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Chapter 1Г

In this book we shall be concerned, primarily with the 
statistical problems of certain types of stochastic processes, 
or random_functions of a variable, which in most practical 
cases, will mean time.

In the first part of the book we begin with some preli­
minary materials on stochastic processes. The standard refe­
rence will be Gikhman-Skorokhod*s book [l] where the reader 
may find the proofs which are not given here and which are 
far from the aims of this book.

A stochastic process is a parametrized family of random
variables, where the range of random variables is a finite -

_wdimensional Euclidean space, denoted by R in the k-dimensi- 
onal case.

Let be given the parameter or index space 'Г1 and l £  T  
denoting the parameter, where in most cases t means the time. 
The vector random variables

£depending on parameter t, where means the "transpose" of a 
vector (matrix), form a stochastic process if for any values 
t^, t2,..., tQ (t±e T, i»l,2,... ,n ) there is given the 
common probability distribution function of ).
That is, for any sets Е-^..., Ед of the k-dimensional Eucli­
dean space *R

H e,.. EJ-Pl&teE,.. KOeE„

Basic concepts and definitions

II
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is given. Cj(0 (j“Q,4, . . к-l) are called the components of 
the process. This gives the direct_definition of a stochastic 
vector process j/t) .

The probabilistic properties of the parametrized set of 
random variables are uniquely determined by the corresponding 
finite - dimensional distributions. That this is so is a con­
sequence of the extension theorem of Kolmogorov (see [l] , or 
Gikhman-Skorokhod Cl])* This theorem of Kolmogorov may be 
applied when T  is an interval (in the continuous case) , but 
the situation is more complicated than in the discrete case.

Generally we say, that on the probability space ( -0_, S' P  ) 
there is given the stochastic process i (i, со) (the space is 
H a n d  со G _TL denoting the elements, $  is a 6 - algebra with 
elements Ac T , P  is the probability measure), if for every 
t e T  1(0 is a random vector variable.

Note that if we have a directly defined stochastic pro­
cess we can determine the basic probability space in several 
way.

Supposing a family of random vector variables whose fi­
nite dimensional distributions coincide with the given dist­
ributions (see Gikhman-Skorokhod [l]), if we take simply 
the function - value at each 4 then we get the sample space 
as the function space X  and the process f(4 со) is a function 
space process, where the mapping с о must be a measurable 
mapping of _П_ into X  •

In the whole book, when "T is the real line or an inter­
val of it, for simplicity we assume that PX, or the sample



space X  , consists of the componentwise continuous vector 
functions. So we aviod the question of seperability.

We say that l(t) is continuous with probability one 
when |(t, со) is continuous in t for almost all со . In the 
book we shall be concerned with processes continuous with 
probability one. In such a case it is natural that we confi­
ne ourselfes to a smaller space, the space of continuous 
functions.

We say that the process £(t, со) is separable if we can 
find a countable dense set { t-L ! in T  and a eetJÍG. У  with 
measure 0 such that for any open set G in T  and any 
arbitrary closed set Е в Р  , the set

! go : £(tI 00 )eE for all

differs from the set

lco*‘ &  , CO )g E for all G G  ]

by a subset of X  . Doob has shown ( see Gikhman-Skorohod [lj ) 
that for any process (with range in a locally compact space) 
there exists an equivalent separable process»

We say that two processes iCi, со ) and f(i, со) are 
if.

P  » )“t (fc, со) « *=1 f for every t e T  .

later we shall see examples where we choose that process from 
the class of equivalent processes, which has the best quali­
ties, for example continuity, differentiability etc.(see e.g.

- 7  -
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the § on stochastic integrals).

In most cases we do not exhibit the variable CD in i(t,oo) 
even if an integration is according toP(dco).

If |(t ) is given in the interval fa,bf] we say that the­
re is given a realization on [a, bj of the process, the "samp­
le function", the "trajectory" or "history" of the process. 
The process is given directly if the space consists of the 
realizationsX .

In the case when X  consists of the integer numbers we 
speak on a stochastic process with discrete time /or a "time 
series", or a "random sequence"/. The process |_(-t)is conti­
nuous parameter stochastic process when T i s  the real line, 
or a part of it.

The first moment, or expectation, of the process |(-fc )is 
denoted by

E f(d )= m(4: )— (m0(t )} . . .,rnk_4(l ))

and it is called the expected /or mean/ value function. By 
definition E§(t)~ I iCt oo) !P( d со ) .We always assume, that-TL ~
the second moments

E(Ij(t)_mj('t))(^l(s)''m*L(s)) -  eLj(t,s)

i.trix'Bi't.s) = (ioi, j (ps))exist. If we arrange them into a ma:
“ E(I(i) ~ m  ( t  )) ( l(s ) ~ rn (s)) which is symmetrical, than we
refer to it as the covariance matrix.



We say that the sequence of random variables tends-Х.П

to the random variable § in mean square, which will be deno­
ted by l.i.m. Jn e Í , if

EI|n-II2 = EKfn-lXfc,— | Г — * 0 .

The stochastic process f(0 is a called stationary in 
the wide sense /or second-order stationary/ when

m(t) = E  |(t) = const,

B(t,s) “ B(t -5)
that is, the covariance matrix depends only on the difference
t-s.

By a strictly stationary vector process l(t) we mean one 
for which, for all n, t^, tg*««.» tn and h the distributions 
of |(t4), . . . |(tn) and Ji-bj-bh ), .. ., |ftn +■ h ) are the same. If
process j[0b) has finite mean square, this means that

E(|(t)~ nn(i)) (|(s) -пл(б)) -s)-m)(J(0)— m) =

i.e. it is stationary in the wide sense.
By a Markov vector process f(t:)vve mean one for which, 

for all П ) E > b n and arbitrary Borel set
and X1( . . Xn

- 9 -

P (I(t)e E |f(g  - Xt l .. . j ( tn) -_xn)  -P(f(t)£E|i(fcn)=xn



holds with probability 1.
A Markov process can be given by the transition proba­

bilities

P ® eE ||(s) = x)-P(x,s,E,t)

and for them the Kolmogorov-Chapman equation

(1.1) Kx,s( E,0 = Í PCy, ,̂ E)-b)P(x,s, dy,Tr)
—-o«=> *•«-

is valid often P is given by the probability density function

P(x;s,E}-t)= J iP(x,Siyit)dy
E

The Markov process f(t ) is a. diffusion type one, when the 
following conditions are satisfied:

a/ for a ny6>0 and t = 0 -oo

(1. 2) i-unn ~  I + Д ( d y )  = Q(
л ~*° /х-уДе

b/ there exist functions a(t,x) ; b(t,x) such that for any
S = 0 ) t ~ 0, -°°< X < 00 the relations

(1. 3) lim  f  / (y -x) PCt,x t  + Д  , du) = a (t,x )4 A  —>0 A  (x-yKg J а 1
(1.4) lim -j- J iy-Xp P(t x 1 + A  dy) - b(t X )Д-^0 A  (x-yK£ '

hold.
The functions a(t, x) and b(t,x) are called the coef­

ficients of transition resp. diffusion /or local mean and 
local dispersion, see later ch.9. the definition of stochastic

- 10 -



differential/.
The name "diffusion process" corresponds the fact that 

the move of a particle in liquor or in gas can be described 
by this process under very general assumptions. The function 
<x(t,x) describes the trend of the particle in the sense that 
during a time period of length A  the particle moves with the 
distance a (■Цх)а с Г| + 0 ( a ) wherecTl is a random variable
with mean A  and dispersion b(t,X )a + o (a )

Conditions a/ and Ъ/ are hardly varificable. We give 
below stricter, but easier conditions for a diffusion process. 
Рог i ( t ) to be a diffusion Markov process it is sufficient to 
have the properties 
a*/ for some cf>0

- 11 -

1.5 lim i-A — *0 A
2>cf

(y~x) PCt.X, t + A,cly)=Q

b*/ there exist functions <x(t. X ) andb(t.x) such,
that for all t

(1.6) ^.imo 1 _/(a-x)P(t|X,t+A,dy) =  a(t,x)
and

(i.7) ̂ lim^ J (y-x) Pit.X.t-'-A, d.y)=b(t,x).

Indeed in this case

/"P(t Xt^A du) = ri+s f lu ~xl P(t(xt+A du) = #(Д)ly-x|>6 b J 3 3
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and

j ( y - x )  PCt, 
ly-*l>£

О  О  d,y) = - ^ 7  j  ly-xl P(-t;x ^ + A ;dy)-^(A)
6

. / ( y -x )P ( t)X)-b+A)du)á
ly-x|>£.

1
£cT J  l y - x 0 ^ t ^ A ;dy)“KA).

It can be proved /see e.g. Gikhman-Skorokhod [2] p. 65/ that 
if K O  is a diffusion process and x) two times conti­
nuously differentiable function of x and a continuous func­
tion of i  then g(p K O )  is also a diffusion process with 
the coefficients a(t;x); b(-b.x) where

(1.8) aObx)-r^_ gCfc, g (t,x))+ aCt̂  g X ï ^ ) ) - ^ - дСрдЧрх))Э_
Зх

+ 1 Ь (р д Ч £ ,х ))з^  g ( t ; g 4 t,x ) )
_ 2

(1. 9) Ь (рх) = Ь(-Ь; g Ч-Ь,х)) g ( t ; c f4 t ; x))

The reader may compare (l.ö) - (1.9) with the Ito formula
(see § 9.)•

Let there be given a stochastic process К Ц  t - 0 , and
a family of ß -algebras §3. with the property ̂  if
■fc4 =t and such that i(-t ) is measurable with respect to 5̂. .
We say that the paire (l(t) ) forms a martingale if
EIÍ(E)I<c><:,; t =  0^ and E(I * i(s) ; 0 é 5  with proba­
bility 1. We say that the random variable f is normally 
distributed if the characteristic function of it equals
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E ■и u . tum ь u

where m  = E ^ ; E=E(l~Ei) • In the case £^0 the random 
variable ( has density function

Д О - ?
Cx-mf г e2'

uffE
The random vector J* = ( f4}. .. ) l0 ) is normally

distributed when the characteristic function has the form

(l.lo) Ее ( ’ ̂  - exp j t(u, rrf )- j  uR и  I ~<zxp { L E  Uj mj -

- ± y  
E ui Ej >K )

where mj-EIj, &jk “ E(£j ~nnk) and R = (£][<) is a
symmetric pozitiv semidefinite matrix. If R has rank n the 
n-dimensional density function of Í is

%
(1.13) ff(x)-feTT) Ш

It is well known that if | is a Gaussian random vector and
A = (aij)(t =1,2,— ,0', j =1,2, . . m ) is a matrix then

% “ A j
is normally distributed with parameters m = A m j R = A R a .
If the joint distribution of \ and ^ is normal and they 
are uncorrelated (E ̂  9^ = Û for 
then they are independent.
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We assume that the reader is acquainted with the elemen­

tary facts with respect to the normal distribution /the con­
ditional distribution, expected value e.t.c/.

We remind some fact /see e.g. Rao QlH /
1. If 3̂) ^  are normally distributed (E^u=0) then

(1.12) E ^  {г{г = E ^ f 2 E f 3 E Ь Е Ц ц + Е ^ Е ^ з •
2

2. If E(fn~f) — * 0 and are normally distributed then j 
has also normal distribution.

3. A necessary and sufficient condition for normally distri­
buted random vectors to converge in distribution is that

Efn = ̂ h ancl E(]n“ rnn)([n-mnf —ER.
4. The random vector j in "R in normally distributed if and 

only if when(^ ) u)/the scalar product of wo vectors/ is a 
random variable with normal distribution for every U e E .

The process j ( O  is a Gaussian one /or normal process/ 
if its all finite dimensional distributions are Gaussian.

The measure P £ generated by the variables | (t ) is 
called a Gaussian /or normal/ measure.

A Gaussian process f (t) is determined by the mean value 
function boit) ~ E  § ̂  ) and by the covariance function
B(s,t)-E(|(s)-m(s)) (|(0-т(0)*. rn(t) is an
arbitrary function but (St"b) must be nonnegative definite,
i.e. for arbitrary real numbers C. and integer n^ L

( B e,c)-E C\. Cj B(s,t) = 0 .- 1 - u-i ‘i



Exercises
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1. Prove that the process | (t) is Gaussian if and only if 
every linear combination

c, §(t* )+ . .. c+ f(tn),4 Tn '
( n < o e ‘ arbitrary,

C, real arbitrary numbers,) is a Gaussian random variable.
2. On the basis of Kolmogorov’s theorem prove that for every 

m(t )function and positive definite function BÍSj-fc.) (i.e.
Z  C r ß(tL b)i 0 , where П is an integer, c, .C4=1 4 j 4* tj
are arbitrary real) there exist a probability space(i’li3:lP  ) 
and stochastic process j (t ) that E ^(t)~ rr> (0 and cov
(f(s), f(0) -B(s,t).

*/ г

3. Let ,•••> be a Gaussian system with E y L = Q and
covariance matrix В  where rank of В is r 4 n . It is 
known that there exists an orthogonal transformation 

C C  = I ) for which С Я  C  has diagonal form. Prove 
that there exist r independent Gaussian random variables 
^l' * * * ; such that (for every i) is a linear combi­
nation of them. Further, if r < n prove that there exist 
exactly h -г linear relations between the variables
ill • • * ) bn *

4. Let ) ^2.,•• • be a Gaussian independent sequence with*»•> 2.
E  f: = 0 . Prove that !C i- < c>̂  with probability one if andо» 2 1
only if E  Ef; <°°.1 L

5. Let ; . . finite or infinite sequence of random
2

variables with E  BL=O i E E  <c><3 • We suppose that they are 
linearly independent. If ( fu) = and
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 ̂L j’l-1 * • •

di,g  dt-i,)• •-di^4)

6.

d - j g  ( u d - g . - d i - ^ ü
then p = ^i/ Ь. ?h  form ал orthonormal sequence of
random variables, i.e. p  n . n- -  ! 1 L ~dL" t J I 0 l  Ф j .
Let 0 = { @t ) . . . ) 0 k} and f - { §1} ... ; f k} be two random
vectors, and the common distribution of 0 and f be
normal; if, moreover, the matrix cov ( f ; f ) has an inverse
(cov4(^ 0 ) then

E (© I |)  = E© + COU ( 0^ )  cov ( | #I ) ( | - E i )

CO v(  0  | | )  = c o v ( ©  , © ) - C O v ( ©  J  )  cov- i  ( | ( | )  c o v 4 ( © , | )

7. Prove that the definition of the Markov processes may be 
replaced by anyone of the following
a/ There are families of <0 -algebras and Çt such that;

cC) e P5 ) Çt ̂  Çs if ï < S ;
6-)Kt ) is measurable with respect to both «E and Ç t

?Г.) the sets of and are independent under the
condition of П Ç t with probability 1., i.e. if
A g Ŝ. , then

(*) P(AnB|ït nÇt )=P(A|yt nçt)P(B|rt n Çt).



may
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(The 6 - a Ige bras 6'(̂ (s):5i t) and 6"(^(t):T^t)
be chosen for ̂  reap. Ç t). 

b/ For any t and any bounded, - measurable random va­
riable y we have

(-) Е ( ^ ) - Е ( г 13-п g  a.s.

с/ for S = t and any bounded  ̂=^(x) ( X éiR *)

(***)EC^Ci(s))|rt) = E(?(S(s))|%n çt) a.s.

(Hint: a./ It is enough to prove (x) for any finite 
dimensional A and ß .

b. / Prove (xx) first for characteristic functi­
ons of sets from .

c. / Obviously b.) = Ф c.) . Prove (xx) from (xxx) 
using the hint for b.

8. Prove that for any diffusion process ^(t) with continuous 
coefficient of transition a (t, x) and coefficient of 
dispersion b2 (t x) and any continuous bounded function 
f(x) such that the function

uis,x) - E
i<S)-X

(sit)
has bounded derivatives of first and second order with 
respect to X the function u.(s,x) has the derivative 
-Q o ÍAix) and the equation

Эи.
3s a M - f ~ax + y  b (s,x)

гЭ U-
32x
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is satisfied in the region sG(0;t)} and the bounda­
ry condition

lim u(s x) * «P (x)s H  '
holds.

(Hint: The boundary condition is a direct consequence 
of the boundedness and continuity of f>(x ) . To prove ( x) 
show first that for any 0 < Sd < s2 <t

a(s1|x) = I u.(s2z)P(si)x ; S1) dz) .

Then expanding u(sd;x) into Taylor series with respect 
to X take the limit S2-S1— >0 in

u(s1) x) - u(sz, x)

9. Prove that if for a diffusion process f (t ) the conditions 
a/ and b/ are satisfied uniformly in X and the partial 
derivatives

Э,>У ' . ^ ( a ( t , y )  P(s ,x ;t ,y ) ,  Jt. (b1(t,y)p(s1x ;t ,y ) ) )

exist, then pCs^/pij) satisfies the equation
^ л

at
/Hint: prove that for any twice continuously differentiab­
le function disappearing outside a finite interval
we have



ây ^ ay-

for this prove first that
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.11 3u ) ̂ чЗ + 2 & } [b (-t,y)p(s,x*t,у) I

lim A
h—>0 h / 9(y)p(s,x;s+h, y M y - g .

= Q.(s,x)g(x) + ̂ -bi(s,x)^'(x)J
then use the Markov equation

p(s,x;t+h, y)= fp(s,x-t,z) p(t;z,t+h,y) dLz

and integrate by parts in the expression for

/ ?(дх зРу) <j(y)dy

A random element f in a Hilbert space H  is called 
Gaussian if for every U. £ f-( the scalar product (£, u.) is a 
normally distributed random variable /see remark 4. for 
random vectors/.

Let us consider a set of random variables { | } and
2assume that for every $ (for simplicity fv||=0) Ml|l < ̂  . 

