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Chapter 13
Bagic concepts and definitions

In this book we shall be concerned primarily with the

cases, will mean time.

In the first part of the book we begin with some preli-
minary materials on stochastic processes. The standard refe-
rence will be Gikhman-Skorokhod’s book [l] where the reader
may find the proofs which are not given here and which are
far from the aims of this book.

A stochastic process is a parametrized family of random
variables, where the range of random variables is a finite -
dimensional Euclidean space, denoted by Rk in the k-dimensi-
onal case.

Let be given the parameter or index space | 'and t &€ T
denoting the parameter, where in most cases t means the time.
The vector random variables Efﬂ)“(&(tl...,ﬁhﬂ&))
depending on parameter t, where™ means the "transpose" of a
vector (matrix), form a stochastic process if for any values
tl, t2,..., tn (tierr, i-l,2,...,n) there is given the
common probability distribution function ofﬁfgl...)§(tn).
That is, for any sets El,..., En of the k-dimensional Eucli-

K
dean space’R

P, .. E)=Pisk)er, ... ik, )eE, |
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is given. §j(f) (j‘o,'l,. - k-1) are called the components of

vector process g(t) .

The probabilistic properties of the parametrized set of
random variables are uniquely determined by the corresponding
finite - dimensional distributions. That this is so is a con-
sequence of the extension theorem of Kolmogorov (see L—l:] sy OT
Gikhman=-Skorokhod [1]). This theorem of Kolmogorov may be
applied when | is an interval (in the continuous ca.se) , but
the situation is more complicated than in the discrete case.

Generally we say, that on the probability space(ﬂ,c}’,?)
there is given the stochastic processf(t, w) (the space is
(N and w€ () denoting the elements, ¥ is a © - algebra with
elements AcF, P is the probability measure), if for every
tel ﬁ(t) is a random vector variable.

Note that if we have a directly defined stochastic pro-
cess we can determine the basic probability space in several
way.

Supposing a family of random vector variables whose fi-
nite dimensional distributions coincide with the given dist-
ributions (see Gikhman-Skorokhod [1]), if we take simply
the function - value at each ¢+ then we get the sample space
as the function space X and the process .g_('l:,co) is a function
space process, where the mapping weg(’c.,u) must be a mgasurable
mapping of (L into X .

In the whole book, when ‘T" is the real line or an inter-

val of it, for simplicity we assume that ﬂ, or the sample
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spa,ceX s consists of the componentwise continuous vector
functions. So we aviod the question of seperability.

We say that g({:) is continuous with probability one
when §(’c ) is continuous in t for almost all w . In the
book we shall be concerned with processes continuous with
probability one. In such a case it is natural that we confi-
ne ourselfes to a smaller space, the space of continuous
functions.

We say that the process g(t, oo) is separable if we can
find a countable dense set |t;| in | and a setNE F with
measure O such that for any open set G in T and any

k
arbitrary closed set FER , the set

ot g(t,w)EE for all
differs from the set
'\CJ¢§(’L,(»>€E for all t, e G

by a subset of N . Doob has shown ( see Gikhman-Skorohod [1])
that for any process (with range in a locally compact space)
there exists an equivalent separable process-

We say that two processes i(t,w) and _é_’(t,@) are

P §(t,w)‘§‘(t) )l =1 , for every te'l’.

later we shall see examples where we choose that process from
the class of equivalent processes, which has the best quali-

ties, for example continuity, differentiability etc.(see €.8e
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the § on stochastic integrals).

In most cases we do not exhibit the variable W in g(t,co>
even if an integration is according to P(doo).

I g(t) is given in the interval [a.,b:] we say that the-
re is given a realization on [a,b] of the process, the "samp-
le function", the "trajectory" or "history" of the process.
The process is given directly if the space consists of the
realizations X .

In the case when T consists of the integer numbers we
speak on a stochastic process with discrete time /or a "time
series", or a "random sequence"/. The process _§_(’t) is conti-
nuous parameter stochastic process when "["is the real line,
or a part of it.

The first moment, or expectation, of the process 5({ )is

denoted by
EE4)= m(£)=(my(t) .. ..m,

and it is called the expected /or mean/ value function. By
definition Eg(’c)=A§(t}w) ?(d o) . We always assume, that

the second moments
E(EJ(U - mj({:)) (g,_(s) N m'L<S)> = GLJ'(JC,S)

exist. If we arrange them into a matrixB(’c,s)"(G-,_j(‘c\Sn -
.3
“E(g(t)~m(t))(§(s)—m(s)) which is symmetrical, than we

refer to it as the covariance matrix.
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We say that the sequence of random variables £

to the random variable § in mean square, which will be deno-

tends

ted by l.i.m. § =5, ir

El§,-§ = E(§,- 0.~ — O,

The stochastic process g({) is a called stationary in

the wide sense /or second-order stationary/ when
m(t)=E §(t) = const
Bt s)=Bt-s)

that is, the covariance matrix depends only on the difference
=8,

By a strictly stationary vector process _é({:) we mean one
for which, for all n, tl, t2,..., tn and h the distributions
of 5({:4), ... §&,) ena _fl(t,""h), - .,'_§_(‘En+h> are the same. If

process _5({:) has finite mean square, this means that

*

E(§(6) - mlt)) (§(s) —m(s ) =E(§(t ~s)-m ) (§(0)—m) =
-B(t-50)=B(t-s)

i.e. it is stationary in the wide sense.
By a Markov vector process f(t) we mean one for which,

for all n t)<t,<...<t, t>t, and arbitrary Borel set

and X,, ..., Xn er’

PUERIEEE) =Xy, ... §t) = g(n> -PEt)eE

6t,)=x, }



S s
holds with probability 1.

A Markov process can be given by the transition proba-

bilities
P EE|§(s)=x) =P(x sE+)

and for them the Kolmogorov-Chapman equation

(1.1) P(g,s,E,t):_I Py, v E £)P(x s, dy,v)

is valid often 'P is given by the probability density function

Plx,s,E )= 1 Plx,s,yt)dy
E
The Markov process £(i ) is a diffusion type one, when the

following conditions are satisfied:

a/ for any&>0 and t20 o S o

(1.2) Lim —é_ / P({|X»£+A;d’3)=ol

ANA—=>0

[x-yl>¢
b/ there exist functions o,(t,x)) b(t,x) such that for any
E>=O) tE2D —eok gaee the relations
i 1 ( ) p(‘c +
a3l A (5
(1 3)A i;% A oo \j)<ldg X X,t+A dg) O,(t x)
fie 4) 110 L x)z P(txf‘*‘A dg) b(’cx)
A—>0 D (x- 3)<5

hold.
The functions Q(’c,x) and b(t x) are called the coef-
ficients of transition resp. diffusion /or local mean and

local dispersion, see later ch.9. the definition of stochastic
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differential/.

The name "diffusion process" corresponds the fact that
the move of a particle in liquor or in gas can be described
by this process under very general assumptions. The function
a (t X) describes the trend of the particle in the sense that
during a time period of length A the particle moves with the
distance altx)Ad§+0(a) whered § is a random variable
with mean A and dispersion b(t,x>A+O(A>

Conditions a/ and b/ are hardly varificable. We give
below stricter, but easier conditions for a diffusion process.
For £(t) to be a diffusion Markov process it is sufficient to
have the properties

a*/ for some d>0

—4_ ./ Q_+d.
M e ] (4=x] Plex t+ady)=0,

b®/ there exist functionscl(t,x) and.b(t,x) such,
that for all t X

(1.6) fim & [Pl xt+a,dg)=altx)
and

(1.7) Al_i_;n0 —é— f(H-x)l p(i’x,tm, dy)=b(t x).

Indeed in this case

3 = z+ X + A
Pl ) 8 e iy Plntes d)- 70
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and

Jiy- P t+A dy)

. 2+4d
/ ly ~xl P({')x't LAY dg)=8‘(&)
ly=XI>¢€

81+OV

IH/XI({éx)P(txHA dj)é% /'5 Xl 'P(txH»A Jdy) =3(a).

It can be proved /see e.g. Gikhman-Skorokhod [2]p. 65/ that
if §(t) is a diffusion process and g(‘c, x) two times conti-
nuously differentiable function of X and a continuous func-
tion of t then 9({: £(t)) is also a diffusion process with
the coefficients CL(Jc x) bt %) where

1.8 altx)= 3t g(’c 9 0 alt .9  H( x)) g(t i(’c, X))+

7 b(t g 't x)) g(t 94({: x))
2

(1.9) Ble)-ble, g, [ gl g“(t,x))]

The reader may compare (1.8) - (1.9) with the Ito formula
(see § 9. )

Let there be given a stochastic process §(+,) iO) and
¥ oir

t, =3 and such that £(+ ) is measurable with respect %0 & .

l(‘\

a family of [ -algebras ?} with the property ¥

We say that the paire (g(t)) c};) forms a wartingale if
Elg(ﬁ)k"") t= O, and E(g(’c}]?‘g)‘ 5(5), 0£S8=t, with proba-
bility 1. We say that the random variable § is normally

distributed if the characteristic function of it equals
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i.LLg_ tum A Gztﬁ
Ee = -3

2 2
where m=E§) 6 =F(-E$) . In the case b#0 the random
variable { has density function

2
A _X-m)
(X) = 26
Filx=mg e
The random vector é =(§1)...) §n) is normally

distributed when the characteristic function has the form
tlu,§) [ . *Y_ A * 3
(l.lo) Ee =2 =axp [t(g,r_n )- 7 u Ru } =c’.xp{LZujmj -
R 1

. 1
ZJ;" Wi Uy ij},

where m; - gJ, Jk=E(§j"mi)(§k*mk) and P=(6J‘k) is a
gsymmnetric pozitiv semidefinite matrix. If'R has rank n the
n-dimensional density function of § is

15 -1 %

N
(1.12) Fg(zg)=(2ﬂ) IRl axp{-3(x-m)R (x-m) }.

It is well known that if § is a Gaussian random vector and

A=(CL'LJ->(i.=iI2,...',n‘, i=1,2,...,m) is a matrix then

= A g
is normally dlstributed with parameters m=Am, R=ARA.
If the joint distribution of §{ and % is normal and they

are uncorrelated (E §-L = 0 for bedsuang | =4, ...)m)
then they are independent.



B |
e assume that the reader is acquainted with the elemen-

tary facts with respect to the normal distribution /the con-
ditional distribution, expected value e.t.c/.

e remind some fact /see e.g. Rao [1] /
1. If §1) §2, 53, §,, are normally distributed <E§L=O) then

(1.12) Egi §2 §3 §,0= E§1§2 E §3 §1,+ E gi g3E§z§u+Eg4§uE§2§3 .

2

2. 1f E(§,-f) — 0 and §, are normelly distributed then {
has also normal distribution.

3. A necessary and sufficient condition for normally distri-

buted random vectors to converge in distribution is that

E§n=mn—>m and E(§ mnxg —mn) _‘>(R

4. The random vector 5 in 'Rn in normally distributed if and
only if when(g) \_,L_)/the scalar product of wo vectors/ is a
random va.riabIe with normal distribution for every u Q'Rn .

The process é ({:) is a Gaussian one /or normal process/
if its eall finite dimensional distributions are Gaussian.

The measure ?g generated by the variables S_(t) is
called a Gaussian /or normal/ measure.

A Gaussian process E(’c) is determined by the mean value
function _h'_\(t):E _g_(t) and bg'r the covariance function
Blst)=E(E(s)—m(s) &) -m®&).  m(+) is an
arbitrary function but B(S,t) must be nonnegative definite,
i.e. for arbitrary real numbers C*:L and integer n

B, )=l & o B(s’c)—2~ .

Lj'l
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”

Exercises
1. Prove that the process f (t) is Gaussian if and only if
every linear combination
+
C{ig(t:l) « o . Ctn g({n ))

(In 2ot &) vnn, by arbitrary,

CtL real arbitrary numbers,)is g8 Gaussian random variable.

2. On the basis of Kolmogorov®’s theorem prove that for every
m(t )function and positive definite function fB(gt) (i.e.
e Cy, S, B(’cL,tj)é 0 , where N is an integer, CtL‘Ctj
are arbitrary real) there exist a probability space(fpgfp)
and stochastic process § (£) that E gf)zrﬁ(¥)and cov
(£(s). £(4)) =B(st).

3. Let §, & ..., §  be a Gaussian system with E§ =0 and
covariance matrix B where rank of B isr Sn . It is
known that there exists an orthogonal transformation
G (CC*=I) for which C*'R C hes diagonal form. Prove
that there exist r independent Gaussian random variables
M1y + =+, M such that £. (for everyi) is a linear combi-
nation of them. Further, if r<n prove that there exist
exactly n-r linear relations between the variables
£, ... 6.

4. Let fi, gz,n.be a Gagisian independent sequence with
E?L:O.ofrove that ; §i<‘>° with probability one if and
only if ;Eif SES

5. Let §i) §2f.. finite or infinite sequence of random
variables with E §-L=0) E?: <%=, We suppose that they are

linearly independent. If (§-L) ik)= EgL §k and
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§L §L~1 ok ga
=4 (§L,§4> (gl-d.gi) ...(§4,§4)

(gL, gi.—i) (§1-1,§L—1)- . -(§1_4, §,,)

then 7; = ;ZIL/E i'} form an orthonormal sequence of

3 A L =]
random variables, i.e. . e = 3
Let =10, ...,0,} and §={§, ... § ) be two random

vectors, and the common distribution of © and § be

normal; if, moreover, the matrix cov (§, f) has an inverse

(cov’d(g) §>) then
Elelf)=Ee+cov (o,§) cov (§(E-ES)

cov(@[§)=cov(e,0)-cov(® ¢ ) covt (§,§) cov'(©,8)

7. Prove that the definition of the Markov processes may be

replaced by anyone of the following
a/ There are families of 6 -algebras & and G, such that:
) ¥ %, G=Gs B <5
6)§({1> is measurable with respect to both f’Ft and Qt

{5‘/) the sets of ?:t and %’t are independent under the
condition of %, N G with probability 1., i.e. if
Ac¥ Be (G, , then

x) P(AnB|%FnG,)=P(A|% ng)PBIE nG,).
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(The 6-algebras 6(§(s):s<t) ana 6(M):Tat) may
be chosen for 7, resp. Ge)-
b/ For any t and any bounded, gt- measurable random va-

riable n  we have

() EQIF)=E(I%n )  as.

¢/ for S2 t and any bounded {3 =)9(X) (XER—1)
() E(P(§(s))| 8,) = EQE(s))|%n G) as

(Hint: a./ It is enough to prove (5{) for any finite
dimensional A and B .
b./ Prove (%) first for characteristic functi-

ons of sets from 9&’

c./ Obviously b.) =>c.). Prove (xx) from (sa=x)

uging the hint for b.

8. Prove that for any diffusion process §(t) with continuous
coefficient of transition a (t, %) and coefficient of
2
dispersion b ({:) X) and any continuous bounded function

‘P(x) such that the function

u(s,x)=E[f(§(t))|§(s)] ; (s&t)

§(s)=x
has bounded derivatives of first and second order with

respect to X the function LL(S,X) has the derivative

M and the equation

0s

< du , 4 .2 S
) — 2-=a(x)S% 4 = p(sx)2
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= 18 =

is satisfied in the region s€(0t) x€R  and the bounda-
ry condition

1im uls,x) = 9(x)

S M
holds.

(Hint: The boundary condition is a direct consequence
of the boundedness and continuity of \P(X ). To prove (=)

show first that for any 0<s5, <5, <t

LL(S,_ ,X) = / u(SZZ)P(Si)X = 8g, dz).

Then expanding u(sa)x) into Taylor series with respect

to X take the limit $,-5,—>0 in

U-(S,l) X) - LL(SZ_; X) >
5y, =y

Prove that if for a diffusion process §(£) the conditions
a/ and b/ are satisfied uniformly in X and the partial

derivatives

plsx;t, ) 3 . I .
otk (aley) olsxt, ), * (Bey)plxit,y)))

exist, then 'P(S.X,JC,\;J) satisfies the equation

35s-8 + 4 g 2. o)
3t by B tZ g B
/Hint: prove that for any twice continuously differentiab-

le function %(%) disappearing outside a finite interval

we have

fa%: P(S:X'at)\j)%(\ﬁ'>d% -
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J1-3 [atpdplonstyls 4 2 Blegsixstu] gl)dy,

for this prove first that

1im —&- [[ 9(5)p(5,x;s+h}3)d3—%(x):, =

h—0

= a(s,x)ca'(x)+%bl(s,x)%”(x))

then use the Markov equation
p(s,x;t+h, y)=Ip(sx;t,2) p(t,z t+h y) dz

and integrate by parts in the expression for

é% U’P(S,XS’CAJ) %(‘;})dg] :

A random element § in a Hilbert space H is called
Gaussian if for every U € H the scalar product (f, w) is a
normally distributed random variable /see remark 4. for
random vectors/.

