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PREFACE

This volume contains the papers presented at the Colloquium on Abelian
mGroups at Tihany, (Lake Balaton,) 2—7 September 1963. The papers
which are published in full length elsewhere have been omitted, and a fewr
papers which are closely connected with the subject of the Colloquium
have been added.

The intention of the Organizing Committee of the Colloquium was
to lay emphasis on homological methods and structural problems. Many
talks were concerned with these topics. Since there was sufficient time,
talks on different problems on Abelian groups and their applications
could also be put in the program.

The Collogquium was organized by the Hungarian Academy of Sciences
and the Bolyai Mathematical Society. It was sponsored by the Hungarian
Academy of Sciences and the International Mathematical Union. Contri-
butions to the costs of some of the participants were paid by their own
universities and governments.

The Organizing Committee of the Colloquium consisted of Professors
It. Baer, B. Charles, A. L. S. Corner, L. Fuchs, A. Kertész, L. Ya. Kulikov,
A. G. Kuros, R. S. Pierce, L. Rédei, E. Sipsiada, E. A. Walker, and Professors
S. Mac Lane, B. Segre as representatives of the IMU. This committee drew
up the list of invitations. The local organization was in the hands of a
committee consisting of Professors E. Fried, L. Fuchs, G. Gratzer, E. T.
Schmidt, 0. Steinfeld, and staff members of the Academy (Mr. J. Kovacs)
and the Mathematical Society (Mrs. A. Pal, Miss A. M. Rénai).

The Organizing Committee owes a great debt of gratitude to all those
who supported the Colloquium either financially or by rendering services,
and who helped to arrange this important scientific meeting.

L. Fuchs
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QUASI-ISOMORPHISM OF p-GROUPS1

By
R. A. BEAUMONT and R. S. PIERCE
W ashington University, Seattle

1. Introduction

The concept of quasi-isomorphism of Abelian groups has proved to
be useful in the study of torsion-free groups. There is evidence that this
concept may also be significant for torsion groups. It is therefore of
interest to find necessary and sufficient conditions for two torsion groups
to be quasi-isomorphic. In this paper, such conditions are found for count-
able torsion groups.

1.1. Definition. Let G and Il be Abelian groups. Then G is quasi-iso-
morphic to H (G dk H) if there are subgroups G' Q G, H' ¢ //, and positive
integers m and n such that G H', mG Q G',and nH ¢ //".

It isroutine to check that quasi—isomorphisILIn is an equl_ilvalence relation

1=1
mas 2.1 and 2.2]. Moreover, GaAdH if and only if there is a subgroup
G' Q G and positive integers m and n such that mG < G' and G' w nH.

The following proposition reduces the study of quasi-isomorphism of
torsion groups to p-groups. Let Gp denote the p-primary component of
the torsion group G.

1.2.Proposition.Let Gand Il betorsion groups. Then GceL Il if and only
if GpodHpfor almost all p and Gp dd Ilp for all p.

Proof. If G & H, then by 1.1, there are subgroups G' 'L G, H' Q H
such that G* H "' and G/G', HjH"' are groups of bounded order. Since
G/IGCUYp@ GJG'nand HjH' = V,, @ HIJH'nare bounded, it follows that
Gp= Gp and Hp —Hp for almost all p and that Gp/Gp and HWH'p are
bounded for all p. Thus Gp= Gpod Hp= Ilpfor almost all p and Gp ek Ilp

for all p. Conversely, if G—(V@GP)© Gv H= (  © IIA)© Hv where
1= 1=1
ed Il1land GH ik IIR fori = 1,2, it follows that Gsk IlI.

and that if G-ad H{for i = 1,2, ..., n,then  ©(?ecx S’0 Ht[1; Lem-
1=1

1This work was supported by National Science Foundation (research grant No.
GP 809).
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By virtue of 1.2, the problem of deciding when two torsion groups
are quasi-isomorphic is reduced to the question of when two primary
groups are quasi-isomorphic. We will solve this problem for countable
primary groups in terms of the Ulm invariants of the given groups.

Let A= min {a]> wlpa+t1 G—p" G}. For a< A we will denote by
/ G(a) the a-th Ulm invariant of the primary group 0: fa(a) = dim (paG f|
Q G[p\lpa+tl G R G[p])- We define fa(d) = dim (D[pf), where D is the
maximum divisible subgroup of G

1.3. Theorem. Let G and H be countable p-groups. Then G 4 H if and
only if the following two conditions are satisfied:

(I) There exists an integer Kk 0 such that for all integers n 0 and r > o

(ID fc(a) =/H(a) for all a > w.

2. Proof of Theorem 1.3

The proof of the necessity of conditions (1) and (I1) does notrequire
that the groups Gand H be countable. Moreover, several of the preliminary
results used in the proof of the sufficiency of these conditions are
completely general. Thus, in the statements of the following lemmas, count-
ability is assumed only where it is required.

2.1.Proof of the necessity of (I) and (Il). Suppose that the p-groups
G and H are quasi-isomorphic. Then there exist groups L Q G, L2Q H,
and an integer k f> o such that pkG U L,, pkll L2, and bradL2 Since

L1 ILI()) = A 2(1) for all 1, and we write A(£) = /LI(1) = /12(l)- For
all nf> o,
*) (Pn+kG) [p] ¢ (p" Lf)[p]c o~ G)[p].

Hence for all n > o and all r 0,

“(pni )[pl/(p"+r+17i)rp] U(p” G)[p]l(pn+r+1 LT)[p].

Moreover, there is an epimorphism of (pnG) [p]/(pn+k+ +16r) [p] onto
(PNnG) [p]l(pn+r~LL,) Tp]. Consequently,
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It also follows from (*) that foralln o and all r o,

and there is an epimorphism of (priLl) [p]l(pn+tk+r+ILl) [p] onto-
(prL D [p)I(pn+k+r+IG)\p]. Therefore, as above

Similarly, using H and L,, we obtain

Combining these two pairs of inequalities, we obtain the inequalities (I).

To prove (II), it is sufficient to observe that ptoG = pmLladp™L, =
= pmH. Therefore, fa(a) = /«(a) for all a  w.

We now wish to show that if G and H are countable p-groups which
satisfy (1) and (1), then G 6d H. Our first step is to derive a consequence
of the inequalities (I).

2.2 Lemma.Suppose that {fo(n)}n<mani%f{/H(n)}n<tnre sequences of non-
negative integers such that fa(n) » o for infinitely many n, /H(n)”" o for
infinitely many n and both sequences satisfy (I) (with k 1). For m 1
define

Let ¢ kK hesuch that 4c¢ Agn for all nf> k. Then
ge(m) — (4k + 2) <; gb(m) <_gei(m) + @A + 2).
Proof. We first prove that for all nf> k and all m > tu,
(rn gti(m —tu) - k <, g%(m) <_gti(m + su) + k.
Let ag'H(T) = n. Then by (I),
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C

Therefore, 10 —<, < )S\/'n(i), and hence
i=u

gi(m —t,,)<.n + k= g%(m + &

To prove jg(to) <[ + su) + A we suppose first that *g(to) = n <,
< un 4-2k. In this case,

Hence, <h(to + «,) ;> n -\-k. Thus,
grg(m) = n<;un + 2k<; gk(m + su) + K.

Next, suppose that ga(m) —n > un -\-2k. Then by (I) we have

n—I—k
Hence, to + su> so that gt(m su) n —k. That is,

which completes the proof of (II).
We next prove that for 1 w<[n and n —T0<( ¢,

(V)

Let ga(T) = r and pge(n) —s. Since T0 <”n, it follows that c<)r < s
We can suppose that s —r 2. We have

Consequently

By the choice of ¢, if * fn(j) < Ac f°rk A, v  w, thenw —v <( 2k. Thus,

(s—1) —(r+ 1) <[ 2k. That is, gH(n) —gt&d(m) <| 2k + 2.

Now suppose that tc < to. Since m — (o —iC) = tcA Ac> it follows
from (1v) that g&(m) <, g&i(m —tc) + 2k + 2. Similarly, g&i(m + sc) <_
<[ pa(T) + 2ft + 2. Hence by (III),
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(Note that for the second half of the inequality (I11), m > tcis not required.)
Bv the choice, of r.

Thus, g&l(l) ¢ + 2k. Moreover, since m —1<,tc— 1< [fc, it follows
from (IV) that géd(m) <f g&l(1) + 2k + 2. Therefore, gtm) <, ¢ -f 4k + 2.
Hence,

2.3. Lemma. Let G and H be p-groups which satisfy (I) and (I1). Let | bea
non-negative integer. Then pG and p'H satisfy (1) and (II).

Proof.The proof follows from the fact that foranyp-group G,fpia(n) =
= fa(n + o -

2.4. Lemma. Let G and H be countable p-groups which satisfy (1) and (I)
and for which fa(n) and fti(n) are finite for almost all n < co. Then G ad Il.

Proof.We may assume that/G9%) andfH(n) are finite for all n<a>. Indeed,
for some I]>o,fpia(n) and fpm(n) are finite for all n <co, pIG and pIH satisfy
(1) and (1) by Lemma 2.3, and G dd H if and only if pIG ddpIH. We may
further assume that fa(ri) ~ o for infinitely many n < m and fn(n) ”~ o
forinfinitely many n < to. IffGn) = o foralmost all n, then by (1),fH(n) =0
for almost all n. Hence G= B @ D, 4 = 1@ Dv where B and B1lare
bounded and D and D1are divisible. It follows from (I1) that D ad Dv so
that G dk H. (The length of G = length of 4 = oand dim(Z)[p]) = fa(co) =
= fH(co) = dirn(.D1[p]).) We are now in the situation where the finite Ulm
invariants of G and A satisfy the hypothesis of Lemma 2.2. (If G and 4
satisfy (1) with k = o and (Il), then fa(a) = //-/(«) for all a and G ad H.)

By Lemma 2.2, there exists uf> k and M f> 0 so that

Consequently, there is an infinite sequence of integers n0< % < n2<
and an integer j such that

for all i. We may assume that o Let GB and HB be basic sub-
groups of G and A respectively. Then

2 Abelian Groups
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Then,
E(xmtS) = min {I\m + s<, JS7g(®)}+ 1= min {7'm+s <[ «+ ~>’/g(N}+ 1=
y=0 y=u
= min {Z" mio™ O /G/)} + 1= 6Go(ra) + 1
j=u

Similarly, E(ym+t) = gti(m) + 1. Let o—{s +n0s + unl ...}
{10, 3, ...} where 2 < X< ..., and let

w—4-fn0, t® nv ...} —{m0, ml, ...} where m0< <

Let M= £ ©f*3} 5= V- ofym}

|<£0 Z<0)
By Zippin’s Theorem, there exist countable groups G and D such that
fc(n) =fa(n) —fA(n), fD(n) = fH(n) —fB(n) for ®< co, and fc(a) =
—faM =/H(a) = /d(«) for a]>co. By Ulm’ Theorem,

Oa*"$hpC, H&IB®D.

Moreover, if CB and D B are basic subgroups of C and D respectively, then
GBa* © {*#!} and DB= ie 0 © {«+,}. Since
/<£0 «

E(xs+ni) = ga(ni) + 1= 9H(w) + 1+ j= E(yl+n)+ j,

it follows that fD(n) = /c(te + j) = /pic(re) for '< co, and /D(@) = /c(a) =
= /pc(a) for a co. Hence, by Ulm’ Theorem, p*G ad D, so that G 6d D*
To complete the proof, it remains to be shown that A ad B. Clearly, it is

sufficient to show that ’/t © {x,A da Note that for j 0,
is
Istj = s + ry and Ter+y= t  rj. Therefore,

E(xIs+j) - E(ymi+)I= [*(r;)- ~(ry)|”?
Let ~ © {zj}be a direct sum of cyclic groups such that

e E(zj) = min {E(xIs+), E(ym )}
Then
E(Z)) < E(x,s+]) E(Z) + M, E(Z) < E(ymi+)<,E(zf) + M

for all j. Consequently, JE@{Zj} is isomorphic to a subgroup K¢
i<0)
c: ®{xi }and to a subgroup L cilJSji© {ym ,} such that

j<m S+] j<m i

PM(JZ 6 K +1» " K> VM (Y 0 {¥yT+j}s L.

J«o J«o

Thus, N @ {xt }ad’\@ {ym Pwhich completes the proof of the lemma.
j<m S+j jT 1+1

2.5. Lemma. Suppose that {/o (te)},,<wand {/w(w)},,<0, are sequences of car-
dinal numbers which satisfy (). If fa(n) is infinite for some n > k, then
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there exists mf>() such that n —k <fm<fn «k and fGn) <f ,/H(T)

n+Kk
Proof. By (1),fG(n) fH(j). Since fa(n) is infinite, it follows that
j=n—k
2.6. Lemma. Let Gand H be countable p-groups which satisfy (1) and (II)

and suppose that fG(n) = Xo for infinitely many n. Then

G= Gl@G2, H= HI®H 2,
where
(i) GxsL Gv
(i) G2 and 11, are direct sums of cyclic groups,
(it) fafn) = fa(n) and fHfn) =fH(n) for n < w.

Proof. Let iV(= {n™> k \fGn) —x0,/H(»—I) = KO}* By Lemma 2.5,
N_kuN_k+lu ... UNOwu ... UNk= {n~ Kk\fG(n) = x0}.

Hence Nj is infinite for some I. We may assume that| o (by interchanging
the roles of G and H, if necessary). By Zippin’s Theorem there exist count-
able groups G\ and If such that

Let G2and Il, be direct sums of cyclic groups such that

Then we have by the definition of NIt

Therefore, by Ulm’s Theorem,

which completes the proof of the Lemma.

2%
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2.7. Lemma. Let G and H be countable p-groups which are direct sums of
cyclic groups which satisfy
(i) fa(n) <,fn(n) for all n\
(ii) fn(n) is either o or $0for all n\
(in) there exists an M )> o such that if fH(n) = Ko ,for some n f> M,
then there is an integer m~>o0 for which fGm)= Ko and
n—M <fm <~n~{- M.
Then G 6d H.
Proof.We may assume that fG(n)= Ko forinfinitely many n. Otherwise
it follows from (iii) that both G and H are hounded, and hence G ad H.
Let MO—min{% ]> M |fGQ(n) = KO} Let Gx be a direct sum of cyclic
groups such that fafn) = o for o <,n < MO fd(n) = fGn) for n M 0.
Let Hlbe a direct sum of cyclic groups such tbatfHI(n) = o foro n< MQ,
fHI(n) = fiiin) for n ]> M 0. Then Gdd Gv H ad Hv and Gxand //, satisfy
(i), (ii), and (iii). Further, let H2be a direct sum of cyclic groups such that
[H2(n) = fnfm + M) for all n. Then H2 ad p MHv so that H24ad H1 Moreover,
by (iii), if /n2(n) = KO>then there exists m with n<fm < n + 2M such
that fofm) = K,- By induction, there exist sequences nO,nv n2 ...
and mO, m,, w2, ... of non-negative integers such that

Let n0= Mn M, m0= MO0 Assuming that nO,mO,nt,mv . . w, mi
have been defined, let

ni+1 = min {n > 70-1fH*n) = KOG}, to~+1l = min {to;> ni+l|/A(m) = K0}.

The sequences defined in this way satisfy (1), (2), (3), and (4). Let K be a
direct sum of cyclic groups such that /k(m- + M) = k0>fK(n) = 0 for
n N o + M. We will prove that K 4d Gxand K ad H2. This will complete
the proof since G 6d Gxad K ~ H26d Hx ad H.

Write

where Ktis a direct sum of copies of Z(pm+M+1). Write

where Ku is a direct sum offd (w + M +j) copies of Z(pnf+M+" and
Kim, is a direct sum of/Ci(to) = Ko copies of Z(pm+M+1). If mt + M <
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by (4). Therefore,

where Gy is a direct sum of faff) copies of Z(pi+1). Moreover,

Since mi —uy, <f 2M, it follows that

is isomorphic to a subgroup L{ of /f, such that

Thus, Gy is isomorphic to a subgroup L of K such that p2WK ¢ L. That is,
G~ K.

Similarly, it is possible to write

where Ky is a direct sum of/Ha(% +j) copies of Z(pnmf+M+1) and H2, is a
direct sum of /Ha(j) copies of Z(pJ+l). Obviously H2 is isomorphic to a
subgroup L of K such that pw K ¢ L. Therefore Il.,én K. This completes
the proof of the lemma.

2.8. Corotlary.Let Gand H be countablep-groups which are direct sums
of cyclic groups. Suppose that there exists M ]> 0 with the property that if
fc(n) N /h(w)for n*>M, then

1) there exists m such that n — M <fm <~n + M and fa(m) = KOoi
2) there exists m' such that n — M <*m*' <*n M and /H(T') = KO-
Then G c&ll.
Proof. Write G= Git® Gv H = II{@ Il, where
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Then GladHI since fGI(n) = ShS7) f°r n-"et K be a direct sum of
cyclic groups such that

Lo.)-lo if w»)-/f«.<»)="°
( Xo otherwise.

Then erz and K satisfy (i) and (ii) of Lemma 2.7. Suppose that fK{n) = Ko
for n*>M. Either fGi(n) = Ko or fafn) < KO. If /G(n) < KO, then either
fat(n) = fHXn) = o or fa(n) 7#fH(n). In the first case, fK(n) = 0, which
is a contradiction. In the second case, by (1), there exists m such
that n—M <fm<jn 4+~M and fGm) = K». Therefore fGm) — KO-
Hence, G2and K also satisfy (iii) of Lemma 2.7, so that K sd G2 Similarly,
K &l H2 Therefore G24d H, and GadH.

2.9.Lemma.Lei {/G(n)}n<mand {fn(n)}n<m be sequences of cardinal numbers
which satisfy (I) (with kf> ). Suppose that h> a -\-2k and fQj) and
fH(j) arefinite for a <[j < b. Define f,, as in Lemma 2.2 fora <fn —k <
< n--K<,b. Let ¢, for a c¢—k< ¢+ k<fb, be such that Ac<[ An

for all n with a <fn — k< n -(-&<[s. Define gGm) and pg(T) as in

b b

Lemma 2.2 for 1 m <) fG(j) and 1 <[ m<[ £ fnij)>respectively. If
i=c 1=C

Define htd(m) similarly. Then

Proof. By the proof of (IIl), Lemma 2.2, we have
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In a similar wav it can be shown that

By the proof of (IV), Lemma 2.2, we have

(®) gei(n) » gei(m) + 2k + 2
b
for 1<(m<(n fnij) and n—m 4 Ac.
J=c
c—1
In a similar way, it follows that if fnij) and

i=a

Combining the inequalities (1), (2), and (5) as in Lemma 2.2, we
obtain

for m in the range given above. It is easy to check, using the minimality
of Ac, that

Using the inequalities (3), (4), and (s), the proof that

2.10. Proof that (|) and (||) are sufficient for the quasi-isomor-
phism of countable p-GROUPS. Suppose that 0 and H satisfy (I) and (II).
[fjein) and fH(n) are almost all finite then G ck Il by Lemma 2.4. Therefore,
we may assume that there are infinitely many n such that /Gn) = Ko
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or fti(n) = KO- By Lemma 2.5 there are infinitely many n with fa(n) — Ko
and infinitely many n with fH(n) = KO- By Lemma 2.6 we may assume
that G and H are direct sums of cyclic groups. Further, we may suppose
that/Gu) = Koif and only iffH(n) = KO.Indeed, let G' be the direct sum of
cyclic groups such that fa.(n) = fG(n) if fa(n) and fH(n) are both finite,
and fa.{n) = Ko if either fa(n) or fH(n) is infinite. Similarly, let H’ be the
direct sum of cyclic groups such that = [/H(n) if fain) and fH(n)
are both finite, and /H-(n) = K, if either fG(n) or/a (n) is infinite.The groups
G' and H' satisfy (1) and have the property that fa-(n) = Ko if and only
iffH(n) = KO-Iffa(n) o~fGn) for n~>k, then fH(n) = KO0>and by Lemma

2.5, fa(m) = Ko with n — k<[ m <_n Moreover, fa'(n) = KO Thus,
by Corollary 2.8, G 6 '. Similarly, H w, H".
Let 0 dt< d2< d3< ... be all of the integers for which/Qd,) =

= fH(di) — KO- It follows from Corollary 2.5 that we can assume that
either di+l = d- -f- 1, or else di+l > dt -f 2k. To prove this, let G' be a,
direct sum of cvclic groups such that

Suppose that/Gn) ~ fGn) forn  2k. Then/GW) = ~0, and/Gm) = Kh
with n — 2k < m n + 2& By Corollary 2.8, G as G'. Similarly, if H'
is a direct sum of cyclic groups such that

then H as H'. Moreover, G' and H' satisfy ().
Let the complement of the set dv d2 ... be written as a union of
disjoint (maximal) intervals:

where 0<iai<bl< a2<b2< ...,bi>ai+ 2k, /G@a-—1) = /H@ —1) =
= Ko for i> 1, and Ja(bi -f1)=/Hb(+ 1) = Ko for i ;> 1. Write

where At and B, are direct sums of Ko cyclic groups of order p'l,+\
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For each i, choose C £ [a- fr], for at4 ¢- —&< ¢- + &[4 fr;,, so that
OE A4 Ar1( for all a- with B, O ft; —k < w, -fk [ fr~ Moreover, from
among those ¢ for which [c. is minimal, select one such that

Then we can write

where

for 1<[m V. Therefore, there exists a group Kt which is a direct sum
of cyclic groups containing subgroups G", D{ such that
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Thus, there is a group K = ~ @ K{such that

<>j

It remains to show that O' 6d H'. This will follow from Corollary 2.5 after
the following results are established.

which is a contradiction.
2 E{zim)® bi — Ilk for % < m <, gt.

Assume that E{zim) < bt — Ili. There are two cases to consider.
First, suppose that w, = J\jc_lfn(j) < ; fa(j)- Since %> uit it follows that
18(T) > bi — 2k Also, bi — Ik > E(zim) = ge(T) + 1 Therefore,

bt — 11k > gjj(™) + 1> bi—2k+ 1,

bi b,-2k-I
which is a contradiction.We nowrsuppose that wy = er=  fa(j) <[ » fH(m
We have JWi

bi—Uk> E(zim)= ab(T) + 1> ¢g%(u,) + 1" $}«,) - 61.
Since ga(Ui) < bt — 5k, it follows that
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which is a contradiction.

The proofs of (3) and (4) are similar to those of (1)and (2).1t follows
from (1), (2), (3), and (4) that there exists a bound M such that if/G (n) ®
ji/H-(n) then /G(m) = xo and with n —M <"m <™n \- M
and n —M <[m"' n + M. By Corollary 2.8, G' ck H". This completes
the proof.

Reference

[1] Beaumont, R. A. and Pierce, R. 8., Torsion-free rings, Illinois Jour. Math..
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METHODES TOPOLOGIQUES
EN THEORIE DES GROUPES ABELI1ENS

Par

B. CHARLES
Faculté des Sciences de Montpellier

Tous les groupes considérés sont abéliens. Nous désignons par Z
I’ensemble des nombres entiers et par Q I’'ensemble des nombres rationnels.
Pour le reste nous suivons les notations et la terminologie de Fuchs [2].

(A) METHODES TOPOLOGIQUES

Considerations generales

D’une fafjon precise mais peut-étre un peu déraisonnable on peut
proposer comme but de la théorie des groupes abéliens la recherche et
I’6tude de tous les foncteurs qu’on peut définir sur la catégorie des groupes
abéliens ou sur ime sous-catégorie des groupes abéhens. Notre esprit est
trop faible pour connaitre de faS8on complete les catégories usuelles en
mathématique et en général seule une petite partié d’une catégorie nous
est connue et familiére. Un foncteur permet de projeter sur la catégorie
de départ un peu de la lumiere que nous avons sur la catégorie d’arrivée.

Le point de vue que nous venons de développer est justifié par le fait
que la plus grande part de la théorie des groupes abéliens peut s’exprimer
en langage de foncteurs. Cela ne veut pas dire qu’il est souhaitable de le
faire, car il serait difficile d’échapper & beaucoup de lourdeur et de pédan-
tisme. Mais il est certain que la considération de laspect fonctoriel d’une
théorie permet de mieux comprendre et classer les problemes qu’on peut
se poser. En théorie des groupes abéhens on recherche des théoremes de
structures pour des classes de groupes aussi générales que possible. Cest
presque toujours a partir de I'étude d’un foncteur qu’on obtient un
théoreme de structure.

Signalons encore avec un peu de perversité un avantage tout-a-fait
contingent du point de vue que nous venons d’exposer: il permet de faire
rentrer & peu pres toutes les mathématiques dans le cadre proposé par L.
Fuchs a ce colloque, pour lui conserver des dimensions raisonnables.
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Exemples de foncteurs en theorie des groupes abéliens

Désignons par <4 la catégorie des groupes abéliens et par cif(E) la
catégorie des groupes abéliens munis d’une filtration de type E, ou E est
un ensemble ordonné. (On dit qu’un groupe G est muni d’une filtration
de type E si on a défini sur G une famille de sous-groupes (Gi)i"E telle
que i < j entraine Gt c. Gj (filtration croissante) ou G- 3 Gj (filtration
décroissante). Les morphismes de d| (E) sont les morphismes u: G -> 11
tels que «($m) ¢ Hi pour tout i £E.)

Un cas fréquent de foncteur F: &-> (E) est céldi ou on a F(G) — G
pour tout groupe et F (u) = n pour tout homomorphisme. Pour que F
soit un foncteur il faut et il suffit que pour tout homomorphisme u\ G .> H
et tout i £E on ait u(Gj) ¢ ii,. Il est clair que ceci nécessite qu’on ait
des filtrations par des sous-groupes complétement invariants. L’exemple
le plus familier est célui de la filtration p-adique définie par Gnh= pnG
On peut faire varier n dans I’ensemble des entiers » 0 ou dans T'ensemble
des ordinaux.

Un exemple plus élaboré est ce qu’on pourrait appeler le foncteur
socle. A p premier on associe le foncteur Fp qui & G fait correspondre son
socle P = G\p] muni de la filtration des Pn= P flpnG, le morphisme
Fp (n) étant défini de fagon naturelle. Si on fait varier n dans I’'ensemble
des ordinaux la donndé du socle de G comme groupe filtré détermine les
invariants d’UIm de G. On sait que beaucoup de propriétés des groupes
primaires peuvent étre démontrées de fagon élégante en «remontant» a
partir du socle ce qui est typiquement dans I’esprit de la théorie des
foncteurs.

Méthodes topologiques en théorie des groupes abéliens

On peut appeler méthodes topologiques Iutilisation de foncteurs
définis sur la catégorie des groupes abéliens ou une sous-catégorie et a
valeurs dans la catégorie ¢ des groupes abéliens topologiques. Si F est un
tel foncteur la condition essentielle est done que F(u) soOit uti homomorphis-
me continu pour tout homomorphisme u.

Un cas fréquent de foncteur F: da-> <dest celuiouonaf (G - G
pour tout groupe et F (u) = u pour tout homomorphisme (cela revient
& munir chaque groupe d’une topologie compatible avec la structure de
groupe). Pour que F sdit un foncteur il faut et il suffit que tout homomorphis-
me u soit continu. Dans ce cas nous dirons qu’on a défini sur la catégorie
des groupes abéliens ou la sous-catégorie considérée une topologie fonctoridle.
Un exemple familier est celui qui consiste & munir tout groupe de la topologie
p-adique, ou encore de la topologie Z-adique (obtenue en prenant les nG,
n£Z comme Systeme fondamental de voisinages de 0).
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Un autre exemple consiste d associer & un entier premier p le foncteur
Fp qui & G fait correspondre son socle P = G\p~\ muni de la topologie
induite par la topologie p-adique de G.

Voici un exemple de foncteur ify -> (fy que nous recontrerons dans la
suite.

Definition. Etant donné un groupe I on appelle I'-topologie sur un
groupe G la topologie qui admet comme Systeme fondamental de voisinages
de o les intersections finies de noyaux d’homomorphismes de G dans TI.

Vérifions que cette topologie est fonctorielle, c’est-a-dire que tout
homomorphisme u: G -> H est continu lorsque G et Il sont munis des
/ -topologies. Soient u,, ... ,un des homomorphismes de H dans I', on a:

oin nlw, ..., unun sont des homomorphismes de G dans T.

Remarque 1.0n peut définir la / “topologie sur G comme la topologie
la moins fine rendant continues toutes les applications n £ Horn (G.IN)
lorsqu’on munit ' de la topologie discrete.

Remarque 2.A. Kertész et T. Szele [¢] ont montré qu’on peut toujours
mettre sur un groupe abélien infini une topologie séparée compatible avec
la structure de groupe. Il serait interessant de reprendre cette question
en imposant & la topologie d’etre fonctorielle et d’étudier de fason générale
les topologies fonctorielles.

Nous allons maintenant faire quelques applications de méthodes
topologiques. Comme d’habitude quand on utilise des méthodes topologiques
en algébre, cela veut dire qu’on fait beaucoup d’algebre mélangée avec
un peu de topologie.

(B) ETUDE DU FONCTEUR G-> Mot (G. I

Dans tout ce paragraphe nous considérons uniquement des groupes
sans torsion. Etant donné un groupe G nous notons Ilp(x) la hauteur
d’un élément x de G relativement & Il’entier premier p et T (X) son type
(se reporter a [2] pour la définition de ces notions). Si G est de rang 1 son
type T (G) est le type commun de tous ses éléments non nuls. Etant
donné deux types R et S définis respectivement par les suites (rp) et (sp)
nous définissons R + 8 par la suite (rp -psp).

Dans tout ce qui suit I est un groupe sans torsion de rang 1. Nous
dirons que G* = Horn (G, I') est le dual de G relativement a /’. Nous allons
étudier les relations entre G et G* ce qui nous montrera dans quelle mesure
il est acceptable de parier de dualité entre G et G*



32 B .CHARLES

Etant donné x* £ G* nous posons (X, Xx*> = x* (x). Si dans (x, x*) on
fixe x et fait varier x* on obtient un homomorphisme canonique ¢>de G dans
G**. Pour que @ soit injectif il faut et il suffit que pour tout élément
X o de G il existe x* £ G* tel que (X, X*> un o.

Relations d’orthogonalité entre G et G*

On dit que x £G et x* £ G* sont orthogonaux si (x, x*} = o. Etant
donné A ¢ G on note A1l I'ensemble des x* g G* qui sont orthogonaux
a tous les x£A. Etant donné A ¢ G* on note Al l'ensemble des x £G
qui sont orthogonaux a tous les x* £A. On a les propriétés élémentaires
suivantes:

Theoreme 1.Si X *, ..., Xxn* sont des elements de G* Vensemble {x*, . . .,
X }xn~est le sous-groupe pur de G* engendré par x*, , Xn*,
n
déduire qu’il existe des entiers r * o et rx, . . ., rntels que rx* = ~ rtxf*

i=1
Pour n= 0 la propriété est triviale done on peut raisonner par écur-
M=

rence sur n. Si Ker (x*) s p Ker (k*) la propriété est démontrée. Sinon
.”*%)g“e x£1n:f2 Ker (x*) t(le_llque (X, xn*y ~ 0. Comme [ est de rang
1 il existe des entiers s” o et ttels que (x, sx*-j-txr*)=0.L’homomorphisme
S X* Xr* s’annule sur‘nﬁlKer (Ok>) car il s’annule surllr‘]) Ker (#¢) et sur
r_]n_lKer ) /_nn Ker (»I(:; Il existe done des entiers - Oetrv...,ml
tlezlg que m (s ;<=*1+ 1xn*) = nij r,.Xj* ce qui acheve la démonstration.

Topologies faibles sur G et G*

La topologie faible sur G est la topologie a (G, G*) qui admet comme
Systeme fondamental de voisinages de 0 les ensembles AJ o0 A parcourt
les parties finies de G*. La topologie a (G, G*) est done ce que nous avons
appelé plus haut la I -topologie sur G

La topologie faible sur G* est la topologie a {G*, G) qui admet comme
Systeme fondamental de voisinages de 0 les ensemblesi 1 ou i parcourt
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les parties finies de G. En général a (G*, G) est strictement moins fine
que la U-topologie.

Si on munit I de la topologie discrete (qui coincide d’ailleurs avec la
/ -topologie) et G de la topologie a (G, G*) tout homomorphisme x* £ G*
est continu. Le dual topologique de G coincide done avec G*; nous noterons
G' ce dual topologique muni de la topologie a ((?*, G). Il est intéressant
de determiner le dual topologique G" de G

Theoreme 2. [ etant muni de la topologie discrete et G* de la topologie
< ((?*, (?) Vensemble des y £ (?** qui sont continue est le sous-groupe pur de
(?** engendré par @ ((?).

Dire que y £ (?** est continu signifie que y s’annule sur un voisinage

de 0dans (?*. Un tel voisinage de 0 peut étre pris de la forme {xu ..., xn}=
= {<p(x9), ..., C)}1. En appliquant le théoreme 1 a (?* on voit que
y appartient au sous-groupe pur engendré par <p(x1), ..., <p() ce qui

démontre le théoreme.

Nous pouvons maintenant préciser dans quelle mesure on peut parier
de dualité. D’un point de vue strict on peut parier de dualité algébrique
si @ est bijectif (ce qui permet d’identifier G et (7*) et de dualité faible
si @est injectif et 9((?) pur dans (?** (ce qui permet d’identifier G et (?").
Bien que ces conditions ne soient pas en général réalisées on a les propriétés
suivantes qui montrent qu’il est acceptable d’utiliser le langage de la
dualité:

(a) Le sous-groupe pur de G" engendré par 93(G) est G".

(b) (G')* est canoniquement isomorphe & G*

(¢) Sur G* les topologies a(G*, G) et a(G*, G') coincident.

@) Résulte du théoreme 2. (b) résulte de ce que tout homomorphisme
x* £ G* opere canoniquement sur G** et de (a). Enfin (c) résulte de ce
que Al-n’est pas changé lorsqu’on remplace A c. G par le sous-groupe
pur de G** engendré par 93(d).

Remarque 1. La condition G" — G** est nécessaire et siffisante
pour que <r(G* G) coincide avec la ./-topologie.

Remarque 2. La topologie a(G*, G) que nous avons introduite sur
G* est la topologie de la convergence simple sur le groupe Horn (G, IN),
I étant muni de la topologie discrete. La topologie de la convergence
simple sur les groupes d’homomorphismes a déja été utilisée en théorie
des groupes abéliens, en particulier par T. Szele [9].

3 Abelian Groups
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Transpose d’im hoinomorphisine u: G -r- H

Le transposé de aa est I'homomorphisme ag* H* -> G* défini par:

Ona @+ v)* = ag* + Vet (nv)* = v*u* chaque fois que ces égalités-
ont un sens, agest continu lorsqu’on munit G et H des topologies faibles
puisque celles-ci coincident avec la TI-topologie.

Theoreme 3. ag* est un homomorphi&me continu de I11* dans G* lorsqu’on-
munit H* de la topologie o(H*, H) et G* de la topologie a(G*, G).

Séit V un voisinage de 0 dans G*, qu’on peut prendre de la forme
{ag, ... ;Xn}1 ol ag,...,xn£G. Son image réciproque par af* est
{«(aq), ...,u(xn))1 qui est un voisinage de o dans II*.