The linear space generated by the scalar product /the "inner 
product" (£ ^ ) ~ M  ̂  *1 can be extended to a Hilbert space
This Hilbert space is generated by {[ } and we denote it 
In our case the Hilbert space is called a vector Hilbert 
space.

If {jl C {^î then H| C . Let $(t)
tionary process then for the Hilbert space 
the random variables j(s), 5 4t, 4 1—1̂

be a sta- 
generated by



-  20 -

Chapter 2 1

Regularity and singularity

Let us denote by the subspace generated by f(s)ts=i,
and let

— Oo +• . °° t
H, - n Hs , H j - и H j

Oo
i.e. is the Hilbert space generated by the process
If I— I consists only of the element 0 we say that the
process is linearly regular /purely non deterministic/.

When = we say that the process is linearly
singular /purely deterministic/.

Regularity means, that the future always contains new 
information which is uncorrelated with the past.

When £(t)is linearly regular there exists a sequence
- C*o

Ck such that f(-t) = I] Cv 8(t-U) with uncorrelated £(-fc).k=0
This is the so called Wold expansion.

Example 1. Por ! § I < 1 the process

(2.l) í(i)=
n =0

where £(n ) is a sequence of independent indentically distri-
2.buted random variables (M £(t)~ M  £ (n) — 1), is stationary and 

regular.

Example 2. If |S|>1 the process



is stationary and regular, where £ ( i  ) is the same as in 
Example 1.

It is remarkable that the processes of examples 1 and 2 
satisfy the equation /a stochastic difference equation/

(2.2) f(t)-Sf(t-l)+£(t).

In example 1 the process is a Markov one depending on the 
past, but in example 2 it has the Markov property depending 
on the future. In example 2. £. ( t ) and j (t - Í  ) are not inde­
pendent as in example 1.

It is a well known fact that if we have a series of 
Hilbert spaces with the property H t+1= H t and for any 
element  ̂£ H q then the projection of  ̂ to H  t tends to 0 
in norm if t — > then A H t reduces to the element 0.

Using this fact we can show the regularity of both pro­
cesses. In example 1 the projection of £(o) to H+. is040 n ^  n J 7
Z j S £(- П ) and this II L  S £(~n) II— > Q i| -h — > - .n=t 7 1

In example 2 it follows from /х/ that M  (̂t) ^(o)=-§+t 
M  fZ(0) (t < 0 ) . Prom this fact we get that if § ( 0 ) is "the 
projection of ^(0) on H.fc (t < 0 ) than M  I|(q)I é — > 0
when "t — >

Example 3. Let $0, ^  be independent random variables
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( М I -t = О, Ű  i i  = l ) .  ! ( t ) =  l 0 s in t + ^  co s t

is stationary and singular. In this case it is trivial that

н г н Г  ■ Н Г "  н 7 •

Example 4. Pinsker gave an interesting example for a two 
dimensional process |(t) l2(t )) which is regular,
but the process ^(t) = £ (-'1b) is singular. /It may be proved 
that in the one dimensional case if £(-fc) is regular than 
“̂(t) = has the same property»/

Let be an independent stationary process with

n C =  § and ( S e t  <c~),
lz (‘fc ) is obviously regular.

If
(2.3) Urn 4 e - > 0

i -s- «-> ct u>t

then the process ^ (.{-) = £ (~t) is singular. It is sufficient
-i~ ~ -ito prove (̂o)ê  H  because of stationarity. Indeed

contains the elements |4(l) ^  ( 2 ); . . .

and £2( l ) = E  C k I2(2) E c k I4(2- k), » » •k-0 K*u
Hence (~L contains the elements C  C k f (n-k) 

'l СП k-n ■L
(n = l,2 ; . . .) . Further

i(o)~ c~ E  Ck 1,(0-011 -
1 k = n

_ 1_ 
r z ̂h E  ck>n

2к
which tends to 0 by (2.3).
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Let we denote by the 6 -algebra generated by the 

random variables |(u.), 6 4a к t ; i.e. by the sets of type
03 : ( O  £ En , Where S átrát for every
U - 1}2, . . ., n and let

A — At -»-о® '
= ?• I m A , .t — 1

We say that the stationary process ^(-t)is regular, if the 
<o -algebra A is a trivial one, this means that it contains 
only sets of probability 1 or 0.

Prom the 0~1 law of Kolmogorov it follows that an 
independent sequence is always regular.

Let denote the Hilbert space generated by the
random variables ^(E^=0), which are measurable with respect 
to A^ and integrable with their square. Regularity means
that

(2.4) П Hь
(- B,t) =o

That the regularity follows from /х/ can be easily seen, 
because X. when A €. . O n  the other hand for any

, A N N
?? в  И $' there exists Ç Ck for which HE ck'XA(<-??ll < £,

and Ak £ A$ (u = 1)N) and from regularity follows (2.4 ).
Let T  denote the shift operator |(Tt) = + then

from stationarity follows that the operator a  I(t) = I f r t )  

is isometric and it can be proved that Ll may be extended to 
a unitary operator on H| /see Rozanov [l ] p.72./

Prom /*/ it follows, that if | (t ) is regular then for 
every the stationary process /??({-) =
regular.

is linearly
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Theorem 1. Por Gaussian processes regularity and linear regu­
larity are equivalent.
Proof. Prom the Wold decomposition it follows that for the 
Gaussian processes /(-t) there exists a sequence of independent. 
Gaussian sequence of random variables $(t) so that As(|) Ä 
~ A S ($) . But for § (t ) the zero-one law is true and hence
it is true for l(-fc') too.

Theorem 2. Sufficient and necessary condition for regularity 
is the following

(2.5) sup ГР(АВ)-Р(А) Р(ВЯ —  0 

when t — , for any A £  A
—  CX>

- 0 «Ci -
Proof. Sufficiency. Let A G A and Ъ ~ А  » then from (2.5) 
follows that P(A) = р г(л) i.e. <P(a ) = Q  o r  { .

Necessity. If £(t) is regular, then it is linearly regular
. . u t Ctíand for every the projection of % on H j > ч  >

has the property II (t)l! — > 0.
If then for any

(2. 6) = C^(-fc)J) anct К ^ Д ) !  ^ II §IJ.

Let A £ A and В £A ̂ then from (2.6) follows for—  £>o —- C>o

72-\-P(A), S - ^ - W t h a t  l(^,DIP(AB)-P(A)P(ß)|<ll<j( t ) l l^ o
when t — > which does not depend on ß  .
A stronger condition than (2.5) is the uniform mixing con­
dition which we define in the following way. If
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sup 1Р(АВ)-Р(Д)РСВ)1—* 0
AS A*

— oo

Be/Wwhen 'Y — > oo then f (t) is said to satisfy the uniform 
mixing condition. It was introduced by M. Rosenblatt.

Exercises
For the process { (t ) let us denote byP(£(0) the Hilbert-space 
generated by polinomials E c t in mean
square norm, and by M(£(-t)) the Hilbert-space of random 
variables with finite second moment and measurable with

.Û Orespect to the b -field A-00

1. Prove, that P(f(t))“ M(f(t)) under the following 
condition: there exists a c(t)> 0 such, that 
£ e c(OII(t)| <  o<= /Notice, that this condition is
sufficient for the solvability of the problem of moments 
for the individual distributions/ Ft(x) =P(̂ (-b) ̂  x).)
(Hint: It is sufficient to prove, that finite, bounded, 
continuous functions of n variables |(f(fc1), . ..,i(tn)) may

I ibe approximated by polinomials in L  norm. For this pur­
pose prove, that finite, bounded, continuous functions of
one variable ^(|(t)) may be approximated by polinomi-

I l nals in L norm. Approximate then at first by periodic 
functions, then use the second Weierstrase approximation 
theorem, and the power series expansion of -crigonometric 
functions.)
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2. Suppose, that 1(4 ) is a Gaussian process, and } is a 

complete orthonormal system in . Denote by hn(x ) the
П -th Hermite polinomial. The polinomials

are different) from a complete
/ч /4 /N

orthonormal system in the space Pn =1̂  0 Pn_4 where 9n is 
the span of the polinomials of degree at most .
(Hints Recall, that the Hermite polinomials are orthonor-

_ JL1
mal with respect to the weight function 1

V2Tf )
Consequence: any ^  £ M  ( ) ) has the representation

Г) = T]0 + E  E  T) ̂ (n) (M(p)
E i • • * j E
Pi , - ' ) Pw ^Pl) • • */?k ) E 1 ’ ' *1 E

С Л* V » • • \ Aĵ  \ are uniquelly deter-
Pi > • * • ) “Pu J

mined by the formulas
f E  ) * * * ) 4T) Pi. • j ?k ^ ̂  1 • • ' >Я ] A*, • • • )

/Cameron-Martin expansion/.

3. Let the sequence { \  ^  . . . , |n,. .. }°f random variables
have jointly normal distribution. The optimal approxima­
tion /in iE norm/ of the random variable ^  by elements 
from M(f(t )) belongs to Pn(£)
(Hints Use the uniqueness of the Cameron-Martin expansion.)

4. Prove the Wold expansion.
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Chapter 3«

The Brownian motion process /Wiener Process/

The process w  (t) (for -fcè Q ) is called a Brownian 
motion process /or Wiener Process/ if it is 
a/ Homogeneous, i.e. the distribution of w  (t+h)- ■w'(t ) 

does not depend on t,
b/ A process with independent increments, i.e. for every 

Ц  < t2 <■ . . . < tn and n the random variables are

independent.
с/ A Gaussian process, for which (0)=0, M  (t)-0

M  «% ) = е Ч .
We shall investigate only continuous Brownian motion 

processes.
Prom the definition it follows that

? { a < ■u'(k) < b } *P {a < k)-<Ar(t)<b) =

and the characteristic function of ur (h) is given by

M i 2 W' (u) - Z W
= e

It is trivial that a sufficient and necessary condition for 
the process ^ ( t ) to be a Brownian motion process is the 
following: for every 0 “t0 t4 ̂ . . .^tnjnand Z0 ( zi l . . Zn
the relation
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holds. This formula will be used to verify is a process a 
Brownian motion one or not.

We shall prove some theorems concerning Brownian motion
processes.

Theorem 1. If m C t  ) is a differentiable function with
/ inn(-t)|oU < c>° and ^(t) = rn(t) -l-w'(t) then the variab­
le

V (bi ) • • » ) n )
f • • • ) -tn)

tends, with probability 1 /when max/1-L — tt-i/ —* 0 / to a 
random variable

T T
(3.1) exp ~ y j [rn(0l à î  + I  m

Proof. It is easy to calculate
_ n_...ЛпМ^ТТ) 2 T T ( t L - {-т Й ̂ 1*1 I U*d A
- —  П _л/ n

fwUl l ...,0 -(2T7) n (iL“t i - i ) z !~ I E  tLi L_4(â l- uru_i f  \

~Vi

where -̂L = ̂(fcL); . Here we get

I (t)) = gxp {_
inj 1 l-l tl'-1

(mííO-míbL-i) )
ч t-L_i
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! - 1 I 2, s»1 L

m(it^ ~ ^  ( i  I - <3 
-i

4-Et“-! (br»(tl) - m(tL-ÀÔ / ,
т~ г е л  (’z O O - ’iCti.-i))

Under the assumptions of the theorem the first sum tends to 
T J[Iго'(OH dA and the second tends in mean square to 
/ m(fc) d'n(-t) • We may choose such a subsequence for which the 
second sum is convergent with probability 1.

Theorem 2 , If max (-t'L-iui) ~> Oj (0 =4.0<t4 < ; ... < tzn j 

then

(3.2) $n = E (w (il)-  )f —> б^ТL -1
with probability 1.

Proof. The random variable
2n

in= E  (ш'(и)- w(t,-0)t -i
has a X* distribution with 2" degrees of freedom, and we 
have

E L-G1 E íti-tv.,)- ff1 TV =1

E l n = E EWt-J-uKt- )) Wij)-<^(t^4)) =

= E E(<*KtO~ w(tv.-i)) +2 E E W tJ -u r^ . ! ) ) -ifj u-l
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= G"ifГ
So we get

2 n - 1

D 4 = E f n -(E$„)2= f ^
for the variance
/Here we used the relation (l.l2)/ 
From the Chebishev-inequality

P U S .  - 6 T l > £ i  â 1
and we get at once that tends to stochastically. As

is convergent, we deduce from the Borel-Cantelli 
lemma the convergence with probability 1.

Brownian motions are often considered together with a 
family of G -algebras ( 3“ } for which ^  (-A), ur(t)
is measurable with respect to and ur(t +b)- u/ (t ) is 
independent of ^  (i.e. of the events ß  £  ít) . It is
possible that ^  t and always %  ■

Theorem 3. /The Markov property of the Brownian motion 
process./ The process n(-fc) =ur(T+t)-ür(T)with fixed T"1 ) is a

дТBrownian motion process, independent of A 0 .
Proof. The Brownian motion character of the process ^ (t) 
follows directly from the fact, that ^(t) is Gaussian, with 
independent increments with the same mean and correlation 
functions as the Brownian motion process. On the other hand 
for every 0 ~-fc0 á ^ -L, é;. . . ; 4 tn - T
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6/(w(t0))̂ ,(i1); .. .,ür(tn)) = 6'(ur(te))«'(t1)-ttr(t0)j.. .;ur(ín)- w<0)

and ^(-t) ie independent of the variables on the right hand 
side.

The question is, that if we replace Г by a random vari­
able will this theorem remain true? It turns out that this is 
the case for a wide class of random variables.

Definition 1. The random variable 'T(co) is called a Maxkov 
moment (Markov point, or stopping time) with respect to the 
family of G -algebras { 7^ } if for every

{go : 'tr(oo)< -b} g ^

Por example ТГ=Т0 /constant/ is a Markov moment. It is easy 
to see that the first upcrossing time of the level a that is 
the random variable 'TCl - { min t : ttr(-fc)àa}is a Markov moment.
Indeed from the continuity of tu'(t)

{ <  -fc } = П U {u/(r(co)> ct - } / r  is rational/.n-l rc-t
The random variable ^ which denotes the last moment of 
crossing the Q level before reaching the level a is not a 
Markov moment, as it depends on the events occuring in the 
"future*'.

Definition 2. Let V  be a Markov moment with respect the O' - 
algebras then we say that Ae if for every -b à 0
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A A  {r  sé t } e .

It may be proved that Tv is a 'o -algebra.
As we shall see ui'(t)is measurable with respect to 

for аду stopping time T • Indeed if { }  = { Т Г  j ^he se  ̂
of the rational numbers then, using the fact that w(-fc ) is 
continuous with probability one, the set { со : ur(r)<C 0 {тг = t} 
can be written in the form

П  U  U U  j ur (vL) <  c - -jH
N bL>N n |r-uL|<b-L 1

So it is measurable with respect to 3̂ .

Theorem 4» /The strong Markov property./ Let r(co) be with 
probability 1 finite Markov moment. The process (̂t) = 
ä аг(-ь + г)-иг(т)is a Brownian motion processj, independent of ?r . 
The attached family of G'-algebra.s is

s \ ^Proof. We introduce the sequence of random variables A N = rT
ir(co)e 2r

к ' 
2n Obviously t'n V V  and is a Markov 

moment* Let us consider some event В в  Щ- and we shall 
prove that it is independent of /̂(-k1), . . ^ (t m) where

and %(hL) = u/fr + t-J- -Up(tr) is enough0 < 4 S < 4-

to verify that

E  "Хв . =P(ß)E«p(^(ta),. . ^(tj)
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for a family of functions | , wide enough. For example we
suppose j!£ and II ̂  II = sup l|> I < 00
Let

I ...;иг(г + ̂ )-иг(г + Ът _4))}
and

I r T i(4^n * Ц) - <"*00, • • -, + -k J -  Uf(rn+tm .4)) .
As ^ and w(t ) are continuous in — with probability 1. 
From Lebesgue theorem and the fact that II §nll=ll£ll

E \  I “ Eum Е % Л П .n — >c
But

E Хъ - E 1 , ^ 4 )  L- E E ( V X {t-n.k ) )

■ E E(Xtn. js. • 1J •
L — V Ln 2n » к \Now using the Markov property В  П { % = ̂  } £ Acf and

E [Xn +Ч)-иг(^);...;иг(^-Кт )-
ur (2m + 1^ _̂ )j

E | X n  (Tn-jV, EjK ur(2"+ î) . .•,̂ '(2«‘E^m)“ 'Ur(^-k‘bm _1)) =

“PfBfU Тп = ^ } ) Е ^О ьД  . . ^(-tm)),
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Where • - •) ^ m ) is 8 Brownian motion process. We
get

E \  (^n = ̂ })Ef(Ç(i1); ...д(^т)) =k=d

“P Œ O E f - C ^ W , .. • j \  ( O )  — >P(B)E ^(tm ))}
i.e. the process ^ (t) is independent of ^  . Replacing 
Ъ  ” -П- and using again the Lebesgue theorem ^(-t)is a 
Brownian motion process, as ^("b) is measurable with respect 
to 5E + t . By using the strong Markov property of the Brownian 
motion process we can prove the so called reflection princip­
le /Desire André/.

Theorem 5. For ct > 0

(3.3) Pi sup ur(t) >a } »2P{ur(r) >cl} r / e 2T da.o< t 4T Cl

Proof. Let T ’a, the moment of reaching
consider
Oo CoJ e * P l ur(t) > a  } cbfc “ E: [  e  *  X  .(•/ (а,0 0

Oo Oo
- E / e U V ioJ( < ^ ( t ) ) d t - E

- Г —^ C t a +■ S)
- I е
0

Oo

- E + s) - ur(ra)+

X n ^ M d a *s))cL5 =
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'X(cx oo) (w(s)*a) ds

where we used the strong Markov property of Uf( t )and that 
W ^ cl)- Further

Oö O o

- E j'eU X(eie.,(»(s))«U- Ее * 4  f e"5 X(0 _,(5(s)) ds
о b '

. E e ^ / e - ^  i ds - ^  E e",T\
In such a way we get

j e’M P  ( ur(t) > a  ! d t ~ ^ E e - ,ra- / ' ( t d £ d t !  -
o b

o*X / e P {'C'a ̂ t } d-fc;
ôand from the uniqueness of Laplace transform 

(3.4) P ( w ( t ) > a } = y P i r a <^ } .