Let us consider a set of random variables { £} and
assume that for every § (for simplicity M § =0) M[§]2< =
The linear space generated by the scalar p;oduct /the "inner
product" (g ) ,,L)= M g 92* can be extended to a Hilbert space.
This Hilbert space is generated by {{} and we denote it e
In our case the Hilbert space is called a vector Hilbert
space.

1r {§}) C (M) then H;C Hol . Let §(t be a sta-

tionary process then for the Hilbert space H ¢ generated by
t+1

the random variables f§(s), sst, Hg ‘éHg .
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Chapter 2:

Regularity and singularity

Let us denote by H; the subspace generated by g(s)‘s‘é{'
and let
s t S t
He = 0 Hp , M= U |
i.e. H; is the Hilbert space genefa.ted by the process E(Jc)
E ¥ of H{m consists only of the element O we say that the
process is linearly regular /purely non deterministic/.
When l——icg= Hg-w we say that the process is linearly
singular /purely deterministic/.
Regularity means, that the future always contains new
information which is uncorrelated with the past.
When f(t)is li;Eea.rly regular there exists a sequence
C, such that §(t)= kZO C, £(t -k) with uncorrelated E(t).

This is the so called Wold expansion.
Example 1. For | S| € 1 the process

@) -5 § l-n),

whei'e 6<n) is a sequence of independent indentically distri-
2
buted random variables (M E(t)zO) ME(n)= 1) is stationary and

regular.

Example 2. If | S|>/ the process
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(e)=-1 S Ee+n)

is stationary and regular, where £ (t) is the same as in
Example 1.
It is remarkable that the processes of examplesl and 2

satisfy the equation /a stochastic difference equation/

(2.2 §(t) =8¢ §(t-1)+e(t).

In example 1 the process is a Markov one depending on the
past, but in example 2 it has the Markov property depending
on the future. In example 2. & (t) and g({-_ —/1) are not inde-
pendent as in example 1.

It is a well known fact that if we have a series of

Hilbert spaces with the property H > =1, and for any

t+4
element f € H—O then the projection of § to H,_ tends to O
in norm if t — -°° then AH; reduces to the element O.
Using this fact we can show the regularity of both pro-
cesses., In example 1 the pro:jectlon of §(O) to Ht LS
Z S" €(-n) and this HZSE(— )I—0 gt -
In example 2 it follows from /x/ that M §(t) §(0)-—g++'
ME*(0) (£ <0). From thie fact we get that if 0(p) is the
projection of §(0) on Hy(t <0) than Ml§(0)|2§ & i

when t —> —°=,

Example 3. Let go' §¢ be independent random variables
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(M§,=0, T =1). E&)=f snt+§, cost

is stationary and singular. In this case it is trivial that

Ht =H+:+'1 l'—|'°Q= |-—-|°°

§ § § §°
Example 4. Pinsker gave an interesting example for a two
%
dimensional process E(t) =(§4(t), §2(t)) which is regular,

but the process 7(t) =§(-t) is singular. /It may be proved

that in the one dimensional case if g(t) is regular than
n()=£(-+) has the same property./

Let £,(+) Dbe an independent stationary process with

(=23

MEfO, M§j= € and §2(£\)'§ock§1(t-k) <Zci <‘>°),
£, (t) is obviously regular.

T
(2,8) Giw -2 3 0

t>ee e k>t

then the process 7 (+)=§ (-t) is singular. It is sufficient
- = =k
to prove 7(0)e H"L because of stationarity. Indeed H"Z

contains the elements §4(4)l §1(2)) i

ana §,0)= 5 ¢, £, HO= Fe b0, ...

-./1 e d
Hence H"Z contains the elements Cin L By Ei(n—k)

k=n

(n='1,2) ...) . Further
15,0-4 5 §, (-l = & T
£,(0 O S ™ 330 e 5 Sx

which tends to O by (2.3).
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Let we denote by A5 the © -algebra generated by the

random variables g(u,),ééu, "s’c) i.e. by the sets of type

o ¢ gkd({-”l)EE’l) ...,Ekn(ﬁh)EEn , where Sst, £t for every
k=42 ...,n and let
- t
A =lim A_.
B¥=% !
At = Lim A:c .
t —oe

We say that the stationary process g(t)is regular, if the
G -algebra A is a trivial one, t]::is means that it contains
only sets of probability 1 or O.

From the 0—1 1law of Kolmogorov it follows that an
independent sequence is always regular.

Let denote H(S't) the Hilbert space generated by the
random variables 7(En=0), which are measurable with respect
to ASt and integrable with their square. Regularity means

that

(2.4) [ H

(=e=t) e

0

That the regularity follows from /%/ can be easily seen,
because XA e H*" when ANe Ai . On the other hand for any
ne H®  there exists e, X,  for whicthijck'XAk—oZ”<£
and A, € Az (k= '1_,—N> and from regularity follows (2.4 ).
Let T denote the shift operator §(Tt)= f(t+1)  then
from stationarity follows that the operator U §(t)=§{(T+t)
is isometric and it can be proved that t. wmay be extended to
a unitary operator on H§ /see Rozanov [17] p.72./
From /%/ it follows, that if {(t ) is regular then for
every rrae H§ the stationary process /72(‘g)=u,,t2 is linearly

regular.,
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Theorem l. For Gaussian processes regularity and linear regu-

larity are equivalent.
Proof. From the Wold decomposition it follows that for the
Gaussian processes f(t)there exists a sequence of independent.
- t
Gaussian sequence of random variables S(t) g0 that AS(§) =
B
A (€) . But for S(‘c) the zero-me law is true and hence

it is true for §({:) too.

Theorem 2., Sufficient and necessary condition for regularity

is the following

(2.5 sup IP(AB) -P(a) PRI —0
BeA -
when t - -oe , for any A € A

oo

Proof. Sufficiency. Let AGA_—_: and B=A , then from (2.5)
follows that P(A) =P (A)  i.e. P(A)=0 or 4.

Necessity. If §(£) is regular, then it is linearly regular
(%)

t
and for every 7 € H§ the projection of 7 on Hf’ n

has the property ”02({:)” — 0.
If §€H§ then for any QEH;

(2.6) (n,§)=(n() §) ana I(5, )] @IS,

Let A€ A~ _ and BEAEM then from (2.6) follows for
n=%-P(), = X, ~P(B) that Iy, IPUB)-PAIP@)Ly@__
when + — —°° which does not depend on B.

A stronger condition than (2.5) is the uniform mixing con-

dition which we define in the following way. If
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sup |IP(AB)-P(A)P(B) — 0
(2.7) AcAt

BeA . :
when 7 —co then § (+) ies said to satisfy the uniform

mixing condition. It was introduced by M. Rosenblatt.

Exercises

For the process §'(t) let us denote byF%§(t))the Hilbert-space
oly sl
(O EARRS T ()
square norm, and by P4(ﬂ£)) the Hilberit-space of random

generated by polinomials Z:Ci s 2 § in mean
1) )tn
variables with finite second moment and measurable with

O
respect to the ( -field A__

1. prove, that P(E(£))=M(£(£)) under the following
condition: there exists a C(t)>0 such, tnat
Eecmig({)l - 2 /Notice, that this condition is

sufficient for the solvability of the problem of moments

for the individual distributions/ F,(x)=P(f(t)<x).)

(Hint: It is sufficient to prove, that finite, bounded,

continuous functions of n variables J(§(+,) ..., &t,)) may

be approximated by polinomials in L}' norm. For this pur-
pose prove, that finite, bounded, continuous functions of
one variable %(g(f)) may be approximated by polinomi-
als in L%n norm. Approximate then at {first by periodic
functions, then use the second Weierstrése approximation

theorem, and the power series expansion of trigonometric

functions.)
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2. Suppose, that §(+.)is a Gaussian process,; and {"21} is a

O
complete orthonormal system in Hg . Denote by hn(x) the
N -th Hermite polinomial. The polinomials

\{é) "’)'Pk; Ay TR =hP <}1)) J ")hP (?‘k)

(pat, .- tPe=n, Ay ..., are different) from a complete
orthonormal system in the space T, D 9 'P,\_i where rP,-, is
the span of the polinomials of degree at most .

(Hint: Recall, that the Hermite polinomials are orthonor-
mal with respect to the weight function A e— % ) -

297
Consequence: any eM ( §(+, ) ) has the representation
/i

; W,
= I 2 2 < 1) ) k > \P o '
(’L no (\'\) (’A\(P) n P& g e e pk Pi) I’Pk) %1,.-.‘?‘k
Ni s » won A
where the coefficients a.( PM ’p") are uniquelly deter-
v o) Pk

mined by the formulas

(7‘&)"')7‘ > - \IJ
" Prae- oy P 2 PR Ay e oy Ay

/Cameron-Martin expansion/.

3. Let the sequence {72, gi, . vny ém. .. }of random variables
have jointly normal distribution. The optimal approxima-
tion /in LZ norm/ of the random variable 'lzn by elements
from M(§(+)) belongs to e

(Hint: Use the uniqueness of the Cameron-Martin expansion.)

4. Prove the Wold expansion.
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Chapter 3%

The Brownian motion process /Wiener Process[

The process w (+) (for #=2(0) is called a Brownian
motion process /or Wiener Process/ if it is
a/ Homogeneous, i.e. the distribution of w (t +h)—w(t)
does not depend on t,.
b/ A process with independent increments, i.e. for every
t, < t, <... <%, and n the random variables are
Qn = (tn)— ur(tm,l)) N/ =w(t2)— or(t,l), Ny~ w(t,i)
independent.
¢/ A Gaussian process, for which w’(O)-‘—_‘- 0, er(t)= O)
M w'z({;) =67,
We shall investigate only continuous Brownian motion
processes.,

From the definition it follows that b

N

s
2k dlk

)

E{a <wk)<b} =P {a<“"(t+k)"”(t><b}=vf‘_$ﬁ/e

a
and the characteristic function of w (h) is given by

It is trivial that a sufficient and necessary condition for
the process w‘(f) to be a Brownian motion process is the
following: for every 0 =t <t, < . ..ftynand 2o, 2,,.. . 2,
the relation

Forp | L L 2, Lurlty) —w (tuy ¥ Zywr(to) | =exp [ § D2 (b tcy)

k=4



.
holds. This formula will bhe used to verify is a prccess a

Brownian motion one or note.

We shall prove some theorems concerning Brownian motion

processes.,

Theorem 1. If m(t ) 1is a differentiable function with

j'T|m'(Jc)|dt < 2  and (Q(t)=m(t) + wr(t) then the variab-
(4]

le

g — -F”Z(ti)"')tn)
n T(‘U(\J';/U"'){:n)
tends, with probavility 1 /when max/t; —ti-4/— 0O /)to a

random variable

T T

(3.0) §=exp |- %] [(e)] b + i mE)d ) | -

0 )
Proof. It is easy to calculate
n

- n _.%_ A 2
F’Q(h, ~-~)£n)'<2ﬂ) ’ E(ta—t;,_i)zxp {‘ % ): & tL 1<"2L Dca mk; )*f\'(h 1)}

=1

[ sl

_n » . )
furlt, ... to)=(2TT) U(Jc-L—t-L_i) {* % ;lﬁti (wr—w ) }

where leq(a)) w'-L=w'(t°L) 5 Here we get

n= f&4£)> (=axp |- 4 L i, [(m)meiea) -

_Z(m(ﬁ)‘m(ﬁ-i)) (7. _"Zc—aﬂ} -

- e
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= (LXP ) [m(h) m(*-\.—l):l (ii_‘{’.i-4) +

2 (m(2) = mlEi-2)
v 3 el () i)

Under the assumptions of the theorem the first sum tends to
TS el 2

7 /[ (£)] dt end the second tends in mean square to

[m(t) dn(t) . We may choose such a subsequence for which the

second sum is convergent with probability 1.

Theorem 2. If max(ti—ti)—>0, (O=to<t, < ...<t,n =’C))

then

(3.3 = Lsle)- wlti)f — 67T
with probability 1.
Proof. The random variable

g 2
gnz,bz_ji(w’(’%)‘w‘(tt—a))

2
has a X distribution with 2" degrees of freedom, and we

have

E gn- 61 ng/l(‘\'-", —{‘L—i)z 62 'T‘
= Si - LZJ: Elwr(t)- s, _1))2(”(£j)__w(tj_4))z i

'ng E(w(t) = wilty _4)§<W(‘¢3)-W(EJ-4 )2 +Zl§ E(W(ft)"u’(’%-a)):



= 50 ——
4 6’“'[‘:2'
-6 T -1

So we get

Ne,=ES ~(E§.)- St

for the variance

/Here we used the relation (1.12)/
From the Chebishev-inequality

PUS -6Tl>el s ST,
aDJ::d we get at once that §n tends to QZ'T'stocha.stically. As
n; 'QCT is convergent, we deduce from the Borel-Cantelli
lemma the convergence with probability 1.

Brownian motions are often considered together with a
family of G -algebras (% } for which (I”tis El (£A) w(t)
is measurable with respect to (ft and w(t+h)-aw () is
independent of %, (i.e. of the events DEC ¥.). 1t is

) t
possible that % = A, and always A, < CEC .

)

Theorem 3. /The Markov property of the Brownian motion
process./ The process n(t)=w(T+t)-w(Twith fixed T , is a

-
Brownian motion process, independent of Ao .

Proof. The Brownian motion character of the process 7 (%)
follows directly from the fact, that rrz(t) is Gaussian, with
independent increments with the same mean and correlation
functions as the Brownian motion process. On the other hand

for every O=to st ct,¢... ¢4, =T
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6urlto), wity), ... wtn) =6 (wlty) wit,)-wit,) ... wit,)- wi,)

and.'Q(t) is independent of the variables on the right hand
side.

The question is, that if we replace | by a random vari-
able will this theorem remain true? It turns out that this is

the case for a wide class of random variables.

Definition 1. The random variable T(co) is called a Markov

moment (Markov point, or stopping time) with respect to the
family of & -algebras { %, | if for every

{w:T(w)<t) e g

For example T=T, /constant/ is a Markov moment. It is easy
to see that the first upcrossing time of the level a that is
the random variable To={mint: @ (t)2a}is a Markov moment.
Indeed from the continuity of w(t)

{To<t}= 'Q rlzft {w(lr,ca)>a - %} / r 1is rational/.
The random irariable 5 which denotes the last moment of
crossing the ) level before reaching the level a is not a

Markov moment, as it depends on the events occuring in the

"future".

Definition 2. Let T be a Markov moment with respect the & -

algebras <, then we say that Ae & if for every + =0

T
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ArNiT=t} e .

It may be proved that ?; is a 6 -algebra,

As we shall see W(’t)is measurable with respect to ?,L.

for any stopping time T . Indeed if {uv;} = { S } is the set
of the rational numbers then, using the fact that w‘(%) is
continuous with probability one, the set {co:w(T)<c ({T &t}

can be written in the form

1
nNUu U U [w (w)<c- &)
N b 2N n |T-vgI<b

GEtE

So it is measurable with respect to ¥ .

Theorem 4., /The strong Markov property./ Let ’L‘(GO) be with
probability 1 <finite Markov moment. The process nz({:)=
= ur(twc)—ur(l?) is a Brownian motion process, independent of (&}.

The attached family of G -algebras is %t, .

Proof. We introduce the sequence of random variables 'tn(co)= %;

(w) e [k?}a ) %n‘] ; Obviously T, ¥ T and is a Markov
moment. Let us consider some event BE 97; and we shall
prove that it is independent of '72({1)) ) (’cm) where
0<%y < o)<ty and  9(t;) =wr(T+t) - w(T) is enough

to verify that

E Xg. k), ..., ntm) =PBIEH ), ..., 5t
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for a family of functions g s wide enough. For example we

suppose f€ECom and [I§ [l=sup [§] <
Let
€ =f(w(T+t)-w(T), ..., wtty)-w(+tn,)),
and
§o= LT, + )~ w(T,) .oy w(@n* )= W(Tht ten-s)).
As 2 and ur(t ) are continuous _i,n-—> § with probability 1.
From Lebesgue theorem and the fact that || §.[ISI{l

E %y £ tm E% S,

n—ee

But

EXeta=E Z Xg X(r,- %, §;ZE(’XB-X{%=%})'§,\=

n 2"[

=2 XX “£).
et 'Bﬁ .21_“,.\ ! gn)
Now using the Markov property BN (7T, = -21%} EAL and

E [xgn {T;\-;—n}¥(ur(ikﬁ +£4)—ur({ﬁ))...,uf(% +iy,) -
_w»(%,-ﬂ+tm_i)):l=

E[Xm (oK ]E}Z(w( wtty) = (), ... WG ttm) - wla+ tmy)) =

PBOT,=50) EXGE, ..y 5 (k)



w Bl

Where %(Jci)) v ey ;Z(tm) is a Brownian motion process. We

get
Exg gn=§®<%ﬂ {Th™ {F})E \Q(;Zj@i)) u-,i(tm)) =

=PBELE R, ..., 7 (en) = PBE(p(t,), ..., n(tm)

i.e. the process 7 (+) is independent of 3:@ . Replacing

B= (L and using again the Lebesgue theorem 'iz(t)is a
Brownian motion process, as 7 (t) is measurable with respect
to 9::1:-'_,_*_ . By using the strong Markov property of the Brownian
motion process we can prove the so called reflection princip-

le /Desire André/.