Remarque. Ce théoreme montre qu’on a un foncteur & valeurs dans
les groupes abéliens topologiques lorsqu’on pose G —aG' et u -> ar*

Comparaison de n et ao. Sdéit ¢?(resp. X9 l’application canonique de
G (resp. Il) dans G** (resp. I1**). On voit que af*™ <pest un prolongement
de ipn et que ag*™ (iryy ~ H™.

Etude du cas ou G est de rang 1

Théoreme 4. SOit G un groupe sans torsion de rang 1. Si T(G) <[ T(N)>
le groupe G* est de rang 1 et T(G*) est le plus grand type tel que T(G) -(-
T(G*) = T(I); de plus < est injectif et on a pour tout x £ir et tout p
premier la relation H p (<p(X)) = 11p(xX)sip ne divisepas I et11p (PX) = <
si p divise . Si T(G) nest pas T(r) ona G*= o.
Il est clair que G* est au plus de rang 1 et que a* £ G* est déterminé-
par la connaissance de (X, x*} pour un élément x 70 de G. On peut
choisir pour (x, x*> tout élément de I vérifiant:

Le choix de (x, x*') ™ o est possible si et seulement si T (G) < T(IN). Le
type de G* s’obtient en calculant le type d’un élément non nul x* de G*\

Ceci montre que T (G*) est le plus grand type tel que T (G) + T (G* =
= T @)

De ir* ~ o résulte qinjectif puisque G étant de rang 1 on a (X, a;*) »
N o pour tout a~o des que x* Mo. On a :
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Comme @est défini par (x*, cp(X)") = (X, x*) onen déduit Hp (x) = H R<p(x)),
sous reserve que Hp ((x, x*))  °°. Si Hp(<x, x*)) = °° c’est-a-dire si p
divise I', alors p divise G**,

Corottaire. Si T(G) < T(I') et si tout p premier qui divise I divise
G Vhomomorphisme canonique @ est bijectif.

C’est en particulier le cas si on prend ' = G.

Dualite entre somme directe et pruduit direct

Gi on peut seulement

ifA
affirmer que G*~:', G*. L’¢galité G* = %X G{* équivaut au fait que la
i

Si G= Gj on a G* = G* mais si G=
T ta

C-topologie sur G est le produit des I'-topologies sur les (?,. Pour préciser
des cas dans lesquels cette égalité a lieu nous aurons besoin des propriétés
et notions suivantes:

Definition. UNn groupe L sans torsion est dit maigre (slender) si tout
homomorphisme n d’un produit d’une infinite dénombrable de groupes
cycliques infinis {a,} dans L est tel que m(a,) = o pour presque tout i
(c’est-a-dire pour tous les i & I’exception d’un nombre fini).

On a le théoreme suivant pour la démonstration duquel nous ren-
voyons & [7] (Dans [2] seul un resultat plus faible est démontré):

Theoreme 5. (Sqsiada [7]). Un groupe sans torsion dénombrable réduit
est maigre.

On a encore le théoreme suivant pour la demonstration duquel nous
renvoyons & [2]:

Théoreme 6. (D0S) SOit G :I_\/(_I @ 011 %es  sont des groupes sans tor-

ifi

sion. Un groupe maigre L possede les propriétés suivantes relativement & G:
(i) Si n est un homomorphisme de G dans L on a ¢p(G) = o pour presque
tout i.
(i) Si n est un homomorphisme de G dans L tel que ¢@G) = o pour
tout i et si de plus |J1jest un cardinal de mesure nulle alors n = o.
Revenons maintenant a 1’6tude de la I-dualité.
Theoreme 7. I étant un groupe de rang 1 distinct dic groupe additif
des rationnels soient G = iEAI Aietll Bi ou \A \est un cardinal de mesure

nulle, At I, BiadHot (I, ). Alors on a Horn (G TI)adH et
Hot (H, IN) ad G.
On a II* - ‘Jﬁ‘ Bf et du théoreme 4 résulte B* w A/. Des théoremes

5 et 6 résulte G* = At, d’ou la I-dualité annoncée entre G et II.
‘64
Remarque. '* = HotT (I, ") est le groupe additif des nombres
rationnels dont le dénominateur divise I'. On peut faire opérer l’anneau

3*
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* de ces nombres rationnels sur I' et '* done sur G et H; H devient
alors un L*-module libre.

Forme explicite de la I-dualité entre G et Fl. Les hypotheses étant
celles du théoreme 7 un élément x £G peut étre représenté par une famille
(Xi)ifA °0 xi d " et un élément x* £// peut étre représenté par une famille
(X )€n ou x“é F* est nul pour presque tout i: La L-dualité entre Get H
peut alors étre définie par la forme bilinéaire:

L’’anneau des endomorphismes de G. Les hypotheses étant celles du
théoreme 7 on voit par transposition que I’anneau E(G) des endomorphis-
mes de G est inversement isomorphe a l’anneau Eill) des endomorphis-
mes de H.

Séit Mn (E(IN)) I'anneau des matrices (W) ou i,jEA et u\£E(I") avec
la restriction u] = 0 pour presque tout j lorsque i est fixé. On peut iden-
tifier E(H) avec Mn (E(I")) en associant a u — (uj) I’'endomorphisme défini
par les équations:

Le transposé u* de u est alors défini par les équations:

Nous dirons que (u) est la matrice de wu*.
Decomposition de G en produit. Les hypotheses étant celles du théoreme
7 on peut chercher toutes les decompositions de Gsous la forme G = Klﬂl

oil Gtu TI. Il resuite du théoreme 7 qu’elles correspondent aux décom-
positions de H sous la forme H= N /1, ou 1, = Hot (I IN).

Avec la forme explicite donnée plus haut de la L-dualité entre G et H
on a les relations:

Remaeqxik. Rehs Je cas cu ] — Zla plupart des résultats qui precedent
figurent dans fl], Dans le cas ou de plus /1 est dénombrable les propriétés
H ca Hom (G, Z) et G oé Honi (H,Z) figurent dans Specker [8]. 1 v a
lieu aussi de signaler l’article de E. C. Zeeman [10], d’apres lequel, toujours
dans le cas ' = Z, le théoreme 7 serait vrai sans restriction sur |J1\
(moyennant un axiome d’accessibilité).

Le, probleme 23 de L. Fuchs [2]: Séit G un produit de groupes cycliques
infinis. Trouver des conditions nécessaires et siffisantes sur une famille
(ai)ifA d'éltments de G pour que Von ait G {al}.
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Si O est de la forme || AiouAiad Z et oif | A | est de mesure nulle

on peut donner une réponse & ce probleme. Sdit les coordonnées
de al relativement & la décomposition G- // Ai. Si l'on suppose que

A ) ) ) 57|
G < |[{«'} il existe un automorphisme un de G tel que u(el) —a' ou ¢

est I’élément de G de coordonnées (a{)"n relativement & la décomposition

G =riA, La matrice de l'automorphisme w étant (a') nous pouvons

un
énoncer: Pour que G —/7 {at}il faut et il suffit que la matrice («¢) appar-
i

tienne & Mn (2) et soit inversible.

Remarques sur le cas general

Nous ne savons pas si la partié du théoreme 4 relative a 1lp (X))
est vraie dans le cas général. Si on reprend les calculs faits pour un couple
X, x> tel que (x, x*) ~ 0 on obtient en considérant les homomorphismes
X* GIKer (x*) ->Tet p(X): GjKer (Pf{x) ->T:

Si Hp (=<x, x*¥) = il en résulte Hp (0(X)) = Ceci montre que si ' — Q
le groupe G' est I’enveloppe divisible de G.

Nous avons dans tout ce qui precede suppose que I était de rang 1.
Cependant il est intéressant de remarquer que les résultats qui concernent
la dualité entre somme et produit peuvent étre généralisés a partir d’un
Systeme de trois groupes A, B, I' tels que

Si I est maigre le théoreme 7 sera valable pour des groupes G =[J At
Ne
ouAiadA et H= " 55 oiig es B.

Ceci nous condu{?”au probléme suivant: Etant donné un groupe A
trouver un groupe I maigre et un groupe B (aussi simple que possible)
tels que Horn {A, IN) es B et HoTt (B, I') ou A.

Dans le cas d’un groupe A tel que Horn (A, A) ad Z on a comme solu-
tion évidente B = Aet - Z
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(C) QUESTIONS DIVERSES
Sous-groupes de base et topologie p-adique

La notion de sous-groupe de base a été introduite par L. Kulikov
pour les p-groupes. Elle a été généralisée comme suit par L. Fuchs [3]
pour les groupes quelconques: On dit que B est un p-sous-groupe de base
de G si

(i) B est une somme directe de groupes cycliques dont I’ordre est
une puissance de p ou infini,

(i) B est p-pur dans G,

(iii) le groupe quotient G/B est divisible par p.

La condition (iii) est équivalente a la condition iB dense dans G pour
la topologie p-adique’. En effet B dense dans G pour la topologie p-adique
signifie B-\-pnG = G pour tout entier n, or B + PnG = G exprime que
GfB est divisible par pn.

Dans le cas ou G est un p-groupe rien n’est a changer dans la définition
d’un p-sous-groupe de base si ce n’est qu’on peut remplacer (i) par iB est
une somme directe de groupes cycliques’ (qui seront nécessairement des
p-groupes). L’interprétation topologique de la condition (iii) donnée plus
haut est due & L. Kaloujnine [4].

L’interprétation topologique de la condition (iii) dans le cas d’un
groupe quelconque permet d’utiliser les théoremes sur les applications
continues dans les espaces uniformes. So6it m un homomorphisme de B
dans un groupe H. Si H est complet et séparé pour la topologie p-adique
n se prolonge d’une faidon et d’une seule a un homomorphisme de G dans H.

Remarque.Si G est un p-groupe on peut dans ce qui précéde supposer
seulement que H est un sous-groupe p-fermé au sens de L. Kulikov, c’est-a-
dire coincide avec le sous-groupe de torsion de son complété p-adique
MN: Tout homomorphisme de G dans H se prolonge a un homomorphisme
n de G dans /1 mais on a nécessairement u(G) ¢ H. D’ailleurs on peut
éviter de faire intervenir le complété p-adique de H en rempla8ant la
topologie p-adique sur H par la limite inductive des topologies induites
par la topologie p-adique sur les H\_pn\. Dire que H est p-fermé équivaut
en effet a dire que H est complet pour cette nouvelle topologie. Bien
entendu il faut aussi munir G de cette nouvelle topologie et vérifier son
caractére fonctoriel, ce qui est facile.
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Puissance de [’ensemble des sous-groupes de base d’un p-groupe

Le théoreme suivant donne une réponse complete au probleme s de
L. Fuchs [2]:

Theoreme s. (S. Khabbaz et E. A. Walker). Soient G un p-groupe,
D sa partié divisible, B un sous-groupe de base G et b{G) la puissance de
Vensemble des sous-groupes de base de G.

(i) Si G est b6mé ou divisible on a b(G) = 1.

(i) Si G=D -fB, D de rang fini m, B —B1l-f...-fBk oil
K
O = Zip?)onas()= /@_ Pmn'.

(iif) Dans tons les autres cas on a b(G) = |G [B .

La démonstration se fait en distinguant un certain nombre de cas.
Notre but est de donner une démonstration par une méthode topologique
lorsque G est réduit et non borné. On sait dans ce cas que |e*]< 21 .
Par ailleurs b(G) ne peut dépasser |G\B < (2|Q)iS = 2B done tout
revient a montrer que b(G) — 2 B|. Il suffit pour cela de démontrer que
b(B) = 2'sl.

Soit P le socie de B muni de la filtration des Pn= P flpnB et
de la topologie associée. Pour qu’un sous-groupe R de P soit le socle d’un
sous-groupe de base de G il faut et il suffit que R soit dense dans P. En
effet dire que R est dense dans P signifie que R -f-Pn= P quel que soit
n. Nous allons maintenant considerer P comme espace vectoriel sur le
corps discret Zj(p), P étant toujours muni de la topologie définie par les
Pn. Le théoreme dans le cas actuellement envisagé sera une conséquence
du lemme suivant:

Lemme. La puissance de Vensemble des sous-espaces de P qui sont denses
mdans P et de codimension 1 est 2]pl.

Tout sous-espace de codimension 1 de P est défini par une forme
linéaire / ™ o du dual algébrique P* de P. On sait que la dimension et la
puissance de P* sont égales a 2 P. On sait d’autre part que sif £P*
le noyau de/ est un sous-espace dense dans P ou fermé. Pour que / soit
continue il faut et il suffit que le noyau de/ soit fermé. Done tout revient
& démontrer que lI’ensemble des/ gP* qui sont discontinues a pour puissance
2Pl, c’est-a4-dire finalement que I’ensemble P' des formes linéaires con-
tinues est distinet de P*.

/ £P* est continue si et seulement si / s’annule sur un sous-espace
Pn. 1l en résulte:

ce qui acheve la démonstration du lemme.
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Conditions pour qu’un sous-groupe soit facteur direct

Si H est facteur direct d’un groupe G alors H est le noyau de I'homo-
morphisme qui consiste & projeter G sur le cofacteur de //. Nous pouvons
done énoncer:

Theoreme 9. Pour qu’un sous-groupe H d’un groupe G soit facteur direct
il est nécessaire qu’il soit fermé pour toute topologie fonctorielle séparée qu’on
pent définir sur G.

Comme application considérons un groupe de torsion T non borné
et séparé pour latopologie Z-adique. Soit f le complete de T pour la topologie
.Z-adique et H, G des groupes tels que T c: Il ¢c GQ f et G purdans f m
Le groupe H ne peut pas étre facteur direct de G puisqu’il est dense dans
G pour la topologie Z-adique. On notera que f contient toujours des
elements d’ordre infini et que si les composantes primaires de T sont bor-
nées T est le sous-groupe de torsion de Tm

Voici dans un ordre d’idées voisin un théoreme inspire d’un article
de A. Kertész et T. Szele [5]:

Theoreme 10. Soit G un groupe ahélien tel que pour tout p premier
on ait une decomposition G —rpGo Hp ot rp= pn{p>avec n(p) > 1.
Alors on a une decomposition G = D @ H oin D est divisible et oii H possede
les propriétés suivantes :

(i) Hp est la composante primaire de H associée & p et rpHp= o,

(i) "V Up est dense dans H pour la topologie Z-adique.

p . )
Remarquons d’abord que rpHp Q Ilp fjrpG= 0. Il en résulte la
propriété rpG = rpG qui sera utile plus loin. Le théoreme revient a
démontrer que D = QrpG est divisible. En effet si D est divisible on

peut trouver une dé%omposition G=D@H avec H 3 Hp. Le fait
que Hpest dense dans H résulte de 1 ad GjD et de I’exisF%ence d’une
injectlpon canonique de G\D dans (G/rp Gp) Hp .

Tout revient done & démontrerpque D = f| rpg est divisible e’est-a-

dire ¢qD = D pour tout q premier. Ce sera un% conséquence du Iémmé:
Lemmé. Soient (A,) une famille de sous-groupes de G et u un endo-
morphisme de G. Si pour tout i »~ 1 on a Ker () c 4, alors u (MA) =
= Mu(A,).
I

Il suffit de démontrer que n (MA,) 3 MN* (A-). Si xENMNw(A) U
1 1 i

existe pour tout i un at£ A-tel que x = n (@,). Sii A lds un (oq) = u (a)
résulte cg—ate Ker (M) ¢ At d'oii avE Aj. On a alors % s MA( dol
Xe W Aj).

I
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En appliquant le Iémmé kK D = f)rpG et n = g ce qui est permis-
puisque Ker n) = G [ql ¢ rpG pour tc[))ut p g, on obtient:
gb = I;)’\qrpG: El(qG nrpG) = (G nD = D.

(On a utilisé qrPG = qG n rPG : C’est toujours vrai pour p ™ q et
c’est vrai dans le cas present pourp = gen vertude prpG2 rpG= rpG
et p G3 rpG).

En appliquant le théoreme 10 au cas rp=p on obtient le résultat
suivant:

Corollaire. (Kertész et Szele [5]). Une condition nécessaire et siiffisante
pour que tout multiple de G soit facteur direct est que G= D H oin D est
divisible et oin H vérifie les conditions suivantes :

(i) Si Hp est la composante primaire de H associée &p on a pHp —o.
(i) Hp est dense dans H pour la topologie Z-adique.

(La suffisance des conditions énoncées ne resuite pas du théoreme
10 mais est facile & démontrer).

A. Kertész et T. Szele ont posé le problémé plus difficile de trouver
tous les groupes G dont toute image endomorphe est facteur direct. Si on
suppose G réduit alors les composantes primaires de G sont telles que
p Gp= o et Gpdense dans G pour la topologie Z-adique. Ces conditions

ne sont pas sig)ffisantes pour que toute image endomorphe de G soit facteur
direct, comme le montre I'exemple suivant:

Soit pour chaque p premier un groupe Tp ™o tel que p Tp—o.
Formons G= H @ K oii H Tpet K = n Tp. On aun endomorphisme

n de Gen posantm (K) = 0 e{) en envoyantpH dans K de faijon naturelle.
L 'adhérence de u (G) pour la topologie Z-adique est K, done n (G) n’est
pas fermé pour la topologie Z-adique, done u (G) n’est pas facteur direct.
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ON A CONJECTURE OF PIERCE CONCERNING DIRECT
DECOMPOSITIONS OF ABELIAN GROUPS

By
A. L. S. CORNER
Worcester College, Oxford

At the recent Colloguium on Abelian Groups held at Tihany in Hungary
R. S. Pierce announced his conjecture that there exists an Abelian /egroup
that is isomorphic with the direct sum of three copies of itself, but not
with the direct sum of two copies of itself, and suggested that a theorem
of mine might be used to settle the corresponding question for torsion-
free groups.1 In this paper | shall show that there does exist a torsion-free
group with Pierce’s property; this fact is the case r = 2 of the following
more general result.

Theorem. Let r be a positive integer. Then there is a countable reduced
torsion-free Abelian group G with the property that for positive integers m, n
the isomarvhism,

(1)
holds if and only if m = n (mod r). In particular,
(2)

while for every integer s such that 1 < s< r -f1

(V G denotes the direct sum of m copies of the Abelian group G.)

m
Three corollaries of the theorem are given at the end of the paper.
The proof of the theorem makes use of my Theorem A [1], which we
guote here as

1W. G. Leavitt has in effect established the truth of the corresponding conjec-
ture (and several generalizations) for modules over certain specially constructed rings
[6]. For a discussion of the analogous problems for Boolean algebras, see Halmos [3].
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Lemma 1. Let A be a ring whose additive group is countable, reduced, and
torsion-free.2 Then A is isomorphic with the endomorphism ring E (G) of some
countable, reduced, torsion-free Abelian group G.

We shall also need the following criterion for the isomorphism of two
direct summands of an Abelian group in terms of its endomorphism ring.

Lemma 2. Let cox, 0> be two idempotents in the endomorphism ring E(G)
of an Abelian group G. Then the direct summands G (v G o> are isomorphic
if and only if there exist elements x, y £ E(G) such that

©)
Peoof. Suppose that x,y £ E(G) satisfy (3). Then the identities
XyX = Xxw2= colx, yxy = yol= r2y

show that the endomorphisms xyx and yxy of G induce homomorphisms
x* :Gwl ->GoR2 and y* : Goj2-> Gwv respectively; and it follows from
the further identities

that x* and y* are inverse isomorphisms between Gw, and G o2 Conversely,
if x* :Gwl->G<_and y* :Go2->G v are inverse isomorphisms, then
the endomorphisms x = o)l x*, y = ol y* of G are solutions of (3).

P roof Of the theorem. Take A to be the ring freely generated by symbols
ah @ (i—1,2,...,r + 1) subject to the relations

(4)

Suppose first that we have proved (a) that the additive group of A is
free Abelian of countable rank, and (b) that there exists a function T:
A -> Z/rZ such that

where Ir denotes the residue class of 1 modulo r. Then by (a) and Lemma.
1 there is a countable reduced torsion-free Abelian group G whose endo-
morphism ring E(G) is isomorphic with A. We make the identification
E(G) — A, and write

2All rings in this paper are associative and have identity elements.
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It follows at once from the relations (4) that the «e are orthogonal idem-
potents with the sum 1, so that we have the direct decomposition

Moreover, by Lemma 2 the equations Ba, = 1, a-Bi — @- imply that
the O @- are all isomorphic with G itself. Thus we have established the
isomorphism (2); and it follows immediately that the isomorphism (1)
holds whenever m = n (mod r). Now suppose for a contradiction that an
isomorphism (1) holds for some pair of positive integers m, n such that
m ¢ n (modr). By virtue of what we have just proved it is clear that an
isomorphism (1) must also hold for some pair to,n with 1 < o< n< r,
so that

According to Lemma 2 A must therefore contain elements x, y such that

Taking ‘traces’ we deduce that

But T(a>) = T(dj Bi) = T(Bi a,) = T(1) = Ir; so this equation in traces is
equivalent to the congruence = n (modr), and we have the required
contradiction.

The theorem will therefore be proved once we have established (a)
and (b).

For the proof of (a) and (b) it is convenient to identify A in the obvious

way with the quotient: i1 where: isthe ring freely generated by symbols
a- 67 (I —1,2. . r -j-1) subject to the relations
®)

and 9t is the ideal of i generated by the single element
(6

Standard arguments show that the additive group of : is free Abelian
on the distinct non-vanishing products in the a-, s-;3 and the identities (5)

3See, for example, the theory of monomial rings in Rédei [7].
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imply that every such non-vanishing product is equal to a product of the
form

@) 4iiai2 mm- aimbjn mmmbj, bj,

where m,n~~> 0 and 1< jk<Cr + 1. Hence the products (7) constitute
a free basis of the additive group of B.

To prove (a) it is only necessary to show that 2L is a direct summand
of the additive group of B. Now it is clear that 21 is additively generated
by the elements wyz w2, where wy, w2 are products of the form (7); and
since (5), (6) imply that byz= 0= zat (i—1,2, ..., r + 1), 2 is even
additively generated by the elements of the restricted form

where m,n)>0 and 1<i4,jk<Lr + 1- An entirely straightforward
Steinitz Exchange argument, whose details are left to the reader, shows
that the system of all elements of the form (7) remains a basis of the addi-
tive group of B when the subsystem of all elements for which m,n~"> 1
and im= jn—r + 1 is replaced by the system of all elements of the form
(8). We conclude that 2l is a direct summand of the additive group of B;
and (a) follows, as we have already observed.

To prove (b) it is clearly enough to construct a function T*: B -> ZjrZ
that satisfies the analogues (i*), (ii*), (iii*) of (i), (ii), (iii) and, in addition,
vanishes on every element n of the form (8). We define T* on the basis
elements (7) by the rule,

and extend T* to the whole of B by additivity. By construction T* certainly
satisfies (i*) and (iii*). The vanishing of T*(u) for every u of the form (8)
is also easily verified: if the expression for T*(u) is expanded with the help
of (i*), then the terms of the expansion all vanish except in the case m = n,
ik=jk(@ <[ K <; m), when the expansion reduces to Ir — (r -j- I)Ir, which
vanishes in ZjrZ. Finally, in view of (i*), in order to verify (ii*) it is enough
to consider the case in which x is one of the additive generators (7) and y
is one of the multiplicative generators wi, bt and in this case the verification
is trivial. Taking for example the case x = a2... Wwb] ... hjrhjt,
y = ait we find that T*(xy) and T*(yx) both vanish unless n —m -\- 1 and

when T*(xy) = T*(yx) = Ir.
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The proof of the theorem is complete.

We end with three applications of the theorem.

CorollaeY 1. There exist countable torsion-free Abelian groups G, H, U
such that G H f- U, H” G + U, but GdstH.

This provides a negative answer to de Groot’s formulation [2] of
Kaplansky’s First Test Problem [5]. For a related counter-example in the
class of countable torsion-free Abelian groups, see Corner [1]. The earliest
counter-example to the problem was obtained by S”siada [s]. A counter-
example in the class of uncountable Abelian p-groups has recently been
obtained by Crawley.s

Proof. Take the group G of the theorem forr = 2, withH = G + G,
U= 0.

Corollary 2. For any positive integer r there exist torsion-free Abelian
groups G, H of countable rank such that Gw”™ H, but”™ O H
for 1< s<r.

The case r = 2, which gives a negative answer to Kaplansky’s Second
Test Problem [5], and the case r — 3, have already been obtained by
Jonsson [4] and by G. Higman (unpublished), respectively; Jonsson’s
and Higman’s groups are even of finite rank. Crawley’s counter-example
referred to above implies the existence of non-isomorphic uncountable
Abelian p-groups G, H such that G -fGw H --H.

Proof. Take the group G of the theorem for the given r, with H —
= G +G.

Corollary 3. There is a torsion-free Abelian group G of countable
rank that is isomorphic with the direct sum of any finite number (”~ o) of
copies of itself, but not with the direct sum of infinitely many copies of itself.

Note that the complete direct sum of countable many copies of the
integers provides a simple example of a torsion-free Abelian group of
uncountable rank with the property of Corollary 3.

Proof. Take the group G of the theorem for r = 1. Then, according
to the theorem, we have for every integer n 1

But G cannot be isomorphic with the direct sum of infinitely many copies
of itself; for otherwise E(sr) would be of cardinal of the continuum,
whereas we know from the construction that E(G) is countable.

Note that an example going in the opposite direction to that of Corol-
lary 3 is not possible: any group that is isomorphic with the direct sum of

4 Crawley’s counter-example was mentioned by Professor Pierce at the Tihany
Colloquium.
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infinitely many copies of itself is necessarily also isomorphic with the
direct sum of any finite number (” o) of copies of itself.

I should like to thank Professor R. S. Pierce both for communicating
his conjecture to me, and also for drawing my attention to the paper of
Leavitt [6]. | should like also to express my gratitude to Professor L.
Fuchs, the Hungarian Academy of Sciences, and the Bolyai JAnos Mathe-
matical Society for organizing the very successful Tihany Colloquium,
and to the International Mathematical Union for a travel grant.
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A GENERALIZATION OF DEPENDENCE RELATIONS

By
V. DLAB
University of Khartoum

A GA-dependence structure (S, b) has been defined [1] as a set A
with a GA-dependence relation bc s x $ A (‘an element depends on a
subset’) satisfying certain s axioms. The concept of the GA-dependence
relation is a generalization of the previously introduced ‘algebraic’ depend-
ence relations and covers also the dependence in Abelian groups—thus
being a solution of the problem indicated by T. Szele [4].

The dependence relations in Abelian groups serve to some extent as a
model for this concept. As a consequence, e.g. the Ardnk of a GA-depend-
ence structure (whose invariance can be established through a certain
generalization of the Steinitz’ Exchange Theorem) has similar properties
to those of the ranks of an Abelian group. Certain ‘direct’ decompositions,
compositions and factorizations (preserving ‘linearity’ of the rank function)
can be defined in the theory of GA-dependence structures generalizing
the corresponding concepts of the theory of Abelian groups.

In the case of a ‘linear’ dependence relation (see e.g. [5]) it is possible
to present in a simple way an axiomatization in terms of independent
subsets, or to establish a lattice representation of the respective structure
(see e.g. [6,3,2]). From this point of view, the lack of the ‘transitive’
axiom for a GA-dependence relation makes the study more difficult. Thus,
as to the first question, to a given class of independent sets (satisfying
certain 3 axioms) there corresponds, in general, a whole family of GA-
dependence relations with the least and the greatest elements. The follow-
ing theorem relates to the other question (for the sake of simplicity the
formulation assumes that S = 8, i.e. that the subsets of the singular and
the neutral elements are void):

Let (S, b) be a GA-dependence structure. Then there exists a set L
(finite if S is finite and of the same cardinality as S otherwise) and a one-
to-one mapping pof iR S into iR L such that for x £8 and X, Xv XZ£ i S

Xxc Xt+'+ipfXJ ¢ (p{X2)

4 Abelian Groups
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and
[X, X]e 8<> <p((X)) rn <p(X) 0.

Thus, any svich GA-dependence structure can he represented as a
complete atomic Boolean algebra of some subsets of a set (with the opera-
tions different from set-theoretical ones) in such a way that the set-theo-
retical intersection represents the dependence relation. The axioms of the
GA-dependence structure can be rewritten as certain conditions for such a
Boolean algebra. From this, the definition of the GA-dependence structure
can be read in a symmetric form in terms of ‘a subset depends on a subset’.

The detailed treatment of the subject will appear in the Czech. Math.
Journal.

References

[1] D1ab, V., General algebraic dependence relations, Publ. Math. Debrecen, 9 (1962),
324—356.

[2] MacLane, S., A lattice formulation for transcendence degrees and p-bases,
Duke Math. J., 4 (1938), 455—468.

[3] Nakasawa, T., Zur Axiomatik der linearen Abhdangigkeit, I, Il, 111, Rep. Tokyo
Bum. Daigaku, 2 (1935); 3 (1936).

[4] Szete, T., Ein Analogon der Kdérpertheorie fir Abelsche Gruppen, J. reine angew.
Math.. 188 (1950), 167— 192.

[5] van der Waerden, B. L., Moderne Algebra I, Berlin—Gottingen—Heidelberg
(1950).

£6] Whitney, H., On the abstract properties of linear dependence, Amer. J. Math.,
57 (1935), 509—538



ON THE SUBGROUPS OF AN ABELIAN GROUP THAT ARE
IDEALS IN EVERY RING

By
E. FRIED
L. Edtvds University, Budapest

Let us consider an (additive) Abelian group G. Rings (not necessarily
associative) with an additive group isomorphic to G are called rings over
G. In Fuchs [1] certain subgroups of G are shown to be ideals in all rings
over G. The aim of this note is to characterize, in a group-theoretic way,
the subgroups H of G which are ideals in all rings over G.

Let s (G) denote the endomorphism ring of G,1 and E(G) the additive
group of 6 (G). Let furthermore 7(G) be the subgroup of E(G) generated
by all homomorphic images of G into E(G), i.e.

then we have

Lemma 1. 7(G) is the additive group of an ideal s (G) of s (G).

Proof. Let y £Hom(G, E(G)) and 9£+6 (G). The mappings g = (gy)cp
and g -> <p(gy) are because of (gf)<p, <p(gy) £ E(G), and

homomorphisms of G into E(G). Consequently, (0y)® and <p(Gy) are
contained in 1(G). This shows that the elements of 1(G) form an ideal
8 (G) of (E(G).

Theorem 1. A subgroup H of G is an ideal in every ring over G if and
only if it is an $(G)-module.

Proof. Let us consider a ring R over G. We associate with each g(£ G)
the right-sided multiplication gR by g in this ring R. By the right-sided
distributive law gRis an endomorphism of G, and because of the left-sided
distributive law the mapping yR: g ->gR is a homomorphism of G into
E(G) (and so into 1(G)). Thus the elements of a subgroup H of G form a

1We shall denote the image of an element g0 G under the endomorphism r)
by grj. Accordingly, the product r// of two endomorphisms r/, y of O is defined as

fi(w) = (y)x-

4%
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right ideal in the ring R if and only if 4 is a GYR-module. (A similar proof
applies for the left ideals.) Thus, if 4 is an 3(G)-module, then A is a (two-
sided) ideal in every ring over G.

Now, let A be an ideal in every ring over G. Let further y be a homo-
morphism of G into E(G). We define the multiplication in G in the follow-
ing way:

i.e. we apply hy to g. It is obvious that in this way we get a ring over G.
Since A is also an ideal in this ring, A is a Gtpmodule. This holds for all
Gr/, therefore Il must be an 3(G)-module.

Remark. Obviously, a subgroup A of G is a one-sided ideal in all
rings over G if and only if it is an 3(G)-module.

The fully invariant subgroups are ideals in all rings over G. Let us
consider what other subgroups of G are ideals in all rings over G.

Definition. Let 4 be a subgroup of G. Put

[I* = the subgroup of G generated by the elements &(£ G) such that
gp £H holds for each @£ 3(G):

A = the subgroup of G generated by the elements a(£ G) for which there
exist an h£H and a £ 3(G) such that g = hep.

From Lemma 1, and from the definition, we obtain immediately:

Lemma 2. For a subgroup H of G, both H* and H are fully invariant
subgroups of G.

Lemma 3. The following inclusions hold:

(i) A* g H g H* if H is a subgroup of G;

@i) 1f g I, and 1If £ 1I* if 11\, Hi nre subgroups of G such that
H, £ 92

Now we shall give a characterization of the subgroups in question.

Theorem 2. For a subgroup H of G, the following assertions are equi-
valent:

(i) H is an ideal in every ring over G;

(i) HQH;

(iii) there exists a fully invariant subgroup T of Gsuchthat TQHQ T¥*;

(iv) there exists afully invariant subgroup S of G such that Sf=HQS;

(V) HE A=

Proof. The equivalence of (i) and (ii) has been proved in Theorem 1.

To deduce (iii) from (ii), let 4 g H. Because of Lemma 2, T = H is
fully invariant in G; and T g H. Further in view of Lemma 3 (i), we have
A g ll*= T*

Next we prove that (iii) implies (iv). Let T be a fully invariant sub-
group of G,and T g A4 g T*. Let S — T*; then S is fully invariant in G;
and 4 g S. By Lemma 3 (i), S= T*g T g 4.
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Assume (iv). Let S be fully invariantin G, and let S Q H Q S. Because
of Lemma 3 (ii), from S Q H we obtain S* — H*. By Lemma 3 (i), we hence
have H £ 8 Q S* Q H*, which establishes (v).

Finally, we prove (ii) from (v). Let H ~ H*. From Lemma 3 (ii) and
(i) we conclude that H <<H* Q H. This completes the proof.

Remark 1 It is easy to see that if, for some H, H Q H holds, then for
the fully invariant subgroups T and S, TQH QT* and 8 QH Q S
hold if and only ii H Q T Q H and H Q S Q H* are satisfied.

Remark 2. Theorem 2 implies that for a fully invariant subgroup T of
G, all groups H with T Q H Q T* are ideals in all rings over G.

Remark 3. It is easy to prove that 0* is the intersection of all anni-
hilators of the rings over G. (The annihilator of a ring R is the set of all
r £ER satisfying rx —xr = o for all x£R.) Indeed, </E()* means
gg = o forall g £1(G), and because 1(G) is generated by all homomorphic
images of Gin E(G), this means /n(x, g = o = p(g, x) for all x £G and for
all multiplications p(x, y) over G. Thus o* — G if and only if G is a nil
group according to Fuchs [1]. If G is a p-group, then o*is the set
of all elements of infinite height in G, i.e. if G is a torsion group, then
0o*= n nG = Glis the first Ulm subgroup of G.

Now we consider the groups in which only the fully invariant sub-
groups are ideals in all the rings over them. To these groups we shall refer
as l-groups.

Let N(g) be the set of all endomorphisms of G which annihilate the
element g £G. N(g) is obviously a right ideal of s (G).

Lemma 4. A group Gisan I-group if and only if, for any g £ G, E(G) is
generated by i (the identity of 6 (G)), 1(G) and N(g).

