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Preface

In different aspects of computer programming one meets definitions that 
seem to be circular, in that the notion to be defined plays a role in the defini­
tion. A closer look, however, shows that in such cases we are always con­
cerned with recursive definitions, and the aim of this book is to develop 
exact definitions of this background.

The action of a computer can always be thought of as a process such that in 
response to given input data, the machine produces certain outputs. Since 
both the input data and the sequential output of the results can be encoded 
into natural numbers, it follows that the functioning of a computer can always 
be considered as the computation of a value of a numeric function. With 
the idealization that the contents of the computer store are unlimited, it 
can be shown that the functions computable by a computer are identical 
with the class of functions known as the “partial recursive functions” .

Therefore if we study how the computation of partial recursive number- 
theoretic functions can be programmed, essentially all questions concern­
ing the problems solvable by a computer will be studied. The above idealiza­
tion (which will be assumed throughout in what follows) always arises 
if a general mathematical theory is applied to practical problems. This is 
often expressed by saying “the infinite is a useful approximation to the 
large but finite”.

The computer does not understand and manipulate the data (including 
the numbers) in substance, but only as sequences of symbols. Hence we 
shall also have to deal with the generalization of the theory of recursive 
functions to the case of sets of numeric structure.

The practical side of the subject does not fit into the framework of this 
book. I am in the convenient situation that I do not even have to cite any
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literature dealing with this: it suffices to refer to the references quoted in 
Barron’s booktl]. However, because my own publications are not quoted 
there and it is from these that almost the whole material of the present 
book is derived, I shall refer to these and to several papers by other authors 
throughout the book.

Almost no previous knowledge is necessary. The lengthy general proofs of 
the quoted works will not be given. The arguments will be mostly illustrated 
by examples.

Finally, may I express my gratitude to L. Kalmár, who persuaded me to 
work in this field and to write this book; to B. Dömölki, who carefully read 
the manuscript and helped me with valuable suggestions; and to G. Révész 
and J. Urbán, who also read the manuscript and made useful remarks.

Rózsa Péter

[1] D. W. Barron: Recursive techniques in Programming, Macdonald and Co, London 
(1968). References at the end of every chapter. See in particular J. McCarthy’s works 
quoted there.



Foreword

Rózsa Péter, Corresponding Member of the Hungarian Academy of Scien­
ces, retired professor of the Eötvös Loránd University of Budapest died in 
February 1977. Her scientific career started in the late 1920s. By now, 
she became a classic of mathematical logic as one of the founders of recur­
sion theory. In her early works she has made important contributions to 
the development of the concept of recursive functions. In 1951 she was 
the first to publish a monograph on this subject. The present book, based 
mainly on her own research conducted in about the last twenty years of 
her life, gives an insight to possible applications of recursive functions and 
their generalizations in computer theory.

Besides being a great scientist, she has played a prominent role in the mathe­
matical life of our country. Her kind forceful personality and her striving for 
justice made her a natural champion of all good causes we aimed at in 
organizing mathematics in Hungary.

Interviewed by the Hungarian Television in 1970, asked by the reporter 
whether her subject in mathematics had practical applications, she answered: 
“I must admit that I never thought of this while doing research work. The 
problems I dealt with arose as a consequence of inevitable inner develop­
ments in mathematics. This made them exciting for me and I would not 
even have dreamed that my results might have practical applications. 
It should be a warning example to all those who want to discourage 
research in pure mathematics that they are preventing the cause of the 
applications of mathematics as well.”

This book was first published in German, in 1976. We should express our 
thanks to dr. István Juhász, who with indefatigable zeal worked to make 
it available in English.

András Hajnal





Chapter 1

Recursions in Binary 
Computer Arithmetic

1.1 Binary Representation

The fact that we can build a computer out of parts, each one of which is 
capable of having two states, is due to the recursive dependence of the 
basic operations between natural numbers on their binary digits [2].
We have to take care that the digits of the same place-value of the operands 
a and b should stand in the same order, and the appearing empty spaces be 
occupied by 0. The final (that is first from the right) of the binary digits 
of a and b will be denoted by a0 and b0, the next to the last ones by ax 
and bx, and so on.

1.2 Digital Addition

When we add a and b let the corresponding digits of their sum be denoted by 
,s'o, sx, s2, and so on, and those of the carry from the right-hand neigh­
bouring place by 0, ux,u 2, etc. Using the notation & for “and”, and V 
for “or” (the Latin “vel”, permits the occurrence of both alternatives), 
and taking that the carry 1 occurs if at least two of the values an, bn, un is 
equal to 1, we obtain the following relationship:

и о =  0
[1, if a„ =  b„= lVa„ =  un = I4b„ = un = 1 (1.2.1)

!<"+1 (О otherwise,
s _ f l ,  if (un =  0&an jí h„) V (м„ =  1 &a„ =  bn)
" [0 otherwise.

[2] The binary representation of a natural number is

written in brief as
2k*űfc-f 2к-1 + ... -b l 'ű i  +  űoí

tfkűk-l aiaOi
where each one of the digits a0, alt ..., ak is either 0 or 1. It can be required that ak= 1 
or an arbitrary number of zeroes may be added to the left.
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For the computer it is still simpler, if two states are distinguished according 
to whether the carry is 0 or 1. In order to be able to indicate the change of 
states, we put, in general,

f 1, if c =  0 
C jo  otherwise,

and the digits of the sum at different states will be distinguished by upper 
primes. Since for n„=0 a change of state occurs if an=b„ = \, and for u„ =  1 
if an=bn= 0, the definition of the sum a+b  reads more precisely as follows;

f»0 =  0
I _  fn„, if On = bn ^u„  (1.2.2)
(iin+1 \u„ otherwise,

, П, if ап^ Ь п
S" ~  jo. if a„= bn,

„ _  Í 1» if a. = bn
S "  jo, if an ?±bn,

_ K ,  if “„ =  o
S n - k ,  if un = i.

1.3 Digital Subtraction

It is easy to see that for a ^ b  the digits of the difference a — b can be obtained 
in exactly the same way, if the definition of the carry, which we will denote 
by u~, is modified like this:

uö = 0
u-  = K ~ , if a„ — bn (1.3.1)

n+1 [u~ otherwise.

1.4 Digital Multiplication

In multiplying a given multiplicand a with a given multiplier b we have to 
use the fact that the addition of two summands can already be done digit- 
wise, hence so can be done the special case of the multiplication in which 
the multiplier is 2, since

2 'C = c + c.
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This can more easily be done directly, since the digits Z„ of the double of c 
are obtained by affixing 0 to the right-hand end of the binary form of c :

jz0 =  0

i Zn + l  =  Сл-

In general the multiplication is carried out in such a way that a is multiplied, 
step by step, by

bo> 2 • blt 22 • b2, ... ,

and then these products are summed up. This can also be accomplished so 
that first (that is at step zero) a is taken by itself, then it is doubled, then the 
result is again doubled, etc. and the value obtained in the nth step is taken 
as a summand if and only if b„=1. The addition of the subproducts can also 
be carried out step by step. Precisely,

i d (0) — a
|d (n  + 1) =  2 • d(n) (1A1)

and
s(0) -  0

fsOO, if bn = 0 (1.4.2)
S {n + l)~ \s (n )  + d(n), if b„= 1.

If bk is the last digit of b (from the right) that is not equal to 0, then
a -b  =  s (k + 1),

which can be computed digit by digit as above.

In the last two definitions, the functional notation d(n) and s(n) was used. 
The indexed letters could also be written in this form; e.g. the value of the 
digit an depends on n, hence it could be written as a(n). There is no need 
to give other well-known examples of definitions in the basic binary arithme­
tic of the computer, for the ones given so far already show the basic prob­
lems of such definitions.

1.5 Circular Definitions

The definitions denoted by (1.2.1), (1.2.2), (1.3.1), (1.4.1) and (1.4.2) seem 
to be circular because in order to compute a value of the functions defined 
in them other values of the functions to be defined are needed. In full gene­
rality such definitions are indeed useless. If e.g. we omit the first line in 
definition (1.4.1) or we replace the second by

d(n +  l) =  d( 2-n),
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then in the first case none of the values d(n) and in the second case none 
of those with «>1, could be computed.
Equation (1.4.1), however, is a particular example of primitive recursion, 
by means of which a numeric function (that is one defined for and taking 
its values from the natural numbers) is uniquely determined. Here this 
function is

d*(n) =  2" • a,
since

d* (0) =  2° • a =  a, 
and

d*(n+ 1) =  2”+1 • a = 2-(2n • a) = 2-d*(n)
яге satisfied.

Moreover this is the only function satisfying (1.4.1). Indeed, if the numeric 
function d**(n) satisfies it as well, then

d**( 0) = a = d*{ 0),
and if for some n we have

d**(n) =  d*(n),

then this equality is also valid for и+ l ,  since then

d**(n+1) = 2-d**(n) = 2 -d*(n) =  d*(n+ 1).

Thus d**(n) is identical with d*(ri)=2n -a.

Thus (1.4.1) yields the special case of multiplication in which the multiplier 
is an arbitrary power of 2. The computer, however, knows nothing about 
2" • a. It can only recognize that in a storage location going from the right 
to the left, first 0 occurs n times and then the digits of a occur in order. If, 
purely formally, a is considered as the sequence of its binary digits, then
(1.4.1) determines a new kind of primitive recursion, whereby a function 
which is not numeric but whose arguments and values are finite sequences 
of symbols. That is why in the following chapters we shall consider such 
generalizations of the notion of recursivity.



Chapter 2

General Recursive Functions

2.1 Primitive Recursion

First I restrict myself to the case of numeric functions.

Since the natural numbers can be obtained from 0 by means of the operation 
“counting 1 along”, it is usual to prove a numeric statement by showing 
that it is satisfied for 0 and that its validity is “ inherited” from any natural 
number to its successor (mathematical induction). Moreover we can define 
a numeric function by prescribing its value at 0 and providing a method 
for obtaining its value at л +  l from n and the value at n, for any given 
number n. Such a definition, by means of which the value of the function 
to be defined is computable in a finite number of steps for any given argu­
ment, is called a primitive recursion. It has the form

where a is a given number and ß(n, w) is an already known function of n 
and w. In addition to the “recursion variable” n other variables, known as 
parameters, can also occur in ß.

There is always exactly one function (p*(n), which satisfies the defining 
system of equations (2.1.1). L. Kalmár[3] has shown this by using a sequence 
of partially defined functions (that is functions defined for a subset of the 
natural numbers), which he called “partial solutions” of (2.1.1). By this 
we mean that

(1) if such a function ф is defined at 0, then
i/í(0) =  a.

L. Kalmár: On the Possibility o f Definition by Recursion, Acta Sei. Math. 9 (1940) pp. 
227-232.

<p{ 0) =  a
(p(n+ 1) =  ß(n, (p(n)),

( 2. 1. 1)
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(2) if i/t(n +  l) is defined for some n, then so is ijs(n) and [4J,
ф (п+ \) = ß(n, iИ«))-

If and iß2 are partial solutions of (2.1.1) and both are defined for n, 
then

»Ai(«) =  ^ 2  00,
since this is true for n= 0 by (1) and is induced from n to n-f-l by (2).
Now Kalmár defined a sequence of functions

(p0,(Pi,(p2, -  (2.1.2)

for finite subsets of the natural numbers as follows: Let (p0 be defined for 
0 only by

<Po(0) =  a.
This is obviously a partial solution of (2.1.1). If a partial solution <pn of
(2.1.1) is now given, for which <p„(0) and cpn(n) are defined but (p„(n + l) is 
not (as is the case for n —0), then b y [4] <p„ is only defined for arguments less 
than n + 1. We define q>n+1 for an argument less than и +  l if and only if 
cpn is defined there, with the same value, but we also define it for the argu­
ment и +  l as follows:

<Pn+i(n + l ) = ß(n, <pn(n)).
Thus, this defined partial function (pn+l inherits the above properties of 
(pn. Firstly, if <p„(0) was defined then so is <pn+1(0), moreover

(Pn+1(0) =  <Pn(0) =  a-
Hence <pn+1 satisfies (1).
<Pn+i(n +  l) was defined, however (p„+i((n + 1) + 1) was not, since otherwise 
<p„((n +1) + 1), and therefore by (2) (p„(n + 1), would be defined.
Finally (pn+1 also satisfies (2), and therefore is a partial solution of (2.1.1). 
Indeed, assume that <p„+1(m +  l) is defined for an m (^ (n  +  l) +  l). If m ^n , 
then (pn(m +1) and thus by (2) <p„(m), are also defined in such a way that

(Pn+i(ra +  l) =  <Pn(™ + 1) =  ß{rn, (Pn(mj) = ß(m, (ptt+1(mj).
If m=n, then

<Pn + i(n + l) =  ß ( n ,  4>„{n)) =  ß ( n ,  <pn + 1 ( n ) )  

by the definition of cpn+1. Hence <p„+1 satisfies condition (2).

t4] Note implies that whenever ip is defined for n+ 1 it is also defined for all the smaller 
numbers. However, in his proof, Kalmár avoided the use of the relation m <n, since this 
is defined in terms of addition like this: “there exists a number r different from 0 such that

n = m +r,”

while addition is defined through a primitive recursion.



Sec. 2.2] Dummy Variables 19

The members of the above defined sequence (2.1.2) are partial solutions of
(2.1.1), moreover for each n the function (p„ is defined for n.
It follows that if (p*{n) denotes the common value at n of the partial solu­
tions of (D) defined for n, then cp*(ri) is defined for each n and is the unique 
{complete) solution o f (2.1.1).
The existence of a unique solution for the types of recursion to be mentioned 
below could be proved similarly, but we shall not discuss it here.

2.2 Dummy Variables

The functions defined in Ch. 1 were all primitive recursive, in a sense to be 
defined. To demonstrate this, we shall examine those definitions more 
closely.

2.2.1 The Functions 0 and n +1

The simplest of the definitions was used to define the “change of states” 
in the addition. Replacing the variable c used there by the more usual n, 
and taking into account that every number different from 0 can be written 
in the form n+  1, this definition reads as follows:

This is a primitive recursive definition of the function n, where 1 stands for 
the constant a appearing in (2.1.1) and the function ß(n, w) is represented 
by the constant 0, which can also be considered as a function of n and w. 
We shall always allow the use o f dummy variables, on which a function does 
not really depend. The constant 0 (including dummy variables) will be taken 
as an initial function.
The constant 1 also plays a role in the above definition but we do not 
have to take this as an initial function. Indeed, it is convenient to take the 
“successor function” и +  l, which is more elementary than the sum [5] and 
therefore is often denoted by n', as an initial function. Clearly 1 is obtained 
by substituting 0 into it.

t5] It was observed that school children, who can immediately name the successor of an 
arbitary natural number, have difficulty when they have to write down in an equation the 
successor of x. It is not obvious for them that this is obtained as the sum x +  1.

— 1lu+ 1  = 0 .
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2.2.2 Primitive Recursive Functions

All the larger numbers can be obtained by substitution from the initial 
functions. We obtain 3, for example if first in n + \ we replace n by n + 1, 
then in the resulting (и +  1) +  1 we do the same, finally in ((n +  l) +  l) +  l 
we replace n by 0. Thus all the natural numbers are primitive recursive, for 
the general definition of this concept goes as follows:

A numeric function is called primitive recursive i f  it can be obtained from  0 
and n + \ by means o f finitely many substitutions and primitive recursions.

2.3 Recursive Operations

As a simple example of a primitive recursive function we can consider the 
identity function (p(n)=n, since it can be defined directly from the initial 
functions by the primitive recursion

f<HO) =  o
j<p(n+l) =  Л +  1.

In the primitive recursive definition of the sum

<p(n, a) = a + n,

in addition to the recursion variable n a parameter a also occurs. Thus the 
value of (p for л = 0  is not a constant, but is already a given function of the 
parameter. Here this is the identity function tp(n)—n, corresponding to 
a (a) = a.

|<p(0, a) = a
\(p (n+ l, a) = cp(n, a )+ l.

The function corresponding to ß(n, a, w) of the general definition, which 
of course depends on the parameter a, is represented here by the initial 
function

ß(n, a,w) = w + 1,

with n and a as dummy variables.
Using the sum, the product

(p(n, a) = a • n

is also obtained as a primitive recursive function, since (я -fl) times a can 
be obtained from n times a by adding a to i t : -

i<P(0, a) = 0
l<p(n + 1, a) =  (p(n,a) + a.
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Within the scope of the natural numbers we can only define the “arithmeti­
cal difference” (denoted by a — n), which is the non-negative part of a — n; 
that is it is 0 if a is less than n. First we consider cp(n)=n — 1, this is obtained 
by the primitive recursion

(Ф(0) =  0
\(p(n+ \) = n.

Moreover for <p(n, a)=a — n we have 

|<P(0, a) =  a
1<р(л + 1, a) = (p(n, a) — 1.

One of the values a - b  and b — a is always 0, and the other is the absolute 
value of a—b. Thus

\a—b\ = (a — b)+(b — a)

is obtained by substitution from the sum and the arithmetical difference. 
Hence it also is primitive recursive.

2.3.1 Primitive Recursive Relations

In Ch. 1 we have seen definitions by cases according to whether two numbers 
were equal or not. Equality is said to be a primitive recursive relation, since 
a=b if and only if the primitive recursive function \a—b\ vanishes. In 
general a numeric relation В (ax, ..., ar) (for r = \a  property) is called primi­
tive recursive i f  it has a primitive recursive “characteristic” function ß(ax, ... 
..., ar), which vanishes exactly for those arguments that satisfy B.
Thus a<Z> is also a primitive recursive relation, as it is satisfied exactly for 
those a and b for which

(a + 1) — b = 0 .

2.4 Sign Functions

From the primitive recursivity of given relations we can deduce the pri­
mitive recursivity of certain others, which are built up from them.
For example, the negation of a relation В is primitive recursive if В is. 
Indeed, let ß be a primitive recursive characteristic function of B. Of course, 
what is relevant about ß is the places where it vanishes. In other words we 
are only interested in the “sign” of ß, where we have in mind the function

sign (a) =
1, if a =» 0
0, if a = 0

— 1, if a <  0,
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defined for all integers. Since here negative numbers are not considered, a 
suitable sign function can be defined by means of the following primitive 
recursion: -

fsg(0) =  0 
jsg(n  +  l) =  1.

For the negation В of В the exact opposite of this (denoted by sg) is used: -
fsg(O) =  1 
jsg(n +  l) =  0.

This was actually introduced earlier in Ch. 1 for another purpose, with the 
notation c. Clearly sg(/?) is a primitive recursive characteristic function of 
B, since it vanishes if and only if В is not satisfied.

2.4.1 Closure of Recursive Relations

In definition (1.2.1) (and, implicitely, in (1.2.2) and (1.3.1) as well) combina­
tions of relations by “and” (conjunction) and “or” (disjunction) occur. 
Together with Bx and B2 the relations

Bx & Bo and Bx V B.,
are also primitive recursive. Indeed, if ß1 and ß2 are primitive recursive 
characteristic functions of B1 and B2, respectively, then ßx+ß2 and ßx-ß2 
are primitive recursive characteristic functions of BX&B2 and ВгуВ2, 
respectively.
The implication BX-*B2 (which means “ if Bx is valid, so is B2”) can also be 
written as

SiVÄ,;
it is also primitive recursive if Bx and B., are.
For the negation a =  b I will use the more usual notation a ̂ b .

2.5 Definition by Cases

As was noted earlier, in Ch. 1 we used definitions by cases. In general we 
have: -  If a2, ..., a* are primitive recursive functions and Bx, B2, ... 
...,B k^1 are pairwise exclusive primitive recursive relations, then the 
function (p, defined as follows, is also primitive recursive:

al5 if Bx is true

CD =  ........................ ............................
a*-!, if Bk_x is true 
ak otherwise.
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First of all, the “ otherwise” can be replaced here by 
Bk =  B1 & J32 & ... & Bk _ j .

Secondly, assume that ßlt ..., ßk are primitive recursive characteristic func­
tions of Bx, ..., Bk, respectively. As these relations are pairwise exclusive, 
for each argument exactly one of the values s g ^ ) ,  ..., sg(ßk) is equal to 1 
(namely Ig(/?,)=1, if ßt —0, that is, if B, is satisfied). Thus <p can be defined 
by

q> = cq • sg (ft) +  oq • sg (ft) + ... +  oq • sg (ft).

The built up function cp remains primitive recursive if in its definition by 
cases the right-hand side contains the value of (p taken at the immediately 
preceding value of the recursion variable. An example for this is given 
below as a modification of definition (1.2.2). The same is true for definitions 
by cases of other types of recursion that we shall treat later on.
A particular example of a built up primitive recursive function is a(n), 
the nth digit from the right of a number a, given in binary form. If for 
example

a =  10111,
then

1, if n = 0 
1, if n = 1 
1, if n = 2

“ ‘" H o ,  if „ =  3
1, if n = 4 
0 otherwise.

In this sense all the functions defined in Ch. 1 are primitive recursive. Consider, 
fo - example, (1.2.2) in which a and b are fixed numbers and instead of u„, an, 
bn the notation u(n), a(n), b(n) is used. Then

n(0) =  0

{u(n), if a(n) — b(n) ^  u(n) 
и (n) otherwise.

As we have said already, here
й(п) = sg (u(n)).

Since the function
fsg(w), if a(n) — b(n) & b(n) ^  w 

B(n,w) = \( w otherwise,

is primitive recursive, u(n) is thus defined by the primitive recursion: -
fu(0) =  0
|к (л -Н ) =  ß(n,u(n)).
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2.6 Further Recursive Functions

After having given the above examples, in what follows I shall list other 
primitive recursive numeric functions, without however giving any actual 
proofs that they really are primitive recursive. For these I shall refer the 
reader to my book [6]. The functions used in elementary number theory 
are all primitive recursive, for example the nth prime number pn as a func­
tion of n, the exponentiation a", the exponent exp„(a) of the nth prime num­
ber p„ in the unique prime factor representation of a (we put exp„(0)=0),

the “arithmetical quotient” |j^ j (which is 0 if n = 0 and the largest number

contained in — otherwise), or the remainder res (a, n), obtained when divid­

ing a by и (this is understood to be a if n=0). This shows that the nth binary 
digit of the number a is a primitive recursive function of n and a, namely it is

res((y]4
Also |^-j for n^O was defined as the smallest number /' up to (and including)

a, for which (i +1) • n is already bigger than a. In general, for any primitive 
recursive relation B, the expression

Pi[i ~  n & B (i,a1, . . . ,ar)],

(which means the smallest number i up to (and including) n satisfying 
B(i, a-i, ..., ar), if there is such a number, and 0 otherwise), is a primitive 
recursive function of a1, . . . ,a r. Here the implicit bounded existential 
qualification, denoted by

(Ei)[i s  n & B(i, űj, ..., ar)]

yields a primitive recursive relation of n, alt ...,a r for a primitive recursive 
B, similar to the expression

(Of* =n -* B (i,au  ar)j,

meaning that “ for each i up to n B(i, ax, ..., ar) holds true” .

The largest i for which the rth binary digit of ат'-О is 1 (where the first digit 
from the right is considered “Oth”) is then

pt[i ^  a & 2i+1 >  a],

t6i R. Péter: Recursive Functions, Budapest, New York, London (1967); earlier published 
in German, Russian and Chinese.
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which is a primitive recursive function of a. It would be easy to provide 
here a smaller upper bound for i than a. However it is not worth-while to 
calculate the exact upper bound, this being irrelevant with respect to 
the smallest i of the given property. Denoting this by к (a) and the nth 
binary digit of a by z(n, a) we have

Ha)
a = 2  z (n> a)-2".

n = 0

Here the values of a primitive recursive function of n are added up, from 
n= 0 to a non-constant bound. In general, if (p(n,aly ...,a r) is primitive 
recursive, then

ь
2  <p(n, al9 . . . ,a r)

n = a

and
b

n  <p(n, Ű1, • - , a T)
n=a

are primitive recursive functions of a, b, au  ..., ar.

2.6.1 Sequential Calculation

According to the above, the binary digits of the value of any primitive 
recursive function cp can be obtained as primitive recursive functions of the 
binary digits of its arguments: first the arguments as primitive recursive 
functions of their digits, then q> of these arguments, finally the digits of the 
obtained <p-\alue.

These detours can actually be avoided. The digits of the values of primitive 
recursive functions can be computed successively from the right to the left, 
from the digits of the arguments.
For the initial functions 0 and n + 1 this can be seen immediately. Every 
digit of 0 is 0 (independently of the variables), while n +1 is the particular 
case of the sum a+b, with b=  1, having the digits

ho =  1» ki — 0, b% — 0, ... ,

for which this has already been established. Of course, it could also be 
shown directly. Next, if the digits of the values of the functions <x, ßlf ... 
...,ß s are obtainable as primitive recursive functions of the digits of their
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arguments, then this holds also for the function

oc(ft(űi, ar), ..., ßs(a1, ..., ar)),

obtained from them by substitution. Finally, this property is carried over 
from the functions a(aj, ..., ar) and ß(n, alt ..., ar,w) to the function 
(p determined by the primitive recursion

|ф (0, аг, ..., ar) = a(a1, ...,a r)
\(p(n + l ,a 1, ..., ar) = ß(n ,a1, .... ar, (p{n, alf ...,a r)).

Indeed, for n=0  this can be seen immediately, and it is transferred from 
n to n +  1. If it is true for the value cp(n, ax, ..., ar), then it is also true for 
(p(n + l , аг, ...,a r) obtained from this value and ß by substitution.
Thus the digits of the arithmetical quotient and of the remainder in division 
can be obtained consecutively from the digits of the dividend and divisor. 
Following through the construction of a primitive recursive function out 
of the initial ones, however, might bring with it unnecessary detours. In 
this construction of the sum a+n, for instance, the multiple application of 
the successor function is needed, whereas we also have a direct way of 
computing the digits of the sum from those of the summands. In practice 
one always strives for constructions with the fewest possible detours.

2.6.2. Restriction to Iterations

In the rest of this chapter, I will list several facts about number theoretic 
recursive functions, mainly without proofs. For these proofs I again refer 
to my book [e].
First I want to mention that in the construction of the primitive recursive 
functions, we can restrict ourselves to the following simplest particular 
case of primitive recursion:

<P( 0) =  0

<p(n + 1) =  ß ( q > ( n ) ) ,

provided that we also admit further initial functions; for example the sum 
a+n, the product a-n , the arithmetical difference д-=-и, and the “arithmeti­
cal square root” [fn] (the largest integer not exceeding /и ). In fact, the num­
ber of necessary initial functions can be reduced to three.
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In the above special primitive recursion the values of cp are obtained as 
follows: -

cp(0 ) = 0. 

cp(\) = ß(0 ).

<p( 2) =  ß ( ß m
<P( 3) =  ß(ß(ß(0)))-

This, therefore is simply the iteration of the function ß at the argument 0, 
also denoted by /?(n)(0).

2.6.3 Course-of-values Recursion

There are types of recursive definitions of numeric functions different 
from primitive recursion. Some of these can be reduced to primitive recur­
sion, but not all of them.

In course-of-values recursion the value of the function at a given argument 
is expressed by means of values of the same function taken at arbitrary 
previous places (not only the immediately preceding one). The “course of 
values” of a function cp up to n can be encoded by the number

p jw .p f  pjw,

where pn is the «th prime number in increasing order (2 being the “Oth”). 
By the uniqueness of the prime factor representation of integers the value 
(p(i) for i ^ n  can be obtained from this number as

exp,Í П pH ’V=0 /
the exponent of the /th prime number. Thus, in general, the course-of- 
values recursion has the form

q>(0 ) = a

<P(n+1) =  ß[n,  Я  p f J)) ,
'  J = 0 '

where a (constant or depending on the parameters) and ß are given primi­
tive recursive functions.
Here the course-of-values function

Ф ( п ) = П  P?U>j=o
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belonging to (p can be defined by the following primitive recursion: -

f (0) =  Po(0) =  2“
W ( n + i )  =  =  ф{п) ' р№ ш ,

and cp(n) is obtained from ф(п) by the substitution

(Pin) = exp„(iA 00).

This shows that the course-of-value recursion remains within the class 
of the primitive recursive functions.

2.7 Simultaneous Recursion

The definition of two (and similarly more) functions by simultaneous 
recursion has the form

Í9>i(0) =  fl1 Í<P2(0) =  ö2
Wi(n +  1) = ß i (n, <j»i(n), <рг (п)) , l<p2(n + l) =  ß 2(n,  (рг (п), ф2(п)).

This can be reduced to the definition of the function

<p(n) = 2«,i(") • 3**in),

from which the functions <p1 and <p2 arise by the following substitutions: -  

<Pi(n) = expo (tpin)), cp2 (n) =  expx (cp (n)).

Using the primitive recursive auxiliary function
ß(n, и) =  2 ^ d n’ expotw)»exP i ( ° ) )  .  3 ^ 2 (n, ex p i jiu t .exp ji u ) )^

<p is determined by the following primitive recursion: -

J <p(0) =  2“i • 3a2 
l<p(n +  l) =  ß(n, (pin)).

Thus simultaneous recursion does not extend the class of the primitive 
recursive functions, either.

2.7.1 Nested Recursion

So far the parameters have played an incidental role, which is why sometimes 
they were not even indicated. There are, however, recursive definitions, in 
which the parameters do not remain unchanged. They might have to satisfy 
some conditions, even depending on previous values of the function to be
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defined. This might also lead to nestings of the previous function values 
in the definition, as in the following example:

|<P(0, a) = a (a)
\(p(n + l, a) =  ß(n, a, <p(n, y(n, a, cp(n, a)))).

If in such a definition the maximum number of nestings is fixed, then this 
does not extend the class of primitive recursive functions. However, the 
number of nestings can also be varied, and even be dependent on earlier 
values of the function to be defined. By means of such definitions it is pos­
sible to define functions that are not primitive recursive.

2.7.2 Multiple Recursion

There are also recursions on several variables simultaneously, as in the 
example below: -

<P(0,n) = a a(n)
(p(m + 1, 0) - a2(m)
<p(m + l , n +  1) =  ß(m, n, <p(m, y(m, n)), tp(m + 1, n)),

where (p{m,y{m,ri)) and <p(m + l ,n ) can be considered as “previous” 
values of cp, in m and n respectively.

2.7.3 The Ackermann-Péter Function

If no nestings of the previous values occur, then these multiple recursions 
remain within the class of primitive recursive functions. However, consider 
the following double recursion with a single nesting

(p (0, n) = n+ 1
cp(m+1, 0) =  cp(m, 1)
cp(m + 1, n + 1) =  (p(m, (p(m + 1, n))

which defines (p. It is known as the Ackermann-Péter function, and is 
not primitive recursive.

2.8 General Recursive Functions

I will not list any further variations of recursive definitions. They all agree 
in that the whole construction of the function to be defined out of the 
initial functions is obtained via a defining system of equations of the form 
r=s, where both r and s are terms built out of natural numbers, number



30 General Recursive Functions [Ch. 2

variables, symbols for the function to be defined and some auxiliary func­
tions [7]. The value of the function under definition, at any given argument, 
is obtained by applying the following simple steps a finite number of times.

A) the substitution of natural numbers for variables in an (original or 
derived) equation,

B) the replacement in an equation of a subterm, also occurring as the left- 
hand side of an equation, by the right-hand side of this second equation.

The above is the actual definition of genera l  recursion. The functions 
computable from systems of equations of the above kind by finitely many 
applications of steps A) and B) are called genera l  recursive.

Let us consider the primitive recursive function defined in (1.4.1) denoted 
by (p0(n) for the sake of homogeneity of notation. Then (1.4.1) reads as 
follows: -

J<Po(0) =  a
l<p„(n + l) = 2 -<p0(n).

The auxiliary function
<Pi(n) =  2 • n (=  n +  n)

is used here. Taking into account the known definition of the sum
(p2{n, m ) =  m  +  n

(cf. section 2.3), the complete definition of <p0(n) is as follows:

<p0(0) -  a (2.8.1)

<Po(n') = <Pi{<Po(n)) (2.8.2)
<Pi(n) = <M«> «) (2.8.3)
(p2(0,m) — m (2.8.4)

cp2(n', m) = (ф2(и, m))'. (2.8.5)

Clearly, the sides of these equations are terms of the required form.

[7] More precisely, the successor function has to be denoted by rí (= л + 1 ) here. Hence 
the natural numbers

0,1, 2, ...
are

0, O', O',... .
The number 0 and the numerical variables are terms. If a is a term, then so is a'. Thus 
all the natural numbers are terms. If ax, ..., ar are terms and <pt is a symbol for an /--place 
function, then <p, (ax, ..., ar) is also a term. All the terms are generated in this way.
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Let us carry out, for this simple example the steps of the computation of 
the value of cp0 at и = 1(—O'), when a=0"(=2). To the right of the newly 
derived equations we indicate whether they are obtained by the step A) 
or B), and the number of the equation(s) to which this step was applied. 
To start with, (2.8.1) has to be repeated with a=0":

Process applied to
eq. no.

<P 0(0) =  0* (2.8.6)

A 2 <pa(0') = cpx{cp o(0)) (2.8.7)

В 7-6 <p0(0') =  <рг(0") (2.8.8)

A 3 cpfO") =  <p2(0", 0") (2.8.9)

A 5 cp2(0", 0") = (<p2(0\ 0"))' (2.8.10)

A 5 cp2(0',0") =(<p2(0,0"))' (2.8.11)

A 4 <p2(0,0") = 0 "  (2.8.12)

В 11-12 <p2(0', 0") — O'" (2.8.13)

В 10-13 <p2(0", 0") =  0"" (2.8.14)

В 9-14 q>1(0") = 0""  (2.8.15)

В 8-15 <p0(0') =  0"" (2.8.16)

Thus we obtained <p0( 1) =4, if a = 2.

2.9 Partial Recursive Functions

The notion of general recursive functions includes more than the types of 
special recursive functions we have seen above. So far every concrete 
numeric function, whose values are effectively computable for all arguments, 
has proved to be a general recursive function.
It is an interesting fact that this extensive generality can already be achieved 
if, in the definition

l*i[i =  n &B(i, ax, ..., ar)\

of section 2.6, the upper bound n for i is omitted. Indeed, Kleene has 
shown that every general recursive function can be constructed, starting 
from several primitive recursive functions, by finitely many applications 
of substitutions and ц-operations. For a relation B(n, ax, ..., ar) such that
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for every a x, ..., ar there is an i satisfying B(i, a x, ..., ar) the //-operation

a x, . . . ,  ar)]

means the smallest such i [8].
If we omit the above requirement that for every a x, . . . , a r there be an i 
with B (i ,  a x, ..., ar), that is we allow that nt[B(i, ax, ..., ar)] be not defined 
everywhere, then the above procedure leads us to the p a r t ia l  recursive  
functions . These are also those partially defined numeric functions whose 
values for all arguments, where they are defined, can be computed from a 
system of equations with finitely many applications of steps A) and B), 
just as in the case of general recursive functions. Thus the general recursive 
functions are exactly those partial recursive ones that are everywhere defined. 
The identity of two partial recursive functions is denoted by

<P(ax, ..., a,) =* ф(ах, ..., a,)

and is to be understood as follows: both are defined for the same values of 
a x, . . . ,  ar , and wherever they are defined they take the same value.