Theorem 5. For a >0

(3.3 Pt osup W(t)>®}=2?{w(r)>a}=\/% /e—

0t T

Proof. Let To the moment of reaching the level a(>0).We

consider
co

fe w(t)>a } dt- E/ = w(t) dt=

(a, OQ)(

——'A(LCL‘\"S)

'\?

“E 6™ Yo (Nt -E [ &

Ta 0

Yo (W 8)) s =

=2

BV [ 67 Kooy (wr(tars) - wlT) + w(va)) ds -

0



_55_

-ATa ’ —As

o ¥ - fX(o'oo)(W(s)+Q)d5

o
where we used the strong Markov property of uf(t)and that
W(Teo)= . Further

-E T f & X(O o(w(s)) ds= _WQE.{QJ‘S X oy (W(s)) ds =

0 o}

" %
-FE ¢ mv“/e“%ds=2—%Ee"7‘ ..

In such a way we get

Ie‘“P (w(t)>a) dt=AEe® / - -

4 ~
=T/e Pita <t} dt

> (o]
and from the uniqueness of Laplace transform

(3.4) Plus)>a)= 7 Piry <t}

The last equation is equivalent to the reflexion principle

and our theorem is proved.

Remark l. The distribution of T, is called the Wald distri-

bution and we get for it



(o anlE | ei
(3.5) Plra<t) =_m/€ = du:\/%f e % duw,
= aNT
The density function
Z
& é’qﬁl

(3.8 Poult)=pm* — 77 .
It is interesting to note that

'Pro,(f)N {%2* , as t "—'>°°)

and so
ET"Q:DQ)

though it is well known /the reader may prove/, that

P ima<e=)=1

Remark 2, The proof of the theorem may be done in the follo-
wing intiutive way. Let T, denote the first upcrossing moment
of level a, where ur(T’a)=O,. From this moment let us reflect

the trajectories for the line Yy=a. It is obvious that

Pt SupT ur(Jc)>o,, w(t)>a } Pw(Tz o).
0st=

On the other hand from strong Markov property the behaviour
of the process w(t)-w(T) for + >T is independent of
A o

[v]

end w(t) - w(T) is symmetrically distributed, this

means
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P“Ofup wt)>a w(T)<a}=Pl supw(t)>a w(T)2 o} =Plw(T)2

From this two equations we get the desired equality.
Multidimensional Brownian Motion. A process _§<Jc ) y taking

values from Rm is called an m - dimensional Brownian motion,

if § (Jc ) is homogeneous, E(O)EO j continuous with probabili-

ty —l, having independent increments, for which the scalar

process (_Z_) § (Jc )) is a Brownian motion process for each

Z eRr” with. izl =4 , and there is a family of G -algeb-

ras {4, ] in (O for which Cacfig (J:tz (s A; ), AF LiEh

and f(t) is measurable with respect to ¥, . For such a

process we have the relations E(z,§())=0, Dl(;g(t)):

The distribution of __g(t)is determined by the density function

2

(1) Pt(>_<)=(2r|\f%5 exp { il ] [
so that for any Borel set AcR"™

/ Zxp Jl ;zi /u'm(dC

A

(2) Plg)eh) =(2™) ©
where M, is the Lebesgue measure in R™.

Obviously if \U is an orthonormal transformation of 'Rm
and £(t) is a Brownian motion in R™  then U,g(f)is a
Brownian motion in ’Rm too. '

It easily follows now that if Sg is a ball with radius
Q with its center in the beginning of the system of coordi-
nates, and Ty the first exit time of § (+) from 59 then
g(ft“g) is uniformly distributed on the surface of Sg.Strong

Markovity for multivariate Brownian motion follows easily
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from the fact that its coordinates are independent one dimen-

sional Brownian motions.

Theorem 1, For any C >0 T>0 the Brownian motion £(t) has

the property

1—3(03227 1 §(e)|>c) s 2P3U8(T) > 0).

Proof, Let T be the first exit time from the ball S, . Then
the process §(+.+'t’) — §(7) is an m-dimensional Brownian

motion too., Hence

PULTI=c)=P(e<T, 1§(T) - §(v)l>c) =

\—i

PUYM - 5t) + §r)>clr=t) Plredt) =

) f?('i(T -f(t)+z|>c)P(ve dt),
where Z 1is any vektor for which ]z[ = Cc . But

PUS(T)-§@®) +zI>c) 2PUE(T) -54) 2)2 01 = %,

go that

PUgmIzc)2 —"z—f P(redt)- 4P sw_|§®)>c)

sSu
0=t T
proving the theorem.

Exercises

l. /The Wiener-Representation of the Brownian motion process./

Let {Hk(t)} (OSt—S-'i) be the Haar’s system, i.e.
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Ho(t) =1

and if 2" sk < 2"+

than
_gn L
DRI PR Ey oL

Hk(£)= o 9 k-z"z»:‘/z,ét< k-f:fi
O other wise

Furthermore let 7N n be independent standard Gaussian
random variables. The series 'é; Dn J#F4n(t? dt
uniformly converges and represents the Brownian motion
process.

(Hint: At first prove, that for deterministic coeffici-
ents Q, the series r:).:jo a, Oft H,(t)-(t) uniformly
converges under the condition la,lc0 (k) (0<€<)

Then verify, that this condition fullfills with probabi-
lity 1 for the random coefficients 7, . The characte-

ristic functions of the desired distributions can be com-

puted directly.)

/The interated logarithm theorem./ If w (t) is the

standard Brownian motion proceas, then

w,
ft_‘?e‘ VZt tnltnt] 1)=4

(Hint: Use the iterated logarithm theorem for the sequence

of i.i.d. random variables urGﬂ —4v(n—1) and prove - by
means of André’s reflection principle and Borel-Cantelli’g
lemma - that the defect sup (W(t)—w(n-1)) has order

Nn-4st<n

O/Znentnn ) with probability 1.)



3.

4.

)
Prove the local iterated logarithm theorem: If w'(t )is the

standard Brownian motion process, then

s wt) _, 1.
Pils, Vot

(Hint: Introduce the new process W(t) =+t w({) , show
that it is also a standard Brownian motion process, and

apply to it the global iterated logarithm theorem.)

The local iterated logarithm theorem remains valid for the

elementary Gaussian processes f(‘l: ) too.

t
(Hint: The difference f(‘c)—ﬂf(t)=a,/'§(t) dt patisfies
— 0
the relation P (1im —&)——:ﬁ i) =4 for every O< L<1)

£>0

With probability 1 the trajectories of the Wiener process
w(+ )are nowhere differentiable.

Hint: Suppose that the trajectory w(+)has a derivative
less than l at a point s.

Then !W(_S\—>—W(J—ni‘)l< ?‘:\—9' 10,0r L=|:ns:|+i) (<j=n+3

and sufficiently large n . Therefore the event " w(t)
anywhere differentiable" involves the event

B=u u n {lw()-wE)l< 2

24 m21 nam o=i=n+i i<]j&i+3

Prove that

PB)=0
Prove, that for every £>0 there exists a compact subset
of Wiener trajectories on the interval [O,l] of probabili-

ty 1-€ (in the sense of the uniform topology ).



.
(Hint. Recall, that the compact subsets of the space of

continuous functions are exactly the subsets of uniformly
bounded equicontinuous functions. Using the iterated loga-
rithm theorem prove, that for a suitable choose of the

constants Nn and Jp :

P N U C<9nfies) $u6e> 9

k=4 &
(fera)<52)< &
Remark: A theorem of Lévy gives the exact estimation of

the modulus of the continuity of Wiener trajectories.

/p fig lW({'—Q—W({:Zﬂ _ =
0=t~y 4 V 2+ (%) /1:]

£=+-2-L‘¢O

The proof of this tehorem is complicated and we need only

the above rougher assertion.)

Let U{_*(t) = AW0); . ooy Ba(t)} an n-dimensional
Brownian motion process Ew(t)=0 Ew(t)w (t)=Burt
where 'Bw is the local covariance matrix (it is positiv
semidefinite ) . We say that w (+)is an 1 -dimensional
Brownian motion process if it is homogeneous, with inde-
pendent increments, Gaussian and continuous with probabi-
lity 1. .

Prove that if w(t)is an n -dimensional Brownian motion

process then there exist a matrix C such that

Caw(t)=w(t)

and 4r'(t )is a Brownian motion process with independent

components.
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Chapter 4.

Differentiation and integration

In the sequel we shall need the following.

Lemma 1. The random variables gh tend to the random
variable f{ in mean square when h— 0 if and only if the
limit

{i i > o W
h, H 0 Egh §'~‘ h,th'm—>0<§h‘ f) o
)

exists, independently of the choice of h -

Proof. Necessity follows from the inequality

ICE,, §0) -8, =1 (5, E) (&, £+, §) (£ 8)] <

28, | §u = Ol 1CE, =8, OV NG 1 & = S+ 1116, -]

Sufficiency is a consequence of the relation

(4.1) ||§h_§h'”2=(§h_gh' ) §h_§h') =
- (iu §h>—'2(§mgﬂ>+(§w,§ﬁ>

As the right-hand side of (4.1) tends to O as h h — 0 so
Cauchy’s convergence criterion is satisfied. As the Hilbert
space of the square-integrable functions is complete, so
there exists §{ such, that [ (. m. § =§. A consequence

. * *
of this lemma is that if §,>§, o —>n thenEf o, =Efq .
Another consequence is that a necessary and sufficient condi-
tion for the process § ({) to be continuous at the point t,

is the continuity of the trace of the covariance function
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Blt,s)-E5t)E (s) at the point (t, t,) and if §(to)— §(4,)
(t — t,) then

El§(t,)! = b t013(&,5)

0, $S—>

The proof of the sufficiency follows directly from the rela-

tion
160 = §(to)l " =BE ) - 2B (¢ o) +Blto o)

while the necessity is a consequence of the lemma 1, if we
put §h==§(to+ h). We say that the process g({:)is differen-
tiable at the point to if the limit

Liom etW-8C0) _ g
exists. L

ABE (§k+ h) - (o)) (5(toR) ~£(ke)) _

h R

A [ Bleoth, torh) ~Bleo, b+ ) -Bltath to) -Blto o)

it follows that a necessary and sufficient condition for the
differentiability of the process is the existence of the

2,
derivative ji@igg;l . It is easy to show that the

9t 9s t=S=to
expectation of {'(t) exists and

Ef(+)= S EE®).

If £(t) is differentiable at every point t of (0, T ) then
g’(t) is a process of finite variance too. We sghall show

that



S —

wa) EP() B(sy- Sptbel

39  EEE) gsy- 2BhsL

2
t
if for every tE€ (O)T) the derivative —_—88%(85',5) ~s=t

exists. Namely the existence of the limits

YGOSR S I

L, Blerhs)-B(ts)

Lim " and

E R0 §() - o RENHE) o) -(s)

h h—0

Bltth, s+h) —Blt,sth) -Blt+h,s)-R(t,s)

. :
hh =0 h h

follows from the differentiability and the leumma. (So from
the differentiability of B(t s) along the line t=5 its
differentiability follows for every t,s E(O)T)) .

As a consequence we get that the stationary process £(t)

is differentiable if and only if its covariance function B(T)

B (D

is twice differentiable at the point T=0 . Then iy

exists for any T and
) * 2
E O PGsoy- 488

Ei)f (ean) - 488D
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Similar relations are true for derivatives of higher order.

By the integral
b

4.0 / (1) dt

(o8
of the process g ({) over the interval (a,b) we mean the

limit in mean square of the sua

2o Sl I <85 )

where max ka—tmk%) —>0 as n —> ==, By the lemma the

@ =-{:n°< £n4< .o = tnN=b] \:;\\( e(t”k-d ) tﬁ\“)

)

-integral exists if and only if the liwmit of the sum

*

E Z g(tn )(Jc'nk _tnk_J Z i(t\nj) (tnj—tnj—4) -

K ¥ i

L

Ny -4

= L L Blen, , +, ),
J

K

exists, that is, the function ’B(t,s) is Riemann integrable

over the region a4 =t s<b,

Remark l. The integral of the process § (t) can be defined
also in another way. Let us suppose that the process §(£lco)

as the function of the two wariables £)Q> is measurable and
b

(4.5) /'El§<t>|2dt<oo

Q
Then as we know from the theorem of Fubini, the function

2
19(t, co)l
B XA, }LXP?, where P is the © -algebra of Borel sets of

is integrable over the space i[la b]x ()

the interval [a,b] and u the Lebesgue measure, and we have



e UG

E /'ﬁ(t)ﬁ dt = / |§(t)oo)}2 d()xxrp) =

d. [G..b] %L

b
- [ EIE®)I dt.
So the integral / HoR: _ exists with probability 1
together with the integral /i(‘c) dt . If the functions
§i (£) are square Lebesgue “integrable on the interval [a,b]
then the integrals / i (£) §(¢) at also exist and using

again the theorem ofaFubini we get

b b X

(a.6) E [, §0 & ( [g0) 50

-E [ 4@ @) §0 £ (0)at dr -

a w

N
]

// 24 t) (B(f \Ql<’t') dt d=.

As
atT atT i T T
S i / / Bl -s)dt &z T° / / Bt -s)dt ds=
T *® T
= %5 f/ Blw) du dt = '147] PJ(LQ(/F %) du.

That is ifwg (t ) is stationary then the limit
a

] S a —m -ESE)

is true cjb.f and only if
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.7 % [ BlW(-¥)dw —0,

(4.7) will te satisfied if

%j@mmwaa

Remark 2. Let { (t) be a measurable process for which

Y
FlE() <<t <o ) and condition (4.6) is satisfied
for every finite a,b. We may ask when the limit in mean

square exists

a+T

(4.8) Lim [ §(£)dt.

T —>es -

From Lemma 1 it follows that for the existence of the limit

in wean square (4.8) a necessary and sufficient condition is

the existence

atT a+T'

= R OF O I ORI

)
T,T—>°<= i a

a+T at+T

=QLTm T / /Jfr '\:’I:’CU: ar.

Moreover, for the limit

a+T at+T

vom, (1] W0d-4 [ Exwa |-

it is necessary and sufficient that

a+’ (o R i

tim % [ [ €r B ) dt dr-0.

T—>0e
a a.
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Por processes stationary in wide sense we have BXtTr)=B(fc
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Chapter 5%
Stochastic measures and integrals

We often need integrals according to a process §(t)
b

(5.1) / () dg(¢t)
Qa
Such functionals can not be understand as Stieltjes /or

Lebesgue-Stieltjes/ integrals as the realisation of the
process § (t) has infinite variation in most cases. In spite
of this we can define the integrale (5.1) so that it will be
very useful in the sequel and is suitable for the practical
purposes too. A complex of random variables ¢(£x,uo) where
/\ is any measurable set of the interval [b,ﬁ] and coe () is
called a stochastic measure of the probability space(fl,fﬁﬁ))
if the following conditions are satisfied
Lo ®f & ) is additive with probability 1, i.e. if
AN D,=F then @(A, U A))=2(8)+ @(4,),
2./ Elo (8)= F(a) <=,
3./Ee()e(A,)-0 W ANna-¢.
From this property it follows that
F(Aau ‘Az) :F{.’A4)+ F(Az) g oana=d¢

4./ ¢f/\) is © -additive in mean square, i.e.
it A-U A, &NA-F  if Lk, then #(0 4 -
=4

=i¢ (Ai) = ¢1:A) in mean square. From this property it
1
follows that F is { -additive, i.e it is a ueasure.
It can be shown that if a random set function determined

on a semiring satisfies the axiows 1l./-4./ then it can be
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extended to a random measure on the © -algebra generated by

the semiring.