Proof. Let G be an /-group. Let us consider the set of ah elements
ng + gg where g is a fixed element of G, n is running over the rational
integers and g runs over 1(G). This set is obviously an s (G)-subgroup
which is, because of hypothesis, fully invariant. Therefore each 9£s (G)
carries this set into itself. Hence for aiy( ¢ (G) we may write gp= ng + gg
for some natural integer n and some g £ 1(G). Therefore @—ru - gt N(g),
and @£ {t, 1(G), N(g)}, i.e. E(G) is generated by i, 1(G) and N(g). Conver-
sely, let us suppose that E(G) = {i, 1(G), N(g)}. Let H be an 1(G)-sub-
group, g £H and @£ E(G). By hypothesis @= tu | g] + ar with suit-
able LWE1(G) and g, £N(g). Thus gp= ng f ggx+ gg2= ng + ggx£ H,
which establishes the full invariance of H.

Evidently, G is an /-group if, for all fully invariant subgroups T of
G, the equality T* = T holds (Theorem 2).

Lemma 5. For a group G, the following assertions are equivalent:

(i) each fully invariant subgroup T of G satisfies T* = T,

(ii) to each g £ G there exists an g £& (G) such that gg = g.
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Proof. First we derive (ii) from (i). By Lemma 1, g 8(G) is fully
invariant in G. On account of (i),we have g £(gl(G))* = gl(G). Then there
exists an  £1(G) such that g = gy.

In order to prove (i) from (ii), let g £T*, and let  ( 8(G) be chosen
so that gj = g. Then g = grj £g1(G) » T, which proves (i).

Now we shall consider some special cases.

Corollary 1.1f,for some G, 1(G) coincides with E(G), then a subgroup of
G is an ideal in all rings over G if and only if it is fully invariant in G.

Proof. If 1(G) = E(G), then Lemma 5 (ii) is satisfied, hence (i) and
Theorem 2 imply the statement.

In particular, the hypothesis of Corollary 1 is satisfied if G has a
homomorphism onto the infinite cyclic group.

Lemma 6. If G is a torsion group, then 1(G) is the (maximal) torsion
subgroup of E(G).

Proof. All homomorphic images of a torsion group are again torsion
groups, therefore 1(G) is contained in the torsion subgroup of E(G). Now,
let r) be an element of E(G) of order n. Thus n(Grj) = G(nrj) = 0, i.e.
Grj is bounded, and in view of the theorem of Priifer-Baer it is a direct
sum of cyclic groups. Let Kk be the least common multiple of the orders
of the cyclic direct summands of Grj. Because of n(Grj) — 0, we must
have k\n, and because of G(krj) = 0, kr) = 0 we get n\k, that is, K= n.
Therefore Grj has a cyclic direct summand G' of order n. Let n he the
natural homomorphism of G onto G', and a the homomorphism G -> E(G)
mapping agenerator of G* onto y. Then yna maps some element of G onto
7, i.e. j £/(G). Consequently, I(G) isthe (maximal) torsion subgroup of E(G).

Corollary 2. For a torsion group G, the following assertions are equi-
valent:

(iy eachfully invariant subgroup T of G satisfies T* = T;

@iy 0* = 0.

Proof, (i) evidently implies (ii).

Let 0* = 0. Because of Remark 3 after Theorem 2, G1= 0* = 0.
This implies that any element of G is contained in a finite direct summand
of G. Thus the order of the projection onto this direct summand is finite.
By Lemma 6, this projection is an element of 1(G). Lemma 5 (ii) completes
the proof.

It is straightforward to prove:

Corollary 3. If G is torsion-free and divisible, then a subgroup of G is
an ideal of all rings over G if and only if it is fully invariant.

Let us mention the following questions:

Problem 1. Which groups G (besides torsion groups) have the property
that 1(G) is not only generated by the homomorphic images of G into
E(G), but it is exactly their set union?
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Problem 2 Is a torsion group G an /-group if and only if Gx(= 0%)
is isomorphic with a subgroup of all roots of unity?
Finally, I wish to thank Prof. L. Fuchs and the members of his seminary

for their remarks and advice.
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SOME GENERALIZATIONS OF THE EXACT SEQUENCES
CONCERNING HOM AND EXT

By
L. FUCHS
L. E6tvds University, Budapest

We shall consider throughout Abelian groups; these will be called simply
groups and denoted by capitals A, B, ... The group Hom(,4. B) of all
homomorphisms of A into B and the group Ext(A, B) of all extensions of
B by A have the well-known properties: that if

(1)

is an exact sequence of groups A, B,C and homomorphisms a, B, then
for any group X, there exist exact sequences

(2)

and

©)

where a* and * are homomorphisms induced by a and B, and y, dare homo-
morphisms depending on (1)[the latter are called connecting homomorphisms].

There are several generalizations of Horn and Ext and exact sequences
(2) and (3). Harrison [s] introduced the group of pure extensions, Pext
(A, B), and proved that if (1) is pure exact, then (2) and (3) continue to
hold even if Ext is replaced by Pext throughout. Pierce [s] has defined
the notion of small homomorphisms of ~-groups, and has shown that
they form a group Homs(A, B) for which the first half of (2) and (in case

1 F or the definitions and basic facts concerning Horn and Ext we refer to Car-
tan [1], for those on Abelian groups to Fuchs [3].
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(1) is pure exact) the first half of (3) hold. Pogany [9] considered those
homomorphisms of ~-groups whose images are countable; he established
exact sequences for these like the first halves of (2) and (3). The group
Shorn(d, B) of all homomorphisms of A into B whose kernels are essential
subgroups of A has been introduced by Harrison, Irwin, Peercy and Walker
[7] when they discussed the group Hext of high extensions. For neat
exact (1) the first halves of (2) and (3) can be estabhshed for this Shorn.2
Our intention is to show that all these results (and some more) may be
derived from a common source.

The basic idea is to associate with each Abelian group A an ideal
IA or a dual ideal T=A of the lattice L(d) of its subgroups, and to consider
the pairs (A, 1a)or (A, 1)A)as our objects. In this way the categories (<Y, I)
and (<di, D) arise where <di denotes the category of all Abelian groups.
Then Horned, B) and HomD(d, B) will be defined as the sets of all morph-
isms of these categories from d into B. It turns out that these are sub-
groups of Horn (A, B), which give rise to left exact functors of (-d\ I) and

, D) into .The derived functors will be determined only if the first
variable is kept fixed. It can be described as follows: Extr(d, B) is a factor
group ofthe group Fact(d, B) ofall factor sets ofd into B and has Ext(d, B)
for its homomorphic image; and a similar situation holds for D.

In terms of 1) and D) certain subgroups of Horn can be defined:
Hom(d D, B1) is the set of all homomorphisms / of A into B such that
Ker g £1)Aand Im 1j £ IB. For fixed systems I, D, they induce left exact
functors oft~6dnto tdf, and the derived functors can be characterized in
terms of factor sets. In this case, moreover, the derived functors can be
represented as direct limits of systems obtained from Ext.

Finally, we introduce several subgroups of Ext. Ext(djl, B) and
Ext(djD, B) will be defined as the sets of all (classes of) extensions of
5 by d, which split whenever we restrict them to arvitrary d* £1A and
to suitably chosen d* £ DA respectively. Ext(d, B 1) and Ext(d, B D) are
defined analogously by the requirement that the extensions split on passing
modulo some B* £ 1B and modulo any £*0OI)B, respectively. Our results
will show that if we start with an I-exact or D-exact sequence (1) and
assume that (1) is an extension of d by C of special kind, then exact
sequences like (2) and (3) can be established with Ext replaced by
Ext( [I, ) and by Ext( , D), respectively.

Some problems which arose in connection with our discussions will
be dealt with in a subsequent publication.

Let us note that some of our results can be generalized to unitary
modules over rings with identity.

2For other generalizations of (2), (3) see Fuchs [4].
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§ 1. The categories (ij€, 1) and ( , D)

L et~ f denote the category of Abelian groups.We select for each A
an ideally of the lattice HA) of all subgroups of A.We define the category
, 1) to consist of the objects [a, IA) for A £<~. The morphisms

of this category are the homomorphismss of A into B which map subgroups
in 1A into subgroups in IB:

Evidently, the product of two morphisms is again one. By a monomorphism
of this category we mean a morphism e (B,\B) such that q acts
as a monomorphism of A into B and

An epimorphism of (A, I) is a morphism < which acts as an epimorphism
of A onto B and
Given the category 1), we say that the sequence

0->(A,148)">(5.18) —»(C, Ic) "m0

is exact, or simply that the sequence

(4)
is 1-exact if it is exact and if a is a monomorphism and R is an epimorphism
in the category 1.

E xamples.—1. The category (<AT, L) where the ideal LA is equal to
L(A).—Now the morphisms are arbitrary homomorphisms between Abe-
lian groups; monomorphisms and epimorphisms have the usual meaning.

2. The category (<Af, F) where the ideal is the set of all finitely
generated subgroups of A.—Again, morphisms are arbitrary homomorphisms
and monomorphisms, epimorphisms are simply monomorphisms and
epimorphims in the usual sense.

3. The category B) where BA denotes the ideal of all bounded
subgroups of A.—Morphisms are now simply homomorphisms, mono-
morphisms have again the usual meaning, but epimorphisms are not the
usual epimorphisms.3

3 The mappings will be written from the right and thus the product a8 of two
mappings a, B is obtained by first performing a and then R.
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4. Let (ts£, T) be the category where the ideal Tn consists of all torsion
subgroups of A.—For the maps the same holds as in the previous example.

5. The category (<Ai, I(m)) where 14n) consists of all subgroups of cardi-
nality < m of A. Here morphisms are the same as homomorphisms,
and monomorphisms, epimorphisms have the usual meaning.

6. Let (tjé, U) denote the category where the objects are all pairs
(A, 1n) with Ad and IA running over all ideals of \AA).

Next let us choose a dual ideal in the lattice L(A)for each A gtAfh
and define the category D) to consist of the objects (A, D4) for all A £
and of the morphisms

where ip: A -> B is a group homomorphism such that
to each B* £ DB there exists an A* £ ) n satisfying A* ip ¢ B*.

The morphism ipis a monomorphism if ip. A ~ B is a monomorphism and

and it is an epimorphism if ip: A -> B is an epimorphism and

The definition of the exactness of

and the D-erractaess of o A —=B G 0 is evident.

E xamples.—7. The category (<®\ D) is essentially the same as the
one given in Example 1 if DA = L(A) for all A.

8. Let the category Ux€, G) be defined by putting (A equal to the set
of all subgroups A 'of A,which are of finite index in A (or the factor group
A)A" is finitely generated).—Now morphisms are group homomorphisms
and epimorphisms have their usual meaning.

9. The category , C) where Cg is the dual ideal of all subgroups A’
of A such that A/A" is bounded.—In this case the epimorphisms have the
usual meaning. A monomorphism of this category is a monomorphism of
A onto a subgroup of B whose own w-adic topology coincides with the
topology induced by the u-adic topology of B.

10. The category LAf,W) where WA is the dual ideal of all subgroups
A' of A for which A/A’ is a torsion group. —The monomorphisms and
epimorphisms have the same meaning as in

11. The category (A, D(m)) where denotes the dual ideal of all
subgroups of index < m of A.
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12. Let ("yf,V) denote the category whose objects are all pairs (A, DA)
where A £ and I)Aranges over all dual ideals of L(A).

13. Let S) be the category consisting of all objects (T, ST) where
T is a torsion group and STis the dual ideal of all subgroups that contain
large subgroups in the sense of Pierce [s].

14. Let (ts6, H) mean the category with HA the set of all essential
subgroups of A. Morphisms are nothing else than homomorphisms; and
the monomorphisms, but not the epimorphisms have their usual meaning.

Evidently, there are natural functors (<y£, 1) — ~yfand (<%, D)
given by simple omitting IA and DA throughout.

There is no difficulty in defining Hornod, B) as the set of all morphisms
(A, 14) (B.Is) in the category (<di, I) with addition defined as in the
case of ~yf. Evidently, Horned, B) is always an Abelian group and is, in
the natural way, isomorphic to a subgroup of Hom(d, B). In Examples
1—4, this subgroup is not a proper one.

Similarly, HomD(d, B) can be defined as the set of all morphisms
(d,D A)-»(B, DR)in (uf. D) with addition asin  .It may also be regarded
as a subset of Hom(d, B). It is a subgroup, for the zero homomorphism
belongs to it, and if rjv HomD(d, B), and if given a B* £ DB, then
there exist A*, A* £ DAsuch that A* tjv A* j2Q B* whence A* = A* fj
M A* £ Da satisfies A*(rjx—tj2) ¢: B*, and so nx— f2£ HomDO(d, B).

The morphism a: (A, 1A) -> (B, IB) induces maps

for an arbitrary group X, given by tj -> rjaand y -> ay, respectively. It is
readily checked that they are in fact homomorphisms, and so are the
maps defined analogously for the category , D).

For these groups Hong and HomDit is easy to verify the analogues
of the classical exact sequences:

Theorem 1. // 0—»A B -A-G —v 0 is an l-exact sequence, then for
an arbitrary group X we have the induced exact sequencess

and

4No ambiguity will arise if we denote throughout by *the mapping induced by .
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need to show that Im a*= Ker R*. Since all = o,the definition of induced
homomorphism implies a*B* = o, and therefore it suffices to show that
Ker B* ¢ Im a*. Let r/ £ Ker /?*,then yB — 0, and the exact sequence (2)
guarantees the existence of a y £ Hom(X, A) such that y = ya. For any
X *£ 1x,theimage X *y = B* belongsto IBand is contained in Aa, whence the
I-exactness of the original sequence implies that jB*is of the form B*=A*a
for some A*£ IA.Now X*ya = A* a implies X* y = A*, a being a mono-
morphism, i.e. y £EHornul, A).

In order to prove the exactness of the second sequence, we conclude
by the same argument that now B*is a monomorphism and that it is suffi-
cient to prove the inclusion Ker a*clm R*. Let y £Ker a*;then from the
exactness of (3) it follows that there is a y £ Hom((7, X) satisfying
y = By. The hypothesis of I-exactness implies that given a C*£ Ic, there
is a B*f IB such that C*= B*R.But then C*y= B*Ry= B*y = X* belongs
to ix, and thus y belongs to HomlI(Cf, X), which completes the proof.

Theorem 2. If OMA-1XB~U-C-~0 isa D-exact sequence, then the

induced sequences

and

are exact for every group X.
The proof is similar to that of Theorem 1; we leave it to the reader.

Now we have come to the problem of determining the derived functors
of Horn, and Hom,,. If we wish to mean by an l-extension (D-extension)
of A by Can I-exact (D-exact) sequence (4), then the set of all I-extensions
(D-extensions) may be empty, since the categories (*,1) and , D) need
not be additive. Therefore the derived functors cannot be defined in terms
of I- or D-extensions. But they can be defined by making use of factor sets
just as in the case of Horn; the only difference is that the equivalence of
factor sets must be taken in a weaker sense.

Let A, B be two groups in the category )or . D). A function

of A into B will be said to be an I- or D-function if it maps subgroups
A*£ 1Ainto subgroups B*£ IB,and if to any DBthere is somed*£ DA
so that fmaps A* into B*,respectively. (Thus a morphism is a homomorphism
which is at the same time an I- or D-function.) It is easy to check that,
for fixed A and B, the I-functions of A into B form an Abelian group
under the obvious, addition; the same holds of course for the D-func-

tions too.



SOME GENERALIZATIONS OF THE EXACT SEQUENCES G3

By an I- or D-transformation set of A into B we understand a transfor-
mation set

where | is an |- or D-function. These form a group under addition which
will be denoted by Trans,(.4, B) and Trans,,(A, B), respectively. They are
obviously subgroups of Trans(A, B), the group of all transformation sets

of A into B.
Now Ext,(.4, B) will be defined as the factor group of the group
Fact (A, B) of all factor sets of A into B modulo the subgroup TransdA, B):

A similar definition applies to Ext, (A, B):

We shall restrict ourselves to considering Ext, only, since ExtD can be
treated similarly.

A morphism a: (A, \A) -» (B, IB) induces, for any group X, homo-
morphisms

defined by f(xLx2"-f(xLx2a and /(&, b2 -»-/(a, a, a2a), respectively.s
A straightforward calculation shows that these are independent of the
choice of / mod Transj and are additive, so that they are in fact homo-

morphisms between the indicated groups.

We still need to mention the connecting homomorphisms. Let the
extension B of A by C in (4) be represented by the factor set g(cv ¢2) (with
values in A ; ¢, 6 G). Recall that g is obtained from a function c¢c—S(c) of
C into B where f (¢) is an element of the coset ¢ (mod A):

©)
Observe that if (4) is l-exact then £ may be chosen as an I-function of
G into B.6 By making use of this g the connecting homomorphisms

are defined by
(6)

These are actually homomorphisms, since the Il-exactness of (4) ensures
that for another factor set g'(cv c2) = |'(c,) + £'(c2) — f'(c, + ¢2) (with

5We denote factor sets by /, g, h depending on two arguments.
eThis can be shown by making use of Zorn’s lemma. We shall always think
of g as obtained from an I-function. For D-functions the assertion is obvious.
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an I-function £") representing (4) the difference g —g" will belong to
Trans,{C, A), because c -» f(c) — f'(c) is a function of G into Aa mapping
a subgroup G*£ Icinto some B* £ Band hence into B*rn A a = A*a with
A* £1A.From this it is readily concluded that y and d are homomorphisms
between the indicated groups.

After these we are ready to state and prove the main results of this
section.

Theorem 3. If (4) is an |-exact sequence represented by the factor set (5),
then, for any group X, with the induced homomorphisms and connecting
homomorphism (s) the sequence

)

is exact.

In view of Theorem 1, the exactness has to be established only at the
last parts of (7). It is routine to check that the composite maps are zero
throughout.

Let js Kery. This means that g(xx/, x2rj) is an I-transformation set,
g(x, 7, x2n) —a(xf) -\-a(xf) —a(xx+ x2) for some I-function x -ma(x) of
X into A a. By virtue of (5), £(xLrj) + ij(x2y) —f((azx -f x2)y) = a(xf) -f
-f-a(x2 —a(x1 + x2) whence s6: x  ij(X rjj —a(x) is a homomorphism of
X into B. It is an I-function (as the difference of two I-functions), and
thus it belongs to Hom,(J, B). From xiB = £Xx r)§ —a(x)B —x y we
see that iB — rj, and so (7) is exact at Hom,(Jf,0).

Let/(x,, x2) belong to Ker a*, i.e. f(xv x2) a= b(xf) + b(x2) — h(x1 -f- x2)
for some I-function x “mb(x) of X into B. Define y: x “mb(x)B which is
obviously an I-function, and in view of f(xv x2a£ A a it is a homomor-
phism whence y £Hom,(J, c). Thus x ->b(X) —e&(x rj) is an I-function
of X into B, consequently, f(x1,x2) a —g(x2y,x2y) is an I-transformation
set and y maps y upon /.

Next letf(xv x2) £ Ker *, that is,f(xv x2) B=c(xD) + c(xf) —clk + #2)
for some I-function x “mc(x) of X into C. Then f(xv x2 — |(c(X,)) -
— S(c(x2) -f £(c(x1 -f- xr)) has values in A a, and thus the application of
a-1 yields a factor set h(xv x2) of X into A mapped by a into f(xv x2) mod
Trans,(X, B). Hence Ker B* ¢ Im a*.

If f(xv x2) denotes now an arbitrary element of Ext,(A, C), then,
because of (2), there exists a factor set h(xv x2) satisfying h(xv x2B —
= f(xv x?d -)»c(x) + c(x2) —c(xl -f-x2) for some function x ->c¢(x) of X
into G. If b(x) £ B satisfies b(x)B = c(x), then the factor set h(xv x2) —
—b(xD) —b(x2) -f-b(xl -f-x% is mapped by B* upon f(xv x,) whence B* is an
egpimorphism.
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A similar method of proof applies to establish:
Theorem 4. If (4) is a D-exact sequence, then for any group X, the
following induced sequence is exact:

(8)

I he problem naturally arises: how can (3) be carried over to this
case? The author has been unable to answer this question satisfactorily.
The reason of this seems to lie in the fact that, without any additional
assumption on Q€ ,1) and (ts£, D), I- and D-exact sequences cannot be
described by making use of factor sets only. In fact, if we assume additional
conditions on the behaviour of I- and D-exact sequences, then a suitable
definition of I- and D-factor sets leads to an exact sequence of the form
(3). This will not be discussed here.

8 2. Certain subgroups of Honi

With the aid of two of the categories , (<F Dand (~, D) we shall
define three types of homomorphism groups which are all subgroups of
the homomorphism groups in the classical sense.

Let A£ and let (B. IB) belong to the category , ). Consider
the set of all homomorphisms y : A -> B (in the category for which

(s)
This set will be denoted by Hom(A, ijl).

Next let (A, DA)E(”~, D)and B £ The set of all homomorphisms
y: A ->B such that

(10)

will be denoted by Hom(A|D, B).

Finally, Hom(AjD, B\\) will denote the set of all homomorphisms
y: A — B for which both inclusions hold.

These definitions imply that ifz I ¢ J and D ¢ E then Horn(A'D,
BA) C Horn(A E. _B|J). We have the elementary but important theorem:

Theorem 5. The sets Hom(A, B\\), Hom(A|D. B) and HomfAjD. uli)
are subgroups of 11oT (A, B) satisfying

7Byl L Jwe mean that g Q J.4 forall A £ Here and in the sequel | and
J denote systems of ideals, D and E denote systems of dual ideals.

5 Abelian Groups
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The validity of the formula is obvious in view of the definitions.
The subgroup properties of Horn(A, B\\) and Hom(A|D, B) follow from
the fact that the zero homomorphism belongs to them and if rjv rj2 are
two homomorphisms of A into B, then

Im (rjl —r]2 ¢ Im iyxw Im 2, Ker (fl—y2) 3 Kerijlrn Kert]2
hold.

Next let gx (A*. DA) -> (A, D4)and y= (B,IB) (B* IB) be morph-
isms of the respective categories. They induce a homomorphism

defined in the usual way as y  rmrfip. Here Im <pyip is contained in Im yip
which lies in 1B V ~ IB* and if A* £ D4, satisfies A* oc Ker r/ £ DA then
Ker (prjf contains .4*; therefore rpr/ip in fact belongs to Horn(A* D, B*J).
We have the following two exactness theorems.
Theorem 6. If

(11

is an l-exact sequence, then for any group X and category , D) the induced
sequence

is exact.

By Theorem 5, Hom(XjD, A\l) is a subgroup of Hom(X, A) and
Hom(A|D, jB|l) is a subgroup of Honi (A, B). Since a* may be viewed as
the restriction of the induced homomorphism of Hom(A, A)into Horn (A, B),
the exactness of (2)implies that a* is in fact a monomorphism. Thus what
we have to verify is the equality Im a*= Ker *, or more simply, the inclu-
sion Ker /S*cIlm a*, the converse inclusion being obvious from the defini-
tion and aB = 0. If rj £ Ker B*, then rjB = 0 and Im »yCKer f —Im a.
Thus rja_1 is meaningful and belongs to Hom(X|D, A jl). Clearly, a* sends
rja~linto rj, whence ry£Im a*, and the proof is completed.

Theorem 7. If (11) is a T)-exact sequence, then for each group X and
category (u€, 1) the induced sequence

is exact.

Again by making use of Theorem 5 and the exactness of (3), we con-
clude that it suffices to verify that Im R* —Ker a* or that Ker a*Cim B*.
If ££Kera*, then a% = 0. This means that i maps Im a = Ker B onto 0,
and thus it induces a homomorphism rj: C “mX such that ¢ ¥ = b %for all
c£C, ¢c= bR (b £ B). Here obviously i = Brj where £HoT((7|0, m
because of Ker j — Ker/ A a£ Dc and Im %= Im 1j.
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The last two theorems show that Hom(X|D, ) and Hom( , X |I)
give rise to left exact functors of 1) and (<%, D), respectively, into
Our next purpose is to determine the derived functors. First we give a
direct limit representation for the Homs under consideration, from which
the derived functors can easily be obtained.

An ideal 1A of A determines a direct systems of subgroups of A. This
consists of all subgroups Ax of A belonging to IA, the indices are ordered
by putting A< vy if and only if Aac AMand the maps ns: Aa-> AMare
the inclusion maps for A<[ y; in particular, n) is the identity map of A
Ifa: (A 1p) -> (B, IB) is a morphism of the category , 1), then it induces
a map abetween the two arising direct systems. For, to any pair A<  there
exists a pair A <f y"' such that the diagram

(12)

is commutative. We have:

Lemma 1. The groups Hom(Jf|D, *4;) (A« £ 1) and the groups Ext(X,
A;) (A; £1A) form direct systems where the homomorphisms arc the maps
a-* Hom(Xj D, Af) “m Hom(X|D, Af) and Ext(X, A") “mExt(X, Af) in-
duced by Aa. Any map <pbetween the systems {A;;aa} and {B-,,; iff,} induces
maps between the systems {Hom(X |D, Am} and {Hom(X 1), B»)},
{Ext(X, Ax)} and {Ext(X, Bx)} in the obvious manner.

Since for X p < Vwe have fi* n* = (s ¢")* = s1*, and since #1* is
the identity, the first assertion is clear. The second assertion follows from
the commutativity of the diagrams

with maps induced by those of (12).

A dual ideal 1) x of A defines an inverse system of factor groups
of A. This system consists of all A/Akwith AKE I)A where the index set
is ordered so that X< vy if and only if A> 3 AR, and the maps for X<f p
are tp*: A/AKk-» A/Ak given by a Afl->a + Ak (i.e. induced by the
identity of A). 9 will be the identity of A/A,. If a: (A, ba) -j (B, Db)
is a morphism of the category , D), then it induces a map & between
the two inverse systems. For, to any pair X < p' there is a pair X<; i

8 For the properties of direct and inverse systems see [2].

5*
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such that the diagram

(13)

is commutative. Dualizing the proof of Lemma 1 we obtain:

Lemma 2. The groups Hot(/1/N15, X'l) (AKE NA) and the groups Ext
(AjAX, X) (AKE£ Da) form direct systems where the homomorphisms are
the corresponding induced maps between HoT and Ext, respectively.
A map a between the systems {A/A/x} and {/1//?/;,} induces maps between
the systems {HoT JfIN} and {Hot (A/AX, X |I)}, and between
{Ext(B/Eg,, X)} and {Ext (AfAk X)}.

By making use of Lemmas 1 and 2 we are going to prove:

Theorem 8. For all categories (uF, 1) and , D) the following direct
limit relations hold:

and

for any group X.
Let Uv U, denote the indicated direct limits. We know that there
exist unique homomorphisms

nx:Horn (WD, A)>~U1 and aqgx:Horn {AjAk Xjl) =U2

such that mg*nff= nk and rp'fql= cp. Here nk and ¢ are necessarily
monomorphisms, since the same holds for n{ and cpf We also have homo-
morphisms

induced by the inclusion map Ak-> A such that nk*at= qnand 90 *rt= rk
Therefore, by a known property of limits, there exist unique homomorph-
isms

such that apa — ak and (kr = 14 From Theorems 6,7 we know that
<In To are monomorphisms. The same must be true for a, r, because if
X€Ker a then there exist a dand an pkEHom(X|D, AK satisfying
WAL= X whence Nkax= yxnka= %0 = 0 and yk= 0, %= 0; asimilar
inference applies to t. Considering that the Im aktogether exhaust Horn
{W|D, A\l) and the Im 7148 together exhaust Hom(H|D, X]|I), a and r are
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surjective. Consequently, they are isomorphisms, and Theorem s is com-
pletely proved.

The corresponding result on Ext does not hold, for in this case a, T
need not be isomorphisms, merely epimorphisms. But let us define

and

We then obtain, for any morphism B: (B, IB) -> (G, Ic)ora: (G, Dc) "
-s* (A, Npa) the induced homomorphisms

whose detailed description may be left to the reader. It is also clear how
I-Ext and D-Ext behave when their first and second variables, respectively,
are subject to homomorphisms.

Note that there exist ’connecting homomorphisms’ between certain
Horn and Ext which are defined as maps between direct limits induced by
the corresponding connecting homomorphisms of the members of the
direct systems.

Theorem 9. If0~ A -> B -* (1 — 0 is an exact sequence, then for every

,D) and £€,1) and for every group X the induced, sequences

(14)

(15)

are exact. 1j 0->A B ->@ 0 is l-exact, then
(16)

is exact, while if o -mA —B ->G ->0 is D-exact, then

an

is exact, for any X.

The sequence (14) may be viewed as the direct limit of exact sequences
of the form (2) with X replaced by the factor groups XjXA X xbelonging to
the dual ideal Dx. Since qf: X/XB —XjXn induces a map between the
two exact sequences of type (2) (the arising diagram will be commutative),
these maps will serve as the maps of the direct system of exact sequences.
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The groups in (14) are the direct limits of the corresponding direct systems
of groups, and since the direct limit of exact sequences is again exact,
it follows that (14) is exact. The exactness of (15), (16) and (17) may be
verified similarly.

In order to obtain a description of I-Ext and D-Ext in terms of factor
sets, let us introduce the following notations. The set of all factor sets
f(av a2) of A into B such that the values of/ belong to some B* £1B (with
B * depending on/) will be denoted by Facti (A, B), and those transforma-
tion sets b(ax -j- b{a2) — b(at -f~-a2) of A into B for which there exists a
subgroup B* £1B such that b(a) £ B* for all a£A, will be denoted by
Trans/d, B). Clearly, FaetVd, B) contains TransVd, B) as a subset, and
it is readily seen that they are both subgroups of Fact(d, B).

Theorem 10. The following natural isomorphism holds:

Let f(av a2) belong to FactVd, B) with values, say in B, £1s. Then
it induces some element of Ext(d, Bk), and the application of the map
np. Ext(d, Bx) -> I-Ext(d, B) yields a map o of Fact*(d, B) into I-Ext(d,
B) which is evidently a homomorphism. To every element h of I-Ext(d. B)
there is a subgroup Bk £ IBsuch that his the image of some hx£ Ext(.4, B?)
under the map nk, as it follows from the general theory of direct limits.
This implies that g is surjective. We determine the kernel of p. If/
in Fact™d, B) induces the zero of Ext(d, B?), then / is a transformation
set with values in Bx, i.e. / belongs to Trans”~d, B). Furthermore if/' £
Ext(d, BK), induced by/, is mapped upon o by othen there existsa /n> n
such that/' "= 0, i.e./" is mapped upon 0 by the homomorphism Ext(d,
/1) ->Ext(d, //), which shows that/' is a transformation set with values
in 1/, and so/ d Trans™d, B). Since every element of Trans™d, B) clearly
belongs toKer g, the stated isomorphism follows which is evidently natural.

To obtain the corresponding result for D-Ext, let us analogously define
Fact® (A, B) as the set of all factor sets f(av a2) of A into B for which
there exists some A* in DA(with A* depending on /) such that f(av a2) =
= f(a{, a2) whenever a(= a,'(mod A*), and TransD(d, B) as the set of all
transformation sets b(al) + b(a2) —b(ax + a2) of A into B for which
there exists somed* £ DA such that b(a) = b(a") for a= «'(mod A*). These
are again subgroups of Fact(d, B) and we have:

Theorem 11. The following natural isomorphism holds:

The proof is entirely similar to that of Theorem 10.

To conclude this section let us note that I-Ext and D-Ext can be
combined into a single Ext whose detailed discussion, however, is not
intended here.
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§ 3. Certain subgroups of Ext

Starting with the categories (t*f,1) and (“F, D) we introduce four
main kinds of groups of extensions which are all subgroups of Ext.
By an extension of B by A (in the category an exact sequence

(18)

is meant and the equivalence of two extensions is defined in the usual way.
If A* is a subgroup of A, (18) induces an extension of B by A*

<19)

where G* = A* | and v* is the restriction of v to G*. Similarly, if B*
is a subgroup of B, (18) induces the extension

{20)

of B/B* by A, where G*= G/B*y and y* is derived from y by means of the
natural homomorphism B -> B/B*. We shall refer to these induced exten-
sions in our following definitions. Note that if (19) splits then so does
every sequence of the same type obtained from an extension equivalent to
(18). A similar remark applies to (20).

(a) Let Ext(A]l, B) consist of all extensions (18) of B by A for which
the induced extension (19) splits for all A* £1n;

(b) let Ext(A, B|lI) be the set of all extensions (18) of A by A for
which the induced extension (20) splits for some B* £ IB;

(c) let Ext(AjD, B) denote the set of all extensions (18) such that the
induced extension (19) splits for some A* £ DA,

(d) finally let Ext(A, Ji|D) consist of all extensions (18) such that
the induced extension (20) splits for all B* £ DB.

If we combine any one of (a), (c) with one of (b), (d), we obtain the
definitions of four other Exts, e.g. Ext(A|l, BJ). From the definitions
it is clear that if I cj and D ¢ E then we have the following inclusions :

Ext(Ajl, B) 3 Ext(A[J. B), Ext(A, £]1) ¢ Ext(A, 5jJ) ,
Ext(A|D. B) e Ext(A[E. B), Ext(A, B D) 3 Ext(A. B\E) .

Next we verify:
Theorem 12. The subsets of Ext(A. B) defined above in (a)—(d) are
subgroups of Ext(A, B) and they satisfy
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By virtue of the definitions it is sufficient to establish the first asser-
tion. All of the sets defined in (a)—(d) contain the direct sum of B and
A, thus they are not void. Representing (18) by a factor set g(av a2 where
w £A and g(av a2) £ B, (19) sphts if and only if g(av a2) restricted to
a, EA* isatransformation set. Since the difference of extensions corresponds
to the difference of the corresponding factor sets, it is evident that if two
extensions (18) of B by A split on passing to the induced extensions (19)
for some A*cd, then so does their difference for the same A*.This implies
that (a) is a subgroup. If, in addition, we note that if (19) splits for some
A*c Aandif A'c A*, then (19) will split for A’', too, then the dual ideal
property of Tin proves that (c) is likewise a subgroup. The splitting of
(20) means that g(av a2 is modi?* a transformation set. Hence the sub-
group character of (d) is obvious. Now if g(av a2 is a transformation set
mod B* and if B' 3 B*,then it isonemod B' too, whence the ideal property
of IBguarantees that the difference of two elements of Ext(A, Ifl) is again
an element of the same set, i.e. (b) is a subgroup too. The proof of Theorem
12 is thereby completed.

We turn to the discussion of induced homomorphisms between the
subgroups of Ext now introduced. Given the morphisms

(21)

of the categories (-¥6.1) and U/6. D), respectively, there exist induced
homom orphisms

(22)

and

(23)

where on the blank places after A any J or any E may stand, and the
homomorphisms (22), (23) act in the following way:

(24)
(25)

We have to verify that these are good homomorphisms indeed, i.e. they
map the groups on the left members into the groups on the right members
of (22), (23).

Since the equality of g(av a,) to a transformation set, under the res-
triction of the djto a subgroup of A,is a property which is preserved under
the mappings (22), we may focus our attention on what happens modulo
subgroups of X and Y. If g{av a,) represents an element of Ext(A]| , X|I)
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or Ext(Hj ,-XiD), then it is a transformation set modulo some X* £1x or
any X* £ Dx. Hence g(av a2 is a transformation set mod X*<p= Y* £1Y.
Considering g(av a2mp modulo an arbitrary Y* £1)Y, we select to this Y*
an X* £ Dx such that JT*rpc. Y*.Since a(an,u.,)ipis obviously a transforma-
tion set mod X* s it is one mod Y* too. Therefore g(av a2 £ Ext(H| ,
T|lI) and g(av a2p £ Ext(H| , T|D).