2.9.1 The Kleene Form

Kleene has constructed a primitive recursive function ф (n) and for each r  
a primitive recursive function

such that
T(i, /?, ax, ...,u r)

Ш ,  fli. «Л = t(b  П, a x, ..., ar) =  0])

yields a universal explic i t  f o r m  of an /'-place partial recursive functions, in 
the sense that to every system of equations defining a partial recursive function 
(p(ax, ..., ar) one can determine a natural number n (called “Gödel number”), 
for which

ср{ах, , a r) ^ £ { n , a x, . . . , a r).

In a system of equations defining a function, all the auxiliary functions 
occur as well as the ones connected with the function to be defined. Thus 
any one of them, if the admitted steps of computation at no place yield 
two different values, can also be taken as the function to be defined. Then 
the others are considered auxiliary. That is why what we said is also valid 
for the simultaneous partial recursive definition of several functions. Each 
of these can be brought into the Kleene explicit form.

See S. C. Kleene: General recursive functions o f natural numbers, Math. Annalen 112 
(1936) pp. 727-742.



Chapter 3

Recursive Word Functions

3.1 Symbol Sequences

As was indicated at the end of Ch. 1, a computer does not understand 
our number theory, it can only notice that it received certain sequences 
of the symbols 0 and 1, and depending on these it can in turn emit such a 
sequence. The mathematician first has to consider very carefully how the 
binary digits of the result of an operation arise from the digits of the ope­
rands. He reasons that since

1.2" +  l -2n =  2-2" =  2n+1 =  1 .2n+1 +  0-2B,

a “carry” 1 results if we twice add the digit 1. Afterwards he observes what 
this implies for sequences of digits, and then this can be applied mechani­
cally [9].
Because of the carry, even taking the successor needs some consideration 
for numbers in binary form. Let us denote the successor of x, given in 
binary form, by s(x), the last (that is first from the right) binary digit of 
X by lb(x), the “initial part” of x remaining after the omission of lb(x) 
by at(x) and the empty sequence by A. Then the following rule can be ob­
served for taking the binary form of the successor (where 1 is considered

I can illustrate this with an example from my teaching experience. When solving 
equations the elimination of a subtrahend from one side was for a time always carried 
out with the explanation: “The equilibrium of a pair of scales is not disturbed if the same 
weight is placed into both scales” . After a while, in order to speed things up, a student 
was asked to say without thinking what distinguished the two equations obtained in this 
way. She could say: “A subtrahend disappeared from the left-hand side of the first 
equation and it appeared as a summand on the right-hand side of the second” . From here 
on it was done mechanically: “We transfer the subtrahend as a summand to the other 
side” .
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as the successor of the empty sequence):

*(*) =
1,
at 0)1, 
s(at O))0,

if X = A
if ibO ) =  o 
if ibO) =  i.

In fact, for the binary forms

of the natural numbers 

we obtain in order:

0, 1, 10, 11, 100, ... 

0, 1,2, 3, 4, ...

s(0) =  at (0)1 =Л1 =  1.
s(l) =  s(at(l))0  =  s(A )0=  10.
s(10) =  at (10)1 =  11.

s(ll)  = s (a t( l l) )0  =  s(l)0= 100 .

s(100) =  at (100)1 =  101
and so on.
These are the successors

1, 10, 11, 100, 101, ...

of the natural numbers in binary form.
The definition of v(x) is apparently some kind of recursion, but for finite 
sequences of symbols instead of natural numbers. The sequence s(x) is 
determined in terms of s(at(x)), and the initial part at(x) of the sequence x 
can be considered as “a place earlier than x” . Taking all the time such earlier 
places we get back to the empty sequence Л, for which s(A) is defined 
as the single-termed sequence 1. The role of 0 in numeric recursion is taken 
over here by A.
A conspicuous difference from the numeric case occurs here, in that x 
is not the only sequence immediately following at(x). For example, both 
x =  1011 and y —1010 immediately follow

at (x) =  101 (= at (у)).
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3.2 Numeric Structures

In a lecture on September 3, 1959 at the International Symposium on the 
Foundations of Mathematics (Infinitistic Methods) in Warsaw [10], I out­
lined a far-reaching generalization of the theory of recursive functions for 
abstract sets, which, in a certain sense, have a numeric structure. Here a set 
of elements plays the role of 0, and a set of functions the role of the succes­
sor function.

3.2.1 Word Sets

As one of the most important particular cases I mentioned the set of “words 
over an alphabet A ” (where A is a non-empty set, the members of which 
are called letters), that is the set of all finite sequences of elements of A. 
The role of 0 is played here by A, the empty sequence, while the attachments 
of a single letter to the end of a word play the role of the successor function. 
Thus, for each a£A, here xa is a successor function.

3.2.2 Primitive Recursions in Word Sets

Temporarily I shall restrict myself to the particular case in which the pre­
decessors of a word

are its initial segments

a l i  a l ű 2> •••> <*1а 2 . . .  ß f - l ,  diC>2---Clr .

Here the last one is of course not a “proper predecessor”, while the one 
before the last, that is at(x), is an immediate predecessor, at (A) is, by de­
finition, A itself. The general form of a primitive recursion is, in this parti­
cular case (assuming, as we can, that we have a finite alphabet), as follows: -

[l0] In the same month I submitted a long paper about this, which only appeared several 
years after the date of submission in two parts: R. Péter: Ü b er d ie  V era llgem ein eru n g  d e r  
T heorie  d e r  rek u rsiven  F u n k tion en  f ü r  a b s tr a k te  M e n g e n , Acta Math. Acad. Sei. Hung. 
12 (1961) pp. 271-314; second part: 13 (1962) pp. 1-24. Further references concerning 
this can also be found there. My later works contain new results and several corrections. 
The last one is R. Péter: D ie  P a irsch en  fr e ie n  B in o iden  a ls  S p e z ia lfä lle  d e r  an geordn eten  
f r e ie n  h o lom orph en  M e n g e n , Acta Mäht. Acad. Sei. Hung. 21 (1970) pp. 297-313.

if * =  л 
[ h (x, /  (at (x))) otherwise, (3.2.1)
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or with parameters: -

X’ Xl’ ' " ,X" ~ \ h ( x , x 1, ...,x „ ,/(a t(x ), X
if X =  A 

, ..., x„)) otherwise,

where g and h are given word functions. In the case with no parameters g 
is a constant word.

The primitive recursive word functions are generated from certain initial 
functions by means of finitely many applications of substitutions and pri­
mitive recursions.

3.3 Initial Functions

Clearly s(x), as defined in section 3.1, is a word function in a word set M  
over an alphabet A containing 0 and 1. If h(x, y) is defined by

(where “otherwise” means lb(x) =  A, that is x =  A, if A contains no letters 
different from 0 and 1), then s(x) is determined by the following primitive 
recursion: -

Thus if the built up function h(x, у) is primitive recursive, so is ,v(x).
Here A and the successor functions xa, for a€A, are always taken as initial 
and the attaching of A to x, that is the identity function

can also be added to the list of the initial functions. We shall see later that 
at(x) is primitive recursive. Therefore so is at(x)l, which is obtained from 
xl by substituting at(x) into it. It will also be shown that a function built 
up from primitive recursive functions and relations, similar to the numeric 
case, is again primitive recursive. Therefore it remains only to examine 
the primitive recursivity of the function lb(x) and the relation of equality.

a t(x )l, if lb(x) =  0 
h ( x , y ) = y O ,  if lb (x) =  1

A otherwise,

s(x) =  i
h (x, s (at (x))) otherwise.
1, if x =  A

/(x ) =  xA =  x,
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3.3.1 The Set of Natural Numbers

In the numeric case the primitive recursive function \x—y\ was a char­
acteristic function of the equality x=y.  It is instructive to keep in 
mind here the role of the natural numbers in counting objects. One can 
for example, indicate the occurring objects, each in turn, with a correspond­
ing occurrence of the symbol 1. Thus the numbers 1, 2, 3, ... can be repre­
sented by

1, 11, 111, . . . .

that is by finite sequences of 1, where 0 corresponds to the empty sequence. 
Of course 1 is not considered here as a numeral of the corresponding num­
ber in a number system. If the length of x is at least as big as the length 
of y, then of course \x— y\ is obtained if we omit those l ’s from x that are 
in y. If nothing is left, then |x—y|= 0 . With the above notation the natural 
numbers yield a special word set, namely a word set over an alphabet 
consisting of a single letter, which is denoted by 1.
If we have two letters, the subtraction does not make sense anymore. If 
for example

Ul, ^2^^, Uj 7̂  #2,

how could one “subtract” the letters of y = a 2 ... a2 from x = a x ... alt or 
vice versa? It is therefore reasonable to add a characteristic function eq(x, y) 
to the initial functions, for example

ГЛ, if x = y  
eq (x, y) =  j ,otherwise,

where a0 is a fixed element of A.
The same is true for lb (x), namely that it has to be added to the initial 
functions. It was not a coincidence that lb(x) appeared in our first recursive 
definition of a word function. Now observe that (3.2.1) is not a perfect 
analogue of definition (2.1.1). Such an analogue would read

f / ( A) =  g
\ f(xa)  =  h (x, /  (x)), for afA-

Here x=at(xa), and thus the value of /  anywhere would only depend on 
the initial part at that place, completely independently of its last letter. 
It is clearly not desirable to restrict the class of primitive recursive functions 
in this way. The possible dependence on lb(x) must somehow be ensured
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in the defining system[11]. In (3.2.1) this is achieved by putting x, together 
with its last letter, as the first argument of h, instead of at(x). In the nu­
meric case (in which the alphabet contains only 1) this is of course irrelevant. 
From at (x) we obtain x by simply attaching 1 to it.

3.3.2 The Idea of a Predecessor

It is actually quite arbitrary to consider only the initial segments of a 
word as its predecessor, for example

X =  ű j Ű 2 a 3 ( ^ 1 , <?2 > Ü3£ A ) ,

A, Ui, агаг üiü3ü3.

At first I have considered all “connected pieces” of x as its predecessors. 
In the above example they are

A,  Uj,  Q i Q 2, Я3, й 2 о 3 , ü i ü 2 ü 3 .

Since not every predecessor of x is also that of the initial part a t(x )= a1a2, 
in addition to at(x), I have taken the final part (obtained by dropping the 
first letter), as an immediate predecessor of x. In our example this is et(x) =  
= a2a3. Every proper predecessor of x is then a predecessor of at least one 
of its immediate predecessors. Accordingly, in a primitive recursion, the 
value of /  at x is determined in terms of both /(at(x)) and /(et(x)).
In certain applications, however, even this turned out to be insufficient. 
In an application of recursive word functions to mathematical grammars[12], 
I found it necessary also to consider random pieces of x as its predecessors. 
In the above example ага3 is one. For the case of countable alphabets, these 
helped the representation (by means of a coding) only in the numeric case, 
where the notions of initial piece, connected piece, and random piece 
coincide. Indeed, in this case what matters is only the number of letters 
in a word and the value of /  only depends on the digit of the letter in the 
word. In the numeric case

Cli = = 1,

[11̂  In my paper quoted in footnote t10-1, as well as in several further papers, this was 
ensured by taking the auxiliary function h to be dependent on a (the last letter of the ar­
gument). This requires a separate defining equation for every letter from the alphabet, 
and possibly an infinite number of equations. We could obtain constructive definitions 
from these by suitable restrictions, corresponding to the applications under consideration. 
Both lb (jc) and eq(x, y) can be defined by such primitive recursions.
[12] R. Péter: Zur Rekursivität der mathematischen Grammatiken, Computational Lin­
guistics Budapest 9 (1973) pp. 133-216, Submitted in December 1969.
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and the variable here is x =  111. The different parts of this in any case can 
only be A, 1, 11, or 111.
Also the random part is identical with 11.
Thus we see that, if the alphabet is countable, we can restrict ourselves to 
the case in which the predecessors of a word are its initial segments, and 
primitive recursions have the form (3.2.1) [13].

3.3.3 The Order of a Word

A word over a non-empty alphabet A can be obtained from A by means 
of as many applications of the successor functions as its order, i.e. the 
number of letters it contains. Thus

x  — aia2a3 (űj, a2, o3(zA)

is obtained from A and the successor functions

f i ( x) — xa1, f 2(x) = xa2, / 3(x) =  xa3

by the following substitutions: -

giO) =  /s(/a(*)) =  xa2a3, 

gi(x) = gi(fi(xj) = х а ^ а з ,  

g2( A) =  a1a2a 3.

3.4 Representing Natural Numbers

The order of a word, which will play an important role in what follows, 
is a natural number. This makes it desirable that the natural numbers be 
present in the word set. The steps of an enumeration can be indicated by 
a fixed element of the alphabet. In a word set M, which is concerned with 
the basic code of a computer, I shall always choose 1 as this element. Hence 
the natural numbers will be identified with the words consisting of Fs 
only. In particular, 0 will be identified with A. Thus there arises a double 
meaning of the words consisting solely of l ’s. This will not lead to 
confusion, if the symbol of an operation, meant to be carried out digit-wise, 
is distinguished from the symbol of the corresponding absolute operation,

t13-1 See: Lisp 1.5-Programmers Manual, The Computation Center and Research Labora­
tory of Electronics. Massachusetts Inst, of Technology (1962).
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which is independent of the number system, by writing 2 under the former 
(for example, +).
Now, the order o(x) of the word x can be defined by the following primitive 
recursion:

|Л ,  if x = A
°^X'> jo (at(x))l otherwise

where o(at(x))l is obtained from the successor function xl  by substitution. 
Clearly, X is a natural number if and only if

X =  o(x).

It follows that the iteration of о (x) does not change anything: -

o(o(x)) =  o(x).

3.4.1 Number Functions and Word Set Relations

In this way, every numeric primitive recursive function can be represented 
by a primitive recursive function in the word set. In order to see this we 
shall prove the following: To every primitive recursive numeric function 
(p(n1, ..., nr) there is a primitive recursive word function f ( x 1, ..., xr) such 
that

(3.4.1) o(f(x1, ..., xr)) =  <7>(°(xi), •••, o(xrj)

holds for all xl5 ..., xr.

Proof. Firstly, this is true for the initial functions 0 and n +  1; for (p= 0 
we can take/= Л ,  and for cp(n)=n + l for exam ple/(x)=xl.
Next, this property is preserved by substitution: If (3.4.1) holds for

<Pi (hi, nr), <р*(и15 nr), ф(m1, mk)
with

/ l ( * l ,  ■ ■ ; X r) ,  . . . , / * ( * i ,  .... xr), g(yk, . . . ,yk)

respectively, then (3.4.1) also holds for фUp1, ..., (pk) with g(f_,  . 
as the assumptions imply

o(g(fi(x1 , ..., Xr), ...Ju iX j, ..., xr))) =

=  Ф{о(/i(xj, ..., xP)), ..., о(Л(х1? ..., xr))) =

=  Ф{<РЛо(Хг), .... o(xr)), ..., %(o(Xi), ..., o(xr))).
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Finally, this property is also preserved under primitive recursion. Indeed, 
let (p be determined by the primitive recursion

М О , щ, ..., n r) =  a(n1; . . . ,nr)
\(p(n+ l,wl5 ..., nr) =  ß(n, n1, ..., nr, <p(n, nl5 ..., nr))

where (3.4.1) holds for

a O h ,..., nr) and ß(n, nl5 ..., nr, m)
with

gO i, . . . ,xr) and h (х,хг, . . . ,xr,y),

respectively. Then (3.4.1) also holds for <p with the word function /  defined 
by the following primitive recursion:

_  fsOh> •••> *')> if * = Л
X, x i, ■■■, xr j й(at (x), Xj, ..., xr, f  (at (x), хг, . . . ,  xr))) otherwise. 

Indeed, by our original assumption,

о(/(Л , •••> ^r)) =  o(g(xl5 ..., xrj) = a (o fe), o(xr)) =

=  <p(0, o(xj), ..., o(xr)) =

= <p(o(A), ofa),  ..., o(xr)).
Here we used o(A)=0.
Now suppose that, for some natural number n, for every x with о(х)=и 
we have

о{f{x, xl5 ..., xr)) =  <p(o(x), o(xx), ..., o(xr)).

Then the same is also valid for each x of order o(x)=n + l, since for such 
an x we have o(at(x))=n, and so by assumption

o(/(x, Xj, ..., xr)) =  о (hint (x), xx, ..., xr, / (  at(x), xl5 .... xr))) =

=ß(o(  at(x)), о (xj), ..., o(xr), о (/(a t (x), xl5..., xr))) =

=  /(o (a t (x)), o(xj), ..., o(xr), ф(о(at(x)), o(Xi), ..., o(xr))) =

=  <p(o(at (x)) +  l, o(Xi), ..., o(xr)) =

=  ф(о(х), о(хг), .... o(xr)).

Replacing in (3.4.1) each xl5 ..., xr in turn with o/xd, ..., o(xr) we obtain,

o(/(o(x!), ..., o(xr))) =  ф(о(х!), ..., o(xr)).

On the left-hand side, there stands a primitive recursive word function, 
which at every place depends only on the order of its arguments, i.e. on 
natural numbers, and also takes natural numbers as values. Clearly, for 
natural numbers its value is equal to the value of cp. In particular, it vanishes



42 Recursive Word Functions [Ch. 3

for the same natural numbers as cp. Thus it can be considered as a represen­
tative of (p in the word set. In what follows the representatives of numeric 
functions, as functions of the orders of their arguments, will be denoted in 
the same way as the corresponding numeric functions.
This also applies to the numeric relations; they can likewise be represented 
by primitive recursive relations in the word set, for the primitive recursivity 
of a relation means here also the existence of a primitive recursive charac­
teristic function, which vanishes if the relation is satisfied, and otherwise 
can be defined to be 1. Since A is the empty sequence, “vanishes” can be 
taken here literally.

f A, if X — A 
11 otherwise,

Г1, if x =  A 
1A otherwise.

3.4.2 Examples

In our word set the counterparts of the numeric functions sg(x) and sg(x) 
can be defined by the following primitive recursions:

sig (x)

sig(x) =

and these are characteristic functions of the relations

x =  A and X 7̂  A.

Exactly as in the numeric case, it follows also here that if the relation В 
is primitive recursive, then so is its negation B. If ft is a characteristic func­
tion of B, then sig(h) is a characteristic function of B.

However, not everything can be copied from number theory. We found 
there that the disjunction B^\/B2 of the primitive recursive relations B1 
and B2 is also primitive recursive by multiplying their characteristic func­
tions bi and b2. In the word set we use the following trick: Let

Í A, i f  X =  A

otherwise.

Then d(x, y) vanishes if and only if at least one of x and у  does, that is

d(b1, b2)

is a characteristic function of B1\JB2.
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The primitive recursivity of the conjunction B^&B, now follows from the 
above, for it is equivalent to

Щ
and thus

sig (d (sig (hi), sig (b2)))

is a characteristic function of BxSlB2.
Similarly

B\ -*■ B2 = B1V B2

implies that, together with Bx and B2, Bx—B2 is also primitive recursive.

3.5 Definition by Cases

Now we can turn to the definitions by cases (in analogy with section 2.5.1), 
which have the form

gx, if Bx is true

gk- i ,  if Bk_x is true 
gk otherwise,

where gx, ...,gk are primitive recursive word functions and Bx, .. . ,Вк_л 
are primitive recursive relations, and “otherwise” means that

Bk = Bx & .. .& B k. x
is satisfied.
In the numeric case the corresponding function was

ai*sg08i) +  .. •+<**• sg (At),
where

_ [n, if m =  0
"'Sg(m) = io otherwise.

was the property of the product that we needed. The property of the sum 
we use is that it is equal to one of the summands if all the others vanish. 
In the present context we have to do something similar without multiplicat­
ion and addition.
The first case is easy; we simply put

SiO> У) = R
if X — \
otherwise,
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The following definitions lead us to the remaining cases

,  N [ Л .  i f  T i = A  
'< * • * >  =  1 *  otherwise,

s8 Oh, Уз, Уз) = ф-ЛУп Уз), Уз),

sAyi, Уз, Уз, У4) =  s2(s3(yi, у2, у3), у4),

SfcĈ i» — >Ук) =  Sa(st-i(Ti. - , У к - i), Ук)- 

For i = 2, 3, к and j =  1, 2, i we have

s 4( Л ,  А , У у ,  Л ,  Л )  =  Уу ,

hence for уу=Л
S|(A, Л) = Л.

Using the definition of s2

s2(A ,y 2) =  y2,
since

, л> | Л- if Ь = л 
^ ( Л ' Л) =  Ь ,  otherwise,

we have in any case
s2( y i ,  A) = yk.

It follows from
S i + lOh, y, + i) =  s2 (st(yi, Уд, У1 + 1)

that if the property under consideration holds for an si with i<  k, then it 
also holds for yi+1. Indeed, for j ^ i + 1 we have

si+1 (A, A,yy, A, A) =  s2 (s,-(A, A,yy, A, A), A) =
=  Sj(A, A, yy, A, A) =

=  3T>
and for 7 ' = / + 1

si+i(A, A, yi+1) =  s2(st(A , A), yi+1) =

=  s2(A, yi+1) =

=  Ti+i-
Thus sk has the desired property of the sum. It follows that if bk, . . . ,bk 
are characteristic functions of Bu  ..., Bk, respectively, then the built up 
function f  is obtained as

/  =  sk{si(bi, gi), Sj(fo2, g2), ..., s4(bk, gkj).

Consequently it is primitive recursive.



Sec. 3.6] Definition by Cases 45

3.5.1 Initial Segments

In view of the above, it follows that

A:
f (x ,  у  ,z )=  X,

z,

if o(x) <  o(y) 
if o(x) =  o(y) 
if О (x) >  Ű ( y )

is a primitive recursive word function. This can be used to give a primitive 
recursive definition of the initial segment of x consisting of o(y) letters 
(denoted by a(x, y)), which is meant to be A if o(x)<o(y), and, of course, 
x itself if o(x)=o(y). Since for o(x)>o(y), this is the same as the corres­
ponding initial segment of at(x), using the above /  it can be defined by

is a primitive recursive word function. Moreover the o(y)th letter b,(x, y) 
from the left in x can be written as

bi(x, y) =  lb (a (x, y)),

which implies that the o(y)th letter br(x, y) from the right in x is 

br(x, y) =  b,(x, o(xl) -o(y)).

Thus we have solved our problem from the beginning of this chapter: the 
function h{x, y) defined in section 33, hence also i(x), the binary form of 
the successor of a natural number of the binary form x, (defined in section 
3.1) are primitive recursive word functions over an alphabet containing 0 
and 1, provided that, in addition to the successor functions, the identity 
function, a characteristic function of the equality, and lb(x) are taken to 
be initial functions.

3.6 Basic Operations in Binary Form

In such a word set M  the binary forms of the results of the digitwise opera­
tions of Ch. 1 turn out to be primitive recursive. Indeed, the binary form of 
a natural number is a word, and its nth digit from the right (which is actually 
the (n +  l)th as the first one has index 0), is the same as the nth letter, from 
the right, of the word. Every number n can be written in the form o(y), and

ÍA, if x = A
Cl (X> У) {/(x, y, a (at (x), y)) otherwise.

In particular, we obtain that

at(x) =  a{x, o (x )-o (l))
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br(x,y), the о (>>)th letter from the right in л; is primitive recursive. It can 
be seen from its meaning, but also from the construction of the functions

f ( x ,y ,z ) ,  a(x,y), b,(x, y), br(x,y),
that we have

br{x, y) =  br(x, o(y)).

Let us consider for example the addition of two binary forms x and y. It 
is easy to check that if we denote the “carry” and the resulting digit at the 
o(z)th place from the right by u(x, y, z) and s(x, y, z), respectively, then 
definition (1.2.1) can be formulated in M  as follows:
Putting first the variable w in place of the function и to be defined, we obtain 
for n=o(z)?i A (i.e. for z ^ A ) the auxiliary function

1,
h(x, y, z, w) =  •

if br(x, z) =  br(y, z) =  1V br( x ,z) 
= w =  1 Vbr(y, z)
=  w =  1

otherwise,

which, by definition, is identical with h{x, y, o(z), w).

3.6.1 Concatenation

A similar statement holds, consequently, for the following functions defined 
by means of h. We have

and

u(x, y, z) = [h(x, y, at (z), u(x, y, at (z)))
if z = A 
otherwise,

s(x, y, z) =
1,

0

if (u(x, y, z) = 0 & br(x, z) br(y, z))V 
V(u(x, y, z) =  1 & br(x, z) = br(y, z)) 

otherwise.

It is irrelevant what this gives for words consisting not only of 0’s and l ’s. 
The elements of the binary form of x +y, which result from the digits ob­
tained step by step as above, will be denoted by t(x, y, o(z)). This can be 
defined by

f A, if z =  A
*(*’ |s (x , y, at (z))t(x, y, at (z)) otherwise.

Indeed, denoting the digit

s(x, y ,z )  = s(x, y,o(z))
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simply by s0(z) , we obtain

t(x,y,A)  =A
t (x ,y ,  1) =  s(x, y, A)A =  sa

t (x ,y ,  11) =  s(x, y, l)sA =  SiSA
t(x, y, 111) =  s(x, y, IOSí Sa =  5цSjSA

and so on, where A, 1, 11, 111, ... represent in M  the natural numbers 
0, 1, 2, 3, ..., and are not considered as binary forms. With

fo(x), if o(x)m o(y)
max (x, y) =

lo(y), if o (x )< o(y )

the binary form of x £y is

t(x, y, max (x, y) l),

with at most one unnecessary 0 at the left end of the word, which could 
easily be eliminated.
In the definition of t, however, we applied the concatenation of two words. 
This is such an important operation in word sets that in general it has to 
be added to the initial functions. But if the alphabet is finite, and we can 
restrict ourselves to this case because a computer can recognize only finitely 
many symbols, it can be shown easily that

f i x ,  y) = xy

is primitive recursive.

3.6.2 More Primitive Recursive Word Functions

In this section I will list a few more primitive recursive word functions and 
relations, without giving proofs.
The “final segments” of order o(y) of x, denoted by e(x, y) and in particular 
the “final part” et(x) of x, obtained by omitting its first letter, are also 
primitive recursive. The first letter eb(x) of x, being equal to a(x, 1), has 
already been shown to be primitive recursive.
The relation “y  is a predecessor (i.e. initial segment) of x”, denoted shortly 
by y ^ x ,  is primitive recursive. This occurs in the relations

(Ey) [y ^  x & B(y, x l t ..., xr)],

(x) [y ^  x -  B{y, xl5 ..., xr)],
and in the function

цу [у< ,х& В (у ,  x1; . . . ,x r)]
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(the “bounded /^-operation”), which respectively have the following mean­
ings: -
“There is a predecessor у  of x such that B(y, x1, xr) holds” ;
“For every predecessor у  of x B(y, x1( xr) holds” ; and
“A fixed predecessor у  of x, for which B(y, xl5 xr) holds, if there is
such; &Л otherwise” .
If В is primitive recursive, each one of these is also. In fact so is every set 
having a numeric structure.

3.7 List Processing

As an application, we consider the basic notions of “list processing”, 
which has been used frequently as a kind of model of the complex relations 
between the different kinds of information stored in a computer.
What we have to deal with here are finite linear arrays, called “lists”, which 
are constructed from certain elements. The empty array NIL is the only 
object which can be considered both as an element and a list. A list / has 
the form

l = (Xj, ..., x„),

where every x; is either an element or a list. According to the above we 
have

NIL =  (NIL),

but if x is different from NIL, then x and (x) are distinct. We also make 
the convention that

(xl5 ..., x„) =  (x1; ..., x„, NIL)
holds.
In the above list / the entry xx is called the head and the list

(x2, ..., x„)

remaining after xx is omitted, is called the tail of /. In notation 

Xi =  hd[Z], (x2, ..., x„) =  tl [/].

(In order to avoid misunderstandings, the arguments of list functions will 
be put in square brackets.)
By means of the function cons, / can be recovered from its head and tail: 
If x is an element or a list and у  is a list, then cons [x, y\ is the list with x 
as head and у  as tail. Thus for the above /: -

cons [xx, (x2, ..., x„)] =  l.
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3.8 Coding Sequences of Words

In a formal sense the lists are words of a word set M (0 over an alphabet 
A(l) containing the elements, the parantheses, and the comma. (The paren­
theses and the comma will be printed boldface, when considered as letters.) 
The functions hd [x], tl[x] and cons [x, y] are primitive recursive in M w. 
Let us first observe the heads of several lists:

hd[(x1,x 2,x 3)] =  x1

hd [((*!, x2), jc8)] =  (xl5 x2)

hd [((*!, (x2, x3)), (x4, x5), дс6)] =  (x4, (x2, x3))

hd [(((x)), >')] =  ((x))

hd [((x))] =  hd [((x), NIL)] =  (x)
and so on.

As can be seen, the head of a list x is obtained by removing its opening 
parenthesis, that is taking its final part et(x), and then the initial segment 
of smallest order of et(x) for which the following relation В holds: the 
number of its left parentheses coincides with the number of its right pa­
rentheses.
In order to check, which is the initial segment of smallest order of a word 
x satisfying B, one can examine the letters of x one by one, starting from 
the left. At a letter different from the parentheses we do nothing; at a left 
parenthesis we write down an a0 (where a0 can be e.g. a fixed element), at a 
right parenthesis we erase one of the a0s already written down. The first 
time that A is obtained in this way is when we have the shortest initial 
segment with property B. The function kl(x, y), defined by primitive re­
cursion in M (/), does exactly this for o(y) =  1, 2, ...:

Here we used the function bL (x, y) (the o(y)th letter of x from the left), 
which was introduced in section (3.5.1).
If this is applied to et(x), where x is a list, then reaching the smallest o(y )^  A 
such that kl[at(x), y] =  A means that we have reached the last letter of 
hd[x]. Since the initial segment of x of order o(y) is denoted by a(x, y), 
we have then

hd [x] =  a (et (x), цу \_у <  о (et (x)) & у Л & kl (et (x), у) =  Л]),

A, if у = А
к] (Y „ч =  . kl (*> at (0). if Ь,(х, у) (& b,(x, у) 9*)

kl (x, at Cy))a0, if b,(x, у) =  (
at (kl (x, at Cy))), if b,(x, у) =).
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if X is a list. For words that are not lists the value of hd is irrelevant. The 
same applies to the following: -
If X is a list, then we can obtain its tail tl[x] by first removing its initial 
segment

(hd [x],

and then attaching an opening parenthesis to the front of the remaining word 
of order

o(x)-o((hd[x],).

Since the final segment of x of order o(y) is denoted by e(x,y), we have 

tl [x] =  (e(x, o(x) — o((hd [x],)).

Finally if x is an element or a list and у  is a list, cons [x, y] is built by remov­
ing the opening parenthesis of y, whereby we obtain et(y). Then we put

cons [x, y] = (x, et (>')).

All the further notions of list processing can be shown to be primitive 
recursive in M (l) in a similar way.
From this basis of list processing is constructed the programming language 
LISP 1.5. For more details about this see Chapter 11.

3.8.1 General and Partial Word Functions

Generalizations of primitive recursion similar to the numeric case can also 
be introduced into word sets. These can or cannot be reduced to primitive 
recursion, just like their counterparts in the theory of numbers.
The methods, however, cannot be copied. We do not have here, for example, 
any unique prime factor representation. In the numeric case this was 
essential in order to reduce the course-of-values recursion to a primitive 
recursion, by establishing a coding of finite sequences of integers by single 
numbers.
What we need here is a correspondence between a finite sequence of words 
and a single word, from which the terms of the sequence can be recovered. 
The simple concatenation of the members of the sequence clearly will not 
do, unless certain “separating symbols” are used between the words. 
Clearly this could be achieved by taking a new letter as a separating symbol. 
However, it is still possible without extending the alphabet to produce 
separating symbols out of two fixed letters. These in what follows, will be 
denoted by 0 and 1. If the alphabet consists of a single letter, as in the 
numeric case, this method is not applicable.
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For a finite sequence of words

• • • j

in M, we can determine a suitable separating symbol as follows. Let

11 . . .  1
i

denote the word consisting of i ones. Let i be the largest number, for which 
such a word occurs as a connected piece in at least one of the words x0, xx, ... 

Then
Oil ... 10

F+i

is a suitable separating symbol for our sequence. This can be made to corre­
spond to the word

c„(x0, x1; ..., x„) =  x0011 ... lOXiOll ... 10...x„011 ... 10 
i + l i+1 i+1

which depends primitive recursively on the members of the sequence.
The relation “x  is a word that corresponds to a finite sequence of words” 
is primitive recursive. So are the number of terms denoted by long (x), 
and the о (>)th term k0(y)(x), for o(y) = 0, 1, 2, ..., long (x), of the sequence 
corresponding to x.
The notions of general and partial recursive functions can be transferred 
to word sets in the same way. If the alphabet is countable, they can be 
obtained from the primitive recursive functions by substitutions and the 
applications of unbounded /(-operations, though the meaning of this last 
concept has still to be clarified. In the theory of numbers, this meant the 
smallest number with a given property, but what do we mean by “the 
smallest word with a given property” ? What we can have is a word of 
smallest index in a given infinite sequence of words. Such a sequence can be 
considered as a word function/(o(x)), which depends only on the order of 
x and possibly on the order of other variables. /(o(x)) is the o(x)th term 
of the sequence. If /(o(x)) is primitive, general or partial recursive, we 
say that the sequence is primitive, general, or partial recursive, respectively. 
According to this the unbounded /(-operation

B f ( „ ( y ) ) \ X j ,  ..., xr)]

means the value f(o{y)) of the smallest index for which B( f  (o(y)), x l t ..., xr) 
holds, provided that to the arguments xl5 ..., xr under consideration there 
is a у with B[f(o{y)), xl5 ..., xr). Otherwise the result of the operation is 
undefined for these arguments.
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3.9 McCarthy’s Conditions

I would like to remark that in the considerations of section 3.5 on built up 
definitions, we have hardly used the fact that we are dealing with word 
sets. With slight changes these arguments can be carried out in general for 
sets of numeric structure. The conditional expression

f = [ B 0 -*ei, . . . ,Bn — e„],

introduced by McCarthy in connection with partial computations by the 
computer (see the book quoted in footnote[1]), does not extend outside the 
class of partial recursive functions over a set of numeric structure either. 
Here e0, are symbolic expressions and B0, Bn are relations be­
tween such expressions, while all of these can be undefined. The order of 
the expressions is essential, as follows from the following definition of the 
meaning of the conditional expression / :  /  is undefined, if either none of 
the .6;s is true, or if to the left of the first true В{ there is an undefined Bj; 
otherwise the value of /  is that et towards which the arrow of the first true 
Bi points.
Let us suppose that in a non-trivial set of expressions there are two different 
elements, say e' and e". Using these, we have corresponding to each relation 
В the characteristic function

{e', if В is true 
e", if В is true,

which is defined if and only if В is defined. For an undefined В we have 
neither B, nor B, i.e. neither b—e', nor b—e"). Thus McCarthy’s definition 
is equivalent to the following built up definition: -

e0, if b0 =  e'
, _  elt if b0 =  e” & b1 = e'

en, if b0 — e" = e"& b„ =  e'.