The last equation is equivalent to the reflexion principle 
and our theorem is proved.

Remark 1, The distribution of Ta is called the Wald distri­
bution and we get for it
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(3.5) P c "Cu< U
O o

OU

ufzt
O o гLC2 d u , .

The density function

(3.6) 'Р'Га (i ) =

It is interesting to note that

P ra ( 0  '---- p j  , as -t —
and so

P /7~' = ooО  L a. j

though it is well known /the reader may prove/, that

P  {PCL < ̂  } = 1

Remark 2. The proof of the theorem may be done in the follo­
wing intiutive way. Let T a denote the first upcrossing moment 
of level a, where ur(ra) = CL. Prom this moment let us reflect 
the trajectories for the line y = <X. It is obvious that

Pi sup ur(t)> a ur(r)>a } -P |ии(Т) = a} .
0 — i; = T

On the other hand from strong Markov property the behaviour 
of the process UZ'(-t) - ur('ü') for 1 > T  is independent of 

A 0 and br(t) -w'('t') is symmetrically distributed, this
means
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P'v sùp ur(̂ )>a ur(T)<a} =P{ supu>(t)>a (î(T)è a } =P{u/{T)̂ . a } .Ost^T 1

Prom this two equations we get the desired equality.
Multidimensional Brownian Motion. A process f K ) , taking 

values from P is called an m  - dimensional Brownian motion, 
if K O  is homogeneous, |(o)—  0 ; continuous with probabili­
ty 1, having independent increments, for which the scalar 
process (Z I ( O )  is a Brownian motion process for each 
2 with Izl — 1 » and there is a family of £  -algeb­
ras { 'ЗР î in _П__ for which 5^ — (- A о ) ) if ^  =  ̂
and К ^ ) is measurable with respect to . For such a 
process we have the relations E(z ) |(t)) = 0 } D  (z Д ( Ю  = i .
The distribution of |(-fc)is determined by the density function

_ rn
(1 ) f- (x) - U f í t j1 « р  j -  ,

so that for any Borel set A6,pm

( 2) P i K O e A )  -UîftJ Z / e x p | - ^ lx| }/tm (dç),
A

л-ч mwhere is the Lebesgue measure in К .
Obviously if LI is an orthonormal transformation of P 

and  ̂(t ) is a Brownian motion in P then LL f(L )±B a 
Brownian motion in К too.

It easily follows now that if is & ball with radius 
çj with its center in the beginning of the system of coordi­
nates, and To the first exit time of [ (t ) from then
I (T^ ) is uniformly distributed on the surface of S§ Strong 
Markovity for multivariate Brownian motion follows easily



from the fact that its coordinates are independent one dimen­
sional Brownian motions.

Theorem 1. Por any C > 0; T > 0 the Brownian motion £ (t ) has 
the property

'Pi Sup I 5(t)!>c)à 2P(lf(T)l >c).~ 0<PèT ~ “
Proof. Let 'C' be the first exit time from the ball Sc • Then 
the process ^(t+'Г) — J (r ) is an m-dimensional Brownian 
motion too. Hence

P  {l|(T)l> CÎ- Р(г<Т, I J(T)- |(r)l >c) =

T
“ / P(|£(T)-|(t)+jWl>c|r=t)P(r£dt) =

0
T

- /P(lf(T)-J(t) + z|*cyP(T6dt),
О

where Z is any vektor for which jz| = C . But

P!l|(T)-|(t)+z|>c) àP((|(T)-|(t),z)âOi - И ,

so that
T

'P(|f(T)|2c)á PCredt)- т « 0̂ 4Т1КР1>с}
0

proving the theorem.

Exercises

1. /The Wiener-Representation of the Brownian motion process./
Let { H k(-b )}

- 38 -

be the Haar’s system, i.e.
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H 0(t)-1

and if -2-" й к < 2 n f 1 -tha-n

H„(t)- H *  4
n к - 2"4  2

k-2n + i<£
< -fc < 

öt-

к - zn+ Vz

k-2n+i

0 other cu-i.se.
Furthermore let ^ n be independent standard Gaussian

СХ» ^

random variables. The series X] / H n (f) d.1
uniformly converges and represents the Brownian motion 
process.

(Hint: At first prove, that for deterministic coeffici-
be -fc

ents a, the series E  a. j H u(t ) * (t ) uniformlyK n -О о
converges under the condition I a J  c 0 (kf ) (0 
Then verify, that this condition fullfills with probabi­
lity 1 for the random coefficients ^ n . The characte­
ristic functions of the desired distributions can be com­
puted directly.)

2. /The interated logarithm theorem./ If w  (t) is the 
standard Brownian motion process, then

t - 2  \Jzt tn lln-Ы = ^ = 1
(Hint: Use the iterated logarithm theorem for the sequence 
of i.i.d. random variables w-(n) — ur(n-i) and prove - by 
means of Andre’s reflection principle and Borel-Cantelli’s 
lemma - that the defect sup (iv'(-b) - ur(n -1)) has order 
0(1/2п1Х?гГп J with probability 1.)
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3. Prove the local iterated logarithm theorem: If ur(-fc ) is the 

standard Brownian motion process, then

■ P I ß .  > В Г Ш Г < | - *
(Hint: Introduce the new process ur(t) — t Ur(qr) , show 
that it is also a standard Brownian motion process, and 
apply to it the global iterated logarithm theorem.)

4. The local iterated logarithm theorem remains valid for the 
elementary Gaussian processes |(-b)too.
(Hint: The difference |(l) ~ = CL / |(t) dt satisfies
the relation V ( lira < l) = £ for every 0< cL<

-fc ->0 ^

5. V/ith probability 1 the trajectories of the Wiener process 
■Ur(-t)are nowhere differentiable.
Hint: Suppose that the trajectory Ur( 4r ) has a derivative 
less than l  at a point 6.
Then |ur(-j-) - ^'('Тг)1< 1Г |-or 1 = М +1, ^cjân+3 
and sufficiently large П . Therefore the event " ur(-b) 
anywhere differentiable" involves the event

В- и и n(L>i nàm uо = lán+1 яi j é L + 3

Prove that
5?(B)**0

6. Prove, that for every <S>0 there exists a compact subset 
of Wiener trajectories on the interval [)o,l[] of probabili­
ty i-E (in the sense of the uniform topology).
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Hint. Recall, that the compact subsets of the space of 
continuous functions are exactly the subsets of uniformly 
bounded equicontinuous functions. Using the iterated loga­
rithm theorem prove, that for a suitable choose of the 
constants N n and cfn :

Ш  , ((IJ(t)l>Nn) „ U  ( ( Ш < Ш ч ) > ^ ) и ( | ( 1 ) > Й ПOáté

Remark: A theorem of Lévy gives the exact estimation of 
the modulus of the continuity of Wiener trajectories.

P mL-
lw(lQ-w(^l 
\ i l i  W'/O - 1 1

V M O
The proof of this tehorem is complicated and we need only 
the above rougher assertion.)

7. Let ür*(t) = ..;«rn(t)> an л -dimensional
Brownian motion process E'ur(t)=Q, Eux(fc) ■UJ r(t) -B UT. Ï  

where is the local covariance matrix (it is positiv
semidefinite) • We say that ur(t) is an n -dimensional 
Brownian motion process if it is homogeneous, with inde­
pendent increments, Gaussian and continuous with probabi­
lity 1.

Prove that if u>(t ) is an n -dimensional Brownian motion 
process then there exist a matrix C such that

C  U/( E ) = \j3 (b )
and hr(-fc)is a Brownian motion process with independent 
components.



Chapter 41
Differentiation аде! integration

In the sequel we shall need the following.
Lemma 1, The random variables tend to the random 

variable  ̂ in mean square when h —> 0 if and only if the 
limit

tum h, h’-»0 Î.L mh, W 0 = a
exists, independently of the choice of h ) Y) .

P ro o f . Necessity follows from the inequality

Kih, L)-(U)M0h,ihO-(fi, ,i)+(fh,!)-(f,!)l - 
6l(?h , Sh’-DM(!h-f,f)l - Н У  II Ib*-fJKII ill II?,-ill •
Sufficiency is a consequence of the relation

(4.1) Hfh-yi = ÍIh”Iw , k ~ U )  =

= (fh, ih)“ 2(!hjfh')-i-(ih')fh0
As the right-hand side of (4.1) tends to 0 as h, h' — > 0 so 
Cauchy’s convergence criterion is satisfied. As the Hilbert 
space of the square-integrable functions is complete, so 
there exists ( such, that i. L. m. = £ . A consequence 
of this lemma is that if ih_> I, r̂ h —> ̂  then E <?>h = E I  *1 •
Another consequence is that a necessary and sufficient condi­
tion for the process j (t ) to be continuous at the point -t0 
is the continuity of the trace of the covariance function
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j (s) at the point (t0, О  and if I(t0)-*i(O

(t — * i0 ) then

El I (t0) I = tlm B(t,s)■b ->̂ 0 I S —
The proof of the sufficiency follows directly from the rela­
tion

El §(-b)-K'to)l2 = ^(tj-t)-2'B)(t)-t0) +B(fc0,to)

while the necessity is a consequence of the lemma 1, if we 
put = f(tD + h) . We say that the process |(-t)is differen­
tiable at the point to if the limit

1.1. m. = i‘(t0)
exists.

As
p  (£(*0* 0  - l(to)) (|(tp-bln>)-|(t0)) _
Ь h h’

= ь1? (ß(t0+b, t0 + h’) -Bfto.to-bh'J-Bfto+h^o) -b(t0jt0)|

it follows that a necessary and sufficient condition for
differentiability of the process is the existence of the

g*B(i,b) _1 t = S = to
exists and

derivative 3i 3s
expectation of £'(-t)

It is easy to show that

the

the

E f ( 0 = ^ E f ( t ) .

If £(i) is differentiable at every point t of ( 0, T  )} then 
Г 0 0  is a process of finite variance too. We shall show
that
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(4.2)

(4.3)

Ei(t)

EiX-fc)

i ’(s )* -

Í(S )* =

aJR(t,s)
9t ás ;

э-t

32Sfe,s)
') ' ' ”" w ’ 3t 3s

exists. Namely the existence of the limits
if for every t  £ (О Т ) the derivative S=t

EI'(t)Ks)*- е ы  E í(tth)~í(t) I(s f-h->0
— Vi mh —>0

B ( t+ h ,s ) -B ( t ,  s)h and.

E S'(0 i'(s)* tuna h, h'— ■0
Г l(fc+h)-g(-b) _ lCs+W) — jCs )
^ h h1

B ft+Ь, s+h1) -B ( t,s  + W)- ß ( i t b , s ) - B ( l , s )  
h( Ь’—> о h W

follows from the differentiability and the lemma. ( So from 
the differentiability of £>(t,5) along the line t = S its 
differentiability follows for every S в(о,т)).

As a consequence we get that the stationary process J( t  ) 
is differentiable if and only if its covariance function Ъ(Т ) 
is twice differentiable at the point 'l'“ 0 . Then d. T"
exists for any T" and

Ef(t) ,
E ( W f ( t + x-f - d S k l  .
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Similar relations are true for derivatives of higher order.
By the integral 

(4.4) i  ) dt
CL

of the process ^(b) over the interval (a,b) we mean the 
limit in mean square of the sum

£  -4̂  I a =^no< • * * < 4  ~ Ь( £("Ьпк_4 , tnJ

where max (tnk~ tnul)  >0 as n — > 00 . By the lemma the
integral exists if and only if the limit of the sum

E £ I(^nk)C-tnk-Ц,_4) £ (tn

= Z  £  B (W k l ^ ) ( v v t ) ( 4 - 4 J

exists, that is, the function £(1 ,5) 
over the region О/ й t S = b.

is Riemann integrable

Remark 1, The integral of the process  ̂( t ) can be defined 
also in another way. Let us suppose that the process |(tlco)
as the function of the two wariables Ь;со is measurable and

b

(4 . 5) j El )l d t<0°
а

Then as we know from the theorem of Fubini, the function
2l-f (t , co)| is integrable over the space ![а(Ь ] х П  

Ъ  X A ( yUXP' , where Ъ  is the &  -algebra of Borel sets of 
the interval [a,b] and fx the Lebesgue measure, and we have



So the integral / l | ( t ) l  dt exists with probability 1
together with the integral  ̂ 1 (0  dt . I f  the functions
|t(-b) are squar*e Lebesgue integrable on the interval [a.,b] 

then the integrals f  j u ( O f ( 0  d t also exist and using
aagain the theorem of Pubini we get

b ь *
(4.6) E j ̂ (t) |(t) dt ( f  ̂ 2(t)l(t)At) =

<X
Ь Ь

" E  I I  ^(t) $z(x ) l(t)0('r)dt dr =
a a 
b b

= J J у о  ßo,r) м м  at dr.
a a

As

a+T CL+-T j j4
T 1 / / £>(t-s

_ 4
.) at cLs t 2 / /B(t - s) dt d5 =

a cX 0 0

T t T

II // В (a) A u dt ~ ~ / ß(o(i t ) r .
0 t --T -T

That is if l (t ) is stationary then the limitcxfT
i
T f S(-fc) dt - > m  - E s w

(Xis true if and only if
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(4.7) 4  / ß(u.)(l- y 1) Au -h >0.
-T

(4.7) will be satisfied if
т

T T  J ß(u) du, — » Û.
-T

Remark 2. Let j ( f } be a measurable process for which 
Elf(b)l <»«(-«» < t < c>«=> ) and condition (4.6) is satisfied 
for every finite a,b. We may ask when the limit in mean 
square exists

a  + T

(4.8) Li. m. -y- I J ( -fc ) d-t.
d

From Lemma 1 it follows that for the existence of the limit 
in mean square (4.8) a necessary and sufficient condition is 
the existence

dnn E(t  / 5(-t)cd)(fv / а д  dit) =
T,T->°~ a i

ct+T <x+-T

= Em 0=r [ I tr ß(t ( V) cLt d.'t.
d  a

Moreover, for the limit
a+T 0.-+T

Ei.ro. ( у  ./ K O  dt - y  / Ц f(-t) dt ! = О
о- d

it is necessary and sufficient that
a+T a + T

l im  4  / / t r  lß ( t iTr) clt d r  = 0 .
1 J JCL CL
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Por processes stationary in wide sense we have “E>(t,'Tr') =<B(fc



Chapter 51

Stochastic measures and integrals

We often need integrals according to a process f(-fc) 
b

(5.l) ./ d - K O
CL

Such functionals can not be understand as Stieltjes /or 
Lebesgue-Stieltjes/ integrals as the realisation of the 
process I (t) has infinite variation in most cases. In spite 
of this we can define the integrale (5.l) so that it will be 
very useful in the sequel and is suitable for the practical 
purposes too. A complex of random variables ф (л , g o ) where 
Л  is any measurable set of the interval [a,b] and сов fl is 
called a stochastic measure of the probability space (l~l> 3-,p) 
if the following conditions are satisfied

1. / Ф (Д ) is additive with probability 1, i.e. if
Д 4Л Д 2=0 then ф (А{ U Д 2) = ф (Д1)| Ф ( Д 2),

2. / E U  (л)|2- F(A)<~,
3. / Е ф (z\) ф (Д2)*-0 if д ^ л д 2 = 0.

Prom this property it follows that
Р(Д4и Д 2) « Я Д 4) + Р(д2) if Д| P Д 2 “ 0

4. / Ф(Л) is &  -additive in mean square, i.e.
if Д  = и  Д-и, Д-иП Д к= 0 if i =f= к , then ф(и Д[) =
n ^= Ё Ф ( Д 0  -— * ф (д) in mean square. Prom this property it1

follows that F is 6" -additive, i.e it is a measure.
It can be shown that if a random set function determined 

on a semiring satisfies the axioms 1./-4./ then it can be
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extended to a random measure on the 6"-algebra generated by 
the semiring.

Example. We can determine a stochastic measure on the Borel 
sets of the intervall /0,1/ with the help of a Brownian moti­
on co(t) as follows. If A  = is an interval closed
from the left hand side and open from the right-hand side, 
then let Ф (Л) = co(-b2)-oo(-fc/t) . The intervals of such type
form a semiring and we see at once that Ф (Д) satisfies 
the axioms 1./-4./» so it can be extended to a random measure 
on the Borel sets. RCA) will be the Lebesgue measure multip­
lied by a constant.

Let us define the integral according to the random 
measure Ф (Д) first for simple functions. Let the integral 
of the function

{t ) = £  c u К ( -b ) a -l П  Aj = 0  '4 L ̂  j ,
к-l ^4

be by definition
b n

(5.2) Jf.(t) c k Ф (Дь)
Cl

If
m

9(t)=S dj KÁ ( i \  Л ; П Л / - 0  Ц! i + ] ,  

then we get by simple transformations that

(5.3) ь ь ^
E j  fE-t) Ф (di ) (  J  g.(s) Ф (ds))=E E Ck0 (A)(Sdj 0(A] )) =
a a

b
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and

(5.3-)
El/ -̂(-ь)ф (d--fc)l -Е(£ск* (дк))(Ес *(лк))*=

а

Zlej F(aJ= j |£(-t)| F(dt).
<x

The integral of limits of simple functions exists if and only 
if b

/ l f ( t ) | 2 F U O - S  Ic/ F ( a . ) < ~ .• l*. — d<X

For simple functions it is true that

/ Г ^ | ' М + 6 ^ М ]  <p(àt) = oi У  ̂ (-ь)ф (dt)tßy g (t ) Ф (cbt).
^ ^  cl
If ^(t) is a limit in mean square of the functions 
i.e

b
/ l|,(-fc) ~^n( t )l FCdL-t) ^ 0 l| n  >oo

OU
then by (5.З)

г b a b 2El j £п(1)ф (dt)- j F W  Ф (dd)l = j  lFF)“?m(-t)l F(dt)— >0,4 n, m —
сь а b

consequently the random variables /  FJO Ф (di) will
CL

have a limit in mean square and this random variables will be
called the stochastic integral of|(-fc)

b b
f (̂-t ) Ф (dt)= E I. m. j |,n(t) Ф (di).