In dealing with (23), we may again leave the ideal or the dual ideal
of A out of consideration. If g(y1 y2) represents an element of Ext(T[l,
Al )or Ext(FID, Aj ), then itis a transformation set if the yt are restricted
to range over an arbitrary Y* £1Y or a suitable Y* £ Dy.Since Ix g>c.lY,
o{xxmp x29 is a transformation set if the xt are restricted to any x *eix.
Since to Y* there exists an X* £ Dx with X* spe. Y*,g(xxip, X259 is a trans-
formation set if the »- are restricted to X*. This proves that g(xx@ x, )
belongs to Ext(X|l, A\ ) and a(xxsp x259 belongs to Ext(X|D, A\ ).

Exact sequences for the subgroups of Ext now introduced can be
established under certain conditions on the exact sequence we start with.
Before considering these exact sequences we turn our attention to the
connecting homomorphisms in order to prove immediately exact sequences
like (2) and (3).

The next result shows what can be said of the connecting homomor-
phisms

of (2) and (3) where g(cv c2) is a factor set representing the exact sequence
(26)

Theorem 13. (i) y maps Hom(JfjD.C) into Ext(.X|D, A), and d maps
Hom(H.Zjl) into Ext(C, X\I).

(i) 1f (26) represents an element of Ext(C\ A I), then Im y Q Ext(X,
Ajl), and ifit represents an element o/Ext(C, HID) thenIm y c; Ext(X, A|D).

(iii) If (26) belongs to Ext(C|I, A) or to ExtfCjD, A), then Im y is included
in Ext (C|I, X) or in Ext((7jD. X).

(iv) If (26) represents an element of Ext(C|l, A), then y sends Hom(X,
CIl) into 0, and if it represents an element of Ext((7, HD), then d sends
Hom(H|D, X) into o.

To prove (i), let Kery = X* £Dx. Then g(xxy, x2y) is obviously a
transformation set if the xt are restricted to X*. Ifim y = X* £1x, then
g(cv a,)/ is evidently a transformation set modulo this X*.

Under the hypothesis of (ii), g(xxy, x, y) is a transformation set
modulo some A* £ IA or modulo all A* £ D4.

Under (iii), g(cx,c?2)/ is a transformation set if the ¢- are subject to the
restriction to range over an arbitrary G*f Ic or over some C* £Dc.
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The assumptions of (iv) guarantee that g(xi rj, xLrj) and g(cv c2y are
transformation sets.

We obtain from part (iv) of the preceding theorem and from Theorems
6, 7:

Theorem 14, If 0 -> A B C 0 is an I-exact sequence such that
the corresponding extension of A by C belongs to Ext(C|l, A), then the sequence

ms exact for every group X and category , D). I'f we replace the assumption
of 1-exactness by D-exactness and Ext(C|l, A) by Ext(C, A A)), then for every
group X and category , 1) the sequence

is exact.

Though we shall not need the following result, we shall prove it since it
is of some interest.

Theorem 15. |If the extension (26) of A by G belongs to Ext(0|l, A),
theny maps Hom,(X, G) into Ext(X|l, A), while if it belongs to Ext(e\ J1]D),
then d maps HomD(d, X) into Ext(C, X|D).

Under the first hypothesis g{cv ¢2) is a transformation set whenever
the c,range over an arbitrary C* £1c.For any X*£ I x the image X* N belongs
to Ic whence g(x1g, x2if) is a transformation set if the xt are restricted to
any X* £1x.Under the second assumption, g(cv cf) is a transformation set
modulo each A* £ 1)A.If X* is given in Dx, there is an A* £ 1)n such that
A* %cX*. Hence g(cv c2 %is a transformation set mod A* % and so mod
X* too. This completes the proof.

Now we are ready to prove the main results of this section, y and d
will denote throughout the connecting homomorphisms.

Theorem 16. Let (26) be a D-exact sequence representing an element of
Ext(C, d|D). Then the following induced sequence is exact:

(27)

It has already been shown, that the indicated homomorphisms are in
fact maps between the indicated groups. It is clear that the composite
of any two consecutive maps is zero. The exactness at Hom(X, G) and at
Ext(X, A\D) is a simple consequence of that of (2). Thus it remained to
verify the exactness at the two last Exts.

Let the factor set f(xv x2) represent an element of Ext(X, B\D) in the
kernel of R*. It is then a transformation set modulo each B* £ DR and
f(xv xR is also one. By (2), there exists an h(xv x2) in Ext(X, A) such that
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h(xv x2a is equivalent to f(xv x2). There is no loss of generality in assuming
that h(xv x2a = f(xv x2. Now let us consider Aa mod A* a for some
A*£ D”. By the D-exactness of (26) there exists a B* £ DB such that B* f
MA a= A* a. Because of the other assumption on (26) we may write
B/A*a= G@A a/A* a. It follows that there exists a function x -> b(x) of X
into B satisfying h(xv x2a = b(x¥ -f b(x2) — b(xt -|]- x2) — b*(xv x2) with
b*(xv x2) £ B*, and thus by the given direct decomposition we can write

with obvious notation. In view of B* MTA a= o mod A a, C*= B*RadB*/A*a
is isomorphic to its (7-component and we have a homomorphism y: ¢*  a*
of G* into A a/A* a. We also have c*(xv x2) = c(xx) -f-c(a;2d —c(xr x2)
which implies that under the homomorphism Ext(X, B*)-> Ext(X, ¢*) the
factor set b*(xv x2) of X into B* is mapped upon a transformation set, con-
sequently. b*(xxx2)is equivalent to k(xv x2)a for some k(xv x*m Ext(X, A*):
b*(xv x2) = J(xv x2) a+ b*(xX -j- b*(x2) — b*(xx-)- x2) for a function a;-+b*(x)
of X into B*. Hence c*(xv x2)= c¢*”) +c*(x2) —c*(x2f-x2with ¢* £(7*,and
an application of y vyields a*(xv x2) —c*(xQy + ¢c*(X2 y —c*(xx -f-x2) y.
Consequently, h(xlt x2) a = + d(x2) — d(xy-)»x2) mod A* a with d(x) =
= a(x) —c*(x) yEA a/A*a and we conclude that his in factatransformation
set mod A*. This establishes the exactness at Ext(X, B D).

Finally, we prove that B* is an epimorphism. From the exactness of
(2) we infer that, given an element of Ext(X,C|D), say f(xvx2), there exists
a factor set h(xv x2) representing an element of Ext(X, B) such that
h(xv x2)B is equivalent to, moreover, equal to f(xv x2. Given a B* £ DB,
we have C* = B* B £ Dc. Now f(xv x2) is a transformation set modulo G¥*,
that is, f(xj, x2 = c(x® -f-c(x2) —c(xv + x2) mod G* for certain elements
c(X) "G (x £ X). Hence h(xv x2 = b(xY) -f b(x2) —b(x2 +x2) mod B* for
arbitrary inverse images b(x) of c(x) under R. Thus h represents an element
of Ext(X, H|D) and B in (27) is surjective. This completes the proof of the
theorem.

Theorem 17. Let (26) be an I-exact sequence such that it represents an
element of Ext(C'|l, A). Then the induced sequence

(28)
is exact.

Analogous to the proof of the preceding theorem we conclude that it
suffices to verify the exactness at the two last Exts.
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Let f(bv b2) represent an element of Ext(B\\, X) in the kernel of a*
i.e. f(ala,a2a) is a transformation set(s-£ B, a, £A), and f(bv b2 is a
transformation set when restricted to any B* £1B.By the exactness of(3)
there exists an h(cv c2) in Ext((7, X) such that f(bv h2) is equivalent to, or
moreover equal to h(bl B, h, B). Choose some (7* £1c, and let B* £1Bhe such
thatC'™* = -S*R. By hypothesis there is a function b-> x(b) of B* intoX such
that h(bl B, b2R) = x(br) + x(b2) —x(bx + b2) for b £ B*. Take any direct
decomposition C*R 1= Aa@G' and write b= aa -\-b' £EB*. Then define
y(b) = x(b") which is evidently unique and y(b] + 62) = xdx + b2 holds.
We have h(b, B, b2B) = h(b[ B, b2 B) = x(b[) + x(b2) — x(b[ + b2) —
= y(bR) -\-y{b2) —y(b1l + b2). The function b y(b) assumes the same
values inthe cosets of B* mod A a and therefore induces a function ¢ ->y(c)
for ¢ £C*. Thus h(cv ¢2) = y(cr) + y(c2 —y(cl + ¢2 which shows that /
belongs to Im R*.

In order to show that ais surjective, let us take anf(av a2) representing
an element of Ext(X]|l, X); then / is a transformation set when restricted
to anj7A* £14.1f B* is arbitrary in IB,then A*a = B*f) A afor somed*gl4.
The given extension / of X by A and the splitting extension of X by B*
yield an extension G(B*) of X by the subgroup of B generated by A aand
B*. If B* runs over all subgroups in IB, these G(B*) give rise to an exten-
sion of X by some subgroup of BY This extension can be continued to an
extension of X by B. This is clearly splitting when restricted to any B* £1B.
This extension (considered as an element of Ext(iS, X)) is mapped by a
just onto/. This completes the proof of Theorem 17.
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ADDITIVE GROUPS OE INTEGER-VALUED FUNCTIONS
OVER TOPOLOGICAL SPACES
By

J. DE GROOT
University of Amsterdam

\ Two continuous mappings (functions)/and g of a topological space X
into the set of integers | can be added in the natural way, i.e. argument-
wise:

Hence, every set of such mappings generates an Abelian group of (contin-
uous) mappings and it is natural to ask for the structure of such a group.

The main conjecture states that for every X, and for every such group
of bounded continuous functions, this group will be free Abelian.

If one also takes unbounded functions into account, the generated
groups are not necessarily free Abelian. This follows already from a well-
known result of Baer which states that the unrestricted direct sum of free
Abelian groups is not completely decomposable (X = / in this case).

In this paper we will first reduce the problem of general topological
spaces to special ones. In Section 2 we will show that it is not difficult
to solve the conjecture in the affirmative in the case of countable groups.
In Section 3 we will state anumber of cases in whichthe conjecture also holds.

In the sequel all maps f : X “ml will be bounded and continuous. For
any such/the setfX consists of a finite number of points and the pre-images
determine a decomposition D of X into a finite number of disjoint clopen
(open and closed) sets. If we assign to each of these its value in | (i.e. the
number of I on which it is mapped by /) we obtain a complete description
of/by means of this ‘numbered’ decomposition ND into ‘numbered’ clopen
subsets of X. Conversely, to every such numbered decomposition ND
corresponds exactly one such /.

The intersection of all clopen subsets containing a point x £ X deter-
mines the quasi-component Qx of x in X. As is well known, X can be decom-
posed in its (mutually disjoint) quasi-components, each quasi-component
being a closed subset of X. The natural map < is the map which maps
every x £X onto Qx.
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The quasi-comjponent space Q(X) of X is defined as the topological
space for which the quasi-components are the points and which has for
a base all sets 20(C) CZ Q(X), where C is an arbitrary clopen subset of X.
In this way Q(X) becomes a completely regular topological space (as can
easily be seen) and every/ under consideration determines an/*: Q(X) =1
in a natural way, and conversely. Groups {/} are isomorphic to groups
{/*}, and conversely. Hence, we have to study only the groups for the spaces
Q(X). Since Q(X) is completely regular, we can restrict our field of
interest even more. Indeed, take the maximal zero-dimensional Hausdorff
compactification y Q(X) of Q(X) (this exists and coincides in most cases
with the Cech-Stone compactification B Q(X) of Q(X)), then every /*:
Q(X) ->1 can be extended uniquely to a map/*: y Q(X) ->/, since/* is
bounded.

Conversely, such an /* determines /* uniquely, since Q(X) is dense
in y Q(X). So we have shown the following: every group of functions under
consideration, say G: X ->1 induces an isomorphic group G*: y Q(X) -“m/;
conversely, G is determined by, and isomorphic to G*.

So, instead of studying the groups of functions of X into I, one only has
to study these for compact, zero-dimensional Hausdorff spaces.

___Another simple but useful general remark, let us call it the continuity
remark, is the following. If ip: X “mY is a continuous map of X onto T
and G: Y —1 is one of our groups under consideration, then the set of
maps {gip}~a determines a group G': X —/, and G and G’ are isomorphic.

2. We shall give two proofs, a mainly topological one and a mainly
group-theoretical one of the following result.

Theorem. Every countable group of continuous bounded integer-valued
functions over a topological space is free Abelian.

In the topological proof we use the following lemma.

Lemma. The full group (of all functions) G:G ->1, where G denotes
the Cantor set (i.e. the discontinuum of Cantor) is free Abelian.

Proof. C is a product of a countable number of doublets (a doublet
is a pair of isolated points). To a doublet or a finite set of doublets corre-
sponds a natural decomposition of C into disjoint clopen sets. Enumerate
the doublets. To the first doublet and its decomposition // one lets corre-
spond two base elements of G, namely 1,1 and o, 1;thatis 1,1 is the func-
tion identical to 1, and o, 1 is the function equal to o in the first and equal
to 1 in the second clopen set of the decomposition Dv

In matrix form

r 4
(o 1

After having defined Gn~\ over the natural decomposition Dn~i of G in
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2n ldisjoint clopen sets corresponding to the first (n — 1) doublets, we de-
fine Gn by

The 2" rows in this matrix define 2n hase elements (these include all pre-
viously defined hase elements corresponding to G- for i < n).

Now we let n tend to infinity and show that the set of all base elements
B thus obtained, is a free base of G. Firstly, every finite system of base
elements is a set of certain rows in some Gn and these constitute a free
Abelian group of finite rank, since

det Gn= 1.

Secondly, every g £ G is uniquely determined, as can easily be seen, by its
values over a certain decomposition Dmof C (i.e. to each decomposition
element is assigned some fixed integer), so g is an element of the group
generated by the rows of Gm. Hence, G is the restricted direct sum of the
base elements, as mentioned, so it is free Abelian.

The group-theoretical proof uses the following simple criterion of
Pontrjagin: A countable Abelian group is free Abelian if and only if it is
torsion-free and every subgroup of finite rank contains finitely many
generators (so must be free).

Topological proof of theorem.Since the given group G is countable,
the number of corresponding decompositions D is also countable. The
intersection of all those D which contain a point x defines a closed subset—let
us call it the G-component of x—of the space. Hence the space is decompo-
sed into mutually disjoint, closed G-components. The quotient space over
the G-components becomes a zero-dimensional regular space which has a
countable base, since the total number of clopen sets corresponding to the
D’ is countable. Hence, S is separable metrizable and G can be thought
of as a group operating over S. Now we can apply an extension theorem by
McDowell and the author [1], which yields the result that each g £ G can
be extended continuously to a suitable compact metrizable compactifi-
cation S of 8. Since S is dense in 8, the corresponding group G is isomorphic
to G

There exists, as is well known, a continuous map & G “mS and by the
continuity remark, it follows that Gis a subgroup of the group mentioned
in the lemma, so free itself.

Grout-theoretical proof of theorem. We apply Pontrjagin’s
criterion. The given group G is clearly torsion-free. Consider some subgroup
of finite rank H of G. Take a maximal, independent set of elements in H
and consider the ND’s corresponding to these elements. The finite inter-
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section of all sets D occurring in any of the ND’s gives us a decomposition
of the space in finitely many clopen subsets Consider the functions /,
each fi being 1 on $mand 0 elsewhere. These/, generate a free group which
contains H as a subgroup. So H is free, g.e.d.

Corollary. The group of all continuous integer-valued functions over
a compact metrizable space is free Abelian.

Indeed, this group is countable.

3. We can generalize the proof of the lemma to a proof which holds
for any generalized discontinuum Dm (product of any number m of doub-
lets) and this shows that the groups under consideration are free if the
space is Dmor a continuous image of it, i.e. a dyadic space.

Specker [2] proved, using the continuum hypothesis, that the full
group G: I =1, so the group of all bounded integer-valued sequences
under argument-wise addition, is free.

From this it follows that the full group

G: X -»/

for any separable space X is free, if we assume the continuum hypothesis.
Indeed, take a countable subset M in X. Take some “onto” map g I-+M.
then the full group GM: M ->1 is free because of the continuity remark.
On the other hand, G is clearly a subgroup of GM, so G is free.

So our conjecture also holds for dyadic spaces and (using the con-
tinuum hypothesis) for separable spaces. A proof of the conjecture in
general still presents difficulties, although it may well be possible that the
use of inverse limit techniques might render a proof. Actually, one has
only to apply these—because of the continuity remark and the properties
of Cech-Stone compactifications—for the case of such a compactification
of a discrete space.

The problems in this paper can be generalized in replacing | by a
(topological) Abelian group whatsoever.

References

[1] de Groot,J. and McDowell, R. H., Extension of mappings on metric spaces,
Fund. Math., 48 (19G0), 251—263.

[2] Specker, E., Additive Gruppen von Folgen ganzer Zahlen, Portugal. Math.. 9
(1950), 131— 140.



ON THE STRUCTURE OF ABELIAN p-GROUPS

By
KIN-YA HONDA
St. Paul’s University, Tokyo

When G is a reduced Abelian p-group of length A we consider the
following descending sequence of subgroups of the socle S0 of G

where Sa = SOf| paG for every ordinal apo < a<(A). (For most termino-
logies for Abelian groups, we refer to Fuchs [1].) For any limit ordinal
Q A it holds SQ= M8a For any ordinal a < A there exists a finite

a<e
mordinal n such that Satn ~ Sat+n+l.

Next, we take an ascending sequence of subgroups of SO

such that, for any ordinal a< A it holds
Put
for every a < X Then we have, for any a < /,

and
<1)

Let the complete direct sum of the groups Ca (a< $) be denoted by V.
Any element of V is written as a vector

We now obtain a mapping from SO0into V. In fact, take any element
4i of SO, and, for any a < n, express un in view of the decomposition (1) as

6 Abelian Groups
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By the mapping
(2)

the group SO is isomorphically mapped into V. For any subgroup A of
S0, the image group under this mapping will be denoted by A.In (2), the
element u is contained in Saif and only if cR = o for every B < a. Similarly,
n is contained in Pa if and only if cfi= o for every B a.

Let

be any vector in V. We denote by /([u],, (p < v<( A a vector

such that ca—o (a < pora v) and ca= ca (p <ia< v). Ifavector
u in Vis contained in Sn then, for any p, v (p < v < %), the vector Au],
is also contained in SO.

For any ordinal p < A all the vectors (in F) of the form

where ca= o for every a.> p, form a subgroup of V, which is denoted
by 7,.

Let e (0 < p< A) be any limit ordinal. We shall consider the follow-
ing as fixed for o.

Denote by P* the subgroup of Ve, which consists of all vectors u in
VQsuch that o[u]a is contained in PQfor any a< qg. POis included in P*.

Let n be any element of peG. For any ordinal a < g, take an element
uain paG such thafc pua= u. By the mapping (2), we have

131

Construct the new vector (in F8)
g-th component

U= <Cwo,C2, ...,cat+la,». 0,0,...) (@<Q).
We call it a diagonal vector of n (relative to g). In (3), we can prove

(4) fu - 1,1 Cya

for any a< g and for any y (a< y < q). It follows from this equality,
that any diagonal vector is contained in P*. (We omit for a while the word
mmrelative to 0’))
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Let ig, uz be diagonal vectors of uv u2respectively. Then, iq -f uz is a
diagonal vector of w, -)-u2 When u is a diagonal vector of u, a vector
Din P€is a diagonal vector of n if and only if Dis congruent to u mod P*.

Now we shall state the

Main theorem on diagonal vectors. Let gbe any fixed limit ordinal
such that 0 < g< A Let the coset of P* mod P , which consists of all the
diagonal vectors of u, correspond to any element n of peG. Then, we obtain a
homomaorphic mapping from peG into P*/Pe, and the kernel of this mapping
coincides with pe+lG.

Proof. We have only to prove that the kernel coincides with pe+lG.
Assume first that un is even contained in pe~1G. Then there exists an element
Vin peG such that pv = u. Put ua= v for every a < q. The diagonal
vector obtained from this system {ua} is the zero vector, and is naturally
contained in PQ Conversely, assume that a diagonal vector of u is contained
in Pg. Then the zero vector is also a diagonal vector of u. Thus we have
the elements ua such that

where ca+1a= 0 for every a < g. By the equality (4). we get

and hence

This implies

and therefore

Since ua+l£p',+iG and Satl = SO0Npat+lG, we obtain

for every a < q, which shows us

Thus we have

wmcn completes tne prool.

Corollary 1.Let {uY}Yr be a system of elements of peG, and let Uj, be a
diagonal vector of uy, for every y, respectively. If {uy}.”r is independent
mod p QVIG, then is independent mod Pr

0*
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For the ranks of groups we have

Corollary 2. r(P£/PB) r(peG/pe+lG).

Let p be an ordinal < A To any vector n of V, we let correspond the
vector Au]a. It gives an endomorphism of F, and is denoted by n®. For
any p< p

holds. 1 he a-th Ulm invariant oi G, i.e.

is denoted by aa.
Corollary 3.

(o denotes the least infinite ordinal. We consider, of course, only
p --n's such that p+ n< A)

We shall apply our Main Theorem to the case of principal p-groups.

When, for a suitable choice of {JPa},

G is called a principal p-group. A reduced Abelian p-group G of length A
is a principal p-group if and only if the socle SOof G allows a basis ¢ such
that, for any a < A clprec is a basis of Sa= S0 paG.

Remark. We may call such a basis ¢ a principal system of G, though
A. Kertész [3] defined by this a weaker concept.

A subgroup H of a reduced Abelian p-group G is said to be height-
finite when the set of the heights (in G) of all the elements of H is a finite
one. If the socle of G is the union of a countable ascending sequence of
height-finite subgroups of G, then G is a principal p-group. It follows that
any (at most) countable reduced Abelian p-group and also any direct
sum of such p-groups are principal p-groups. By the result in the author’s
paper [2], any forest p-group is a principal p-group.

When s is a principal p-group, the structure of € PQis uniquely
determined by p, p and the Ulm invariants {aa} (a < p). We denote by
b(aala < p) the cardinal appeared on the left side of (5), i.e.

Theorem. Let G be any principal p-group of length A and let the a-th
Ulm invariant of G be aafor every a < A Then we have

1) A<~ Q (the least non-countable ordinal),

2) for any limit ordinal p (0 < p < A), it holds that
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Proof. Since 2° is included in Corollary 3 to the Main Theorem, we
have only to prove property 1° Take any limit ordinal g (0 < o< %).
Since G is a reduced p-group of length 4 we have

Consider an element n of G such that 1 p@, u”™pQHG. Let

be a diagonal vector of n (relative to g). By the Main Theorem, it holds
that

The former implies that, for any p < g, ca(a< p) is equal to 0 except
for a finite number of a. On the other hand, the latter implies that, for
any v < g, there exists a (v< a < q) such that ca ™ 0. Therefore, when
we collect all the ordinals a with ca ~ o, we obtain a countable ascending
sequence of ordinals

having Qas its limit, i.e., for any v < g, there exists kK such that v< ak.
Such a situation holds for any limit ordinal g@© < e < 4), from which
we can conclude that A< Q. In fact, assume that 94> Q. Then we can
put U = g, and we get a countable ascending sequence

having Q as its limit. Since every w, (<L Q) is an at most countable ordinal,
it follows that B is a countable ordinal, which is a contradiction, g.e.d.

Conversely, it holds the following

E xistence theorem for principal /jgroups. Let {aa} (a < 9
be a system of (not necessarily distinct) cardinals, where the index a ranges
over the set of all ordinals smaller than the given ordinal A We assume that,
for any y < 4 there exists a non-zero a, such that y <[ y < ¢ Then, there
exists a principal p-group G of length # whose a-th Ulm invariant is equal
to aafor every a < 4, if the following conditions are satisfied:

1) X<Q.

2) For any limit ordinal o < o< §), it holds that

The proof of this theorem proceeds similarly to that of the Existence
Theorem for forest p-groups [2], but it is much more complicated, and
the author intends to publish it elsewhere.
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ON GENERATING SUBGROUPS OF ABELIAN GROUPSI1

By
J. M. IRWIN and S. A. KHABBAZ
New Mexico State University and Yale University

The present paper resulted from a discussion at the Symposium on Abe-
lian Groups held at New Mexico State University [4].

In his paper on torsion-free groups of infinite rank J. D. Reid [5]
has given a necessary and sufficient condition for a torsion-free group to
be generated by two of its free subgroups. This condition provided an answer
in the torsion-free case to a question of Khabbaz, What Abelian groups
are generated by two of their subgroups each of which is a direct sum of cyclic
groups. This paper answers Khabbaz’s question in the general case.

To facilitate the discussion we call a group which is generated by n
subgroups, each of which is a direct sum of cyclic groups, *"-cyclic.Thus,
in particular, a direct sum of cyclic groupsis N i-cyclic, the groups generated
by two direct sums of cyclic groups are 'Vz-cyclic, and so on.

We begin with a discussion of ~-cyclic primary groups and prove
that every reduced primary group is ~-cyclic. A characterization of N2-cyc-
licprimary groups is that they are those p-groups which are not a finite direct
sum of Z(p°°)’s directly summed with a group of bounded order. Then we give
a necessary and sufficient condition that a torsion group be iAcyclic.
W ith the help of Reid’ result, we then pass to the mixed case and give the
following characterization of these groups: A group Gis N’2cycUc if and
only if (a) G/T is free of finite rank and T is N 2cyclic or (b) the torsion-
free rank of G is infinite. A rather surprising result in this direction is:
an Abelian group Gis ™ n-cyclic for some n if and only if Gis "~-cyclic.
In the second part of the paper, we characterize the p-groups that are
generated by two basic subgroups and show that a p-group G is generated
by n of its basic subgroups for some integer n if and only if G is generated
by two of its basic subgroups. Finally we discuss the most general class of

cyclic groups that are closed under subgroups and pose a few interest-
ing questions in this direction.

1This research was supported under the National Science Foundation, Grant
Numbers G—17775 and GP—377 (G—17978).
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And now a word on notation:

1. Let h(g) denote the /;-height of g in G.

2. lerImeans the cardinal of G.

3. o(g) means the order of the element g.

4. (g') denotes the cyclic group generated by the element g.

5. T and Gt will both be used to denote the maximal torsion sub-
group of G.
6. r(G) denotes the rank of G.
7. Z stands for the additive group of the integers.
8. -f- means sum not necessarily direct.
9. @ means direct sum.
o. G[pm\ = {X£G :pnx = o}.

11. B = G(p') is referred to as a standard B.

1

=l
12. B is the closure of B (see closed groups in Fuchs [1]).
13. The word ‘plus’ is used to mean ©s
For the most part, the notation is that of L. Fuchs [1]. We refer

informally to [1] as Fuchs and [2] as Kaplansky.

1. On ~-cyclic groups
Theorem 1 Let Gbe a p-group containing a subgroup K = fir,,)-
aEA

with \pnK\ = \G\ for all n (i.e. \{xa:o(xa)>pn}|= |G| for all n)~
Then G is -cyclic, G = {H, K} where H ad K.

Proof. Obviously it suffices to prove the theorem for G ™ o. To this
end, notice that A is infinite, |A |= |G|, and let G — {gR: R £ B} where
B is initially well ordered. For each B £B define an element aB£A as
follows: If 1is the first element of B, let a, be an element of A such that

1) ofxai) ;> oigR),
2) xa does not occur in any expression of any element of /gl f| K*
n

ie, if g£<gl fl K and g— _ntxa ™ 0, nt integers, a-£A and ax®
i=i
a-, 2 < i<[n, then nxxai = o.

This defines ar Next suppose that aB is defined for all B < R0. Define
alo as follows: let K be the subgroup of G generated by {g:8 R0}
and {xa":B < R0}. Let alb be an element of A satisfying:

1) oxaso) > 0(gRo),

2) xap does not occur in an expression of any element of Kl K
as an element of K. Note that |[Kfafl K \< |G]|.

Observe next that aB has been defined by transfinite induction for all
B~B.To see that the all are all distinct, suppose that for Bt < B2we have
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al = am. Then xa = xa_£KRf| K, contrary to the definition of xa .
Thus {aR :RiB }\'= IR*!-

Now for any a £ A let ya be an element of G defined as follows:

(@) If a= al for some B £B, let ya= ¢gR.

(b) If a ag for all R £B, let ya= o.
Evidently for all a£A, o(xa + ya) = °(xa> for otherwise o ™ pmxa™—
= —pgREKRBRMK is a contradictiol_||1. Moreover, {xa+ yama e A} is an

independent set. To see this, let ~ nBx~-fyal = o where yg = ¢ is
i=i

the non-zero yywith the largest subscript occurring such that ni(xQt-\-ya =f=o
(if all y» —0, it follows from the independence ofthe set {xa:a £ A} that
the terms are zero). Then ~Yntxa<= —" ntya £KB MK and in particular
o s"tij xdy occurs in an expression of an element of K [ K as an element
of K.

From the independence of {xa -\-yg @A we have that H = * (xa -f-ya)

is indeed a direct sum of cyclic groups. That H ~ K follows trivially from
the fact that o(xa+ ya) = o(xa) for all a £A. Finally, that G= {H, K}
follows from the fact that each gl occurs as a yain xa ya for some a £ A,
and Theorem 1 is proved.

Remark. Notice that with a few slight modifications such as deleting
the requirement on order, the proof of Theorem 1 can be used to prove
Reid’s result that every torsion-free group of infinite rank is ~-cyclic.

We now proceed with a few lemmas; with the help of Theorem 1 they
lead to a proof that every reduced torsion group is “~-cyclic.

Lemma 1. Let H be a pure subgroup of a group G where {xa + H}aM
is an independent set in G/H with o(xa) — o(xa-f- H). Let L be the subgroup
generated by {xa}aiA. Then L fJH = o and L = >'(xa).

a(A
Proof. The lemma follows immediately from the proof of Theorem 5
of Kaplansky.
Lemma 2. Let G be a p-group, with \G1[p'][\ —\G\. Then G is n*2-cyclic.

(G1= MPrG)

Proof. It suffices to prove the lemma for G~ o.In this case, |G | =
= IGN\p\ lis infinite. Now partition GA[p] into summands, {N.}*=1 with
IN{ 1= 1G|. Clearly, for each i> 1, there exists a”“subgroup G- =
= nG;(pI) such that C,[p] = /7. The subgroup K = | C-satisfies the

=1

hypotheses of Theorem 1, so that G is “~-cyclic.
Corottary. A divisible p-group of infinite rank is -cyclic.
The first of our main results is
Theorem 2. Every reduced primary group is ” 2cyclic.
Proof. Let 6 be a reduced p-group. If Gis Y '-cyclic, G is trivially
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n-cyclic. If Gis not NA-cvdic. pnG ~ 0 for any n, whence Ghas infinite
final rank (Fuchs, p. 105). Thus there exists B basic in G with GfB of
infinite rank. Now GfB as a divisible group of infinite rank satisfies the
hypotheses of Lemma 2. Thus G/B is ~ 2cyclic with GfB = GfB -G fB
where GfB and GfB are (“-cyclic. Since B is pure in G it follows easily
from Theorem 5 of Kaplansky that G, and 0., are Vi-cyclic. it is clear that
Gl +G2= G and the proof is complete.

Remark. The generating subgroups Cv C2in the foregoing proof may
he chosen to be isomorphic. To see this use Theorem 1 to obtain GfB csdGfB,
from whence Gxcad C2 follows easily.

A corollary to the proof of the foregoing is

Theorem 3. Let G be a p-group with fin r(G) = r(G) > NO. Then G is
~-cyclic.

Now we give a necessary and sufficient condition that a primary group
be V%-cyclic. This condition together with Theorems 5 and & will charac-
terize ~-cyclic torsion groups.

Theorem 4. A p-group G is -cyclic if and only if

(@) G is reduced or

(b) The divisible part of G has infinite rank or

(c) The reduced part of G is unbounded.

Proof. If condition (a) is satisfied,Theorem 2 gives us that Gis Y 2
cyclic. Now write G= D @ R (i.e., as divisible ® reduced), and when
D has infinite rank, D is N 2-cyclic. Thus both I) and R are ~-cyclic, and
clearly this yields that G is JV2-cyclic. If condition (c) is satisfied and
neither (a) nor (b) is satisfied we have for the subgroup R in G—D ® R
that the rank of D is finite and R — H @ K where H is bounded and the
final rank of K is equal to the rank of K (Fuchs, p. 106). Hence the final
rank of L = D @ K is equal to the rank of L. Thus, by Theorem 3, L is
~n-cyclic, and now it is clear that G is N”-cyclic.

To prove the converse, now suppose that none of the conditions (a),
(b), or (c) is satisfied. Then expressing G= D @ R as before, we have
that 0 ~ D is of finite rank and R is of bounded order. Let the order bound
of R be pnand Gbe ¥ -cyclic. Then pnG — D would be ~-cyclic. But this
is impossible because the fact that D is of finite rank gives us that D is
finitely generated and, hence, a direct sum of cyclic groups. This contra-
diction completes the proof of Theorem 9.

As a corollary to Theorem 4 we obtain easily

Theorem 5. A p-group is cyclic if and only if G is not a direct
sum of (at least one) finitely many Z(p°°)groups and a group of bounded order.

Passing next from p-groups to torsion groups we have

Theorem 6. A torsion group T is J?2-cyclic if and only if each of its
primary components Tp is 'Y2cyclic.



ON GENERATING SUBGROUPS 91

Proof. To prove that if Tpis ¥ -cyelic for each p. T is ~-cyclic is
straightforward. The converse follows easily from the fact that any sub-
group of a direct sum of cyclic groups is a direct sum of cyclic groups.

Corollary. Every reduced torsion group is ¥ 2cyclic.

Proof. Theorems 2 and s.

The ~-cyclic torsion groups having been characterized, we now state
Reid’s result for the torsion-free case and pass to a discussion of mixed
Y -cyclic groups.

Theorem 7. (Reid). Let G be a torsion-free group. Then G is ¥ 2cycHc
if and only if G is free or has infinite rank.

In the discussion of mixed groups G we write T for the maximal
torsion subgroup of G.

Theorem 8. A mixed group G is ¥ 2cyclic if both T and G\T are ¥ 2cyclic.

Proof. Suppose that T and G/T are ~'--cyclic. That G is Y -cyclic
follows easily from the definition of ~-cyclic and Theorem 5of Kaplansky.

A partial converse of Theorem s is

Theorem 9. Let G be ¥Y/2cyclic. Then G/T is J£ 2cyclic.

Proof. Let G= M-fN where M and A are cyclic. Express

M= Fxdp Tv N = F2@ T2 where F, is free and Tt is torsion ~VI-cyclic
Jp yi JF ct\ y1

fori = 1,2 ThenG/T — 3 , and G/T is 4 2cyclic since

Remark. If Gis ~-cyclic, T does not have to be “-cyclic as the
following example shows. Let F — ¥ <i,>where <In) ¢* Z, and Z(p°°) =
= {xvx2 ..} ThenG= F © Z(p°°) = <1,>+ 2 <I"+ is —2

n

n
cyclic, but T = Zip™") is not. Thus the converse of Theorem s does not
hold.