It can be shown that if e0, e„ and b0, bn are partial recursive in a set 
H  of numeric structrure (that is in a holomorphic set), then so is the function 
/  defined above.



Chapter 4

The Recursivity of 
Everything Computable * I

4.1 Assembly Language

The words of the binary language of a computer, consisting solely of 
the letters 0 and 1, are difficult for people to understand. In an assembly 
language, these are replaced by sentences of symbols that reflect their mean­
ing, yet they can still be translated easily back to the language of computer 
and the addresses within the computer can be denoted by numbers in their 
ordinary decimal form. The programs in this chapter will be written in 
such an assembly language.
For a computer with a very simple system of statements it can be shown 
that, if no bound is put on the size of its memory, for every partial recursive 
function there is a program such that computation with this program yields 
the value of the function, if it is defined, and goes on forever, without 
calculating anything if it is not [141.
I will restrict myself to two registers: the statement counter W  and a re­
sult register E. We also have the following one-address statements, where 
addresses are always positive numbers; (x) denotes the contents of the add­
ress or register x, x=>(y) denotes putting x into у  with the erasure of the 
earlier contents of y, and finally 0=>(x) means the deletion of x: -

La (load statement): (a) => (E)

SPa (store statement): (E ) => (a)

SP°a (store and delete statement): (E)=>(a); 0=>(£)

A a (addition statement): (E)+(a) =>■(£)

Sa (subtraction statement): (£ )—(a)=>(E)

[14] See J. C. Shepherdson and H. E. Sturgis: C o m p u ta b ility  o f  recu rs ive  fu n c tio n s , Journ. 
of the ACM 10 (1963) pp. 217-255, and R. Péter: P ro g ra m m ieru n g  u n d  p a r tie ll-re k u r s iv e  
F u n ction en , Acta Math. Acad. Sei. Hung. 14 (1963) pp. 373-401.
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Ma (multiplication statement): (E) X (a) => (E)

Ga (go to statement): a => (W)

G~a \ f (E) =  0
G>a I (conditional go to statement): a=>(W) if j (E ) =- 0
G^a J l (£) ш 0

ST  (stop statement): Stop.

In computing the values of a numeric function, which I will simply call 
computing the function, we need the arithmetical difference a — n instead 
of a — n. This can be computed by means of the following program:

Initially, let the contents of the addresses 1 and 2 be the given arguments a 
and n. Also let the contents of the following addresses be the following 
statements: -

address statement

3. LI
4. 52

5. Ge 7
6. SP°S
7. ST

If “Stop” is reached, then (E )—a — n.

4.2 Computing [fn]

As a somewhat more complicated example, we consider a program to 
compute [in]. This is the smallest number i, for which ( /+ 1)2>/?, therefore 
it is certainly not greater than n. Hence

1УЙ] =  ^[1=2 n&(i  +  l)2>  n]

result

(E) = a 
(E) =  a — n
Г If a go to address 7, 
{ i.e. (W) = l  
(E) = 0 
Stop.

is a primitive recursive function.

To start with, let 1, n, i= 0, 0 be the contents of the addresses 1, 2, 3, 4, 
respectively. Address 4 serves as a working space. Let the contents of the 
following addresses be: -



address statement result

5. L3 (E) = i
/6 .  A 1 (£) =  i +  l

7. SP4 ( 4 ) = i + l
8. M4 (E) =  (i +1)2
9. 52 (F) = (i+ l)2- n

, ]n r  14 flf  ( i+ l ) 2> n ,  go to
1U- ° > i4  {address 14 i.e. (IF) =  14
11. £4 (£) =  i+1
12. SP3 (3) =  i +  1

UW) = 6; here everything starts 
^  {anew, with i+1  as the new i
14. £3 (E ) — the required value of i
15. ST  Stop.

Sec. 4.3] Computing Recursive Number Functions

If “Stop” is reached, then (E) = \fn].
The program looks circular, since from the statement in address 13 every­
thing starts anew. However, with i +1 instead of i, it only goes on until i, 
increased by 1 for each new start, does not satisfy (/+  1)2>и. Then the sta­
tement at address 10 orders to jump out of the “circle”. The statements 
under the addresses 6— 13 form a cycle, which is not a closed circle, but 
rather an ever progressing spiral.

4.3 Computing Recursive Number Functions

It was mentioned in section 2.6.2 that, starting from the functions a+n,  
a-n, a — n and []n] (which, according to the above, can be computed by 
our computer, that is they are machine computable), every primitive re­
cursive numeric function can be obtained with the application of finitely 
many substitutions and iterations of the form

f<KO) =  o
\(p(n + \) = ß(<p(n)).

If the functions

« K ,  ..., mr), ..., ns), ..., ßr{nx, ..., ns)

are machine computable, then so is

<K"t> •••’ n s) = «(ft(«i. n s ) ,  ■••> ß r ( " l ,  •••> «*))

which can be obtained from them by substitution. Indeed, if for any given 
nx, ..., ns the values of ßx, ..., ßr can be computed and stored, then the 
value of a can be computed for these arguments.

55



Now, if the function ß(n) is machine computable, then so is the function

9  ( n )  —  ß M  (0)

obtained from ß by the above iteration.
Since <p(0)=0 is known, it suffices to do the computation for 0.
By our assumption, we can use a “subroutine” for the calculation of ß(n). 
This will obtain its argument from a fixed address (here this will be address 
4), and put the computed value into E. Let us add to our system of state­
ments a subroutine calling statement.
The contents of the addresses 1 ,2 ,3 ,4  are initially 1, и, i = \ , a —0, 
respectively. Here a denotes the subresult successively taking the values

ß(0), ß(ß(0)), ß(ß(ß(0))), ... .

This changes after each call of the subroutine. The contents of the following 
addresses are: -

address statement result

Í Call of the _
^  {subroutine for ß ^  a)
6. SP4 (4) =  ß(a)
7. L3 (E) = i
8. S2 (E) =  i - n
9 (7=14 {If i = n  go to

{address 14 i.e. (W) — 14 
' 10. L3 (E) = i

11. A 1 ( E ) = i  + 1
12. SP° 3 (E) — 0, (3) =  i +1

{(tC) =  5, here everything starts 
anew with i +1 instead of i 
and ß(a) instead of a 

\  . T . ((E) = the latest value
14' 14 {of я
15. ST  Stop.

As i increases gradually to n, one will get out of the cycle with

(E) = ßM (0).

It follows, from the above, that every primitive recursive numeric function 
is machine computable. This could have been obtained without computing 
[Уи], provided that we had not restricted ourselves to iteration, which is 
a particular case of primitive recursion. In the computation of [/й], however, 
I wanted to give a non-trivial concrete example, to which I shall want to 
return later.
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4.4 Computing General Recursive Functions

Machine computability is also preserved in the application of a /^-operation, 
not only in the bounded case, as we could see in the example of [fn], but 
in the unbounded case as well.

For a relation B, whose characteristic function ß is machine computable, 
put

(p(n) = n)],
that is

<p(n) = BÄß(i, n) =  0].

For functions of several variables we can proceed similarly. By the defini­
tion in section 2.9, for an n such that there is at least one i with ß(i, n) = 0, 
(p(n) is the smallest such i.

Assume therefore that we have a subroutine for the computation of ß (m, n) 
and to start with, let the contents of addresses 1, 2, 3 be 1, n, i=0, respec­
tively. The contents of the following addresses are: -

address statement result

(Call of the sub­
ro u tin e  for (3), (2)

G= 10
L i
A1
SP° 3 
G4
L i
ST

(E )  =  ß ( i ,  n)
! If ß(i, n) = 0 go to 
i address 10 i.e. (W) = 10 
(£) =  i 
(£) = i + l  
(£) = 0 ,(3 )  =  i-H  
(tF) =  4; here everything 
starts anew with i+1 
(£) =  the required i 
Stop.

If there is an i and an n with ß(i, ri)=0, then we get out of the cycle with 
the smallest such i as (£). Otherwise the cycle never ends. The computer 
computes nothing, in accordance with the fact that <p(n) is undefined.
In view of the Kleene explicit form of partial recursive functions, given in 
section 2.9.1, it follows from the results of this chapter that every numeric 
partial recursive function is machine computable. Thus, in particular, 
every general recursive function is machine computable.

4.

5.

‘ 5:
8.

9.
10.

1 1 .
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4.5 A Universal Program

The universal Kleene explicit form of r-place partial recursive numeric 
functions can be made even more universal, namely independent of the 
number of variables. Indeed, the arguments ax, ..., ar of an r-place function 
can be represented for example by the number

a = pap - p ap,

(where, as above, pt denotes the tth prime number). Thus we obtain the 
universal explicit form of partial recursive numeric functions of arbitrarily 
many variables (since the exponent of pt in the prime factor representation 
of a was denoted by exp, (a)) as the two-place partial recursive function

X{n, a) =  i//(pi[r(i, n, exp! (a), ..., expr (a)) =  0]),

where i]/ and т are fixed primitive recursive functions. If n is the Gödel 
number of a system of equations defining the r-place partial recursive func­
tion (p, then we have

(p(ai, ..., а,) =*А(п,рр

According to the above, the function X, which is constructed from primi­
tive recursive functions with the help of a single /^-operation, is machine 
computable. A program computing its values can be considered as a univer­
sal program. If it is stored in the memory of the computer, then the compu­
ter yields automatically the values of every partial recursive numeric func­
tion, at any point where it is defined, provided that as further information 
the Gödel number of a system of equations defining our function, and the 
arguments in question, are also stored in the machine.
The construction of a program for X would still not be simple. That is why 
I have constructed[15] a universal program for the computation of all par­
tial recursive functions, without having to resort to the Kleene explicit 
form. In this program, the defining systems of equations are considered as 
sequences of symbols, that is words over a finite alphabet, and the admissible 
steps of computation from them are considered as passing from one se­
quence of symbols to another, that is as word functions.

[lo] R. Péter: Automatische Programmierung zur Berechnung der partielle-rekursiven 
Funktionen, Studia Sci. Math. Hung. 5 (1969) pp. 447-463.
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4.6 Coding

It is not only true that the partial recursive functions are all machine compu­
table, the converse also holds: -  Whatever is machine computable, is also 
partial recursive. We shall consider this in detail using as an example 
the computation of []/лг] (see section 4.2).

The codes
ST, L, SP, A, S, M, G, G>

for the types of statements which occur are not directly understood by 
the computer anyway. We could as well use the natural numbers

0, 1,2, 3,4, 5, 6,7

for the codes of these statements. The codes of the addresses are already 
natural numbers, in our example from 1 to 15. Instead of W  and E, as the 
codes of the statement counter and result register, we shall use 0 and 16, 
respectively. In what follows they will be dealt with just like the store 
addresses.
If for some positive j S l  the statement of type j  refers to the address a, then

2J -3a

is the code number of the resulting statement. The only 0-address statement, 
type ST, is in itself a statement, and has already the code number 0.
It will not cause any confusion that several of the code numbers of state­
ments also occur as address code numbers. They will always be used in 
distinct roles.
The program for the computation of [in], using all these code numbers, 
can be represented by the following primitive recursive numeric function 
p(m, rí), which determines the contents of each address m at the beginning 
of the computation:

p(m, rí) =  <

5, if m =  0
1, if m =  1
n, if m = 2
21 • 33 =  54, if m = 5
23 • 31 =  24, if m = 6
22 • 34 = 324, if m =  7

0, if m =  15
0 otherwise.

The lines indicated by dotting could be read off the program, equally easily.
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4.7 Recursion in Program Control

The program is executed step by step. At each step one statement is executed. 
This is the next statement if the previous one was not a go to statement. 
First we need a small modification. We also have a subtraction statement. 
This should be replaced by the arithmetic difference, which here yields the 
same result. We have already given a subroutine for the arithmetical differ­
ence a — n.
Alongside the program, we have indicated the results of the single steps. 
Checking these we can see that, in executing any statement of type j ^ l  
referring to the address a, only the contents of a, 0 (that is W) and 16 
(that is E) might change. Moreover they only depend on j, a and the present 
contents (a), (0), (16), which are now considered as variables. Let us denote 
the resulting new contents of a, 0, and 16 by

These can be obtained by means of the following definitions by cases (as 
can easily be seen from the corresponding statements): -

g(j, a, (a), (0), (16)), gw(j, a, (a), (0), (16))
and

gE(j, a, (a), (0), (16)).

( a ) ,

g(j,  a, (a), (0), (16)) =  j (16),
0

if j  = 0,1, 3,4, 5, 6,7 
if j  =  2 
otherwise,

(0), if j  =  0
(0)+l ,  if j =  1,2, 3,4, 5

or

gw{), a. 0 ) , (0), (16)) =  ^
j  = 7 and (16) s  0 

a, if j  = 6
or
j  =  7 and (16) >  0 

0 otherwise,

((16), if j  = 0, 2, 6, 7

gE(j, a, (a), (0), (16)) =  ^

(a), if j =  1
(16) + (a), if j  = 3 
(1 6 )-(a), if j =  4 
(16 )X(a), if j  = 5

otherwise.
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Here all these functions are primitive recursive, and so is the following 
built up function

f { j ,  a, (a), (0 ), (16), (m), m) =

g{j, a, (fl) ,( 0 ), (16)), 
gw(Л a, (a), (0), (16)), 
gE(f, a, (a), (0 ), (16)), 
(m)

if m =  a 
if m =  0  

if m = 16 
otherwise,

where (m) denotes the present contents of the address m. This gives, for 
each address m, the contents of m after the execution of the statement in 
question.

4.7.1 An Example

Let us denote by <p (i, m, rí) the contents of address m after the execution of 
the ;'th step. Step 0 is the input of the program into the computer. Hence

(p(0,m,n) = p(m, n).

Now assume that for some i the values q>(i, m, rí) are already given for each
m. If the statement to be executed is of type j  and refers to the address a, 
then according to the above

cp(i + l, m, n) = f ( j ,  a, (a), (16), (m), m).

The address of the statement to be executed is, however, the present con­
tents of the statement counter, which is

cp(i, 0 , n).

The contents of this address is

cp{i, <p(i, 0, rí), n),

and it has to be a statement, i.e. its prime factor representation is of the 
form

2J • 3°.

We obtain j  and a from here as the exponents of the 0th and 1st prime 
numbers, respectively: -

j  =  expo (cp(i, q>(i, 0 , n), «)), a = expj (<p(i, cp(i, 0 , n), n)), 

showing that the present contents of the address a is

(a) = (p(i, expx (cp(i, <p(i, 0 , n), n)), n).

In addition to the expression

(0 ) =  <p(i, 0 , n)
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which we have already used, we also have

(16) =  <p(i, 16, n),
and

(m) =  (p (i, m, rí).

Putting all this into the expression obtained earlier for cp(i+l,m, rí), and 
using the known expression for (p (0 , m, n), we obtain a definition of <p by 
the following nested recursion: -

<p(0, m, n) =  p(m, n)
<p(i + 1 , m, n) = /(ex p 0 (<p(i, <p(i, 0 , n), n)), expj (<̂ >(i, (p(i, 0 , n), n)).
( p ( i ,  exp! (<p(i, <p(i, 0, n), n ) ) ,  c p ( i , 0, n), <p(i, 16, n).
(p(i, m, n), m).

Such a recursion, however, as was noted in section 2.7.1, still remains within 
the class of primitive recursive functions.
Therefore the function cp(i, m, n) representing the execution of the program 
is primitive recursive. This is the consequence of the fact that the occuring 
cycle is not a circle.

4.7.2 Computable Functions

But what about the result? We saw that after the /th step the statement to 
be executed has the form

j  = exp,, (cp(i, (p(i, 0 , n), nj).

If this is 0, which codes the stop statement, then the result is the contents 
of the result register, that is <p(i, 16, rí). Hence, to obtain the result, we have 
to search for the smallest i with the indicated property, that is for

/fi [expo (<p(i, (p(h 0 , rí), n)) =  0 ],

and then substitute this for i in <p(i, 16, n).
In our example, it is easy to give an upper bound for this i. The program 
has a cycle of 8  terms, moreover 3 statements. The cycle is repeated as many 
times as there are positive numbers, the squares of which do not exceed n. 
Clearly, there are at most n such numbers. Therefore the number of steps 
in executing the program is at most 8n+3.
Consequently, the result of the computation with our program is

<p(H'[i <  8 / 1  +  3 & expoOp(i, <p(i, 0, n), n)) =  0], 16, n),

which is a primitive recursive function.



Sec. 4.8] Partial Recursion in Binary Computer Arithmetic 63

4.8 Partial Recursion in Binary Computer Arithmetic

We have known, of course, already that this program computes the primi­
tive recursive function [fn], But our reasoning can be generalized to apply 
to a computer with an arbitrary system of statements (for which the result 
appears not necessarily as (E ), but can also be a sequence). In my paper 
quoted in footnote[14] I have shown in this way that the result of an arbitrary 
-  suitably coded and stored -  program with the input parameters

ill, «2, "r

can be obtained from primitive recursive functions by means of a single 
/q-operation. If a primitive recursive upper bound can be found for i, 
then the result is a primitive recursive function. If this is not the case but 
it can be proved that for every choice of the input parameters, there is 
such an i, then the result of the program is still general recursive. It is, 
however, always partial recursive.
Consequently, we can indeed say that whatever is machine computable, is 
also partial recursive.

Thus if we study the programming problems of the computation of partial 
recursive functions, this means, in principle, the study of programming 
of all the machine solvable problems.
The coding by natural numbers is, however, something extraneous to the 
computer. It understands only whatever can be coded by finite sequences 
of the symbols 0 and 1. Its mother tongue is the binary language, that is the 
word set M  with an alphabet consisting solely of 0 and 1. The whole of the 
above reasoning can, however, be carried out in this word set. Instead of 
the code numbers of the addresses we can consider their binary forms as 
code words in M, and instead of the arithmetical operations between num­
bers we have the digital operations between their binary forms, which by 
section 3.6 are primitive recursive functions in M. The codes of statement 
types can also be expressed as binary forms of numbers. Here, of course, 
to code a statement, whose type is coded by j, and which is referred to by 
the address coded as a, we cannot make use of the unique prime factor 
representation of natural numbers. Instead, the same end is served in M  
by the primitive recursive function c(J, a) introduced in section 3.8. 
This makes a word w correspond to the two-term sequence j, a, from which 
the respective terms can be recovered by means of the functions

k0(w), fciO ),
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which are primitive recursive in M. Let us consider e.g. the statement SPA, 
which was earlier coded by the number

22 • 34.

As the binary forms 10 of 2 and 100 of 4 contain only one occurrence of 1, 
the appropriate “separating symbol” here is 0110. Hence the code word 
of the two-term sequence, representing the statement, is

c ( 1 0 , 1 0 0 ) =  1 0 0 1 1 0 1 0 0 0 1 1 0 .

The sequence of symbols 0110 at the end of this word shows that (after 
having checked that the word has no connected part of the form 1 1 1  or 
0110110) this sequence plays the role of a separating symbol. Hence the 
terms of the sequence can be uniquely recovered from this word as

k0(1001101000110) =  10, ^(1001101000110) =  100.

In this manner we have arrived at the following result: everything obtainable 
by a computer is partial recursive in the binary language o f  the computers.



Chapter 5

Sequential Program Translation

5.1 The Bracketless Form

Programs are not formulated in the language of the computer. They must 
first be translated into that language. This can happen in several stages.

Let us consider, as a simple example the statement requiring the computa­
tion of the expression

(b + bXc) Xa  + c,

which is composed of several arithmetical operations. Let the first stage 
of the translation be the transformation of this expression into a bracketless 
form.

Several such forms are known. The first of these is due to Lukasiewicz[16]. 
Here we shall use the so called “reversed-Polish” form

bbcX + a X c  + ,

in which the operation symbol is placed after the two operands. Its meaning 
can be read off by checking the symbols one by one, going from right to 
left, as follows: -

“A sum, whose second term is c and first term is a product, whose second 
factor is a and the first factor is a sum, for which the second term is a pro­
duct with c as second and b as first factor, and b is the first term.” According­
ly, the first operation symbol from the left is the innermost.

[16] Concerning the uniqueness of this form see for example, L. Kalmár: Another proof o f 
the Markov-Post theorem, Acta Math. Acad. Sei. Hung. 3 (1952) pp. 1-27. The uni­
queness of the “reversed form” can be proved in a similar way.
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The translation to this form can be carried out by an algorithm due to 
E. W. Dijkstra [17], which he has illustrated by “railway marshalling” 
statements.
For this, the different symbols occurring in the given expression (variable 
symbols, operation symbols, and left and right parentheses) will represent 
railway cars of different types. Here however every car has an engine. 
Appropriate cars form our expression into a train, and the task is to send 
this train, with its cars re-arranged in the reversed-Polish form, from track 
1 to track 2. In the course of this, track 3 with a sidetrack (denoted as str) 
is at our disposal. See the diagram below.

In our expression bX c  is not put in parentheses, since, by convention, 
multiplication takes precedence over addition. We shall express this by 
saying that each operation has associated with it a priority, namely addition 
has priority 1 , multiplication has priority 2 , the priority of subtraction is 
also 1, while exponentiation has priority 3.
Now the marshalling instructions are as follows: Separate the cars. The 
opening parenthesis has to go to track 3. The next variable always has to 
go to track 2. The next operation symbol goes to track 3 temporarily, but 
unless it meets there an operation symbol of lower priority, it has to give 
way; that is it has to pull onto the side track, while this other operation 
symbol of higher or equal priority goes to track 2. Only afterwards can it 
go back to track 3. If the next symbol to leave track 1 is a closing parenthesis, 
put it on the side track. Then let the operation symbols from track 3 go to 
track 2 one by one, until we reach an opening parenthesis. Add this to the 
closing parenthesis waiting on the side track and discard this pair of used 
up parentheses, in other words, send them to the depot. Finally, if nothing 
is left on track 1, let the symbols still waiting on track 3 go one by one to 
track 2 .

[l71 E. W. Dijkstra: Making a translator for Algol 60, A. P. I. C. Bull. 7 (1961) pp. 3-11. 
See also B. Randell and L. J. Russel: Algol60 implementation (1964) London, New York.
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In the following table, the successive execution of the marshalling instruc­
tions is indicated in detail in the case of our expression: -

track 1 track 2 track 3 str

(b + b x c ) x a + c  — — —
b + b X c ) Xa +c  — ( —

+ bXc ) Xa  + c b ( —
b X c ) Xa +c  b ( +  -

Xc)Xa + c bb ( +  —
c)Xa + c bb ( + X  -

) Xa  + c bbc ( + X  -
X a + c  bbc ( + X  )
Xa +  c bbcX ( +  )
X a + c  bbcX+  ( )
X a +c  bbcX+ — —

a + c bbcX+ X —
+ c bbcX+a  X -

c bbcX+a X +
c b b c X + a X  + —

b b c X + a X c  + —
— b b c X + a X c +  — —

At the end the reversed-Polish form of our expression has appeared on 
track 2 .

5.1.1 The Three-address Code

Looking at the meaning of this form it is easy to deduce from it an algo­
rithm for its decomposition into three-address computer statements of the 
form Ouvw, where 9 is an operation symbol. The statement requires the 
execution of the corresponding operation for the contents of и and v and 
placing the result in w. Proceeding from the left to the right, one always 
has to look for the first operation-symbol “car” (corresponding to the 
“innermost” operation), attach the two immediately preceding cars and a 
car of a new type (brought from the depot) after it, and then let the train 
put together in this way go to a new track. A second copy of the above car 
of new type is also to be brought from the depot, in order to fill up the 
resulting gap in the old train. This contains the result of the operation 
just executed, which, from here on, is treated as an operand. Then every­
thing starts again from the beginning. One has to look for the first operation 
symbol from the left in the modified train, and so on.
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By means of suitable switching devices and marshalling instructions, the 
separate small trains (each consisting of 4 cars) can be collected on a track 
sequentially (i.e. the cars will occur in their original order), as happened 
in putting the train on track 2. I will not go into the details of this here. 
However, the sequentiality of the procedure is certainly disturbed by the 
fact that, in the train on track 2 , one has to look for the first operation 
symbol, and then eventually one has to return to earlier symbols. This 
can be avoided if the new procedure is carried out simultaneously with the 
old one. We start the collection of the train on track 2 according to the 
original algorithm, until an operation symbol appears on track 2. With this 
we proceed as has just been described. Only afterwards is the original 
algorithm continued, until the next operation symbol appears. This is 
illustrated in the following table, in which the symbol indicates that 
the small trains on track 4 are not attached to each other.
track 1 track 2 track 3 str track 4
(■b + bXc)Xa + c -  -  -  -
b + bXc)Xa + c -  ( -  -

+ bXc) Xa  + c b ( — -
bXc) Xa  + c b ( +  — —

Xc)Xfl +  c bb ( +  — —
c)Xa + c bb ( + X  — —
)Xa + c bbc ( + X  — —
X a + c  bbc ( + X  ) —
Xa + c bbcX ( +  ) -
Xa + c bv± ( +  ) Xbcv1:
Xa + c bvt + ( ) Xbcvj:
Xa + c v2 ( ) xbcv1: + bv1v2:
Xa + c v2 — — Xbcv^. + b v ^ :

a + c v2 X — Xbcvi. + bv^z.
+ c v2a X — Xbcv+. + bvxn2:

c v2a X  +  Xbcv+. + b v ^ :
c v2a X  + — Xbcv1: + bv1v2:
c v3 + -  xbcv1: + bv1v2:Xv2av3:

— v3c +  — xbcv1: + bv1v2:Xv2av3:
— v3c+ — — Xbcv1: + bv1v2:Xv2av3:
— vt — — Xbcv1: + bv1v2:Xv2a3:+v3cv,

Finally, only vt remains on track 2, which, however, contains the value of 
our expression, for according to the above, the respective statements on 
track 4 have the following meanings: -
bXc=>v+, b + bXc=*v2; (b + bX c)X a  => v3; (b + bX c)X a  + c =>v4.
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5.1.2 Reduction to One-address Code

A three-address statement, of course, can be decomposed very simply 
into three one-address statements of the sort we introduced in section 4.1. 
For example

and
Xbcvt into Lb; Me; SPl\  

+  y3 cr4 into Lv3; Ac; SPv4.

5.1.3 Translation into Word Functions

In translating programming languages, certain sequences of symbols are 
replaced by others. The sequences of symbols can be considered as words 
over an alphabet containing all the necessary symbols. Hence here we 
are dealing with word functions. Using a suitable notation, we can always 
restrict ourselves to a finite alphabet; e.g. from the two symbols x and | 
one can build the following infinite sequence of variables:

*l,*ll>*lll, ••• •
For the sake of clarity, however, I shall adopt the more usual notation 
with lower indices.

5.2 Push-down Stores

In determining (that is computing) the successive symbols of a function 
value, one examines the separate symbols of the arguments. It is convenient 
to move up and down among these symbols. Hence it is always reasonable 
to look for a sequential computation procedure, in which the symbols of 
the arguments are taken into consideration successively, in their correct 
order. The application of push-down stores will help us to achieve this 
goal. In the above examples the role of the push-down stores was played 
by the tracks.
A push-down store is a symbolic store, in which letters of the alphabet 
and perhaps also some auxiliary letters can be placed. These can be taken 
out of the store, either in such a way that the corresponding letter is erased 
there, or the letter which is taken out also stays in the store, that is only a 
copy of it is taken out. In the railway analogy, this corresponds to bringing 
a car of the same type from the depot. Such a store satisfies the following 
conditions: -  Whenever a letter is placed in the store, it pushes down all 
the letters already there one place deeper (that is the train backs up). When­
ever a letter is taken out, this must be the top letter, that is the most recently

V
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added letter is removed first. If a letter is taken out with erasure, then the 
other letters in the store automatically pop up one place (that is the train 
pulls forward). Whatever has to be done at a given step of the computation 
of the function value depends on the current symbol at the top of the 
push-down store, which we call the top symbol.
The push-down stores make it possible to move up and down among the 
letters of the arguments, without disturbing the sequential character of the 
computation. Indeed, all the letters of the arguments can be poured, one 
by one, into a push-down store, where they are kept until the end. Then if 
one of these letters is needed, the letters placed on top of it can be poured 
into another push-down store, and after the work is done they can be 
poured back again. The same can be done with the intermediate results of 
the computation. In a recursive procedure, this must be done many times. 
I have given [18] a general method for the sequential computation of every 
recursive partial word function over a finite alphabet, in which the number 
of push-down stores is independent of the arguments. J. Urbán [19] has 
later shown that the use of three pushdown stores always suffices. Conversely, 
I have also shown that every word function sequentially computable with 
the help of push-down stores is partial recursive in the word set, extended 
with some auxiliary letters.
Comparing this with the final conclusion of Ch. 4, we can say the following: 
Everything which can be calculated by a computer, can be calculated sequen­
tially, with the use o f three push-down stores.

5.2.1 Some Conventions

In the proofs mentioned above, the following notation was used: -  
We had a word set M  over a finite alphabet A, the letters of which I will 
denote here by a perhaps with some indices
For the sake of brevity, we assume that on the bottom of every push-down 
store is the symbol L  (denoting empty); hence the top symbol of an empty 
push-down store is L. Further, if a symbol is erased, then we say that it 
is replaced by /, and the top symbol of an arbitrary push-down store is the 
first symbol, counted from the top, which is different from /. Of course, 
neither L  nor l can occur among the letters of A. These auxiliary symbols

[l8] R. Péter: Über die sequenzielle Berechnenbankeit von rekursiven Wortfunktionen durch 
Kellerspeicher, Acta Math. Acad. Sei. Hung. 16 (1965) pp. 231-253.

J. Urbán: Die Minimalisierung der zur sequenziellen Berechnung der partiell-rekursiven 
Wortfunktionen notwendigen Kellerspeicher, Acta Math. Acad. Sei. Hung. 17 (1966) 
pp. 335-358.
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are distinct from the symbol introduced earlier for the empty word. This 
symbol has to be written out and dealt with in the same way as the other 
symbols of the alphabet, although in the result it is to be considered as 
something non-existent. The reason for this is that, in the course of the 
computation, an intermediate value might turn out to be A, with which 
one has to deal just like with any other intermediate value.
Instead of listing from the bottom to the top, the symbols obtained in a 
push-down store will be listed from the left to the right, as it happened in 
the railway analogy.
The push-down stores will be denoted by capital letters, among them one 
called I for input and another called О for output. Their current top symbols 
will be denoted by the corresponding small letters.
The computation of a word function f ( x x, ..., xn) for the arguments

■ * * s ^ n , 1 • * • ^ n ,  rn
always starts with pouring the symbols of this chain (which I will denote 
by .s'), one by one, proceeding from the right to the left, into I (including 
the comma, which is not a letter). Initially therefore the contents of I 
(after L) is the chain of symbols

^n,r„ ■ * * ^n, 1 9 **•> 1̂,Г1 '*■ ^1,1
(denoted by s) and the contents of every other store is L. At the end of 
the computation we find in О after L  the required function value as a chain 
of letters and Л-symbols. This chain will be denoted symbolically as f(s) ,  
while in all the other stores we find L.
The computation procedure is in separate stages, which will be denoted 
by q (with indices). It starts with qy (after placing s in I), and ends with a 
stage calling for stop.
What has to be done at a given moment depends only on the current stage 
and the current top symbols of the stores. Depending on these the new 
top symbols are obtained and a new stage follows. These are not necessarily 
different from the earlier ones. In the short description of a computational 
step, only the top symbols which are affected, will be indicated. For example, 
suppose that in a stage q, the top symbol of I is to be removed and placed 
in the store К  unless the top symbol of К  is L, and then the stage qu is to 
follow. This will be denoted by

qt{k 7 * L)\(i K)qu,
while the same operation when i is kept in I, will be denoted by 

qt{ k * L ) \ { i ^ \ ) { i ^ K ) q u.
If i has to be erased only, and not placed anywhere, we denote this by

l — i.
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5.2.2 Computation of Initial Functions

We consider below as an example the computation of the initial functions 
of M.
To compute

f i x i, =  A

one has to empty I and place A in О ;

qx(i ^  L)\(l -* i)qx 

?i(i =  L)|(A - ~ 0 ) q 2 

I Stop.
To compute

xa (a£A)

one has to pour s out of I into O, by which the original order of the letters, 
that is s, is recovered. Then a has to be added to the end: -

L)\( i-*0)q1 

q1(i = L)\(a -* 0 )q 2 
^2 1 Stop.

To compute
f i x 1, . . . ,X„) =  X j (  1 s j  n )

one has to remove from I everything that comes after Xj. Then the letters 
of the argument Xj are to be poured into O, where they regain their original 
order. Finally everything that still remained in I must be erased. To begin 
with, for y > l,  we have the stages

q, (t = 1, 2...... J — 1)
with the effect

q,ii -  i)q,

Я,(' =>)l(l -  0 + 1•
Then follows

q ?A)(! 5̂  L)\ii  — O)qj

qjii = , ) l  (i -+ Oqj+i
qj(i = L)\qJ+2 

qj+iii ^  T)|(Z -► i)qj+1 

qj+i’ii = L) I qj+2 

+2 1 Stop!
For the computation of

lb (x),
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the last letter of x, it is actually counter-productive to pour the letters of 
the argument into I, since in this way the last letter gets to the bottom. 
However, this is done for the sake of uniformity. One has to remove the 
top symbol of I and put it in 0 . If I is now empty, this was the last letter of 
the argument. If not, this letter has to be erased from О and the procedure 
has to be repeated with the new top symbol of I, thus: -

Ях\ (»' -  0 )q 2 

q2{i 7̂  L)\(l -*• o)q1

q2(i = L)\q3

Яз I Stop.
To compute

Г Л, if x = у 
eq (x, y) = <[ a0 otherwise,

where a0 is a fixed element of A, the two arguments x, у  are to be poured into 
two different push-down stores. О can be one of these temporarily. The 
other is denoted by I. Then we can compare and erase their letters one by 
one and if they are all found identical, we put a0 into O, which has been 
emptied by that time. Otherwise we put A into O, thus: -

<7iO' 5 * 0 1 0  -* I )tfi 

4i 0  =>)l ( J -  0?2 

q2(i 7̂  L) I (i -*■ O)q2 

q2(i =  L)\q3

q , ( ! * W = o ) \ ( l - ~ l ) ( ! ~ o ) q a 

q3(i = L){o =  Z ,) |(A - 0 )^ 6 

q3 (l = L)(o L) I qt

яЛо t±L)\(1 -  o)^4 

<h(o = L)\(a0 -  0)<?6 

9 30 V L ) ( iV  o)\q5 

qb( l ^ L ) \ { l - i ) q ,  

qb(l=  L)\q,

Я61 Stop.
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5.2.3 Computing Partial Recursive Functions

As a further example, assume that the word functions

f (x ,y ) ,  g(x), h(x)

are sequentially computable by means of three push-down store systems, 
which start with the input stores

I / ’ ^9’
and end with the output stores

0/5 Ой,

respectively. Using these, we are able to produce a push-down store system 
for the computation of

f(g(x), h(x)).