CL a.
The value of this integral will not depend on the choise of 
the sequence |n(t) • It can be defined for every function
satisfying the condition



(5.4) f  I {,(01 F(dbt)<°~
a

and. the relation( 5.3)will be satisfied too.
Let us examine now some properties of the stochastic 

integral. Let Ф (A) a stochastic measure E Ф (д)ф*(Л)=Р (Д) 
where p (a )ís a totally additive positive definite matrix 
function. Let g.(b) E L2(F) 
i.e b

/  lg-(-t)i F(dO<c>~
a,

A random set function vp (д) will be defined as follows
b

р̂(л) = /  *Хд(0$(0 Ф (dt) .
^(д) is obviously a random measure and on the basis of the 
property ( 3*)

E|Y(A)f-/la(t)fF(db = GA),
A a  , swhile on the basis of { 3 )

(5.5) EY(a P T (A 2f - / X Aid )  F(dt) =

“ /  1а(5)Г F fd t).
Theore.n'- I/ If (̂t) G.L, (G-) then |(t) a(t) £L;(F) and

/'

^ Cb nProof. For simple functions (|(l)=S СкО(д (i)) the
statement is obviousb ь ̂
/f(br(dt)-s c vf ( A ) = / i c k хд
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Let |,n(-fc)be a fundamental sequence of simple functions in 
L2 (G-) then

" J l?n~ I'm I (frGO) F(ctt),
i«e.^n(i)g-(‘b) is fundamental in L2(F) and the state­
ment of the theorem is obvious.
Theorem 2. If У(Д) = /*”Хд(0 g(t)$(dt), Cj.(t)&L2(f );
then

ф (д )- / t) Y(dt),

Proof. The function <̂ (-b ) can be equal to о only on a set of
measure о (mod G) so . Moreover
b
J д̂(i)G(dt) = /  F(dt)-F(A)< *-
O' Д
and so by Theorem 1.

/  ife - / p y  ф (<&)=ф (л ) .

Example. Let £ (Д) be a random measure over the interval
—oo <: ̂  «с oo

E 1(д) - 0,
Е К д ) !(Д)*-В(0НД1, ,J_,

where "5(0) is a positiv definite matrix. If is square
integrable i.e.

/ I C ( F ) 12 dt < ^ ,  
then for any t the integral

(5.6) ^(-t ) = / c(t -s)
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exists and
г 4 E 7 (t) = 0 .
(5.7) ‘ ’

E 7̂ (1) -̂ (s)* ~ b(o) / c(t - S -t-u,) C*(u.) da .
i.e. the process ^(4:)1в stationary.

Let we have now a function with two variables |,(Ч,Я)
C = -fc=dj measurable with respect to the two var­

iables -t , Я and Ф (d. Я) a stochastic measure such, that

/ 1 *(<U) ̂
O l

for almost every t ( F M -Л) = E Ф(с1Я) Ф*(с1 я)) .
Por these t the integral

S00 = / ф (^^)
OL

exists and the process £(4) has finite variance. If 4, со) 
is measurable as a function of two variables and

cx и

/  [ /  lf:'t,A)|2 F(d>) У2
dt <'

CL

then the integral of |(-t) exists and
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Chapter 6;

Integral representation of stochastic processes

With the help of stochastic integrals we can get differ­
ent representations of stochastic processes. If a process 
I (-b ) can be represented in the form

(6.1) £00=/ Ф (с1^)д Е ф (с1>)ф '((с1'Л) = F(cl‘X))|

then its covariance function has the form

(6.2) E f ) f(3) = (̂s,i\)F(cL‘X))

on the basis of the property (5.3).
Let l_2 { |/( b ) 1 denote the set of the linear combina­

tions of the functions and their limit in mean
square according to the measure F(d.'X) . I f  Ц  , 4 ( 0 !  
coincides with L2 ( F ) the system |,(t) Tv ) will be called 
complete.

Theorem 1. If the covariance matrix of the process £ ( -t ) can 
be represented in the form (6.2) where L 2(F)
then there exists a stochastic measure Ф (cl ) such that 
E^(ci?v) *(dL>) =F(dL7v ) and the relation (6.l) is satisfied 
with probability 1.

Proof. Let us bring the linear combinations of the functions

и k=l
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into correspondence with the random variables

(6.4) *1 = S  o C k  $(tk)

Let {£ Î reap. [ \ j denote the mainfold of the func­
tions of the form (6.3) resp. (6.4) . Let us define the scal­
ar product with the integral

(6-5) - /  F(d^).

On the basis of the relation (%, - (91,92)
this correspondence is isometric. This correspondence can be 
extended to the Hilbert space L2 Í ) ) resp. L2 keeping 
isometricity. Namely let £ L 2 { then we can
find gn(-t,7»)GM ' ̂  i such that ||̂ п(1,^)- (̂t.'A)ll—> 0 Ц

If the functions correspond to the random variables
£ И { I I then from the isometrica.1 correspondence

I1 In- Urn 11 ■ 11 9« " З "-11 ~ ^  0 > lf n' m
that is there exists a limit ^ . £ L 2 ! I ' • To prove
uniqueness let ^ ^ • For the variables 7 ^ corre-
ponding to we have II 7£* - ̂ *11 — > 0 . Let moreover
^in = 9 n) 9nthen we have ll<̂n — ^ 11— > 0 ; and for some
?o; H ~ ÍJI— > 0 , so we must have = = 4° with
probability 1. So we have a one to one correspondence between 
the spaces L2 Í £(*fc ) ) end [_2 j f j which preserves the 
scalar product (б.з).

Let us suppose that the system is complete in
L_2(F) . Let Д be a Borel measurable set, then (̂'A) £

£ L 2(F) - Ц  i'I'I and let Ф (Д) denote the random
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variable corresponding to Хд(А). ф{A) is a stochastic
measure for which

E ф (д 4)ф (л 2)* -  /  'Хд (X) 'Хд ( ‘> )Е (а л )=  F (a 4 п  д 2).
К Z

The process ?£ (-t ) defined by the stochastic integral
^0 )-/ d-x)

coincides with | (i ) as

E I(-t) ^(t) = Ej(t)( / Ф (dA)) = / F(d?i);
namely

E f M  ф (Д)*-(^Л), -JK-b,» \(A)trF(dA),
and from this we get

El^(t)-f(t)l - ECSC-t)- (̂t))(iCt)- -  

-Elf(t)|*-Ef(t)^(%)‘-E*2(t)+El^(t)l1 -0.
If the system (̂-Ц'А) is not complete in L2(F) then let

t—s I

us chose h(-b,7k) ( t £ T ( T  fl T  =  j)  ) to be complete over
the Hilbert space L2(F)0 L2 í£(t)j • Let the Gaussian
process f(i)) t £ T  be independent of f (4 ) and let E  ̂ (t)=0

E l(tj l(±zj* “ / h(t4>*X) h(tal>) -F(d>).
We may apply the previous considerations to the process 

if -t£T and (̂-fc) = |(t) If i £ T ,  
and complete the proof of the theorem.

If the system } j is complete in L2(F) then
the stochastic measure Ф (A) is an element of the Hilbert 
space L2 { I } i.e. it can be determined from the realiza­
tions of the process ^(t) . In such cases we say that Ф is



subordinated to f ( t ) .
^ - 8  -

Exercises

1. Let £ (-t ) be a continuous stochastic process on [o ,t] with 
mean zero and covariance function ftCs.O . The mapping 
L 2(T) into l_2(T), defined by

ft : g (L ) = J ^(s.-t) £(s) dis ; L £  [O, T]

has positive eigenvalues !An and the corresponding eigen 
functions 0n (t) . Prove the Karhunen-Loeve expansion
theorem:

l.Lm.(S(t)♦„(*))-0 ,N — 1
where

$n = J K't ) ̂ n( ■b)0
2. If, in addition, the process |(t) is Gaussian prove by 

virtue of the Kolmogorov inequality, that the series

converges also with probability one.

3. Let W'('t) the Brownian-motion process with mean zero and 
covariance

ft (s.i)= min^s^-b),

and T  = 1 . The corresponding eigenvalues 
and eigenfunctions are well-known:

0k (-t ) = \Í2 sin (2. U +1 ) Tit/2 ,
г çz = --ÍL_—

\  СгкмУЛ



So we have
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1у К ( ь ),
where the series converges in the mean square and with 
probability one.
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Chapter 71

Stochastic integrals

In this section we define the stochastic integral for a 
stochastic process

(7.1) / со) w(cLt) = / £(t, со) dw(-t)о о
where ur(-t;is the standard Brownian motion process.
In the case whene jj, (-fc) was a function /and not a process/
we saw that the integral cannot be defined as a Stieltjes or 
Lebesgue-Stieltjes one.

On the basis of the fact that У.Гиr 

/see theorem 3.2 for Brownian motion process, where for 
simplicity Mw(t) = i / we see that the definition of the 
integral /1/ is not an obvious one from the following exam­
ples :

Zi M v J - u r O O ]  cn(-bj — * т(и/(Т) T),

^  ^ ( O l  w( 4 j - 4 W r )Î 4 T )J

£  0 ( t w )- urfc.3 j - ur(T)^
where the convergence is true with probability 1 and in mean 
square too.

To prove 1. we know
N 0

I ]  [ur f̂cv + 1 ) - ur(-tj] —> T
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and from there

2[ur(-tv+J -  ur(tj] = E  [ur(-tk+1)~ u/(bj]

- S[ur(tk;4)-ur(tk)]ur(-tk)= ur(T)2- 2ECur(tk + 1)-ur(tu)]ur(tu)) 
which proves the statement.
The way as we defined the stochastic integral in the preced­
ing paragraph for a deterministic function proposed in
the thirties by Paley, cannot be extended to the case of ran­
dom function /stochastic process/. It was K. Ito who proposed 
a much more general way of constructing stochastic integrals, 
applicable in the case of a wide class of random functions.

In the following let ^  (c. A ) denote (-/-algebras for 
which % ^  % i f  -t4 - -t and 3/ be independent of the future
of Brownian motion process ur(-t) , that is the events

and { ur(t + h)“U/(t)^ X } must be independent for every 
В and h > О, X • In this case we say that ( 4t), !
forms a Brownian motion process. It may happen that 3/. is 
the 6"-algebra generated by 00(5), 0 = S=t.

Definition 1. Let { 5^1 be a Brownian motion proc­
ess on the probability space ( _Л_, A,P) . We shall say 
that the stochastic process |(t,со)  does not depend on the 
future if it is measurable in ( - Ц с о )  (with respect to 
Ъ   ̂ X A )  and for any ^ = 0 со) is measurable
according to . The class of such processes will be
denoted by an .

Z

Let us denote L the class of the functions-TlX CO.Tl
£ (-t, 00) for which
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(7.2) / /̂ (-bjto) dtP(dLcj) = E / cLt < ̂  4=4>|'(-t)co)£L
-П_ о -П-XCo t D

and
i ^ I 2да -  да П L -TLXC o .t j

Obviously да г is a closed subspace of L
2/Definition 2. (̂-t, со) £

-O-XHojD ' 

is a simple function if

|(’t,co)=W c°), 4  "tGÜví^k+iV, k-0, 1,
where (0 = i0 < d i c . . . < -tn = T ) is a decomposition of the 
interval (jO,t | .

The stochastic integral of a simple function £(t;co) 
is defined by the formula

/  cf(s,Co) dur(s)= S W ^ ) l̂ ( 4 m )~^(e44™H(4>(^(4-^4™ + 1))*
О к “О

The basic properties of the stochastic integral of simple 
functions are:

a/ J (o£ 1 ( S )  4-Rj g(s)) d ur(s)=d/|(s)ctur(s) + ß jcj(s) dur(s), 
ь/ J |,(s)dur(s) = / |/(s) dur(s)+ f  l ( s ) d u r ( s ) l ,

о О -Ц

с/ the integral is a continuous function of the upper 
bound;_ •t I *d/ E( / |(s) d ur(s)/ ?a) = / £(s) dur(s), |or 0 <  a ^ i
with probability 1, especially
E( J  |(s) dur(s)) = 0
E( / £(s) dur(s))( J g(s) clur(s) = E / f-(s) g(s)ds.
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Properties а/ and Ъ/ are obvious. Property с/ follows from 
the continuity of Brownian motion process. To prove property 
d/ it is enough to note that if 'tk> u

E ( í u(co )[ ur (t k f 1 ) - co(-fc u )]/ 3L) - E( E [ur(tUM ) - urCtu ) ] / -
” Е(|>и(ЕСur(tk+1)- ur(tu)]/$^) <?u )=0

In the same way can be proved e/. Indeed, without restriction 
of generality we may suppose that £(£ ) and g(-fc) are piece- 
wise constant on the same intervals. Let = tk+1 then

E ^ ( u r ( t k + 1) - u r ( t z)) gn(u r ( tnM ) - u r ( t n))»

= E | u( u r ( tkvl) -  u r ( tk)) 9nE L (u rftn+4) - w ( t n))/3 ^1  » 0,

and

E f-k(ur(tk+1)- L*r(-bu))0„(ur(tk + 1) -ur(-hk))=E fk- ̂ u(th+1 - i y ) )

and from here we get e/.
The properties d/ and e/ mean that the transformation of 

a stochastic simple process (̂-f̂ co) £ '.Ш1 determined by
the stochastic integral d  ur into |_E is isometric.

~ -TLXLO.t D
Рог the definition of the stochastic integral i

2,

of any process UH it remains to prove that the
2,

set of simple processes is everywhere dense in W . The 
proof of this fact is the following.

Let |(t,co)£ S)i j 1(t, со) I ^ C and continuous with 
probability 1 according to t. Then for simple functions



f'n('t.°:)) = K'ir)) 4  ^ , Cu n т ),
2,we have fn G a« and fn — » £ with probability 1, and

т гЕ ./ ( ~ f л ) а-ь —  ̂О if п — > ̂  .о
Further now we assume that l̂ (-t,co)l< C . The functions

■fc
^n(-fc, go) - n J f(s, go) ds 

Í mojift - 4), o }
2,are continuous and are contained in m . The sequence 

fn (t, со) converges to f (t, go) with probability one and as 
|fn| ^ C in mean square too, i.e.

T , 2E / ( f —  ̂  ) dt — > 0 ( if n — => ^  .
Finally let f (b, go) arbitrary in 9HZ . It may be approxima­
ted in mean square by the bounded functions

гSo we have defined the stochastic integral all over ак •
Now we shall prove that the properties a/-e/ are valid for 
any process f(t,co)£ ai4.

To prove a/ let us choose two sequences of simple func­
tions f0(b)co)J <̂ n(b, uo) converging in mean square to

f (bj со) resp. <^(Ь(со) -
Then a/ is true for and <̂n and it remains true for 

the limit too.
In the same way we can prove b/. But we can prove it 

using a/ for arbitrary f(b, co)£L 9Л
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Indeed



/|(t) dürft) = / f(s) X ^ t-j(s) duí'(t).
It is well known and may be easily proved, that if Efl*- !)-*0 
(n — > C>G) and 'E is a & -algebra, then

ElE(L/?')-E(f/?)l2'— >o, 4  n
Using this fact we shall prove property d/. Let wE
a simple process such, that E i (̂ n(0_fW) db — > 0 if
n . As

E  [ / fn(t) durf-t)/Ç  ] = / |n(t) dürft)0 ' 1 0
and

ЕС/Ц е) dü rft)- / ( t ) | ( t ) dürft)) -»о, 4  n —

E( i fn(t) dürft)- i f(Edurft)) - > 0 f 4  ю -h>
we get the required result.
Property e/ is a trivial consequence of the definition of 
stochastic integral, where there exists an isometry between 

со) and its integral

$(t,co) — > f 1/fSjCo) dur(s).
Let us turn to property с/, which states that the stochastic 
integral is a continuous function of its upper bound. Here 
we prove the following theorem.

Theorem 1. The process $(t) = |'(s,co) dur(s) is equivalent to
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2,

a process with continuous trajectories.
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First we shall prove the Kolmogorov inequality for 
martingales with continuous time parameter.
Lemma 1. If *?-<.) is a martingale, where § (tr ) is
continuous with probability 1, then

(7.3) P '  S u p
o s - t  IkT i(t)l~  Г  \C ^ E li(T )r

The proof of this lemma may be carried out in two steps.
First the Kolmogorov inequality can be proved for the discre­
te time martingale

in the same way as in the case of sums of independent random 
variables /with zero mean/.
In the second step we should take the limit from the martin­
gales

7)^ to §(-t ) US Г) --.
Let

Ъ к= { CO -lo2jh C, j =1,2,. l^lècj Ê
where Ъ к П = j2i Ц, к 4=l) a_ncl

B  =  1 c o t  m a x  190 ! =  C J = U  B w .

The following inequality proves the theorem in the discrete 
time case:

E «il - E(,ln • y b) - s  Ei’in V  “
- S  E [ \ E M * )]i S  E ( \ ( E ( ^ ) T J ) 2J =
- 2  EC-Xb í ‘] í c  Z E [ * J  = cP(6),к£П 6k к



where we used the Jensen inequality and the martingal equal­
ity.