Example. We can determine a stochastic measure on the Borel
sets of the intervall /0,1/ with the help of a Brownian moti-
on w(t) as follows. If A=[t,t,) 1is an interval closed
from the left hand side and open from the right-hand side,
then let ® (A) = co(t,)-w(t,) . The intervals of such type
form a semiring and we see at once that o (AQ satisfies
the axioms l./-4./, so it can be extended to a random measure
on the Borel setse. F(él) will be the Lebesgue measure multip-
lied by a constant.

Let us define the integral according to the random
measure ¢ (A) first for simple functions. Let the integral

of the function
n
ytygigX%Hx ANA =B Y i+,
be by definition

(5.2) [ 1(£) e (ah) =3 ¢, @ (&)

If
G- & Ky ), Ainal-p g L4,

then we get by simple transformations that

(5e3) b o . )
E [26) o @[ 4(5) ¢ @9 -ETeus @S dse;))" -

a

b
-7 e d Ele(a,na) = [ ) g(+) Fat)
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and

(5.3%) Elfg(t)‘f’(df)'iE(chd) (AN Ck¢(Ak))*=

b
-Sle  Fa)= [ 1) Flay) .

The integral of limits of simple functions exists if and only

if .
[ 1967 Flar)=3 1, Fla,)<>=.

For gimple functions it is true that
b

J [ §)+Bg o@h=o [ Li)o @B [ g(s) o (2.

Q

If {(t)is a limit in mean square of the functions ﬁh(t}

i.e
b

(o400 Fad =0 4 n—se

then by (5.3)

EI[ gn(t)q’ (d't)—./ ?m(t) q)(dlﬁ),l:/Ign(f)"¥m(£),2F(dt)—>O, L'l n, M —>oo

b
consequently the random variables /ﬂ¥n@)<b(di) will
a
have a limit in mean square and this random variables will be
called the stochastic integral of {(t)

b b

/ p() e(dt) =L t.m. [{&n(t)cb(dt).
a a
The value of this integral will not depend on the choise of

the sequence gn(t) « It can be defined for every function

satisfying the condition
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(5.4) [ 1p( Flay)<==

(o
and the relation(5.3)will be satisfied too.

Let us examine now some properties of the stochastic

integral. Let & (A) a stochastic measure E@(A)o (\)=F(A)

where F(A) is a totally additive positive definite matrix

function. Let g(t)€L,(F)
i.e

b
[ 15 Flan <=

A random set function \;J \A) will be defined as follows

p(a)= | K Bge) o (dt).

\p(_\) is obvigusly a random measure and on the basis of the

property ( 3?)

ElY () = [ 19 Flas) - Gla),

A
while on the basis of (3)

(5.5) EY@)'Pa,) = [ X (6) Xu, (Blg )l Fldt) =

- f lg&&)l2 F(dt).

oA NA, - ’ ol
Theoren 1. If L) el, (G) then §t) q(t) €L, F)

p b
J P = [ 4 e,

Proof. For simple functions (2(&)=$ ¢, Kx (£))
k

gstatement is obvious

[ 1O9@0-35 ¢, Y- [ 3¢, %, (gl)e [@e)-
) /'b’%(t) g(t)e (dt).

a.

and

the
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Let ant)be a fundamental sequence of simple functions in

Lo (G) then
EI fgn(‘c)kV(cL‘c)—/ gm(t)v(dt)lin/‘l gn_ %mlz G’(d.‘t) _
- [l bl (o) Flas)

ices Pn(t) g(t) is fundamental in L,(F) and the state-

ment of the theorem is obvious.

meoren 2. If V(&)= [X() g)a(t) glt)e L ()
then

_ 4
2(8)= [ s Xt) $lat),
Proof. The function %(t) can be equal to o only on a set of

measure o (mod G) 50-3745 F o= . Moreover

J | K&Tl X(£)G(dt) = [ W}ﬁ),z lq@®)° Fldt)=F(a) < ==

and so by Theorem 1.

[ 5 XY = [ 55 X(6) g @ (@) =0(2).

Example. Let g(zx) be a random measure over the interval
—_0 <_L = OO

E §(a) =0,
E §a)§(a) =B0)-1al,

where B (0) is a positiv definite matrix. If C(%) is square

integrable i.e.

; 2
[ lele)] de «==,
then for any t the integral

(5-6)  m(t) = [ c(t-s)¥(ds)
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exists and
En(t)=0,
E (&) 7(s)*=B0) J clt-s+u) <) du.

i.e. the process 7 (t)is stationary.

(5.7)

Let we have now a function with two variables 2(‘[,%)
(a<2Asb, c£+=d) measurable with respect to the two var-

iables t A and ®(d )\) a stochastic measure such, that

b
2
FTEE )] o(dnr) o=
for almost every t (F{d?x) =F @(d?\)¢*(d7\)).
For these t the integral

b
(8= [§t,2) 8(d)
[08
exists and the process {(+)has finite variance. If {(t o)

is measurable as a function of two variables and
d b

/ [ / el F(d%)]% dt <o=

then the integral of g(t) exists and

4

fﬁ(t) dt = /‘j\@&,%) & (A7) dt.

a e
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Chapter 6.
Integgal representation of stochastic processes

With the help of stochastic integrals we can get differ-
ent representations of stochastic processes. If a process

g (t) can be represented in the form
(6.1) §8) =1 8(£,2) @ (dn), (Ea(dn)e™(dn) = F(d),

then its covariance function has the form

(6.2)  EEWEG) = o) 8, 0FE),

on the basis of the property (5.3).

Let L, [{(t)l denote the set of the linear combina-
tions of the functions {(t, A) = and their limit in mean
square according to the measure [(d)\) . If Ly ;&(f);
coincides with L,(F)  the system {(+, 2 ) will be called

complete.

Theorem l. If the covariance matrix of the process g({:)can
be represented in the form (6.2) where L(t )€ L,(F)

then there exists a stochastic measure ® (d ) such that
Ee(d2) e(dN)=F(d\) and the relation (6.1) is satisfied
with probability 1.

Proof. Let us bring the linear combinations of the functions
£(x,%)

n
(6.3) q(n) = E; by §(t,2)



into correspondence with the random variables

(6.4) =3 o §&)

Let ({| wresp. [§| denote the mainfold of the func-
tions of the form (6.3) resp. (6.4) . Let us define the scal-

ar product with the integral
(6.5)  (90.92) =1 Gu(») g2 (1) £r FA2).

On the basis of the relation (7, "22)=E”L¢”Lf=‘(%4,%z>

this correspondence is isometric. This correspondence can be
extended to the Hilbert space L, ({(t)| resp. L, 1§} keeping
igometricity. Nawmely let %(ﬁ,’k)el_z {?,({) } then we can
find gn(t,2)EM (] such that lg,(t %)~ g(t, N)I=>0 f n—=e-.
If the functions @, (t,\) correspond to the random variables

Moy Mo €M 1§11, then from the isometrical correspondence

”/'Zn—’rl,m“=”%n—%m” — 0 , if nm oo

that is there exists a limitn . EL, t§1 . To prove
uniqueness let %: — § . For the variables '72’; corre-
ponding to g,  we have Ipy —mXl— O . Let moreover
§2n=g’;, §2n_1=9,,then we have H%n —gl— 0, and for some
7o, 1Mo ="noll— 0, so we must have No =78 =N with
probability 1. So we have a one to one correspondence between
the spaces |, ((t)} and l_2 {£)  which preserves the
scalar product (6.3).
Let us suppose that the system J(t A) is complete in

LZ(F) . Let A be a Borel measurable set, then XA(C\)E

eL,(F)=L, {{i and let @ (A) denote the random
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variable corresponding to X,(A). ¢(A) is a stochastic

measure for which

Eela)e(a,) =1 XA4(7\) Xaz())F(cL”A) = Fla,n n,).
The process 7 (t) defined by the stochastic integral

n(£)=f pE.2) @ (d)
coincides with £ (t) as

E §() n(t) = ES@7 p6,2) ¢ (AN = 1§06, 2F F(d),

namely

E§(e) @ (AT =(R(£, %), %a(A) =12(£,2) K (A) £rF(d ),
and from this we get

Elg(£)- £ = ECE) - 1) () - n &))" =

~EIE(#)" - E&t) p() -Eq(t)+ Eln®)I* =0.

If the system £(t,\) is not complete in L,(F) then 1let
us chose h(t,2) (t ef TnNT = ¢) to be complete over
the Hilbert space L,(F)O® L, ((t)! . Let the Gaussian
process t{(t)) t €T be independent of §(t) and let Erg(t)=0

E &) 8x,)" =/ h(tgh) h(e, ) F(dN).
We may apply the previous considerations to the process
n()=§t)  ir tE€T ana () =&)Y te T,
and complete the proof of the theorem.
If the system | ¥(Jc,7\)} is complete in | ,(F) then
the stochastic measure & (A) is an element of the Hilbert
space |_2_ (£} di.e. it can be determined from the realiza-

tions of the process §(Jt) . In such cases we say that & is



subordinated to £ (t).
Exercises

l. Let f(i)be a continuous stochastic process on E),’f_[ with

mean zero and covariance function 'R(S,Jc\' . The mapping

L,(T) into L,(T), defined by

t e [0T]

=

R qt)=J Rst)fs)ds |
(o]

has positive eigenvalues 7\,, and the corresponding eigen

functions ¢, (t) . Prove the Karhunen-Loeve expansion

theorem:

Lim.(§2) =338, 9,)=0,

N —>oe
where

o
So= I 8(t)en(t)dk.
0
2. If, in eddition, the process {(t) is Gaussian prove by

virtue of the Kolmogorov inequality, that the series

2. 5,2, (%)

converges also with probability one.

3. Let W(t) the Brownian-motion process with mean zero and
covariance
Ri{st)=min(st),
and | =1 . The corresponding eigenvalues

and eigenfunctions are well-known:

¢k(t)=l/§ sin (2k+4) TT/2,

2 4
ES, = Gorm
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SO0 we have

O
W(t) N Zi: §k ¢k(t))
where the series converges in the mean square and with

probability one.
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Chapter 7.

Stochastic integrals

In this section we define the stochastic integral for a

stochastic process

(7.2) ng(t,ww(dtp f B, ) dwle)
where ur(t}is the standard Brownian motion process.
In the case whene { () was a function /and not a process/
we saw that the integral cannot be defined as a Stieltjes or
Lebesgue-Stieltjes one.

On the basis of the fact that ;(w(tk)—w(tk‘i))z—»'r
/see theorem 3.2 for Brownian motion process, where for
simplicity Pquj(bf3=£ / we see that the definition of the
integral /1/ is not an obvious one from the following exam-

ples:
Z\ [w(tkﬂ)-w(tk)] U(tk) —= %(W(T)Z_T\),
5 Lwlbin) = ws)] witg) = Hw(Tf+T),

3 tk+ B -tk 2
Z [w(‘tkﬂlivw(tkﬂ w'( 4)2 uf( ) i %W(T>,

where the convergence is true with probability 1 and in mean

gquare too.

To prove l. we know

j%[w(emn—w(tk)f» T
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and from there

Y Lwrtn,) = wit ] =T Lwlty ) - wtd] o () -

— Llwlti) ~wkwt) = (T -2 S Lw(tn) - wtlwk,),
which proves the statement.
The way as we defined the stochastic integral in the preced-
ing paragraph for a deterministic function {(+), proposed in
the thirties by Paley, cannot be extended to the case of ran-
dom function /stochastic process/. It was K. Ito who proposed
a much more general way of constructing stochastic integrals,
applicable in the case of a wide clags of random functions.
In the following let ({(C A) denote © -algebras for
which % S % if + Stend %, be independent of the future
of Brownian motion process w(f) , that is the events
'BG?'; and .‘w(t+h)—w(t)<x |  must be independent for every
B and h>0, X . In this case we say that {w(t) % |

forms a Brownian motion process. It may happen that 9:% is
the & -algebra A, generated by (s), Ss=t.
Definition 1. Let {w(t) % | be a Brownian motion proc-

ess on the probability space ( (L A P) . We shall say
that the stochastic process Q(t, Lo) does not depend on the
future if it is measurable in (t,w) (with respect to

B x A) and for any t=0 {(t ) is measurable

fom]
according to C-ft . The class of such processes will be

denoted by Mm .
2

Let us denote L the class of the functions
QAX[O0T1

(4 (t) w)  for which



e (B

(T+2] £¥2(t,w)dkp(dw -E fg(lc db<oes & (4 co)el

_n[ ﬂx[o T]

and

2
m = HLIUEOT]

; 2
9 u -k
Obviously M is a closed subspace of [ QXToT

2
Definition 2. £(+ )€ rpmg is a simple function if

\2({:, w)=£k(oo)) W telty, tia); kw0 4, wyng =g,
where (O=t,<t,<... <t,=T) is a decomposition of the
interval [O,'ﬂ &

The stochastic integral of a simple function f«(’c) w)
is defined by the formula

LT T

f‘g(s w) dw(s)= kz=o Lk(w) [w(tkn)_W@kﬂﬂgfmq(w)(w(t)_W({'-mu))
The basic properties of the stochastic integral of simple

functions are:

a/ of (L §(s) +P.>ca(s))ciw(5)=oéft2(s)dw(s)+6 ;a(s)d,w’(s)
b/ M@,)d,w(s)- JHs) d i)+ rg(s Ydwls) 04, <t

¢/ the integral is a continuous function of the upper
bomtad; .
ECIS) dw(s)R) = [ §s) dw(s), for 0< w=<t
w1th proﬁablllty Ly oespecially
F( m(s ) dawr(s)) =

e/ E( f Q(s ) d w(s))( f%\ $) duw(s)= = f{’,(s %(5
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Properties a/ and b/ are obvious. Property c/ follows from

the continuity of Brownian motion process. To prove property

d/ it is enough to note that if +, >u

E(?Kk(w)[w(t“i) —ca(‘tk)]/ %) “E(E({lk [ur(tuH)_W(th)]/f}ik )/}L) =

- E(fu(EL o) - w(e )Y KD F) -0

In the same way can be proved e/. Indeed, without restriction
of generality we may suppose that £({> and 8(Jc) are piece-

wise constant on the same intervals. let t,2 t,,, then

= gk(w(thi) —W(tl)) 2n<w(tn+1) - W (tn)) =

I

= E d(w(tnn)- w(t) o EL(eGniy) —w(tn))/ R 1-0,

and

£ 2k(w<tk+i>— W(Jck))gk (U”(tk+«) —W(tk)) =E gk' %h(twi —t, ))

and from here we get e/.

The properties d/ and e/ wmean that the transformation of
a stochastic simple process @(t,co) cwm” determined by
the stochastic integral f‘{),d,uf into L;XEO'T] is isometric.

For the definition of the stochastic integral /| Jdur
of any process @(t,w)e ‘lltz it remains to prove that the
set of simple processes is everywhere dense in t'.'lz . The
proof of this fact is the following.

Let {(t,c0)€ m 2,) ,\ﬁ(t,c,o)l < C @and continuous with

probability 1 eccording to t. Then for gsimple functions
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Lteo)=f(A0), o te[4k, &1

we have { € m- and 1?,,,,——){), with probability 1, and

3 2
Eg(&—in) dt — 0, Y n-—>oe,
Further now we assume that |£(+_,co)|< C « The functions
.t
Lyt co)=n f Bs,c0) ds
[rax(t-4) 0]}
are continuous and are contained in mzz . The sequence
On (%, o) converges to {(+, ) with probability one and as

£,/ < ¢ in mean square too, i.e.

T 2
Ef(ga—‘%‘) d,"’l'_)D’ Lg, n — &=
0
Finally let ¥(Jc,c,o) arbitrary in m: . Tt may be approxima-

ted in mean square by the bounded functions

fa(tc0) = $k,0) X, (8.

So we have defined the stochastic integral all over mtz .
Now we shall prove that the properties a/-e/ are valid for
any process {(t,w)€E m .

To prove a/ let us choose two sequences of simple func-
tions {, (% c0), 9n (£, w) converging in mean square to

1Q(t,c/o) resp. %(Jc,c,o) .

Then a/ is true for Qn and g, and it remains true for
the limit too.

In the same way we can prove b/. But we can prove it

using a/ for arbitrary $(t,c0)€ m” . Indeed
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IOLORNFIORARNOLIEO
It is well known and may be easily proved, that if E( )-*O
(h —> =) and % is a 6 -algebra, then

EIE(S,./F)-E(/F )l—~—>0, W on—oe.