Here it is possible to identify О with О /.
Initially I contains s, and by simply pouring this into another store we get 
s, whereas our task is to place s in both lg and IA. Therefore we have to take 
an additional push-down store I. The first step is then to pour the contents 
of I into I, and then to pour them out of I  into both Ig and IA. In this way 
the order of the letters will be that required. We can then follow the steps of 
the (already known) computation of the value of g, which together will be 
denoted by the symbol Qa. This ends with gfs) in Og (after L), and with L 
n all the other stores except IA. The steps of the computation of the value 

of h (denoted by Qh) should now follow, where at the end h(s) appears in 
Ол (after L). Finally, the contents of Oh and then of 0 9 have to be poured 
into / / ,  separated by a comma. After this can follow the steps of the com­
putation of /  for these arguments, denoted together by Qf . The stage sym­
bols qt belonging to

Qgi Qht Qf

respectively, should be distinguished from each other and from the stage 
symbols with no index, by corresponding indices g, h, f  We now have to 
add the initial stage of Qh to this at the end of Qg, instead of “Stop”, and 
to put the stage qx at the end of Qh instead of “Stop”. This procedure can be 
described as follows:

<7i(i ^  £ )l(i -  I) <h
q1(i = L)\q2

q2( i * m i - ~ \ ) ( i - I g)q3

9зК7-1/,)?2
^ ( l = L ) \ Q g
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Q h

qÁOh *  L) I (oh -  if )q4 

4\  ( ° h  =  L )  I (> “*■ I/) <75 
<7ö(°9 ^  -Ц I (°9 ^  I/) <7s

<7.5 К  =  ^ ) lö /-

It was shown in a similar way in the paper quoted in footnote [18J that com­
putability by means of push-down stores is preserved under arbitrary 
substitutions, and (which is somewhat more tedious) under primitive recur­
sions, and also under /r-operations. This yields the methods of sequential 
computation of all the recursive functions by means of push-down stores.

5.2.4 Restriction to Three Push-down Stores

The result of the paper quoted in footnoteC19J, namely that three push-down 
stores always suffice, is achieved by a suitable blocking of the separate 
stores. For this, L  is used in a new role, and a new auxiliary symbol о  is 
also needed, which makes it possible to store several different sequences 
of symbols in the same store.
We shall illustrate this with the example of the previous section, where 
of course the additional assumption is made that the functions

f (x ,y ) ,  g(x), h(x)

can be computed with the help of 3 push-down stores. For the initial 
functions this is true. To compute the function

f(g(x), h(x))

we have then the following procedure, using only the three stores I, I, О : -  
The values g(s) and h(s), in this order, separated by a symbol L, will be 
placed in O. In order that the place where this begins can be found again, 
first the symbol о  is put in O, and then on top of it another L : -

9 il(o  — O) q2 

q2\(L -  O)<73.

We could now carry out the computation Qg of g(.y) using the three stores 
I, I, O. However í  must also be preserved for the computation of h(s). 
Therefore, we first put s simultaneously into I and O, then from О we pour
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it back into I, while in I we block it by an L. Then we can start Qg: -  

?з(*5*£)1 (« -1 )0 '-1 )?4  
qA\(i -  O )q3 

q3(i = L)\q& 

q Á ° ^ L ) \ ( o  - I ) ? 5 

qt (o = L ) \ ( L * l ) Q e.

Qg ends with g(s) on top of the highest L  in O, and with L as the top symbol, 
in the other stores. The L  from I has to be taken out and used to block O. 
Thus s will be opened up again in I. So we can pour it into I again. Now 
our stores are ready for the computation Qh of h(s): -

qe\( i -~ 0 )q 7

q7(i L ) I (i 1) q7

q A i= L ) \Q h.

After this the contents of О are

L o  Lg(s)Lh(s),

and what we have to do is to compute / for the chain of arguments

g(s). HO-
This can be poured (in the required reversed order) from О into I, meanwhile 
erasing and replacing by a comma the first L  from the right. We still have 
to erase the auxiliary symbols о  L  from O, so that only the original L  will 
remain. After this the computation Of  of /  for the desired arguments can 
be executed:

qa ( o ^ L ) | ( o -  I )qs 

qe (о =  L)1(Z -  o)qa 

l ( . -  Otfio
?io(o 5̂  L) I (° I) <7io 

q10(o =  £ ) | ( / -  o) qu

4n I (1 “ *■ °)Qf ■

Of course, in this, Stop at the end of Qg has to be replaced by qs, and Stop 
at the end of Qh by qa.
It happened here that, at the beginning of a computation of a function value 
the contents of the stores I or О were not just L. In more complicated cases, 
it can also happen that I also contains a chain of symbols below Ls. The
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chain of symbols up to (and including) the highest L  which can be found 
in a store at the beginning of a computation is called a kernel chain. This 
remains unchanged during the computation, at the end of which in I and I 
we will find their kernel chains, while in О is left its kernel chain with the 
result of the computation on top of it. This result is completely independent 
of the kernel chains.
In a similar way one can show that sequential computability with 3 push­
down stores is also preserved for arbitrary substitutions, primitive recursions, 
and /i-operations.

5.3 Partial Recursivity in Push-down Stores

The converse of this is also true. Whatever can be computed by means 
of push-down stores in a word set M  over a finite alphabet A, is partial 
recursive in the word set M ' over the alphabet A', which, in addition to 
the letters of A, also contains the auxiliary symbols

A \L-,l

and in the case of the method applied for the minimization of the number 
of push-down stores, also о . The proof of this will be illustrated using as 
an example the computation of lb(x), executed in section 5.2.2. The succes­
sive instructions of the computation were as follows: -

4i I (i -  О)q2 
9г(* 5̂  L) I (/ -► O) qx 

q2(i =  L)\q3 
q31 Stop.

In every computation there are only a finite number of instructions (here 4), 
in which a finite number of stages occur (here 3). In the Oth moment, that 
is before the computations starts, the contents of the stores I, I, О are the 
kernel chains

wxL, w2L, w3L,

respectively. Moreover, in I, on top of this, is the reversed argument chain 
which in our example is the single argument x. The reverse x of a word 
X is primitive recursive in every word set, since it can be defined by the 
following primitive recursion: -

f A, if x =  A
x ■ lb (x) at (x) otherwise.
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Let us denote the contents of I, I, О and the index of the current stage in 
the о (z)th moment of the computation by

i (w1 ,w 2 ,w 3 , x , z )  
l (wl5 w2,w 3,x , z) 
co(w1; w2, w3 ,x ,  z)
(T (wl5 W2, W3, X, z)

respectively. As the parameters

Wi,W2, w3,*
do not change in the course of the computation, I shall denote them by

i(z), l(z), cu(z), ff(z),
respectively.
In our example, in which I does not appear, these functions can be defined 
as follows (where a top symbol means the last letter of a word, the erasure 
of which yields the initial part of the word): -

w1 Lx, if 2  = A
i(z) =  at (/(at (z))), if z ^  Л & <r(at (z)) =  1

г (at (z)) otherwise,
w3 L, if z =  Л
o )  (at (z)) lb (/(at (z))), if z ^  A & a  (at (z)) = 1

C° ~ at (cu(at(z))), if z ^  A & <r(at (z)) =  2 & lb (i (at (z))) ̂  L
to (at (z)) otherwise,

1, if z =  A
. , 1, if z ?£ A& u(at(z)) =  2& lb(i(at(z))) L

a 2, if z A & u(at (z)) — 1
3 otherwise.

Here 1,2, ... denote those words which represent the corresponding natural 
numbers in M ' .
It should be noted that on the right-hand side of these definitions, unless 
z =  A, z appears only as an argument of at, i, со and a. Therefore, as was 
explained in section 3.8, these simultaneous recursions can be reduced to 
primitive recursions of the following form: -

{w1 Lx, if z =  A
/i1(i(at(z))) otherwise, 

ivv3L, if z —A
( /ig (uí (at (z))) otherwise,
П, if z =  A
j/!3(<7(at(z))) otherwise.
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These definitions, however, are pure iterations. From the first, for example, 
we obtain

»0) =

WjLx, 
h1(w1Lx), 
hiih^WiLxj), 
h\(h\ (hx (Wi Lx))),

if z =  A, 
if o(z) = 1, 
if o(z) =  2, 
if o(z) =  3.

Hence i(z) is the o(z)th iteration of hx at the place wxLx, which will be 
denoted by

i (z) =h{«*n (w1Lx).
Similarly we obtain

rn(z) =  h[o(z))(w3L),

<r(z) =  140(Z))(1).
Clearly, these functions, which do not depend on z but only on o(z) (and 
parameters и^, w3, x which are not shown), are primitive recursive se­
quences.
The result of the computation is obtained in the first such moment m, in 
which the stop stage

a(m) = 3

is reached. Hence, by the definition of the ^-operation from section 3.8,

m = Ы -А а (°00) =  3].
The result, then, is the word obtained from co(m) by erasing the kernel chain 
w3L from its beginning, or in other words, the final segment (see section 
3.6.2) of order

o(co(m))-o(w3L)

which is independent of the kernel chain. Hence the value of our function 
lb for the argument x is

lb (x) =  e(co(x, m), о (új (x, m)) — o(w3L))

with the above m.
It is easy to find an upper bound for this m on the basis of the computing 
instructions above.
One has to move the characters of x (if x =  A their number is 1, otherwise 
it is o(x)) one by one from I into O. Here all but the last one of them have 
to be erased, and then comes the transition to the stop stage. For x =  A 
this means 2 steps, otherwise 2 • о (x) steps. Hence in any case there are 
at most 2 • o(x)+2 steps.
Consequently, m is definable by means of the bounded ^-operation 

m = nz[z s  2*o(x) +  2 & a (z) - 3]
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z, as a predecessor of a natural number, must itself be a natural number. 
Hence z = o ( z ) .  Thus m  is primitive recursive and consequently the result 
of our computation is primitive recursive.
Of course, we already knew this for lb(x), but our reasoning can be genera­
lized to show that the result is always obtainable from primitive recursive 
word functions by means of a single ^-operation (to which, in general, no 
primitive recursive bound is available). Hence every word function compu­
table by means of push-down stores is (after a suitable extension of the 
alphabet by auxiliary symbols), partial recursive.

5.4 Illustration on Railway Marshalling

Now these simple computation steps have a very natural translation into a 
“railway marshalling language”, in which every letter or auxiliary symbol 
has associated with it a car type (denoted by it), the push-down stores 
correspond to tracks, and the stages to marshalling yards.
In this way, the word functions can be defined by railway marshalling graphs 
and traffic regulations corresponding to these [2o:i. A railway marshalling 
graph means a finite, connected, directed graph containing only triple 
edges. These correspond to the tracks. The edges connecting the same 
vertices (which will be called parallel) are directed in the same way, and 
will be denoted by I, I and O. The vertices correspond to yards with suitable 
switching devices. So now we are able to execute the following simple instruc­
tions concerning the last cars of the trains standing simultaneously on the 
three parallel tracks:
1) Disconnect the last car from the train standing on one of the tracks 
and send it to the depot. (This corresponds to the erasure of a given top 
symbol.)
2) Bring a car of a given type from the depot and join it to the last car of a 
train standing on one of the tracks. (This corresponds to putting a certain 
symbol into a given push-down store.)
3) Disconnect the last car of a train on one of the tracks and join it to the 
end of another. (This corresponds to moving a top symbol from one store 
another.)
4) Bring out of the depot a car of the same type as the last car of a fixed 
train and join this to the end of one of the trains. (This corresponds to

[2°] p  Péter: Veranschaulichung eines sequenziellen Berechnung der rekursiven Funktionen 
durch „eisenbahnrangierende Graphen”, Periodica Math. Hung. 3 (1973) pp. 183-187.
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the transfer of a certain to symbol into another fixed push-down store, 
while it also stays in the original store.)
The graph has two important vertices: an initial station, where three 
edges run in from the outside world (these will also be denoted by I, I, 0), 
and a final station (the stop station), from which no edges run out. Every 
other vertex is at the intersection of both incoming and outgoing edges. 
After this we can start the computation of the value at the argument chain 
s of the word function f  defined by such a “railway marshalling graph”. 
The first step is to have three trains standing on the three tracks coming in 
from the outside word to the initial station. These will be called the “kernel 
trains I, I, O” respectively, and they all end with a railcar denoted by the 
symbol L. To the end of the kernel train I are also joined, one by one, the 
cars denoted by the symbols of s. Then the three trains are started in such 
a way that they arrive at the initial station simultaneously. Here, as at 
every other station except the final station, the traffic regulations of the 
graph, depending on the last cars of the three trains standing on the 
parallel tracks, determine which station they have to proceed to (without 
changing their track symbols), and whether they remain unchanged in the 
course of this or undergo one of the modifications 1), 2), 3), 4). They again 
have to arrive at the next station simultaneously. The “next” station can 
actually coincide with this one, but in this case at least one of the modifica­
tions must be carried out. Cars from the kernel trains are never discon­
nected.
Following the traffic regulations, the trains might have to return often 
to the same station, and this can be repeated without any limitation. If the 
trains never arrive at the final station, then /is  not defined for the arguments 
under consideration.
Furthermore, the traffic instructions are chosen in such a way that if eventu­
ally the trains arrive at the final station, then the kernel trains I and I will stand 
on the tracks I and I while on track О will stand the kernel train О together 
with a chain W  of cars joined to its end. Here the symbols denoting the 
cars in W  are either letters of the alphabet or A. The word composed of 
these symbols is the value of /  for the given arguments. If W  contains only 
A, then this word is also A. Otherwise, of course, the symbols A have to 
be omitted. This value is independent of the kernel trains.
Thus, we have sketched a new translation of the “push-down store method”. 
In accordance with section 5.1.3 we have, then: Everything obtainable by 
a computer can also be obtained by means o f a railway marshalling graph 
with very simple regulations. In short, the regulations might, depending on 
the last cars of the three trains at a station require the disconnection of 
the last car of a train or the joining of a certain car onto the end of a train.
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5.5 Sequential Procedures

I would like to mention here briefly that the significance of sequential 
procedures, and in particular of the push-down store method, goes far 
beyond program translations. Of the numerous applications I would like 
to emphasize its connections with the constructibility of formula controlled 
computers.

5.5.1 Kalmár’s Formula Controlled Computer

As is proved by several patents, F. L. Bauer and K. Samelson have actually 
considered the application of the method for this purpose. The fundamental 
ideas of a different solution (compatible with the notation system using 
parentheses) for formula controlled automata were sketched by L. Kalmár 
as early as September 1959, at the Warsaw Symposium. He had in mind a 
computer which can be programmed in a mathematical formula language, 
and which executes the symbols of a program, written in such a language, 
one after the other as statements. After this L. Kalmár worked out a ver­
sion of such computers feasible in practice[21]. According to an oral com­
munication by Z. L. Rabinovic (Cybernetical Institute of the Ukrainian 
Academy of Sciences), the first universal formula controlled computer was 
built in this Institute (1963-1966), on the basis of Kalmár’s ideas.

t21-* See also L. Kalmár: Über einen Rechenautomaten, der eine mathematische Sprache 
versteht, Zeitschrift für Angew. Math, und Mech. 40 (1960) pp. 64-65; and L. Kalmár: 
On a digital computer which can be programmed in a mathematical formula language. 
Second Hungarian Math. Congress Budapest 24-31 August (1960) Abstract of lectures 
2, pp. 3-16.



Chapter 6

Recursivity of Flow Charts

6.1 Graphical Representations

In assembly languages as well as in higher level programming languages 
(which are closer to the language of mathematics, but farther from the 
language of a computer) it is usual to accompany the trains of thought 
that is the logical structure of the program by diagrams called flow charts. 
These make translation into computer language easier. I shall deal with 
this notion, which in practice is used without sufficient precision, in the 
exact form due to Kaluznin, and I shall use his terminology for it: graph 
scheme.

6.2 Flow Charts in Algol 60

Let us consider the following procedure to define the values of a numeric 
function f(a, b), given in the programming language Algol 60:

integer procedure f(a , b); value a, b; integer a, b; begin integer i, w; i := 0; 
w:=l; c: if i = b then go to e else begin w:=wX a; i:= i +  l; go to c end; 
e:f: = w end;

Even for somebody not familiar with the language Algol 60 it is easy to 
understand what this means; a procedure to compute the integer value of 
f(a, b), provided that integer values are given to a and b. The procedure 
consists of statements, while begin and end play the roles of an opening 
and closing parenthesis, respectively. First it is stated that the auxiliary 
variables i, w are also given integer values. Then 0 is set as the initial value 
of i and 1 as the initial value of w. Now follows a statement marked by the 
symbol c. If i=b, then go (immediately) to the statement marked by e. 
Otherwise the statements follow in their normal order within the parenthe­
ses begin and end. Replace the actual value of w by w • a and the actual value



84 Recursivity of Flow Charts [Ch. 6

of i by i + 1. Then go back to the statement marked by c: (for cycle). Finally, 
the statement marked by e: (for end) says that /  takes the last value of w. 
This is the value of the function /  for the pair of arguments (a, b).
This value w can be considered as a one-term sequence. The arguments 
(a, b) form a two-term sequence. The intermediate values also depend on 
the auxiliary variables i and w, that is on four-term sequences. In the course 
of the computation sequences of natural numbers are transformed into 
other similar sequences. This transformation can be represented by a finite, 
connected, directed graph, the vertices of which are associated with certain 
variables, where these variables run through sequences of natural numbers 
with a given number of terms. The values of these functions are also such 
sequences, possibly with a different number of terms. A vertex associated 
with a relation is called a logical vertex. Two edges issue from such a vertex, 
one denoted by T (for true), and one by F (for false). The other vertices are 
called mathematical vertices. A single edge issues from each such vertex 
with the exception of one particular vertex, the output vertex, from which 
no edge issues. Every vertex has an edge which ends there, with the 
exception of another particular vertex, called the input vertex.
The above computation of f(a, b) is represented by the following graph 
scheme G: -

where E4 is the input and E4 is the output. Moreover

b) =  (a, b, 0,1),

B2(a, b, i, w ) = i = b ,

a3(a, b, w) =  (a, b, i+ 1 , wXa),
a4(a, b, i, w) =  w.

Here ax(a, b), a3(a, b, i, iv) and a4(a, b, i, w) are functions, the variables 
of which are two-term and four-term sequences of natural numbers, respec­
tively. The same applies to the relation

B2(a, b, i, w).
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As the argument of the function associated with the input Ex is (a, b), and 
the value of the function associated with the output is a number, we say 
that the graph scheme G determines (or computes) a numeric func­
tion G(a, b) of two variables. The computation consists of the follow­
ing steps. To begin with, the argument (a, b) is given to E4. Then a4 is 
computed at this place and its value {a, b, 0, 1) is sent as an argument along 
the unique edge leading from Ег to Ea. From this logical vertex, it is sent 
further as an unchanged argument along either edge T or edge F to the 
vertex E4 or E3, according to whether B.> is true or false that is 0=b  or O^b. 
In the second case the function a3 associated with E3 is computed for this 
argument, and its value (a, b, 1, a) is sent back to E2 along the edge leading 
from it. Here everything starts all over again. Whenever a certain (a, b, i, w) 
is taken to E3, the value (a, b, z'+l, w-a) is sent back from here to E2, 
to see whether the third term has become equal to b. If the answer is 
affirmative, then we proceed along the edge T to the output E4, and the 
value of a4 obtained here is the value of the function G(a, b) computed by 
G. As can be seen from the above description of the computation steps, 
this coincides with /  (a, b) computed by our Algol procedure.
Actually, G(a, b) is a well-known function. Indeed, the above procedure 
yields us the following (denoting the transition from certain number se­
quences to others by — and J L ) :

(a, b) ------<■ (a, b, 0, 1)

1, if b = 0  (a, b, 1, a) otherwise

4
i H

a, if b =  1 (a, b, 2, a • a) otherwise

í Í
a-a, if b = 2 (a, b, 3, a • a • a) otherwise

T-------i
a • a • a, if b =  3

Thus we see that G computes the Z>th power of a, that is

f(a , b) =  G(a, b) =  ab.
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6.3 Flow Charts of Word Functions

It is possible to read off the determining graph scheme directly from the 
definition of a function.
Let us consider e.g. the following definition of a function / ( x ,  y) in a 
word set M  over a finite alphabet A : -

f ix ,  У) =  g(x, A, y),
where g is defined by

{V, if o(x) =  o(u)
g(x,ua0, at (i>)) otherwise.

Here a0 is an element of A, such that the words which are built out of it 
represent in M  the natural numbers and consequently also the orders of the 
words.
The definition shows that the first step is to move from (x, y) to (x, A, y). 
Then begins the computation of g by cases, according to whether or not the 
orders of the first and second terms coincide. In the first case one has to 
take the third term of the three-term word sequence. In the second case, 
however, one has to pass to a new three-term sequence, with ua0 instead of 
the previous и as the second term, and with at(y) instead of the previous v 
as the third term. Then one has to return with this new argument to the 
point where the computation of g began. This can be represented by a graph 
of the same structure as above: -

<*i (x,y)  =  (x, A, y),
However with

B2(x, u, v) = o(x) -  o(u), 

cf.3(x, u, v) = (x, uaa, at (v)). 

a4(x, u, v) =  V.
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The function determined by this graph scheme is computed through the 
following steps; -

(x, y )-------(x, A, y)

I-----------------------1
y, if о (х )= Л  (x, a0, at (y)) otherwise

I| 1 |
at(y), if o(x) =  a„ (x, a0 a0, at(at(y))) otherwise

I---------------------- 1
at (at (y)), if o(x) =  a0 a0 (x, a0 a0 a0, at (at (at (у)))) otherwise

I-----------------------1
at (at (at (y))), if o(x) =  a0a0a0

Clearly, this is the o(x)th iteration of the function at for the argument y: -

f (x ,  y) =  at(oW) (y).

6.4 Partial Recursivity of Flow Charts

In general, with every graph scheme G, there is associated a set M G in such 
a way that the domains of the functions, the ranges of the former, and the 
relations associated with the vertices are subsets of M a. The same is then 
true for the function determined by G. This is defined for those elements 
of M G, for which as input arguments, the computational procedure described 
in the examples never gets stuck before reaching the output. This can happen 
as early as at the input, if the function or relation associated with it is 
not defined for the input argument. Also the procedure must not contain 
an infinite cycle, and the function associated with the (always mathematical) 
output vertex must always be defined for the incoming argument.
In what follows, I will restrict myself to graph schemes defining numeric 
functions of an arbitrary number of variables. Then M G can be chosen as 
the set of all finite sequences of natural numbers.
One has to take certain initial functions and relations that can be associated 
with the vertices. Then the functions defined by such graph schemes can be
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associated with the mathematical vertices of new graph schemes, and so 
on. It is easy to see, however, that if a mathematical vertex E of a graph 
scheme G is replaced by the graph scheme determining the function asso­
ciated with E, then the modified graph scheme computes the same function 
as G. Therefore we can restrict ourselves to graph schemes, the mathemati­
cal vertices of which only have the initial functions associated with them. 
With a suitable choice of the initial functions and relations, I have proved[22] 
that every numeric function computable by a graph scheme is partial recursive. 
The proof will be illustrated for the example of section 6.2 without reducing 
the functions occurring there to the initial functions.
Let us consider again this graph scheme and the functions and relations 
associated with its vertices: -

<*fa, b) = (a, b, 0,1)

В f a ,  b, i,w) = i = b

a.fa, b, i, w) =  (a, b,i + \ , w • a)

a f a ,  b, i, vv) =  w.

We can code finite sequences of numbers by natural numbers, for example 
the sequence (n1; n2, ..., nj) by the number n=21̂ 1 -p \ l ■ p nfi • ■■■
Then the sequence coded by n is simply denoted by a„. Here, as before, 
is the ith prime number, with 2 considered as the Oth. The exponent of 
Pi in the prime factor representation of n will be denoted by exp;(n). Tak­
ing into account that the nth prime number is certainly bigger than n, we 
see that the number n codes an /-term sequence if the following primitive 
recursive relation holds: -

Z fn )  =  exp0 (n) + 1 =  l & (i) [i s  n — (i >  Z — exp; (n) = 0)].

[2 2 ] Péter: Über die Partiell-Rekursivität der durch Graphschemata definierten zahlen­
theoretischen Funktionen, Ann. Univ. Sei. Budapest 2 (1959) pp. 41-48.
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The sequences occurring in the definition of oq, a3 and a4 can be coded as 
follows:

(a, b) — ani with n1 = 21 • 3° • 5b
and

(a, b, 0, 1) =  ami with m1 =  23 • 3° • 5b • 7° • 111 =  44 • nx.
Also

(a, b, i, w) =  a„2 with n2 = 23 • 3° • 5b • l l • 1 l w
and

(a, h, i +  1, w-a) =  am2 with m2 = 23 • 3° • 5b • 7i+1 • l l w'° =

=  8 • 3exP d V  . 5MP2K ) . 7exp3(/i2) + l  . J Jexp4(n2) exPl(n2)̂

w -  атз with m3 =  2° • 3W =  3expd nd.

Let us put for j =  1, 3, 4

л _ { Ш’ if а/ а") =  я™
^ П [O, if а7(а„) is undefined.

Then, since ax is defined for two-term sequences and a3 and a4 for four-term 
sequences, ß(j,n ) is determined by the following definition by cases as a 
primitive recursive numeric function: -

ß ( j . n) =

44n, if j = \ & Z 2(n)
g  . 3 exP4t ”) . 5 <=xP2("> . 7exp3(n) + l  . I JexpjW-expj (n) 

Зехр4(я), j f  j  =  4 & Z 4 ( n )

0 otherwise.

if j  = 38cZi (n)

For /2=0 an was not defined. Therefore ß(j, n) vanishes if and only if a / a j  
is not defined.
The primitive recursive function y(n), belonging to the logical vertex, and 
defined by

in, if Z4(n)
 ̂ П { 0  otherwise

(in accordance with the fact that the values coming in to logical vertices 
are sent onwards unchanged) vanishes if and only if B2(an) is not defined, 
since B2 is defined for four-term sequences. Moreover if

n = 23 • 3° • 5b • 7‘ • 1 l w, that is an =  (a, b, i, w),

then 0 and
B2(an) = i = b = exp3 (n) =  exp2 (n).
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6.4.1 Recursivity of Graphical Structure

So far we have defined primitive recursive counterparts of the functions 
and relations associated with the vertices. Now the structure of the graph 
G has to be described in a primitive recursive way.
For this purpose we define the following functions:

0, if Ej is a mathematical vertex, 
v(j)  = 1 ,  if Ej is a logical vertex,

2 otherwise;

j', if the edge starting out of the 
z ( j )  =  mathematical vertex Ej leads to Ey 

0 otherwise;

j', if the edge T starting at the logical 
x ( j )  — vertex Ej leads to Ey  

0 otherwise;

j ' ,  if the edge F starting at the logical 
l ( j )  = vertex Ej leads to Ej,

0 otherwise.

These can be defined as primitive recursive functions by the following 
definitions by cases: -

v ( j )  =
0,
1,
2

if j  =  1V/ =  3V; =  4 
if j  = 2 
otherwise,

(2, if 7 =  1 Vj =  3 
T J fo  otherwise,

x(j)  =

m  =

4,
0

i 3*
|0

if j  = 2 
otherwise,

if 7 =  2 
otherwise.

The computation of G (a, b) is carried out at successive moments, where in 
“moment 0” the argument (a, b) is to be taken, and in moment 1 the func­
tion or relation associated with Ex is to be dealt with.
Let

j, if in moment r the computation has 
to deal with Ej,

0 otherwise.
i(r, a, b) =
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Furthermore

co(r, a, b) =  1

the number corresponding to the argument (a, b) if r= 0 ; 
otherwise: the value of the function ß or у belonging to 
the vertex of index i(r, a, b), computed at moment r, 
according to whether El(r a b) is a mathematical or 
logical vertex.

Hence these functions can be defined by the following simultaneous recur­
sion: -

i(0, a, b) =  0,

i(Ua, b) =  1,
and for r S l

/ ( r + l ,  a, b) =

c(i(r, a,b)), if v(i(r, a, b)) =  0 
(i ( r ,a ,b )), if v(i(r, a, b)) -  1 &exp3(w(r, a, b)) =

= exp2(co(r, a, b))
A(i(r, a, b)), if v(i(r, a, b)) = 1 & exp3 (ю(г, a, b)) ^

^  exp2(m(r, a, b ) )
0 otherwise,

co(0, a, b) = 2-3“ • 5b,

ю (г+ 1, a, b) =
ß ( i( r+ 1, a, b), ca(r, a, b)), 
y(m(r, a, b)),
0

if v ( i( r+ 1, a, b)) =  0 
if v ( i( r+ 1, a, b)) =  1 
otherwise.

The i (r -f-1, a, b) occurring in the definition of w ( r+ 1, a, b) can be replaced 
by the right-hand side of the definition of i(r + l,a , b). Thus not only 
i (r +  l, a, b), but also со (r+l ,  a, b) can be defined as primitive recursive 
functions of i(r, a, b) and co(r, a, b). Such a simultaneous recursion, however, 
can be always reduced to primitive recursive definitions of

i(r, a, b) and to(r, a, b).

The value of G(a, b) is obtained at the first moment when the output vertex 
E4 is reached, and with a value, for which a4 is defined, such that the corres­
ponding value of ß, and consequently of со, is not 0; in other words, at the 
first moment r, in which both

i(r,a,b) = 4 and w(r, a, b) +  0

hold. The value of a4 at moment r is the value of w at this moment: a single 
number, that is a one-term sequence a„, whose code is

n = 2° • 3W =  3W.
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Thus 3W is the value of ß belonging to this vertex in this moment, that is 
со (r, a, b); now w can be obtained from this as the exponent of 3 in its prime 
factor representation, that is as

Thus we have
expx (co(r, a, b)).

G(a, b) =  ехр1(ш(;иг[г(г, a, b) = 4 & co(r, a, b) +  0], a, b)).

6.5 The Computability of Flow Charts

It is easy to give an upper bound for the ^-operation applied here: Whenever 
a vertex is reached, one stays there for a moment. E4 and E4 are reached 
only once, E2 and E3 as many times as there are values of i to increase to 
b from 0, that is, both are reached b times. This yields the upper bound 
2b+2 for r. Hence the function

G(a, b) =  exp1(co(jur|> ä  2 +  2b&i(r, a, b) =  4&co(r, a, b) +  0], a, b)), 

determined by G, is primitive recursive.
Of course we knew this already, since G(a, b) is equal to the power ab. 
But a similar way of reasoning applies to the general case, showing that all 
the numeric functions computable by graph schemes (with suitably chosen 
initial functions) are obtained from primitive recursive functions through 
substitutions and a single /r-operation, and consequently they are partial 
recursive. According to Chapter 4, however, every partial recursive func­
tion is computable by a computer. Hence we can conclude: -

Whatever can be computed by a graph scheme, is also computable by a 
computer.



Chapter 7

Recursive Procedures and Algol 60

7.1 The Converse Results

What happens to the converse of the final conclusion in the previous 
chapter? Everything obtainable by a computer is partial recursive. Can all 
the partial recursive functions be computed by graph schemes?
In sections 6.2 and 6.3, this was shown for two particular cases, for the pri­
mitive recursive numeric function ab, and for the primitive recursive word 
function

/(x , y) =  at(o(jc))(y).

In the latter case, it was somewhat obscured by not taking the natural 
primitive recursive definition of/  (x, y ): -

[y, if x = A
/(*> У) I at y)) otherwise.

Is it not possible to obtain from this a graph scheme determining /(x , y) ?
This definition starts with the decision whether x =  Л or not. This gives a 
logical input vertex with the associated relation

^ 1  y) =  л: =  A.

The edge F starting out of this vertex has to lead to a mathematical vertex 
E2, with which is associated the function

У) =  (at (x), y).

Similarly the edge T has to lead to the output vertex, say E3, with which is 
associated the function

<*з(х, У) =  У-
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This yields the final result. So far everything is all right: -

But how do we proceed after having reached E2? Our process fails here. 
We would have to apply/ to the argument (at (x), y). Hence the edge originat­
ing at E2 would have to lead back to Et , where the computation of/ started: -

However, this would start a rotation between Ej and E2, with pairs whose 
second term is invariably y, and the order of whose first term is 1 less after 
each turn. The “at” applied to / in  the definition could not even be mention­
ed. After o(x) turns, one would end up in Ex with the pair (Л, y), for which 
B1 is true. Then one has to proceed to E3, where у  is obtained as the result. 
Hence this graph scheme would not compute

f ix ,  y) = y.

Thus it was with good reason that we used a different definition of

at(oW) (y).