In continuous time case we have the equality for contin­
uous processes:
j S^p §(-t)=c}= { Sup ^(r)è C I where { Г } is the set of ration-

- f c  Г

als. r.loreover
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! sup  ̂( r ) = C } = lim {max à C ! i with integer k,n.г n->»° kiZn 42
Prom here using the Kolmogorov inequality in discrete time 
case we get

P ! SUp I f(-t)l= С I = U m  ft max . § № ) >  C Í 4
Oéi é t  n-»*- u- ,n Cк â V

Proof of the theorem. For simple processes £n(-fc(co) the paire
V n' ( t ) “ /W s) d,ur(s),Tt forms a continuous martingale.

Prom the Kolmogorov inequality we get

'nj \ f Q r \ j M  f / N j M  l EC/Ws)-!^))^^)]2,9 j sup I J £n(s) dur(s) - J |m(s) dur(s) > C [ < -- 5--- -J------- =

= p  Е / ( fn(s) ds‘о
If tends to £ so quickly, that

E /  ( f m(s) “ £m + i(s ) f ds á
t

then .1 l  dur is the sum of continuous functions so that theо '
convergence is uniform with probability 1, and this means that
J |.<dur is also continuous. Indeedо

d w -  + cLur+ . . .o o o
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where the convergence is in mean square. The members of this 
sum are continuous /with probability 1/, and the uniform 
convergence with probability 1 follows from the inequality

S ? { ŝp I J (fn+i - и  cLs /2 > C>o
0

and from the Borel-Cantelli lemma.
If the processes a, b G C0,T J and f(-t) is 

defined by the equation
t 4:

(7.4) f(t) = £(o)+ / a(t, go) dt + / b(-t, go) d-ur(-t)
о о

we say that the process f(-t)ha.s a stochastic differential

(7.4’) сЦ(-Ь) = a(t,co) dt + b(dr, go) d'ur(i)
The last expression has not meaning in itself, it is 

only a short writing of the integral expression.
It is possible to extend the definition of the stochas­

tic integral to the case where $ = |(t, со) £ Wi , i.e. it is
measurable with respect to X A CBj-0 is the
G" -algebra of Borel sets / , and со) is ß  measurable

for every fixed -fc where (ur ( * ) Л )  is a Brownian motion
process, and finally we suppose only that

(7.5) V ' Í  l (t, g o ) di <=»«» i = 1 .
0

T
The last condition is weaker than E /^2(t,co) At <са~.

0
The definition of the stochastic integral for simple functions 
is the same as in the discussed case.
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It is obvious that for simple functions the integral has 

the properties a/-c/.
Before studying further properties of stochastic integ­

rals we prove the following lemma.

Lemma 2. If ^, 00) G is a simple function then for
the ргосезз

■b -t
(7.6) 5(-t) = <Lxp ; J’|n(s,co) dLv*r(s)- i / | n2(s,co) ds !

о 0
is a martingale, for which

E [ K L / 5 ( s b 5 = t,
i.e.

c.

(7.7) E  exp! J |-n(s) dur(s)- (̂s)dls j =1 for every 0 á 5 = T  .
Proof. '.Ve have that

i * t t
(7 .8) E^OO/Ç)=<ixp i J ^u)cW4u.J-4-j f̂ ujcluj E{ «p[j^ndur-|j^dü]/îs 1

Let for simplicity

5=t:,
Then

k+i, 'к - 4, 2, . ..,m

-  T.

E ! cxpD E  dur - Y / K  düj/^
tj-iEl £*p[J fnGeo ~

 ̂J |,пг du II .
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As the conditional distribution of |n(tj_1)(ur (tj)- w'fe-i)) - 
= Cj_1(u-(tj)-ur(tj_4)) under the condition 4j_4_ is normal 
with parameters (O, Cj_1 (tj-tj_ l ) we have

*3 tj
E  [<Z-xp [/ Cj_4 d u r -  i f  4 ,  diújf 7t "] = 1 •tj-l tj-4 J
Applying this relation repeatedly we get (7.7) and from (7.8) 
that ^(-t)is a martingale.

Here we shall not give the extension of the stochastic
integral for arbitrary íöí and P(J f(t) dd < c“=) = { ,the

0
reader can find it in Gikhman-Skorokhod Ü2. 3 , or in
Shiryayev dll .

The definition of stochastic integral can be extended to 
the case T = ̂  if

P  I i f(d,oo) dt < 0 e i = 1.

The definition may be given so, that
T OOV ! iim j £(-t, со) dur(t) = /  2 (-tj go) dur(t) ! = 1

T?o-= о о

The generalized stochastic integrals have the properties 
a/-с/ and

ÛO Oo

d* 3£ E[ i f(s,Go) cLs] <c>° then E i f.(s;co) d lo-(s) = 0,0 o
C>o

e* 3| E Í f{s,cS) ds <&<= thanт о

E [  /  E 5*00) ^  ^r(ó3 = E J l  (Sj oo) d s .
о 0
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Let be T  a Markov moment with respect ,T -t
P(qrc~)=1. Further / |̂ (s)co)dLur(s) = J ̂ (s;oo)dur(5) onо 0
j oo : 'C(co)--fc I . Then

/ £(s,co) dur(s) = / à5) |-(5)co) dur(s)0 0 Ooa?) If for сГ> 0 E exp I (ci + *lz) f pYs, g o ) dó j *==■ ̂  then0 о
j is a martingale with the property

E §(t) ={
where

$(-fc)=exp J / f (s;co) dLî (s)~ %  / rts}co) d6
О о

Remark 1. Recently A. Novikov Elllhas shown that ^ ) is true 
under the assumption

Eexp ! V2 J ̂ Z(5,co) ds ! .
0

Remark 2. For stopping time /Markov-moment/ of a Brownian 
motion process u/ ( -b ) we have

E uf(T) = o, Evr1(t) = E f

(if E  ur(-t)*=-t) , which is known as the Wald indentity for
Brownian motion process.

I
Remark 3» (7.7) is the generalization of the so-called 
"bundámétal identity" of sequential procedure.



Chapter 8’.
theorem of Levy

Theorem. Let there be given the continuous process ^(b). 
b =  0, §(0) = 0 , and for every b = 0 there are given the
bb-algebras ^  , with the property

If for process Í (-t y the conditions
£ Q £ * a i: , when t, à {1 -с

a/ for all t à G the random variable is 'r± measu­
rable

b/ for every b = 0 and h > 0 with probability 1
E([ K b 4 ь; - bt ) 0

с/ for every t = 0 and h ̂  0 with probability 1

E(C !(*♦>.,
are fulfilled, then is a Brownian motion process. The
theorem is due to P. Levy.
Proof. We want to prove that for any decomposition
b "t0 . bn = b + n of the time interval [b,t + hH we have

E dxp !i E  zk[iE_K) -!,Л-42! =«p! - J  Ц  z;vbKk=l k-1
i.e. the increments are independent and normally distributed. 
We first compute the conditional characteristic function of 
the increment £(-b + h; — l [ t ) under the condition E :
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к- iLet ^  - (̂-b + Ti h) - ̂ (i:+"Si h ) , then

exp a[ S(t+h)-$(-fc)] = exp a(Z 7" ) = zÊ1 I 'k-l ' r-0

_ a é i—  g  k-1 61<

^  n n-r -1 , zag^-t- - ï W ~ ba

+ i v h a hex+ g 2

So we have for the conditional expectation
bz n i

E{«pi.z[5(t+h)-f(tS/ît } - ë ~  + S E {e*p [lzS ^](eLz^* ‘ -
bz

-e  “  ) /ît }
n - Г - i , 2.2n

We want to estimate the sum on the right hand side. As

E{<zxp [íz X  ̂ ](e - o . 2" Ж  } “ E exp [izé  ̂ "] *

•_П .•EGe lz^ , _ e- * (s. t

= E { « P[izE<]E(eLz^ * - l - u C ^  £ ( ч ’„ Ж М  +

+E j e x p l i z t ^ ] ( l - й  h - e )|.%

and using the relation & - l - x = cr( x2 £ ) , where
we get

h2?" a, — £
( 8 . l )  I EC zxp[lz( ! ( t +h )_ I ( t ) J ] l ^ - e  2 I = cx( ni - y 2 ) +

+ § E { l E ( e ^ ‘- l - L Z C i  + f2f e J > t }-



To estimate the second term on the right hand side we have to 
estimate the sum of the form XjEI^I , where cT > Z .

From condition с/ we get that E  2 ( 4 " )  = h , i.e. the
n z k.i ̂  t'k 1

sum В Д )  is bounded in probability, (this followsk= 1
from íáarkov inequality) . From here and from continuity of 
I (t ) we get that
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, ц  cr > Z ,

in probability.
From b/-c/ by repeated applications of conditional 

expectation we get

E(C(E''íííE(^ E (’î”(E(̂ ь"I t at)/

4 0<rilsjak
and
with at least one definite inequality among r,l,j,k.
Further we have the following limit relation in probability

&+h)-f00f=t.™ CCS iïUdtfaî-'ittàft ’г"].n->°o k = l k»i ^k k = l ^  k=i

So by the Fatou lemma and from the above relations

E[(£(t+hH(t))"|ît] *  Ь , E ( [ (E r )4 3E f'i)' -к ‘'к к 6к

- V z « ) 3 ç  ,;]/$)-6 f ^ E ( E ( ^ f k ] f l 4 ) -
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= б п̂ Е [ Е ( 7;)г* Е ( ( ^ 1 ^ +^ ь) Щ - б ^  ^ . - £ * з и *

Now we are able to estimate E(ifCt + h)- f(t)| *
indeed

Е(1!(*+ь)-!(О№0*

* !E(ll(%̂ )-Kt)/l/ît)E(II(t*hH(t)riït)l14iVIb,/'!
Applying this to r f

E(IÿJ3l^ttizAh) £ C -(t

* . |e U0’- i - l * x - 4 ? | e  ф*
the second term in (8.l)
n-i

v2

we have the estimate for

s e i ' el M »* - 1- - c + > * « n h .(*)*-r-0

So we showed that

zV
E[explz(f(t+h)-f(t))|iJ = e x .

Prom this and the definition of conditional expectation for 
every decomposition ; .. <tn =t it follows that

E<zxp { L Z  z ( ! ( 0 ~ K v J )  <= E £xp Í i. E atk(iCtk) - | ( tH_4)) ) .1 k-i K 1 k-1
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* E [cxpLzn( ! ( - t „ ) - i ( th.4))|3; ] -E e x p U È  ^ k( I ( tw)“ ! ( v J ) i *n ~ x k= i

f ZnO^ln-i)•exp-----2---
By induction the desired result follows and the theorem is 
proved.
The statment of the theorem may be deduced from the following 
general lemma.
Lemma. Let it) satisfy the conditions of the theorem
and f(x) be a bounded twice continuously differentiable 
function where and are bounded, then

Е Ш О Й - № ) ) - т /Е [Г а М ) 1 Ш и ,  t ä i .
We shall not prove this lemma but we show how can we

get the theorem from it.
Let $(x) = and we сал aPPly the lemma; so we get

E [e a5W /Ts] - e a | ( ö - - í /  E [e USM/?s] i a  , t£ s ,
S

or

г—г l"X( I(-t) — I (ŝ )
LLe Щ -i

LMI(u.)-i(s))

using the notation

* а д - Е [ е а(5(0'5Ы)|?д
we have

г /.t
^ ( t ,s ) -  4“ - j Ф (u ,s )d u .

s
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By differentiation

3*a,s) \ »(t|5) [ t i S) *(s,s)-i.

It is well known that the only continuous solution of the 
above equation with the given boundary condition is

which proves the theorem.
Remark 1, In other words the theorem states that if f (-t ) is 
a continuous martingale and is a martingale too
then ) is a Brownian motion process /see e.g. Doob 
theorem 11.9/.

Remark 2. The statement of the theorem remains true under a 
bit weaker condition. Namely if the following conditions are 
satisfied: £ ( t ) is continuous with probability 1, f(0) = 0; 
there exist such random variables 0 with M  ̂ -L < ^
( I - i tZ ) ) that

i/E[(Ut-h)-!(t))/îj/ s ît, a  Et/§Ct*h)-Kt)HTJ4 4».
and with probability 1 the following limits exist

-о,

then the process f (b) is a Brownian motion process.
Proof of the latest statement: Let us denote in the case

h > S



№ - т ь ) - т / Ъ ] -

Then from our conditions, using the Lebesgue theorem,
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Exercise. Generalize the theorem of levy to the multidimensi­
onal case, that is prove the following statement: If the 
process I (t) is continuous with probability 1, |(O)=0 
and

a/ I ( t ) is ^  measurable for all t 20^
Ъ/ E(!(t + h)~l f c ) l % )  = 0 for every 1 = 0  and b > 0

with probability 1,
с/ there exists a positiv semidefinite matrix В such that

E(( ! (t + h) - J(t))(|(t+h ) - f (t)f I % ) - h. В
for every i à and h > 0 with probability 1
then l(-fc) is a multidimensional Brownian motion process.
The same statement is true under the weaker conditions of 
remark 2 /p.6l/.
It may be easily proved that (̂-t ) is continuous with proba­
bility 1 and so -p(-t) must be constant. As ^(s^O, (̂t) = 0 for
-t à S . So we have proved that condition b/ in the theorem is 
satisfied. Similar argument shows that for the function
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+ W-E[(i(t)-|(s))*/30

lim  ̂(l+Д )—Ф ti) „ I is satisfied, if t - 5
Д10 A
so ^(t)= -k - s . Y/hich proves the statement.

, and
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Chapter 9 '•

Stochastic differentials and a theorem of Ito

If the process f(-t) may be represented in the form

(9.1) K't)= £(o)+ / a(-t;co)dbt + / b(-fc,со)dup-t)
о 0

where the processes а. (i, со) , b(t со) belong to DfZ [O, T] 
then we say that it satisfies the stochastic differential 
equation /or it has the stochastic differential/

cLf(-t)= a(t|co) dbt + b(i,co) clur(t).

V/e have to remark that the terrain stochastic differential has 
only meaning in the sense of 9.1 » but we shall use this
terrain for brevity. a(tJ oo) and b(-t,oj) we shall call 
the stream coefficient /local expectation/ resp. diffusion 
coefficient /local variance/ of the process £(-fc).

In the general case we suppose that a (s, со) and b(s,oo) 
are measurable with respect to p  for every fixed s and

P  { Л  a  (s co)| ds -= 00 } = Íо 1

P { / bps,оо) els ̂  = ij
0

where { v(-fc) ^  } form a martingal in Oé-fcíT(T may be <>•=> ).
In the sequel when we say j(t) has stochastic differen­

tial /or satisfies stochastic differential equation/ we mean 
that a, b satisfy the above conditions.
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a function onU = u ( l ,  * 4 ,  . . . »  X n ) 

[0,®°] x'R" , where the functions

Ô
at >

U: Эи.
Э XL > U-. d lb

8x-u 3xj
are continuous. Let us suppose that the processes |-L(t) 
l = n satisfy the stochastic differential equations

dIi,(t) =  Q - i(t,со) d t  +  b-L( t , c o )  duy(t) .
Then the process (̂t) = u ( t ,  f^t); . . . , | n ( t ) )  has the
stochastic differential

сЦОО [u-oOtf*, • • • ) ) + X bj U-LjJ dt Z U-L d |L(t) =

_ 4 n n n= l E  bi.bjUi.1 dt + E  u-L |a-L dt+bL duri-tjlt,j=i L=i I— v CJ

Before the proof of this theorem let us consider some examp­
les. In the case n=i Ito’s formula is the following

d^(t)= Эи. (t, j)
at + C l ( t  ,co)

3u (t, §)Эх dt+ xb1- dt +

+ b a ^ j i .  dur(t)_

The difference between the ordinary and stochastic differen- 
tials is expressed by the term -j-b * ~q хг dt . Its
appearance may be explained by the known properties of the 
Brownian motion process, for which

dt • dur(t) = 0 ) (dur(t)) — dt



2, 2.at the same time (dt)“ Q . The formula (dur) = dt is an 
equivalent form of the relation

/ (dw(t)f- T.0
Let u.(t(x) = X2 ал<1 f(t) “ ur(t) . In this case co=0 b=l. 
From Ito’s formula we get for

(9.2) d^(t) = di + 2 ur CO d  ur (t).

