:Программа для распознавания геометрических образов, основанная на лингвистическом методе описания и анализа геометрических структур

- 34/1975 Nemes László: Pattern Indentification Method for Industrial Robots by Extracting the main Features of Objects
- 35/1975 Garádi János-Krámli András-Ratkó István-Ruda Mihály: Statisztikai és számitástechnikai módszerek alkalmazása kórházi morbiditás vizsgálatokban