7.2 Recursion in Algol 60

The numeric function

was not given by a definition, but by an Algol procedure. The natural 
definition would be: -

4.

a t f° (* »  ( y ) ,

but

f(a , b) =  ab
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It would not be correct in this case either to deduce from this definition a 
graph scheme determining ab. In the same way we would have to take a lo­
gical input vertex Ex and the relation

Bx(a, b) =  b =  0

associated with it. From Ex the edge F must lead to a mathematical vertex 
E2 with

a2(a, b) =  (a, b — 1),

and the edge T must lead to the output vertex E3 with

a3(a, b) -  1.
Thus we would have

Here/ should be applied again to the pair (a, b — 1) obtained in E2. Therefore 
the edge starting out of E2 would have to lead back to the start of the 
computation of f  that is to Ex. This cycle would have to continue with the 
second term decreased by 1 for each repeat (without even mentioning the 
multiplication by a), until finally the second argument is 0. Hence B1 
holds, in which case one has to proceed to the output E3. Here the constant 
1 is obtained as the result of the computation. Consequently this graph 
scheme does not compute a*.
From the above natural definition of ab we should obtain the following 
Algol procedure for its computation: -

integer procedure f ( a ,b ); value a, b\ integer a, b;
/ :=  if b =  0 then 1 else/(a, b — l )Xa;

This is essentially different from the procedure given in section 6.2; namely 
it calls itself for the computation of /  at another place. Such sections of 
program are called recursive procedures. Among these are counted the 
simultaneous procedures which call one another mutually.
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7.3 Non-recursive Algol Procedures

If we could have deduced from the primitive recursive definition of/ (a, b) = 
=ab a graph scheme determining it, then this would have yielded us a 
non-recursive procedure. Indeed, in generalC23], i f  a numeric function is 
computable by a graph scheme, then a non-recursive Algol procedure can be 
given for its computation.
The general reasoning will again be illustrated with the example of a graph 
scheme G, which was used earlier as an example of a general kind in section 
6.4: -

Now, however, the variables of the different functions and relations have 
to be denoted in a different way, and in the values of the functions (which 
are finite sequences) the dependences of the separate terms on the corres­
ponding variables have to be indicated. (For the sake of clarity, I shall 
use lower indices and also Greek letters. It is easy to replace these by 
expressions admissible in Algol.) Thus we have

*i(G,i> ^1 ,2) — (ai,i(yi,i> vi,ú> ai,2(Ti,i> vi,2)’ а1,з(Ь1,1> ^1 ,2)5 ai,4(G,i> ^1,2));
where

Gfi.iOfi.u G.ä) =  G ,i> ^1,2(g , i > v i ,s t)  =  v i , 2> a i ,3 (yi,i>  ®i,s) =  

“ 1 ,4  ( » 1 ,1 .  G ,a )  =  1 ;

^ 2 (^2 ,1» 2̂,2> 2̂,3> ^2 ,4) =  2̂,3 =  2̂,2>

а з ( ^ з , 1 >  ^ з ,2 >  y 3 ,3 ?  ^ 3 , 4 )  =  ( a 3 , i ( ^ 3 , i >  v 3 , 21 ^3 ,3 >  ^ 3 ,4 )»  а з , 2 ( у з,  i>  ^3 ,2  9 ^ 3 , 3 )  ^3 ,4 )5

a 3, 3 ( ^ 3 , 1> ^ 3 ,2  5 ^ 3 , 3 )  V3 , i ) t  ^ 3 , 4  ( G ,  1 ? ^3 ,2 >  ^3 ,3 >  ^ З д ) ) >
where

^ д С ^ З .  1> ^3 ,2 5  V3 , 3 i  ^ 3 , 4)  =  U3 , l i  ^ - 3 , 2 ^ 3 , 1 1  ^ 3 ,2 *  ^ 3 ,3 »  V3 , l )  =  y 3,2> 

аз,з(Тзд> ^з,2j ^з,з> ^3,4) =  ^3,3T 1 i ®з,4(^3,1» ^3,2? ^з,з» ^3,4) =  ^здХ^зд»

^4ÍPí , 1 s G,2> G ,3 i ^4 , 4) — a4 ,l(G ,l!  G,2> G,3> ^4 ,4))

[23] Péter: Die prinzipielle Ausschaltbarkeit des rekursiven Prozeduren aus der Prog­
rammierungssprache Algol 60, Acta Cybernetica 1 (1972) pp. 219—231.
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whence
a4,1 (U4,1» 1*4,2, **4,3! 1*4,4) = Vi , i -

The heading of the Algol procedure deduced from G reads as follows: -  

integer procedure f (a,  b); value a, b; integer a, b'

In the procedure body first the necessary variables are declared by

begin integer у1>4, r12, i*2| 1 , 1*2 ,2 ! 1*2 ,3 , 1*2 ,4 , 1*3 ,1 , 1*3 ,2 , 1*3 ,3 , i*3,4, 1*4 ,1 , 1*4 ,2 ,

1*4,3, 1*4,4'

Then, starting at Els the statements belonging to the vertices follow, which 
if necessary can be marked by the symbols of the corresponding vertices. 
Firstly by the general method we have

1*1 ,1 ’—a; 1*1 ,2 '—b\ t*2>1:—0(1 1 (1*1 ,1 , 1*1 2 ): 1*2 ,2 * "OCj,2 (̂ *1 ,i! (*1 ,2 ) 1  1*2 ,3 *—®i, 3  

(i*i,i. 1*1 ,2); 1*2 ,4 :=ai,4 (i*i,i. 1*1 ,2); E2: if v2<3=v2<2 then begin viA :=v2y ,

1*4 ,2 •= 1*2 ,2 ; 1*4 ,3 — 1*2 ,3 ; 1*4 ,4 •= 1*2 ,4 ; go to E4 end else begin v3A\=v2A\

V3 ,2 -= V 2,2,\ V3 ,3 -= V 2,3> 1*3,4 *=  1*2,4 i 1*2,1 a 3 ,1 (**3,1. 1*3,2 > 1*3,3 > 1*3,4)  !

1*2,2 *=  a3,2(l*3,l! 1*3,2. 1*3,3. 1*3,4); 1*2, з'= *3, з(1*3,1! 1*3,2! 1*3,3! 1*3,4); 1*2,4 •= *3,4 
(1*3 ,1 , 1*3 ,2 , i*3 ,3 , 1*3 ,4); go to E2; end; E4: /:=oc4 ,i(t*4 ,i, 1*4 ,2 , г*4 ,з, i*4,4) end;
In our example, replacing each a.itJ by its value, we obtain the following 
statements: -

»1,1:= a ; 1*1,2*= *̂; 1*2,1 ;=  1*1,1 i **2,2-= t*i,2; 1*2, з ’= 0 ; t*2,4 ’= i> e 2: if 

1*2,3=  1*2,2 then begin i’4,i:=t*2,i; vit2:—v2i2; i*4>3 :=i*2,3; i*4,4 :=i*2,4; go 

to E4 end else begin r 3,i:=i*2,i; г*з,2:= г*г,2i г*з,з:= 1*2,3! v3t i :=v2ti',

1*2 , 1  := 1*3 ,1 ; t*2 ,2 "= 1*3 ,2 ! 1*2 ,з;=  1*з,зТ1; i*2 4 := ü3 j4 X i*3 ji ; go to Е2 end,

Е4: / :=  г*4,4 end:

In this particular case several further simplifications are possible. Firstly, 
one sees that during the procedure vltl, v21, v31 and r41 take only the value 
a: further r1>2, v2 2, v3>2 and n4>2 take only the value b. Therefore these 
variables are superfluous, wherever they occur they can be replaced by a 
and b respectively. Moreover, it can be seen that i*3,3: =  1*2 ,3 , and then 
1*2,3 :—1*3,3 +1 can be replaced by the statement 1*2,3 : =  1*2,3 +1- Similarly 
1*3,4:=  1*2 , 4  and then v2 i :—v3 i Xv31. That is, i*2,4: =  t*3,4Xa can be replaced 
by the statement v2 i :=v2 i Xa,  finally i*4i4:=i*2 4 and then /:= i*4 4 can be 
replaced by / : =  t*2,4. Consequently the variables v3 3, r34 and r4 4 are also 
superfluous. So is r4 3, which is not used at all. After all these simplifications 
we obtain the following Algol procedure: -
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integer procedure/ (a , b); value a, b; integer a, b; begin integer n2>3, v2>4; 

y2,s:=0; vM := l; E2: if v2t3—b then go to E4 else begin v2t3:=v2t3+ 1; 
V2,i'-=v2 i Xa; go to E2 end E4: f:= v2A end;

This, with the notation
2̂,3 5 2̂,4 5 E2, E4

instead of
i, w, c, e,

coincides with the non-recursive procedure from which the graph scheme 
G determining/was deduced in section 6.2.

7.4 Unfolding a Primitive Recursion

According to the above, it might seem that the functions defined by primi­
tive recursion are in general not computable by graph schemes. However 
in my paper mentioned in footnote [23], I have proved that this is not the 
case. Primitive recursions can always be replaced by other definitions suit­
able for the purpose.
Let us consider the general case of the definition by primitive recursion of 
a two-place numeric function f(a , b). The order of the variables is irrelevant 
so

fgo(a), if й =  0
\g (a ,b  — l , f ( a ,b  — l)) otherwise.

We assume that we already have Algol procedures for the computation of 
the functions g0 and g. This suggests the following Algol procedure:

integer procedure/(a, ft); value a, b ; integer a, b;f:=  if b = 0 then g0(a) else 
g(a, b - l , f ( a ,  b - 1));

In the “else” case this procedure calls itself to compute the value of /  for 
the arguments a, b — 1. An ordinary computer program cannot do anything 
with such a situation, unless the procedure is suitably expanded. From the 
definition o f /  we obtain gradually the following: -  
If b= 0, then

f(a , b) =  g0(a);
otherwise

/(a , b) = g(a, b — 1, f(a , b -  1)).

If here b — 1, so that b — 1=0, then f(a , b — l)= g 0(a) and 

f(a , b) = g(a, b — 1, g0(a)) = g(a, 0, g0(a)).
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Otherwise, given that (b — 1) — 1 =b — 2, then

fifl,  b — 1) =  g(a, b — 2, f(a , b — 2)).

Hence we have to compute
/(a , b) =  g(a, b — 1, g(a, b - 2 ,  /(a , b -2))).

Now, if b= 2, then
/(a , b — 2) =  g0(a).

Hence

/(a , b) =  g(a, b — 1, g(a, b - 2 ,  g0(a))) =  g(a, 1, g(a, 0, g0(a))) 

and so on.
It follows that for every b > 0

/(a , b) =  g(a, b -  1, g(a, b - 2, ..., g(a, 1, g(a, 0, g0(a)))...)}
holds.
Only after this expansion can the machine computation be carried out, 
step by step. To begin with (in “step 0”) g0(a) is computed. Then with the 
value w we obtained here g(a, 0, w) is computed; with the new w value 
g(a, 1, w) is computed, and so on. If, in general, in step i the value w is 
obtained, then in step г +  1 the computation of g(a, i, w) follows. Finally, 
/ (a, b) is that value vv which is obtained in step b.
This is reflected by the following definition of an auxiliary function h, which 
for i<b  gives the transition from step i to i +  l, and from the actual value 
w to g(a, i, w), while for i=b  yields the actual value of w:

Í w, if i = b
h (a ,b ,i ,w ) yh(a, b, i+ l,  g(a, i,w)) otherwise.

Since in step 0 we have w=g0(a), it remains to be proved that

h (a ,b ,0 ,go(a j)= f(a ,b ). (7.4.1)

Clearly, it suffices to prove the following proposition: -  
For /S b  we have

h(a, b, 0,f(a , 0)) =  h(a, b, i,f(a , i)). (7.4.2)

Indeed, for i=b, using / (a, 0) =g0(a), we obtain from this exactly (7.4.1). 
Now (7.4.2) is clearly satisfied if b=0, since then i (^b ) is also 0. Hence 
both sides are identical.
For b^O (7.4.2) is proved by induction on i. For /= 0  both sides are iden­
tical. Assuming that (7.4.2) is valid for i«=b, we shall show that it is also 
valid for i+ l .  Indeed, by the definitions of h and/  we have

h(a, b, 0 ,f(a , 0)) =  h(a, b, i,f(a , i)) =  b(a, b, i+ l ,  g(a, i,f(a , i))) =

=  h(a, b, i+ l , / ( a ,  i+ l)).
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If, in particular
go (a) =  1 and g(a, b, w) =  w • a, 

then we have the primitive recursion defining

f(a ,b )  = ab

as in section 4.2. This function can be defined also as

with
f(a , b) = h(a, b, 0, 1),

h{a,b, i, w)
J w, if i = b
\h(a, b, i+ \, w • a) otherwise. (7.4.3)

An added parameter or the omission of one or a series of arguments does 
not change the above proof.
The numeric function determined by the general primitive recursion 

J/(0, alt ..., ar) = g0(als . . . ,a r)
1 / 0 1  +  1 , 0 !, ..., ar) = g(n, alt . . . , a r, / ( / i ,a ls ..., ar))

is also definable as

f(n , a l5 ..., ar) =  h(n, al9 . . . ,a r, 0, g0(a1, .... ar)),
with

{w, if i =  n
h[n, flx, ..., ar, i+ l ,  g(i, űj, ..., a,, w)) otherwise

7.4.1 The Resulting Flow Chart

The situation is similar for primitive recursions in a word set. Indeed, the 
application of similar considerations for the primitive recursion from 
section 7.1, by which the word function

a t (°(*)) ( y )

was defined, leads to the definition of this function given in section 6.3, 
which is analogous to the above. In other words, it leads to the definition, 
from which the graph scheme determining

at(o(x)) (>■)-
was deduced.
Similarly, it is possible to deduce, from definition (7.4.3) of the numeric 
function / ( a ,  b)=ab, a graph scheme determining it, which coincides with 
the graph scheme deduced from the Algol procedure in section 6.3.
In (7.4.3), one first has to proceed from (a, b) to (a, b, 0, 1). Then begins
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the computation of h by cases, according to whether the second and third 
terms of a four-term sequence coincide or not. In the first case, one has 
to take the fourth term of the sequence as the result (“output”). In the 
second, a new four-term sequence is to be taken, in which the first and second 
terms remain unchanged, but instead of i we have /-H , and instead of w 
we have w • a, as the third and fourth terms respectively. Then, with this 
new four-term sequence, one has to go back to the computation of h. This 
is represented by the graph scheme: -

with
ai(a, b) =  (a, b, 0, 1)

B2(a, b, i, w) = i = b, 

a3(a, b, i, w) =  (a, b, i+ 1 , w • a), 

a4 (a, b, i, w) =  w.

This is indeed the same as that from which, in section 7.3, the non-recur- 
sive Algol procedure determining ab was deduced.

7.5 Normal Flow Charts

In order to be able to do the same in the general case, finally we have to 
make precise the initial functions and relations to be associated with the 
vertices of graph schemes.
We take as initial functions those functions a, which make /с-term sequences 
into /-term sequences:

oc(nt , ..., nk) = Cm1, . . . ,  mt)

in such a way that every mi (/=  1, 2, ..., /) is either rtj or tij + 1 for some 
7 = 1 , 2, ..., k, or is equal to 0.
As initial relations we take those of the form

= m1 =  m2,

where both m1 and m2 are one of the nt (/= 1 ,2 , ..., k).
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A graph scheme with every vertex associated with an initial function or 
relation is called a normal scheme. The empty scheme is also assumed to 
be normal.
I claim now that every primitive recursive function can be determined by a 
normal scheme [24i.

7.5.1 Determining Recursive Functions by Flow Charts

The initial functions of normal schemes (which, as special cases, contain 
the initial functions 0  and л +  l of the primitive recursive functions) can 
immediately be defined by normal schemes. The corresponding scheme 
consists of a single vertex, which is both the input and the output. The 
function to be defined is associated with this vertex of course. It now remains 
to be shown that computability by a normal scheme is preserved under 
substitutions and primitive recursions.
Assume, for instance, that the functions

f{a ,b ,c ) , g fa ,b ), g2(a,b), g3(a,b)

are determined by normal schemata, represented by the following blocks 
in which only the input and output vertices are explicitly indicated: -

" ё ~1 Г Т 1  Г Ё Л  [~Ё Г

А А, А2 А3

Then the function
/ ( g i (a, b), g2(a, b), g3(a, b)),

obtained by substitution, is determined by the following normal scheme: -

[24] See R. Péter: Graphschemata und rekursive Funktionen, Dialectica 12 (1958) 
pp. 373-393. Concerning these arguments, see also my paper quoted in footnote Kaluz-
nin’s definition of the graph schemes became known to me through an indirect oral com­
munication. Later it appeared in L. A. Kaluznin: Ob algoritmizacii mathematiceskich 
zadac, Problemi Kibernetiki 2 Moscow (1959) pp. 51-67.
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where the following modifications of the above blocks (indicated by as­
terisks) have to be executed: -
After receiving the values for a and b first gx(a, b) has to be computed. 
However the argument (a, b) must be preserved since it is also used for the 
computation of g2(a, b). Therefore the input vertex E* is taken with

cl* (a, b) =  (a, b, a, b),

and the block computing gx(a, b) has to be modified so that every sequence 
(ту, r2, ..., rs) occurring as an argument or value at one of its vertices has 
to be replaced by

0 a ,b ,rx, ...,r s).

In particular, at the output vertex A \ we obtain, instead of vvy (the value of 
gx for the arguments a, b), the sequence

(a, b, uq).

This sequence again has to be preserved, a and b for the computation of 
g3(a, b), and uq as the first argument to be put into / .  That is why EÍ is 
added with

CL[(a,b, vvx) =  (a, b, щ ,а , b).

Now the block computing g2{a, b) has to be modified so that every sequence 
(rlt ..., rs) occurring as an argument or value at one of its vertices is re­
placed by

(a, b, w1,r 1, . . . ,r s).

Thus, at A \ the sequence (a ,b ,w 1,w 2) is obtained instead of w2. Since 
the terms of this sequence will be used later, we add E' with

a2(a, b, щ , w2) =  (a, b, wx, w2, a, b),

and the block computing g3(a, b) is modified in a way similar to the 
above. Thus at A* the sequence

(a, b, wl 5  w2, w3)

will be obtained instead of w3.
Now a and b are not needed anymore. Therefore we add E2 with 

aá(a, b, wl 5  w2, w3) =  (wx, w2, w3)

and (wx, vv2, vv3) is found as the argument for the block which computes f. 
Thus we shall obtain at A the value /(w j, w2, w3), of /  for the arguments 
wl t w2,w 3, where wt=gi(a, b) (for i— 1, 2, 3) is the value of gt for the argu­
ments a, b.
Clearly, an initial function or relation is associated with every vertex.
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The proof that computability by a normal scheme is preserved by arbitrary 
substitutions can be carried out in a similar way.
Now assume that the functions

g0 (a) and g(n ,a ,w )
are computable by the normal schemes represented by the blocks

E0 Ej
• and ; 

A0 Ax

We show that the function /  (n, a), defined by the primitive recursion

j / ( 0 , a) = g0 (a) 
l /(n  +  l,a )  =  g {n ,a ,f(n ,a j)  

is also definable by a normal scheme.
Let us first pass to the alternative definition, which was given in section
7.5 for the general case: -

f(n ,a )  = h(n, a, 0 , g0 (a))
with

if i = n 
w)) otherwise.

From this we obtain the following normal scheme, which determines 
f in ,  a): -

Í w,
h(n, a, i, w) =  \ ,l h{n, a, i +  l, g(i, a,

This is interpreted as follows: -
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The arguments for /  are n and a, but we actually want to compute the 
function h for the arguments

n, a, 0 , g0 (a).

The fourth of these, the value of g0 at a, has to be computed, while the other 
three must be preserved. That is why the input vertex E is taken with

aE(n, a) = (n, a, 0 , a),

and the block computing g0(a) is modified in that every sequence (r1; ..., rs) 
occurring in it as an argument or value has to be replaced by

(и, a, 0 , rx, . . . ,r s).

Thus at A£, instead of vv0(= g 0(a)) the sequence

(n, a, 0 , w0)
is obtained.
Now, the computation of h begins for a four-term sequence (n, a, i, w). 
We decide whether i=n  or not. That is why the relation

B \n , a, i, w) = i = n

is associated with the logical vertex E'. If this test fails, the argument 
(n, a, i, w) is sent along the edge F to the next vertex. Then according to 
the definition of h we have to compute the value of h for the arguments

n ,a , i+ 1 , g(i, a, w).

This requires the computation of g(i, a, w), while the first three arguments 
have to be preserved. That is why E* is added with

a*(n, a, i, w) =  (n, a, i + 1 , i, a, w).

Moreover the block computing g is modified in that every sequence (rx, ... 
..., rs) occurring in it has to be replaced by

(n ,a ,i+  l , r l 5  . . . , r s).

Therefore, at A* we shall have the sequence

(.n ,a , i + 1 , Wj)

instead of иу, which is the value of g for the arguments i, a, vv.
With this sequence one returns to E' to check whether or not the new 
value of its third term has reached the value n. This is repeated until i 
does increase to the value n, whereupon one passes from E' along the edge 
T to the output vertex A, with this vertex, by the definition of h,

ccA(n,a, i, w) = w
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is associated. Clearly, this w is equal to h(n, a, 0, g0(a)), that is to the re­
quired function value / (n, a).
This reasoning works the same way for an arbitrary number of parameters. 
Thus “definability by a normal scheme” is preserved under primitive re­
cursions.
Consequently, every primitive recursive function can be defined by a normal 
scheme.

7.5.2 Reasons behind this Process

This result was made possible because the primitive recursion

igofaj, ..., ar), if n = 0
J űl , . . . , 0*) -- I / 1 Л/ - .al9 . . . ,a r9f ( n - 1 , al9 ar)) otherwise,

(7.5.1)

from which no graph scheme determining /  could be deduced, was replaced 
by the definition

f{n, au  . . . ,a r) =  h(n, a „  ..., ar, 0 , g0 (űi. ..., ar))

{w, if i = n
h{n,a1, ...,a r, г + 1 , g((, ax, ..., ar, w)) otherwise.

(7.5.2)

From the latter, it is possible to deduce a normal scheme for computing 
f i  and from this (by the result of section 7.3) a non-recursive Algol procedure 
for the computation of fi On the other hand, from (7.5.1) only a recursive 
Algol procedure is deducible, which is not immediately understood by 
a computer.
Thus, from the point of view of programming, definition (7.5.2) is much 
simpler than (7.5.1). What is the explanation for this?
In any case, the definition of / b y  (7.5.2) is a particular case of partial re­
cursion, for it can be brought into the form of a defining system of equations

by the use of sg (n) —Í0  if « = 0  

( 1  otherwise and sg(n) =
Í1 if n—0 
( 0  otherwise as follows: -

f ( n ,a 1, ar) = h(n, a l 5  . . . ,a r , 0 , g0 (a l 5  . . . ,a r)) 
h(n, a1? ..., ar, i, w) =  sg(|n —i| • w +

+  s g ( |n - i |) - / i (n ,a 1, ..., ar, i+ 1 , g(i,a lt ..., ar, w)).

For i=n, the second term and for iVn the first term on the right-hand side 
of the second expression vanishes, and at the same time the first factor 
reduces to 1. Clearly this definition yields a more complicated case of gene­
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ral recursions than primitive recursion. It is in fact general recursive, 
although for i>n, (7.5.2) does not determine A, since these values of A 
are not needed for the computation of / .  Indeed, /  is equal to an A-value 
with i=0. This in turn is equal to an A-value with 1=1, and so on, until an 
A-value with i=n is reached. This is obtainable without the application of 
any further А-value as its last argument. We could have put

h(n,a1, . . . , a r,i,w ) = w, if i ^  n.

Then A would be general recursive. In (7.5.2) the value of A is determined 
at a point

(n, alt . . . ,a r, i, w) (for i <  n)

by taking an А-value at such a point, where none of the arguments can be 
considered preceding. Indeed n, alt ..., ar remain unchanged, and i is 
increased by 1. Finally, in place of w we have g(i, a , , ..., ar, w), which in 
general is not smaller than w. From the point of view of programming, 
this mixed definition must still be called primitive.
L. Kalmár conjectured as soon as computers appeared that they might 
bring changes in our conception of what is “simple” in mathematics. 
He even thought it possible that in the lowest forms of the future school 
the teaching of mathematics will start not with the four fundamental 
arithmetic operations rather with the operations made possible by the 
computer. By now this conjecture is actually realized in the field of recursive 
functions.
However independent of programming considerations, we have nothing to 
show us why the definition scheme (7.5.2) is simpler than (7.5.1). In both, the 
value of the defined function ( /  or A) at a given place is obtained with the 
help of its value at another place. These latter values will be called shortly 
applied /-value and applied А-value, respectively. The difference is 
that in (7.5.2) the applied А-value does not occur as the argument of a 
function, while in (7.5.1) the applied /-value is an argument of g. This 
is the decisive factor. In section 7.1 of this chapter the main point was that 
g could not even be mentioned. The decision factor is not the way the ar­
guments of the applied / -  and A-values were chosen. This contrasts with 
our earlier notion of primitivity of a recursion, in which the applied /-value 
had to be taken at the immediately preceding argument.
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7.6 The /^-Operations

For every definition by cases, the value of a function h is given at an arbi­
trary point either independently of h, or as the value of h at another point 
(where the arguments at this other point are obtainable from the arguments 
of the original point in an already known way). Then one can always find 
a non-recursive Algol procedure for computing h. Although such defini­
tions could be called “primitive recursive” with respect to programming, 
it would not be correct to call primitive recursive those functions which 
are obtained from the initial functions by substitutions and this new kind 
of primitive recursions, because the surprising fact is that these functions 
are exactly the partial recursive functions. Indeed, we can show that the 
/(-operation, by means of which all the partial recursive functions can be 
obtained from the primitive recursive ones, does not extend the class of 
all functions which are primitive recursive in this sense.
In fact, if for such a function g

f(a lt =  Aij[g(i,ai, . . . ,a r) =  0 ], 

then /  can also be defined by the substitution

For the sake of simplicity, we shall discuss this in the special case

/(a )  =  /fi[g(b a) =  0],

since a change in the number of variables does not affect the reasoning at 
all. In this case the claim is that/ (a) can also be defined by

According to the definition, if the third argument of h is 0, then the value 
of h is equal to its second argument. Therefore, if

f{a x, . . . ,a r) =  h(ax, . . . ,a r, 0 , g(0 , <q, ..., ar)), 

where h is defined by the new kind of primitive recursion

Гг, if w =  0

h (cq, ..., ar , i, w) i , / \\ +ul«(<q, ..., ar, i +  l, g ( i+ l , <q, ..., ar)) otherwise.

[н /Л t* +1лл ПЛ 1гл л! РИЛЛлЬлч+ХГ Т1ТЛ Л U ,“»11 /I . Р 1 р р 4-U . Р .4P Г U Р pmpp.p I рррр

/(а )  =  h(a, 0 , g(0 , а)),
with

h(a ,i,w )  I/г(а, i +  l, g ( i+ 1 , a)) otherwise.

g(0 , a) =  0 ,
then

f(a )  =  h(a, 0 , 0 ) -  0 .
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Otherwise we have
f{d) = h(a, 1 , g(l, a)),

and if here
g(l, a) = 0 ,

then
f(a ) = h(a, 1 , 0 ) =  1 .

Otherwise we have
/(a )  =  h{a, 2 , g(2 , a)),

and if here
g(2, a) =  0,

then we have
m  = h(a, 2 , 0 ) =  2 ,

and so on. Putting these together, we have 

if g(0 , a) = 0 , then /(a )  =  0 ; 

if g(0 , a) ^  0 , g(l, a) = 0 , then f(a ) = 1 ; 

if g(0 , a) 9̂  0 , g(l, a) ^  0 , g(2 , a) =  0 , then f(a )  =  2 ;

etc. Hence f(a )  is the smallest i for which g(i,a )= 0, provided that such 
an i exists at all. If there is no such i for a, then the computation of /  (a) 
never ends. Consequently / (a) is not defined. This new kind of primitive 
recursive definition really gives us

Thus the simplest recursion with respect to programming is also the most 
general. It is much more difficult to decide what is simple in mathematics.

7.7 Eliminating Recursion from Algol 60

From the definition

f (a ) =  /J, [g0 , a) = 0 ].

7 (a) =  h(a, 0 , g(0 , a))
j i , if w =  0

h (d ,i,w ) | / г(а> í -f-l,g(í + 1, a)) otherwise

of the function
/ 0 ) =  h, [g(i, a) =  0 ]

we can deduce a normal scheme for its computation, assuming that we 
already have a normal scheme determining g. The latter is represented by
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the block

Ei

Ái

It requires a little thought to see that the cases are distinguished here accord­
ing to whether w= 0  or not and w= 0  does not belong to the initial relations. 
Of course it would be easy to add all these simple relations to the initial ones. 
I shall choose, however, a different way: the reduction of this relation to 
the original initial relations. This is achieved by taking a new variable, 
which is given the value 0 once and for all. Thus we get the following normal 
scheme: -

Here the given block is modified as follows: -  we have to take a as the 
argument of f  but a new variable v has to be added (for example, as the 
first term of the sequence of variables), and this has to be given the value 0  

at the start. We actually have to compute h for the arguments a, 0, g(0, a). 
Here first g(0, a) is to be computed, while the others have to be preserved. 
That is why we have the input vertex E with

a£(a) =  (0 , a, 0 , 0 , a),

and the block computing g(i, a) has to be modified accordingly. However, 
one always has to compute new /г-values for the arguments

a, i, g(i, a)

(with i increasing), where first g(i, a) has to be computed while preserving 
the others. Therefore, the block computing g{i, a) is modified in that every 
sequence (ту, ..., rs) occurring at a vertex has to be replaced by

(v,a ,i, rlt . . . ,r s).
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Thus, in particular, at A* instead of w which is the value of g for the 
arguments i, a, the sequence

(v, a, i, w)
is obtained.
Then follows the decision whether or not w=0 (that is w=v). This is why 
the relation

B'(v, a, i, w) =  w =  v 

is associated with the logical vertex E'.
If  the test fails, then the same argument is sent along the edge F to E". 
Now, by the definition, the function h has to be computed for the arguments

a ,i + l ,g ( i+ \,a )

while v and a have to be preserved. That is why the function

a"(v, a, i, w) =  (v, a, i+ 1 , i + 1 , a)

is associated with E". If this value is received by the modified block for the 
computation of

(v, a, i, g(i, a)),

then the result obtained at A f will be

(v, a, i +  1, w),

where now w = g(i+ 1, a). Here it has to be decided again whether or not 
w=0 (that is w=v). If not, then everything starts anew with an increasing 
value of i, until the relation

В \v , a, i, w) =  w =  v

becomes valid. Then the argument is sent along the edge T to A. Here, by 
the definition of h, one has to pass to its third term. Consequently, we 
associate with A the function

« 4 (v, a, i, w) = i.

Its value is the smallest / for which
w =  g(i, a) = 0 ,

if such an i exists at all. Otherwise one never gets out of the cycle. For such 
an a the graph scheme does not determine any value.
Here, an initial function or relation was associated with every vertex. 
Thus it follows that the property of being computable by a normal scheme 
is preserved not only under substitutions and primitive recursions, but also 
under /r-operations.
Consequently, every partial recursive numeric function is definable by a 
normal scheme.
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It was earlier pointed out in the preface that the functioning of a computer 
can always be considered as the computation of the values of a numeric 
function. In Ch. 4 it was shown that every machine computable numeric 
function is partial recursive. Now we have seen that every partial recursive 
numeric function is definable by a normal scheme. In section 7.3, it was 
mentioned that a function computable by a normal scheme is also compu­
table by a non-recursive Algol procedure.
From all this we obtain the following result: -  Recursive procedures ( includ­
ing simultaneous ones) can always be eliminated from Algol 60 programs. 
A similar result holds for other programming languages too.



Chapter 8

The Epi-language of Algol 60

8.1 Definitions in “Epi-Algol”

As is well known, for the description of the language Algol 60, a certain 
meta-language is used, which should now rather be called “epi-language” , 
because “meta-language” is used in a different sense with respect to Algol 
6 8 . In this language, definitions of the following form occur:

(expression) : := (term)l(expression) (additive operator) (term).

This notation has come to be known as Backus Normal Form. This is only 
a part of the definition of (expression) occurring in “Epi-algol”. The 
definition will be complete, if (as I shall do here for the sake of simplicity) 
one restricts oneself to expressions constructed from natural numbers and 
scalar variables denoted by small Latin letters, perhaps with numerical 
indices, by means of addition, arithmetical subtraction, denoted by ” 
instead of “ — ” and multiplication. Here (expression) means a general 
and not a concrete expression, and the same applies to (term), which, of 
course, still has to be defined. The stroke | stands here for “or”, and the 
symbol has to be read as “is by definition” . Hence the sense of the
above definition is: “An expression is either a term, or it consists of an 
expression and a term connected by an additive operator.”

Immediately this definition looks circular, since the notion under definition 
is used in it. The situation, however, is even more complicated. Indeed, in 
the definition of the notion (term) such further auxiliary notions will be 
applied, which in turn will be defined using the notion (expression). 
Therefore it is very important to check that we are not dealing here with 
senseless definitions, but with recursions.
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I shall not use the symbol Instead I shall list one by one the possible 
cases of a definition. For this purpose I introduce the symbol to be
read as “is by one of the possible definitions”.
Now the definition of our (restricted) notion of (expression) reads as
follows:

1 (expression) := (term)

2  (expression) := (expression) (additive operator) (term)

3 (term) := (factor)

4 (term) := (term) X (factor)

5 (additive operator) := +

6  (additive operator) := —

7 (factor) := (number)

8  (factor) := (variable)

9 (factor) := ((expression))

1 0  (number) (digit)

1 1  (number) := (number) (digit)
1 2  (variable) := (letter)

13 (variable) := (variable) (digit)

14 (digit) := 0

.....................................(this should be written out for all the digits)

23 (digit) := 9
24 (letter) := a

49 (letter) := z.

Here (term) appears in the definition of (expression). In the definition 
of (term), (factor) appears, and finally, in the definition of (factor), (expres­
sion) appears. Hence the circle is closed.
If in the 9th line, no parentheses were used, then the lines

(expression) := (term) 

(term) := (factor) 

(factor) := (expression)
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would indeed form a circle, from which one could not get out, just as 
with the circle

(number) := (number),

which would result if (digit) were omitted in line 1 1 .

8.2 Mathematical Grammars

These problems belong to the field of mathematical grammars.
There is a trend in linguistics to define the concept of “grammatically 
correct sentences” (and other “category concepts”) with the same precision 
with which the concept of the well-formed formulae is defined in mathema­
tics, partly because of the needs of machine translation. This led to the 
creation of “mathematical grammars” of different kinds. The Epi-Algol 
rules belong to a particular class of these, known as “phrase structured 
grammars” [25].
In general, a phrase structured grammar is determined by four non-empty 
finite sets: -

T, H, P, K.
The elements of T (the terminal vocabulary) represent the terminal con­
cepts, which stand by themselves in that they are not defined by means of 
any other notions. Examples of this in Epi-Algol are the digits 0, 1, ..., 9.
The elements of H (the auxiliary vocabulary) represent the category names, 
which in Epi-Algol appear in angled brackets. It is usual to distinguish 
several special types of these category names which form the set K. In 
the grammar of Epi-Algol, (expression) can be considered to be one of 
these special types.
The elements of P, called the productions, represent the grammatical rules 
which are used to “produce” (in other words “generate”) the concepts of 
different categories. In the context-free phrase structured grammars (the 
case to which we restrict ourselves) these productions define equations in 
the sense of the “possible equality : =  having the form

h w 1 w 2 . . .  w „ .

Here A is a member of H, and every wt (i=  1, ..., n) is either an element 
of T or an element of H (in short u^T U H ). The productions correspond 
to the lines in our definition of (expression). (It is admissible to have empty 
productions of the form

h:= .

See for example B. N. Chomsky: Syntactic Structures ’S-Gravenhage (1957).
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It is then advisable to denote the empty right-hand side by some symbol, 
for example by M , and to add this symbol to the terminal vocabulary.) In 
particular, every auxiliary concept has to be defined in this way. Hence 
every element of H is the left-hand side of at least one production.
A chain wx ... w„ with

Wj, ..., w„£TUH

is called a construction, and n is called its order. We say that a construction 
ф is “directly generated” by a construction tp, if tj/ results from (p by the 
“application of a production belonging to P”. More precisely: tp has the 
form Dj ... vm, P contains a production

»i := wi...w„

for some / = 1 , ..., m, and ф has the form

v1...vi_1w1...wnvi+1...vm.

We say that ф is “generated” by cp, if there is a generating sequence

<Pi = cp; cp2; ...■ (pr = ф (8 .2 .1 )

of constructions, in which <p: is directly generated by <Pi-i for every i=  
= 2 , ..., r. A construction is called terminal if only members of T occur 
in it.
Now the exact meaning of the statement “a construction <p belongs to the 
category denoted by the name А” (A£H) is as follows: ip is terminal and is 
generated by h. In this sense, it is said that a terminal construction of the 
Epi-Algol language (that is one consisting of digits, letters, parentheses 
and operation symbols) is an expression, factor or term, provided that it 
can be generated by (expression), (factor), or (term), respectively, with 
the given Epi-Algol rules as productions.
A natural problem is to decide whether a given terminal construction 
belongs to a certain category or not. The solution of this problem follows 
from the next result[2e]: -  If the category names (auxiliary concepts) of a 
phrase structured grammar are defined without circularity in such a way 
that they do not generate themselves (as is true in Epi-Algol), then the 
property “to belong to a category” is primitive recursive in the word set over 
the terminal vocabulary T as alphabet.