This result is nothing else as the differential form of the 
known relation for Brownian motion processes

/ ur(-fc) dur(t ) =  ̂[ur"(T) — T J .0
Heuristically (9.2) may have the following explanation:

Д  ̂ (t) ” u/(t + Д)- u/(t) = (ur(t+A)- i*r(t))(ur(t +'Д) + ur(-t)) =

= (ur(t+ A) - ur(t)) (ur(t + A) - ur(t)+ 2 ur(t)) =
= (dur(t)) + 2 ur (t ) A  ur (t ); 
where (A ur (0) — A t .
This gives (9.2) .
As a next example let |(i)= ^(t,co) measurable with respect
to ^  , Pi / Î CbjGo) d-t = 1 j

$(-fc)= £*p { / 1 (5,00) dur(a)- y  / |z(s,co) ds } , о 0

that is
$(t) = <zxp { K O  } ,

where



Prom Ito’s formula we get
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d $(t) ~ $00 íO) ̂ ^ О О »

This means that the process §(t)is the solution of the follo­
wing stochastic integral equation

(9.3) *?(t) - i + / ̂ (5) f(s) dur(s).
0

We prove with the help of Ito’s formula that the only contin- 
ous solution of (9.З) is given by

5 M  “ £*p{ / i(s)dnr(s)-/ ̂ (s)cLs } .
о 0

Let -t ) a continuous solution of (9.3) . As we have seen jj(-fc) 
is a solution too. Applying Ito’s formula to the process
'ÇM * p) we Set if we Put

щ  < Ч « +? м Ч ^ )  - $! 4 « -

dl) dur(t) + «2. (i)
г П2.m . dbt- M i dur (-t)

p2-m
" Id) $00 = 0,
this means that (̂-t) ” $ (t) with probability 1.
Proof of the theorem. It is enough to prove the theorem for 
the case when a-L(t, со) and b-L (i, 00) are simple functions, 
that is they are constants on some intervals of t. This means
that
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ii(0” a-Lt * b-L(ur(t) - ur(tw))) on -tk < -fck+1 ,

where сц and b[. are constants. In this case there exists a 
smooth function лУ such that

a(Mll • • ■ Jn)" v  On ̂ 0))*
So we prove Ito*s formula for functions of the form

$00' ̂ 0; ̂ 00), Oát = i.
Let £ = C2n-t] and A  = w ^k . 2r')—ur((k - 1)2 n) к = 1,2,.. 
then

(̂i, ur(t))-v(0( 0) = ̂  {u-(k.2 w(k.2 ))-v((k-l)i ^ki"))}к él '

+ S  М(к-1)Г", w(k2-n))-v ((k-l)2'" «-((k-l)f")) } ̂
+ { ur(t)) -ir(l2~n, ^(e,2"n ))} ,
from our assumptions of differentiability we have, with the 
notations

0^\ Г  = r —St I L dXj, 1Г4
r?>ö (У Sx̂ Sxj 1

$0 iir(k.2 ux(u.2 ))_ ir((k-i)2 . ur(k.2 ))|-kët 1

=  X! ! "̂o((к ~ l) 2 -ur(k .2 )) • <2 + O ' (2 ) 1két ' 1

Z  ! ir((k-l)2"n ur(k.2“n))-̂ ((k-i)2"n. ur((k -l) 2~" )) I =két ' 1
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“Ç { <r1((k-l)2ni ur((k-{)2 "))A Wy + J  ̂tí((k-l)2"n, ur((k-i)2""))'к s t
'(Дц)2+ cr (д ü^)2, J
and

ir(t( hr(t))-ir(i.2 " , (̂£.2 n)) = ср(1) .
Prom the definition of stochastic integrals we get

X  ! O'0((k-i)2 ", t̂ (k.2 ")). 2 n+ o(2 n) i ” / v0{ssw(s))&S + & ({ )

! ti((u-i)2 n( ur((k-l)2 "))Aurk-+ J 0'11((k-i)2‘n) r̂((k-l)in))(Aü/wf

+ ^(Aw;) }= / <̂ Cs;itr(s)) dw(s) + |-/^(s.u-fs)) cLs *о 0

+ T k2 ^1((k-l)2n) ur((k-l)2~h)) [(Ad/k)Z-2 r'] + Ö'(l).
From the last relations we see that to complete the proof 
for the special case ir(-t,ur(-t )) it is enough to show that

Е ц Д к - О Г ,  ur((k-l)2~n). [(Aurkf-2“n] -- >0
in probability if n — .
Let

^ [ ( Д ч ) г- Х ] ,
and for fixed N

X = X ' m a x  I Ч 2-» I - N ) .
tVe have

pi s  ч,((к-1)2-, ^((u-or»г,•[{-%;.,] + o!s
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= P  { SÜLŐ I ur(-t) I > N } - * 0 'iS, N — >00.

О = t<i
On the other hand

E S 4l((k-i)rn, ^(( к- 1 ) Г ) ) £ к=0,
and (using E EJ=2.2 2")

EG ( v,,((i«-l)i'n, w((u-i)Z""))£,, XkN. , f -

- Z Ekát ((l>-d)2"n, ur((k-l)2"))X;_1 . £

= sup ostsi 
|x|£ N

V.u (V) s4SI E C  = 2 sup ir* (t,x) X ( 2 ")2
Oá t á l  ' kát
1*1 g H

— >0

if n — »°- . So the proof is completed.

Exercises
1. Prove that for natural m = Z

d(ur(t)) = m(ur(t)) dur(t)+ -m^ ^  (ur(-fc)) ebb.
2. Prove, if |(%) is twice differentiable and |"(x) is 

c ont inuous t hen
d̂(ur(-b)) = |(ur(-b))dw(t) + -j- ̂'(ur(-t)) dt.

3. Let bt(i, со) (1 = 1,2) measurable with respect ,
P{ /bt (t)dt -= ̂  } = { ] I E J>t(-fc) dt ̂  , then
£ Jb4(l) dur(t) f bz(i) dur(t) =/E ̂ (t)bz(-t) di.

4. Let -b(-t, со) has the properties of the preceding exercise
and / Eb (-t)dt ̂  ̂  ( m -  natural) , then

E [  /  b ( t)  = [m (Z m  -1  )Jrn l T " 1"1 /  E b im (d )  d.1.
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Chapter 101

Let i IT,'?, P } be a probability space, • -
algebras / n - i, 2 ... /.

Definition We call the sequence ! fn , ^  j a martingale, if 
a/ fn is measurable,
ь/ ElfJ<°°; 
с/ E ( f n.j

If we have the inequality
c’/ E(ln+1/:Fn) = fh resp.
c"/ E(fn+1/Tj = fn instead of

the equality с/ we call the sequence a super- /resp. sub-/ 
martingale.

Examples
1. / Let El f I * and fn“E(^ I ) ; then ifn,?'n' is a

martingale.

2. / Let be a sequence of independent identically
distributed random variables ( E f-t “ 0 ) . If ?-n - 
and ^ - f E" • • *+ jn then { ( T n j is a martingale.

3. / Let P ^ Q, be two measures on i, ?n and Q n the re­
strictions of V and Q, to 3-n (s f n + i) • Then obvious­
ly Pn < Qn . Let fn= ■ the Radon-Nikodyra dériva ti-d. (An
ve, i.e. for any A G п̂(А) " / fn Qn(dco) .

A

Then ( fn, in ) Q I is a martingale. Indeed, £n

Martingalea, semi martingales

is a
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f  Q(dco) = f  |n(co) Q(dLco).

martingale if and only if for any ) m ̂  n

4. / Let £г, . . . be independent, identically distributed
random variables.

= ̂ (A, 1г, • in),
& ( í í: í z ,....) •

Let us have two hypotheses for the distribution of fn 
H p: the probability density function is p( x )
Ĥ *. the probability density function is ĉ ( X )

Let P and Q, be the corresponding two measures generated 
by (fi, I», • • • ) on (-О-, А») . If for any Bor el measur­
able A from / ĉ,(x) dLx = 0  follows / p ( x ) d L x - 0  , then
Qa. e. — 5* A

d P n  _ T T  lP(ii(oo)) _ c
dQ,n " U  <r(EiCc*)) "

The sequence ( , T ’r)l Q. i is a martingale.
5. / Let fi, 1г> . . . be random variables °°

Let '?b= {0. f U
%- &  Í fi, • • - , In

and

The sequence { %  , î'n j is a martingale.
6./ Let { , P r } be a submartingale /п = p 2,. .. / •

Let Ç =0, ...j $ - L - S j , for nà 1 .
Then

i„- g  Sk - è  [§-E(§kR.J E(5k|^-,),
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where

Е ( У  ?Е4)=Е(1к- = 0.
So we get In = ^n + » where

'Зп-è К -E(!J?l-i)]k=l
n

is a martingale and ^ „ - Z E Ü J  ЗГ,.,) is a non decreas­
ing sequence.
In the sequel we recite some well known theorems from 
Lebesgue’s integral theory.
Theorem 1/monotone convergence/. If fn — > f with probability 1, 
then from fn t f and E <  ̂  /resp. fn  ̂f and
E  E < c“*> /follows E f n  ̂E f / resp. Ef„ 4 Ef /

Definition. The sequence Í |n i of integrable functions is 
uniformly integrable if

lim sup -I lfnl cEP ~ 0.a _>cx, n

This condition is equivalent to the following two conditions:

( i) Elfnl ,

(ii) lim sup J lf.n|dP = 0.P(A^0 n A

Theorem 2.(Fatou’s lemma):
If the sequence ) is uniformly integrable and 
|E lim sup fn I «=■ , then E (lim sup fn) d lim sup Efnf) -> C>~o • I П —»* O-o ' Г) I

Theorem 3. If f n = 0 , f-n f a. e. and E <fn < «=**=> , then
the convergence E fn E f  is equivalent to the uniform 
integrability of the sequence (fn } .
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Theorem 4.( ma jóra ted convergence). If $ a.e. and there
exists a function g- , for which |jln| =  and E ̂ ̂  ̂  , 
then E||n-f|-> 0 .
Theorem 5,(bevy). Let ? n be a non decreasing sequence of 6"-

Oo
subalgebras of '3r , and denote U J“n by . For any 7n = 1

measurable random variable f with Elf И  00 , the following
relation holds a.e.:

lim E ( £ № n) = E(i/J-^) .
n

Proof.
Without loss of generality we may assume that J"c><a= X . We 
shall use the following lemma:
Let ( -TL] P ) a probability space and G- an algebra, which 
generates the (X-algebra 'V . For arbitrary £-> 0 and A £  ? 
there exists a B & G  , such that

M  P(A\ß)+P(B\A)< &
(Hint for the proof. Let IH, be the class of the sets of the 
above property. ÜÍ => G and ut is a 6" -algebra, so Üt - EE). 
Obviously (4) means, that

0ai Е1хд —  X BI < £ .
From ( 2 ) and the measurability of f follows that for
any given £ > 0 there exist a natural п0 = п0(б) and an ?П|) 
measurable random variable , of property

El I-f„,l < %  .
Let 7) = 11 - I I and0 no
IT =inf ! nïn0 : E ( ^ ) > £ i



) . As for every n ir0(if there is no such n , then тr-°°
!'t' = n { £ “ív, ) so
P l E C ^ )  > t  for some n £ n„ !

= X ] P i r - n ] = E  J i . A P - S f /  E ^ I ^ J d P -n“no "-"о tT-nl n-n0 t tr4nj V0‘ n'IT - n}

*="o {Г-n}6 Ь
Furthermore for every n = n0

IE (!li,)-S I-|.E (i-^ li,)+ (^ -|) l‘ |E(f-S^I^)h

+ IL 0 §1 SE(^|T„) + ч  ■
Hence

Pi | E(Ê Î n) ~ ! I> 2 8 for some n = n0 j й

Pi EĈ Iîy. ) > 2 for some n è n0 ) +

P I X ! -  %  + % E ^ s % + % -  £ .
This proves Levy’s theorem.
The following theorem includes the theorems of Lebesgue and 
Levy too.

Theorem 6. If In — <* I a.e., I inH  ^ , E  ^ ^  ; ^  - i  J
is a non-decreasing sequence of G'-algebras and ? = 
then a.e. lim E(IJ ̂ )  - E(i| iL) .П( W) 1

Proof. Let oL - lim sup E( |nl iL),
N ч>о= nà N

oL = lim inf E(S n I ?v„) •
N ->°° N 

mèN
We shall prove, that with probability 1
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We set for fixed К

У -  sup 1„n Й K. '

T h ^ n  | ю г  n  à, K  t

1) > $ , cxnd6K 5n t
cZ " Em sup E(§n! ^ )  = Em sup E(<2 l'î'm)

m> NIt is clear, that

EU-E[lsop |,QáEí C  c>o
'K nfeK

by Levy’s theorem
lim sup E W ^ )  = lim E(^kl^b)” E(^h|i’e»e).
N̂ 7<*=> m è N N-̂ > "

So for any К we get d  2 E  (^K | TE.) and as Ф lim sup £n=
lim E = ̂ , furthermore EI sup In | = E 7 < c~ by the monoto- 
ne convergence-theorem (which is valid for conditional ex­
pectations too) :

oi á lim E(^kIF«») - E(llEO- к
Similarly we can prove, that

Eai?u = oi.
As oL á oL , we get the desired relation

l im  E ( ln J ?E») “  E d l^ L ) .
n, m-i>oo

Semi martingale convergence

Theorem 7 . If fnj ^  is a submartingale and sup E|n<c>“ 
then there exists /the limit/ lim 5„ H ~ )  with probability!n — > 00



<0othen there exists /the limit/ lim (“ L )о -> *>—
Obviously it is sufficient to prove theorem 7. For this 
purpose we recite an inequality of Doob:
Let y2) . . y* be a sequence of real numbers, and
a < b.
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Theorem 8. If ( §n , T,, j is a supermartingale and sup E£n <

y. =0,
•4 = min !к ; 1= к = n; yksa i
2̂ = • min |l<:-fc4SkSn, ykâb j
•

min 1 к • ■bj’inn - z < ̂  ̂) y*=a
2̂m = min 1 к . < к = П (yk = b

If one of above sets is empty, then the corresponding i  is 
equal t o ^  .

Let us denote max \ m : -fcZrY1 ■= ̂  j i.e. the number of 
intersections from below by (b (a,b) and the number of inter­
sections from above byo6(a,b).
If we replace у4)...,уп by random variables . --, then
t 2 ) . . . j tn c?C(a,b) and ß(a, b) also become random varia­
bles. Doob’s lemma asserts the following:
Let l i n i T n l be a submartingale and n é N Then

(ЮЗ)
Г nf  . w  ЕОп- cl) „ E (I„+ |o .|)
t  ft(a,b)é k-сГ = b -  a

n  /( I 'i ^ E(ih" b) ^ E(ln +1 ь I)t  ЫАa.b) = “ h-а “ ---- h-"^—b- a
Proof: Let first ! V  «n, J n I

b — a
be a nonnegative submartingale

and a=0; we show that



( vn Ls odd)
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Е(Ь(о,ь) s

Let £o= 0 ( ao= ̂  and

{ Ц  £ ^ H ,

0 l|> tm < L = tm + 4 , ( m iS evein)

We suppose that ^  ~ N (instead of -Ь̂=0а) if the corresponding 
set is empty.
It is easy to see that

N

('iCJj 40 ô+2  aL( íL - it-i) = bf)(0,b)1=1 1
and so

b Eß(0,b) = E E  u-L [ h - I I -J •
As

(IUt-u- U . it s t
odd. m+ 1 lI

- U ! Itin odd- ̂
denoting h  -  h

ha

- i

— \ i- < I I p op i d u  L I j
by we get

(4C.í) E E Ç a L(it [iJ = [[0E E a ^ p

= E 0+ E  E  E E + E E  =L-l 1=1

= E £0 +- E E ^  = E fN

If ' E , 'ЗЕ / is 9 nonnegative submartingale then from
the relations (4 ) and ( 5 ) we get

Ер(о,ь)«-Е^ '
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To complete the proof of the lemma it is sufficient to show 
that the number of intersections ft(a,b) is equal to the 
number of intersections ft(o, b-a) for the submartingale

' (fl “ a ), '

Remark. If for the nonnegativ submartingale u.
denotes the indicator function of the set | max h > b ! thenLéN
we get

?  \ max .iáN ь

Proof. U.-L é U  , so in (5 ) we have

1=1 1=1

E l0 + E U.XL - E u. |N (= J N <19 )
{(ricxx |-L> b} IS H

The proof of Theorem 7.
Let

f* = lim sup |n .n
Í * = lim inf In ,

and suppose that { E f > 1 * 1 * 0 .
Prom the identity

{!*>?»} - { U f*>a>b>l„}
CL < i b

a,b rationale
we get then, that there are rationale a,b such that
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P i i  > a > b > £ # } > 0

Prom this if follows that

Clo.6) P{ ß(cx,b) = } > 0 .
But according to the inequality e we have

E (b(a,b) =
sup fn + |a| 

b - a
< Oo ;

contradicting ( 6).
So the first statement of Theorem 7. is proved. The 

second statement is a consequence of the first.
Two examples for the use of the supermartingale conver­

gence theorem.
1. Let

= E( !/$■„), ЕИИ0-
be a martingale. On the basis of the supermartingale conver­
gence theorem there exists the limit =lim Е ( $ Ю  and
it is i o  measurable.

Show, that lim E(f|p,) = E(f| *?•£>«>)•
2. The Kolmogorov’s 0 -1 law.

Let 71,^2)-■* be independent random variables, and

= • ■ * , % )  * SuPP°se that A£ ^ ( ^ n +1) • * 0
for every n. (E.g. the sets of the form { sup ^  ^  } or
(there exists lim ъ j ).

The fields 3^ and 6"(Лп + 1, % n + 2) * - • ) are independent, 
and if AG , . • •) then V  (A|'irn = P ( A  ).
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On the other hand, from 1.

'P(Ah„)-E(x>h n) - E ( i j 3 = J - X >1
therefore

P ( A ) - X ,  , i.e. P (A ) -  0 or 1 .

Martinnal Inequalities

Prom Doob’s Lemma it follows that if !^n, d"n j is a
submartinga1 then

(10.7) P ! m a x  [ ^ C !  .к û. П ^

This is the so called Kolmogorov’s inequality. We can easily 
see that even the stronger inequality

P i max ^ = c ! = |  J dP
к = П I ma* £ c. I

I к g Г| k I

holds.
Leter for stochastic integrals we want to prove the inequali­
ty

E 3UP ( J jl(s со) d ur(s)) = ̂ E J (s со) ds.о о

In order to do this we need the following inequality.