Theorem 10. Let G be a mixed group such that r(G/T) > KO0. Then G
is Y 2-cyclic.

Proof. By Theorems 7 and 8 it suffices to prove that r(G/T) > K(
and T not ~'2cyclic imply that Gis *-cyclic. To this end suppose that
r(G/T) /> binand T is not ¥ 2cyclic. By Theorems 5 and s, T has at least
one primary component Tp which is expressible as Tp= Dp @ B where
o # Dpis a direct sum of finitely many Z(p°°) and B is of bounded order.
Set D= ¥ Dp (Dp= 0 whenever the divisible part of Tp has infinite rank)

p
and notice that \D \ = tfn Write out the elements of D as {dv d,, dA ...}.
Put Tp = Dp© Tp for each p. Then we have T = D @ To where TO=
= Tf. But by Theorems 4 and 6, TOis ~'-cyclic so that TO—T1-+T,,

p
where Txand T2are V“~cyclic. Since r(G/T) > HO>we have that G/T is
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V 2cyclic by Theorem 7.We wish, however, to construct the two generating
free subgroups of G/T as in the proof of Theorem 1 (see also Remark follow-

ing Theorem 1). To this end let © a> in the proof of Theorem 1 be re-
atA

placedinG/Thy ¥ <a© + 7)) © 2 fxB + T) where the B’ come from an
n=I
index set with the same cardinal as r(G/T) = |G/T |. Now replace ¥ ©a +

+ yal in the proof of Theorem 1 by # + dn © T)<Off (XB -\-yR + T)
n=I " T*
where the latter group is obtained from g/ (xB© T} as in the proof of Theo-

rem 1. Let LX <a©>®’\(xr3/’)L = Y©a>+ dfy® > <@ + yR). By

the construction |n the proof of Theorem 1 we have that

so that clearly GjT = — — + 2® . Obviously, Dctj + L2 and

from this it follows easily that G —Lx@ Tx+ L2@ T2and Gis ¥ -cyclic.
This concludes the proof of Theorem 1o0.

Combining a few of the preceding results we obtain the following
characterization of ¥ -cyclic Abelian groups.

Theorem 11 A group Gis  ”-cyclic if and only if G satisfies one of the
following conditions:

(@ GjT is free of finite rank and T is -cyclic.

(b) r(G/T) > Ku.

Proof. Suppose condition (a) holds. Then GjT = -— —-- where F is

free. Since T = Tx+ T2with Txand T2*-cyclic, G= (FO© Tf) + Tv
and G is ¥ -cyclic. If condition (b) holds, Gis ¥ -cyclic by Theorem 1o0.
To prove the converse suppose that Gis ¥ -cyclic. Then by Theorem
9,GjTis ¥ -cyclic. If r(G/T) is finite, then GjT is finitely generated (since
GjT is ¥ -cyclic) and hence free of finite rank. To complete the proof it
suffices to verify that T is ¥ -cyclic. Now write G= M N where M and
N are _"’1-cyclic and put M = Fx@ 7\ and N — F2@ T2 where Fxand F2
are free of finite rank and 1\ and T2 are torsion (¥ -cyclic. Since Ft-f- F2
is finitely generated, we have that i*-f- F2is N '-cyclic. Thus Fx - F2=
= F ® T3 where F is free and T3 is torsion (Y -cyclic and finite. Hence
Tx-f-T3is jy-cyclic and clearly T = (Tx--T3)+ T2 To see that + T3
is ¥ -cyclic first observe that for some integer n, n(TIf-T3)d Tx<



ON GENERATING SUBGROUPS 03

c: Tn+ T3since T3is finite. Thus since 7\ is *"-cyclic, Tx-\- T3is *-cyclic

by Theorem 12.4 in Fuchs. Whence T is*-cyclic and the proofis complete.
Theorem 12.LetGbe "e--cyclic. Then nGis” 2cyclic for all n. Moreover,

msuppose NG is  2-cyclic for some positive integer n. Then G is cyclic.

Proof. If G is ~-cyclic with G= H K, then nG = nH -\-nK.
For the second part use Theorems 5, 6, and 11.

Theorem 13. A group G is -cyclic for somén if and only if G is

2-cyclic.

Proof.If Gis ™--cyclic put n = 2. Nowto prove the converse we see
that by Theorem 11 it suffices to show that if r(GfT) < ©°o0then GjT is
free of finite rank and T is ”~ 2-cyclic. To this end let G be N'hcyclic and
r(G/T) < oo. Put G — {HIt ..., Hn} where each Ht is *j*-cyclic and Ht —
= Fto Thi1i< i< n,with Fi free and T, cyclic. Clearly r(G/T) < °°
yields that the F,- are of finite rank so that as a finitely generated group
G\T is free of finite rank. It remains to show that T is N 2-cyclic. For this
purpose we first show that T is 'Fn-cyclic. To see this, notice that H =
= {FL% F2 ..., Fn} is finitely generated whence Ht is also finitely gener-
ated. Thus Ht T, is NI-eyelie since for m = o(/It) we have that
m(Ht+ Ti) cz Tt. Clearly, T = {Ht-f Tv Ht + T2 , Ht + Tn}and T
is Nfi-cyclic as stated. Clearly T ~"-cyclic yields Tn ¥ ZIcyclic for each
primary component Tp. So by Theorem s we are left with showing that
T ~ ™-cyclic implies T N2cyclic in the primary case. Now suppose that T
is a p-group which is not ~-cyclic; then by Theorem 5,T = D@B where
0 ~ D is a finite direct sum of Z(p°°) and B has order boundpr. Let: 7',
T2 ..., Tn be ‘-cyclic and generate T. Notice that 71 -}B is
cyclic since pr(Ti + B) = prT Since B is a direct summand of 7', -f- B,
(Ti + B)/B is N4¥xyclic and as a subgroup of T/B ad D must be finitely
generated. But the groups (T7- -- B)/B, 1 < r< rt, generate 7TB so that
T/B is finitely generated, and hence J*-cyelic. This contradicts the divisi-
bility of D w TfB and Theorem 13 is proved.

2. On groups generated by two basic subgroups

In this section we concern ourselves with the question of what *-groups
are generated by two basic subgroups.

To this end we make the following definition:

Definitionl. Aprimary group is called starred [3] if and only if
IG 1= 1B Iwhere B is basic in G.

The next definition concerns the decomposition in a theorem of Baer
[1, p. 98] which is as follows: assume that B is a subgroup of /»-group
G and B = Y 'Bnwhere Bnisthe direct sum of cyclic groups of order pn.
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Then B is a basic subgroup of G if and only if
G —Bx@ ... © Bn©® {B*, pnG}
for every n where
B* = Bn+t1® Bn+2© ...

Let B = Y, Bnbe basic in a p-group G. Put Sn= "Y. Bk B* Bk,
k>n

n k=1
and Gn= {B*, pnG}, and B* is basic in Gn. Then for each n, 0 = Sn@ Gn.
Definition 2. With Baer’s Theorem in mind, we call a p-group G
strongly starred if each Gn is starred.
The following lemma is useful in obtaining our characterization of
p-groups generated by two basic subgroups.

Lemma 3. Let B B k be basic in a starredp-group G such that for each
K
n 1 there exists nk> n with |B,k|> |Bn|. Then G —K @ L where
K = ff Krkwith 1 Krk|= | B,,kland K,,t = C(pn:)for all k]>\. Moreover
IK I=tG\

Proof. See [3, p. 529, cases 3 and 4].

The next two lemmas will be used in the proof of the main theorem of
this section.

Lemma 4. Let G= H © K be a p-group with f a homomorphism from
H onto K. Let L = {x -\-f(x) :x £H}. Then G= L © K.

Proof. First we show that L f| K = 0. For this purpose let g £L f| K.
Then g= x -\-f(x) = fly) where x,y £H. Thus x = fly —x) £H N K.
Hence g= o and L MK = o. To see that G=L © K, let zEG Then
r=h-\-k=h + f{h) -)-(&—f(h)) where h£H and k£K. But h -f-
+ /(A) £L and k f(h) £K so that z£L © K.

Lemma 5. Let G —H © K be a p-group, H = *ff (xf) with f a homo-
morphism from H onto K such that o(x) > o(f(x)) for every 0 X £H. Let
L = {x f-fIx) :x g H}. Then L = JN1 <% +/(#,°)>.

i=1

Proof. To see this observe that if f5f B<(ku,+flxkfi) = 0 we have
v a, XK —— aif(xki) and thus ® «, xk.— o which implies that a, = o
for every i.

The main theorem in this section is

Theorem 14. A p-group G is generateu by two of its basic subgroups
if and only if G is strongly starred.

Proof.Let G be strongly starred with B basic in G. Write G= Sn© G,
with rlpnG) = fin r(0). We may assume that G is infinite and unbounded.
Then we have the following cases.

Case |: Infinitely many Bj satisfy \Bj \= \Gn\

In this case define a homomorphism / from B into G as follows:

D IfIBnl< IG lput/ =0 on Bn.
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2) If IBnl= 1G 1| maps Bnonto (pnG) [pn] so that the generators
of Bndo not all go onto 0.

Extending by linearity we obtain a homomorphism / of B into G
which satisfies h(x) < h(J(x)) whenever f(x) ~ 0 (h(g) denotes the height
of g in G). To see this write x = bl + Bl+ b3 eee + bn where 6-£ Bt.
Now either /(&) = 0 or h(bt)< h(/(&)). This together with h(x) =
= Ir_n,in h(bi) gives us h(x) < h(f(x)) whenever f(x) ™ o. Hence for all

oan n
x £B we have h(x + /(x)) = h{x). Now set Sn= 4, = P +/(0K) :
i=1
x £Sn}, and let S denote the subgroup of G generated by the S'n for
all n.

Next we show that S is basic in G and G= B -S. To this end we
first show that S is basic in G. To see that S is pure in G, suppose that
png= s£S. Then s = x -\-f(x) with x £Sm for some to. Since h(x) =
= h(x -\-f(x)) > n, there exists b£B with pnb —x. Hence s = pnb
+.f(pnb) = pn(b + /(E»)) where b -\-f(b) £S and S is Pure in G. To see that

S is a direct sum of cyclic groups, observe that if* <kbi +/(&,)) = o,we
=i

have ~ a bt— —/( "~ a &) Now if f(N a,6,) = o we have a, = o mod
o(b)) from the independence of the s~ If/( a&() N o we obtain a contra-
diction to A(r) < h(f(x)) when f(x) ~ o. To show that &/$ is divisible,
it suffices to verify that G — 8 -\-pG. Since B is basic in G we may write
G=B -j-pG. Let g£G and write g= b -\-pz, b£EB and z £G. But
g= (b +f{b)) +{pz —f(b)) and b +f(b) £S and pz —f(b) EpG since
f(b) = o or h(f(b)) > h(b). Thus G/S is divisible and S is basic in G as stated.

To see that G= B + let g£ G with o(g) = p’. Then let n > r be
chosen so that | Bn| — |G |. By the purity of B and the divisibility of
G/B, we may write g = b + pnz where o(pnz) < o(g) = pr, bEB, z£G.
Thus pnz £ (pnG) \pn} By the construction of the homomorphism f, there
exists x £Sna B with f(x) = pnz Now g= b fpnz= (b—x) +
+ (x -f-f(x)), ani since b —x EB ani x -\-f(x) £S, we hrve G —B S
as stated.

Casell: Only finitely many Bj satisfy |Bj\= \Gn|and |[Gn| >
for all n. Without loss of generality we may suppose that n is large enough
so that for allj > n we have |Bj j< |Gn|and | B* | :k’\n \IBk|: | Gn |.

+

Since G is strongly starred, we have by Lemma 3 that Gh= K @ L where

K = K, kis a direct sum of cyclic groups with ]K,, | < |Kn | for all
K [
K> 1 and IK,,k = 1Gn|. By partitioning the generators of each Kn

K
onto xo disjoint subsets each having the same cardinality as Kl'kwe easily

obtain a subgroup C = v Gj of K with [Cj|= \Gn\ for all j (C] =
i=1
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—le(J£C(prk))), and a natural homomorphism of K onto G. This homo-

morphism gives rise to a homomorphism /, from K onto L, and hence
there exists a homomorphism f mapping Sn® K onto L (set/ = o
on Sn). We may assume this to be chosen so that o(x) > o(f(x)). Now
G= Bn© K)® L. Put N = Pk+f(x) :XESn@ K). Then if BL is
basic in L, we have by Lemmas 4 and 5that B' = N © BL s basic in G.
Extending K to S basic subgroup B of 0 we have G= B + B"'. This con-
cludes the proof of Case II.

Case |l I1: Only finitely many Bj satisfy |Bj\= \Gn|and jGn|= X0
for some n.

Let G= DO R where D ~ [ is divisible and R is reduced. Let B
be a basic subgroup of R. Then B is a basic subgroup of G, hence \B \= \G\
since G is starred. Now R is unbounded. To see this suppose that prR = o
for some integer n. Then pnG —pnD © pnR = D = Gn which contra-
dicts the hypothesis that G is strongly starred. Thus, by problem 19a,
p. 143, in Fuchs, we have that R = K © L where If is a direct sum of cyclic
groups ofunbounded order. Partition K into  disjoint summands {Ifn}«=1
and let Knbe a subgroup of Knsuch that Kn= ~YGt(pn).Let/10= N'Kn.

1- 1 n=1

There exists a natural homomorphism from K onto KO and a natural
homomorphism from KO0 onto L © 1). Thus we have a homomorphism /

from K onto L © D and we may assume it so chosen that o(x) > o(f(x))

for every o A x £K. Next let M — {x-\-f(x) :x £If}. Then M +
i=i

~rf(xi)) where the x, are the generators of the summands of If :"\NT by
i

Lemma 5. We also have that hGX -ff{xt)) = hGxi) = o since o(x] >
> o(f(x)) for all x g If. The purity of M follows from an argument similar
to that in obtaining the purity of S in Case I. Next we can embed K and
M in basic subgroups of G, say BK and BM, respectively. Now obviously
G= K -fM and hence G= BK + BM.

To prove the converse suppose that Gis not strongly starred. This means
that there exists m such that Gmis not starred. Thus in particular r(Gm) —
= 1Gml since r(Gm) is infinite. It is well known that r(Gm) = r(pmG)
(since Gm[p\ = (pmG) [pY, [1 p. 98]). Now suppose that G—B -\-C
where B and G are basic in G. Then

is a contradiction. Thus if G is a sum of two of its basic subgroups, G is
strongly starred and the theorem is proved.
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An argument similar to the last part of the foregoing proof shows
easily the following interesting theorem.

Theorem 15. A p-group G is generated by n basic subgroups for some
n if and only if G is generated by two of its basic subgroups.

An example of a p-group without elements of finite height which
is strongly starred and not V l-cyclic is a direct sum 2" copies of a stand-
ard B.

3. Some interesting questions

To conclude this paper we mention one final theorem and pose a few
questions. A Serre class of Abelian groups is a class closed under subgroups,
homomorphic images and extensions. In this connection we describe the
most general class of ~-cyclic groups closed under subgroups and pose the
question, What is the most general Serre class of cyclic groups?

Let C be a class of torsion-free groups with the property that a group
G belongs to G if and only if every subgroup H of finite rank is free.
Then with G defined in this way we have

Theorem 16. The most general class dyof -cyclic groups closed under
subgroups is given by G belongs to < if and only if

(@) G is reduced,

(b) GfT belongs to G.

P roof. This follows easily from Theorem 11 and the fact that a divis-
ible group of rank 1 is not “-cyclic.

To specialize the above question concerning Serre classes of ¥ -cyclic
Abelian groups, we pose the question Characterize the extensions ofa 1
cyclic by 'y Yerickic. This question seems non-trivial even for primary groups.
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EINIGE BEMERKUNGEN UBER DIE AUTOMORPHISMEN
ABELSCHER p-GRUPPEN

Von

H. LEPTIN
Universitdt Hamburg

A. D. Wallace zum 60. Geburtstag

Von H. Freedman [1] stammt das folgende schéne Resultat: G sei eine
reduzierte Abelsche p-Gruppe, 8 der Sockel von G, SB—8 f| (pRG) die
Ulm-Kaplanskysche Untergruppe aller Elemente aus 8, deren H&he in
G mindestens gleich p'* ist und FB= SfS~1 Ein Endomorphismus
r) von G induziert dann in F'* einen Endomorphismus i) .

Satz. Sei p g>5und Gvom endlichen Ulmschen Typ, d. h. pn*G= 0 fir
ein natdrliches n. Ist dann a ein Automorphismus von G mit a= 1 fir alle
/i und ap= 1, so ist a gleich 1 auf pG.

Offenbar bilden die Automorphismen a von G mit ak = 1 fir alle
fi einen Normalteiler K in der Automorphismengruppe A = A(G). Aus
dem obigen Ergebnis erhdlt man dann leicht den Satz, dall die Menge aller
Elemente endlicher Ordnung aus K einen Normalteiler N in A bilden,
der aus genau allen a £ K besteht, die 1 auf einer Untergruppe pl G sind,
i < (o, vorausgesetzt, dall p 5 und der Ulmsche Typ von G endlich ist.

Wir wollen hier zeigen, daB auf die Forderung der Endlichkeit des
Ulmschen Typs der Gruppe G verzichtet werden kann, d. h. wir werden
zeigen:

Ist G eine reduzierte p-Gruppe, p f> 5, und a ein Automorphismus
von G mit afl — 1 fir alle p <o so ist a = 1 auf pG dann und nur dann,
falls ap — 1 ist.

Wir gehen aus von einer Folge direkter Zerlegungen von G:

(1)

mit

Dann ist also B = V Bt eine Basisuntergruppe von Gund fl Hk= p"“G —
= G' die erste Ulmsche Untergruppe von G.
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Es ist leicht zu sehen, daB fir einen Endomorphismus 1 die Bedin-
gungen rji= 0, i < ogleichbedeutend sind mit den Relationen

(2) riBit1 d BX® ... © Bt® pBj+1 ® pH i+l .
Ist Uberdies p rj — 0, so folgt aus p mrjc = o:
i d Sd Bx)h pH x
rfG d riBx F-prjHx = rjBi CZpG
e d Tpe —o,

d.h. 3= o. Ist nun a= 1 ff£K und a= 1 auf pG, d.h. prj = o,
so folgt:

falls p > 3. Damit ist die Notwendigkeit von ap= 1 gezeigt, sogar fur

P<> 3.
Nun sei umgekehrt a =1 -f ap= 1 Fir b haben wir dann

®

dabei ist

ein Automorphismus, denn es ist 1 — B8 = bX mit einem mit b vertausch-
baren Endomorphismus X Aus (3) folgt bp = pa, also (bX)P= p1, T mit

7?9 vertauschbar. Folglich konvergiert V (#A)° = /51 in der Topologie der

punktweisen Konvergenz. 1=0
Das folgende Lemma enthalt den wichtigsten Teil des Beweises unseres

Satzes.
Lemma. Sei p 5und 1 + b £K. Ist dann p2 = o, so auchpb = o.

Beweis. Aus p-b =0 folgt zunéachst

also bpG d pb B2d p3H2und somit #3p(? = 0, d. h. pb3= o.
JNun ist

<4)

Wir behaupten: b5= o.Wegen (4) und pb3= o geniigt es zu zeigen, dal
b3Bx= bAB2= 0 ist.

Aus bBxd pB2®© p2H2folgt b2Bxd pbB2d p2G, also h3Bx= o. Aus
bB2d Bx@ pHx folgt schlieBlich biB2d b3Bx-fpb3Jx—o. Damit ist

7%
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B5— 0 gezeigt. Insbesondere ist ilp= o falls 5, aus (3) folgt deshalb
pRB = o und pBR —o.

Wir kénnen nun den oben formulierten Satz leicht beweisen. Sei A
die Lange von G, d. h. die kleinste Ordinalzahl mit p* G = o. Fir n< &
hat H. Freedman gezeigt, dal der Satz richtig ist, wir dirfen deshalb
A> omannehmen und voraussetzen, dall die Behauptung fir alle reduzierten
Gruppen stimmt, falls deren L&nge kleiner als fAist.

Sei < p< Aund G = G/p“G. Dann hat GB die Lange p und R
induziert in GR einen Endomorphismus />. fir den wieder die Voraus-
setzung B\ = 0 fir i < mgilt. Das folgt daraus, daB wir wegen pfG o Hk
fir alle k die Zerlegung (1) fir Gf erhalten, indem wir dort 11k durch
Ii;lp"G = Hk ersetzen und beachten, daB aus (2) dann fur B' die ent-
sprechende Formel in GB folgt. Somit gilt nach Induktionsvoraussetzung
pp' =z o, d. h. pBG ¢ ppG fur alle p < 4

Ist A4 Limeszahl, so folgt pRG = o, also pB = 0. Ist A= x -f 1, so
folgt insbesondere pPG d pxG, also pzDG cz px+1G = o, pzO= o und des-
halb wegen des Lemmas pil = 0. Damit ist der Satz bewiesen.

Es folgt nun leicht:

Die Menge T aller Automorphismen aus K von endlicher Ordnung ist

ein Normalteiler in K und in A(G). Es ist T = ‘UI Tt, wobei Tt aus allen
1=

a £ K mit ap*= 1 besteht. Es ist a£ 7’, dann und nur dann, wenn a £ K

und a = 1 aufp‘Gist.

Zum Beweis ist im wesentlichen nur zu zeigen, dall fir a £ K die
Bedingungen ap —1 und a —1 auf plG 4&quivalent sind. Fir i = 1
hatten wir das bereits gezeigt. Nun wenden wir Induktion nach i an und
setzen voraus, daB fiirj < r, a £ K, die Bedingungen ap>= 1 und pifl = o
aquivalent sind. Sei ap‘= 1. Es folgt, daB ap= 1 auf pl~IG= H und
folglich a = 1 aufpH = p‘G ist, denn offensichtlich erfiillt die Einschran-
kung von a auf H wieder alle notwendigen Bedingungen beziglich H.

Sei umgekehrtp‘B = o. Es folgt ap™~ = 1 auf pG, also ap>= (ap')p =
= 1 auf G. Damit ist der Satz bewiesen.

Dal der Satz in seiner obigen scharfen Form fir p = 3 falsch wird,
zeigt das folgende Beispiel: Sei

G= ()o (0o (b
mit (bj) aa Z (39, d. h. s, habe die Ordnung 3, i = 1,2,3. Jedem a £ A(G)

3
ist die durch ab, = ajbj, i = 123 definierte Matrix (a(J) zugeordnet.
=i
Dann definiert die Matrix /1 3 0\
—1 1 3
, o o 1/
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einen Automorphismus a = 1 -\-D aus K mit as = 1, jedoch

Es ist ein offenes Problem, ob fir p = 3 aus a£K, as = 1 die Existenz
eines natirlichen i mit a= 1 auf p'G folgt.

Wir schlieBen mit einigen Bemerkungen zur Struktur der Auto-
morphismengruppe A = A(G). Man vergleiche hierzu auch die Arbeit
von Fuchs [2].

Sei der Endomorphismenring von G; A(G) ist also die multiplikative
Gruppe von IT. Der Ring ist ein vollstandiger topologischer Ring,
sowohl in der p-adischen Topologie (definiert durch die ldeale pl als
Fundamentalsystem von O-Umgebungen), als auch in der Topologie der
einfachen Konvergenz. Es folgt, daf fur i —1,2,.. .

ein Normalteiler in A ist.

Es ist N1HJVz23 ... und I = {!}. Ferner ist NJN i+l Abelsch vom
Exponenten p, namlich isomorph zum Faktormodul pW/pi+1$. Ein Auto-
morphismus a = 1 + D liegt dann und nur dann in NL wenn DS = o und
DG ¢ pG qilt, d.h. also wenn ain GjpG und in S = G\p\ den identischen
Automorphismus induziert. Allgemeiner gilt:

Fur rj £ <F sind die Bedingungen

1)

2)
aquivalent.

Was lalt sich Ober die Faktorgruppe A//ly sagen? Sei F = G\pG
und S = G[p]. Fir sei aF, bzw. as der von a in F, bzw. S indu-

zierte Automorphismus. F und S sind A-Moduln und S besitzt die zu
Beginn definierte Folge 2 - {/S*} als Reihe A-invarianter Untermoduln.
Ist pnG = o, d. h. enthdlt G keine Elemente unendlicher Hdhe, so ist
leicht zu sehen, daf eine Kompositionsreihe von S ist. Dasselbe gilt,
wie H. Freedman gezeigt hat, falls G abzahlbar ist. Der Normalteiler K
aus A ist die z u ™ gehodrige Untergruppe aller a £A, die auf den Faktor-
moduln 1 =F", S"£J?, gleich 1 sind. In F bilden die Moduln

ebenfalls eine Reihe A-invarianter Untermoduln, diesmal mit (j Ft — F.
a £K ist 1 auf allen Fi+/Ft= Ff. Definieren wir ndmlich
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so gilt folgender ~-Isomorphismus:

Insbesondere sind also F° und Fj-1 = Fi_1 = A-isomorph.

Wir nennen eine Gruppe N p-nilpotent, wenn N eine wohlgeordnete
Folge von Normalteilern Nfl enthdlt, so dal die folgenden Bedingungen
erfillt sind.

(@ N= NOr\N, = {1},
(b) iV, /A, +1 ist Abelsch vom Exponenten p.

Dann gilt:

Der Normalteiler K ist p-nilpotent.
Das ergibt sich aus der Tatsache, daB Untergruppen p-nilpotenter Grup-
pen wieder p-nilpotent sind, weiter aus den Eigenschaften von N1und dem
folgenden leicht zu beweisenden Satz:

Sei K eine Abelsche Gruppe vom Exponenten p, d.h. ein Modul
Uber dem Galoisfeld GF(p). Sei {9K/(} eine wohlgeordnete Folge von Unter-
moduln mit SKo = 9K, M9E, = 0, und sei N die Gruppe aller Automorphis-

men avon SKmit a d 3K, a= 1auf 3KY3K*H- Dann ist N p-nilpotent.

Eine endliche p-nilpotente Gruppe ist eine p-Gruppe, insbesondere
sind die Ordnungen der Elemente p-nilpotenter Gruppen Potenzen von p
oder unendlich.

Ist G abzahlbar oder ohne Elemente unendlicher Hbéhe, so ist AjK
direktes oder subdirektes Produkt voller linearer Gruppen uber GF(p)-
Moduln, in diesen Fallen ist K also maximal p-nilpotent in A.

Im allgemeinen Fall ist nicht viel Uber die Struktur von AfK bekannt.
Hier kann man einen kleinen Schritt weiter gehen und K durch eine u. U.
groRere Gruppe K ersetzen, die wie folgt definiert ist:

Sgk Y eine maximale Kette A-invarianter Untermoduln von S mit
J?dJ?.Im allgemeinen wird ¥ nicht mehr wohlgeordnet sein. Sei dann
K die Menge aller adA, fir welche gilt: Zu jedem Ud existiert ein
V d mi VvVd U, UV ~0, a—1 auf U/V. Es laBt sich dann zeigen,
dal K ein fast-p-nilpotenter Normalteiler ist, im Sinne folgender Defi-
nition: Die Gruppe M heil’t fast-p-nilpotent, wenn M ein System Q von
Normalteilern enthalt mit folgenden Eigenschaften:

) M= u N .
2) Zu Nv N2d Q existiert N3dQ mit NINi d N3.

3) Alle N d Q sind p-nilpotent.
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Mir ist nicht bekannt, ob es Falle gibt, in denen K echt groBer als
K ist. Da auRerdem >X keine Invariante von G ist, die Definition hdngt
von der Wahl einer maximalen Kette ab, scheint mir die Untersuchung
von K zunachst die wichtigere Aufgabe zu sein.
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"-ORDERING OF THE GROUP EXT (B, A)
By

K LOONSTRA
The Hague

Introduction

The Abelian extensions 0(A) of a (fixed) group A can be ordered in a
natural way; the A-ordering of these extensions induces a so-called A -
similarity and implies a partially ordered system F(A) with a maximal
and minimal element and with lattice properties. The analogous case is
the O-ordering of the Abelian extensions G(a) through a (fixed) Abelian
group B (denoting by a a homomorphism of the group G onto B); these
extensions also give rise to a partially ordered system P(B) with maximal
and minimal elements. The general case—if A and B are not necessarily
commutative—was considered in [3]. We now consider (for fixed Abelian
groups A and B) the group Ext(I3, A) of the equivalence classes of exten-
sions O(A, B) of A by B. As the groups G(A, B) are extensions of A by
B, the set of elements of Ext (B, A) must be a partially ordered subset
of V(A) and of P(B). In this paper we investigate the A-ordering of Ext
(B, A) in the case that A and B are finite groups. It will appear that this
case is reduced to the case that A and B are cyclic groups of prime power
order for the same prime number p.

§ 1

We consider the system of all the Abelian extensions of an (Abelian)
group A. Denoting these extensions by G(A), we define an A-ordering
relation ill as

(or GHA) < GZA) if there is no possibility of confusion) if and only if
there is an A-homomorphism ry. Gl-> G2 (a homomorphism 1j of Gxinto 02
leaving all the elements of A invariant). Defining GXA) ~ G2A) if GXA) <
< G2A) and 02(A) < GXA) (we say that: GXA) and Gz2(A) are A-similar),
any extension O(A) defines a class {0(A)}, which consists of all the
extensions of A similar to 0(A), and we obtain a partially ordered
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system F(H) of classes {G(A)};, {G(A)} < {G'(H)} only if this order relation
holds for the two representatives G{A) and G'(H) of the corresponding
classes. Any set of elements {G,(H)} has an H-meet and an H-join: the
A -meet of the classes {G,(H)} is the class {G(H)}

Denoting the elements of G(A) by (gr)ie/ we see that G contains a sub-
group @ A, consisting of the elements (a)i6/. We have G(A) < Gt(A),
i£l. Conversely, if HA) < Gt(A),i £1 and r/(: H “mGt are H-homo-
morphisms, then the mapping h -> (h is an H-homomorphism of
H into er(H). If Gt(A), i £1 is a set of extensions of H, the A-union of the
corresponding classes {G,(H)} is constructed as follows: we consider the
(restricted) direct sum ~ <?(H) = ~V.This group ~ contains a subgroup

i
91 generated by the elements a of the form
a= (.. .,0,.. 0,—a,0...);

that are elements o of containing a component a and a component —a
and the other components equal to o.Therefore 91is the subgroup of ~

ofthe elements (. .., 0,av..., a2..., an,o,0,. ..)withax a2 ..-f-a,=o.
We now consider the factor group ©(H) =~/91; identifying the elements
a £A with the classes (0,.. ., a,0,...) 9= (a 0,0,0,...) 91, the mapping

is an isomorphism of A with a subgroup of ~/91. Hence ©(H) is an extension
of A. ©(H) has the property of a union: if we map r/;: gt-*(0,.0,... ,git.. .)91,
i £1, this mapping rji is an A-homomorphism. If conversely G,(H) <
< H(A) with corresponding H-homomorphisms rji, then © (H)<H(H):
we man

Since H is Abelian and since this product is independent of the way we
represent g ==(..., gv..., gn,...) 9L we see that r is a homomorphism,
leaving the elements a £ A invariant.

The minimal class {A} of F(H) consists of the extensions G(A) having
H as direct summand; for G(A) < H implies G = A -f-B, if B is the kernel
Kn of the H-homomorphism n\ G(A)“mA. The maximal class {B(A)}
of F(H) is defined by a divisible extension D(A) of H. Using the fact
that A can be embedded in a divisible group D(A) and the fact that the
identical mapping of A ¢ G(A) onto A ¢ D(A) can be extended to an
H-homomorphism of G(A) into D(A), we see that (D(H)} is the maximal
class.

1 denotes the restricted direct sum, ~ * the complete direct sum.
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Now we consider the system of all the (Abelian) extensions by an
(Abelian) group B, denoted by G(a); a is a homomorphism of G onto B.
We define a /i-order relation

if and only if there is a homomorphism
4:G'(a") -> G(a)

such that rja= a mG{a) and G'(a") are called B-similar extensions (denoted
by G(a) -g G'(a")) only if

This ./j-siinilarity defines a partition of the system of the extensions by
B into classes {G(a)} of /I-similar extensions. The system P(B) of these
classes has the property that any set of classes has a A-join and a 71-meet.
The B-join U {G,(a()} is the class {G(a)} of the subdirect sum G(a) with
elements

g gt, ....gj,...); A@(= ... = gpj = ...= ga.

The B -meet

is the class of the direct sum H(B) —~ GL(aBif) with
i

The minimal class {B(s)} is the class of all groups having B as a direct
summand. The maximal class is the class {jP(p)} represented by a free
Abelian group F having B as homomorphic image (see [3]).

§ 2

The set of the extensions G(A, B) of A by B is a group FIA, B) if we
define Gx{A, B) + G2(A, B) = G(A, B) as follows [2, p. 237]: if we
have Gi(A, B) = Gi(aj), i = 1, 2, where a, is the canonical homomorphism
of onto fi.

where Gxg G2 is the subdirect sum of Gxand Gt consisting of all pairs
(gv g2) with glal — g2a2, and 9l is the subgroup of the pairs (a, —a). The
elements a £ A correspond to the elements (a, o) 9of G\ writing G{A, B) —
= G(a) we have

((9v g2) 91) a = gax= g2a2
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Defining two extensions G(A, B) and G'(A,B) equivalent, G(A, B) »
N G'(A, B) if there exists an isomorphism between them, leaving the
elements of A and of B invariant, we know that the set of the exten-
sions G(A, B), which are equivalent to the direct sum A B of A and
B, is a subgroup T(A, B) of P(A, B) and

If GXA, B) is defined by an extension factor system {fxb, b")}, and G.fA, B)
by a factor system {f2b, b')}, the sum GXA, B) + Gz(A, B) can be defined
by the factor system

T(A, B)is the subgroup of the extensions that can be defined by the trans-
formation systems {f(b, b")} with

From the definition of the equivalence of extensions it follows that
equivalent extensions G(A, B) and G'(A, B) are A-similar and 5-similar.
This means that the extensions of one equivalence class of Ext (5, A)
belong to one element of V(A) and to one element of P(B). It is therefore
interesting to seek for the A-structure of Ext (B, A) (that means the embed-
ding of Ext (B, A) in F(A)) and for the 5-structure of Ext (B, A) (that
is the embedding of Ext(5, A) inP(5)). When, in the following, we speak of
the A-ordering (and of A-similarity) of two extensions GXA, B) and G.,(A, 5),.
we mean the A-ordering etc. of G, and G2 considered as extensions of A.

In this paper we shall speak only of the A-ordering of Ext (5, Am
for finite (Abelian) groups A and B.

The A-join (resp. .4-meet) of two extensions will he denoted by Gx* G,
(resp. Gx2 G2) etc.

Theorem 1. For any two extensions GXA, B), GZA, B) we have

1) Gl+ G2~ G 1°G 2,
2) Gxff G2 implies Gx+ G fi~G2+ G for any extension G(A, B),
3) Gx G2 implies Gx+ Gqy G, A G for any extension G(A, 5),

4) if GxffG 2, G2 8 Gxholds for the same homomorphism rj: Gx-+Gz
we have GxeN G2

Proof. The mapping (gx g2 9 -> (gv g2) 9 proves 1); if y: g, ->ux
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satisfies ijog= a, then the mapping (,.,9) 21 -» (g2r), 9) 21 proves 2);
3) follows from 2); 4) follows from the commutativity of the diagram

§ 3

We want to consider the A-structure of Ext (B. A) in the case that
A and B are finite groups. As B is a direct sum of cyclic groups B, of prime
power order, we have

Q) Ext (Br -f.. .-f Bk A) 04 Ext (Bv A) Ext (Bk A).