[2в] r  Péter: Über die Rekursivität der Begriffe der mathematischen Grammatiken, Publ. 
Math. Inst, of the Hung. Acad, of Sci. 8 (1963) pp. 214-228.
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8.3 Eliminating Circularity

First the required “freedom from circularity” has to be examined more 
closely.
In any case, one has to require that no sequence could be formed from 
the members of P of the form: -

h  := h2

h2 .'= h3

K-= h j.

Of course, for r = l ,  we exclude a production of the form hx:=hx. It can be 
shown that in Epi-Algol this requirement is satisfied.
If this requirement is satisfied and / is the number of elements of H, then 
for г ё /  we cannot have a sequence of the form

hi h2 

h2 := h3

hr := hr + 1

from members of P even ű  hr+1^ h r, since otherwise at least two terms 
of the sequence

hx, hr+1
would coincide. If we had

К = hi+J

for some /</■ + 1 and 0 < / ^ r  + 1 — then the subsequence

hi := hi+1 

hf+i := hi+2

h; + j - 1 •= hi+j
would generate ht by itself.
Sequences of productions of the form

hi := h2 

h2 := h3

hr := hr+1,
where A1; ..., hr+1 are arbitrary elements of H, will be called “dangerous” 
for any r S  1 .
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The freedom from circularity enables us to replace P by a production set 
P', containing no “dangerous productions” at all, that is no productions 
of the form

К  := h2 (Äx, й2€ И),

while the elements of H generate the same terminal constructions through 
the productions of P' as through those of P.
The transition from P to P' can be carried out in (at most) / steps. In the 
first step we form a production set Px out of P =  P0 in such a way that every 
element of P of the form

h i := h2 ( V M  H)

is replaced by those productions in which a construction directly generated 
by h2 is put instead of h2. Such constructions must exist, since h2 is the 
left-hand side of at least one production.
Now, if the construction sequence

(Pi =  K \ cp2 =  h2; (p3; (pt (8.2.2)

generates through P the terminal construction cp, by h i , then cp3 is directly 
generated by h2, hence

h i  := cp3

was added to Px. Therefore, the construction sequence

(Pi = К', <p3, ...; cp, (8.2.3)

generates the same cp, through Px. Conversely, if

h i  :=  (p3

is a new production added to Px because

h i *— h2

appeared in P, and the construction sequence (8.2.3) generates <pt through 
Px, then the sequence (8.2.2) generates the same cp, through P.
If Pji still contains dangerous productions, then P2 is formed out of Px 
in the same way as Px was obtained from P0, and so on.
Now if in Pt, for i s i ,  a dangerous production of the form

h i !— h2

appears, this can only happen if, for iS  1, in P._1# there are dangerous 
productions

hi := h3 and h3 h2
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forming a dangerous sequence of length two. If /S 2 , these can exist only 
if in Pj_2 there are dangerous productions

Iii := hi := h3 

ha'.— Ii5, I1 5 h2,

which together form a dangerous sequence of length four. In general, for 
every i '= l, 2 , ... we get that, if P; contains a dangerous production, then 
P = P 0 contains a dangerous sequence of length 2‘. However, this is not 
possible for 2‘s l ;  therefore, if i is the smallest number with 2‘ш1, then 
Pt contains no more dangerous productions. Hence we can put

P' =  P„
since we have proved that the steps of transition from P  to P ' leave un­
changed the set of terminal constructions generated by elements of H.
The precaution we took was somewhat exaggerated. A production of the 
form

К  .— h2 (hu h2£ H),

in which the constructions directly generated by h2 are terminal, surely 
does not involve any danger. Hence these need not be eliminated. I did 
not want to interrupt the reasoning with this point.

8.4 An Example

Let us consider as an example, the sublanguage of Epi-Algol by means 
of which the category name (expression) was defined in section 8.1. In this 
case the terminal vocabulary T consists of the digits, letters, parentheses, 
and operation symbols. The auxiliary vocabulary H contains the category 
names

(expression), (term), (additive operator),

(factor), (number), (variable)

(digit), (letter);

Finally, P contains the productions used in the definition of (expression). 
Among these the following are dangerous:

(expression) := (term)

(term) := (factor)

(factor) := (number)

(factor) := (variable).
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At first glance the productions

(number) := (digit)

(variable) := (letter)

also look dangerous. In fact these are harmless, since (digit) generates 
directly only the terminal constructions

0, 1, , 9,

while (letter) generates only the terminal constructions

a, b,

The really dangerous productions in the first step of the method described 
in the previous section are amended as follows: -

replace (expression) := (term)
by

(expression) := (factor) 

(expression) := (term) X (factor);
then

(term) := (factor)
by

(term) := (number)

(term) := (variable)

(term) := ((expression));
then

(factor) := (number)
by

(factor) := (digit)

(factor) := (number) (digit),
finally replace

(factor) := (variable) 
by

(factor) := (letter)

(factor) := (variable) (digit).

Among these new productions three are really dangerous. In the second 
step they will be replaced by new productions as follows: -

replace (expression) := (factor)



Sec. 8.4] An Example 121

by
(expression) := ((expression))

(expression) := (digit)

(expression) := (number) (digit)
(expression) := (letter)
(expression) := (variable) (digit);

then replace
(term) (number) 

by
(term) := (digit)

(term) := (number) (digit);
finally replace

(term) := (variable) 
by

(term) := (letter)

(term) := (variable) (digit).

Among these productions there are not any dangerous ones anymore. The 
elements of the production set P ' are therefore the following: -

(expression) := (expression) (additive operator) (term)

(expression) := (term) X (factor)

(expression) := ((expression))
(expression) := (digit)

(expression) := (number) (digit)

(expression) := (letter)

(expression) (variable) (digit)

(term) := (term) X (factor)

(term) := ((expression))
(term) := (digit)
(term) := (number) (digit)

(term) := (letter)

(term) := (variable) (digit)
(additive operator) := +
(additive operator) := —
(factor) := ((expression))
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(factor) := (digit)
(factor) := (number) (digit)
(factor) := (letter)
(factor) := (variable) (digit)
(number) := (digit)
(number) := (number) (digit)
(variable) := (letter)
(variable) := (digit) (variable)
(digit) := 0

(digit) := 9
(letter) := a

(letter) := z.

8.5 Primitive Recursion in Epi-Algol 60

Now we carry on our reasoning on this example to show that the property 
“to be a terminal construction generated by a given element of H” is pri­
mitive recursive.

Let M  be the word set over the alphabet T, and ij be a fixed letter of this 
alphabet. Let us denote the characteristic functions of the properties: -  

“to be an expression, an additive operator, 
a term, a factor, a digit, 
a number, a letter, a variable”,

in this order, by
ex, ao, te, fa, di, nu, le, va

respectively.
Several of these can be shown to be primitive recursive very easily: -

[ A ,
a° w  =  | ?i

di(x) =

le(A) =

A,
h
A,

if (x = + )V (x  =  - )  
otherwise,
if x =  OVx =  IV ... Vx =  
otherwise,
if X =  flVX= bV...VX = 
otherwise

(where the argument is denoted by capital X  since x is also a letter).
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It can be seen that every argument for which

ao (x) =  A, or di (x) = A, or le (X) =  A

holds, must be a member of the alphabet T and thus cannot be equal to A. 
Therefore nu(x) and va(x) can be defined as primitive recursive functions 
in the following way:

1Л, if di(x) =A V(nu(at(x)) =  A & di (lb (x)) =  A) 
nu (x) =  \ ,[q  otherwise,

ÍA, if le(x) =A V(va(at(x)) =A & di(lb(x)) =A )
Va ^  1 h otherwise.

As functions which are already known, these can be applied in the defini­
tions of ex(x), te(x) and fa(x).
Here all the connected pieces of x must be considered as predecessors of x, 
not only its initial segments. Let y < x  denote that у is a predecessor of x 
in this wider sense. Now the definitions of the above functions read as 
follows:

A, if (EyJ (Ey a) (Ey3) [у x, y 2 , y 3 ■<, x & ex (y J  == A & ao (y ̂  =  A & 
& te (y3) =  A & x =  у! у 2 y3] V 
V (Eyj) (Еуз) [y'i, У 2 < x &  te (ух) =  Л & fa (у2) =  Л&

ех (х) =  i  & х  =У 1  Ху2] V
w  V (Еу) [у < х &  ех (у) =  Л & л =  (у)] V

Vdi (х) =  Л V(nu (at (х)) =  Л & di (lb (x)) =  Л) V 
Vie (x) =  A V(va (at (x)) =  Л & di (lb (x)) =  Л)

A otherwise.

Here we used shorter notations, for example,

(Еух) (Ey2) [уг, у 2 <  x  & ...] instead of (ЕуО [уг <  x  & (Ey2) [y2 ^  x & ...]]. 

Moreover

A, if (Ey1)(Ey2)[y1,y 2^ x & te ( y 1)= A & fa (y 2) = A & x  = 
=  У1 x  Уз] ̂V (Еу) [у ^  x & ex (y) =  A & x =  (у)] V 

te(x) =■< Vdi(x) =  Л V (nu (at (x)) =A & di(lb(x)) =A)V 
Vle (x) =  Л V(va (at (x)) =  A & di (lb (x)) =  A) 
otherwise,

A, if (Ey)[y < x&ex(u)  =  A & x =  (y)]V
Vdi (x) =  A V(nu (at (x)) =  Л & di (lb (x)) =  A)V 

ta(x) -  Vle(jc) =  д V(va(at(jc)) - A& d i(ib(x)) =  Л)
t1 otherwise.
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8.6 Predecessors in Algol 60

The values of the functions

ex (x), te  (x), fa  (x)

are defined here by using values of the same function, as well as of the other 
two at properly preceding places. Among these predecessors not only initial 
segments occur, but also predecessors in the wider sense (as for example 
У1 ,Уг and y3 in the first alternative with ex (х)=Л). Even these are not 
necessarily immediate predecessors. Hence we are dealing here with a si­
multaneous course-of-values recursion. In an earlier paper [27] of mine, I 
have shown that such a definition can be reduced to course-of-values recur­
sion of the separate functions to be defined. These, in turn, can be reduced 
to primitive recursions with the help of substitutions. All this, of course, 
is meant with the extended notion of predecessor. In what follows, I shall 
continue to use this extended notion of predecessor. For this application, 
this extension of predecessor offers itself as a natural notion, but the more 
restricted notation which we used so far is more convenient to work with. 
As was pointed out in section (3.3.2), on the method of coding, in number 
theory, the above definitions can be transformed into recursive definitons 
of the same type with the earlier notion of predecessor. Since the reasoning 
we applied in this particular example can be extended to the general case, 
we can obtain primitive recursive definitions o f the properties "to be in a ca­
tegory o f a phrase structured grammar”. In our example these properties are 
“to be an expression, term, factor” respectively.
The value of a primitive recursive function, however, can be computed at 
every argument in a finite number of steps. Consequently, a method must 
exist to decide whether or not an arbitrary chain of terminal elements is 
one case of a notion introduced in a phrase structured grammar (for example, 
in Epi-Algol).

[2'  ̂ R. Péter: Primitive-rekursive Wortbeziehungen in der Programmierungssprache “Algol 
60”, Publ. Math. Inst, of the Hung. Acad, of Sei. 6 (1961) pp. 137-144.



Chapter 9

Two-level Grammar in Algol 68

9.1 An Auxiliary Theorem

Let us consider an example of a construction sequence of the type (8.1.1), 
generating a terminal expression by the category name (expression) through 
the productions belonging to P ' of section 8.3. In this I shall use obvious 
abbreviations, like (ex) for (expression), (adop) for (additive operator), 
and so on: -

(ex); «ex»; « te)X (fa»;

(«ex»X<fa)); («ex> (adop) <te))X<fa»;

(«di) (adop) <te»X(fa»;

«1 (adop) (te»X(fa)); « 1 +(te»X (fa» ;

«1 +<va) (di»X(fa>);

((1 +  (le) <di»X<fa»; « 1 + x (d i» x ( fa » ;

« l+ x l)X < fa» ;  « l+ x l )X (d i» ;

((1 + x l)x2 ) .

The outer parentheses are used as a precaution: the expression obtained 
might have to be used further on.

The structure of this becomes more apparent if, from every auxiliary con­
cept to which a production was applied, we draw edges pointing to the ele­
ments of the result, as can be seen on the following graph: -
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To every end point a single path leads from the initial point. If these paths 
are considered one after the other, from the left to the right, then their end 
points yield the following terminal expression: -

((1+ jc1)X2).
Along some of these paths, several instances of the same auxiliary concept 
can be found. For example, along the path leading to the first digit 1, 
(ex) occurs four times. This is not a coincidence. Since there are only a 
finite number of auxiliary concepts, it can be seen that such repetitions must 
occur on at least one of the paths leading from the initial point to the 
end points, provided that the graph represents the generation of a suffi­
ciently long expression. I shall not go into the proof here.
Let us examine the resulting expression if, in the above-mentioned path, 
we apply to the third occurrence of (ex) the same production as we did 
to its second occurrence. Then the same generating steps are applied to 
the result as above: -
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The terminal expression deducible from this is

(((1+X1)X2)X2).

Let us compare this with the original

( ( l+ x l)x 2 ) .

The part 1 + x l (printed boldface) occurs in both. Here it is generated by 
the fourth (ex), in the original it was generated by the third (ex). Apart from 
this part, the things generated by the second (ex) in the first graph, that is 
“(’’and “(X2” were doubled, while the remaining parts “(” and “)” were 
left unchanged.
It can be shown through a similar representation that, in general, to every 
language S, generated by a context-free phrase structured grammar (that 
is not containing any dangerous productions in the sense of section 8.3), 
there exists a natural number q such that every terminal construction 
belonging to a category of S, and consisting of at least q letters, can be 
written in the form

0£i/?i0£2)?2a3.

Here among the (empty or non-empty) subchains

a l? ß li  ^2, «3

at least one of ß 1 and ß 2 is not empty. Moreover

^ l ß l ß l ^ ß i  ßl «3

also belongs to S. I will refer to this result as the Bar-Hillel-P'erles-Shamir 
theorem [28:|.

9.2 Two-level Phrase Structured Grammars

The grammar of the more recent programming language Algol 68 is a 
phrase structured grammar in a generalized sense, in that the correspond­
ing production set is infinite, while the set of separate category names 
remains finite. To specify the infinite production set one uses a meta­
language. It was because of this terminology that I used earlier the term 28

[28] J. Bar-Hillel, C. Gaifman, E. Schamir: On formal properties o f simple phrase structure 
grammars, Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung 
14 (1961) pp. 143-172. The above theorem is merely a particular case of a more gene­
ral theorem in this paper.
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“Epi-Algol”, instead of “Meta-Algol” . Epi-Algol is generated by a phrase 
structured grammar in the original sense.
More precisely, a two-level phrase structured grammar is determined by 
five finite, non-empty sets

Z, M, P, V, K,
where

Z, M, P

denote the vocabulary, the auxiliary vocabulary and the production set 
of the meta-language. Their elements will be called symbols, meta-symbols 
and meta-productions, respectively. Furthermore, the elements of V and К 
are called preproductions and category names, respectively. By means of 
the first three sets one builds the infinite number of productions of the 
second level grammar, from which the terminal and auxiliary vocabularies 
of the second level are also obtained. The last two are the separate auxiliary 
concepts of the second level.
For the exact definition we introduce certain modifications in the notation, 
which will save us the use of angled brackets. The necessary separation of 
symbol sequences at the second level is done by commas, and the terminal 
concepts on the second level are distinguished from the auxiliary concepts 
in that they do not occur as left-hand sides of productions.
That is why in what follows, I shall use three different words for finite 
sequences: -  “chain”, “list” , “sequence” , according to whether the ele­
ments are respectively simply put one after each other, or separated by 
commas, or separated by semicolons. From the elements of Z one builds 
chains, and from these symbol-chain lists. Furthermore, from the elements 
of ZUM  mixed chains are built and from these mixed chain lists will be 
formed.
The elements of P (the meta-productions) have the form

m := V,

where m£M and v is a mixed chain.
A terminal expression generated by a metasymbol m£M  is simply called 
“a value of m”. The productions of second level will be obtained by sub­
stituting such values into preproductions. More precisely: every element 
of V, (that is every preproduction), has the form

S:= 0,

where 3 is a mixed chain and 0  is a mixed chain list. For example,

z1m1mz \— z2m1z3 ml , zx m3,
with

z 1 5 z 2 , z 36  Z and m1,m 2,m 3£M.
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A production is obtained if in a preproduction every occurring meta-symbol 
(in our example mx, nu and m3) is replaced by one of its values, wherever 
it occurs. In our example mx occurs on both sides. Consequently, the left- 
hand side of a production is a symbol chain, while its right-hand side is a 
symbol-chain list.
The left-hand sides of the productions (of which a large finite number form 
the set К  of distinct category names) are called potential category names, 
or more shortly auxiliary concepts. They constitute the auxiliary vocabulary 
at the second level. Those terms of the lists standing on the right-hand sides 
of productions, which do not occur as left-hand sides are called terminal 
concepts. They form the terminal vocabulary.
The original definitions can be transfered to the new notation in a natural 
way. For example, a symbol chain list 0 2 is directly generated by the 
symbol chain list 0 X if it is obtainable from 0 X by means of a production, 
or more precisely if 0 2 is obtained by replacing one auxiliary concept-term 
9 of 0 X by the right-hand list of a production whose left-hand side is 9. 
A symbol chain list 0 r is generated by 0 , if there is a generating sequence

0 ! , 0 2, . . . , 0 r (9.2.1)

in which 0 ; is directly generated by 0 t_x for every /= 2, ..., r. A symbol- 
chain list is called terminal if each of its terms is a terminal concept. The 
terminal concepts generated by a category name (that is by an element of 
K) constitute the category designated by this name. By “the language ge­
nerated in two levels”, we mean the correspondence between the categories 
and their names.

9.3 An Example of a Two-level Language

Since the set К  of category names is finite, the question arises whether a 
language generated at two levels could also be defined by means of finitely 
many productions, that is, at one level through a simple phrase structured 
grammar in the original sense.
This can be refuted by the following very simple counter-example [29]. 
Let us consider the two-level grammar determined by the sets

Z = {z1;z2;z3}, M = {m}, P = {m := zx mz1; m := z2},

V =  {z3 := mz2mj, К  =  {z3}.

t29] See R. Péter: Zur zweistufigen Satzstruktur-Grammatik II. Studia Sci. Math. Hung. 
3 (1968) pp. 181-194.
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Here the single meta-symbol m occurs on the right-hand side of the first 
meta-production only. Hence both meta-productions have to apply di­
rectly to this, resulting in

zx z1 m zx zx and zx z2 zx,

where the second is already terminal, that is a value of m. Now, applying 
both meta-productions to the first, we obtain

zxzxzxmzxzxzx and z1z1z2z1z1,

where the latter is again a value of m, and so on. We can thus see that all 
the values of the single meta-symbol m are as follows: -

z1z1...z 1z2z1z1...z 1, (for n = 0 ,1 ,2 ,...) .
л-tim es л-tim es

Substituting these values of m into the single preproduction, we obtain all 
the terminal constructions generated by the single category name z3, in 
the form

zx ... z1z2z1... zxz3zx ... z1z2z1... zx for n — 0 ,1,2,

If this language could be generated by a one-level phrase structured gram­
mar, then according to the Bar-IIillel-Perles-Shamir theorem (quoted in 
section 9.1), for large enough n, the terminal construction consisting of 
4n+3 symbols and generated by z3 could be written in the form

Zi  . . .  Z i  Z% Z i  . . .  Z i  Z2 Z j  . . .  Z j  Z2 Z j  . . .  Z- alßl a2/?2 a3

Hence for ri>n  we should have

Z1 • • • Z1 Z2 zl ■■■ Zy Z2 Zi ... Z1 Z2 Zj ... Zj — У-lßlßl У-2 ß‘2 ß‘2 a3 
n' n' n' n'

where at least one of the subchains ßu  ß2 is not empty. In both left-hand 
sides here, z2 occurs exactly three times. However the doubling of ß1 and 
ß2 would increase the number of occurrences of z2 if one of these happen­
ed to contain z2. Therefore, both ßx and ß2 must be those parts of subchains 
of order n of our first symbol chain, which contain the symbol zx only. 
The doubling of ßx and ß2 therefore increases the number of occurrences 
of the symbol zx in at least one of these subchains, but in at most two 
subchains, while in the remaining two such subchains this number stays 
at n. Hence it cannot increase to n'.
Consequently, this language generated at two levels, cannot be generated 
at a single level.
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9.3.1 The Primitive Recursivity of a Language

The counter-example is a very simple language. If zx and z2 were abbrevia­
tions for the words “sweet” and “Mary”, respectively, then we could say 
that this is the language of enchanted admirers of Mary, who can utter 
only such sighs as: -

Mary Mary Mary

sweet Mary sweet Mary sweet Mary sweet 

sweet sweet Mary sweet sweet Mary sweet sweet Mary sweet sweet

and so on indefinitely.
Membership of this language can be defined as a primitive recursive relation 
in the word set over the alphabet consisting of zx and z2 as follows (choosing 
zx as the fixed element of the alphabet): -
Let us denote by /  (x) and sm(x) the characteristic functions of the pro­
perties “to consist solely of zx”, including the case “to be empty” , and “to 
belong to the above language” (the “sweet Mary” language), respectively. 
The first of these can be defined as

[A, if x = A V (/n (at(x ))= A & lb(x) =  z1) 
/ r . W - j z j  otherwise.

This can be transformed into a normal primitive recursion. The same 
applies to many of the following definitions. The second is defined by the 
following definition-by-cases: -

Г л, if (Ey) [y < x & f 21 OO =  Л & X = yz2yz 2 yz 2y]
Sm M  =  U  otherwise.

9.4 The General Question

What about the recursivity in general of a language generated at two 
levels c30:> by the finite sets

Z, M, P, V, К

in the manner described in section 9.2?
This requires recursive definitions of the characteristic functions At,(x) of 
the properties “to belong to a category of the language” (that is, to be a

t30! See R. Péter: Zur Frage der Rekursivität der im „Algol 68” verwendeten zweistufigen 
Grammatik, Ann. Univ. Sei. Budapest 15 (1972) pp. 89-101.
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terminal expression generated by an element k t of K), in the word set W 
over the alphabet Z' containing in addition to the elements of Z the auxiliary 
symbols and
More precisely, an x £ W  satisfies this property if it is a terminal symbol 
chain list which is the last term of a generating sequence of symbol chain 
lists of the type (9.2.1), beginning with a A:f€E K.
Therefore, we first have to study the recursivity of the notions “sequence 
of symbol chain lists”, “last term”, “terminal” and “to generate” .

9.5 Recursivity in Symbol Chains

Of the following natural definitions it is not always immediately obvious 
that they determine primitive recursive word functions. Nevertheless 
every one of them can be reduced to primitive recursions and substitutions. 
Let the elements of Z (the symbols) be

%1 5 ^ 2  ? • • •> Zt

and let Zj be the fixed elements of our alphabet Z ' . Then the characteristic 
functions

z (x), zk (x), zkl (x), zklf (x)
of the properties

“to be a symbol, a symbol chain, 
a symbol chain list,
a sequence of symbol chain lists”, respectively 

can be determined by means of the following definitions (leading to course- 
of-values recursions): -

ÍA, if x =  ZjV.-.Vx = z,
Z I : x otherwise,

A, if z(x)=A V (E y1)(Ey2)[y1,y 2< x & z k (y 1) =  A& 
zk (x) =  & z (y2) =  A & x =  y t y2]

Zj otherwise,

A, if zk(x) =AV(Ey1)(Ey2)[p i,y 2^ x & z k l(y 1) =  A& 
zkl(x) =  ■ & zk(y2) = A & x =  ylt y2\

Zj otherwise,

A, if zkl (x) =  Л V (Eyx) (Ey2) [уг, y 2 <  x & zklf (ух) =  A & 
zklf (x) =  & zkl (y2) =  A & x = уг; y2]

zx otherwise.
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Here zk(x) was defined in the same way as the succeeding ones only for 
the sake of homogeneity. It could have been defined more simply.
Similarly, the symbols, the symbol chain, the symbol chain lists and the 
sequences of symbol chain lists can be arranged into primitive recursive 
sequences. For this we use the theorem [31], denoted by (HB), which says 
that two primitive recursive numeric functions

oyOz) and cr2(n)

can be defined with the following property: -  the pairs of natural numbers 
can be arranged in a sequence in such a way that the nth term of this se­
quence is the pair

(o-i(n), <т2 (п)).

For the sake of homogeneity, let us arrange our large finite number of 
symbols into the infinite sequence

1̂5 2̂ 5 ■ ■ • , Z, , Zi , Z, , ... .

Since the natural numbers are represented here by

Лi zi , zi zi , • •• >

this sequence can be defined as

A, if x = A 
Zj, if o(x) =  Zj 

z0 (x)= y 2, if o(x) = z1 z1

zt, if o(x) >: z1 z1... Zj.
i-times

It is a general fact that finite sequences consisting of the terms of a primi­
tive recursive sequence vo{x) can themselves be arranged in a primitive 
recursive sequence wo(x). This can be seen as follows: -  
One-term sequences have already been arranged in the primitive recursive 
sequence vo(x). Now, assuming that for some я =  I the я-term sequences 
have already been arranged in a primitive recursive sequence

the (я +  l)-term sequences can be enumerated as

* v0(y) (о (x), о (y) = 1 ,2 ,...).

[31] See D. Hilbert-P. Bernays: Grundlagen der Mathematik I. Berlin (1934) pp. 321 
and 328 .
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Hence, using theorem (HB), they can be arranged into the primitive re­
cursive sequence

w o (x )  ™ < п ( .о (х ) )* иог(.о(х) ) 1

where the asterisk * stands for the separating symbol between the terms 
(hence neither for nor for Consequently

is obtained, by means of the definition

A, if y =  A
^(^))) =  V 0 ( X ) ,  if o(y)= 1

* »„(„(,)) Otherwise,
as a primitive recursive function of x and y, depending on o(x) and o(y) 
only. The values of this, for o(y) =  l,2 , ..., are the 0 (y)-term sequences 
built of the terms of the sequence v0(x). By a repeated application of theorem 
(HB), all these can be arranged in the primitive recursive sequence

no(x) №<7l(o(x)) •
Let f 0(x) denote this primitive recursive sequence of all finite sequences of 
symbol chain lists. We shall apply it later.

9.6 Other Properties

The characteristic functions

lg (x, у) and fg (x, y)
of the relations “y  is a term of the list x, or list sequence x” respectively 
can be defined by the following definitions-by-cases: -

A, if zkl(x) =  A&zk(y) =A & (x =  yV(Eu)[u ^  x& x = u,y]M  
. , . _  V ( E m)  [m ^  x & x =  у, u] V (Eiq) (EmjXmj , u2 < x & x =

— uíi У1 ui\)
, zx otherwise,

A, if zklf(x) =  A&zkl(y) =  A&(x = y  V(Em)[m ;< x& x  =  
f  , s _  =u;y]\/(Eu)[u <  x &х=у;и]\/ (Еи 1)(Ещ)[и1 ,и2<, x & x  = 

= « 1  ;т ;и 2])
Zj otherwise.

The last term lfg(x) of a sequence x of symbol-chain lists is determined by 
the definition

lfg(x) =  цу[у <  x & fg (x ,y) =  A&(x =  yV(Eu)[u < x & x  =  u; y])] 
as primitive recursive.

V
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For the notions “terminal” and “generated” we have to look more closely 
into the definition of our grammar.
Let the elements of M (the meta-symbols) be

and let
m1, m2, ..., mr, 

mt(x) (i =  1, 2, .... r)

denote the characteristic function of the property “to be a value of m ”, 
that is to belong to the category denoted by mi of the language generated 
in the first level by the phrase structured grammar (in the original sense). 
It was shown in the previous chapter that these are primitive recursive over 
the terminal vocabulary, which is here Z. The same is valid in the word 
set W  over the extended alphabet Z'.
Let the elements of V (the preproductions) be

»1, V2, ..., V

The productions of the second level are obtained from these by suitable 
substitutions of the values of the meta-symbols. Let

lPi(x) (i =  1, 2, s)

denote the characteristic function of the property “to be the left-hand side 
of a production resulting from v ”, and let

lpri (x, y) (i — 1,2, s)

be the characteristic function of the relation “x and у  are the left- and right- 
hand sides, respectively, of a production resulting from v ”. If, for example, 
vx is the preproduction

zxm1 m2 := z2 m1 z3 z1 , z i m3,

then lp! (x) and ]prx (x, y) are determined with the help of the functions

тх(х), m2(x), m3(x)

by the following definitions-by-cases: -

A, if (EyJ(Ey2)[y1,y 2^ x & m 1(y1)= A & m 2( j 2)= A &  
lP i(* )=  & x =

zx otherwise,
and

A, if (Eu1)(Eu2)(Eu3)[ií1, u2 ^  x& u3 ^  =A&
, . . &m 2 (u2) = / \& т 3 (и3) = / \& x  = z 1 u1 u2&y =
l p r ^ .y )  =  _„ „ i

—  Z 2 W 1 Z 3 Z 1 ,  Z ^ U ^ \

zx otherwise.
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Using these, the characteristic functions

lp(x) and lpr (x,y)

of the property “to be the left-hand side of a production” (or “to be a po­
tential category name”), and of the relation “x and у  occur as the left- and 
right-hand sides respectively of the same production” can be defined as 
follows: -

[A, if lPi(x) =  AV...Vlps(x) =  A 
^ X {zx otherwise

f A, if lpuOc, y)=A V ...V lprs (x,y) =  A 
lpr (x, V) = i z, otherwise.

Just as easily we could have given primitive recursive definitions for the 
property “to be a term of the right-hand side of a production” and with 
this of “to be a terminal concept” ; however, these will not be needed.
A symbol chain list can be called “potentially terminal” if none of its terms 
occurs as the left-hand side of a production. Thus the characteristic function 
t{x) of the property “to be a potentially terminal symbol chain list” can 
be defined as

{Л. if zkl(x) = Л & 0 )[>  =< X -  (lg(x, y) =  A -lpG O  =  cj)]
[ z4 otherwise.

Since, in direct generating, the left-hand side of a production, which occurs 
as a term of a list is replaced by the right-hand side of the same production, 
the characteristic function dg(x, y) of the relation “y  is directly generated 
by the symbol chain list x ” can be defined as follows:

A, if zkl(x) =A&(Eu1)(Eu2)(Eus)(Eu4)[u1,u2,u3 < x&u4 < y& 
dg(x,y) — ■ &lg (x, n2) =  A&lpr(n2, u4) =  A& x =  щи2и3&у = м1м4п3] 

zx otherwise.

Finally, the characteristic function

gf (x, У)

of the relation “y  is a generating sequence of the type (9.2.1), beginning 
with x” is given by the following definition, which leads to a course-of- 
values recursion: -

A, if zkl(x) =  A&zklf (y) = A & (y  — xV 
V (Eux) (Em2) [wj , u z < y &  gf (x, щ) = A & 

gf(x, y )= -\ & zkl(n2) =A8cy  = иг; u2&
&dg (lfg (Wi), u2) =  A])

Z] otherwise.
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9.7 Recursive Enumerability

With this, we have a primitive recursive definition of every notion necessary 
for the formulation of the basic question concerning the language generated 
by a two-level grammar: -  “If A: is a category name, how can we decide 
what belongs to the category denoted by A?” This is true of x, if x is a po­
tentially terminal symbol chain list, and there is a generating sequence of 
symbol chain lists which begins with к  and terminates with x, for example, if

holds. If the characteristic function of this property was also primitive 
recursive, then so would be the corresponding language. However for the 
у  in (Ey) [...], we might not be able to provide an upper bound, and an 
unbounded relation (Ey) [...] cannot even be guaranteed to be general 
recursive.
We might have expected this on the basis of the similarity between generat­
ing a language and generating the theorems of an axiomatic mathematical 
theory. In the latter, a formula /  is a theorem of the theory if there exists 
a sequence of formulae, starting with axioms and terminating with / ,  
such that every term of the sequence can be “generated” from earlier terms 
with the application of certain rules of inference. In general an axiomatic 
theory is not recursively decidable. The corresponding “there exists” rela­
tion might not be general recursive. Concerning questions of decidability 
it would be senseless to use partial recursivity.
The recursivity of languages definable by two-level grammars, like Algol 68, 
is an open question.
The language generated in two levels in the way described above is, in any 
case, primitive-recursively enumerable in the sense that, for every category 
name, we can define a primitive recursive function the values of which 
are exactly the terminal constructions generated by this category name. Using 
the primitive recursive sequence f a(x) from section 9.5, in which all the 
sequences of symbol-chain lists are arranged, the following function does 
this for a k£K:  -

_  Ílfg (/„(*))» if *(lfg (/„<*))) =  A & gf O ,/„(*)) =  A 
k(x) — I л otherwise.

t(x) = A & (Ey) [gf (к, у) -  Л& lfg(y) =  x]
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9.8 Two-level Language with Finite Terminal Concepts

In developing Algol 60, it was conceivable that one could use a two-level 
grammar containing only a finite number of terminal concepts.
However, a language generated by such a grammar can also be generated 
in one level [32].
The proof of this is rather complicated. In the proof one has to take into 
consideration the preproductions from which the separate productions 
were deduced (by substituting certain values of their meta-symbols). The 
basic idea of the proof is the following: -  If there are only finitely many 
terminal concepts, then the terms of the right-hand side of a production, 
different from these and from the (finitely many) category names, can only 
have a regulatory kind of role. Specially they only determine which prepro­
ductions generate such productions as they are applicable to the term under 
consideration. By this is determined the order in which terminal concepts 
will occur in the terminal constructions generated by the category names. 
Since there are only a large finite number of combinations of the finitely 
many preproductions, from this point of view the regulating right-hand 
side terms of the productions can be divided into a large finite number of 
sets. What matters is only the set to which such a term belongs, not its 
concrete form.
A simple example might make this clearer. Let us consider the two-level 
grammar with

Z =  {zjj z2; z3; tx\ t2} M =  {m} P =  {m := z^mz^.m := z2}

V =  {m:= z1mz1, t1;z1mz1 :=  t2;z3 m} К  =  {z3}.

Since M and P are the same as in the “sweet Mary” language of section 
9.3, the values of the single metasymbol m are again the symbol chains

z1. . . z i z3z1. . . z1 for n = 0 ,1 ,2 , . . . ,
л-tim es л-tim es

which I shall denote by an.
Clearly, if m=an, then

zl mzl = an+1.