Lemma 1. Let oi = i and the random variables f4, • • • , 
satisfy the conditions: EUJ < 0,0 and for each к

EU*" IJl4 l Iw) = o.
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Then denoting $ -sup (0, St, . . f„) , !n+=süp(0, fn)
we have

oL 
cC~ \

06

E(s:r
Proof Let a> 0 and %k(<x)= 1 if ci

n
else Xk( a) = 0 . As E X k(a) = 1 if a ú $ and E X k(a ) = 
= 0 if I < a we have for

t - ^ 7 a ' l è  % k(a) d a .0 k-1
Prom the definition of % u(c l) we may deduce the inequality a 
X k(a)= |k X k(a) . So we hove

a Ë  %„( Cl
k = i

) i Ew=i (a)
and

об - 1a Z  %„(a.)*Êk=d k=i
oC -2.
CL X w(a). -

X k(a) áré measurable functions of the variables stl 
consequently

) Vc

E(fn- fjxk(a.) -E X k(a)E(i0- 1 k/l4l • ) ) =0

and

E a -* E  %k(a.)W=1 ^ E n cL - I  Z-J Cl k-i xk(cO = E  EE cr xk. Ck-1
Taking the integral of both sides of this relation with 
respect to a from 0 to infinity we get

í“ “ í:
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Using Holder’s inequality we shall have

е Г ‘ й -е 5*“ ‘| ; ^ [ е п ^ [ Е ( С Я ^
which is equivalent with the statement of the lemma,

Remark 1. net us notice that

P a !  - Ê E l ( a )k-1
and so from the relation

оГ Ê  Xk(a) - è  (С )Г X k(a)k=l к = 1 (r -1,2)

we get the inequalities

P ( l  > 0. ) 2 £1*- , P ! $ > a ! £^ ex
Corollary, Applying the lemma to the variables^-£2l-f3 ) Sn, 
we get

E U  X

=̂гпах (û - |n) . Hence, using

£  l *

n  —■ ч~/ bn
cL r  ̂,cL ,  ̂ oC

where $_ =max(0;-14, . . ., - f„ ); 
equalities max | fк|*шах(§, $_), |!j =(C) +.(!„)
get

we

E( max.I f j  ) ) El!w

Theorem 9, Let 1 < and ( a non-negative
submartinga1 for which

sup i—

E !. e



100
Then

(lo.8) E (sup !„) <0~
(lo.9j E (sup < ( ^ i )  sup ln .

Proof. The submartingal convergence theorem ensures the 
existence of lim E  =  ̂ . B y  Patou’s lemma

E l - lim E fn < 00
Let h = sup E  . Por any "A5* 0 we get from Kolmogorov’s 

N
inequality

„ * > 1* J E d P  .IN J 1 !

Set F ( Ä ) - P ( , M ) . Then

E[ sup E
* EШк
* °° oL

U - . ' * d F M “  /  F( Л ) сЕХЕ -0

-  hrn r ^ F C x ) lK á ?F0) d P )d (9 \ )
00 V 0 >}

= .1
XL

r

( / dO?)\ 
> )

A p  = —  a r  od-1
1— £ — ̂  
F E

Using Holder’s inequality

oC ч ̂Jc>C(EL ) (EC)V«<Y ( r r a ) '
How if E ĥ

 N

Otherwise let

<  Oo , then the statement follows easily.
(")

°2n = m m ; then the inequality



- 101 -
'XPttfr - 1 * * a ?

holds, and applying the above result we get

E(tl>  f  E C
c  ̂ *As ^ " Î 7 n it follows by Patou’s lemma that

oC ш- c oC

E( V ; ^ ^ Ec (; T s C E C ,
which proves the theorem.

Remark. Lemma 1 is a special case of theorem 1.

Corollary 1. Let ( l n У п) a martinga 1,o C > i9 sup ElIn/ П
then, as \ IfJ, Зу,I is a submartingal

E(s“p|!nl)

oL
<  oo

V o C
<  O O

E («ftPl У f  вйрЕП„Г.
Corollary 2. Let the martingal 3~n ) be square integ-

I—  *rable, for which sup b l  ç 00 « Then

E (sùp izn ) - ,
E (sup IÎ) s h sup E f* .

Remark. If oó=l, the theorem is not true, so the following 
theorem is useful.

Theoremlo. Let ( £n , 3^) be a martingal, for which

supП E d  I J  log I l n I ) < Oo
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E ( s ü p | g ) á :isT (i+s apE(IUío<3+lfj)-=~

Proof. Let a,b > 0 * then

a log +b = a log * а +

/This can be seen as follows:

log b = ,
from where

a l o g é ®  - -I-,
a log b =  a log a + -s- S a log^ a  + -b-

and
a log b ^ a log+a  +■ ̂  . )

Integrating the above mentioned inequality

Pi 3jp I U= a í = i  f HJ cLPm ”n tbûp / |J ̂  a.}hr, ̂ П
according to a in ( { we get

(I0.I0)  ̂P(sup|§m|> a) da £ / -^7 J llj dP = 
' ' 1 1 (supdj^0-}mS n

- E(|lnKoÿ( SŰplfJ) = E(/L|?ô + £n) + E(sap Im) .
Furthermore

cx>

(ioui) E(süp /!„/)= J P i SÛÇ | f J > a 1 d a  è
00

s i + / P  ' &Ы-Р I | J >  ex 1 d a1 min
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- 103 -

i P( sûp|Sj> a Î d a  é l  +-E[/L/^oa ||J] + é
\ nr\ £ П °

Supposing that E Г sup|| /] < we get»n £ n

J P 1 Su.p| |m|> a  i da..1 inn̂n

(i- 4")|P{ sûp|f J > a  Ida s 1 +  Е[|1п|£о<^|1п|]
and from (llj

E [ s ü ç |l |] = 1 + A [ l +E [ / U £ ° c f / U ]  s 

s ë?T IP + sup E ti U  I U]_ ■
To see that E [sup | |m/3< с>та is always true we can use them §n
"truncating” method, and get the above inequality from where 
the theorem follows directy.

■dartinhales and semi martingales with random time.

Theorem 11. Let (1П4Т Л } be a non-negative superraartingale 
/that í b  E(|n+4/îb) =  l n ) V and <o two stopping times/ 
according to I 3“ } ) .
Then and I ^  are integrable and on the set T" > O' the 
relation

le'- E(|c/3v)
holds with probability 1.

Proof. The limit =lim £n exists and by Patou’s lemma
Г) —> oo

E E U m  é Urn E In = E C  ocn i



Similarly, if Р('Г<0~)-4

E^r=Eli“ ">'Глп = ttrL Е  ̂ "глп - Е. Е ̂
So we have for any

Etr = EX/r_, ^ +EX|r<oo} ir<c~-
That is is integrable /and £0 too/.

^тглп ) ) is s supermat inga le, as

=mÇ n % tor-rW> + Sn Xtr>n  ̂
so Irin is T n measurable, and

E y l n n l ^ n - i ) = S n irr, x £ir=m}+ E O J ^ - O  X £T,än} á

=m^-irY'̂ г = т} + n̂-4 ̂ {TT = n-i) + ” El(n-l)
Let now E I © I < 0,0 . Then the equality E(©l'3̂) = E(0/'?:n)

will be satisfied on the set { 'o' = n } .To see this let us 
define ^ (u>) on the set { G-'*= n } by

(̂co )= E(0|?n).
As
{ CO '• ̂  (c*j) = c) П { <0= n } = { GO 'E (©/ <3“n) = C } П {^=n } E 

furthermore for any A£?E
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= / в  d?  = J E ( e l % ) d ?  .
A A
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That is ^ is 'i-çs measurable*

Now on the set { <o - n } we have E ( î ^ l  '^'б' ' = E i fr/^n } 
and it is enough to show that

(40.ii) i n -  E Hrl î"n )
As

Patou’s

I c
1 T̂TAn ) 
lemma

is a super-martingale, we get, using

iT.A^ E ( ( rAJ f n ) - E ( M F n).

So we have {4%) ои the set { T' > n ! and the theorem is 
proved.

/  •

Theoreml2. Let £h = E(^| ?>, ) » where E l^l^0*0 * Then for
any two stopping times S'l IT withPjr*00 =i)we have {S '  = T")

Proof. We get, as above that = fn on the set {V = n } 
and Ei^l^v) “ E($| V n )
on the same set. That means

“ Е Ы ^ Е ) .
Furthermore '3-E c as we can easily see and

E ( M ^ )  = E(E(tlFv)l%) - E (rç|3>) - fe-

Theoreml3. Let { ^  / be a super-martinga1, such that
§nâ E Í ) * where E E I <c><a . Then for any Tj with



106 -
Ir* E(SrIív).

Proof. Follows from the theorems 1 and 2 and from the 
identity

f n- E ( ^ / ^ ) + ( I h-E (^ /'? :n))

using the fact that fn~ E(^ / ) is a non negative super­
martingale.
Applying Theorem 2 with C = 1 we get the very useful

(10.13) E Ic “  E f 4

relation. (13) is true under different sufficient conditions 
too.

Theorem14. Let ( £n | E; } be a 
time with P(ir *:c*'=) = {; Eíir |<c>ö
then

E ! r - E I t

martingale, IT stopping 
and lim J in dP - 0{r>n>

Proof. For any n > 0 we can have the formulae

Eic - S  E(iJr4)f(t-k)tE(yr>n)P(r>n)-к = 1

= E  E(E(^/'Pk)/r=k)P(r=k)+E(Ur >b)P('T>b) =
к -i

= E E ( ! j r  =k)P(r=k)+-E(lri'T >h)P('T^n) -

= E(f J r  è)P(rën)+ E O J r  > n)p(r > n),
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E!^E(M'T^n)P('rán)+E(U'r>n)P(r>n) =

-Ei„-E(Üir>n)P(T>n)+E(M'r >n)P(r>n).
As E = E ft and the second and third terms in the right 
hand side of the above equation tend to 0 as we have
the statement of the theorem.

Corollary. If E U n)< , then E lr = E I* . Indeed
Е(^г)гёК<=°° , and

i/s„ d.pis/iUdp«(/ i;dP)‘/i(P(r>n))'4 *
{'Г' >  ml {/Г>п}

s k‘4 ( f ( r > n ) f % o .
/

Example. Let ^  r^2) . . . be a sequence of i.i.d random vari­
ables with P(^-t = i) "P^i.= “ i) = Vz , and

L =  r i ±  . . Л

i"=inf { n •• |п = И  ; or i n - - N } } (;*!, N naturals)
Let р = Р(1г"М)( °( = P(^r' “Ю*
/Obviously P(jr <:c-0)=l ) . Thenp + c^-l,
E M r  I = max( И , N) < °<> . Moreover / §n | - max (M, N ) on the

¥
set { T > n } and

/ |?J à V ü  max(M; N)P('T> n)— > 0, (n -►«>«).
{T>n>

So according to Theoreml4

0-=Ei1=ElT =9hi9(-N)=pM+(i-p)(-N)=í>p=^) су = .
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Based on Theoreml4 we can prove the so called Wald’s identity.

Theorem 15. Let <ni t ... be i.i.d random variables,
EJ^-J ^ } Г -  stopping time for %  - G' { . . ., } ,
then with E r  ̂  ̂

• - + ̂ ) =E ^ E r .

Proof. Let %  =min(T;N) , N ̂

$n“t a 4' - • -+
{ |П) ) ia a martingale. According to Theorem/4 /or

Theoreml2/
E = E l4 = 0 .ln г

Applying this result to / we get

E I I^K . -+I^J < = ErN-EI^U Er EI^J^
and rN TX E l̂-J I Ê J > so by Patou’s lemma whence

1 L-l t“l

El irI = ErEI^4|+ E ( lyj*.. . + KrM = 1 Er E|̂ 4/ä
Now we show that lim / /$n/ d P = 0  .

n -> »  (tt > n}

Obviously

I loi = 1 ̂ 4-Ê924i + . . .+l’in-£iíJsloZJ*...*-lllnl+r)E%il
ÍTT ̂ п}

and on the set

• --+ h i r / + r  E l y j .
So I l l J d P *  f  ( f r i j K  . s h i J + r E l b l ) dP —>0

£ r> n }  C'c'>n}
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as { E I7J+ . . . + l7r| + r EI$J ) ^ and Ç { /cr <°°}= {

is the conditions of Theoreml4. are satisfied.

Exercise 1. Prove that if E (^ ) and E Г  ̂ 00

( 4Л  • • •* 4 V) = <$ % E'er
Exercise 2. Prove that in the example after Theorem 4

E r  = M.N.

. That

then
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Chapter 11;

Some properties of the stochastic integrals as 
functions of the upper bound

r
Theorem 1. If I-(4,co)£ W and thent о
the continuous process $(t) - J l ( s ) d  ur(s) satisfies the0
following inequalities

t T
Pi sup I .1 f ( s ) d u r ( s )  l> Cb ) á -L ./' Ef(t)di 

0 £ i á T  о т а г  о 1 1

E süp I / £(s) dups)/2- = L+ J E |-Z(t) dt.0 g  -t g T  о о

Proof of the theorem. Let us first suppose that (t ) is a 
piecewise constant function from Di . Let /\n = J ] a 
sequence of decompositions of the intervall [0,T] such that 
Л ,  = A „ tl . U A „  is a set everywhere dense in (o ,t ) and ̂ П

$ (t) is constant on (-tni ) tni+i) • Then

5 =supJ/f(s)cLur(s) / = lim $n 

with probability 1 where

5 -BÜp I / {,(0 dur(-b)|
4  ° tn

As the variables / dur(-fc) are measurable with
о

respect to we have

t nn tn i . fcmi tnj
E (  /  ̂  ( 0  cL ur(-b) -  J | ( t )  d L u r ( -b ) | / | . ( - t )  d w ( t ) ) . . . } .1 jt  ( t)  d ip t ) )  =  0
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and the conditions of Lemma 1. are satisfied for the variables
/ ̂ (-t)dw'(t) . Using Remark 1 and Corollary 1 we can write
о

f i n a l s  ^ r E f M d l ,0

E £  m  / E f ( O d i .о

Taking the limits in these relations we get the proof of the 
theorem in the case of piecewise constant functions.

Let us now consider the general case i.e. when 
and ./ E <dt ̂ 00 . Then we can choose a sequence of
stepwise constant functions |n (t) so that

/

lim / E(^(t)-fn(-t)) dt = 0.n -»0° 0

Let us choose |n(-t) so, that

o/E(|(t)-|n(t)f s y
be satisfied. Then

1 E( f - „ t l ( t ) - A t

« /E ( f„41( 0 - K t ) f a t  + 2 / ( f .n ( t ) - f ( t ) f a t  i i  .
The function + Ш is piecewise constant so

V ! sup | i | n+4(s) cLur(s)- i £n(s) dur(s)| = п-г- ) “OS-fcëT о 
T

n4 /  E ( f „ 4i ( t ) - ^ ( t ) f  At s ^
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As the series Xi X X  is convergent we can use the lemma of 
Borel-Cantelli, and see that there exists a /random/ integer 
n0 , finite with probability one, so that if n > n0 then

süp ! J |n + i(s) dur(s)-J^n(s)dw'(s)l- ~o? 1 1 n
Hence the series

/ f (s)dur(s)+ X d /  fn + 4(s) dur(s)~ / f-n(0 dur(s))о о 0

converges uniformly with probability one. So their sum will 
be continuous witn probability one.

We can complete the proof of the theorem in the same way 
as we did in the case of piecewise constant functions.

Theorem 2. If fyG ад the process J |,(s) àu-Çs) continuous 
with probability 1 and

Pi sup I J l ( s ) cW(s)l > C } é P I /|. (t )dk >N } + ^oStiT о 0

Let X  be two stopping times with respect to the
d'-algebras ^  (O í -t = T) such that

Р { о ч , £  L s "0 - 1

and P'ç the &  -algebra belonging to ^  as defined in 
definition 2 § 1. T. is the d'-algebra generated by the
sets of the form ВП(§>1) f 0 • (8ee definition 2 p. 19)

Theorem 3. If £(d) £ iUî ( 0, T  ) and E^2(t ) dt *S1 00
then
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E( J í  (-t) d. ur(-fc)/ 'Ív ) = 0

E([ Awdu,(t)]2№  )-E( Ь Л М Щ  )
ít il

Proof. Let ^ be any random variable measurable with respect
to Gv and X*L(t) (l = 1,2) be two processes defined by
XL(0- i if h = * and XL(t) = 0 if 1 < $L . Then 
X-L (1) are measurable with respect to ^  .

Furthermore, as we shall see the process ^(Xz(-t)-X1(t)) is 
measurable with respect to ^  too. Indeed, let us first 
assume, that ^ is an indicator function of a set of the form
А П ( = S) , where A G 9^ . Then if s i t  then both
coefficients of the product are measurable with respect to 

and if s > t then

^AO(^ëS) ^2.^ ) ~~ ̂ i^)) =

* X n ^ t / x X O - X ^ ) ^

- X, • 0
Now we see that ^ (Xz(l) - X 1(t)) is measurable with res­
pect to '?t for any indicator function of some A G ̂
As any variable ^ measurable with respect to can be 
represented as an almost everywhere convergent limit of sums 
of the form ck % Ak , Ak G we proved that
? (Х г(-t) - X 4(t ) ) has the desired measurability. Now
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h Si

/  ^ |(-t ) d  ur ( t  ) = i ^|(-b) dar(-t) - i cLia-(t) =

T T
=  ̂V. K't) ̂ G O  clur(-b) -  -I ^ I (-t) X1(-t) cL'ur(-t) =

о 0

r
= /  | ( - t  ) (% 2 ( - t )  -  X i ( - t))  d lu r ( - t )  .

Obviously

■|TE ^ ( ^ ( t ) - x (( t ) f { 2( t ) * s  if / E # ( t )  at -  - .
о 0

Consequently
*г T ,E ̂  J £(-fc) d  ur(t) = E o/^|(t)(X2(t)-Xt(t)) dur(t ) = 0

E [  *2, /|(-b)dw'(-b)]] - E ! Íj^ f'(^ )(x2(t)-X 1(t)) d u r(t) ’ =
J 4.

= J E ^2(-t)(X^(-t ) -  %t(fc)) di = E J 2̂'^2'(l)(x2_(t)-xi(i)) di = 

= E ^ J £2(-t) db4

That means that the proof of Theorem 11 is completed.
Remark Taking the expectations in the two equations of the 
theorem we see that

E(/№)cW(t))-o
H

E( J f  (t ) dur(-t)) = E /  | 2( l)  dt. 
fl Si
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Theorem 4. Let |(t)èO; t = 0, £ (t ) £ 4U [0 ( T]
0-0

T  > Q Let us assume that P( / dt } = i  . and lett о '
Гк = if ( t : J |2(s) cLs ä к } . The process

П
SCO = J |(s)cW(s)

is a Brownian motion process.