Using this fact we shall prove property d/. Let gﬂGJEsmz
] 2

a simple process such, that Eof@n(t)—g(t)) d —=0 & 4

B —es . AS

E[fm) duwlt)E] - f‘ﬁnmdwu)

1

and

)

E( j In(t) dusl(t) - ofxmm (£) §() dw(®)) =0, i n —>oe,

ECS ) [ 40 dw®F >0, ¢ n o,

we get the required result.
Property e/ is a trivial consequence of the definition of
stochastic integral, where there exists an isometry between

f(t, <o) and its integral

o) =2 T Ls00) dus).

Let us turn to property ¢/, which states that the stochastic
integral is a continuous function of its upper bound. Here

we prove the following theorem.

Theorem 1. The process S§(t)= ﬁ(&co)dhr(s) is equivalent to

a process with continuous trajectories.
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First we shall prove the Kolmogorov inequality for

martingales with continuous time parameter.
Lemma 1, If (§(t), %) is a martingale, where § (t) is

continuous with probability 1, then

(7.3)  Plstp_ l§®)Zzc) giﬂzl)f

ost&T C
The proof of this lemma may be carried out in two steps.
First the Kolmogorov inequality can be proved for the discre-

te time martingale

n = §(LL), k=0,1,2, ..

in the same way as in the case of sums of independent random

n,

variables /with zero mean/.
In the second step we should take the limit from the martin-
gales

7 to §(t) a5 n—se-,

Let

B.= ‘n'co'-lvzj|<c,j=i,2\...)k_¢, I”ZJ%C,:' & gL =gtk

where ’E)kﬂ'Bﬁ/@ L{, k%g’ and
B={w:max Inlzc}) =y B,
kgn “k k=N

The following inequality proves the theorem in the discrete

)

time case:

E(% (E(n, %)) =

>

£n

=23, El%EM,[%)]=

kEn

-3 El% n']2c SEM, 1=c PB)

ken
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where we used the Jensen inequality and the martingal equal-
itye.

In continuous time case we have the equality for contin-
uous processes:
{3%;) f(t)zch={ S\Ep §(r)2 c ) where || is the set of ration-

als. Joreover

k
2n
From here using the Kolmogorov inequality in discrete time

| sup E(r);<:} = lim | max f( ) 2 C|, with integer k,n.
r n—>oe ka2

case we get

| max .§(KL>;(:}é T

Pl sup |E®)2c) = L -

Lim
0t €T n—>co ks 2"
Proof of the theorem. For simple processes ¥n(£§o) the paire

+
! Q°“(t)=_f&(s)<iu45),3l ] forms a continuous martingale.
0

From the Kolmogorov inequality we get

EL 00-1 (D duls]’

C

@{Sup |f £n(s) dur(s) - f¥m(5) dw(s)>c } s

t£T

Q

e Ef(g,,(s) @) ds.

If §,, tends to J so quickly, that

i~

.
2 1
E / (‘gm(s) _£m+4(5)) ds o™
0
S
then /| Jdw is the sum of continuous functions so that the
0
convergence ig uniform with probability 1, and this means that

b
/| §dw is also continuous. Indeed
0

I§ dur= g %dmof(gz—gi) durt ...
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where the convergence is in mean square. The members of this

sum are continuous /with probability 1/, and the uniform

convergence with probability 1 follows from the inequality

ZOP{SLJP If(£n+1‘£n)ds/z> % } éz -g; < Co

0
and from the Borel-Cantelli lemma.

If the processes a, b G,mf'[:O,T'] and §(t) is

defined by the equation

(7.4) E£)=50)* falt,co) db+ bt o) durls)

we say that the process g({:>has a stochastic differential

(7.47)  d§(t) = alt,w) dt + b, w) dar(t)

The last expression has not meaning in itself, it is
only a short writing of the integral expression.

It is possible to extend the definition of the stochas-
tic integral to the case where {={(t )€ m, i.e. it is

measurable with respect to B X A ® is the

[oT] L8]
G -algebra of Borel sets/ , and {(t, w) is ¥, measurable
for every fixed t where O»(t))?i) is a Brownian motion

process, and finally we suppose only that

(7.5) Pl Off(t,m) dt <=} =1,

.
The last condition is weaker than E [J*(t,co) dt <o=.

0
The definition of the stochastic integral for simple functions

is the same as in the discussed case.
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It is obvious that for simple functions the integral has

the properties a/-c/.
Before studying further properties of stochastic integ-

rals we prove the following lemma.

Lemma 2. If . '+ )& Wi is a simple function then for

the process
t s +
PaX 0 2 \
$)= 3 [ ¢n (5,c0) ds |
0

(7.6) i(t)= exp | Jdils o) dwis)

0

)

(§(¢) ¥.) is a wartingale, for which

t
2 [is(s)ds!=1 for every 0£s2+= T,

t
(7.7) Ezexphfgﬁﬂdnﬁﬂ~§_
S S

Proof. e have that

e s s ,% L
(7.8) E(g\t//’i )=axp | @,{\J) Aw\w,~ %I Lmujau ! E! Q_xp[_‘ .?nciur—%j L:d,u:]/?s
0 0 S S

Let for simplicity
\Zf't(",:"/»‘i . L Zdh2l -1 \
N X Sy {’k\""),\ LY/ Kk = L k+4 K (e ey M

o=l

S =+

Then

=4

. . | i .ti-a',‘ -
= a.XpD badw—%5[fn d.\;_]/(En' =E] axp[.’ b deo- 3 didul.
S S S S

. +; o
E[QXP[-’ nduwr~ ‘ ' ‘fn""z du&!/(‘j't- —1/?; B
-1 “y-1 St

Jd
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As the conditional distribution of {,(t;,)(w(t;)—w(};,))-
= Cj4(w(t)-w(t;_,)) under the condition (J:;j_i is normal

with parameters (D, Cf_i(tj—tj_i) we have

t] £
E[@(P [f Cj-g duw = %fJ Czj—i d‘;}/?trij =1,
41 -1

Applying this relation repeatedly we get (7.7) and from (7.8)
that §(Jc)is a martingale.

Here we shall not give the exten_gion of the stochastic
integral for arbitrary !€ % and ’P(olf({) dt<oe) =1 ,the
reader can find it in Gikhman-Skorokhod [2 J , or in
Shiryayev [ 1] .

The definition of stochastic integral can be extended to
the case [ =c= if

PiIE(sco)dt <o=i= 1.

The definition may be given so, that

P 12;2 Jﬁ(t, @) duwlt) =OT£(t, w)duw(t) | =1

The generalized stochastic integrals have the properties

a/-c/ and

oo 1 oo
a* 1 al OJ QZ(S,Q) ds] <= then E(/’Q(s)u) dw(s)=0,
e’ I E.le(s,c,o) ds <== then

E ;Fi(s,co) d w(sﬂ2= E ?@2@, w)ds.
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Let be T a Markov moment with respect ?i , and

P(t===)=1. PFurther f ﬂ(s w)dw(s) = J b(s,0)dur(s) on

{w:T(w)=t ). Then

H&(s ) dw(s>= X(T25) §(s,00) dur(s)

') If for d>0 Eexp.(cr+‘/z ¥ Pl ol ] e $hen
3) ,
0
{§(t), & is a martingale with the property
ESk)=1
where

§(+)=exp | f{l(s,w) dw(s)-Y2 f&%qw) ds |

Remark 1. Recently A. Novikov [ 1 ] has shown that <§) is true

under the assumption
Eem>i%f£%&uﬂdﬁ?<%.
0

Remark 2, For stopping time /Markov-moment/ of a Brownian

motion process wr (+) we have

E w(t)=0 Ew(T) =

)

(if Ew(t)=t) , which is known as the Wald indentity for

Brownian motion process.

Remark 3. (7.7) is the generalization of the so-called

" fundametal identity" of sequential procedure.
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Chapter 8.
A theorem of Levy

.

o~ s
‘:_ 9
“4- )

Ty

Theorem. Let there be given the continuous process §(f})
, and for every t 2 0 there are given the
E when t, &t

s with the property

the conditions
is », measu-

+20, §0)=0
6 -algebras T,
If for process £ (t
a/ for all £ =0 the random variable £ +t

rable
b/ for every t= 0O and h>0 with probability 1

ECsG+n-t&0/% =0
¢/ for every t 20 and n >0 with probebility 1
[%a=h

\“,2.

/] ‘:Lf o

P. Levy.
Ve want to prove that for any decomposition
we have

E(CE(x+n, - £
are fulfilled, then §:t; is a Brownian wmotion process. The
theorem is due to
of the time interval [ti +n]

Proof.
Sk ™ EhH
AT TRy /

s
1727
v 4 .
T

‘ 'K[é\‘*'v\>l _—%'\tk'
i.e. the increments z2re independent and normally distributed.

We first compute the conditional characteristic function of
under the condition

the increment f(t+r —§ +
L(EGE - &N Z | o 1
-"k"t_J -

e

2

f—’1



Let n" - f(t+ih)- e+ ¥=44) , then

L n-4 ng N=p=4 2
exp al§tsn) -t -expa(Z 7 )- 2 [e Co BT T " -

k=4

& n n-r hc%
= Ie O";."Zk+ Thq’:l & T

S0 we have for the conditional expectation

EA Exp Lz §(t+h)- g({ﬁ/’; f-e 2t é E{(Zx;::[szz_1 oz::](eLz"Zm _

4
-8 z% /g:t}e"nz:\ hz.

We want to estimate the sum on the right hand side. As

ol
Nto

E{axp [Lz é@t](efz"lru _ )IT' } = = ¢xp[Lz§fQ:] 5

’ E<e'tz7z,."“ -8 %%,?Hih)/ﬁ} -

n

“E{ axp[Lzé ’Q:] E(eiqu”n” -1-izqp",, t $<Q2+1)zl’}i+%h>]f£ } +

‘ 2 _he
He {pr[tz‘; p(l-Ew-e T %
. X 2—&
and using the relation € -1-x~= O’(x ) , Where 0<£<141 ,

we get

2 =
Fleo (Bogp) +

(8.1) |Elexpliz(§km)-t®))]|% -6

3

4

L E{ |E(e % 4 - tzgh ("lr»,i)I }

-
"
o
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To estimate the second term on the right hand side we have to

d
estimate the sum of the form ZZEJQZI , where d > 2.

n w . E
From condition ¢/ we get that [ Z](Qk) = h s i.e. the
n -, k=4
sum 2 (7)) is bounded in probability, (this follows

from Markov inequality) . PFrom here and from continuity of

£(t) we get that

n G 8 3 n
wzil(/?’k) = Mo ('Q:)J : ;("2:)2 == [)

in probability.

y 9>2,

)

From b/-c/ by repeated applications of conditional

expectation we get

ECy. o,y m" | F)= B (B (E(n EG(E(n] | Fy s )]

F inge ) Fn ) Frn, )R ) =0, 4 O<rsalsjsk

and
with at least one definite inequality awong r,1l,j,k.

Further we have the following limit relation in probability

86 o) =50 = i [(2, 200 +3 200 201 T 35 0] -

So by the Fatou lemma and from the above relations
h T i
ELGem)-§6D1%] = by EQ(Tgn) #3005 ) -

-2 TR =6 tn EC 6K -

k<)



- 75 -
= 6 fim_ EL Z (7)) )-E(7}) | ity )R] =6 tim 252 Ly

Now we are able to estimate E(’E(Jt"h)'“{)lal’i =
indeed

(1N

E(I8(e+n) - §(0 )PP %)

£ LE(IS(eon) - SOPR)ESE )-8 12 * < van

Applying this to 7’

3/,

S P 1%, sean) 5. (3)

LZX 22 3
As’eL —1.—sz—-%f lg /if/ we have the estimate for

the second term in (8.1)

Z E 1§ &* B o s LZQ * %—z(,,zfu)z(l’ﬁ} £cznh. (h>3/z

r=0

} 0'( - )

So we showed that

<
7*h

Elexpiz(§(t+h)-£@))F] - = .

From this and the definition of conditional expectation for

every decomposition 0=£0<t1<)

v iy Thy =k it follows that

Eaxp (13 2,(8(8) - 86 )} = E xp (1 2 2,(3(6)- 6k, )

k=1
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“Elaxp iz (§¢ta) - §t, D)%, ] -E expl “kzi 2 L8 )86 01

.ﬁp{_ Zﬁ(‘cn;n-,) } .

By induction the desired result follows and the theorem is
proved.

The statment of the theorem may be deduced from the following
general lemma,

Lemma. Let (§(t) %) satisfy the conditions of the theorem
end {(x) be a bounded twice continuously differentiable

function where { and {’ are bounded, then

ELHE)NE] 48D =2/ ELPG@I%]dn, tzs.
We shall not prove this lemma but we show how can we
get the theorem from it.

Let Q(x)==etxx and we can apply the lemma; so we get

2

: . t .
E[ M) 5]- MO - - 3 [ E[MYR]du | tzs,
S

or

D -§(9) 2 * A(E(W=§(s)) —
ELEO g g FE[PEC D gy

using the notation

v ("'—,5) _ E l:ei.')\(g('h)" §(s))/r3:s]

we have

t

V)15 [ v (us)du.

)
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By differentiation

dj 2
3 éb5>=_ % v(t,s), tzs, ¥(s,s)=1.

It is well known that the only continuous solution of the

above equation with the given boundary condition is

v(ts)=¢e P(e-s)
which proves the theorem.
Remark 1, In other words the theorem states that if §(t) is
a continuous martingale and f(t)'-t is a martingale too

then g(f) ig a Brownian motion process /see e.g. Doob

theorem 11.9/.

Remark 2. The statement of the theorem remains true under a
bit weaker condition. Namely if the following conditions are
satisfied: {(+t)is continuous with probability 1, §(0)=0,

there exist such random variables 7, 7, > O with P1?¢ < oe;

(i=14,2), that

AELGCen) =50 R] &, ZELIS e8| K] 2 0y,

and with probability 1 the following limits exist

i 2 E[(era)-50)%] -0,

. 4 Y 2 _
Jn RE[((a)- (0F%] =1,
then the process £ (t) is a Brownian motion process.

Proof of the latest statement:Let us denote in the case

£>5
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P()=E[(5(6) - s))/%] -

Then from our conditions, using the Lebesgue theorem,

Lim

PE+A) -9 (B _ E(t+A)-§(1) _
ALO £ o ( = /E> )

-XL\‘%E<E{ §(t+AA)—§(t)/}1/},> 0.

Exercise., Generalize the theorem of Levy to the multidimensi-
onal case, that is prove the following statement: If the
process £ (t) is continuous with probability 1, §(0)-0
and
af § (t) is % measurable for all t z0,
b/ E(§(£+h)—§(t)/q";) = 1 for every t2 0 and h>0
with probability 1,

c/ there exists a positiv semidefinite matrix B such that

E((§( +n)- §ENE(+n)- 5 %) =h.B

for every t 2 and h>0with probability 1

then E(Jc) is a multidimensional Brownian motion process.

The same statement is true under the weaker conditions of
remark 2 /p.6l/.

It may be easily proved that »P(%) is continuous with proba-
bility 1 and so {(t) must be constant. As §(5)-0, g(t)=0  for
t 2 S . So we have proved that condition b/ in the theorem is

satisfied. Similar argument shows that for the function
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v (1) = E[(3¢)- §(sN %]

lim Ll 572 ol § 5 I 1 is satisfied, if t= s , and
A0 A

so ¥(¥)=t -s . Which proves the statement.
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Chapter 9%

Stochastic differentials and a theorem of Ito

If the process {(+) may be represented in the form

(3-1)  §&)-§0)+ [alt,ca)dk +J bt o))

where the processes a(t, ) , b(t’co) belong to wﬁ'[O,_r]
then we say that it satisfies the stochastic differential
equation /or it has the stochastic differential/

df(t)= alt,w)dt + blt,w)duw(t).

We have to remark that the termin stochastic differential has
only meaning in the sense of 9.1 , but we shall use this
termin for brevity. a(t,co) and b(+,w) we shall call
the stream coefficient /local expectation/ resp. diffusion
coefficient /local variance/ of the process §(t).

In the general case we suppose that a (S, w) and b(s, w)

are measurable with respect to ?g for every fixed s and

PA OfTI alswlds=o=}- {

P{J Blse)ds==}= 14,

where {w() % P} form a martingal in 0£+=T(T may be o= ).