Hence the following productions are obtained from V for л=0, 1,2, ...: -

an:= an+i> h

an+1 h
z3:= an.

[321 See my paper quoted in footnote [2e].
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Among the right-hand side terms, only tx and t2 do not occur as left-hand 
side terms. Hence only these two are the terminal concepts of the language. 
Therefore the terminal constructions generated by the single category 
name z3 can be lists consisting of tx and t2 only. The right-hand side terms 
an and an+1 have simply a regulating role to decide the order in which tx 
and t2 occur in these lists. What matters here is, for which combinations 
C of the left-hand sides of the preproductions will the terms an+1 or a„ 
occur in the left-hand sides of the productions generated by the preproduc­
tions in C? In this simple example there are only two possibilities: a0 
occurs in the left-hand side of a production only if it is obtained from the 
first preproduction. Hence a0 can be replaced by the list

a i! h

only where ax is one of the values an+1, while an+1 can always be replaced 
by both

an+2>h

and t2, where an+2 is again one of the values an+1. Since all the values an+1 
have the same effect, they can all be replaced by a single new symbol g. 
Hence we obtain the following five productions: -

ao := g, h 

g := g> h

g ■= h
z3 a0

23 := g-

These have the same effect as the original infinite number of productions. 
It would be easy to obtain further simplifications. However, here we shall 
deal only with the finiteness of the number of productions. At the stage 
we have now reached, we have sufficient information to obtain all the ter­
minal constructions generated by z3. Only a0 and g are directly generated 
by z3; by a0 only

g> h
is directly generated, while by g

g, tx and t2,

where the second is already terminal. To the first both the second and third 
productions can be applied, with the results

g ,t1, t 1 and t2, t x,
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where the second is again terminal. From the first we obtain similarly 

g , t1, t 1, t 1 and t2, t l , t 1,

and so on. Clearly, every terminal construction generated by the category 
name z3 begins with t2, followed by a chain consisting solely of tx.
It is easy to see that this simple language can also be generated by the follow­
ing two productions:

z3 := z3, t1 

z3 t2 ■

But the purpose of this example was to elucidate the elaborate general 
considerations, by means of which one can show that in the case of a large 
finite number of terminal concepts, a language generated in two levels can 
also be generated by a one-level phrase-structured grammar. So, if it is not 
circular, such a language is primitive recursive.



Chapter 10

Does Recursivity Mean Restriction?

10.1 The Recursivity of Everything Computable

It was shown in Ch. 4 that everything obtainable by a computer is partial 
recursive. Actually, a really partial recursive function might not be obtained 
at all. If one can decide for every argument whether the function /  under 
consideration is defined there or not, then the situation is clear. If this 
decision is made in a general recursive way, then the agreement that the 
function take a fixed value wherever /  is not defined turns the definition 
of / in to  the definition of a general recursive function. However, for proper 
partial recursive functions the possibility of finding such a decision proce­
dure is hopeless. If a program for the computation of such a function is 
fed into a computer and, after the input of arbitary arguments, the com­
puter starts calculating, one can never know whether the computer has 
failed to stop because the computation is too lengthy, or if it will work on 
forever, without computing anything.

One always strives to feed “reasonable” programs into the computer, 
whereby for arbitrary initial data the calculation will come to a halt after 
a (large) finite number of computing steps. With this, the above statement 
can be reduced to the following: -  whatever can really be obtained by the 
use of a computer is general recursive. Moreover, after suitable coding, 
it can become a general recursive numeric function. Thus the question 
arises: -  Does this mean an essential restriction on the abilities of the com­
puter?
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10.2 Church’s Thesis

Assuming Church’s well-known thesis [33] does not mean any restriction. 
According to this thesis, every numeric function is general recursive if its 
values are computable in a finite number of steps for all arguments. Of 
course, this is not an exact mathematical proposition, because the term 
“computable” is not exactly defined. Consequently, it can be neither proved 
nor disproved mathematically. There are many arguments for, and some 
against, the plausibility of Church’s thesis. Perhaps the most striking argu­
ment against it is due to L. Kalmár[34]. He has proved that the validity of 
Church’s thesis would imply the following hardly believable fact: There 
exists a simple proposition (namely that there is a natural number n, for 
which a fixed numeric function cp(n, m) does not vanish for all tri) which 
we know is true, but still cannot be proved in any way.

I myself agree with Kalmár’s conviction that effective computability is one 
of those notions the definition of which can never be considered complete 
in the course of the development of mathematics.

As a matter of fact, up to now no effectively computable numeric func­
tion (that is one computable everywhere in a finite number of steps) has 
been found which is not general recursive. Therefore, computers, which in 
principle are capable of computing every general recursive function, yield 
the most that can be expected according to the present state of our knowl­
edge. Let us hope, provided a counter-example to Church’s thesis is 
made known, then, one hopes, the technological means will develop to 
modify computers to enable them to compute such functions.

Г33-* A. Church: An unso/vable problem o f elementary number theory, Amer. Journ. Math. 
58 (1936) pp. 345-363.

L. Kalmár: Solution o f a problem o f K. Schröter concerning the definition o f the notion 
o f general recursive functions. MTA III. O. Közi. Publ. of class III. of the Hung. Acad. 
Sei. 7 (1957) pp. 19-38 (in Hungarian).



Chapter 11

Recursivity of Lisp 1.5

11.1 A Set of Numeric Structure

The recursive theory of the programming language Lisp 1.5[35:| indicated 
in section 3.7, can not only be dealt with by embedding it in a word set. 
A holomorphic set is a typical example for another case of a set with a 
numeric structure. As to general information on such sets, I refer to foot­
note [10].

Here we are going to study lists, that is, finite linear arrays which are built 
out of certain elements. These are elements of a word set over a finite 
alphabet containing letters, digits and several special symbols. However, 
the lengths of words used for this purpose are bounded. Hence the set 
A of elements is finite. Let this be denoted by

A = {űj, a2, •• •, ot}.

11.2 Basic Notions

In what follows, each of these is considered as a single symbol (and not 
as a chain of symbols). All the elements play the role of 0 in our holomorphic 
set. Since the set of О-elements is customarily denoted by H0, we put

H0 =  A.

The terms of a list are either elements or lists that have been constructed 
earlier. One does not have to consider lists of arbitrarily many terms, since 
they can be decomposed into pairs. To the first term of the list, the list of

f35l See the paper quoted in footnote t13], and R. Péter: Die Rekursivität der Programmie­
rungssprache „Lisp 1.5" in Spezialfällen der angeordneten freien holomorphen Mengen, 
submitted to Acta Cybernetica on February 1, 1973.
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the remaining terms can be chosen as the second item of the pair. The 
latter list can again be considered as a pair in a similar way. To the last 
term of the given list, the empty list is to be chosen as the mate. This is 
denoted by “NIL” and is also considered to be an element.
Thus instead of lists, we shall deal with symbolic expressions or in short 
S-expressions. In the first place, the elements are S-expressions. Moreover, 
if and s2 are arbitrary S-expressions, then the pair

S =  (Sj, S2)
is also.
Thus if s corresponds to a list, then sx corresponds to its first term (the 
head) and s2 to that (perhaps empty) list which results if the first term is 
removed from the original list (the tail).
Here sx and s2 as functions of s will be denoted by

sx =  car (s), and s2 =  cdr (s),

while í  as a function of sx and s2 will be denoted by

S =  COnS (Sj, s2).

This two-place function cons plays the role of a successor function here. 
If s is an element of H0, that is

s€#o,

then we say that the order of s is 0, that is

o(s) =  0.

If íj and s2 are at most of order n, but at least one of them has order n, then 
the order of

is n +  l, that is
s =  cons (sx, s2) 

o(s) = n+1.

The set of S-expressions of order n will be denoted by Hn, while H  is the 
union of the sets Hn for n=0, 1, 2, ... .
Every element x of H  is either an element or has the form

cons (xl5 x2) =  (xx • x2),

where xx and x2 are uniquely determined:

xx(= car(x))

is that S-expression which results if one omits the opening parenthesis of 
the symbol chain x, and then copies its symbols (going from left to right)
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until the numbers of the left and right parentheses coincide. Furthermore

x2(= cdr (x))

will be that chain of symbols which results if, from this remaining part of 
X, one omits the point at the beginning and the last closing parenthesis. 
Every element is the only (not proper) predecessor of itself. The immediate 
predecessors of

X =  Cons (Xj, X2)

are xx and x2, and the proper predecessors of x are the predecessors of Xj 
and x2. Consequently the order of a proper predecessor у  of x (denoted 
by y-<x) is less than o(x).
The natural numbers

0, 1, 2 ,...

will be identified in H  by a fixed member of each

#o, # i ,
respectively, that is by

h0 — NIL, hx = cons (h0, Zz0), h2 — cons (hl5 /q), . . . .

Thus for every natural number i we have

i =  o( i) =  o(hi) =  ht.
Moreover

o(x) <  o(y)
is equivalent to 

and
o(x) o(y)

x  ^  o(y)

implies that x is a natural number, that is

x =  o(x).

11.3 Primitive Recursion in H

Now the scheme of primitive recursion in H  reads as follows: -

f{a , ult ..., u„) =  ga(u1, ..., u„), if a£H0 (= A) 
f  (cons (xx, Xa), Mi,..., u„) =
=  g (xx, X2, «!, . . . ,и п, / ( х х, Uj, ..., u„), / ( x 2, Uj,

where
Sat ’ S

are already defined functions.
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11.3.1 Initial Functions

As initial functions we take the elements of H0, the successor function 
“cons”, and the characteristic function of the equality: -

equal (x, >’).

Here b is said to be the characteristic function of a relation B, if everywhere 
b takes the value h0 or hx according to whether В is valid at the corresponding 
point or not. Also here we say that if В is primitive recursive so is b. Thus we
have . .rÍ h0, if x  — у 

equal {x, y) =  \
if x ^  y.

A function is primitive recursive in H  if it can be obtained from the initial 
functions by means of finitely many applications of substitutions and primi­
tive recursions.

11.4 Examples

Next we list several examples of primitive recursive functions in H. 
1. The identity function

id (x) =  x

can be obtained by the primitive recursion

r id (a) =  a, if a £ # 0 
( id (cons (x1; x2)) =  cons (xl5 x2),

where the constant 

and the function
8a =  a

g = cons

are initial functions. Here g depends only on the two indicated variables, 
but the introduction of dummy variables, on which a function does not 
really depend, is also permitted in H.
2. The definitions of the immediate predecessors of x are

r car (a) =  NIL =  h0, if a£H0 
\  car (cons (xy, x2)) =  x x, 

r cdr (a) = h0, if a£H0
l cdr (cons (xj, x2)) =  x2.

3. The natural numbers
h0, hi, h2, ....
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are primitive recursive, since this is true for the element h0, and its validity 
can be proved by induction hn to hn+1. This can be obtained by the substi­
tution

cons (hn,h n).

4. The characteristic function
atom (x)

of the property “to be an element of H0”, that is to be an element, and its 
opposite

atom (x)

can be defined by the following primitive recursions: -

r atom (a) =  h0, if a £ # 0 
l atom (cons (x1, x2)) =  h1

{atom (a) =  h1, if a^H 0 
atom (cons (xl5 x2)) =  h0.

These correspond to the functions

sg(x) and sg (x)

in number theory as well as to the functions

sig(x) and sig(x)

in word sets. They have their counterparts in every set of numeric structure. 
They can always be used to prove the following statements: -
i) The primitive recursive relations are closed under negations, conjunc­
tions and implications.
ii) A function built up from primitive recursive functions by means of pri­
mitive recursive relations is also a primitive recursive function. The exact 
meaning of this was formulated in both the case of number theory and of 
word sets, and the theory can be generalized to other sets of numeric 
structure.
iii) Using i) and ii), one can show that if В(и0,щ ,  un) is primitive re­
cursive, then so are

(Ey) [y <, x  & B(y, u1;

GO [y ^  x  -  B(y, Uj, ..., u j]
and

Иу[У ^  x & B (y ,  Uj, ..., un)].

The meaning of their counterparts was given in section 3.6.2.
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5. The characteristic function pred(x, y )  of the relation y < x  occurring 
above has the following primitive recursive definition: -

pred (a, у) =  equal (у , a), 

I pred (cons (*!, x2), y) =  •

if a£H0
h0, if cons(xl5x2) =
=  у V pred (хг, y) = /i0Vpred (x2, y) =  h0 
hj otherwise.

Consequently the relation

у <; x =  у :< x & у 7̂  X 
is also primitive recursive.
6. Finally o(x) is also primitive recursive in H. Indeed, if

X =  c o n s  (X j , x 2) ,

then one of «(xj), o(x2) must be exactly one less than o(x). Moreover for 
each number n, the successor of n is

cons (n, n).
Hence o(x) can be defined by

o(a) = h0, if a £ tf0
f cons(o(x!), oCxj)), if oC x^^oiX i) 

olcons (x., X2)) =  1 / 74 ' l cons (o(x2), о (x2)) otherwise.

11.5 The Order o(x)

We add three important remarks to the definition of o(x): -  
a) For

x =  cons (xt , x2)

o(x) was defined with the help of the earlier value o(x-1), where in general 
x-1 denotes a fixed predecessor of x of order o(x) —1, in our case this 
was a fixed one of хъ  x2, the order of which is not less than that of the 
other.
It is useful that the scheme

I / ( a )  =  ga, i f  aeH0
l/(cons (xl5 x2)) =  g(xl5 Xa./IxO./CxalJfcons-1 (xl5 x2)))

(where parameters are admitted) remains within the class of functions which 
are primitive recursive in H. Indeed, applying the primitive recursive auxili­
ary function

rg(Xj, X2, Dj, V2 , V j ) ,  if o(x2) ^  OÍXj) 
g (Xi, x2, vlt v2) = 1 . ..

Vg(xl , x 2, v 1, v 2, v2) otherwise,
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the above function/ i s  also definable by the primitive recursion

i / 0 )  =  ga, if a£H0 
l/(cOnS (Xj , x2)) =  g'(Xj , XzJixJJixz)) .  

In the particular case

and
ga = a

g(*i, x2, vu  v2, V.j) = v3,

X-1 itself is obtained as a primitive recursive function. 
For every natural number n, we have

n_1 =  n — 1.

b) Instead of the natural numbers it is more appropriate to use the func­
tion o(x) in H. For instance, the o(x)th iterate of a primitive recursive 
function /  at a place у  has the following primitive recursive definition in 
H: -

( f (0(a))(y) = y, i f  a£H(i
\ f ( o  (cons (x, , I 2))) ( y )  =  / ( / ( 0  (cons-1 (Xj, x2)))

The iteration
(/)it(x, y)

yields an example of a primitive recursive sequence:

( /,it„(x)0),

since it does not really depend on x, but only on o(x).
Since o(x) is always a natural number,

o(o(x)) =  o(x),

that is every non-zero-th iterate of o(x), is equal to o(x). 
c) In section 3.4.1, we referred to the fact that, what we proved there 
for word sets (namely that every numeric primitive recursive function 
can be represented by a primitive recursive word function) is valid in every 
set of numeric structure, in particular in H. More precisely, for every pri­
mitive recursive numeric function

(p(mr, ..., m„)
there is a function

i, ••■,«„)

primitive recursive in H  such that for all щ, ..., u„

o(/(u j, ...,u„)) =  q>{o(ú j ,  ...,o(u„)).

o(/(o(«i), •••, o(un,)))
The function
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can be considered as the representative of cp in H. The representatives of 
the numeric functions can be denoted in the same way as the originals. 
Through their characteristic functions, the numeric primitive recursive 
relations can also be represented by primitive recursive relations in H  
(which are denoted in the same way).

1 1 . 6  Coding Lists by Elements

In order to be able to handle course-of-values recursions, we have to code 
sequences of elements of H, by elements of H, in such a way that the terms 
of a sequence can be recovered from its code. For a set of numeric structure, 
in which one of the successor functions is of at least two variables (as in 
the present case), in my paper quoted in [lo:i I have constructed a rather 
simple example of such coding. In the present particular case, however, 
it is more natural to use another method, which can also be generalized. 
In this, a finite sequence is considered as a list (of S-expressions), with 
which we have previously associated an S-expression: -

with the list s„ the S-expression (s0-NIL)

with the list s0, sx the S-expression (s„ • (sx • NIL))

with the list SqjS^Ss the S-expression (s„ • (sx • (s2 • NIL)))

and with the empty list e. g. NIL(=A0).
Thus with the list

0̂ 9 1̂ 5 • * * >

the element

X =  C„(s0, Sl5 ..., S„) =  COnS (s0, COnS (íj , ..., cons (s„,/!„)...)) 

is associated. It can be seen that

/i =  o(n) ^  o(x)
is satisfied here.
The terms of the list can be recovered from its code x  as primitive recursive 
functions of x: -

s0 = car (x), sx =  car (cdr (x)), ..., s„ = car (cdr(n) (x)).
Moreover

cdr(n+1) (x) =  h0.
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Consequently, the characteristic function list(x) of the property “x codes 
a list” can be defined as a primitive recursive function: -

list (x) —
ho, if x =  h0V(Ey) [y ^  o(x) & cdr(o(,,))(x) $ H0 & 

&cdr(oW + 1)(x) =  /i0]
h± otherwise.

The “length” long(x) (the above rí) can be obtained as follows:

long (x) =  Цу[у o(x)&cdr(o(>,))(x) <1 / /0&cdr(<T(>,)+1)(x) =  h0].

The expression
Hy[y d, Mj, ...,«„)]

needs a little explanation. Its value is obtained as the first term у of a 
certain list, enumerating all the predecessors of z, which satisfies the rela­
tion

B{y, щ, ..., un)

and is h0, if this relation is not satisfied by any predecessor of z. Thus we 
have

long (x) =  h0

exactly, if x codes the empty list or does not code any list at all. Since 
y ^ o (x ) ,  long(x) is necessarily a natural number.
A primitive recursive sequence which enumerates predecessors of x, and 
which if x codes a list, for

o(y) <  long(x)

yields the o(y) th term of this list, can be defined as follows: -

r car (cdr(o(},))(x)), if list (x) =  h0&o(y) <  long (x) 
k0(y)(x) I x  otherwise.

1 1 .7  Course-of-values Recursion in H

consists precisely of the predecessors of x (with x ^ x  for /< /), then the 
“course-of-values function” of a function/is defined as

/* (* ) =  c ,(/(x 0), ...,/(x ,)).

Every earlier value of /  can be obtained from this as

/(* ,) =  ki (/*(*))
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(with ;< /). Therefore the scheme of course-of-values recursion in H  reads 
as follows: -

/(a )  =  ga, if a£H0 

/(cons (x2, x2)) =  g(x1, x 2, f* ( x l), f * (x 2)),

where the functions ga and g are primitive recursive (and might contain 
parameters).
It turns out to be helpful if we choose the sequence (11.7.1) in such a way 
that for x£H0

and for
l — 0 and x0 — X,

X = cons (xx, x2)

we first enumerate the predecessors of x 2 in their already given order, then 
the predecessors of хг in their given order, and finally put

x  = x t .

It can be shown then that l=l{x) as well asf*(x) will be primitive recursive. 
With this, moreover, we have

№  = kHx)(f*(x))

is primitive recursive as well. Therefore, the course-of-values recursion does 
not extend the class of functions which are primitive recursive in H. This 
holds true in general for sets of numeric structure, after several further 
initial functions are chosen. In our case, however, these can be defined as 
primitive recursive.
As a simple application of the functions c„ and k t(x) I also mention the 
reducibility of the simultaneously recursive definition of several functions

to the recursive definition of the single function

/ =  c„(/o, ...,/„).

From this, the original function can be recovered by the substitutions

/о -  к „(Л, ...,/„  =  K(f).
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11.7.1 More Recursions in H

In the paper quoted in[13] the characteristic function

eq (x, y)

of the property “x  and у  are equal elements” was taken as an initial func­
tion, and from this

equal (a,y) =  eq(a,y), 

equal (cons (xx, x 2), y) =

if a£H0
h0, if equal (xj, car (y)) =

=  h0 & equal (x2, cdr (y)) 
hx otherwise

h0

was defined later. I want to add here two remarks. 
1) I show that

eq (x, y)

can be defined as a primitive recursive function in H.
First of all the characteristic function/- of the property to be equal to the 
element

at (i =  1, 2, ..., t)

can be defined by the primitive recursion

Ш д  -  К

f i (ai-i)  =  >h

Mai) =  h0

f i (ai + l) = К

Ma,) = К .
/(cons (xj, x2)) =  hj.

Using these we can put

h0, if (x =  ax & y  =  aj)V...V(x =  a, & y  =  a,)

(only for i — 1)

(only for i = t)

-= i:req (x, ,, — , ,1 u otherwise.

2) The above definition of
equal (x, y),

which, by means of the primitive recursive auxiliary function

\h0, if x = h0& y = h0 
otherwise
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can also be written in the form

f equal (a, y) =  eq (a, y), if a € # 0
1 equal (cons (xl5 x2), >’) =  g (equal (xl5 car (>’)), equal (x2, cdr (>’))),

is not a primitive recursion, since the argument у  in it does not remain 
unchanged. First it is replaced by car(y) and then by cdr(y).
In my paper quoted in [10], I pointed out that, possibly after adding suitable 
auxiliary functions, such a definition can be reduced to course-of-values 
recursions. Thus, it can be reduced to primitive recursions as well, even in 
the case of a “nested recursion”, in which the expressions substituted for 
the parameters may depend on earlier values of the functions to be defined. 
However it was used there in the sense that the characteristic function of 
the equality (in our case

equal (x, y)

itself) was an initial function. Now, in our particular case the adding of 
such further initial functions is not necessary. I shall illustrate this reduc­
tion with an example, which is applied in Lisp 1.5.

11.8 Examples

Let X and у  correspond to lists of elements of the same length: -  

(и1;ы2, and Oq, v2, ..., vn),

and let z correspond to a third list. Let us attach to the beginning of this 
third list the pair-list

(cons (uj, iq), cons (w2, v2), ..., cons (u„, vn))

constructed from the first two lists. Let the S-expression corresponding to 
this list be denoted by

pairlis (x, y, z)

whose value is irrelevant if x, y, z are not of the above type.
If x is an element, it can only correspond to the empty list. Hence the same 
is true for y, and thus nothing is attached to the third list. Consequently 
we obtain the following definition: -

{pairlis (a, y, z) — z, if a £ # 0
pairlis (cons (xj, x2), y, z) = cons (cons (xt , car (>’)), pairlis (x2, cdr (y), z)). 

Using the primitive recursive function

g(uj, u2, u3) =  cons (cons (iq, car (u2)), w3)
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we have the shorter definition

{pairlis (a, y,z) =  z, if а£Н0 / ц  8 n

pairlis (cons ( x j .x ^ ^ z )  =  g(xl5y, pairlis (x2, cdr (y),z)) v 

For this definition, in which
cdr(y)

is substituted for the parameter у, I shall illustrate the steps of the reduction 
to course-of-values recursions. In this simple example it goes easily, but 
the methods indicated can also be applied to nested recursions.
From (11.8.1) values of the following types are obtained for 
pairlis (x, y, z): -

z, if x £ # 0,
gfo .y .z), if x =  cons(x!,x2) & x2eH0,

g(*i>y> g (*2 1 , cdr (y),z)), if x2 =  cons(x„,x22) & x226 # „ , 

g (x j, у, g (x21, cdr (y), g (x221, cdr (cdr (y)), z))),

if x22 =  cons(x221 ,x22 а) & x222€ # 0,
and so on.
It can be seen that the function values are built from nestings of the func­
tions

cdr(u), gCu^u^Ua),

where no function is substituted for щ . Let a function / (x, y, z) satisfy
the following conditions: -
(1) for every у and z there are x ' and x" with

f (x ' ,  y, z) =  у and f ix" ,  y, z) =  z,

(2) for every y, z, и there is an x with

f (x ,  y, z) =  cdr (/(u, y, z)),

(3) for every y, z, ux, u2, Щ there is an x with

f i x ,  y, z) =  g (« !,/(u2, y, z),/(u3, y, z)).

Then /  (x, y, z) has all such nestings among its values, in particular all 
the values of pairlis (x, y, z).
Now, such an / (x, y, z) can be defined by means of the primitive recursive 
functions

kfu), c„iu0, «и ..., m„) 

for i=0 , 1, 2, 3; n=0, 1, 3, where for i ^ n

ki{cniu0, Uj, ...,u„)) =
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in the following way: -

f (a ,y ,z )  = y, if aeH0 ( 11.8.2)

j/(co n s(x 1,x 2),y ,z)
z, if o(k0(x1)) = h0
cdT(f(k1(x1),y,z)), if o(k0(x1)) = h1
g(k1(x1) ,f(k2(x1) ,y ,z ) , f(k3(x1),y,z)) otherwise.

Indeed, properties (l)-(3) are satisfied by

x '  =  h0 and x" =  cons (c0(h0), x2), 

x =  cons (c1(h1,u), x2), 

x =  cons (c3 (h2, Uj, u2,u 3), x2),
—  “ V ------------------- '

*1

respectively by choosing x2, for example x2=h0.
Furthermore, by a definition of type (11.8.2), (I shall return to th equestion 
of reformulating these as course-of-values recursions) one can obtain a 
function vv(x, щ, u2), which unfolds the nested values of the function /  
in the sense that, for all values of the arguments,

/ ( x, / ( mi, y, z),f(u2,y , z)) = /(w (x , tq, u2), y, z)
holds.
With the use of this function, we can finally, through primitive recursion, 
define a function q(x) which, so to say, sifts out the value of pairlis (x, y, z) 
from the value of / (x, y, z). Similarly, for all the values of the arguments,

pairlis (x, y, z) = f(q(x), y, z)

and the function w(x, щ, u2) can be defined primitive recursively in the 
same way as pairlis (x, y, z).
According to the definition of ko(y)(x) the values

fci(Xi) ( i = 0 ,  1,2,3)

occurring in (11.8.2) are predecessors of xx. If k t(x) is the v(x, i)th in the 
list (11.8.1) of the predecessors of x, and f* (x ,y ,  z) denotes the course-of- 
values function of/ (x, y, z), then by section 11.7

f(k i  (Xj), y, z) =  kv(Xui) (/*(xl5 y, z)).

If we substitute the right-hand sides of these identities instead of their left- 
hand sides in (11.8.2) for i=0, 1, 2, 3, we can see that since v(x, i) is primi­
tive recursive, a course-of-values recursion is obtained. This shows that 
for a general set of well-behaved numeric structure the function corres­
ponding to v(x, i) has to be added to the initial functions.
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In our special case, however, v(x, i) can be defined in a primitive recursive 
way in H.
Thus pairlis (x, y, x) is primitive recursive in H. It can be shown in a similar 
way that recursions, in which substitutions occur for the parameters (even 
if nested values of the function to be defined occur among these), do not 
lead out of the class of functions primitive recursive in H.

11.9 General and Partial Recursive Functions in H

In every set H  of “numeric structure”, hence also in the set of S-expressions, 
one can introduce the general recursive functions similarly as in the number 
theoretic case. The values of these can be obtained everywhere from defin­
ing systems of equations by means of finitely many substitutions of ele­
mentary terms (in our particular case S-expressions) for variables and sub­
stitutions of one side of an equality for the other. By omitting the require­
ment “everywhere”, we obtain the partial recursive functions in H. (All 
of these can also be defined by primitive recursions and suitable “un­
bounded /i-operations” .)



Chapter 12

Decision Tables

12.1 Decision Tables versus Flow Charts

For some time it has been a tendency in practice to use decision tables[36] 
instead of flow charts, if, in the flow charts several logical vertices would 
follow one after the other, thus making the structure and flow of the cal­
culations difficult to follow[37].

12.2 An Example

We return now to the idea of a graph scheme which was introduced in Ch. 6 
for the computation of the Ath binary digit sk of the sum of two numbers 
given in the binary form: -

where arbitrarily many digits 0 can stand left to the last digit 1. One has 
to take into consideration that sn for any n depends not only on an and b„ 
but also on the remainder r resulting from the already executed addition 
of the digits to the right.
The associates of the vertices will be denoted in the same way as it is custo­
mary in (non-exact) practice. They will be written into squares and 
hexagons, which represent the mathematical and logical vertices, respec­
tively. In the mathematical vertices statements of the form

c => V

[36] See R. Péter: Mathematische Fassung der sogenannten „Entscheidungs-Tabellen”, 
Acta Cyb. 2 (1973), pp. 89—108.
[3,] See R. Thurner: Entscheidungs-Tabellen, Düsseldorf (1972), with the references given 
there.
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figure, meaning that a variable v has to be given the value c (disregarding 
the fact that possibly v has already been given a value earlier). In the logical 
vertices, questions of the form

c =  b?
are written.
These are obtained in the following way from the mathematical and logical 
functions associated with the vertices of the appropriate graph scheme.
We compute the digits s„, slt of the sum, step by step, until we reach 
sk. We introduce auxiliary variables n, r, s to denote the step number, the 
current remainder, and the current digit of the sum, which will vary in the 
course of the computation. When we say that s0 is “computed in step 0” 
(where of course the remainder is 0) we mean that both n and r have to 
take the initial value 0. For s we can also take the irrelevant initial value 0. 
The input vertex of the graph scheme has to be a mathematical vertex, 
with which, since the initial data form the sequence

(k, Uq, . . . ,  ak, h(j, . . . ,  bfc),

the mathematical function

ai(k, Uq, ..., Qk, bp, ..., bk) - (/c, Uq, ..., Qk, bo, ..., bk, 0, 0, 0)

is associated. Initially, in the flow chart, r and n are declared to have the 
value 0, for this

0 =>r

will be written in the input vertex, and the simple edge starting from here 
will lead to another mathematical vertex with

0 =>n.

Here the procedure branches according as the remainder is 0 or not. Hence 
there must follow a logical vertex. In the case of the graph scheme, this is 
associated with the relation

ВЛк, a0, ..., ak, b0, ..., bk, n ,r ,s) = r = 0,

in the case of the practical flow diagram with the question

r  =  0?

the edges starting at this logical vertex, according as the answer is “yes” 
or “no”, will be marked by T and F in the graph scheme and by Y and N 
in the flow chart.
Then in both cases another branching follows, according as a„=bn or not. 
Thus we have a logical vertex again, with the relation

B2(k, a0, ..., ak, b0, ■■■, bk, n, r, s) = an = b„
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in the graph scheme, and with the question
a„ = b„?

in the flow chart.
In the next step there appears an auxiliary variable л which has to be given 
a value 0 or 1. In the graph scheme, this is accomplished by the functions

ai(k ,a0, ...,a k, b0, ..., bk,n , r, s) =  (k ,a0, ...,a k, b0, ..., bk, n, r, 0), 
ccj(k,a0, ...,a k, b0, ..., bk,n , r, s) =  (k ,a0, ..., ak, b0, ..., bk, n, r, 1), 

and in the flow chart, by the statements

0 =>s,
1 =>s.

This process continues repeatedly in the same way. In the graph scheme 
2k + 6-term sequences

(k ,a0, ...,a k, b0, ..., bk, n, r, s)
will occur, with the exception of the output vertex, where the 1-term se­
quence sk is obtained as the function value. In the flow chart, this is expressed 
(after introducing an auxiliary variable e for the result) by the statement

s => e.
Meanwhile, before each step in the computation, the question is put 
whether n = k l  If so, one proceeds to the output. If not, then n is increased 
by 1, and one goes back to the first branching point.
It is easy to see that the flow chart constructed according to the above 
instructions does compute the required digit sk of the sum: -
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12.3 Changing Flow Charts into Decision Tables

The flow chart belonging to the above simple problem is nevertheless still 
rather complicated. So the parts consisting of several logical vertices will 
be replaced by decision tables.
A decision table (or simply a table) is divided into four quadrants as fol­
lows: -

I II

III IV

In quadrant I different questions, and in quadrant III different statements 
will be indicated. The other two quadrants П and IV will be divided into 
a certain number of columns. In the upper part (that is in II) every column 
contains a variation of Y, N and the “empty” symbol. In the lower part 
(that is IV) every column contains a variation of X and the “empty” symbol. 
To explain the meaning of such tables, let us consider an example. Suppose 
that I and III, and one of the columns are as follows: -

F, Y
F2
F3 N

Ax
A, X
A3 X
A4 X

This means that if the answer to question Fj is “Yes”, and to F3 is “No” > 
then (independently of the answer to F2) the statements A2, A3 and A4 
have to be executed.
Clearly the upper halves of two columns cannot be identical, because then, 
if we want to avoid contradictions, their lower halves would also be identical. 
Hence one of them would be superfluous.
Let us consider a part of the flow chart given in section 12.2, containing 
several connected logical vertices.
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This can be replaced by a table, by first traversing all possible directed 
paths of edges starting at the initial vertex. These will be called “lines”. 
The questions found along the way (each one occurs only once) are written in I 
and the statements are written in III. For every line, a column is filled in as 
follows: -  The row of a question is empty if the question does not occur 
along this line, Y and N is written if the question occurs and the edge on 
the line following the corresponding logical vertex is marked by Y or N, 
respectively. Finally, for every statement X; or, nothing, is written, accord­
ing as a vertex with this statement is traversed by the line or not.
By always choosing the leftmost line first, we obtain the following table 
in our example: -

r =  0? Y Y N N
a„ =  b„? Y N Y N

О =>a X X
1=м X X

Now if we wanted to reconstruct the above subgraph from this table, this 
could not be done in a unique way. From the first two columns we can 
still uniquely recover the part

as well as the fact that the line belonging to the third column starts with 
the edge N at the initial vertex. This edge however, could lead to the middle 
vertex with the question “an = bnT ’, and further it could lead along the edge 
Y starting there, which contradicts the final statement of the actual third 
column: -

Therefore it is advisable to drop the requirement that the questions in I 
and the statements in III are different. We consider the rows of the table 
as belonging to the different vertices rather than to different questions or
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statements. In what follows I will often say “points” instead of vertices. 
Then the table belonging to the above subgraph looks as follows: -

Р1Л r=0? Y Y N N
P u  a„ = K1 Y N
P1.3 a = b nl  Y N

T*:
Р'1Л 0 =>s X
P '2 1 =>s X
Pi 3 1 =*s X
PÍ.4 0=>s X

where P j . and P ' ; denote the ith logical vertex and the j'th mathematical 
vertex, respectively, which are used in the construction of table T2.
From this, the subgraph can be reconstructed in only one way.