Any system of extensions Gt(A, Bt), i = \..... k, of A defines in a unique
way an extension G(A, 5"Bfjof A by 7 &
i

with elements (gv..., gk) 21, gt £ G( (see § 1).
Choose in Gt the representatives r(,)f) such that

and take for the respresentatives in G the elements (r@)er), ..., rXb));
then the factor system in G, induced by the given choice of factor systems
in Gt is
{(fw (bv b{),. .., Kbk, bi)) 213 = {(27 ()E. b)), O, ..., 0) 20.
i

G(A) therefore can be constructed with the factor system (~ f (4bit b-)}
i
As G is an extension of A by ™~ Bi we denote this factor system by

(2)
with

If all factor systems b\)}, i = 1, .... K are transformation systems

the induced factor system (2) is a transformation system. Conversely,

any extension G(A, Y Bt), defined by a factor system (2) induces a set
i

of factor systems f(\bv b{) = f((bvo,o,. ..,0), (b[.0,0,..., 0)),... etc.

and they define extensions Gt(A. Bt), i = 1,2,..., k. These Gt are inde-
pendent of the chosen factor system in G(A,J? B() and they induce (taking
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their A-union) the original extension G(A, Y. Bf). That means: any extension
G(A, ~"Bf is the A-union of a finite number of extensions GfA, Bf),
i

i—1 It The used mapping gave us a way of proving the isomorphism
(1). Therefore we have
Theorem 2. The A -structure of Kxt( V Bh A} followsfrom the A-strudures
i

of Ext( If. A) talcing the A -unions of the elements of Ext(B(, A), i = k.
Now we have to consider the isomorphism

By taking Kk = 2 we reduce the calculations. Suppose GIAI, B) is an exten-
sion defined by the factor system {j\(b, b*)}; GI(AV B) induces an extension
GMi A., B) of Al A, by B, defined by the factor system

{f(b, b")} is a transformation system if and only if {/,(b,b")} is a transfor-
mation system.
If G{AVB) :* Gx{Alt B), then GI{Al + A2 BA) <AntAx + A2 B), forif

is an A,-homomorphism of Gi into Gi, we define an (Al -f-d 2)-homo-
morphism 1" of GfA2 -f- A2 B) “mGXAX+ A2 B) as

Conversely, suppose that GI1(Al + ,42, B) and G,(A, -f A2, B) are images
of GfAv B), resp. G2A2 B), then GI(Al-f-A2 B) < GI(Al + A2 B)

implies GfAv B) < G1(AV B). This proves A+A
A\

Theorem 3. INn V(AX the A”structure of the extensions G Av B) induces
in V(Ai A2 exactly the same (Ai ... A2)-structure for the induced extensions

GfAl £ A2 B).

§ 4

If A and B are finite groups, the ~-structure of Ext (B, A) can be
found by means of the results of § 3. If

we have
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For a cyclic group B = C(m) of order m we have

pr‘ Pij then

Therefore

and we have to investigate the A-ordering of the groups Ext (C(pm)>
G(pn)). The extensions G(A, B), where A =G(pn), B —C(pm), have the
order pm#n and the number of the inequivalent extensions of A by B is
given by the order of

Ext (C(pm), C(pn)) oz G(pn)/pnC(pn) at C(pmrxmn)).

The number of non-isomorphic groups G of order pm#n is equal to the
number of partitions of m + n into positive integers. We have, however,
the condition that G must contain a subgroup C(pn), and that the factor
group G/G(pn) w C(pm). We shall denote the extensions G(G(pn), G(pm))
by the type

where the first row (pmi,.. ., pTR denotes the type of G, the second row

(pn, 1,.. .) the type of A; we have m1+ mz2 -f... + mk= m -\-n.
ptn+n\

Theorem 4. The number of inequivalent extensions of type is
Pn |

n
(p —1). these extensions are all A-similar (and B-similar).

Proof. We can embed G(pn) in G(pm+n) in g4pn) —pn —pn i different
prHn-

ways and that gives rise to pn~l (p — 1) extensions of type . To

Pn

find the number of equivalent extensions among them we have to find

the automorphisms of G(pn), inducing an endomorphism of C(pm+n),

that leaves all the cosets invariant. Therefore we map pm-> (gpm\-\) pm <

< pmtn or gpm+ 1. If m f>n then for g there is no solution (only the

identity); in this case we have already pn~1(p —1) inequivalent extensions

pm+n
G of type on If m < n, then we have pn~m possibilities for g\ that

means that we have

pm+n
inequivalent extensions of type
pn
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Theorem 5. For an extension G of A = C(pn) by B = G(pm) of type
pm pnmi\ . . pnk
pn, 1, ....1

1) k< 2,

(prTLpTM’\
,then m, I>m,m,» n> m2

Pn>1

3) all these types represent extensions of A by B.

Proof. 1) Suppose G(a) is an extension of A = G(pn) by B = G(pm)
with the canonical homomorphism a: G—=B. If A = {a} and g £ G such
that B = {g a}, then G — {a, g a}; therefore G can never have the mentioned
type with h> 2.2 2) Suppose mx> m2> o then we must have mx'>n.
ASuppose C(pmi) = {ax}, C(pm) = {a2}, then pmi(@ax a2 = (0,0) As the
factor group B must have the order pmwe must have mx> n. Therefore
mx+ m2” m+ ma or m -fn< m + m2 hence n~>m2 3) If m2= o,
then G = G(pm+n) is an extension of G(pn) by C(pm). Suppose m2> o;
if mx= n (or = m) then G = C(pn) X C(pm) satisfies all conditions. There-
fore we consider only m, > n,m, > m. This implies mx> n > m2 and
m, > m> m2 We take for A the subgroup generated by (pntf n,1). If
we take the coset of A in G containing the element (1,1), we have
pTr{l, 1) = (pT!, 0), but thisisno element of A because 0) =
= (pmo) is the smallest multiple of (pnm'~n, 1) with second component
equal to zero. Therefore the group G of the type (pnf,p™!), mx> n > m,,
mx> m > mz contains a subgroup A = G(pn) with GJA  C(pm).

Theorem (?-’T'VE[ fpextensions G and G' of A = G(pn) by B = G(pm) of

the same type are A-similar.
Pn, 1
Proof. The extensions G and G' may differ inthe way A is embedded.

If A is generated by (pmi~n, o), we have for the type of G/A: (p"1 n,pnt).
Therefore we generate A by (pmi~n, 1); in this case the coset represented
by (0, 1) has the order pm, that means GjA ad C(pm). Suppose that A (in
G') is generated by (apmi”n,b), (a, p) —1, bEC(pm™-),b ~ 0. The homo-
morphism of G into G' induced by the mapping

(pm~n, 1) (apmi~n,b), (0,1) (0, 1)

is an A-homomorphism of G into G'. In the same way one proves G' (y G.
Theorem 7. If the extensions G resp. G' of A — C(pn) by B — G(pm)

mhave the type N ’ resp. on ’ )’ then these extensions satisfy the
i ly 1
mcondition G g- G', if and only if (mx, m2) < (mx,m2) in the lexicographical

2The proof of the first statement of this theorem, given by G. Pollak (Szeged),
is a simplification of my proof.
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sense (that means: (mv m2) < (m{, w2 if and only if mx< m[ or mx= m][,
< m2).
Proof. Suppose (mv w2 < (m{, m6) and moreover that A is generated
by (pmi~n, 1) in G and by (pm~n, 1) in G', then there is an *-homomor-
phism p: G ->G" induced by

r- (1,0) -> 0), . (0,1)-»(0,1).

Conversely: suppose p: G -> G' is an A-homomorphism of G into G'. We
suppose that A in G is generated by (pm' n,1), A in G" by (pm~n, 1);
then there must be an A -homomorphism mapping

and inducing

We can suppose that ml > w2 for if m, = w then we have ml = 7r N
and then we should have mx—n = m2 and the theorem is trivial.
Now
{pm'~n, 1) -> (pm>-na + a', pmnb+ b").
The element

is the smallest multiple of the generating element of A with second com-
ponent o. Therefore pnfmni~na = p n*n™-n.a must be mapped onto
jsm—na+m* therefore

or

if Mx—m -fkK, K> o, we have
pT+KIpm.Q__ pm+k-n+m.

and we must have (ifa »~ o) K—n + m2> o or > mxand therefore
m 2 < W0 proving the theorem. If a a = o we should have mz2 = n, that
means Tr= n and from ml + m2= m A n it followed mi -m contra-
dicting our supposition m1> to. The last result shows that the ~-ordering
of the equivalence classes of Ext (G(pm), C(pn)) is a linear ordering.

E xample |. If A = B = C(p) there are p inequivalent extension,
G(C(p), C(p)); there is an “-minimal extension Gx (A, B) —G(p) X G(p)s
while the other p — 1 extensions G2(A, B),.. Gp (A, B) are cyclic groups
of order p2 Mapping the element 1 on 2, 3,..., p — 1, resp. we can embed
G(p) in p — 1 different ways in C(p2); these p — 1 extensions are *-similar
but not equivalent. The M-diagram is:

8 Abelian Groups
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E xample I1. If A= C(p3), B=G(p2) the diagram of Ext (G(p2), G(p3)) is:
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ON THE STRUCTURE OF TOR1

By
R. J. NUNKE
Washington University, Seattle

This paper is concerned with the structure of the torsion product
Tor (A, B) of Abelian groups A and B Since Tor(.4, B) is the direct sum of
the groups Tor(tpA, tpB) where tpA and tpB are the p-primary compo-
nents of A and B, respectively, I shall confine my attention almost exclu-
sively to p-primary groups.

The paper is divided into three sections. The first section is devoted
to computing the Ulm invariants of Tor (A, B) in terms of the Ulm in-
variants of A and of B and other known invariants. In view of the results
of Kolettis [3], Tor (A, B) in thus known whenever A and B are direct
sums of countable groups.

In the second section | study the effect of certain restrictions on A
and B on the structure of Tor (A, B). This investigation shows that there
are p-primary groups without elements of infinite height which are not
contained in any group of the form Tor (A, B) with A and B reduced.

Finally in the last section the results of the first two sections are
applied to the study of generalized purity begun in [5]. Some questions
left open in that paper are answered. For example it is shown that p“ Ext
is a hereditary functor if a is a countable ordinal.

1. In order to compute the Ulm invariants of Tor (A, B) a number
of lemmas will be needed.
Lemma 1.1. If n is an integer, then

P roof. The second equality follows from the first and the symmetry
of Tor. If Tor is applied to the exact sequence o -> A[n] -> A A where
the map A A- A is multiplication by n, the exact sequence

results giving the first equality.

1 This work was supported by National Science Foundation Grant No. GP—809.

8*
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A subfunctor of the identity is a function S which assigns to each group
A a subgroup SA in such a way that if f: A -> B is a homomorphism,
then fSA ¢ SB.

Lemma 1.2. If S is a subfunctor of the identity and SA = 0, then

STor(A,B) = 0.

Proof. We can assume that 1? is a torsion group. Let K be the group
of rational numbers modulo the integers. Then B cz K where v K is
a direct sum of copies of K. Tor is left exact, and commutes with direct
sums, and Tor (A, K) ~ A. Hence Tor (A, B) A. Each subfunctor of
the identity also commutes with direct sums and (Jc D implies SC ¢ SD.
Hence STor (A, B) ¢ J? SA = o.

Lemma 1.3. If S is a subfunctor of the identity such that S(AjSA) = o
for all A, then

Proof. Since Tor is left exact, the sequence

is exact where the two components of the right hand map are induced
by the maps A -> A/SA and B -» B/SB respectively. The lemma now
follows from the hypothesis and lemma 1.2.

Lemma 1.4. If n is an integer, then

Proof.The function sending A into nA is a subfunctor of the identity.
Hence nTor (A, B) Q Tor (nA, nB) follows from Lemma 1.3.

In proving the opposite inclusion it is convenient to use the definition
of Tor given by MacLane [4]. Tor (A, B) is the Abelian group having
as generators all symbols (a, n, s) with n an integer, na= 0 in A, and
nb = o in B, subiect to the relations

The first two relations imply that

gx
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Now suppose that x = ina, m, nb) is a generator of Tor (nA, nB). Then
nma = o = nmb so that

Hence X is in uTor (A, B) as required.

If p is a prime and a is an ordinal number, then paA = p(pR+l A)
ifa= B+ 1 and paA = f]B>apRA if a is a limit ordinal. Then pa is a
subfunctor of the identity and pja (AipJA) = o.

Theorem 15. For p a prime and a an ordinal,

Proof. We proceed by induction on a. The case a = 0 is trivial and
the step from a to a -f- 1 is made with the help of Lemma 1.4. Suppose
a is a limit ordinal and the theorem is true for B < a. The inclusion
p“Tor (A, B) ¢ Tor (paA, paB) comes from Lemma 1.3. If § < a, then
paA c pBA and paB ¢ pfB so that

It follows that

It is worth noting that if Aais the a-th Ulm subgroup of A defined
by Aatl — fln®o nj4a and Aa= fl/s<a A? for a a limit ordinal, then the
method of proof just used gives

For the rest of the paper p will be a fixed prime and all groups will
he p-primary. If A is reduced, then the length X(A) of A is the least ordinal
a such that paA = o.

Corollary 16. If A and B are reduced p-groups, then Tor (A, B)
is reduced and its length is the minimum of the lengths of A and of B.

The p-rank of A, denoted by r(A), is the dimension of A\p] as a vector-
space over the field of integers modulo p. The a-th Ulm invariant of A,
denoted by fa{A), is the dimension of (paA)[p]/(patlA)[p] over this same
field. After writing ra (A) for r(paA) we have the equality

Theorem 1.7. For any ordinal a,

and
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Proof. If A is a cyclic group of order p, then Tor (A, A) —A. Tor
also commutes with direct sums. It follows that if pA —o = pB, then
r(Tor(H, B)) = r(A)r(B).

Theorem 1.5 and Lemma 1.1 give the equality

which together with the definition of ra and the remarks just made prove
the first equality of the theorem.

Since, for each group G, C[p] is a vector space over the integers module
p, every subgroup of G\p]is a direct summand. Hence

and

where U w (paA)[p]l/(patl A)[p~\ and V  (paB)[p]l(patl B)[p]. Let us
set W= Tor (A, B). Then (paW)[p\ = Tor (fpaA)[p~\, (paB)[pf) as we saw
in the last paragraph. Therefore

(Vaw)[p] = Tor ((P*+i A)[p], (pa+1B)[p]) © Tor (U, (patlllip]) ©
© Tor ((patlA)[pl V) © Tor (U, V).

The first term on the right side of this equation is (pa+aTT)[p] so that
(P IT)[p) (patyW)[//] is isomorphic to the direct sum of the remaining
three terms. Now the definitions of ra, fa, and the first paragraph of the
proof give the theorem.

Using the fact that ra= ra+1 ©/,, we can restate the second equation
of the theorem as

la (W) =/,, (A)ra(B) +ratl(A)fa(B) =/,, (A)ratl (B) + ra(A)fa(B).

Note that fa(A) <~fa (W) and fa(W) —0 if and only if fa(A) = o =
= /a (B).

Corollary 1.8. If A and B are reduced countable p-groups, then A is
isomorphic to a direct summand of Tor (A, B) if and only if /.(A) < ).(B).

Proof. Set W — Tor (A, B). Since X(W) = min (X(A), X(B)), the proof
in the forward direction is clear.

Suppose X(A) <; X(B). Then X(W) = X(A) = Xf-n where Ais a limit
ordinal and n < <& Since A and B are countable, we have ra(.d) = =
= 1, (B) whenever a < X It follows from the formula for fa[W) that

when a < X Define a sequence of cardinals ha as follows: for a < X put
Aa = o or X according as fa(W) = o or KO; for X a< X(W) choose ha
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so that fa(A) + k = fa(W). Then fa(A) + ha= fa(W) for all a < MW).
Moreover ha o for infinitely many values of a between any two limit
ordinals less than MW). Hence there is a countable reduced group G with
/[« (C) = K for all a [3]. Then fa(A @ C) = fa(A) + fa(C) = fa{w)
for all a. Hence Ulm’ Theorem gives A @ C aa 1",

2. Since A —Tor (Z(pa&, A), any p-group is the torsion product of
two p-groups. However not every group is isomorphic to a group of the
form Tor (A, B) with A and B reduced.

For S a subfunctor of the identity, let 3t (S) be the class ofall p-groups
A such that

(i) <S™) = o and

(ii) each infinite subgroup B of A is contained in a subgroup G of
the same power such that S(AIC) = o.

Theorem 2.1. If S is a subfundor of the identity and S(A) = 0 = S(B),
then Tor (A, B) £at (S).

Proof.Let G be an infinite subgroup of Tor (A, B). Since each element
of Gis a finite sum of elements <a, n, b) of Tor (A, B), there are subgroups
An Fo of A and B respectively such that s ¢ Tor (i0,B0) and
ITor (AQ,Bn) I= IG I By the leftexactness of Tor there is an exact sequence
o ->Tor (JO,Bn) ->Tor (A, B) ->Tor (A/AQ, B) @ Tor (A, B/B0). In view
of Lemma 1.2 the condition S(A) = o = S(B) implies that the right hand
group in this sequence is annihilated by S, hence Tor (A, B)/Tor (A0, B0)
is also annihilated by S.

Theorem 2.2. Let S be a subfundor of the identity.

@ IfA A~ (S) and B 4 A, then B~ 3t (5).

(i) 1f {Ai} is a family of groups in 3f (S), then™ A, £31t (S).

@iii) If A £at (S), then Tor (A,B) £31t (S).

(iv) If A£3t (8), then (S(d) -0 and, for every infinite subgroup
B of A, IS(A/B) I™IBI.

(v) If S(GISG) = o for all p-groups G, the converse of (iv) holds.

Proof. Part (i) is trivial. Suppose A, £ 3t(S) and B d~'A mis infinite.
Let tii be the r-th coordinate projection. Since, for each bin B, m-b= 0
for almost all indices, there is a set J of indices such that \J\<; |B | and
njB = o for i not in J. We lose nothing in assuming that J contains all
the indices. Since A, £at (8) there is a C\ such that wB ¢ &', cr Ah
ICi = lwB I ~ IB !and SUIi/Ci) = 0. Then Br-3~Ch \B\ = n
and S(fS AJE G,) at JV S(AIlICt) = o.

It was shown in the proof of Lemma 1.2 that Tor (A, B) is contained
in a direct sum of copies of A. Hence (iii) follows from (i) and (ii).

Suppose A £at (S)and B is an infinite subgroup of A. Then B ¢ G c:
¢ A with |C| = |£|] and S(AIC) = o. Since o -+C/B -t-A/B “mA/G is
exact, S(A/B) ¢ C/B. Hence \S(A/B)\ <) \CjB\ ~ |C| proving (iv).
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Now suppose that S(GISG) = o for all p-groups G and that \S(A/B)\
< | B whenever B is an infinite subgroup of A. Let B be an infinite sub-
group of A and let C ¢ 4 be such that G/B = S(A/B). Since A/G =
= (AIB)I(CIB) = (A/B)/S(A/B), S(A/C) = o.Moreover \C\ = \G/B\ + |B|=
= \S(A/B)\ +\B\ <; \B\ + \B\ = b\

The class Sti* (p°°) where p” sends each p-group into its maximal
divisible subgroup is related to a concept studied by S. A. Khabbaz. He
calls a p-group starred [2] if it has the same power as a basic subgroup.
Khabbaz and J. M. Irwin call a p-group fully starred if every subgroup is
starred. The class o f (p°°) is the class of fully starred p-groups.

Lemma 2.3 A reduced p-group A is starred if and only if AjC divisible
implies |C| = \A\

Proof. Suppose A is a reduced starred p-group, C ¢ f and AjC is
divisible. If G # 4, then C is infinite. It is therefore contained in a pure
subgroup H of the same power [1, p. 78]. Then A/H is also divisible. Let
B be a basic subgroup of H. Then B is pure in A and, as is easily shown,
AIB is divisible. Hence B is a basic subgroup of A. Since A is starred,
\A\ = \B\ = \H\ = \C\

The proofin the opposite direction is immediate since AjC is divisible
when G is a basic subgroup of A.

Theorem 2.4. 3%*(p°°) is the class of fully starred p-groups.

Proof. Suppose A £3i?(p") and G c: A. If G is finite, it is clearly
starred, hence we may assume G infinite. By Theorem 2.2 (i) G£-W(p"").
Let B be a basic subgroup of G. Then B is also infinite and G/B is divisible.
Finally let B ¢ D with \B\ = \D\ and p” (GjD) = 0. Then D = C and
IC| = \B\ showing that G is starred.

Suppose on the other hand that A is fully starred. Since a nonzero
divisible group is not starred, A is reduced, i.e., p” A —o. Let B be an
infinite subgroup of A and let Cc A be such that G/B —p°°(A/B).
Then p"(A/(7) = o and, since Gis starred, \B\ = \G by Lemma 2.3. Hence
As”(p*“)

Corollary 2.5. If G is a p-group which is not fully starred, then G is
contained in no group of the form Tor (A, B) with A and B bhoth reduced.
In particular an uncountable p-group with a countable basic subgroup is
contained in no such group.

Proof. According to Theorem 2.1 and Theorem 2.4 Tor (A, B) is
fully starred if A and B are reduced p-groups.

3. This section continues the study of generalized purity begun in [5].

For convenience | shall repeat the pertinent definition from that paper.
An extension
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where Z is the group of integers gives rise to a subfunctor gL, of the
identity by

A subfunctor of the identity 8 is called a cotorsion functor if 8 — S(&}
for some © £Ext (H,Z) with H a torsion group. An extension

is called S-pure if it belongs to 8 Ext (A, C) and the group A is S-projective
if $ Ext (A,G) = o for every G (in [5] | used the more accurate term
8 Ext-projective). 8 Ext is said to have enough projectives if, for each
group A, there is an A-pure exact sequence

in which E is 8-projective. According to Theorem 4.8 of [5] the functor
S Ext has enough projectives if and only if 8 = $(®©) for some © £ Ext
(H,Z) where H is ~-projective.

It has been shown that, for each torsion group H, there is at most one
functor <§(@) with © £ Ext (H, Z) such that H is S(©)-projective.

Theorem 3.1. If H is a reduced p-group which is contained in no group
of theform Tor (A, B) with A and B reduced, then there is no © £ Ext (H, 2)
such that H is 8 (©)-projective.

Proof. If © £Ext (H, Z) and M is $(©)-projective, then a torsion
group G is S(©(-projective if and only if G is a direct summand of Tor
(H, C). This useful observation was omitted from [5] but it follows easily
from the discussion in sections 3 and 4 of that paper. Now if H is a reduced
~3-group and is to be $(©)-projective, then Il is a direct summand of Tor
(H, H) contrary to the properties assumed for H. The existence of groups
H with the properties required in this theorem follows from Corollary 2.5.

The theory of cotorsion functors was developed to provide a suitable
context in which to discuss the functors pa. For each ordinal a, there is
a group Ha and @af Ext (Ha, Z) such that

b pa=S(&a),

(i) Ha= <aHRB if a is a limit ordinal,

(iii) paHatl is cyclic of order p and //,, +ljp” Hnw1 ai //,,,

(iv) paHa= o, and

(v) Huis "“-projective.

Theorem 3.2. A countable p-group A is pa-projective if and only if
paA = 0.

Proof. If A is ~“-projective, then A is a direct summand of Tor (//,,
A). By Lemma 1.2 we then have paA = o.
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If 8 < aand A is yZ-projective, then A is yJiprojective. Since A is
countable, paA = o implies ppA —O0 for some countable ordinal B. Hence
we need only prove the theorem for a countable.

Let A be a countable group and let p™ A = o for a countable. Since
Ha is countable when a is countable and /(//,) = a we have A(A) <[
<[ A(/l,). Then Corollary 1.8 tells us that A is isomorphic to a direct sum-
mand of Tor (Ha, A) and is therefore ™ *“-projective.

The functor pa Ext is called hereditary if it satisfies the following
three equivalent conditions:

1) For each y/'-pure exact sequence

and each group B, the sequences

and

are exact..
2) Every y/'-pure subgroup of a p“-projective group is " “-projective.
3) For each group A, there is a y/'-pure exact sequence

0 M-rP ~ A >0

in which both M and P are pn-projective. The equivalence of these three
conditions is well known in homology theory and is easily proved using
the theory developed by the author [5] by imitating the proof of Propo-

sition 3.7 of MacLane [4 p. 75].
Theorem 3.3. If a is a countable ordinal, then paExt is hereditary.

Proof. Let a be a countable ordinal and let

be an exact sequence such that H = //,, and pa= $(©). Given A, Theorem
3.1 (iii) of [5] gives a y‘-pure exact sequence

where F is free and the restriction of to Tor (//, A) is the connecting
homomorphism induced by 0. Since F is free, the sequence

is exact, and Tor (H, A)is a torsion group, it is easy to verifythat M * N @
@ Tor (G, A) where N is free.

Let T be the torsion subgroup of G. Then Tor (G,A) = Tor (T, A).
Moreover T fl Z = 0 so that T is isomorphic to a subgroup of H. If ais
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countable, then H is also countable and pall —0. Hence T is countable
with paT = 0 so that T is pa-projective by Theorem 3.2. Then Theorems
41 and 4.2 of [5] show that F @ Tor (H, A) and N ® Tor (T, A) are
p a-projective. Thus to each group A we have associated an exact sequence
meeting the condition (3) and have shown that paExt is hereditary.

Theorem 4.2 of [5] says that if A is ~“-projective so is Tor (A, B).
The next theorem gives a partial converse.

Theorem 3.4. If A and B are p-groups Tor (A, B) p I-projective and
p" A 9o, then B is pa-projective.

Proof.JipaA  o,thereisanelementainpaA with orderpn(n > 0).
Let Za be the subgroup of A generated by a and let F be a free group
with one generator x. There is an exact sequence

0o =>Z =F —>Za —>o

in which 1 in Z maps onto pnx and x maps onto a. Since the inclusion
Za ->4 is a monomorphism and the functor Ext is hereditary, there is
a commutative diagram

in which the rows are exact [4, Proposition 3.7]. Since the map F -> G
is a monomorphism, F may be identified with its image in G. In the same
way Z may be identified with its image in G. To summarize there is an
element x in G mapping onto a modulo Z with prx = 1.

The next step is to show that x is in paG. Suppose if possible that
X is notin p* G for some B <[ aand let R be the least such ordinal. Since
pr G = fy<s pvG when B is a limit ordinal, 8 —y + 1 and x is in pRG.
Then Z = pn(2x) ¢ j/ G. It is easy to show by induction on B that each
element of G mapping into p" A modulo Z lies in prG. Hence x is in pRG
contrary to hypothesis.

Thus x isinplGand 1 = prx £patn G. It follows from the definition
of S(@) that 8(&)G ¢ patnG for all G.

Bv Theorem 3.1 of Il there is. for each sroun C. an exact seouence

where G Tor (A, B) -> B is the connecting homomorphism induced by 0).
The map carries pakExt (B, G) into p ‘Ext (Tor(4, B), C) which is 0
because Tor (A, B) is assumed ~"-projective.

Hence

p lExt (B,C) ¢ S(©) Ext (B, G) ¢ patn Ext (B, C).
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Since n > o, p Ext (B, G) is therefore "3-divisible. However B is a p-group
so that Ext (B, C) has no ~-divisible subgroups by Proposition 4.1 of [5].
Therefore paExt (B, G) = 0. Since G is arbitrary, B is pamprojective.

A p-group is ™»"-projective if and only if it is a direct sum of cyclic
groups. Hence the special case

Corollary 3.5. If A and B are p-groups with p'™ A ~0 and if Tor
{A, B)is a direct sum of cyclic groups, then B is a direct sum of cyclic groups.

Kolettis [3] showed that Ulm’ Theorem holds for reduced groups
which are direct sums of countable groups and raised the question whether
every subgroup of such a group must be a direct sum of countable groups.
The answer is no.

Corollary 3.6. Let A be a reduced countable p-group with pmA 0
and let B be a p-group without elements of infinite height which is not a direct
sum of cyclic groups. Then Tor (A, B) is contained in a direct sum of copies
of A but is not a direct sum of countable groups.

Proof. As in the proof of Lemma 1.2 we have B ¢ JP Zip'") so that
Tor (A, B)QjP Tor (A, Z(p~)) at™~A. Sincepw B = o, pwTor (A, B) = o
by Lemma 1.2. A countable p-group without elements of infinite height
is a direct sum of cyclic groups. Hence if Tor (A, B) is a direct sum of
countable groups, it is a direct sum of cyclic groups. Now Corollary 3.5

and paA ~ 0 imply that B is a direct sum of cyclic groups contrary to
hypothesis.
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ENDOMORPHISM RINGS OF PRIMARY ABELIAN GROUPS1

By
R. S. PIERCE
Washington University, Seattle

Introduction

The work of Corner 11 ] has shown that the endomorphism rings oftorsion-
free Abelian groups can be quite general. In contrast, the endomorphism
rings of primary Abelian groups have many special properties. In the
author’s work [3], a start was made in the study of the endomorphism
rings of p-groups. It is the purpose of this paper to continue these inves-
tigations.

If Gis a p-group without elements of infinite height, and B is a basic
subgroup of G, then the endomorphism ring <(G) contains an embedded
copy of the ring Wp (B) consisting of all bounded endomorphisms < of
G such that 90(B) cr B. The subring Bp (B) has a number of special proper-
ties. Most important, it is a right ideal in 8>(G). In this paper, we will
characterize up to isomorphism those extensions Y of a fixed ring $p (B)
(where B is an unbounded basic group) which are of the form r(G) for
some group G without elements of infinite height which has B as its basic
subgroup. At the same time the extensions of the form & p (G will also
be characterized.

Our notation and terminology conform with those of the standard
reference work of Fuchs on Abelian groups [2]. Similarly, we will use the
standard results on Abelian groups without giving specific references to
pages in [2]. In a few instances it will be necessary to use some special
cases of theorems proved in Pierce [3]. These special theorems can be

proved directly by elementary means—a task which we delegate to the
reader.

1. p-Faithful rings

Let be an arbitrary ring. We will denote by the p-primary com-
ponent of the torsion subgroup of  Thatis, Y nconsists of all ££ ™ such

1The main theorem of this paper was developed in the author’s address at the
Colloquium. One part of the address was devoted to a joint work of R. A. Beaumont
and the author, which will be published elsewhere.
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thatpk£= 0 for some Kk o.It is obvious that, isan ideal of 'V In fact»
if pkE= 0 and £€ 2 "then by the distributive law pk(££) = pk(EE) = o-

1.1. Definition. A ring S is called p-faithful if g£2i and ££ = o
for all ££ ~'nimplies £= o.

In other words, ™ is p-faithful exactly when the left regular repre-
sentation of on the ideal So is faithful.

1.2. Lemma. If ~ is p-faithful, then flnkmp™ S = 0-

Proof. Let £ £ Nn<a>Pn S- Suppose that ££ V P'say p" f = 0. Since
£= pny for some y s 7 it follows that ££= pnyE = o. Hence, £= o.

1.3. Corollary. if 2 is p-faithful, then the torsion subgroup of s
p-primary without elements of infinite height.

Proof. If q”~p, then pnSo —S,, for all n. Hence, S o= Nn<lOPn
2 9 —"n<TPn2 —o- Hence, is the entire torsion subgroup of S-
Since N1,<mPn2 p —n,<apn =0, it follows that So has no elements
of infinite height.

1.4, Lemma. Let G be a reduced p-group. Suppose that S is a subring
of (G) such that the subgroup H of G generated by {E(X)\ ££ S p,x £ G)
has the property that GjH is divisible. Then S is p-faithful.

Proof.Let EEST be such that ££ = o for all ££ So- If K is the kernel
of £ then H c. K. Hence, £(G) is divisible. Since G is reduced, it follows
that £{G) = o. Thus, £= o.

An interesting -consequence of 1.3 and 1.4 is the fact that for any
reduced p-group G, the ring ©©(G) has a faithful representation as a subring
of a ring <€(H), where H is a p-group without elements of infinite height.

2. Basic rings

We now consider a special situation. Let B he an unbounded basic
p-group, that is, a direct sum of p-power cychc groups. Collecting the
cyclic summands of the same order, it is possible to write

B= >7 B

where Bnis a direct sum of cyclic groups of order pn+1. This decomposition
is not canonical, but for our purposes it is convenient to select and fix
such a decomposition once and for all.

Let B denote the closure (or torsion completion) of B. The group B
can be considered as the torsion subgroup of the complete direct sum
S*.-..Bn. It is of course assumed that B is imbedded as a pure subgroup
in B. If Gis any p-group without elements of infinite height, which contains
1?7 as a basic subgroup, then it is well known that there is a /»-isomorphism
-of G onto a pure subgroup of B. Thus, in a sense the study of p-groups
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without elements of infinite height is equivalent to the study of the pure
subgroups of suitable closed groups B.
It is convenient to fix some notation which will be standard below.
2.1. Notation. Corresponding to the fixed decomposition

let

Let nT denote the projection of B on /©0 /i, ©...0 BmXx corre-
sponding to the direct decomposition B = Bn®© 0 ***© Bu,1© ®m
Note that n0= o. Define

Then dn(B) = Bm, d&h= &n, and nT= g0+ gx+ ... + AT _X.

All ofthe endomorphisms nTand dmhave finite order. In fact, pmnT =
= PmlK = o.

The following simple result will be needed later.

2.2. Lemma. Ifx £B, then E((1 — nT)(X)) © (1 —nT)(X)) > m + 1.

Proof. Clearly, (1 — nm)(X) £ Bm, and it is well known that for
w £ Bm the inequality E(w) © h(w) © m + 1 is satisfied.

By virtue of the p-adic topology in B, it is possible to assign a meaning
to certain infinite sums. Specifically, ifuu uv u2... is a sequence ofelements
of B such that the exponents E(un) are bounded and limn>@h(un) =

then the partial sums unconverge to an element of B. It is convenient
to denote this element by un. As an example, the following useful
identity holds for all w £ B.

(23)

Suppose that B ¢ G ¢ B, where G is a subgroup of B. If % is an
endomorphism of G, then it is well known that phas a unique extension
to an endomorphism of B. This extension can be defined by the identity

Since E((pdn(w)) < E(w) and h(<pdn(w)) > h(én(w)) © n + 1 —1?(«), this
infinite sum is well defined. The fact that the extension of » to B is unique
follows easily from the divisibility of BfG. Notice that the exponent of
(p is preserved under the extension to B.

The fact that endomorphisms have unique extensions to B under
the conditions given above makes it possible to adopt a very useful con-
vention. If B ¢: G ¢ B, where G is a subgroup of b, we will identify the
endomorphism ring of G with the subring of the endomorphism ring of
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B consisting of the extensions of the endomorphisms of G. That is,

This identification carries with it the identification of the torsion subgroup
of a?(6) (which we will denote by P(G)) with a suhring of f?p (B), namely

24. Lemma. Suppose that @£&p(B). Then <p(B) = q(B).

Proof. Let E(cp) = k. Since B is a basic subgroup of B, we have
B = B JpkB. Hence, ¢>B) = >(B) -\~<p(pkB) = <p(B) §-pkp(B) = <(B).