)
In the sequel when we say £(t ) has stochastic differen-
tial /or satisfies stochastic differential equation/ we mean

that a, b satisfy the above conditions.
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Theorem (Ito). Let w=u(t x,,...,x,) a function on
[0==]xR" , where the functions
u - A‘é‘_ LL' — BU- u'._ — 8z W
R L - T T

are continuous. Let us suppose that the processes _§-L(t)

=4 A wwuy B satisfy the stochastic differential equations

. (t)= G,-L(t,w) dt + bl(’c,w) dw(t).
Then the process p(t)=u(t £(t), ..., §.(t)) has the
stochastic differential

d"Z(JC)= [‘%(t,gu “e ’§“)+%L,32=4 bi b; U-Lﬂ dt + é;i u, d§i(t)=

= [LA-+‘“Z b; bu”]d‘cﬁ“z [cx dt +b; dw(tﬂ

Ll‘

Before the proof of this theorem let us consider some examp-

les. In the case n=41 Ito’s formula is the following

2
Cioz(t) [Su(t . a(t . 8\»(& §) ]dt+%bz.%§)_dt X

Su §)
+p B g (s ).
The difference between the ordinary and stochastic differen-
tials is expressed by the term zbz “—— dt . Its
appearance may be explained by the known properties of the

Brownian motion process, for which

dt-dw(t)=0 (dw(e)) = dt

)
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2 i
at the same time (dt)=0 . The formula (dw)=dt is an
equivalent form of the relation

j (d.w‘({:))z“ T.

Let w(t,x) = x  and )= w() . In this case a=0 b=1.

From Ito’s formula we get for

(9.2) dot)=dt + 2uw(t) du(t).

This result is nothing else as the differential form of the

known relation for Brownian motion processes

S urle) dus(e)= $[wA(T)= T1.
Heuristically (9.2) may have the following explanation:
A )= Wt +a)-w(8) =(wle+a)- wE)(wlt +A)+ w())-
=(wlt+A)- w(t) (wr(e+a) ~w () 2 w(t) =

~(Aw @) + 2w ) awt),
2
where (A w(%:)) e e
This gives (9.2) .
As a next exauple let {2({)= ?(t)oo) measurable with respect

to % ?{ofﬁz(t,w)df <os} =4,

)

(4)= exp | ({tg(s,wmw(s)- 4 5{2”(5,@) sy

that is

§()=exp{ §()}

where

dE(t)=— 7 22 (1, ) dt+ (k) duw(t).



- 8% =
From Ito’s formula we get

A§(t) = §(¢) f(t) dus(t),

W S GO TR 10°)
d(i(t)> ) M s dwls)

This means that the process §(t)is the solution of the follo-

wing stochastic integral equation

(9.3) n(t) =1 +oftfg(5) §(s) dur(s).

We prove with the help of Ito’s formula that the only contin-

ous solution of (9.3) is given by

§(£) = expl S §(6) dunls) -~/ P(s)dls )

Let 7(t) a continuous solution of (9.3) . As we have seen §(t)

is a solution too. Applying Ito’s formula to the process

nE)

o we get if we put u(tlﬁdx2)= XU’%)

o

2B\, 4 4\ _ A _
d<§(u> 0 d”z(t)“z(t)d(gm) %(T) OYICED

-4 N P L(1)
S(t)[”z(”?(t)de(fﬂ nz(t)[g(t) dt- 505 de(t)] .
0]

{0 ik dt =0,
this means that 7 ()= {(4) with probability 1.

Proof of the theorem. It is enough to prove the theorem for

the case when ai(t, ) and b (t, w) are simple functions,
that is they are constantson some intervals of t. This means

that



e
8 (B)=at #by(ur(E) - ‘*’(tk)); on ty <t <ty

where Q; and b; are constants. In this case there exists a

smooth function Vv such that

Lk(t)gi’ P .)§n> - <+‘| w'({.))
So we prove Ito’s formula for functions of the form

§(t)- v(t,w(t)), O02t=14.
Let €= [2"-4] and A =w(k.2")-w((k-1)27"); k=1,2,...¢
then

ot w(t) =1(0,0) = = {u(k 2" w(k. 2 )-v((k-102" w(k.2"))

k=l

+ 3 Ao((6D2”, w20 (027, w((-0)2") ) +

ol w(®) o (27, w(e27) )

from our assumptions of differentiability we have, with the

notations
) ) BZU"
_ Qv = OV A
U°—3{~_ ) Vi axi ! V‘J SXLSXj’

Lo( 277w 2") - o((k-0)27 wk.2")i=

!

=2, (k)27 w(k.2™). 27 o (27)

{ U((k-i).?:n w(k.2 ")~ U'((k—i),?,_n) w(k-1)2" Ni=

KZ0 '
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(o (027, wl((-1)2" DA w7 v ((-1)27" w((k-1)27)

faa

k$

(aw)+ olaw) )
and
vt wE)-v2" w(e2™) =o(1).
From the definition of stochastic integrals we get

2. tu((k —i)Z_n, w(k.Z_n)). 2" o(2")) - j v, (s, w(s))ds+o(l),

kel

P u;((k-i)z'", w((k-1)2")Aaw,+ 5 v (k- 1)Z" wr((k-1)3") )(Aw*k)

kst

*o(du) 1= T uls,w(s) duwls) § foiy(sw(s)) ds +

+7 3 0, (-2 w(k-1)2") [(aw) =27 ]+ o (D).

From the last relations we see that to complete the proof

for the special case U’(*‘-,w(t )) it is enough to show that

ZVM ((x-1)2 ,W((k )2 ) [(Aw’k -1 ]——>O
in probability if n —ses.
Let
& ~[(aw)-2"],
and for fixed N

'X;h'X,lmax LzléN}.

L=k

We have

PUY (027", w((-D2")E, - [1-%,] +0)

i
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='P{supi|w(’c)'>N} =0, @ N-—»=,
0<tg
On the other hand

E 2 v ((-027, w((k-1)27) &0,
and (using £ £'-2.27"")

EQ (-2, w02, 1., )

)

“2E (DT ()27 K e =

< - Z 2 = 2 -n\Z
= stk v (kx) 22 EEX=2 st U(E,x)z 2 — ()
ogigi “( A )két b 0= tr}_ii A két( )

Ix]|£N v Ix|= N

if n—se=, So the proof is completed.

Exercises

1. Prove that for natural m = 2
d(w®)" = mw @) dwl)+ 20 ()" a

2. Prove, if J(x) is twice differentiable and (%) is

-4

continuous then

df(wr(®) = JlwE)duw(®) + + gluw)) dt.
3. Let bi(t, ) (i=1,2) measurable with respect ¥,
PUb(t)dt <=} =1 J E bi(t)dt < o= , then

E by(t) dur(t) [ by(t) dur(t) =[E bt )b, (t) dt.

4, Let b(Jc, <) has the properties of the preceding exercise
2m
and [Eb  (t)dt <e (m - natural) , then

E[fb(t duw(®)]" &[m(2m- 1)] s “fEb““
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Chapter 10.

Martingales, semi martingales

Let {_ﬂ_‘?', P} ve a probability space, <%, & ... -

algebras /n={ 2.../.

o

Definition We call the sequence |§,, a martingale, if

a/ §, is %, measurable,
b/ Elfl<>=,
C/ E(gnul?—;\)-gh.l

If we have the inequality

Bty E(Enulg—:n) A resp.
e/ E(fn“[’;n) = £, instead of

the equality c/ we call the sequence a super- /resp. sub-/

martingale.

Examples
1./ Let Elfl<> ana §=E(§|F,) ; then (§.,F.) 1is a

martingale.

2ef Iot £, 8 .«» be a sequence of independent identically
distributed random variables ( E§ -0) ., If F=6(%,...E)

and 7 = gf’ « 3§, then {'Q,, ; Fa is a martingale.

|
J
3./ Let P < Q be two measures on ¥ 7P, and Q, the re-

)
strictions of P and Q to T (< Tai) . Then obvious-

ly 'Pn < @, . Let £n= i—g"— the Radon-Nikodym derivati-

ve, i.e. for any AET, P.(A)=[ §. Q. (de) -

Then {§, %, Q | is a martingale. Indeed, {, is a



4./

5./

6./

= BB -

martingale if and only if for any Ac¥F, , m<n

Af§m(u) Q(dew) =1§n(w) Q(d o).

Let §“ §z ... be independent, identically distributed

)

random variables.

-6 (8,5, - -, ),
Y | A
Let us have two hypotheses for the distribution of §n
He: the probability density function is p(x)
Hy: the probability density function is g(x)
Let P and () be the corresponding two measures generated
by <§._, §2, . v ) on (Q, r&joc) . If for any Borel measur-

able A from | q(x)dx=0 follows Jp(x)dx=0 , then
A

Ra.e.—> .

()
gl ==

The sequence {§, %, Q] is a martingale.
Let- §,,€§, ... be random variables FE|§|< o i
Let %={¢, O}
(};= 6V { g . gn }
and s
23 (6 E T
The sequence [m W F,] is a martingale.
Let {§, %) be a submartingale /n=12,.../.

Let §o=O ey §"‘=§h_§r\—i y fornzi,

)

Then

n

f= 205,75 [§-F( %+ ZE k1) )

k=4 k=1
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where

EGJE D-EG S, [F..)=20.

So we get §,= Qn'*oén , where

2n-2 [S-EGIRL)]

is a martingale and oén-'ijE(ﬁlgi-d) is a non decreas-
ing sequence.

In the sequel we recite some well known theorems from
Lebesgue’s integral theory.

Theoreml/monotone convergence/. If {, — § with probability 1,
then from {, T3¢ and E{&i <o /resp. $n ¥} and

EQ,: < e /follows E{, 1 EL / resp. El ¥ ER/

Definition. The sequence {?n} of integrable functions is

uniformly integrable if
1im sup J g 1dP=0.

Q —>» o= n {I;n‘>a

This condition is equivalent to the following two conditions:
(1) sup E[{,| <=
(i) lim sup J ¢4/ dP=0.

A

PA+0 N
Theorem 2.(Fatou’s lemma):
+
If the sequence {£n} is uniformly integrable and

|E lim sup Yo[== , then E (1irt\n_;s°1.1p P lim sup e 0

Theorem 3.If 4,20 , {,—= 0 a.e. and E@n <ee , then
the convergence E&n—* Eﬁ, is equivalent to the uniform

integrability of the sequence {Qn I e
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Theorem 4,(majorated convergence). If nfln —~ ) a.e. and there
exists a function ¢ , for which |[},[= g end E% L
then EH@,\— - 0.

Theorem 5,(Lévy). Let ¥, be a non decreasing sequence of 6 —
subalgebras of * , and denote nU1 ?n by *.. . For any T
measurable random variable { with El§|< == , the following

relation holds a.e.:

1 E(EIF,) -EGEIR).

n-—>06=

Proof.

Without loss of generality we may assume that ?%=? . We
shall use the following lemma:

Let (_Q_, ¥ P) a probability space and G an algebra, which
generates the G -algebra & . For arbitrary €>0 and AEF
there exists a BEG , such that

(104) PIANR)+P(BNA)< &

(Hint for the proof. Let W be the class of the sets of the
above property. W > G and vt is a 6 -algebra, so W= ?7.).
Obviously (4 ) means, that
¢0J) Eld,— Ysl<§ .
From (2) and the F.. measurability of £ follows that for
any given £ >0 there exist a natural ho=h°(6) and an 3:,,0 -
measurable random variable §n s of property

2

Bé=f 1= 4.

Let 72=l§-§n°| and
T =inf [ wzng 3 E(’Q,?:n)>€=
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(if there is no such n , then "c*-°°) . Ag for every n=zan,
[T=n) EF S0

)

’P=E(Q|E)>8 for some n2n,| =

i Plteni- 3. 4P <SS .
=2 {l-n} 2 {tfgn E(n|%,)dP

-5t JndPstEq %

2 E ot eEn-2

Furthermore for every n Zn,

[ECGHT) - SI- 1B 5, 1% + (¢, - ) £ |EE-5, ||+

¥ | &, = § gE(Qm:n)*o?/

Hence
P{|E<§l?n)"§l> 2E for some n=n,| £
Pl E('Q|?7,,)>€ ~ for some nzn, | *+

Ply=€lzs &+¥% Eps %rth-€.
This proves Lévy’s theoren.

The following theorem includes the theorems of Lebesgue and

Lévy too.
Theorem 6. If § — §{ a.e., lgnl<')2 , E’fz<°°,=r£9'}~’}

is a non-decreasing sequence of 6'-algebras and ¥+ =6(U%)) ,
then a.e. llm E(,| %) =E(§| . ).
lim sup E(§,|F,),

N-oe naN

lim inf E(§,|%.).

N->ce n2N
meaN

Proof. Let oL
oL

We shall prove, that with probability 1
L EE(IR)EL .
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We set for fixed K

B ouf S
Then lor nzK:
P W ond
= . o
Z-lim swp EGIT) = bim s E(g %)

m2=N
It is clear, that

E,QKI=E[ISGp §h|] =gk (R

nzK
by Lévy?’s theorem
1im  sup E(7.|%,) = 1im E(g,|%)-Elq]F).
N=os  m2N N> oo
So for any K we get o SE('QKI’};,) and as 7, { kJ:aifE sup 5=
lin =8 | furthermore Efsgp §l=sEq< e by the monoto-

ne convergence-theorem (which is valid for conditional ex-

pectations too) :
L & lim E(n,|F=) = EGI%S).

Similarly we can prove, that

ECEFL) = £ .

oL , we get the desired relation

11m EGE R -EGEIRY).

r\'m-bao

As o

I

Semi martingale convergence

a~ . +
Theorem 7. If §,,, 4, is a submartingale and sup E§n<°°

then there exists /the limit/ lim §, (=§..) with probabilityl

R
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Theorem 8. If {§ A F,] is a supermartingale and sup Ef, <
<**then there exists /the limit/ligg,gn(;g

Obviously it is sufficient to prove theorem 7. For this

purpose we recite an inequality of Doob:

Let Y,, Y2,--+) Yn be a sequence of real numbers, and

a<b,

Set Yy, te =0,

t, = min ik; 42k n, Y= Q |
t, = minik:{skSn, y.2b |
t, = min{kit,m ,<kEn y,=aj
ty = min {k:tym <kSn, y 2b!

If one of above sets is empty, then the corresponding t is
equal tooce ,

Let us denote max |m:t,,<"] 1i.,e. the number of
intersections from below by (» (a,b) and the number of inter-
sections from above by o (a,b).

If we replace Y,,.-.,y, by random variables 9,,...,7, then
t,, ..., t, (a,b) and(h(a,b) also become randou varia=-
bles. Doob’s lemma asserts the following:

Let |§n, 0| be a submartingale and n £N , Then

E Alab)s E(En—a) . E(+lal)

ab)s - < —
- < (b la )
< § b E§ +| b
Proof: Let first :gn, F,! be a nonnegative submartingale

and a=0; we show that
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Eplob) = =

Let §,=0, u,=1 and

I @ tm<i=t,,,, (m is odd)

IIn

O @ %,*15%

mis, (m is even)

We suppose that t, “N (instead of %,===) if the corresponding
set is emptye.

It is eagsy to see that
N
(iey) Uo 8ot 2 ui (& - %) 2 bp(0,b)

and so

bEP(ODL)=E ;.Zilo ag [ & —8ia]

As

TR L f - V o
:u-'\,“il‘ U l":m(l’g{:m«wl

m odd
= Iuc_ 4 ¥ il .<-Ll]e’F.
modd.l. o v R 3 | P )
denoting §; - §i_, by M. we get

M)  ESH+HE Dulfi-5i)-EL+E T wige-

=E§{,+E XN; wEn | Fo)SsELTE -Li E(ndF)-

=B, +E 39 -5,

I (&, %) is a nonnegative submartingale then from

the relations (4) and (5) we get
Eplop)s £
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To complete the proof of the lemma it is sufficient to show

that the number of intersections ( (a,b) is equal to the
nunber of intersections ( (0, b-a) for the submartingale

(& -a) %!

L

Remark, If for the nonnegativ submartingale |§,, %] w

denotes the indicator function of the set =92§ § >b | then
L

we get

P max §,2bjs=¢

Proof. Uisu , 8o in (5) we have
E o E g Wi E("Zilgrt-t)éE §ot E(u% E("leg:i—i))=

“EGtE WY mimEub(=/ 4P ).
-4 {max §;,>b}

LEN

The proof of Theorem T.

Let
g%
S

lé\.m Sﬁp gn)

1im Inf 8.,

*
and suppose that {P ¢ >'§*} >0 .
From the identity

(£>¢. ) =  {U E>as>b>g,}

a<chb
a,b rationals

we get then, that there are rationals a,b such that
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Pig'saspsg, 1 >0

From this if follows that

(10.6) Piplabl===}>0,

But according to the inequality e we have

E ﬁ(a,b) < SP 5 tlal by +lal < oo

b-a )

contradicting (6) -

So the first statement of Theorem 7. is proved. The
second statement is a consequence of the first.