Proof As we have seen is a stopping time and ^ Tt 

if l z . In the previous theorem we have proved that

E( f  l ( s ) ) = 0r, ti4
E([iJ(b)d^(s)]2/ ^  ) =1Tti 4

= E( J, f(s)dsl% ) *4:г --Ь4Li

So to use Levy’s theorem we have to prove that the 
process f(0= / £(s) dur(s) is continuous with probabilityо
1. As %  is monotonie with probability 1, its only discon­
tinuities are jumps. So the only discontinuities of are
jumps and they are placed at the jumps of the process T1 . 
Let us suppose now for some 1 /Ct_ 0 < T u o  } then as

- t+£ 2E / ̂  (s)ds -Il-» 0 1 £ — » 0 ,t-t '
using Chebyshev’e inequality we get that

rtf£i Jl(s)dur(s) — » 0 
V *

with probability 1.
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Remark If the function ^ (-fc) is determined only for 
-t 6 (0,T] then we can apply Theorem 12 by putting (̂-fc) - i  

-b à T  • Then will be a Brownian motion process with
lifetime
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Chapter 1 2 1

Solutions of stochastic differential equations

In the following we want to explain what do we mean by a 
solution of a stochastic differential equation. In the dis 
Crete time case the solution of the equation

In ^ ( l n -1 ) n ) _ЬЬ ( | П_1) n )  . £ n ,

where 6n is an independent = 0 ) sequence of random
variables can be defined in the following way. At first from 
the definition we see that I n is measurable with respect to 
the G^-algebra Ag q generated by the random variables 
£0 , £4 , • • • , £* • !0 may be any random variable, |0 - £0 and 
it is independent of A£ i . The recursion (ll.l), with 
the functions a,b and sequence £ n defines the new process 
I which is called the solution of the difference equation. 

The properties of the process I n depend on the choice of the 
functions a and b. Prom (ll.l)

E C U \ 0 ) " a ^n-i, "),

E[(fn- oc(£_,n)f/A-^=E[b2'(ln_i,n)eUA£7 :  - 

- b U . t,n). <
where - E £2n . The distribution of ln in many cases,
under condition f0, t1( . . |n_1 , depends only on
which means that the process Ç n is Markovian.
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Nov* let us consider the continuous time case when we 
have the differential equation

(11 . 2) с Ц (0  = 0.(1 , f ( i ) ) d l  + b(MOO)

where (ur(-t) ) is a Brownian motion process, 9̂ . are
(d-algebras 9 ^  Q  when i ± =  \.x and ur(-fc + h ) - w  ( 1 )

is independent of 9^ /for every t/. The functions a (t,x) 
and b(t,x) are measurable in ( 1, x).

We say that the process J(t)is a solution of the equa­
tion (12.2) in the interval 0 = í  = T  if the following con­
ditions are satisfied

а/ I (O ) is measurable with respect to ?0 1 Ц о )  is 
the initial value of the process; 

ь/ IC-t ,00) is measurable in (1,00) ;
с/ £(t g o) is 9^ -measurable for every Ô -fc =  T  :T T
d/ The integrals .1 J b̂ -t, f(l)) di

exist and are finite with probability 1; 
e/ With probability 1 the equation

К ^ ) “ С ( 0 ) “  ' a ( s , ^ ( s ) )  d s + - / & ( s j ( s ) )  c L u r ( s )  
о 0

holds for every Oá-t = T  .

Theorem 1. Let the functions b(-t,x) satisfy the
following conditions

ia (s ,* ) -  a(s, у )l + ib(s,x)-b(s, у )! -  К lx - у!

I <х(б(х)| + |b(s;x)/Z = K(l-*- X ),
I
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for a fixed К and for every 0 = S = T and -= x,y 
Further let us have for the initial value f(o) measurable 
with respect to F q and satisfying E /1(O) / 00 , then

1. There exists a solution |(-fc ), continuous with proba­
bility 1 with the initial value f(o);

2 . sup E lK O !2 ^ ;
3. If a^d are solutions with

properties 1. and 2. then

P  : sap 1 ( t )  - f(2>(t)| - о ! = i .
OStiT

Proof. The uniqueness follows from the following. If y(-fc) 
and satisfy

(12.2») i(-t)“ §(0)+- / cl(s ,I(s))dus + ./'b(s,i(s)) dur(s),O '  0

then

E [ Sw(t)  -J W( t f f - E l  f[a (s ,|u)(s))-a(s,!<%))] is  *

+ / Cb(b,iw(s))-b(s, S » (s ) ) ]M s ) j ‘0

* 2 E [ I (a(s,i<f>(s))-a(s,lW(s))) d j f  + 2 Е[Г(b(sJti,(s)-b(s,f^s)))dW(s)]^о о

* 2 i E f  Ca(sJw (s))-a(s,f'(s))ícU+2E ?(b(s,f\s))-bMlW ^  -0 °

a m  / E(t%)-S%))l ds + 2Кг Щ 1% )-1% )Р < ь  ;о о

í  L. /  E(I<H(s )-S % )fc b .0
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Prom this inequality it follows that the function ll(i) =
= \-b)) Ls 0 , which means Pi } - {  .

The fact that u.(-t)=0 is a consequence of the following 
lemma.
Lemma 1. If СА>0, u.(t)=0( <r(t)« 0 then from

a ( t )  =  c , +  .1 lu( s ) o ' ( s ) cLs 0follows
u(-t) = с 4 <zxp I I u'(s)cls) .

Proof of the lemma. We have

---- yjV)------- s u-(t)
c,+ / u.(s)tr(s)cLs

By integration
t t

in[c4 + J u(s)o'(s)di] -bCi i / ̂ (s)d5;0 0or
■b "t-

u ( t )  = Ct + /  u ,(s )ir(s )ds  = Ci exp i .1 \r(s)cLs i ,
О °

which gives the desired result. The case c£ =0 we may get 
from here by limiting (ct  ̂0).

As P ( (t) } = i. and the processes
 ̂ ( O  are continuous we have

P l s G p M crt(t)-!<a(t)l-0!-i
Indeed if R is the set of rationale

Pi sap U (o(t)-5U’(t)l-0!-l,
OgitT

but R is dense in[0,TH and from the continuity of the 
processes we have
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P! süp l!(V H (a(t)|-0! -PlsQplflo(t)-?tí)(t)/-0 )-t,te-R tOSttT
which proves the uniqueness.

To prove the existence we shall apply the usual itera- 
tional procedure.

Let the first approximation be,
?00=i(o)

and

I a(s, Г  (s)) els +• 1 b(s, *(s)) els.о 0
With a similar argument as we did in the proof of uniqueness 
we get

Е | Г * ‘( 0 - Г ( р ) | ^ ь / Е 1 Г Ы - Г % ) Г а 5 .о
As

El £ (0 _ 1 (t)| -E » f a(s; |(o)) cLs + J b(s, §(o)) dur(s) Î -о 0

- L. T. K. (ifE(l(o)ji).
Prom the last two inequalities for suitably choosen C we get

(12.3) Eli"*‘(t)-f(t)rs •

Further
•t

supÛS15T i r “ (t )-fW I Supost-T а- ( М " 0 0 ) - Ч М " "  (s))!^

+ sup / lb(s, ! r,(5))-b(s,in *(s ))|d w (b ).о£Ь5Г0
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Now we use the theorem 1. of the preceeding lo. paragraph, 
namely

E sup I / IE5!00) ĈUr(S)l =  ̂  ̂ E ^ ( s ,0a) cLs.
0<t£T 0 0

Using the Lipschitz condition for the functions a and b we 
get

-b о

+ <?K2/TEli"(t)-r‘(t)l2dt -ci.irEl!n(0-r"1(t)lidi,0 0
and from (12.3)

E sup - f  (-t)!2 = c2 . c . T.t
Using the Ghebisev inequality

Clt )"-1 
( n-D !

EP sup i r * ‘( t) - f( t) l
n=i og-fc g T

So the series

^ Zn-i
c a ( L T ) n ~ l(n-l4) 1 <

i(o) i"0=)!n = d
converges uniformly with probability 1. I.e | (b) tends to
a certain process, let us denote it by f (-t ) , which is 
continuous with probability 1.
Taking the limit in the equation

f(t)-f(o)+ E ( s , r ‘P))ds+ / b ( s , r \ s ) ) M s )0 0
we find that the process f ( t, go ) is measurable in (1,00)



- 123 -
and satisfies the relation (ll.2*)

Further for any fixed the random variables f(-t) are 
measurable.

Finally

E ( f ( t ) f  5 3! E(|(0)f + E [ / a ( s , r ‘(s))cu f +
О

-E[/b(s,r‘(s))a^)]2! = 3Ea(Q)f+3L/E(i(s)fcU,О о

and by iteration

E(f(t )fs3E(!(o)f+3E0(o)f.3Lt43Lf/(t-s)E(r2(s)f as s0

i 3E(l(o)f + 3L-t 3E(i(o)f+3E(i(o)f ...-3E(!(o)f eT.
That means

saP E ( iW fs 3 E (f(o ))V LT,
0Ő t =T

that is the theorem is proved.

Exercises
1. Let (il,1?, P) a probability space and 3^-A, Q=b = TT  

a family of nondecreasing <o -algebras and ( ̂ (0, 4, P ) 
a Brownian motion process.

Let the functions (̂■t)co)) co(t;̂ co)) b(i; x, oo) 
have the properties

1. they are measurable in -t x, со
2. for fixed -fc and x they are i?rt measurable.

We say that the process Ç(l) = ' l (t, co)J 0 = 1 = T  1 is a 
solution of the equation
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t t

(*) !(t)- f(l)w)-b/a(sJ(s)iw)cU+J b(6,1(5), w) dürfe)
if the following conditions are satisfied:

a/ §(-t,oo) is (t,w) measurable;
b/ for any 0 = t = T, l(-tjCo) is ^  -measurable,
с/ the integrals in (*) exist
d/ equation (x) is satisfied for every t with probability

1.
2,

Prove that if sup E f  and there exists a con-
og.t =T

stant K, that the inequalities

|a.(tlx,co)|2'H- I b(±tx,cj)lz 2

I a(t,x(co)- cx(-t,̂,co)|+- /i)(t,x,co)-bfe.̂ co)! ̂ K|x-y I
hold with probability 1, then the equation (x)has a 
solution, for which

sup E f ( t ) < “0Ê -tiT
and if I (-t) and \z (-b) are any two solutions then 
they are stochastically equivalent, i.e.

2. Prove that under the conditions of Theorem 1. the solution 
£ (1) of the stochastic differential equation (12.2) is a 
Markov process.
Hint: it is enough to prove that for any measurable 
random variable (00) and bounded continuous function 
(A ( X ) we have
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E (^ ( ! ( 5 ) ) /A t ) = E(o6Eto(!(s))lK0)).

Using the unique solvability of the equation (ll.2) and 
denoting its solution in the interval ( l (s) by i t l j (u,) 

we get that

К з)“ ( (̂o ( 5 ) a.s.
The function

B(i(t),co) ,«,(*))
depends on only through the increments ur(u)-cr(-fc)
( t = u.< s) . Approximate B ( x ( со) by functions of the form

3. Let the functions a (-Ь,х) and b(t,x) be continuous with 
respect to the pair (Л,*) and satisfy the conditions of 
Theorem 1. Then the process ^ ( -fc ) , which is the solution 
of the equation (ll.2) is a diffusion process.
Hint: use Exercise 4. to prove that E|fs* (t)-»r -
= 0'(l—5) , then use this, Lipschitz condition and Holder’s 

inequality to prove that E ( lsx(t)~ x ) = a(s)x)(t~s)+ 0'(-t-s ) *, 
similar estimations lead to E [  f sx( t)  - x]2" =b2(5)x)(-t -s)+o{t-s).)

4. Prove that if for a diffusion process |( -t )
А/ the coefficient of transmission a (s X ) is continu­

ous with respect to the pair (s, x) , and

/ a(s,x)/ á K (i + (X ))



for some К >■ 0,
В/ There exists a function ^ (x) independent of 6 and 

A ̂ 0 , such that f (x) > i+ I X / , sup ( ts)
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1 Е ( Д д  S5I 

E«li4+Ak

K - x E((!'S+A

>S + A

f (x)a

Then there exists a Brownian motion ur(s) , measurable 
with respect to such that | s satisfies the
stochastic differential equation

gL£s = a(|s , 5) cLs + dur(s)
s

(Hint: prove first the relations(with ^s= §5~ / cx(̂ a)u) du)

Е ( ( * „ д -  ч $ I АД )  “ E. f 6 5) A

1 %  A E(îZs+A-^slAd)=0

21 m0 д  E(^ s+a ~ ч / Ю - °
then, using Levy’s theorem prove that ^  is a Brownian 
motion, considering the expectation

E(?t- Д  A_Ej  - Е(2Е(<2(к,1)д- 2кД l A Ü b l O

and using Lebesque’s theorem about majorated convergen­
ce.
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Chapter 131

Stochastic integrals and differential equations in
multidimensional case.

Let k- 1 , 2 m Î independent Brownian
motion processes with the same family of non-decreasing - 
algebras З4  • Let f O M f i O O  00), . Щ -t,со)) a vector
process, where (-t ) are measurable for every i and any 
fixed t. We denote ^  if ^  ̂ = I* * l l + • • - + fn
is integrable on [O ,  T ]  X _Q_ with respect d A  d P  .  The 
class of vector functions with the above two properties will 
be denoted by M 2, .

The stochastic vector integral with n components 
/ l(t ) is determined as the vector ! со) dor̂ (t)

T O - T '
.1 ̂ ( p c o )  d u r L( t )  . . J 'P’D (̂ ) t ) I • All0 ' 0
properties of the stochastic integrals a/- e/ in one dimen- 
sional case remain true. We must substitute / ÿ I - ] / + . . . + .

Now let us take m stochastic vector processes ^(t, oo),
.. . ( ̂  (1,00) G W , then for every к the integral J c W k(t)
is defined. Let a. be an n-dimensional vector function,
of the real variable t.
As in the one dimensional case we may define the stochastic 
differential

(1 2 . 1) d iM - a L U t  + 2  i k(t)durb(t)к *i —
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if
L(t)-í(M

t m t
.1 <x(t) dl + £ i  ̂ (-t) clurk(t).t„ k = i t0 —

Let us have a vector function u.(t,x) in ß j n )  where 
x G ^ (n) .We suppose that all the functions

n 3-t } 3*i — > axl —  Od*) ( j ~ • • - In)
are continuous. If the stochastic process $*(-t)=(Çt(t), •..
has a differential (l2.l) then the process ^ (t ) = а (-Ц § (-fc ))
has a differential too and

d̂ H ! t + Ç it +1 s v

+ £ (g Й « -S
(lto*s formula in multidimensional casê ).
Let а(1,х) and (t .*) (k-1,2, be vector valued
measurable functions with values in *R( 1 X G'R^ .We shall 
examine the solution of the stochastic differential equation

12.2) d|_(-b)=a(l1|(l))dt + dur (-t) -

a(t,i(t))dt t- S  K(-t, 1(1)) durk(lк -1
or in the equivalent form

— m  u

12.2») I  ft) " 1 ( 0 “  ■ d ( s,|(s ))d 5  + S  J bw(s, 1 (s )) cLurk(sto
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\ (t0) does not depend on w-(t) - <aK O  for every -b > t0 
We say |(l) is the solution of above differential equation 
if the integrals in (12.2) exist and the equation (12.2) is 
satisfied with probability 1 for every t( 0 = t = T  ).

The existence and the uniqueness of the solution of 
equation (12.2) can be proved under similar conditions and on 
the same way as in the one dimensional case.
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8/1973 Klafszky Emil: Geometriai programozás és néhány 
alkalmazása

9/1973 R.Narasimhan: Picture Processing Using Pax

10/1973 Dibuz Ágoston-Gáspár János-Várszegi Sándor: 
MANU-WRAP hátlaphuzalozó, MSI-TESTER integrált 
áramköröket mérő, TESTOMAT-C logikai hálózatokat 
vizsgáló berendezések ismertetése
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Matolcsi Tamás: Az optimum-számitás egy uj 
módszeréről

12/1973 Makroprocesszorok, programozási nyelvek. Cikkgyűj­
temény az NJSzT és SzTAKI közös kiadásában. 
Szerkesztette: Legendi Tamás

13/1973 Jedlovszky Pál: Uj módszer bonyolult rektifikáló 
oszlopok vegyészmérnöki számitására

14/1973 Bakó András: MTA Kutatóintézeteinek bérszámfejtése 
számitógáppel

15/1973 Adám György: Kelet-nyugati kapcsolatok a 
számítógépiparban

16/1973 Fidrich Ilona-Uzsoky Miklós: LIDI-72 Listakezelő 
rendszer a Digitális Osztályon^1972. évi változat

17/1974 Gyürki József: Adaptiv termelésprogramozó rendszer 
/APS/ termelő műhelyek irányítására

18/1974 Pikier Gyula: Mini-szárnitógépes interaktiv alkat­
rés zprоgramiró rendszer NC szerszámgépek automatikus 
programozásához

19/1974 Gertler; J.-Sedlak, J.: Software for Process Control

20/1974 Vámos, T. - Vassy, Z.: Industrial Pattern recogni­
tion Experiment - A Syntax Aided Approach

21/1974 Pidrich Ilona: KGST 1. - 15-1 témában folytatott 
szeminárium előadásai (1973. február)

The listed, papers may be ordered from the Insitute Library 
/Budapest, I. Uri u. 49./ except those marked with an 
asterisk /ж/
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