25. Corollary. Let ©p(B) ¢ ¢ 9%>(B), where ™ is a subring of
IT(B). Then vp (B) is a faithful right ideal of

Proof. By 2.4, (0op (B) is a right ideal infS. Suppose that gQ= o
for all EEWp (B). Then dnf£ = o for all n. Thus, by 2.3, £W = » na
dn£(rc) = o for all w £ B. Hence, £= o.

3. The layer topology

Before further progress can be made, it is necessary to introduce a
topology on rings of endomorphisms.

3.1 Definition. Let be a subring of W(B). For each non-negative
integer k, define Nk= {££ | £{B\pk}) = o} The family of all such
sets Nkconstitutes a neighborhood basis at o for a topology on which
we will call the layer topology.

The layer topology on rings of endomorphisms is metrizable. In fact,
for £ [Min V, define

It is easy to see that d is an invariant metric on and that

Therefore, the topology determined by this metric is the layer topology.

3.2 Lemma. Let”™ be a subring of %>(B), and suppose that ££~ \ Then
£ € Nkif and only if £ (B[pk]) = 0.

Proof. Suppose that C(B\pk]) = 0. Let x £B[pk\. For any n > 0,
it is possible to write x = b f-pry, where b £ G[pk] and y £ B. Hence,
£ (X)= £() -Fpn 'Qy) —pn£(y) £pnB. Since n can be arbitrary and B
has no elements of infinite height, if follows that £0k) = 0. This shows
that £(B[pfd) = o implies ££NKk, and the opposite implication is trivial.

3.3 Corollary. Let B er G ¢ B, where G is subgroup of B. Then the
layer topology on <£{G) coincides with the topology obtained by taking all sets
{£ £$°((?) 1 £E(Cr[pn]) = O} k= 0,1, 2,.. as a neighbourhood basis of 0.
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We now establish that multiplication is right and left continuous ii
the layer topology. It is convenient to use the metric defined above.
3.4 Lemma. Let £ vy, and C belong to t?(B). Then

Hence, right and left multiplication are continuous in the layer topology.

Proof. Let d(£, y) = p~n. Then we have (E —y)(B[pn]) = 0. Hence,
(CE- aV)(B[pn]) = c(f - y)(B\pn]) = o and (ic - yO(Bipn]) = (i —i?)
cNe "]) ¢ (F- ,?2)Ne"]) = o. Thus, d(ff, af) » p"" and <*(« ty) <,
<,P~n-

We will need one more simple result concerning the layer topology.

3.5 Lemma. Let CEWP(B). Then lim ~. £m, = £ in the layer topology.

Proof. Let pkC= o. Suppose that m is given. Let n > m -\-lc — 1.
If X£ Cr[pm], then E(x) < m. Hence, E((1 —nn)(x)) < m. It follows from
2.2 that A(( —nm)(x)) k That is, @« —nan)(X) = pky for some y £ B.
Therefore, C(1 —un)(x) = C(pky) = pk C(y) = o.This shows that (f — £n.;)
(/5[pm]) = o.Since m was arbitrary, limn\.,, £an= Cin the layer topology.

4. The first representation theorem

In Section 2. it was shown that if is a subring of <4B), and if *p(B)c
< then Wp(B) is a faithful right ideal in N .Moreover, by 3.4 right mul-
tiplication by elements of is a continuous transformation on WP(B) in
the layer topology. We will now prove that these two conditions are
characteristic.

4.1 Theorem. Let N be a ring which contains %P(B) as a faithful right
ideal. Suppose that the mapping @ —<Cis continuous in the layer topology
of %p(B) for all Ce N - Then there is a ring isomorphism of mto W(R)
which is the identity on HP(B).

Proof. For Ceé 2 and w f B, define

Note that {dnC)M s Bn, E(dnCM) < E(w), and h(dn CM) >n + 1 —E(w).
Consequently, the right hand sum represents a well-defined element
of B. Clearly, $tis a homomorphism of B into B. If Cs &P{B), then, dr(®w) =

= 2n<w (gnOM = 2n<g bn(CM) = CM for all wEB . Therefore, fc= C
for all C€ %>p(B). From the distributive law in V, it follows that & =

= d — 4, We wish to prove that Su= Tdr Let m < o be arbitrary.
Since £ is in WP(B), we have lim,~ dmfnn= Sm£ in the layer
topology by 3.5. That is, limn,, ~ r<ndm£ <8 = dm£. Therefore, since

9 Abelian Groups
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right multiplication by elements of J? is continuous in the layer topology,
it follows that limn "M~ r<ndm£drj— dm£r. LetwdB and E(w) =
= k. Then an integer s exists such that JBIV<r&rEdry (w) = dmE r] (w) for
all n>s. Consequently, 6mEdrij (W) — 0 if r > s, so that aT/.tXfw) =
= dmE(JEr«o YM ) = ™ r<odmt;dr (w) = » rEsdmE dr i (w) = emErj(w) =
= dmAn) (w). Thus, by 23, AAWw) = A, (wW). Since w is arbitrary,
At = A Ar To complete the proof, we show that if A= o for £d then
£=0 If A= 0, then ££ (A) implies ££= Af= A A= 0. Since
SP(B) is a faithful right ideal in it follows that £= 0.

5. Purity

Our ultimate aim is to characterize the rings S (G), where B ¢ Gc¢ B,
and Gis a pure subgroup of B. An intermediate goal is the characterization
of the rings S P(G). In this section, the purity of G in B is considered.

51 Lemma. Let B Q G ¢ B, where G is a pure subgroup of B. Then
S p(G) is a pure subgroup of Sp(B).

Proof. It follows from 2.4 that S p(G) is a subgroup of Sp(B). More-
over, since Gis pure in B, it follows that Homs (B, G) is pure in Homs(.B, B)
[3, (5.10)]. The torsion subgroup of Horn (B, B) is contained in Homs (B, B),
and by the convention on extending homomorphisms to B, the torsion
subgroup may be identified with Sp(B). Under this identification the torsion
subgroup of Homy (B, G) goes into Sp(G). It follows easily that Sp(Q is
pure in SP(B).

This lemma points out the importance of characterizing the pure
subrings of SP(B).

52 Lemma. Suppose that Sp( B ) ¢ S p(B), where ™ is a subring
of Sp(B). Then ispure in Sp(B)if and only ifforany £in ¥, if Sp(B)£c._
¢ pkSp(B), then dpk v

Proof. Suppose that is pure, £d 'y, and SP(B) CQpkSRAB). If
n > o,then 6n £ = pkomnfor some ¢ d S P(B). Thus, ifw d B[pKk], dn£w) =
= pk@Mw) = g(pkw) = o for all n < to. Hence, £(B[pkY = o. Next, let
w dB be arbitrary. Suppose that A(E(w)) = s. Then for some n, A<GE(w)) = s.
Since dnd &p(B), it follows that h(dn £(w)) > k. Thus, s > k. This argument
shows that £(b) c: pkB. It follows from 59 [3] that £dpkSPB), so
that by the purity of £ dpk ,N.Conversely, suppose that forevery £d Y ,
Sp(B)ZQpkWR(B) implies £dpk”~ - Let £dVkSn(B) no Since S BB)
is a right ideal in S P(B), it follows that SP{B) £ ¢ pkFp(.B). Thus, £d Pk ¥-
Consequently, pkSp{B)r\'Y, = pk and is pure in Sp(B).
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6. A Galois connection

The purpose of this section and the following one is to characterize
the rings which are isomorphic to Sp(G) for some group G satisfying
Bc Gc B, Gpure in B. The first part of this characterization involves
the construction of a group corresponding to each pure subring fE of S p(B)
such that 3 Sp(B).

6.1 Definition. Let Sp(B)c: 'ffQS JB), where is a pure subring
of Wn(B). Define

6.2 Lemma. Let Sp{B)Q” c.S p(B), where J5? is a pure subring of
S p(B). Suppose that x £ G( and b £ B are such that

(@) E(b) ~ E(x), and

(o) B = (by ® K.

Then there exists y£ such that ip(b) = x and ip(K) — 0.

Proof. Since X £G (”), there exists @£ Jf? and ¢ £ B such that x =
= (p(c). Let B= <d} ® H, where d £ B and E(d) ]> E(c). Such a decom-
position exists because B is unbounded. Define & B ->B by X(d) = c,
X(H) = o. Then AESp(B)cz™. Let %— PpAEL Assume that E(x) = m,
E(d) = m -\-k, where kK o, since %(d) = x. Then B[pk¥= (pmd} ®
® H[pk] ¢ ker Write x = e -\-pky, where e£B and E(e) < i?(x) =
= m. Define dESp(B) by d(d) = e d(H) = o. Then d£Sp(B)c: V
and d(pmd) = pme — 0. Consequently, B[pa] ¢ ker A Consider » — &
We have %—06 £~ and / —b = pkp, where p £Sp(B) is defined by the
conditions p (H) = o, p (d) = y. Note that pm+ky = pm(e -\-pky) = pmx =
= o, s0 that E(y) < m + fc= 2?(d). Since ~ is pure in Sp(B), there exists
r£2 such that %— 6 = pkr. Then 7 (pkd) = pkr(d) = %(d) — (5(d) =
= X—e= Clearly, E(pkd) = m = 1?(x) < i?(&). Consequently, there
exists Ce "P(B)C- a nd 1€.Sp(B)<~" satisfying

Let yy= tj -)-rf. Then yE£ y>(K) = o, and ip(b) = rj(b)f- r(C(s)) =
= e f-r(pkd) = e f-pky —x.
6.3 Lemma. Let Sp (B)Q”c:_Sp(B), where JV is pure in Sp(B). Then
G(J?) is a pure subgroup of B with B ¢ G( N).
Proof. Let z,w £ Choose b £ B such that E(b) > E(z), E(b) >
¥>E(w), and (by is a direct summand of B. By s .2, there exist yjland ip2
in such that yfb) = z and f2b) = w. Consequently, z—w= (1—ip2) (b)
£G (™). Therefore, G( N) is a subgroup of B. If <c) isadirect summand
of B, then (c) is a pure, finite subgroup of B. Therefore, <c>is also a direct

9*
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summand of B. The projection o of B onto <c) belongs to IT,,(B)Q
Hence, (c)cG (jV). Since B is a direct sum of cyclic groups, it follows
that5¢ G Q °).To prove that G( is pure in B, suppose that x £ B, and
y = pkx EG( >\ Choose b £ B such that E(b) j> E(X) and 22= <) ® A.
By 6.2, there exists ip £22 such that ip(b) = pkx, ip(K) = o.Define 9£ sPp(B)
by the conditions <p(b) = X, 99(A) = 0. Thenip= pk< Thus, ip£pks?P(B) f|
n = pk ~Y. Consequently, ip= pk% for some y £ Moreover, y =
= pk< = tp(b) = pk%b) Epk G(JE). Hence, G(JE) is pure in B.

6.4 Lemma. Suppose that s?p(B) ¢ ¢ 7¢c  p(B), where N and T
are pure subrings of s?p(B). Then G( y)~G (T ). Moreover, s?n(G( jV))c V.
Finally, if Gis apure subgroup of B such that B Q Gc¢ b, then G (P(G)) =
= G.

Proot.Obviously G(vy) £ G(T). If £ and b£B, thenepb) £ G( V)
by the definition s.1. Thus, by 2.4, <p(B)czG( ¥Y), so that g IT,,(G(
This proves that 25 ¢ *p(G(_")). Assume that B Q GQ B, where G is
pure in B. If b£B and 9£sp(G), then (pb) £G. Hence, G (*P(G)) ¢ G
On the other hand, suppose that x £ G. Let b £ B be such that E(b) > E(x)
and B = (b} ® K. Define (p£s>P(B) by cph) = x, ep(K) = O.Then £ WP(G)>
so that x = <) £ G (e>P(G)Y Therefore, G = G {WP(G)".

7. The finite topology

If Sp(B) Q 22 Q &?P(B), with pure in &?P(B), then in general the
inclusion™® —~p (G (")) is proper. Our objective in this section is to obtain
a topological criterion on 22 which is necessary and sufficient for this
inclusion to be equality.

7.1Definition.Let22 bearing. Anidempotent n £22 is called decom-
posable if it is possible to write n — n1 -f- n2, where nxand n., are non-zero,
orthogonal idempotents (nmz2= n2n1= o). An idempotent n is called
indecomposable if 1 ~ o and n is not decomposable. An idempotent n
in 22 will be called finite if it is possible to write n = ax-\-s52+ ...+ nar>
where each n, is an indecomposable idempotent and ww, —o for i » j.
The set of all finite idempotents in 22 will be denoted by & (.S").

In general, aring 22 may not have any indecomposable idempotents,
in which case ® ( jVj is empty. However, the rings we are concerned with
do have an adequate supply of indecomposable idempotents.

7.2 Lemma. Let e5P(B) 222 —. (B,. where 22h is a pure subring of
8?P{B). Suppose that o ~ ¢ f G(22p) is suchthat B = (¢c) @ D. Let n be the
projection of B onto (c} which is determined by this decomposition. Then
n is an indecomposable idempotent in 22p- Conversely, every indecomposable
idempotent in 22nis of this form.
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Proof. 1) Let E(c) = m. We will first show that B — <nzm(c)> ©
© Dand E(n.T1(c)) = m. Byz2.2,h(c — nlr(c)) > 2 m —E(c —nlv(c)) m.
Consequently, if c —n2t(c) = j @ d with d £D and j an integer, then
since the decomposition B = <¢> © D is direct, we have m < h(c — nz1 (c))
= min {h(j x), h(d)} < h(jc). Since <c>is a direct summand of B, it follows
that if jc L 0, then h(jc) < m. Therefore, jc = 0 and ¢c —n2rc £D. Con-
sequently, <nzt ¢>+ .0 = B. Moreover, D\p\a B\p\ = <pm_ic> -\-D\p~] =
= <pm_1Tem(c))+i)[p], so that pm~xn2m(c)§D[p~\,and in particularp ™112T1(c)

(».Therefore, E (n21 (¢)) = mand <nat (¢)>nn-O= 0. Hence, S —<n21 (€)> © 1)

2) We will now show that the projection n of Honto <c> corresponding
to the decomposition B = <¢c>© D is in It is obvious that n is an in-
decomposable idempotent. By 1), B = <nzt (€)> © D, where E(ji.Im(cj) =
= m —E(c). By s.2. there exists mg Np such that y(n.,7(c)) = c. Let p
he the mapping of /i onto /( determined by the conditions g(D) = o,
g(c) = az21(c). This g is well defined since 2= <> © D and 2?(c) =
= E(ndrm(c)). Note that q£&P(B)Q JP. The product isin ™ and yxqg
satisfies tpn(D) = o, Y o(c) — xp(n2T(c)) = c. Therefore, y»g= n, and we
have the desired result that n £2*- Obviously then n £J7?p.

3) Suppose now that nlis any indecomposable idempotent in N'p.
By 2.4, nXB) = nfB) cr G(JEp) .Since nl1 o,there isanon-zeroc £ n2(B) Q
cG (2p) such that n™"b) = <> © E. Thus, B = <> © D, where 2=
= E© (1 —n)(B). To complete the proof, we have to show that E = o.
Let n be the projection of B on <c> with the kernel D. Then (n — nn1)(B) =
= n(\ —=n)(B)c n(1>) = o and (n—n1)(B) = (] —nIYn(B) = (1—nt) (<c>) =
= 0. Hence 4d1= n+ (nx—n), where (AX - np2= n, —4a, and
n(nr—n) = (nx—n)n = o. Since nlis indecomposable and n ~ o, it
follows that nx= n.

7.3 Corollary. Lei %P(B) g’(B), where is a pure subring
of Wp(B).If no (V D, then n(B) is afinite subgroup of G ( .Conversely,
every finite subset of G(_Np) is contained in n(B) for some n £ d( Nn.

Indeed, it is clear from 7.2 and 6.3 that every finite direct summand
of G ( N*jj is of the form n(B) for some n £ ®( N'nj. and since B has no ele-
ments of infinite height, every finite subset of G(_N’P) can be embedded in
a finite direct summand.

On the basis of 7.3 it is possible to give an abstract definition of the
finite topology for the class of rings which we are studying.

74 Definition. Let &P(B) — <%(B), where ¥y is a pure subring
of %p(B). For each n £ define

The family JW |n £ ®(V p)J constitutes a neighborhood basis at 0 for a
topology on 2 which we will call the finite topology.
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In order to justify this definition, note that ££N,, if and only if
71(B) ker £ Thus, it follows from 7.3 that if m, and pgzbelongto ®( ¥ B),
then there exists ., £ ®d(Y,,) such that N,, 3 As> Moreover, if
££ A, for all n£o (>U, then £(.B) = o. Consequently, £= o since B is
reduced and B/B is divisible. Hence, the finite topology satisfies the 1\
separation axiom.

If ¥, = &(&) for a pure subgroup G of B with B G, then the finite
topology, as defined in 7.4, agrees with the usual finite topology for trans-
formation groups. In fact, by 7.3 and 6.4, if If is a subset of %@ and
£ £ %G), then £ belongs to the closure of K in the topology of 7.4 if and
only if, forevery F G =G {~ P(G)), there exists such that (E—rj)(F)=
= 0. However, this is just the usual definition of the closure in the
finite topology of transformation groups.

75 Lemma. Let B Q G Q B, where G is a pure subgroup of B. Then

p (G) is dense in &(G) in the finite topology.

Proof. Let cpMW(G). Let «i £ ®(&p{Gf). Then cpn™Wp(B). Hence,
by 2.4, 6.4, and 7.3, pt(B) = @n{B)Q<prG(*p(G)) = p(G Q G. Hence,
<P Ks Clearly, @ —@n £N,,.

In order to characterize the rings <4G and ‘$p(G), it is necessary to
use the concepts of completeness and torsion completeness relative to the
finite topology. The definitions are essentially standard, but for con-
venience we will review them.

Let 8°,(B)Q yQ&IB), where is a pure subring of %p(B). A subset
of  whichisindexed by adirected setis called anetin ~'.Wc will generally
use the notation {£¢|i £D} to denote a net in Y.

A net {£+1i £D}is said to converge to an element ££ Y in the finite
topology of ~ if for each T£ ® (Y P), there is an index j £D such that
fe— ££N,, for all i > j (thatis, £2n = £it for i £5j). In this case we
will write £= HmifD £f. A net {£«|i £D} is called a Cauchy net if, for
each T£0(Y ,),thereisanindex j f D such that £ —£«f N,, for all
i and i’ which are £5n

It is obvious that every convergent net is a Cauchy net. If conversely
every Cauchy net converges to some ££ ¥ ,then” s said to he complete
in the finite topology.

If {£«1i £D} is a net in”™ such that there is some K£>0 with the
property that !?(E,m)<£& for all i, then this net will be called bounded. If
limifD fe = £and pk£e= o for all i, then pk£ = o.Therefore, a bounded
net can only converge to a bounded element. The ring will be called
torsion complete if ¥ ,, =¥ and every bounded Cauchy net has a limit
in Y.

7.6 Lemma. Let B Q G Q b, where G is a pure subgroup of B. Then
W(G) is complete and %p (G) is torsion complete in their finite topologies.
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Proof. Let {£, |i £D) be a Cauchy net in ¢(G). If x £ G, there exists
j £ 1) such that C(% = Cj{x) for all i >j. This follows from 7.3. Define
C(x) = (fx) £G. It is easy to verify that Qdefined in this way is a well
defined endomorphism of G. Thus, ( has a unique extension to B. if
n £ ®{MWP(Q)), then since {Ci |i £D) is Cauchy, there exists j such that
Gtd= n for all i > j. Consequently, £¢5 = Csa for all ii>j. Hence,
lim#D d= G This proves that If(G) is complete in the finite topology.
Suppose now that {Ci|i £D) is a bounded Cauchy net in %P(G), say
pk ‘@= o for all i £1). Since {Ci |i £0} is a Cauchy net in the finite
topology of Wp(G), it is also a Cauchy net in the finite topology of If(G).
In fact, it is obvious from the Definition 7.4 that the finite topology on
&P (G) is the same as the relative topology which it inherits as a subset
of <G(Q with the finite topology. Let C—IimifD G in W(G). As we have
just seen, this limit exists. Then pkC= limieD pkd = o. Hence, C£ &p(G)
and limfgd d = Cin the finite topology of €p(G). Consequently, <%(G)
is torsion complete.

We are now ready to prove the converse of the second half of 7.6.

7.7 Lemma. Let <p(B) ~ Q Wp(B), whereJ? is a pure subring of
4P(B). Suppose thatfS is torsion complete in its finite topology. Then”™ =
= *>(42))-

Proof.By 6.4, 2"~ p (G (2))-Letc£*,(G (2)).Let {F,[iED} be
the set of all finite subsets of G ( V j,indexed by the directed set D in such
a way thati <,j if and only if Ft Q Fj. We will construct a net {£; [i £ I)}
in such that (3 — Ci)(Fi) = o and E(Ci) <1 E(C) for all i £D. It will
then follow that {Ci \i £D} is a bounded Cauchy net. This net has a
limit y £ V, since is torsion complete. Clearly, (C—rj)(B) = 0, so that
C= Y7£7~ by 2.4. In order to construct G, let kK be maximum exponent
of the elements of Fit so that pkf = o for all/ £ Ft. By 3.5, there is an n
such that (C—Cnn) (F,)Q(C — Can)(-B[pfd) = O.The set nnFtis contained
in Bo© Bs0.. .Bni Q B, so that it is possible to write B = /bl) @
0 by ©...0 <&>© C, where 4, FtQ (bf) 0 <h2>®© ... © (br>. This
finite sum is pure in B, hence also in B, so that it is a direct summand
if B. Let B= <6]) © <62>© ... © <br) © D. By 6.2, there exist G £ fF
such that Ci(bi) =C(b,), Ci{bj)) = o ifj # i. LetC= d + C + mmm+ Cr-Then
CE£ JF and C(hi) = f(s,)forall i. Consequently, (f — £)(anP,-) = O.It is clear
from the definition of Cthat E(C) <1 E(C). Let Q= £an. Then G£”" since
CENand 7WinEVp(B)"2- AJsoE&) ™ WE) < W)- Finally (f- Ct){F,)=
= (C— Cnn)(Ft) — (C#tn— CJin){Fi) = O.The proofis therefore complete.

It is now possible to obtain the main result of this section.

7.8 Theorem. Assume that B is an unbounded basic group.Let ~ bo
a primary ring (that is, =J£) which contains &p(B) as a right ideal.
Assume that the following conditions hold:
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(a) Bight multiplication by dements of is a continuous transformation
of Wp(B) in the layer topology.

(b) I/ EEE such that <9gpB) £ Q pk~p(B), then ££pk V.

(c) is torsion complete in its finite topology.

Then there is a group G with B Q G Q B, Gpure in B, and an isomorphism
X of onto ©p(G) such that X is the identity mapping on Wp(B).

P roof. Note that by condition (b), if WP{B) £= o, then £E£ M*<w
pk N7= o (see 1.2 and 1.4). Hence, %P(B) is faithful. Consequently, by
4.1 and 5.2 there is an &p(B)-isomorphism X ofJSi1onto a pure subring of
IT(B). Since N isprimary, X(*)Q”p(B).Moreover, X( N) istorsion complete.
Thus, A(N) = &,,(G(X( Y:))) by 7.7.Since BQG(X("f))Q B and G (A ("))
is pure in B by 6.3, the proof is complete.

8. The characterization of <%{c)

8.1 Theorem. Assume that B is an unbounded basic group.Let 2£ be
a ring which contains &p(B) as a faithful right ideal. Assume that the following
conditions hold:

(a) Right multiplication by elements of V is a continuous transformation
of WP(B) in the layer topology.

(b) If ££ N’nis such that %P(B) £ * pk<¥p(B), then ££pk V.

(c) is complete in its finite topology.
Then there is a group G with B Q G Q B, Gpure in B, and an isomorphism
Xof ~ onto W(G) such that X is the identity mapping on %p(B).

Proof.By 4.1, there is an ” p(B)-isomorphism mapping 2* info ~(B).
Note that X(ffn)= X( Y )n= <p(B) ). By 5.2 and the hypothesis (b),
>" . is pure in WP(B). Since is complete in the finite topology, it follows
easily that ffnistorsion complete. Therefore, A N'n) is also torsion complete.
By 6.3 and 7.7, there is a group G with /I ¢ ¢ ¢ B, G pure in B, such
that X(?») = ~p(G). Suppose that ££ X(N ) and x £G. Note that G =
= G(?p(ir)) = G(X( Y,,)). Hence, by 7.3 there is a projection n £ X( 2fn)
such that n(x) = x. Since N'nis an ideal in ~N,it follows that C1 £ X( =
= §?p(G). Hence, £0k) = £(A(a;))) = Cn(x) £ G. This shows that
A(") <%(G). Assume now that ££$7((7). By 7.5 <p(G) is dense in %G
in the finite topology. Hence, there is a net £m|i£D} Q &p(G) = /(Y n)
such that lim,ef) fm= £ in the finite topology of W(G). That is, for any
nEo (™n@G)=TX{"'n) =0 (A(Y),,), there isaj £D such that Em—£)n —
= 0 for all i f>j. It follows that {£, !i £1)} is a Cauchy net in the finite
topology of A(”]).Since Y is complete, this sequence has a limit rjin the
finite topology of X( Y ~. Evidently (E —rj)n= o for all n £ &1Mp((7)).
Hence, (E—VY)(G) = o, so that £= y £ X(”). This completes the proof
that X(2>) = s?(G).
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FACTORIZATION OF CYCLIC GROUPS

By
A. D. SANDS
University of St. Andrews, Dundee

Introduction

A classical problem of Minkowski concerning the columnation of space-
filling lattices was reduced by Hajos [3] to the following problem in finite
Abelian groups. If such a group G is factorized directly as G = Ax -f-
+ A2 -)-... + Akwhere each A, has the form A-= {o,ait 2 ait.. (%—I)a,},
is then one of the factors At a subgroup of G? Haj6s showed that this
is so and thus solved Minkowski’s problem. The question was then
posed as to whether all direct factorizations of finite Abelian groups can
be obtained, no restriction being imposed on the form of the factors. This
problem has proved very difficult and no general solution has been obtained,
even in the case where two factors only are considered. In this case Hajés
conjectured that one of the factors, Axsay, must itself factorize as A, —
= H + Bv where H is a non-zero subgroup of G. All factorizations into
a sum of two factors of groups possessing this property have been found,
but Hajés [4] and de Bruijn [I] soon showed that not all groups have
this property. Hajés, de Bruijn, ltcdei and Sands have classified all finite
Abelian groups with respect to possessing this property. But the problem
of obtaining the factorizations of those groups which do not possess this
Hajds property remains. In this lecture we turn to the case of factorizations
into sums of k factors, K > 2, but restrict our attention to finite cyclic
groups.

All factorizations of these groups are obtained in which every factor
has a prime power number of elements. So also are all factorizations in
which every factor, except perhaps one, has an order, a power of a fixed
prime. This leads to a complete solution of the problem for groups which
are cyclic of order pnor png, where p and q are primes, and also for cyclic
groups whose order has exponent sumi equal to the number of factors.

11f Jr= Pini -..pm' the exponent sum e(N) of N is nr+ ...+ nr, where*
the Pi are distinct primes.
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For groups not of order pnor p" gq the factorizations are constructed
in which no factor has a non-zero subgroup as factor, where the exponent
sum of the order of the group exceeds the number of factors by at least
two. In the remaining case where the exponent sum of the order of the
group exceeds the number of factors by one, all factorizations are found
for k = 3 and for general Kk whenever the order of the group is p ngk+l~n,
where p and qare distinct primes. But, in general, this case is left undecided.

Definitions and preliminary remarks

Throughout the talk group will mean finite cyclic additive group.
If Av A2..., Ak are subsets of group G, each containing at least two
elements, and if every element g £ G may be expressed uniquely as g =
= alfa2+...+«*, where a-£Ah then G= Ax+ A2+ ...+ AK is
called a ~-factorization of G. A subset A of a group G is said to be periodic
if there exists a non-zero subgroup H of G such that A = H + B. It may
be assumed, by taking for H the set of all elements h such that A -\-h = A,
that B is not periodic or consists of one element only. A group with the
property that in every ~-factorization at least one factor is periodic will
be called a group with the Hajos ~-property.

If G is the additive group of integers modulo N, and A is a subset
of G consisting of the integers {av a2..., an}, then the polynomial A(x)
is defined to be x°I + xa' -f.. .+ X". As a= s(mod A) if and only if
xa= xb(mod (XN — 1)), the polynomial A(x) is defined uniquely in the
ring of polynomials modulo (xN— 1). With these definitions it follows
that G= Ax+ Az +. ..+ Akif and only if

As 1 f-X + ... -f-xN~xis a factor of XN — 1, it follows that each irreducible
factor of 1 -\-X -f-...-f-x~n-1 will divide one of the polynomials Afx).
These irreducible factors are the cyelotomic polynomials whose roots are
the d-th primitive roots of unity where d \N and d > 1. We shall denote
this polynomial by Fd(x).

1. Some general results

Lemma 1. If H is a proper non-zero subgroup of a group G then there
mexists a non-periodic set C of coset representatives for G modulo H.

Pbooe. See de Bruijn [1, Lemma 1, case a].

Lemma 2. If A, B are non-periodic subsets of a group G and A a H
where H is a subgroup such that H + B is a direct sum then A + B is not
periodic.
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Proof. See Sands [11, Lemma].

Lemma 3. If G is a group possessing the Hajos k-property and G admits
(k + 1)-factorizations then G possesses the Hajés (k -j- 1)-property, where
K> 2.

Proof. Let G= Al +... + Ak+l Let Ax+ A, = B, A3--A4= C.
Then G= B -j-A3--... j-Aktl= Al j-A2--C+ ... + Aktl. As G
possesses the Hajos ~-property it follows that in each of the above Lfactori-
zations some factor is periodic. If any A,eis periodic the desired result holds.
Thus it may be assumed that B and C are periodic. Let B = H -fH,,
G = K + Cd where H, K are non-zero subgroups of G and Bv Gy are not
periodic. As G is cyclic, H and K cannot both be of order 2. Suppose that
KE£ K and that 2 k ~0. Let //, denote the non-zero elements of H. Let
D = {Hv k) + By. Then

Now neither {Hv k} nor BI is periodic. As {Hvk} a H -j-K and
(H+ K) -j- BYis a direct sum, it follows from Lemma 2, that 1) is not perio-
dic. But

is a ~-factorization of G. Hence some A, is periodic. Therefore G has the
Hajos (kK -j- )-property.

Lemma A If a group G possesses the Hajos K-property and a proper
subgroup H of G admits (k — I)-factorizations then H possesses the Hajos
(K — 1)-property.

Proof. This follows immediately from Lemma 1

2. Groups with the Hajos "-property

Theorem 1. In everyfactorization of a group G in which each factor has
prime power order at least one factor is periodic.

Proof. Let G be represented as the additive group of integers modulo
N. Let

where each Apshas a prime power number of elements. Then

We may suppose without loss of generality that FN(x) \Afx). Let A,
have pm elements. Let N = LM where L = pnand p \ M. Each poly-
nomial Fpr(x) divides some Ajx). where 1 < r < n. Since Fpr(1) = p and
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the polynomials concerned have integer coefficients and leading coefficients-
equal to one, it follows that p divides At (1), which is the order of A,.
Further, as the different cyclotomic polynomials are relatively prime, it
follows that if s different polynomials Fpr(x) divides Afx) that ps divides
the order of Aj. It follows that if A, (1) = pl, not more than t such poly-
nomials can divide At (x). But as each of the n such polynomials divides
some A{(x), and the product of the orders of the Amis N, exactly t such
polynomials must divide At (x). As in the proof of Theorem 2 in Sands
[, p. 70—71] it may be deduced that no two integers occurring in At
are congruent modulo L. In particular this holds for Av

Let Q= oTwhere a and T are L-th and XX-th primitive roots of unity,
respectively. Then gis a primitive A-tli root of unity and as FN (x) \A, (X)
it follows that Ai1(g) = Ax{ot) = o. Let B(x)= AX(xr). Then ais a zero'
of B(x), and the coefficients of B(x) ai'e from the field of )X-th roots of unity.
As L and X are relatively prime, FL (X) is irreducible over the field of
X -th roots of unity. Therefore FL (X) | B(x).FL(X) also divides (xL— 1).
Thus reducing B(x) modulo xL—1, i.e. reducing the exponents of x modulo
L, a polynomial Bfx) is obtained which is divisible by FL (X). The exponents
of Bfx) are congruent to those of B(x), and so to those of Ax(xX), modulo
L. Asthe integers in A, are distinct modulo L it follows that the coefficients
of Bfx) are zero or single powers of r. Now BXX) has degree less than L and
Fir (x)—1+ x™p +m ¢e+ x(p—)LLp. Thus the remaining factor has degree
less than L/p. From the form of Bfx) and FL (X) the remaining factor has
coefficients which are zero or single powers of r. If xurv occurs in this
factor then clearly xurv, xu:L'Ptv, ..., «“"h-Or/p Tv occur jn BXX). The
corresponding set of p integers in Ax are congruent to v modulo M and
to n,m ArL\p,.. n (p — 1)Ljp modulo L. It follows that ML/p is a
period of this set modulo N. Hence A, is periodic.

From this theorem it follows that cyclic groups of order pnand groups
of order N where e(N) = Kk have the Hajos "~-property. Note that the proof
of the theorem shows that, if in any factorization of a group of order N,
Fn (x) divides a polynomial arising from a factor with a prime power
number of elements, then this factor is periodic.

Theorem 2. If in a k-factorization of a group G every factor, except
perhaps one, has order a power of a fixed prime p, then at least one factor is
periodic.

Proof. This is a generalization of Theorem 2 of Sands [s], where the
results was proved for the case Kk = 2. Using the results proved there the
more general case follows readilv. For if

where At has order a power ofp, — 1, then writing A, +
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--Aid = B, B also has order a power of p and G= B -)-Ak From the
proof of Theorem 2 ofSands [s] it follows that if FN (x) f B(x) then A,
is periodic. But if FN(x)\B(x) then, as AXX).. .Ak Xx) = B{x) (mod
(XN — 1)), it follows that Fn (x) \A”x) for some i, 1 <[r<[& — 1. But
Aj has a prime power number of elements and, as in Theorem 1, A mmust
be periodic.

From this theorem it follows that, if G is a group of order png, where
p and g are distinct primes, G has the Hajos ~-property.