Two examples for the use of the supermartingale conver-
gence theorem.

1. Let

f, =~ EX8IE), Elgl<=

)

be a martingale. On the basis of the supermartingale conver-
gence theoreu there exists the limit §._ =1inE (E]F,) and
it is F.. weasurable.

show, that 1im E(f1%) - E(8F.).

2. The Kolmogorov’s O -1 law.

Let n, mp,.-- be independent random variables, and
=6, . - -, mn) . Suppose that A€ 6 (n,,,, ...)
for every n. (E.g. the sets of the form {srt)lp g = } oz
|there exists lim 7, | T

The fields F, and €7(%,,,, % n,,,+++) are independent,
and if AGG'('QMU...) then P(Al?n"P(A).
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On the other hand, from 1.

PAIF)-E(LLIR) = ECL IR =X,

therefore
P(A)=%,, e P(A)=0 or1

Martingal Inequalities

From Doob’s Lemua it follows that if |§,, % | is a

submartingal then

(1o.7) PI 2, gnZC}S.E—CE—']—.

This is the so called Kolmogorov’s inequality. We can easily

see that even the stronger inequality

4
Pimaxgnic:é? J
k £h | m
|k

AP

2C

£
g

¥ X #

ax \
£n |

holds.

Leter for stochastic integrals we want to prove the inequali-
ty

E sup (32(5 co)oLur(s)) hE lﬂ(s w) ds.

o<{<"r'

In order to do this we need the following inequality.

Lemna 1. Let of=1 and the random veriables £, ... ¢,

satisfy the conditions: El&] < S and for each k

(g, 66, . 8) - 0.
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Then denoting

S =sup(0,ﬂJ...)§n)

. §:=sﬁp(0,§n)
we have

E §=(F) B,
Let >0 and X, (a)=1 if § <a

else X, (a)=0 . is ﬁ%%m(a)= 4

=0 if §< a we have for

Proof suipbp @, § T O

§ and XX, (a)-

it a

IIN

oo n
§°-oL /&S A (a)da.
0 kel

From the definition of"Xk<QJ we may deduce the

inequality a
'X'k(q'> £ Ek X’k(o’)

. 00 We have

n

akiﬂ 'X,k(a> = 2 Ek XK(CL)

k=4
and

& Y n(a)E L &7 1la).

1

X,(a) are measurable functions of the variables &, ..., 5,
consequently

E(5-8)% (o) =F % (a)EE, -85, ..., 8) -0

and

E g™ Z{ x(a)=E kZiIid” t(a)§, 2 E kiic:”xk 4

n

Taking the integral of both sides of this relation with

respect to a from O to infinity we get

E%" §abéE;L% §¢—4 §+

n
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Using HOlder’s inequality we shall have

=4
T T e e
E§ e ZrES 8 s 25 [E57] = [E(8)]
which is equivalent with the statement of the lemua.

Rewmark 1., Let us notice that

?ﬂ>al=gEMbJ

and so from the relation

a kZi 2, (&)= ;@:)r %, (a) (r =12)

we get the inequalities

2

P@>@;;§” Pfsos ELD

az

Corollary, Applying the lemma to the variables-§ -f, -f, ...-§,

®)

we get
o e - ot
E§T «(Z5) EGLY,
where § =max((%-§i,...,—§h)) g;amax(0f~§n) . Hence, using
equalities max ffklzmﬁx(§) I3 ]fn{¢=(§:f*i-(§;)¢ we
get

ol

E(r“ELx’§k!§i ﬁ(offi) E

‘ =4

5,

Theorem 9. Let 1< d;<°°and(§n,'xz) a non-negative
submartingal for which

ol
sup Eﬁ§n ke
n
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Then

(10.8) E (sup En)d, = . .
(10.9) E (sgp gh')d' <<a<,;.(:4—> Sl:‘lp gn

Proof. The subwmartingal convergence theorem ensures the

existence of lim §n= § . By Fatou’s lemma
E § lim E §n Fe s

Let ’IZN = sup _E,h . For any A= 0 we get from Kolmogorov’s

nEN
inequality

JIA

§

—gﬂ[x"F(n]: € JF@)a(M)=r r4(rg, dP)d () -

i {’znﬂ}

N o
_ Td _ L A =4
. ;“L§N<o" ) )dP "1 B '

N

Using Holder’s inequality

E §N "205-4 = ( E §‘: >%‘(E ”ZN(ac-i)q, )1/4,

(B (E YT (o= 221

ot
Now if E'IZN< e , then the statement follows easily.

Otherwise let azf\:‘) =wmin ;"ZN)”: ; then the inequality
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AP(DWan) ¢ [ E AP
lqu J {,Qiin)é;}

holds, and applying the above result we get

E() s ¢ EEY .

AB Q:“ i B it follows by Fatou’s lemma that

(5 7s LB EGEY s FELY

N
which proves the theorem.

Remark. Lemwna 1 is a special case of theorem 1.

Corollary 1. Let (§,, F,) a martingal,ol>1, sl}p El'g'nld'<°°

then, as | |§,|, F, ] is a submartingal
E (sp|€,[)" <=, |
ol oL A - oL
E(=2el 8,1 #(z% ) s EIL"

Corollary 2. Let the martingal (§,, F,) be square integ-
2
rable, for which sup Ef == . Then

E(sﬁp§i)<°“)
E(eupfi)=+ s EE.

Remark. If « =1, the theorem is not true, so the following

theorem is useful.

Theoremlo. Let ( §,,7F,) be a martingal, for which

oup E(I &, 108 [8,1)==,
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then

E(sgplinl)s =ald4 sx}pE(I%leo%+1§nl)<°°.

Proof. Let a,b > 03 then

a log 'h = alog+a+%
/This can be seen as follows:
log bgg)
from where
b_ _b 4 b
a log g =ayg A
a log b= a logq,+—g— = a loghq + %

and

a log' b= a log+o_+g 2)
Integrating the above mentioned inequality

Piewnlf |za) s []5[dP

{sup [E,.1>a}
m<n

according to a in (4 o) we get

(1029 ?P(saplﬁmb a)da = ;TT [

= E(l5./2og (sup 5, £E(I5, tog' &)+ & E (s £,).
Furthermore
(]D.JJ) E<2%EI §,,,]> =ZP { i%&’§m1> alda =

<4+ [P {siplfu)> o) da
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consequently from ( lo)

?’P{gggl&ﬂba} do =4 +E[/%, tog 8, /]* éfin siplin/>alda

Supposing that E[jmigglgml] < we get

(i- é‘) TP{ s&plgml>a }da = %+ E[Ignlgo<3+!§n’]

and from (11)

Elsupltal]= 1+ =g [A+E /8] og /8] =

= o5 [1+ sip ELIE I bog [1]]] .

To see that F [sup [ §/]< == 1is always true we can use the
msn
"truncating" method, and get the above inequality from where

the theorew follows directy.

Mlartingales and semi martingalés with random time.

Theoremll. Let {§h\?§ }  be a non-negative supermartingale
[that is E(§,,,/%)=§.) T and © two stopping times/
according to { %, } )

Then §. and f{_ are integrable and on the set T > 6 the

relation

.2 E(5./R)

holds with probability 1.

Proof. The limit §°° =lim gn exists and by Fatou’s lemna
n—->oce

E§ _~-F lim§ <limEE, = EE, <=
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Similarly, if P(t<==)-1

Eice 1im Sean = :

So we have for any

Efe=EXfprey St E ey S =

That is §_ is integrable /and £, too/.

{gfr/\n ,(;:n ] is a supermatingale, as

§'Cin 1% € Ygr=my * §, 'X—{T_—>n}
so §+,n, 1is %, measurable, and

E BeanfFau ) =2, S Lo * E(6ITy) X

{tzn} ~

SMH fram) " g"*'l X{f-n-1}+ g"-&’x‘{'t'zn} =§T'1(n-i)

Let now E |@|< © . Then the equality E(e|E)=E(e|%,)
will be satisfied on the set {6 =n} . To see this let us
define 7 (w) on the set {€=n ] by

7(w)=-E(e|F,)

As
(e g(w)sc) N{E=n} = {w:EO]F)=c} N{E =n)
furthermore for any A€ }6,

J p(e)dP = ZJE(GI LJdP=ElJ e dp =~

" Anfc = "An{e=n}

- jecLP fE(@I ) 4P .
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That is 7 is '5:6, measurable.

Now on the set {6-n} we have E{§ /%5 l=FE{{/F)
and it is enough to show that

(40.12) £.2E{{]|F,s)

As =§rAn» is a super-martingale, we get, using

Fatou’s lemma

gftf,\ng E( g’t/\en.,In) =E<§t’g\:n> .

So we have (1)) on the set | T =zn! and the theoreu is

proved.

Theoreml2. Let §,=E(n|F,) , where Elp|=e= . Then for
any two stopping times 61’?’ withf&r«w=ﬂwe have (G’é Tf)

£ -E(5| ).

Proof. We get, as above that §.=§, on the set {T=n }

and

E(p|F) =E(IF)

on the same set. That means
gt’ - E("Zlg:_‘t)
Furthermore %, < T as we can easily see and
EGI%) - E(EGIRIE) ~E(lE) - ¢,

Theoreml3. Let {§,, %, be a super-martingal, such that
£, = E("Z’?; ) , where Elg| < == . Then for any T, 6 with T2¢
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= E E(§.] %),
Proof. Follows from the theorems 1 and 2 and from the

identity

§a- E(p|®) +(5,-E(2]R)

using the fact that §-E(y[%,) is a non negative super-
martingale.

Applying Theorem 2 with ©=1 we get the very useful
(1623 EE=ES,

relation. (13) is true under different sufficient conditions

£0b.

Theoreml4. Let {én,?i}' be a martingale, T stopping
tive with P(T <=)={ E[{/<= and 1linm {J' £, dP -0
n=wree: frsn}

h
then = = ]

Proof. For any n > O we can have the formulae
E - 3 E( /T -0P (- +Eelr>n)P(T=n) -

- 3 E(E G| 5l 0P =k)+ E (§fe>h)P(z>h) -

=1

x

- VEE [ )Plr-k)+E(E v >h)P(r 2n) -

-E(5,Jt 2)P(Ten)+E(f [t > n)P(T>n),
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Ef.=E(f]T=n)Plren)+E(E]T>n)Pr>n) =

-E§,.- E(Enl't'> n)P(’t‘>n)+E(§f]'t'>n)P(’t‘>n).
As E§,=EEf, and the second and third terms in the right

hand side of the above equation tend to O as n-se-, we have

the statement of the theorem.

Corollary. If E(én)z< K=<° , then E§.=FE §, . Indeed
E(Et)zé K< o= , and

| J € dPl= T[], ]dP é(:{ £ d?)”’”(?(fm))"‘ =

{T>n} {T>n}

1
= K%(P(T’>ﬂ)) “>0.
Example. Let Do Moy s+ be a sequence of i.i.d random vari-
ables with @(m'i)'?(nf‘i) -1/ , and

§n=724+ Lty

T=inf{n:§,=M or§,=-N},6 (i, N neturals)
Let p-B(6c-M), o -P(Ec--N).
Jobviously P(§. <=)-1 ). Then phg.=i,
El§¢]= max(M, N)<== . Moreover [§,]s= max (M N) on the

get {T>n ) and

/ I§,,I dP= max(M,N)P('t’>n)—>O’ (n —=>o=).
{T>n}

So according to Theoreml4

O-Ef-Efe=pM+qEN) =pM+(L-p)N) p =550 4=
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Based on Theoreml4 we can prove the so called Wald’s identity.

Theoreml. Let m,, 7, .- - be i.i.d random variables,
Elp;| <==, T- stopping time for T, = 67 Dar e D)y
then with ET ==
E(y,+...+n)=EnET.
Proof. Let T, =ain(T)N),6 N=°°
§n=(°21+ ..ot pu)-nky,

{£,, %, ) 1is a martingale. According to Theorem{4 /or
Theoreml?/

E g't’N = E gl = O .
Applying this result to /7, / we get

= H’Qi’*. ; '+I'ZT’NI ) =E’E'N'E"QA_’§E’C‘E"IZ1’<°°

N 458
and 'L“N'I"L’) 2,"21“\2 /'QL, s S0 by Fatou’s lemme whence
i1 =1

£t 2ECEln, [+ Etyl+. . .+locl)s 2ETElyl<o=.

Now we show that lim /[ [§,/dP=0.

n=oe {T>n}
Obviously

|§nl§l"21-Em’+ .. .+[7Z,,-E%f§ln24l+...+l'rznl+nEm,

{T >n}

and on the set
802 lg,l+. ..+ In l+T Elgl.
So  JIg[aP= [{ly,l+...+Ipl+TE|n,]} 4P =0

{T>n} LT > n}
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as {E |9+ .. .+Inl+ TElgl) ==  eana P{x <>=}=4, Thet

is the conditions of Theoreml4. are satisfied.
2
Exercise l. Prove that if E:(Q)-<°° and E T <° then
2 i
D (’724* o B ’rz,t,)=D 9ZE’C’

Exercise 2. Prove that in the example after Theorem 4 .

Ece=MN.
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Chapter 11.

Some properties of the stochastic integrals as
functions of the upper bound

Theorem 1. If J(+ )& w and J'E!iz(t Yk o= then
+

the continuous process §(t)- [ {(s)d w(s) satisfies the
o]

following inequalities

Pl s¢p! ’ﬂ(s)dw(s) & % E% (+) dt,

0

EOZ‘EL:TW@)C*“’(S)’ o E J*(+) dt.

Proof of the theorem. Let us first suppose that 1(t) is a
piecewise constant function from w . Let /\, = ta, ) a
sequence of decompositions of the intervall [0,T] such that
/N, N\, - HAn is a set everywhere dense in (0,T) and
{ (t) is constant on (tni, tni+s) . Then

§ -sip [1p(e)dwls) | - a §,

with probability 1 where

tn

§ -sup | / “0(8) dw(t)]

"k
1
As the variables [ {(t)dw(t) are measurable with
0

respect to (d::\:“k we have

thna

E(Hf/(lc)d«wt)—h@(t)dw(t [P der(e), ..., [P ded) -
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and the conditions of Lemma 1. are satisfied for the variables

tr
,f?(t)dAu(t) . Using Remark 1 and Corollary 1 we can write
0
1 pe o2
Pil>ats ZJELF (),

ES2 =4 JEP®)as.

Taking the limits in these relations we get the proof of the
theorem in the case of piecewise constant functions.

Let us now consider the general case i.e. when {£(t)€ wi
and /WEQ?(i)dt“°° . Then we can choose a sesquence of

stepwise constant functions {,(t) so that
3 2 ;
1im [ E(L()-§,(%)) dt=0.
n-—>oes o
Let us choose £,(t) so, that

1

zn

IA

TEP@) - ga0))

be satisfied. Then

U

SEQ0-h)f @

;zof E (o -0 e+ 2 [0 -4 dt = 3,

The function §,..° — ., is piecewise constant so

Pl sip |6 derls)= Jhals)dor(e)] 2 ) 5

0=s+=T

2 b E(f, () - 00 @ = 38
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M
As the series _ 32'.3 is convergent we can use the lemma of

Borel-Cantelli, and see that there exists a /random/ integer
No s finite with probability one, so that if n = n, then
sup | [ bosa(s) dur(s)-J4, (s) dw(s)l = %

0= tsT

Hence the series

t oo t : 3
/ Pis)dwl(e) + 25 (f §ni(s) dwrls)- [4n(s) daw(s))
converges uniformly with probability one. So their sum will
be continuous with probability one.
We can complete the proof of the theorem in the same way

ag we did in the case of piecewise constant functions.

+
Theorem 2. If {E€uw the process [}(s)dw(s) continuous
e B .

with probability 1 and
Plaup | [ us)w(s)bc}ﬁP g( )ak =N }+ 35
0StET 0
Let §, §, be two stopping times with respect to the
G -algebras % (0S+=T) such that

'P(os_.gig fa= F =4

=
and ¥ the & -algebra belonging to {, as defined in

definition 2 § 1. is the 6'-algebra generated by the

%
§
sets of the form BN(§=t) +>0 BEF . (see definition 2 p. 19)

Theorem 3. If f(t)€wm (O, T) and Ef*(t)dt="
then
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i

SPCIOETO AR

(L /H)aw 1) - BP0 &fF,)
4 ‘

Proof. Let 7 be any random variable measurable with respect
to ?:51 and Xi(t) (iL=12) ©be two processes defined by
xi(t)=-41 1if § =t and % (¢)=0 if t < . . Then
xi (t) are measurable with respect to 7| .
Furthermore, as we shall see the process 7(%,(t)-%,(t)) 1is
measurable with respect to % too. Indeed, let us first
assume, that 7 is an indicator function of a set of the form
AN(§, £S), where AG_ST:Si . Then if s=+ then both
coefficients of the product are measurable with respect to

F, and if s>t then

%Aﬂ(gigg) (X, (&) - %,(¢)) =

= %An(gi ét)(xz(t) -x,(£) =

in

Yans, sy (£ %4(6)) = X - L, (£) (4-%,(+)) = O

Now we see that 7 (%,(t)-%X,(+)) is measurable with res-
pect to T, for any indicator function of some AE ?\Jgt
As any variable 7 measurable with respect to fd:gz can be
represented as an almost everywhere convergent limit of sums

of the form 2.c, Xa,  Ax €q:§1 we proved that
p (X (t) =%, (%)) has the desired measurability. Now
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§2 f, .
gf”Z\Q(JC)dw(t): J"Z\Q«(Jc)dw(t)— OJ”Z\Q(J‘) L) =

= J2d(E) % (8) dur(t) - [ L () %, () dar(¥) -

T

= o $LEY (e, (£)~ %02 ) dur(t).

Obviously

T

OJ'TE 7 (X (4)- 0, ()Y Pi(8) dt = & JE (k) dt ===,

0

w—
£ H ()= E/pHe) (1) - 1) dut) =0
[/ H00dw®] - E1 00 0)-10) dwto)-

- ofT' E 2 02()(xy (6) - %, () at = E OJTQZ\QZ(’c)(XL({;%?Li(t)) di =

§2 '
=F ) gf ?_ZG:) dt

That means that the proof of Theorem 11 is completed.
Remark Taking the expectations in the two equations of the

theorem we see that

§2
E(gfﬂ({)dw(t))=0

El ,I'gjﬂ(t) d,w'(t))z= Eglszpz({) dt.

f
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Theorem 4. Let J(t)z0, tz0, {(t)€wm[0O,T] for every
T >0 Let uatasaume that fp{g'ﬂz(f)c& <=} =/ , and let
T =dfit: g$2(5)d5 2k . The process

§(£) = J 2(s)duls)

is a Brownian motion process.

Proof As we have seen T, is a stopping time and T

if ty <t, .« In the previous theorem we have proved that

E(J16) dwls)|F ) =0

(S 6 a1, )
- E(S PO dslF) ~4y-1,

So to use quy’s theorem we have to prove that the
process {(t)= fLIC§)d¢u(s) is continuous with probability
l. As T, is mo;;tonic with probability 1, its only discon-
tinuities are jumps. So the only discontinuities of §, are
Jumps and they are placed at the jumps of the process T, .
Let us suppose now for some t T,_,<T,,,, then as

t+E

Et._l'egz(s)ds-za—»o 4 £—0

)

using Chebyshev’s inequality we get that
T +E

th_ ) dwfs) > 0

with probability 1.
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Remark If the function ! (+) is determined only for

t e (O,TJ then we can apply Theorem 12 by putting $(t) =1,
+2 T . Then §, will be a Brownian motion process with

lifetime -
©— J §*(t) dt.
0
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Chapter 127
Solutions of stochastic differential equations

In the following we want to explain what do we mean by a
solution of a stochastic differential equation. In the dis

crete time case the solution of the equation
gr\: O”(gn—1) n>+b(gn_i) n) . E’n,

where €, is an independent (Ef, =0 ) sequence of random
variables can be defined in the following way. At first from
the definition we see that §{  is measurgble with respect to
the G'-algebra Az\o generated by *he random variables

€0, E4y- - ., En. §, may be any random variable, {, = ¢, and
it is independent of Ag,i . The recursion (11.1), with
the functions a,b and sequence {, defines the new process

En which is called the solution of the difference equation.
The properties of the process En depend on the choice of the

functions a and b. From (11.1)

E(EalAro ) = alfoy, n),

ELG a8y, )P A7 o J=ELB G ) ExlAp ] -

= 2 2

b(gh—‘l)n>' G,E,n
where Gﬁ\- E &% . The distribution of §, in many cases,
under condition £, §, ... %, _, , depends only on §,_,

which means that the process f{, is Markovian.
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Now let us consider the continuous time case when we

have the differential equation

(11.2)  dg(t)=a(t,§(¢))dt + b(t,E(t)) duw(t),

where (w(t) %, ) is a Brownian motion process, ¥, are

C’-algebras ¥, < % when t, =+, and w(t+h)-w(t)
is independent of ?:t /for every t/. The functions a (t,x)
and b(t x) are measurable in (t,x).

We say that the process §(Jc ) is a solution of the equa-
tion (12.2) in the interval O=t= T if the following con-
ditions are satisfied

a/ £(0) is measurable with respect to %, £ (0) is

the initial value of the process;

b/ §(t ) is measurable in (t, ) ;

e/ §(t w) is T?:t -measurable for every O<t = T ;

d/ The integrals Of [a(t,§(+))/ dt, g. B+, E(+)) as

exist and are finite with probability 1;

e/ With probability 1 the equation

t

£()-60) = J als5(5)) dot[6(5,5(5)) dw(e)
holds for every O=+ = T'.

Theorem 1. Let the functions a(tx), b(tx) satisfy the

following conditions
la(s,%)-a(s,y)l +Ib(sx)-b(s,y) =K Ix -y,
| o,(s,x)!Z+ Ib(s,x)[* = K(1+ %),
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for a fixed K and for every O =S=7T and -o < x y=<o=,

Further let us have for the initial value ¢ (() measurable
with respect to %, and satisfying [ IE(O)IZ == then
1. There exists a solution {(t), continuous with proba-
bility 1 with the initial value £(Q);
2, Slép El§(t)lz s

)
3. 1 £9(t) and £?(t) are solutions with

properties 1. and 2. then

P suPTI (4)()—§(2)(t)’=0}='1.

0st
Proof. The uniqueness follows frou the following. If §m(t)
and Em () satisfy

(12.2°)  §(t)=§(0)+ O‘ta(s, £(s)) ds +fb(5. £(s)) dw(s),

then

EL 6900 - §P( ] =t 15,5900 - als, 59(s))] s +

2

' J‘ [b(s,§(s))-b(s, §2(s)] dur(s)} =
czE[' (s, £s) - (s, #s)) ds]” +2E[' b(s,£4(s)-b(s,E%s)) dar(s)] =
% 24E 1 Lals,£9(6) - alo,8%6)T st 2 (b, £%s)-ble, £ s =
= 2kt j E(6%s)-§6) ds + 2K’ j’ E(E6)-£"(s)f ds =

= LT E(E“) -E26 ) ds .
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From this inequality it follows that the function u(ﬁ) =
=’E<§“@J‘§ukf)f'ié 0 , which means P{ §°(1)-£9(+) ) =1 .
The fact that w(t)=0 is a consequence of the following
lemma.
Lemma 1. If ¢,>0, w(¥)=0, v(£)Z 0 then from

t
w*)=c, + b" w(s)v(s)ds
follows

w®)sc, expt Ju(s)ds).

Proof of the lemma. We have

tx(%)v@c) < v(f)
i+ [ w(s)u(s)ds
By integration °

{nlc,+ gtu(s)u»(s)ds] ~Inc,

t

s [uv(s)ds,
0

or

t +
wt)S o+ Ju(s)u(s)ds = ¢ exp i v(s)ds §,
Lo} o
which gives the desired result. The case C, =0 we may get
from here by limiting (c, ¥ Q).

as PLEC(H)- 2 (0)) =1 and the processes §03(£>)

§@)<f> are continuous we have

P (supl €()- (A(L)[-0)=1

Indeed if R is the set of rationals

. (2)
Csap [£9)-§7(0)] -0} -1,
LER
OStsT
but R is dense in [0 T] and from the continuity of the

processes we have



P sup [§490)-52)]- 03 =Pt supl €9)-§7()] -0 1 -1,
O=tET

which proves the uniqueness.
To prove the existence we shall apply the usual itera-
tional procedure.

Let the first approximation be,
§(£)= §(0)
and

£(9)-10)+ [ als, 87 (6)) ds + [ b(s, 8"(s)) ds.

With a similar argument as we did in the. proof of uniqueness

we get
E1E™ (1) ) = LTEIE ()-8 6) ds.
As

100N § Jals, §(0)) ds + /b(s,5(0)) du(s) 1=

2
=L, T.K.(L+E(80))).
From the last two inequalities for suitably choosen C we get

n

(12.3) E[§" ' 1)-E @) = c &P

Further

sip 187*(6)-E (&)= stp [ la(s,87(s)) —afs 8" (s))| ds*

OSEST GELAT

¢ sip [lb(s ') -b(s8™ (s ) dw(s).

0L =
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Now we use the theorem 1., of the preceeding lo. paragraph,

namely

E sdp | f$(5 w) dw(s)l Lfgl E,@Z(s,w) ds.

0St=T 0
Uging the Lipschitz condition for the functions a and b we
get

E siipl £ L)) = z,warTEjg"(t)~g"‘i(Jc)(2 dr +

. wof E18° ) - ) k= o, T EJE°() - €4

and from (12.3)

n n-i
- SEP [ ") - ¢ (*)’z =C.C.T (?:jl)!

Using the Chebisev inequality

o< _ »
LP sip [€E)-ERI> 2 3 9O

n=4

So the series
§0)*+ 58" ) - ')l

converges uniformly with probability 1. I.e §n (+) tends to
a certain process, let us denote it by £ (t) , which is
continuous with probability 1.

Taking the limit in the equation

£'(£)=£(0 >+fo» £ (s)) ds+ f b(s, € (5)) dw(s)

we find that the process £(t w) is measurable in (+, w)
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and satisfies the relation (11.2*)
Further for any fixed the random variables {(+t ) are
T, measurable.

Finally

E(E)) 2 3UEGO)F +EL fals 8 ) ds] +

+ E[fb<s‘ (e duw(s] V= 3E(s (o))zmt_fE(;(Z‘)”'aJ,

and by iteration
E(E @) = 3EEQ)F+3E(E(0)). 5L+ +(3L)zdr‘t(t-5>E(g“‘2(s)f di 2

= 3E(E(0) +3 Lt 3E(5(0)) + 3E (5 (o) BLE2+ =3E(50)) .
That weans
sip E(§x)) = 3E(50)" ™
05 EET

that is the theorem is proved.

Exercises .
1. Let (O, F P) a probability space and EEA) 0t=sTT
a family of nondecreasing 6 -algebras and (&u(t% ?i‘fP)
a Brownian motion process.
Let the functions  f(t,w), a(t,*w), b(t,x, w)
have the properties
l. they are measurable in £Ix,co
2. for fixed t and x they are %, measurable.
We say that the process ((t)=1f(t, ) 0=t=T | is a

solution of the equation
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(%) §(¢) = 9t o) -%(,)I-tov(s, §(s),w) ds +jb(s, £(s), w) dw(s)

if the following conditions are satisfied:

a/ £(t,w) is (t w) measurable;

b/ for any 0=st=T, §(t,w) is %, -measurable,

c/ the integrals in (x) exist

d/ equation (=) is satisfied for every t with probability
1.

2
Prove that if sup E\P (JC, W )<= and there exists a con-
OSLET

stant K, that the inequalities

[a(ex,e)]* + bt x,)* = K(4+23),

| ale )= o (t,y,) ]+ 15t x,00) ~b(k,y,0) € Kix ~y]
hold with probability 1, then the equation (z) has a

golution, for which

sup [ §Z<JC ) <e=
0% +<T

end if £ (+) and §, (+) are any two solutions then

they are stochastically equivalent, i.e.

Prove that under the conditions of Theorem 1. the solution
£ (+) of the stochastic differential equation (12.2) is a
Markov process.

Hint: it is enough to prove that for any A, measurable
random variable o (w) and bounded continuous function

A (%) we have
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E(eeB(E(s)[AL) = EEMGE()I5®)).

Using the unique solvability of the equation (11.2) and
denoting its solution in the interval ({ws) by ﬁhj(uj
we get that

§<5)= gt,g(o (6) 8.8,

The function

B(§(E), ) = B(E, g0 (s))

depends on only through the increments w(u)—w(t)

(t=2u<s), Approximate B(%, <o) by functions of the form
ng“d %k(w»

Let the functions a (t x) and b(t %) be continuous with
respect to the pair <’t,><) and satisfy the conditions of
Theorem 1. Then the process £ (%) , which is the solution
of the equation (11.2) is a diffusion process.

Hint: use Exercise 4. to prove that E!§5‘X(t)—xfh =
-o(t-s), then use this, Lipschitz condition and Holder’s
inequality to prove that E(§, (t)-x)- a(sx)(t-s)+o(t-s) "
similar estimations lead to E[§5’X(t)~x]7“ =b2(5,x)(£*5)+o(t—s).)

Prove that if for a diffusion process §(t)
A/ the coefficient of transmission a (5)X> is continu-

ous with respect to the pair (s x) , and

Ja(sx)[£K(1+(x))



B/
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for some K>0,

There exists a function J (x) independent of S and
A >0, such that $(x)> 4+[x |, sup EP(§5><°°
0&SST

and

(€ A G 5= E(, a7 [E-x)= $(x)a

Fls A+ 18 al 6= x)

IN
b )
P
>
Nt

Then there exists a Brownian motion lﬁ(5> s, measurable

with respect to A° such that £_ satisfies the

o

stochastic differential equation

df= a(f; s) ds+ duw(s)
S

(Hint: prove first the relations(with Qs=§{'[a(&5“>d“>
0

|E(Q5+A— @SIA_SOO)] =K, P(xg) A
E(pg - 2 Y TAZ L) =K, 0(xe) A

[%imo i’ E(Q5+A— (Qs ‘ Af%>= O

S
Jm 2Bl am 7 1A2)=0

then, using Levy’s theorem prove that QS is a Brownian

motion, considering the expectation

Elg 2, A2 ) - E(SE oy g 2a 1521 L)

and using Lebesque’s theorem about majorated convergen-

Ce.
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Chapter 13.
Stochastic integrals and differential equations in

multidimensional case.

Let {w(t)%, k=42,...,m | independent Brownian
motion processes with the same family of non-decreasing ¢ -
algebras . . Let f*(*c)=(£i(t)w),...)!Zn(ic,oo)) a vector
process, where @L(£) are 7+, measurable for every i and any
fixed t. We demote Pl . . if [PF-firle. o p
is integrable on [0, T]x (. with respect dt 4P . The
class of vector functions with the above two properties will
be denoted by wi”.

TThe gtochastic vector integral with n components
; g %(huﬂciwq@) ig determined as the vector {-&(ixo)dun(t)
6/12(4@,@) dearifl) .« o-’%(h@o) duwi(t)) : H11

properties of the stochastic integrals a/- e/ in one dimen-

sional case remain true. We must substitute /£I=Vﬁf+.. o2
Now let us take m stochastic vector processes £i(t,oo)

oo §7( ) €m”, then for every k the integral(kaQﬂu)dum@Q

is defined. Let 9,@5(») be an n-dimensional vector function,

of the real variable t.

As in the one dimensional case we may define the stochastic

differential

(12.1)  df@)=-al)dt +km§ ’irk (+) dunft)
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it
b2 m t
()=t = Jale)at+ 2 1) dur(v).
Let us have a vector function wu(t, x) in R (n) where

)
e 'R(n . We suppose that all the functions

o U o
ulte), 38 e 4, e 2x) (4i=12,. )
are continuous. If the stochastic process §*(£) (gi(t))...,'gn(t))

has e differential (12.1) then the process 7 (£)=u(t §(t))

has a differential too and

4 5 A 9" bt
d'?/(.{:> [_;:L LTJ Q.(<‘t>87b u T Z i%[ XL 3x; Y 'g/.‘ ‘?’j] dt +

i

+ %<Z g: 2: chL>.

(Ito’s formula in multidimensional case).
Let a(t,x) and b (¥,x) (k=12 ...,;m) be vector valued
" (n) (n)
measurable functions with values in Q ) X eR . We shall

examine the solution of the stochastic differential equation
(12.2)  df(*)=als §(*)at + B E®) dw () =
= a(tE())dt + 2 b (4 5(+) dw(b)

or in the equivalent form

(12.2%) £()-5()= [ alo, 86N ds + 33 [h(s5(e)) duls)

o]
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k (t,) does not depend on w(t)- w(t,) for every t=>t,
We say £(t)is the solution of above differential equation
if the integrals in (12.2) exist and the equation (12.2) is
satisfied with probability 1 for every t( 0=t ivqﬂ).

The existence and the uniqueness of the solution of
equation (12.2) can be proved under similar conditions and on

the same way as in the one dimensional case.
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