3. All factorizations of groups with the Hajos ~-property

The formulae given here are generalizations of the formulae given in
Hajoés [4] and Sands [s] for the case K — 2. If G= AX-- ... -- Ak, where
the orders of the factors are as given in Theorem 1 or 2, then some factor,
say Av is periodic. Thus Ax= H -~ B1lwhere 9 is a non-zero subgroup of
G. Hence G= H -fd, 4-d2+ ... Ak This leads to a factorization
of GIH as

N ow again the orders of the factors will be as in Theorem 1 or 2 and so the
process may be continued with some other factor being periodic. Using
the notation B oC to indicate any of the sets formed by adding to each
element of B some element of C, the following formulae are eventually
obtained:

where at each position s Hr, one -j-and (k —1) o are used, and where
Hk + mee -|-An= Kkis a subgroup of G and Kx= G. Here H,, is the
subgroup H used above and the result is easily proved by induction on the
order of G

Every such chain of subgroups G= Kxz>K2  smm 20K n gives
rise to factorizations of G, and all such chains of subgroups and all sets
of coset representatives Hr for Kr modulo KrM are known for finite cyclic
groups. Thus these formulae effectively give all the factorizations arising
from Theorems 1 and 2. In particular they give all factorizations of the
groups which have been shown to have the Hajés ~-property. In fact
Lemmas 3 and 4 show that these properties are inherited by subgroups,
and so by factor groups in this case, and thus the vital inductive step from
G to GfH can always be taken. So all factorizations of all groups with the
Hajés ~-property arise in this way.
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4. Groups not having the Hajos ~-property

The results of this section apply to the case « > 2 only. It is shown
that if e(N) > « -j-2 and if N is not of the form pn orp nq then there is a
~-factorization of ¢ in which no factor is periodic. By Lemmas 1 and
4 it suffices to prove this for the case x = 3. By Lemma 2 it suffices to
prove the result for the border line case e(N) = « + 2. But for the case
k = 3, e(N) = 5 the result has already been obtained by de Bruijn [1,
Theorem 1]. The groups to be considered are those of order p3g2 p3gr,
p2q2r, p~qrs and pqrst where p, g, r, s and t are distinct primes. Each of
these possesses a proper subgroup H which may be expressed as the direct
product of subgroups of composite order. Thus de Bruijn’s construction
of non-periodic sets A and B such thatzas = ¢ goes through. But his set
A is the direct productz of two non-periodic sets. Thus, changing back
to the additive notation, ¢ may be expressed as the direct sum of three
non-periodic sets.

Note that taking ¢ of order p3q2 and 11 of order p2q2, the three sets
arising have orders p, g and p2q. Now extending this, using Lemma 1, by
one factor of order p each time, to a fc-factorization of the group of order
p kg2, we obtain a factorization in which no factor is periodic, one factor
having order p2q, one order g and the remaining (k 2) factors order p.
From this we see that the condition in Theorem 1, that every factor shall
have prime power order, cannot be weakened by omitting this condition
for even one factor. We also see that in Theorem 2 the condition that at
most one factor can have an order not a power of p cannot be weakened to
allow two such factors, even where one of the exceptional factors has
prime order. Thus, in this sense, Theorems 1 and 2 are as strong as can
possibly be obtained.

5. The undecided case e(N) = « -)- 1

There remains the case where the exponent sum of the order of the
group ¢ exceeds the number of factors by one. If /;= 3this case follows
from the solved case « — 2. For «x — 2, groups of order N have the Hajds
property for e(N) = k +2 = 4 [s8]. If e(Nn) = 4 and ¢ —aA -\-B-\-C,
then two of the factors, say A and B, must have prime order. Let
H+ B= Then ¢ = C + D. By the results obtained in [s] either
C or b is periodic. If C is periodic, the desired result holds. If o is periodic
then o — H + pv where 11 is a non-zero subgroup. Hence

2Tbe multiplicative notation is used in de Bruijn’s papers.
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But for any non-zero subgroup H of G, FN(x) \H(x). Therefore FN(X)
divides A(x) or B(x). But A and B have a prime number of elements.
As in Theorem 1 it follows that A or B is periodic.

The Hajos ~-property holds for groups of order N —pngm, where
n -\-m = k -f-1 and p and q are distinct primes, for general k This is
proved using Theorem 1 of this paper or by a result of de Bruijn [2]. For
if every factor has a prime power number of elements the result follows
by Theorem 1. If not, then one factor, say A, has pq elements and the rest
a prime number of elements. If FN(x) f A(x) then again the result follows
as in Theorem 1. But if FN(X) | A(x) then, by Theorem 2 of de Bruijn [2],
we have

where P(x) and Q(x) have non-negative integral coefficients. But, substi-
tuting 1 for x, we have

Hence either P(l) = g and Q(I) = o or P(I) = o and Q() = p. But
P(l) = 0 implies P(x) = 0 and Q(]) = 0 implies Q(X) = o. Hence either
(XN— )/(xNp — 1) or (XN— I)/(xNlg— 1) divides A(x). Thus either
Njp or N/q is a period of A.

But for general N and k the case e(N) = kK + 1 remains undecided.
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QUOTIENT CATEGORIES AND QUASI-ISOMORPHISMS1
OF ABELIAN GROUPS

By
E. A. WALKER
New Mexico State University

. Introduction

The concept of quasi-isomorphism of Abelian groups was originated
by B. Jonsson [13] who showed that if the notion of isomorphism is
replaced by quasi-isomorphism, then one has a Krull-Schmidt theorem
for torsion-free groups of finite rank. Indeed, the notion of quasi-iso-
morphism has come to play a significant role in the theory of Abelian
groups. R. A. Beaumont and R. S. Pierce [4, 5, 6, 16] have utilized the
concept rather extensively, in their work on torsion-free rings, and J. D.
Reid [17, 18] has investigated the relation between the structure of a
torsion-free Abelian group and the structure of its ring of quasi-endo-
morphisms. The basic intention in this paper is to provide a natural setting
for the study of quasi-isomorphisms. It is shown that the notion of quasi-
isomorphism of torsion-free groups is a natural one; specifically, that two
torsion-free Abelian groups are quasi-isomorphic if and only if they are
isomorphic in the quotient category where ¥ is the category of
all Abelian groups and is the class of all bounded Abelian groups. In the
setting ¥ /&, Jonsson’s Krull-Schmidt theorem for quasi-decompositions,
as well as Reid’ generalizations of it become category theory theorems,
and lend themselves to generalizations from groups to modules over
suitable rings. Furthermore, a question of L. Fuchs concerning the quasi-
splitting of an Abelian group over its torsion subgroup is easily answered,
once translated to the category Y /-id.

The category ¥ /~S has some deficiencies. For example, it does not
have injective envelopes and does not have infinite direct sums. This
situation can be remedied by embedding small Abelian subcategories
& of ¥ j-ti in the category Y(@, ¥ ) of all left exact functors from & to
Y . The final section is a collection of miscellaneous, but perhaps interest-
ing, facts concerning such an embedding. For example, in the larger category

1The work on this paper was partially supported by NSF Grant GP—377.
The author is an NSF Senior Postdoctoral Fellow.
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SS(<8 ts€), a group has no new direct decompositions, but may gain some
new subobjects. The significance of these new subobjects is not too clear.

The fact that, in 3 (&, extensions of representable functors are
representable may be worthy of note. Finally, it is remarked that
3 7 (&, is the same as the category of all left exact functors from &to

the category of modules over the ring Q of rational numbers.

An occasional detail of a proof is suppressed since a more extensive
paper on quotient categories of modules is in preparation. However, ample
indications of all proofs are provided and the reader will have no difficulty
filling in the occasional missing steps.

2. Preliminaries

The term Abelian category will be used in the sense of MacLane [14],
and will always denote the category of all Abelian groups. The
word group will mean Abelian group. For A, B in an Abelian category
HoT&A, B) will denote the group of maps (or morphisms) from A to B,
except that Horned A. B) will be written simply as Horn (A, B). A non-empty
subclass S'” of is a Serre class of tSf if for every exact sequence

of groups, B is in S'”if and only if A and C are in S”Equivalently, S" is a
non-empty class of groups closed under subgroups, homomorphic images,
and extensions. Note in particular that if A £S",then every group iso-
morphic to A is in S*”.From a Serre class S*”of J1 ,there arises the quotient
category , as defined by Grothendieck [9]. The objects of~/S"'”are
just the objects of <di. To define the maps of r*j.9” let A, B £ and
A', B’ be subgroups of A and B, respectively. There is a natural homo-
morphism
Hom (i, B) ->Hom (A", BjB").

Considering all subgroups A' and B' such that A/A' and B' are in S",
one has a direct system, and Hom ~ji, B) is defined to be the group
IimAHom(A', B/B'). To define composition of maps in ~/S"'” let/ £

A',B-

£ Hom*/jrld, B), gEH ornéi, C). Then/ comes from an/f Hom{(i',
B/B'), and g comes from a g£Hom(.B", C/C), with A/A’, B', B]B",
C £S'". IfA™ = f~1((B"™ + B')/B"), then A/A™ £S5, and / induces a map
/' eHom(A", (B"™ + B")IB’). If C"IC = g(B" MNB"), then C" €S’,and
g induces a map g' £Hom (£"/(5" f) B"),CjC"). Now let h be the com-
position of the maps
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Since AjA"™ and G" are inY ,h determines an element h £ HoTiu”(A, C).
It is straightforward that h is uniquely determined by / and g and that
go f=h defines a bilinear composition. With these definitions, <"E\Y
becomes an Abelian category. (For a proof of this latter fact, see [s].)
The following elementary facts are needed in the sequel. They follow
easily from the definition of

Let/ denote the elementof H om "~ jA,B) determined by/£ Horn(A,B).
Then

2.1. The functor ./ fromY toY \Y defined by J(A) = Aand ./(/)=/
is exact with kernel ¥ .This canonical functor from «r6¢ to ¥ 1Y will always
be denoted by J.

Let /' EHom(A', B/B'), g EHom(A", B\B") with AjA', A/A", B',
B" £Y . Then /' and ¢ determine maps /', g £ Hot*/*(A, B), and

2.2./" = o ifand only if Im /' £Y .

2.3. /" is an epimorphism if and only if Coker/' £¥Y.

2.4. /" is a monomorphism if and only if Ker/'£Y .

2.5. f’=g" if and only if there exist subgroups S of A and T of B such
that

@ iscl'ill"

(b) AjS”™y

(co B" +B"'¢c T

d TgYy

(e) The maps from 8 to B/T induced by/' and g' are the same.

For any Abelian category <§ the functors Ext/ are defined [14], and
the dimension of <§ denoted dim(e ) is the smallest integer n, if such exists,
such that Ext/+1(A, B) = 0forall A, B £ & If no such nexists, dim(s ) = «.
It is significant that for the category Y and any Serre classi,dim (*/Y)<»
<Z 1. In fact.

Proposition 2.6. If

ms a projective resolution of A in the category ¥ , then

is a projective resolution of J{A) in the category ¥ \Y . In particular, if A
is projective in ¥ , then J(A) is projective in Y \Y .
Proof. Consider the diagram

an Y)Y, with exact row. Now/is associated with a (not necessarily unique)
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homomorphism /' £EHom(H', B/B"), g with g'( HoT(P', B/B"), where
A\A',P(P",B",B"£3P.LetS = B'+ B". Then S (9?, and, in of, there
results the diagram

where / is the composition of /' with the natural map from B/B' to BjS,
and g is defined similarly. Let GjS: 11/ and P"™: ¢g~1(C(S). Then
(BIS)I(CIS) and PIP™ £99, and the diagram

in o f, with the obvious maps/, and gv has exact row. But P" is projective
in o f (since the projectives in of are just the free groups), and so there
exists a map h:P"™ -> A" such that

is commutative. Going over to -of\99, j\ and f/, determine maps /, (
£Homrnp (i.B) and g1 ( Homt* ( P, B). Further, fx=/, gx= g, and the
diagram

is commutative. That is, P is projective in --Jf(99. Using the exactness of J,
the proposition follows readily.

In a dual fashion, one can show that J takes injective resolutions in
o f into injective resolutions in (99. That Ext’w>= 0 for n > 2 follows
from Proposition 2.6. Hence dim(of(99) <[ 1.

Proposition 2.7. Forany Serreclass .9 of o f,P is projective (injective)
in 0f(99 if and only if P is isomorphic in of(9 to J\ where P1 is
projective (injective) in of.

Proof. Let P be projective inof(9 and F P—0exactinof with F
free. In of(99, the sequence F ->P —o splits, so that there is a map
g:P ->Finofl19 with ga monomorphism. This yieldsamap g : P' -b-F/F’
inof, with P/P*" and F' £99. Since g isa monomorphism in<% (99, Ker g ( 99,
and in of. P'/KergadlIm g= F"/F' for some subgroup F" of F. It
follows that inof/99, P P'o” P'/Kerguw Im g GAF" which is projective
in of as it is a free group. The rest of the proof is clear.
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Following Hu [11], a Serre class & is strongly complete if .SZ is closed
under arbitrary infinite direct sums, and is complete if A £AZ, B £
impliesA ® B gA?.Equivalently, A?iscomplete if foreach A AAZ (V An £

°€i

whenever Aaad A for each a£1. A complete Serre class AZ is bounded if
every group in S? is bounded. The strongly complete and the bounded
complete Serre classes are very easily determined.2 Let XX be a multipli-
catively closed subset of the ring Z of integers. Recall that M is saturated
ifmn £M implies that m £ M. (The possibility that o AM is not excluded.)
Denote by ZMthe ring of quotients determined by M. The following two
propositions are of particular interest because of the generalizations they
admit [s, 20].

Proposition 2.8.Let AZ(M) be the class of those groups A such that ZMo
o A = o.Then M “mAZ(M) is a natural one-one correspondence between the
saturated multiplicatively closed subsets of Z and the strongly complete Serre
classes of

Proop. That <?(M) is a strongly complete Serre class is trivial. In fact,
<”™(M) consists of the groups each element of which is annihilated by some
element of M. A saturated multiplicatively closed set is obtained from a
strongly complete Serre class AZby taking the generators of the annihi-
lators of the cyclic groups in A?,and this is the inverse of the correspondence
M -><Z(M).

It is not difficult to show that ZMis the endomorphism ring of Z in
the category tsA/AZIM).

Proposition 2.9. Let AB(M) be the class of those groups A such that ZMo
o Hom(A, A)= o. Then M -> AS(M) is a natural one-one correspondence
between the saturated multiplicatively closed subsets of Z and the bounded
complete Sene classes of

Proof. Again, A (M) is easily seen to be a bounded complete Serre
class, and M is recovered from a bounded complete Serre classi by taking
the generators of the annihilators of the cyclic groups in S*,

In this case also, ZMis the endomorphism ring of Z in the quotient
category

The quotient categories are nothing new. In fact, "ZIAA(M)
is equivalent to the category of all ZM-modules, the equivalence being
given by the functor F(A) = ZMo A from *j£\A2(M) to the category of
Zyvi-modules. On the other hand, the categories are not equi-
valent to categories of all modules over a ring.

2All Serre classes of Abelian groups have been determined by S. Balcerzyk.
Although E. James Peake, Jr. [15] has pointed out that the crucial Lemma 1in [3]
is incorrect, Balcerzyk has repaired the damage.
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3. The category

From now on, attention will be restricted to the category where
m/i is the Serre class of all bounded groups. However, much of what is
said is true for tAfLi?™, when S?is any bounded complete Serre class.

Two Abelian categories 6 and JD are equivalent if there exists a (cova-
riant) functor F from <§to JD such that for A, B the map Home(A, B) ->
-> Homfi(F(A), F(Bf\ induced by F is an isomorphism, and each D £JD
is isomorphic in JD to an object of the form F(G), C £<8 The functor
F is called an equivalence. This relation is an equivalence relation, and
equivalent categories have the same homological properties [s].

Now from the ring Q and the category , a new category g is
defined as follows. The objects of <y€q are just the Abelian groups. The
group Honio™A, B) is the group Q ®z Hom(A, B) (written simply
Q o Horn(A, B)y Composition of maps in -A?q is given by (ro /) o
0(so g = (rs) e»(/ o g). Every element of Qo Hom(A, B) can be
written in the form I/n o / with n > o, and a functor F from to

is defined as follows. Let F(A) = A. For a positive integer n and
group A, let an be the natural isomorphism an:nA  A/A[n]. For /£
£Hom(A, B), let/, be the map A/A[n] —aBf Blyi\ induced by/. Now/n o a,,
maps nA to B/B[n\ and hence induces a map fno an€HoTtaw(A, B).
Define FA/n ®f) = fno an-
Theorem 3.1. The functor F is an equivalence between the categories
g and iszfD.

Proof. It is straightforward to check that F is an additive functor.

For the remainder of the proof, it suffices to show that F :Q o Hom(A, B)

HoTrms (A B) is bijective. Let g¢g£ HoT,"/,;8(A, B). Then g comes
from a map giA'-~-B/B' with A/A', B’ By 2.5 it may be assumed
that A' = mA, B' = B[m] for some positive integer m. Let Bm be the
usual isomorphism B/B[m\ -> mB. Now define G(g) =l/mz20 (Bmo g o
0 T)£Qo HoT(A, B). Then F(G(g)) = F(I/m2o0 (Bmo g o 1)) =
= (Bmopgo T)Iwo am- Let p :A A/A[T2], n : B/B[T] ->H/B[T7,
and gn: B -+ B/B[n\ be the natural epimorphisms. Then (Bmo g 0 m)m
is the unique map such that

commutes. Let g' be the restriction of ¢ to m2A followed by n. Then
g'oamjop = g’om2= nafgow2= noTogam = no(gmoRm)ogo
m = gm0 Bmogom. Thus (Bmogorn)m = g'oa~l, and F(G(g)) =
= (Rmo go T)mro atr= (g0 a~l) oam = g’m But 9 and 9' determine the
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same element of Hom~"A, B); that is, g = ¢', or F(G(g)) = g. On the
other hand, G(F(I/m <g)) = G(gmo am) = 1/m2 & (ABmcgmoamom) =
= 1/m2 &mg = 1/m g) g and this completes the proof.

From now on, the categories and oFf-B will be identified, and
the notation §€ q dropped. That is, Hom”/* (A, B) is identified with
Qg Hom(A, B).

Let n be a positive integer and/ £ Hom(A, B). The following, and other
similar statements are readily verified.

3.2. (@) 1freg [/ is an epimorphism if and only if Coker / £-¥2

(b) 1/re 9/ is a monomorphism if and only if Ker/ £ 55

(c) A kernel of lreg / is 1 g (ker/).

(d) An image of Ifreg / is 1 g (im/).

(e) A direct sum of A and B in is J(A @ B).

(f) The sequence A B C is exact if and only if
(Im/ + Kergr)/((Im/) M (Kerg)) £A9.

@J(N=1®/

The value of Theorem 3.1 lies in the fact that it makes certain computa-
tions in tjFjSS rather easy. In particular, Extol&(A, B) is readily deter-
mined.

Corollary 3.3. ExtdUm(A, B) ad Q g Ext(A, B).

Proof. An injective resolution

in tAf yields an injective resolution

in KWII-B. There result the exact sequences

o -> Hom(A, B) ->Hom(A, 1) ->Hom(A, IjB) Ext(A, P) -a 0,
o > Qg Hom(A, B) Q ® Hom(A, I) >mQ ® Hom(A, I/B) —
> Q g Ext(A, ) ->o0,
and

0->Qg Hom(A,B) Q<sHom(A,/) ->Qg Hom(A, I/B) ->
-> ExtMj§(A, P) -> 0.

It follows that C < Ext(A, P) Extg/.g(A, B) as asserted. The iso-
morphism is clearly functorial.

The following is immediate.

Corotlary 3.4. If 0-"-A i£4C->0 is exact in . then 0 —
> A B 1®pC —0 splits (in /,B) if and only if o ->A -CB A,
-> C — o represents an element of finite order in Ext(C, A).
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Corollary 3.5. In ydf£i, P is projective if and only if, inyd. P =
- F @ B with F free and B bounded, and | is injective if and only if, in

I = D @ B with D divisible and B bounded.

Proof. Let P be projective in yd/As. Then Q gpExt(P, X) = 0 for
all X £yd, so that Ext(P, X) is torsion for all X. But Ext(P, X) is the
direct sum of a cotorsion group [10] and a divisible group, so is the direct
sum of a bounded and a divisible group. Denoting the torsion subgroup
of P by Pt, one has Ext(P,, X) » Ext(Tor(Q/Z,P),X) sn Ext(P, Ext(Q/Z,
X)) is reduced, and hence bounded. Thus P Ext(Pf,X) = 0 for all X, so
that P, = fgj Ca, Cacyclic. Now Ext(P(, Pt)e»e:I// Ext(Ca, P (), which con-

tains a copy o f// Ca. Thus ¥/ Ca—P, is bounded and P = Pto 1\. Let
« a

0 201 -~-P-~-P-1—>-0 be exact with F free. This sequence represents in
Ext(Pj, K) an element of finite order n, and by Theorem 1in Walker [19],
o =>K —=K + nF —-nP] -0 splits. Hence nP1 is isomorphic to a sum-
mand of the free group K -f~-nF, so is itself free. It follows that P1 is free
and P has the desired form. Clearly P = F @ B, with P free and B
bounded, is projective in yd/As.

Let I be injective in t5djAs. Then Q ¢ Ext(X, 7) = o for all X so that
Ext(X, 1) is torsion for all X. In particular, Ext(Q, I) is torsion. But it
is torsion-free and hence 0. Thus I is the direct sum of a cotorsion and a
divisible group. (Ext(QjZ, 1) is torsion and cotorsion, whence bounded
and isomorphic to T//d, where Idis the maximum divisible subgroup of I.
It follows that I has the desired form. Clearly 1 = D @ B, with D divisible
and B bounded, is injective in tXf/38.

4. Applications

Two groups A and B are quasi-isomorphic if there exist isomorphic
subgroups s and 7' of A and B respectively, with A/S, BI/T £ For
torsion-free groups, this is equivalent to each being isomorphic to a
subgroup of the other with bounded quotients. From the definition of

it is immediate that two torsion-free groups are quasi-isomorphic
if and only if they are isomorphic in /Ss . Furthermore, quasi-endo-
morphisms, quasi-decompositions, etc., as defined for example by Reid [18],
are just endomorphisms, decompositions, etc., in the category
In fact Reid himself points out [18] that his ring of quasi-endomorphisms
of a torsion-free group Gis Q ¢ Hom(s*, G). Thus the decomposition theory
of torsion-free groups in tX?/.Pi is equivalent to the quasi-decomposition
theory of torsion-free groups in . The advantage of the setting §F/-7s
besides its naturalness is that the homological algebra of <.¥/-7, and cate-
gory theory in general, is available for application.
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The definition of quasi-isomorphism given above is applied to all
groups (not just torsion-free groups), and if this is done, quasi-iso-
morphism (say of two torsion groups,) is not equivalent to isomorphism in

Even though quasi-isomorphism in this sense may turn out to be
valuable, it does not seem to be natural. It is perhaps significant that
quasi-isomorphism and quasi-decomposition theory has been of principal
value only for torsion-free groups. Thus it is submitted that the proper
definition of quasi-isomorphism should be isomorphism in

As applications, two theorems (neither new) are quickly proved.
It is hoped that the methods (namely, the utilization of the setting JAS,

or more generally, for appropriate Serre classes .S¥will be of further
value. m
Theorem 4.1. In isf/AS, suppose, A =  A- with the endomorphism

i=1
ring of each A- local. Then any two decompositions of A into indecomposable
summands are equivalent. Furthermore, any two decompositions of A have
equivalent refinements.

Proof. This theorem holds in any Abelian category. The proof given
here is modeled after the proof of Lemma 1 and Theorem 1 in Azumaya [1].
Let A = Ba, with Baindecomposable. (Keep in mind that the setting is

in 1j€jAS.)“€i'_et {/.,}..E; be a set of mutually orthogonal idempotents corre-
sponding to this decomposition, and let {el, ..., em} be a similar set for
m

the decomposition ~ A,. For af£l, 1—fa+ (1 —fa), and el = exfa+
1=1

+ ej(l —fa). On A, exis the identity map, so either exfa or el(l —/,,) is

an automorphism of Av the endomorphism ring of Ax being local. So,

either /,, or 1 —f,, maps Axisomorphically onto a subobject Bxof A. Now
m

ey maps Bxisomorphically onto Av and on A, exhas kernel A-. It follows
m i=2
that A = BX@JE A-. Now let {exe2, ..., ém) be a set of mutually ortho-
i=2
gonal idempotents for this last decomposition. As before, €2/a or ej(I —fa)
induces an automorphism of A2, and either fa or 1 —fa maps A2 onto a

subobject B2 such that A — BX2B2@ A-. Continuing in this manner,
m

i=3
one gets A —~ Bh with [A- either fa(A)) or (1 —fa(A,). But 1 —fa
i=1m
cannot map A, isomorphically onto B, for all i unless Ba= o. It may

be assumed that each fa ™ o. It follows from the hypothesis that, for
some i, A, » Ba. But each Ba is indecomposable, and /a(A,) = [ is a
summand of A and is contained in fa(A) = Ba. Thus B, —Ba A,
Now A = Ba Aj. Suppose B ™ a. Applying what was just done to

in
this decomposition and to the decomposition N Ba, one gets that ff is an
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isomorphism from some summand of the decomposition A = Ba@ " Ay
i"J

to BR, and it cannot be from Ba. Thus there exists Kk ”~ i such that A =

= Ba0 Bia® ~ Aj. Continuing, the Ba and the At must be exhausted

at the same step. The first assertion of the theorem follows. To prove the
second assertion, note that for any idempotent/, there is an i such that/
maps Ai isomorphically onto a summand of A] in particular onto a summand
of f(A). Thus every summand of A has an indecomposable summand.
A procedure similar to the proof of the first assertion yields the desired
result.

Note that any object in an Abelian category which has local endo-
morphism ring is indecomposable. It is not difficult to show in the setting

that a torsion-free indecomposable group of finite rank has local
endomorphism ring. Thus Theorem 4.1. implies Jdnsson’s theorem. Further,
Reid’s Theorems 4.1, 4.2, 4.3, 4.4, and Corollary 4.3 [18] may be interpreted
as results showing certain connections between properties of the endo-
morphism ring of an object and decompositions (finite) of that object,
and hold in any Abelian category.

A group that splits in over its torsion subgroup is called a splitting-
group. L. Fuchs has asked whether the quasi-isomorphism (in the sense of
the definition at the beginning of Section 4) of a group G with a splitting
group implies that Gis a splitting group. This question is now easily handled
with the aid of

Lemma 4.2. The group G is quasi-isomorphic to a splitting group if'
and only if G is isomorphic in  j-G to a splitting group.

Proof.Supposeg :G -+T@A isan isomorphism in the direct sum
taken in , T torsion, and A torsion-free. Then for some positive integers
m and n, and B £AS, g induces a map g:nG “mT\B ® A in «Af, with
Kergc (mG)\n] and Coker g £AS. Let SjB = g((mG)[n]). Then the com-
position of the maps (in u€) mnG ad (mG)){mG)\n\ K- T/S © A, ¢’ induced
by g, has bounded cokernel, so that G is quasi-isomorphic to a splitting
group, g’ being a monomorphism. Conversely, if in ,NnG T O Aisa
monomorphism with bounded cokernel, then / induces an isomorphism
in j-G.

Call a group quasi-splitting if it is quasi-isomorphic to a splitting
group. To find a quasi-splitting group that is not a splitting group, it then
suffices to find an exact sequence in <Ai, with T
torsion and A torsion-free, that represents a non-zero element of finite order
in Ext(A, T). These statements follow from Lemma 4.2 and Corollary 3.3.
The existence of such a sequence is established in Baer [2], so the answer
to Fuchs’ question is no. If, for example, A is countable, then Ext(A, T)
is torsion-free, so that in this case the quasi-splitting of G is equivalent
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to the splitting of G. More detailed information concerning this question
can be found in Walker [19].
Nothing non-trivial is known about decompositions of p-groups in
j-ju. For example, it is not known whether there are p-groups of arbitrarily
large final rank that are indecomposable in This question is related
to one posed by Pierce [12]. A general study of decompositions of groups
in with S? well-chosen Serre classes, would seem being worthwhile.

5. Embeddings of small subcategories of

The category has several homological deficiencies. Although

it has enough projectives and injectives, B = ~ G(p*), for example,

does not have an injective envelope in tjtéjél). Further, infinite sums in
"s/08 do not usually exist.This section is concerned with the embedding

of small subcategories of into a category which does have infinite
sums, injective envelopes, and other desirable homological properties that
lacks.

From this point on, it is assumed that <§is a small Abelian subcategory
of fS with the following properties :

(d) Homg(A, B) = Hornolsa(A, B) for all A, B £6 .

(b) & has enough projectives and enough injectives.
Such a category ¢ may be obtained by taking as objects one copy of each
group of cardinal not greater than some fixed infinite cardinal. The principal
concern will be with an embedding of & into the category 3?{B, is€) of
all left exact functors from s to . Recall that a map (or transformation)
n:F —G of functors in is a homomorphism u(X) : F(X) ->
-> G(X) for each X £6 such that forf : X ->mY, the diagram

commutes. The set of such transformations, denoted here Trans (F,G), is
agroup in a natural way, and, in fact, with this definition of maps, -S%s ,

is an Abelian category with arbitrary infinite sums and products, and
injective envelopes, (e.g. [s].) For C £&, the functor G : X -> Horn(s', X)
is left exact. A functor isomorphic to C is a representable functor. The
functor C -> G is an exact functor from the category s * dual to ¢, to the
category XFIG, In fact if
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is exact in &*, then for F £ S(F, the diagram

is commutative with the vertical maps natural isomorphisms and the
bottom row exact, F being left exact on & Thus the top row is exact.
Further,

o —=Trans(F, A) Trans(F, B)

is also exact. If n : F “mA, then since for each X £s, u(X) : F(X) ->
A(X) = Honig(A, X), n maps onto the transformation v £ Trans(F, B)
for which v(X) is the composition

Thus u(X) = 0 for all X if and only if this composition is o. It follows that

is exact in S(F, §€). Now Trans(A, B) = B(A) = Honig(.B, A) =
= Honig*(H, B), sothat A “mA isan exact embedding of &*into S ¥é,
with the maps between objects in s * ‘the same as’ maps between their
images in J?(<§, ~€). Also, a projective in <8 (i.e., an injective in &) is a
projective in -S’(R, Si). To see this, let

be exact in and | injective in s . Then
0—y Trans(l, F) -> Trans(l, G) —v Trans(/, H)

I I J
0-> F() > G(I) -> H(I)

is commutative with exact rows and the vertical maps natural isomorphisms.
It suffices to show that

is exact. For any injective / £<§ let U(l) = Coker u(l). Then U is an
additive functor from the category mJT" of injectives of & to ForCfs,
let o -aC -»lo /1 1r be exact with 10, 7X injective. Defining U(C)—
— Ker U(f) yields an extension of U to a left exact functor in J296, ).
The commutative diagram
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yields a transformation of functors v :H “mU. Now the commutative
diagram

has exact rows and last column exact. It follows that the composition
G(C) —=aH(C) —mU(C) is o. But G [, H is an epimorphism, and voun = o.
Thus v = o, and so Coker u(l) = o.Thus u(l)is an epimorphism as desired.

One can show without difficulty that a map F ->G in is a
monomorphism if and only if for each A £<§ F(A) -+G{A) is a mono-
morphism, and is an epimorphism if and only if for every injective
[ £6, F(1) = G(J) is an epimorphism.

The category s * may be identified with its image in Jz"é, u€). Even
though a projective in s * is projective in the larger category

an injective in s * may not be injective in <% ).

Theorem 5.1. In is£), extensions of representable functors are
representable.

Proof. Let

0-+A~F-+B->Q
be exact in Nn), with A. BE<€ In <§ let
o - B 1B .. o
be exact with 1 injective. Then in R (&
0. {1B) -+1-+B-+0
is exact with 1 projective. Hence

o -> Trans(H, A) “mTrans(/, A) -> Trans((I1/R), A) ->Extfxe,rA)(B, A) -> 0

J I |

0 —-Homg(H,.B) ==-Homg(d,/) -=Homg(H, 1I/B) —vEXxtg(H, B)->0

is commutative with exact rows and vertical maps natural isomorphisms.
Thus E x t cA(B, A) oa Extg(H, B) — Ext~(B, A). Hence the exact
sequence

o~ i P /i 0
is equivalent to an exact sequence
QMA->C-~"B-+Q

and so F sd C- That is, F is representable.
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Theorem 5.2. For FE£.57, and C£6, F(C) is torsion-free
divisible. That is, §F) is the category of left exact functors from ¢
to the category of vector spaces over Q.

Proofr. Suppose F(C) is not torsion-free for some G£s. Then the
composition of F with the left exact functor that takes a group onto its
p-socle is, for some p, a non-zero functor G £ >)X). The representable
functors in 3?(@, <yd) form a family of generators [s]. Thus there exists
a representable functor X and a non-zero map X -> G. Por some D £ &,
X(D) -> G(D) is not zero. But X(D) = Home(X, D) = Q ¢¢Hom(X, D)
is torsion-free divisible, and G(D) is bounded by p. This contradiction
shows that F(G) is torsion-free for all C£& Now F(C) Trans((7, F)
being torsion-free implies that the composition of F with the functor E
that takes a group onto its torsion-free divisible part (that functor is
not left exact) is left exact. For any 1) £ & and n £ Trans((7, F), the image
of u(D) : G{D) ->F(D) is torsion-free divisible, since C(D) = Q®Hom((7, D)
and F(D) is torsion-free. Hence Im(«(.D)) a (Eo F)(D), and u induces a
transformation u' :G ->EoF. Clearly Trans(C, F) -*Trans(C,,PJoP) \u->u"
is @ monomorphism. Thus o -> F(C) -> (E o F)(C) is exact. But (E o F)(C)
is the torsion-free divisible part of F(C). Therefore F(C) is torsion-free
divisible as asserted.

Theorem 5.3. For F,GE Trans (F,G) is torsion-free
divisible.

Proof. For any subobject Fa of F, there is a representable functor
Xa and a map fa such that the composition XaX F -> FjF,,is not zero,
since the representable functors form a family of generators. Hence there

, . N7a
isatTap N Xa——>F which is an epimorphism. The resulting exact sequence

yields

exact. Trans( 2 G) ~ I Trans(XH G) 11 Jf G{Xa)is torsion-free divisi-

ble. Hence Transiil G) istorsion-free forall F, G£ JE). In particular,
Trans(iL, G) is torsion-free, and this makes Transiil G) torsion-free divisible
as asserted.

Lenrma 5.4. If F £ SFfi, is an epimorphic image of a representable
functor and a subobject of a representable functor, then F is a representable
functor.

Proof. Suppose

0-aA ->X F->0
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and

are exact. Then

is exact, so that F is an endomorphic image of X © Y, which is represent-
able. Since Homg(X @ Y, X © Y) Trans(X© Y, X © Y), it follows
that F is representable.

This lemma yields immediately

Corollary 55. If X = Faor |l Fin J2(@, 3Y), then each Fa
is representable. “ a

Thus an object in ¢ has no new direct decompositions in
However, an object in € may gain new subobjects in §E). This
follows from Gabriel [s, Chapter Ill, Proposition 4, and Chapter II,

Proposition 10]. The significance of these new subobjects for the study
of the ‘quasi-structure’ of a group is not too clear.
In <B), it is easy to see that Z(p°°) and Z are simple objects.

If Qpdenotes the subgroup of Q of elements whose denominators are powers
of p, then

is exact in &, so that

is exact in ™ (&, ). Further, Zip*) Z, and Ext"rg,s)(z, Z{p°°) ¢ O.
Thus in a complete Abelian category, the group of extensions of two non-
isomorphic simple objects may be non-zero.
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