12.4 Systems of Tables

Considering the whole graph of section 12.2 we see that the continuations 
of the subgraph, dealt with in section 12.3 again lead to logical vertices. 
Starting from one of these vertices (for example the one on the left), let us 
consider again the subgraph consisting of those lines, which from here lead 
to the first mathematical vertex or (if this were the case) to a vertex already 
encountered. (If the mathematical endpoint of a line is followed by further 
mathematical vertices, then the line has to be extended to the first new 
logical vertex or return to a point already encountered, respectively.) 
Thus we obtain the subgraph

to which the following table belongs

Р2Л a„= l?  Y N N 
P2.2 n =  /c? Y N

T * . ----------------------------------------------------------------------------
2' K i  1 =>r X

P2 2 s=>e X
P2.3 n + 1 =>n X
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Here all points are different from the points of T*.
Now only one logical vertex remained in the graph of section 12.2. Start­
ing with this, similarly we can deduce the following subgraph: -

Y 4 *0=»r

The dotted edge, marked by Y, leads to the logical point P2>2 of the above 
subgraph corresponding to T2. Its continuation is the part of this sub­
graph starting at this point. This corresponds to the following “subtable”
ofT*

P2.2 n = kl  Y N

T2'2' P2.2 s=>e X
P 2 .3  n + l=>n X

Therefore, it is convenient to add statements of the form “go to Tu ” as 
“exits” from tables, which require the execution of the subtable of T; 
starting at the point P; j-.
Then the table belonging to the last subgraph looks as follows: -

T*. 1 a •

Рзл fln— 1? Y N 

P3.1 0 =>-r X

go to T2 2 X

where P3л  and P3 г are different from the points of both TJ” and T2.
The addition of an “exit part” to the table (which is not assumed to belong 
to the “lower part” of the table) is also useful because it shows where the 
last edge belonging to a column must lead to.
Putting into T3 the augmented form T2 2 instead of T2 2, we obtain

T,:

Рзд a„= l?  Y N

Рзд 0 =>r X

go to T 2 2 X X

We have similar augmented versions of T  ̂ and T2 as well.
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The mathematical points on the line leading from the input vertex to the 
first logical point still do not occur in any of the tables. For these we construct 
the following table with a single column, and empty upper part: -

Рол O^r X
T . Pq 2 0 =>n X1 0 •

go to Tj X

where T, for /'>0  means the subtable Tjfl of T;.
Thus the following system of tables is associated with the graph of section 
12.2 : -

P'.i 0=>r X 

p . PÓ.2 0=>П X

go to Tj X

Р1Д r =  0? Y Y N N

Рг.2 an = bnl  Y N

Pis «n =  b„? Y N

Pi.! 0=>s X 

T . Pi., 1=м X
Pi., 1 X

P'1A O^s  X

go to T2 X
go to T2.2 X X

go to T3 X
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Here we have

P2.2 n =  /c? Y N

Р2Д X

T2.2: P2.2 n +  l=>n X

stop X 

go to Tj X

P21 a„ =  1 ? Y N N 
P2.2 n = k? Y N

K i  !=>/• X

P2 2 s=>e X
T :

P2 3 n +1 =>n X

go to T2 2 X
stop X

go to Tj X

Рзд «„=1? Y N 

T3: Рзд 0=>r X

go to T2.2 X X

The computation procedure is represented by these tables in a somewhat 
clearer way than by the graph of section 12.2.
It is also important that several people can work on the separate tables. 
Some of the tables can even be extended (or changed in some other way), 
without disturbing their connections. The statements “go to T ” or “go 
to Tj j” then really call for walking -  namely to the desk of the person 
working on table T, or T; j-, respectively. So certain edges of the flow 
diagram can be represented by such walks.
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12.5 Normalizing Flow Charts

It can happen that on a line being used to build a column of a table, two 
different points are associated with the same question F in such a way that 
in the corresponding column, the answers to this question are either super­
fluous or contradictory. However, the basic graph can always be replaced 
by an other one, for which such situations do not occur. The graph in this 
respect is said to be normalized.
I will not go into the details of this normalization here.
I have one more remark. If a line returns to the mathematical point Рд 2 
(to which the edge starting at the input vertex leads), then afterwards the 
part

PÓ.2 0=>n X

go to Tx X

of T0 has to be executed. This table is called the subtable Тд2 of T0 
belonging to Рд 2. Thus in the exit of a table statements of the form “go 
to T;j ” can also occur.

12.6 Regular Tables

As in the example above, we can obtain from every normalized flow chart 
a system of tables giving the same result. I will list here the characteristic 
properties of such systems of tables, which I will call regular. These also 
reflect the fact that always the leftmost line was chosen for constructing 
the next column of a table.
(a) A table system consists of finitely many tables without common points

T1; T2, ..., T„ and perhaps T0.

T0 (and only T0, if it occurs) does not have an upper part. Moreover none 
of the tables has an exit “go to T„” . If T0 does not occur, then none of the 
tables has the exit “go to Tx” . For every other table T;, however, there is 
at least one column exit “go to Тг” perhaps in the form “go to T;1”.
(b) As column exits of a table Tm (m ^ n ) statements of the form

stop, go to Tk, go to Tи ,  go to T u ,
can serve.
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(c) The exit “stop” belongs to only one table column.
Next we describe what is meant by saying that the tables of the system are 
“ regular”. This concerns both the upper and lower parts of the tables and 
requires that the following properties be satisfied:
(d) In the first row, belonging to the first point of the table, there are no 
empty places, since every line used for the construction of the table starts 
at this point.
(e) In the upper part of the first column the non-empty symbols must all 
be Y’s and follow each other without a gap. In the last column, and 
only in the last, no Y smymbol occurs.
(f) (1) For every appropriate / the contents of the (/+ l)th  column coincides 
with the contents of the /th column, up to the last Y symbol of the latter, 
instead of which N occurs in the (/' +1 )th column. (2) The first non-empty 
symbol after this N in the upper part of the (/+ l)th  column belongs to the 
first such row, in which none of the 1st through to the /th columns contain 
a Y or N symbol, since after a line branches from the earlier one only new 
points are traversed by the new line. In the first portion of the upper part 
of the (l-fl)th  column the non-empty symbols— which are all Y’s follow 
each other without a gap.
(g) The questions really to be considered in a column (that is the ones 
belonging to non-empty symbols) as well as the questions following these 
after possibly empty places in the lower parts of other tables, are all dif­
ferent. This follows from the normalization of the graphs mentioned in 
section 12.5. This property also applies to the exits.
(h) In the lower part of every column, the X symbols follow each other 
without a gap, in the first column from the first row on, for every appropriate 
/. On the other hand, in the (Z +  l)th column they follow from the row just 
below the row in which the last X occurred in the /th line because the 
mathematical points of lines used to construct the columns are all different.

12.6.1 Subtables

The subtables have to be constructed as follows: -
The subtable T; j- of T; is obtained by omitting the first ( j — 1) rows, then all 
the columns which are empty in the/th  row, and finally all the rows in which 
after this row none of the symbols Y, N, X remain.
In constructing Tj j, one has to do the same, after the whole upper part of 
T, is omitted. Here of course, the “/th  row” means the /th  row of the remain­
ing part of T;. Thus T ;; has always only a single column.
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For example, with the particular table T, of section 12.4 we have

and

Pí.3 a = b n? Y N

PÍ.3 1 =̂ S X
T13: P'1A O^s  X

go to T22 X

go to T3 X

PÍ.3 1 =>s X
Tí.3: ------------------------------------

go to T3 X

Clearly, Т 'д is the table T0 itself, and for every MO T(1 is equal to T;. 
From a regular table system it is easy to construct a flow chart leading to 
the same result.

12.7 Turning Tables into Regular Tables

Tables occurring in practice, and in the literature, are in general not regular. 
It is important, however, to be able to turn these into graph schemes as 
well, since the latter, as is shown in section 7.3, can immediately be translated 
into certain programming languages.
This can be achieved by turning these systems of tables into regular systems. 
If the connections between the tables of an arbitrary table system are given 
in a reasonable way, they can always be formulated by means of the exits 
introduced above.
Requirement (c), which is the one most often violated in practice, can also 
be dropped. If there are several points in the graph, from which no edges 
originate, this can only be a fragment of a graph scheme (a graph scheme 
serving the same ends can always be constructed, however), but the effect 
of such a fragment can also be translated into programming languages. 
For similar reasons, the requirement that no edge may lead to a certain 
point can also be dropped.
In any case, we have to restrict ourselves to table systems satisfying property 
(g) of section 12.6.
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According to the above, we do not have to worry any more about the 
exits from the tables. In what follows, however, we show that every table, 
containing different questions and statements only, which does not contain 
two columns with identical upper parts (even “implicitly” in a sense to be 
clarified soon), can be respresented by a regular table having the same 
effect.
The lower part of any table T; can easily be made regular. Let us assume that 
the number of X symbols in the first column is xx, in the second x2, ..., 
in the last x ,. Then we take new mathematical points

P '  p '  p '  p '
1  Í ,  1 9 * ‘ * 5 1  Í ,  X l 9 X  Í , X  1 +  1 ’ * * • > X  Í , X1 + X2, P 'x i , X i  +  X 2 +  . . .  + X t *

In the same order, we take rows corresponding to these points instead of 
the earlier rows of the lower part of T;. Then the X symbols of the first 
column, together with the corresponding statements, are put one by one into 
the rows belonging to Pfд , ..., P - . The X symbols of the second column 
together with the corresponding statements (among which earlier ones 
might occur) are put by one into the rows belonging to P(iXi+1, Pí>je +Jt ,
and so on.
This makes (h) of section 12.6 valid, and then it remains to deal with the 
upper parts of tables.
Concerning the upper parts of table columns, it will be useful to consider 
the empty symbol in such a way that the statements in the columns are 
independent of the corresponding question, that is they yield the same for 
both answers “yes” and “no”. Therefore it is usual to split each column 
containing an empty symbol into two, which differ from the original only 
in that the first replaces the empty symbol by Y, the second by N. It could 
happen, however, that in doing this the upper part of a new column coinci­
des with the upper part of an old one.
Therefore the essential difference between the upper parts of two columns 
must be understood as the existence of at least one row in which one of the 
columns has Y, and the other has N. If this holds, then the table does not 
have two columns with the same upper parts even implicitly.
Furthermore, it is also customary to add new columns to a table with a new 
statement called “error”, to emphasize that the variation of answers to the 
questions given in this column is not appropriate for our purposes. Instead 
of applying the new statement “error” it would serve the same ends to 
prescribe in the exit the return of the last edge belonging to the column to 
its initial point, thereby producing an infinite cycle. This would show then 
that the result of the procedure represented by the table is undefined for 
the corresponding variation of answers.
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With the above splitting and adding of new columns, the upper part of any 
table can be transformed in such a way that the upper parts of the columns 
will yield all the possible variations of the symbols Y and N. If we have n 
questions, their number is 2 ".
If these variations are arranged in such a way that one of them precedes the 
other if and only if, at the first place where they differ, it contains Y (and 
the other N), and the columns are arranged accordingly, this will precisely 
correspond to the leftmost choice of the lines according to which the co­
lumns of the table corresponding to a flow chart were constructed. We still 
have to ensure the validity of requirement (f) (2 ) of section 1 2 .6 , that is the 
reflection of the fact that, after every choice of an edge starting at a branch- 
in г noint only new points will be traversed by the corresponding line.

12.7.1 An Example

Let us consider as an example the case of 3 questions Fx, F2, F3. The upper 
part of the table containing all the variations of answers in the above order 
is the following:

Ft Y Y Y Y N N N N
F2 Y Y N N Y Y N N
F3 Y N Y N Y N Y N

In order to satisfy (f ) we build from this the following upper table: -

Fj  Y Y Y Y N N N N  

F2 Y Y N N

F3 Y N

F3 Y N
F2 Y Y N N

F3 Y N

F3 Y N

This is already the upper part of a regular table.
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12.8 Normal Systems of Tables

In the different particular cases, it is not always necessary to fill in all the 
empty places, or to form all possible variations. In actual practice, one stri­
ves for the simplest possible transition to a corresponding flow chart.
Let us consider for example a decision table with applications to company 
organisation, which is given on p. 19 of the book quoted in footnote[37J. 
Using the notation

F1 ,F 2 ,F 3 ,F 4 and Aj, Да, A3, A4

for the questions and statements, respectively (whose meaning is irrelevant 
to our investigations), this can be written as follows: -

Fj  Y Y N
F2 Y N N Y

F3 N

F4 Y N

Aj X

A2 X
A3 X
A4 X

Now we have to examine the properties given in section 12.6.
Firstly, because of the empty place in the first row, (d) is not satisfied. 
Therefore the third column has to be split into two (we could have switched 
the first two rows instead): -

Fj  Y Y Y N N

F2 Y N N N Y

F3 N
F4 Y N N

A4 X

A2 X

A3 X

A4 X X
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In the fourth column, no Y occurs, hence (e) is not satisfied. This can be 
remedied by switching the last two columns: -

Fx Y Y Y N N
F2 Y N N Y N
F3 N N

F4 Y N

Aj  X

A2 X
A3 X
A4 X X

In the 4th and 5th columns the last requirement of (f) is not satisfied, 
namely that after a branching point, only Y edges can occur on the initial 
part of a line belonging to a column. Therefore a new row with the state­
ment “error” has to be added: -

Fj Y Y Y N N N N  

F2 Y N N Y Y N N

F3 Y N
F4 Y N Y N

A4 X

A2 X
A3 X
A4 X X

error X X

Finally, the non-empty symbols of all the columns have to be placed into 
the rows as prescribed by (f) and (h), together with their corresponding 
question and statement symbols: -
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Pj  Fj  Y Y Y N N N N

P2 F,  Y N N

P3 F4 Y N

P4 F2 Y Y N N

P5 F3 Y N
Pc F4 Y N

Pi A 4 X

Pi A3 X
Pi A4 X
Pi error X

Pi A, X

Pi error X

Pi A4 X

This is already a regular table with 7 columns and not 24=16 columns 
which would be needed if all the possible answers to the 4 questions were 
to be used.
From this table, the lines of the corresponding flow diagram (starting at 
Pj) can be read off immediately. Thus we obtain

12.8.1 Comparison with Partial Recursive Functions

The transition from a graph scheme to an ordinary flow chart, which in 
section 1 2 . 2  was illustrated with an example, can of course be reversed. 
Instead of the questions and statements at the points, we can return (per­
haps after a suitable coding) to logical and mathematical functions.
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According to the above, every normal scheme (a notion which was introdu­
ced in section 7.5) can be represented by a normal system of tables having 
the same effect. By the latter, we mean a system of regular tables such that, 
in quadrant I. of each table initial relations, and in quadrant III. initial 
functions are contained. Moreover the converse of this statement is also 
valid.
Consequently the functions definable by normal systems o f tables coincide 
with the partial recursive functions, and thus with the machine computable 
functions, since for the functions computable by normal schemes this was 
shown in Chapters 6  and 7.
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(A  művész köszönőlevele)
253-

Budapest, 1 9 6 1 . június 1 2 .
Hárs György elvtársnak 
Budapest

Népszabadság Szerkesztősége 
Kedves Hárs Elvtárs!
A Népszabadságban megjelent rólam szóló, meleg, baráti hangú írásodat ez­
úton köszönöm meg.

Szívélyes üdvözlettel

(Az albérlő levele)
254-

A „raktár”-helyiséget egyéb hely hiányában nem áll módomban biztosítani. 
A „raktár”-helyiséget egyébként megegyezésünk szerint vettem annak idején 
igénybe, mint az albérlemény tartozékát, tehát a lakbért ezután is fizettem! 
Felhívom nb. figyelmét, hogy ha hasonló „főbérlői” allűrökkel kívánja meg­
zavarni azt a csendet, melyet egyedül az én figyelmességem (elsősorban ko­
rára való tekintettel) és türelmem teremtett meg, úgy kénytelen leszek olyan 
-  jogomban álló -  retorziókkal élni, amelyekből (az eddigi helyzethez viszo­
nyítva) csak kára, vesztesége, bosszankodása stb. stb. fog származni.
Örülnék, ha ezt komolyan megfontolná és békében hagyna élni.

[Budapest, i 9 ] 6 i. IX. 8 .
255-

(A  művész levele)

G.

Kállai Gyula miniszterhelyettes [!] elvtársnak

Kedves Kállai barátom!
Nem panaszkodni akarok, csak a tényeket közölni.
Rossz helyzetben vagyak, bár egész évben dolgoztam, tíz új plasztikát csinál­
tam és kiállításra készülök. Igaz, hogy van kétezer forint nyugdíjam; ez azon­
ban a megélhetésemhez sem elég, és a kiállításra készülődés minden fillére­
met felemésztette. Dolgozni akarok, és nem engedem, hogy élve eltemessenek. 
Hacsak kevés anyagot vásárolok, akkor már felborul az amúgy is nagyon la­
bilis anyagi helyzetem. Már ideje volna ruhát csináltatnom, kopott vagyok; 
nem hiszem, hogy vonzó látvány egy Kossuth-díjas rossz ruhában. De ezt nem 
bántam volna, a munkához volt szükségem pénzre. Szerényen ezer forintot kér­
tem a Képzőművészeti Alaptól. Szilárd igazgató azonban nem írta alá a kiuta­
lást azzal az indokkal, hogy van kétezer forint adósságom és nem vagyok ke­
reső művész . . .  Ez igaz, mert nem engednek keresni, bár dolgozom és nem 
megvetendő alkotásokat készítek. Ha nem tudnám, hogy nálam érdemtele­
nebbeknek sok-sok ezer forint adósságuk van az Alapnál, nem szólnék Szi­
lárd igazgató kemény döntése ellen. Nekem ebben a mi népi államunkban nincs 
lehetőségem levegőhöz jutni? Pedig ezért a rendszerért én tettem is valamit, 
egy egész élet munkájával küzdöttem érte. Most készítettem két kis portrét, 
Bartókról és Lisztről, melyeket a Kerámia Szövetkezet szeretne sokszorosítva 
árulni. Ez megadná azt a kevés összeget, ami szükséges ahhoz, hogy szerény 
életmódom mellett is meglevő pénzzavarom megszűnjék. Már előre félek, mert
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a Képzőművészeti Alap zsűrije elé kell küldettem, oda, ahol tíz éve minden 
munkámat visszautasítják -  nálam sokkal kisebb szobrászok. Pedig ez a két 
fej szocialista realista, teljesen érthető művészeti nyelven van megalkotva. Tíz 
év: nem vagyok fiatalember, életem utolsó termékeny esztendeit rabolják el tő­
lem.
Nagyon kérlek, intézkedj, hogy segítsenek rajtam. De ne engedd, hogy úgy te­
gyenek, mint tavaly, amikor segítséged következtében vettek tőlem egy szob­
rot, de a tízezer forintból hatezret egyösszegben adósságra levontak. Igaz, hogy 
most csak kétezer forint adósságom van.
Nagyon kérlek, tégy valamit, hogy ebből a keserves elakadásból kikerülhes­
sek.
Remélem, hogy helyt adsz kérésemnek, hisz tudod, hogy nem fordulok hozzád, 
csak ha nagy bajban vagyok.

Elvtársi üdvözlettel régi híved és barátod

2 jó.

(Levél a Magyar Tudományos Akadémia 
Bartók Archívumától)

B udapest, 1 9 6 2 . jan u ár 1 8 .
Tisztelt Művész Űr!
Minthogy tudomásunk van az Ön Bartók Béla-szobráról, és mivel intézetünk 
figyelmét szeretnők kiterjeszteni a Bartókkal kapcsolatos képzőművészeti alko­
tásokra is, rendkívül lekötelezne bennünket, ha a szobor megtekintésére módot 
nyújtana. Legcélszerűbb lenne, ha a művet az Archívum érdeklődő munka­
társainak be tudná mutatni, illetve, ha ifj. Bartók Béla úr megtekinthetné azt. 
Mindenesetre kérjük, hogy a lehetőségek tisztázása véget szíveskedjék ben­
nünket telefonon megkeresni a délelőtti vagy a koradélutáni órákban (161-522). 
Szíves válaszát várva maradunk teljes tisztelettel

Dr. Szabolcsi Bence 
igazgató

-257-

(Levél a Művelődésügyi Minisztériumból)

Értesítem, hogy a Bartók Béláról készített portréját bronzban 2500 Ft érték­
ben megvásároltam.
Jelen levelemmel egyidejűleg a Képzőművészeti Alapnál intézkedtem, hogy a 
tiszteletdíjat levonás nélkül fizessék ki az Ön részére.

Budapest, 1962. február 27.

zj8.

Szentesi Antal s. k. 
osztályvezető h.

(Levél az Országgyűlési Könyvtár igazgatójától)

Kedves Dezső!
Az Élet és Irodalom e heti számában megjelent a Független Magyarországért- 
plakátod fényképe. Amennyiben még nem küldtek honoráriumot érte, úgy je-
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lentkezzél a  szerkesztőségben. A  rendelkezésre bocsáto tt fényképet nekem  fog­
ják  v isszaküldeni, és m ajd  e lju tta tom  H ozzád.
Sajnálom, hogy műteremkiállításodat nem tekinthettem meg, pont akkor elő­
adást tartottam.
Az Ady-fejet illetően megbízottad jelentkezhet a napokban.

Budapest, 1962. március 22.
Szívélyes üdvözlettel 

Vértes György

259.

(Levél a Magyar Forradalmi Munkás-Paraszt Kormány 
Elnökhelyettesének T it kár s ágát ól)

Kedves elvtárs!
Kállai elvtárshoz írt levelét megvizsgáltattuk a Művelődésügyi Minisztérium­
mal. A Képzőművészeti Osztály a Bartók-szobor bronz példányát megvásárol­
ja, s a Képzőművészeti Alap igazgatójával megbeszéli, hogy a vásárlási ösz- 
szegből ne vonja le az Ön tartozásait.
Egyébként Kállai elvtárs a kiállítása megnyitójára szóló meghívót megkapta, 
de betegsége miatt azon nem tudott részt venni.

Budapest, 1962. március 24.
Elvtársi üdvözlettel: 

Nagy László

260.
(Levél a Jókai Színház igazgatójától)

Kedves Bokros-Bierman elvtárs!

Budapest, 1962. április 10.

Műtermi kiállítására szóló meghívóját örömmel vettem kézhez, de -  sajnos -  
abban az időben nem voltam Pesten, külföldön léptem fel és így megtisztelő 
meghívásának nem tehettem eleget.
Abban a reményben, hogy alkalmam lesz az utóbbi időben készült műveit lát­
nom, maradok művészetének és önnek

tisztelő híve 
Keres Emil

261.

(Üzenet az albérlőnek)

Budapest, 1962. április 11.

Furcsa teremtmény az ember. Ha kell, számolni sem tud. 76,- Ft-nak nem 
30,- Ft a 70%. Igaz, ön  23 napot nem töltött lakásában -  de gondoskodott ar­
ról, hogy másik két személy pótolja Önt távollétében.
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Furcsa teremtmény az ember! Nem mindig buta, csak néha azért korlátolt. A 
70%-ot pótolja ki, s csak azt mondom: furcsa teremtmény az ember!

262.
B. B.

(Levélfogalmazvány az Újkori Történeti Múzeum igazgatójához)

[Budapest, i]962. V. 18.

Tisztelt Igazgató elvtárs!

Ismerve az Ön által vezetett intézet érdeklődési körét, úgy gondolom, helye­
sen teszem, ha felhívom a figyelmét két -  tulajdonomban levő munkámra. 
Áchim András-emlékmű terve az egyik, melyet 1924-ben készítettem és 1925- 
ben egy a Mentor-beli kiállításon mutattam be.
A  m ásik  az E gységfron t c. p lakettem . 1 9 3 0 -ban  készült.
A m ennyiben érdek li Ö n ö k et a nevezett ké t m unkám , kérem , keressenek fel mű- 
term em ben.
Jövetelük időpontját előzőleg egy lapon közöljék velem.

1962. V. 18. postára téve.

263.

(Levélfogalmazvány Csehszlovákiába) 

Kedves Dömötör Teréz!

Azért fordulok Önhöz levelemmel, hogy a kossuthi mártír-emlékműről ittjárta- 
kor tudomásomra hozott értesüléseit levél útján újra kikérjem. Nagyon kérem, 
írjon le pontosan mindent, amit ebben az ügyben tud.
Lehetséges ugyanis, hogy rövidesen személyesen is felkeresem a szóban for­
gó emlékművet.

1962. V. 18. postára téve.

(A  művész értesítése)

Kállai Gyula elvtársnak 
Budapest

264.

Budapest, 1962. augusztus 23.

Kedves Gyula!

Az elmúlt tél folyamán ígéretet tettem Neked, hogy készítek számodra egy kis­
plasztikát. Erre mostanában került sor: elkészítettem részedre egy Bartók-bronz 
kisplasztikát, melyet szeretnék Neked személyesen átadni. Kérlek, közöld ve­
lem, hogy mikor és hol adhatnám ezt át Neked.
Válaszod várva, vagyok

elvtársi üdvözlettel
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(A  bronzöntő levele)
2 6 5 .

Igen tisztelt Művész Űr!
Elnézést kérek a zavarásért, valószínűleg el tetszett felejtkezni rólam, ti. a kis 
Bartók-fejekért még 450 Ft járandósága van a Művész úrnak. Nagyon meg­
kérem, szíveskedjék postafordultával elintézni.
Még egyszer elnézést kérek.
B[uda]pest, 1963. aug. 26. maradtam teljes tisztelettel

Baumgartner József

(Ügyvédi jegyzőkönyv)
266.

Tény vázlat

Felvéve az 1. sz. ÜMK-ban 1963. október hó 8. napján, Bp. V. kér. Kecskeméti 
u. 13. II. em. dr. Krámer István ügyvéd által.
Megjelenik Bokros Birman Dezső nyugdíjas szobrászművész és előadja a kö­
vetkezőket :
Ismeretlen tettes ellen feljelentést tettem a XIII. kér. Teve u. 6. rendőrségen, 
mert egy nagyértékű szobromat ellopták a lakásomból.
Gyanakodom az albérlőmre, baráti körére, ill. a feljelentésben is szereplő ta­
nítványomra.
Albérlőm egy ízben már lopott tőlem plasztelint, ezzel az üggyel már fordul­
tam a rendőrséghez. Akkor ő a plasztelint vissza is adta.
Kérem, hogy nézzenek utána a rendőrségen: hogyan áll ez az ügy, és az eset­
leges lépéseket megtenni szíveskedjenek.

Ügyfél tudomásul veszi, hogy a munkadíj a későbbiekben, az eljárások meny- 
nyiségétől függően, ill. a tevékenység minősége megállapítása után lesz meg­
állapítva.
Kéri ügyintézőül kijelölni dr. Krámer István ügyvédet.
Tudomásul veszi, hogy 10 Ft illetékbélyeget a meghatalmazásra le kell róni.

Kmf.

267.

(Megállapodás a Napbanéző című szoborra vonatkozólag)

Megállapodás

Mely köttetett egyrészről Bokros Birman Dezső szobrászművész, másrészről 
Laczkovich Alice között.
Bokros Birman Dezső szobr. m. Napbanéző c. szobra 2.20-as méretben való 
elkészítéséért, a szobor gipszben való átadásáért Laczkovich Alice 14 000, azaz 
Tizennégyezer Ft-ot kap fent nevezett Bokros Birman Dezső szobr. m.-től. A 
fizetés három részletben történik. Az első részlet, 5000, azaz Ötezer Ft a meg-
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álla'podás aláírásakor, a második részlet, 4000, azaz Négyezer Ft az agyag­
szobor elkészülésekor, a harmadik részlet, 5000, azaz Ötezer Ft a szobor gipsz­
ben való átadásakor történik.

В [uda]p[est,] 1964. szept. 23.

268.

(Levél a Magyar Nemzeti Galériától)

Kedves Mester!
Engedd meg, hogy hetvenötödik születésnapodon a Magyar Nemzeti Galé­
ria dolgozói nevében sok szeretettel köszöntselek.
A többi magyar művészettörténészhez hasonlóan a Galériában működők is 
meghatott tisztelettel gondolnak Rád ma, amikor Benned egyszemélyben üdvö­
zölhetik az élő hagyományt és az eleven alkotó géniuszt, s mint fiatalabb kor­
társak köszönhetik meg Neked munkásságod szép eredményeit, képzőművésze­
tünk maradandó termésének gyöngyszemeit.
Azt kívánjuk valamennyien, hogy jó egészségben folytasd áldásos tevékenysé­
gedet, további remekművekkel gyarapítsd hazánk kulturális kincstárát.

Budapest, 1964. november 19. Baráti üdvözlettel híved
dr. Pogány Ö. Gábor 

főigazgató

269.
(Levél a Hazafias Népfront 
XIII. kér. Bizottságától)

Kedves Mester!
Budapest, 1965. jan. 15.

Örömmel vettük értesítését, hogy szívesen látja kerületi Népfront Bizottsá­
gunk Kisiparos Akcióbizottságának látogatását az Ön műtermében.
A meghívásnak eleget téve, 1965. január 23-án, szombaton du. 4 órakor láto­
gatjuk meg Önt.

Hazafias üdvözlettel: 
Garami Győzőné 

titkár

270.
(Részlet egy újságcikkből)

Magyar Nemzet 
kedd, 1965. január 26.

Bokros Birman Dezső Kossuth-díjas szobrászművész, a Magyar Népköztár­
saság érdemes művésze, életének 75. évében villamosszerencsétlenség következ­
tében meghalt. Az elhunyt művészt a Magyar Képzőművészek Szövetsége és 
a Magyar Népköztársaság Képzőművészeti Alapja saját halottjának tekinti. 
Temetéséről később történik intézkedés.
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JEGYZETEK A LEVELEZÉSHEZ

1 A z M T A  M ű v é sz e ttö r té n e ti K u ta tó  C so p o rtján a k  A d a t tá r á b a n :  M ű v é sz e ttö r té n e ti D o k u ­
m en tác ió s K ö z p o n t (a  to v á b b ia k b a n : M D K ) C - I -1 8 /5 7 8 .  N y o m ta to tt  ű r lap o n  k iá ll í to tt  
an y ak ö n y v i k iv o n a t. S zám a: 32/1964. F e lü l g é p írá ss a l: „S zem élyazonosság i ig azo lv án y  cél­
já ra  i lle té k m e n te s .”  -  A z  i t t  kö z lés re  k e rü lő  k ü lö n b ö ző  d o k u m en tu m o k b an  a  m űvész  n ev é t 
nem  egy fo rm án  ír tá k . E zen  nem  v á lto z ta ttu n k . A  lev e lezésb en  e lő fo rd u ló  n ev ek  közü l 
n éh án y a t csak  m on o g ram m al je lö lü n k , an é lk ü l, hogy  e rre  e s e ten k én t k ü lö n  fe lh ív n á n k  a  
figyelm e t.

2 M D K -C -1 - 1 8 /4 9 8 .  „M o d e rn  Ip a rm ű v észe t D o m b o rm ű  V á lla la t”  s tb . fe lírású  n y o m ta to tt 
lap o n  k iá ll í to tt ,  O km ánybélyeggel e llá to tt  b izony ítvány .

3 M D K - C - I - 1 8 /5 6 7 .  A z  „O rszág o s M a g y .-K ir .  Ip a rm ű v észe ti I s k o la ”  okm ánybélyeggel e l­
lá to t t  h iv a ta lo s  b izo n y ítv án y a .

4 M D K —С—I —18/59. „ B u d a p e s t  S zék esfő v á ro s T a n á c sa ”  n y o m ta to tt fe lírá sú  h iv a ta lo s  p ap ír .
5 M D K - C - I —1 8 /6 3 .1 -2 . C ím zés a b o r íté k o n : B okros B irm an  D ezső  szob rászm űvész  ú r, B u d a ­

pest, X IV ., A jtó s i D ü re r  so r 13. F e la d ó : M á rto n  Ö d ö n , B u d a p est, II. B im bó ú t 5.
6 M D K - C - I - 1 8 /5 7 0 .  A  S véd  V ö rö sk e re sz t m ag y aro rszág i fő m eg b ízo ttjá n ak  v é d ő le v e le . A 

la p  a lján  B okros fe lrag a sz to tt fén y k ép e ; három  körpeosét.
7  M D K - C - I - 1 8 /5 7 7 .  S ten c ileze tt ű r la p , n y o m ta to tt fejléccel. Ü g y ira tszám : 221.785.1945. X X. 

ü .0 .786 /6 . L en t b a lr a :  „ A  k ia d v á n y  h ite léü l S zabó  s. h ív . ig azg a tó ” .
8 M D K —C - I - 1 8 /6 9 .1 - 2 .  A  „M u n k ás  K u ltú rszö v e tség  O rszág o s K ö z p o n tja , B u d a p e s t”  fe l­

írá sú  n y o m ta to tt le v é lp a p íro n  ír t levél.
9 M D K —C - I —18/72. A  „M ag y a r K o m m u n ista  P á r t  K ö zp o n ti V eze tő ség e  P ro p a g a n d a  O s z tá ly ” 

fe lírá s ú  n y o m ta to tt lev é lp ap íro n  ír t  lev é l. A lá írá s , k ö rp ecsé t.
10 M D K - C - I - 18/73. G é p e lt  levé l m á so d p é ld án y a , p o n to sa b b  cím zés és a lá írá s  né lk ü l. (A  

h á tla p o n  ce ru záv a l, B okros írá sá v a l:  „ R Á D IÓ  F E L O L V A S Á S R Ó L  Í R N I ” .)
A  lev é l szö v eg éb ő l k id e rü l, hog y  B okros te s tv é re  a c ím zett.

и  M D K - C - I - 18/7 5 .1 -2 . „ D r . G eg esi K iss P á l egyetem i ny. r. ta n á r ”  fe lírású  n y o m ta to tt 
le v é lp a p íro n  gép p e l so k szo ro s íto tt lev é l. C ím zés a  b o ríté k o n .

11 M D K - C - I - 18/5 30. C e ru záv a l ír t lev é lfo g a lm azv án y .
I) M D K - C —I - 18/76. A  M ag y ar N e m z e ti M úzeum  rég i (1945 e lő tti)  n y o m ta to tt lev é lp a p ír já n  

íro tt  le v é l.
14 M D K - C - I - 1 8 /7 7 .1 - 2 .  „M ag y ar V a llá s -  és K ö zo k ta tá sü g y i M in isz té riu m ”  d o m b o ríto tt fe l­

írású  le v é lp a p íro n  íro tt  h iv a ta lo s  levé l. Ü g y ira tszám  a  b o r íté k o n : 131 .880 /1946 .V II.
í j  M D K - C - I - 1 8 /7 9 .  G é p e lt  e lszám o láste rv eze t. E g y  k o rá b b i (1946. n o v em b er 28 .), M D K -  

C —I —18/78. lt.sz .-on  sz e re p lő  lap h o z  k é p e s t  m ó d o s íto tt, fe lem elt végösszegű  elszám olás.
16 M D K - C - I - 1 8 /8 0 .  D r . G egesi K iss P á l egyetem i ny. r. ta n á r  n y o m ta to tt lev é lp a p ír já n  

g ép p e l so k szo ro síto tt lev é l.
i i  M D K - C - I - 1 8 /8 1 .1 - 2 .  A  „M ag y ar T á jek o z ta tá sü g y i M in isz té riu m , B e lfö ld i O sz tá ly ”  fe l­

írá sú  b o r íté k b a n  'h iv a ta lo san  k ü ld ö t t  levé l.
18 M D K - C - I —1 8 /8 2 .1 -2 . A  „M ag y ar V a llá s -  és K ö zo k ta tá sü g y i M in isz té r iu m ” d o m b o ríto tt 

fe lírá sú , c ím eres lev é lp a p ír já n  ír t, g ép p e l so k szo ro síto tt levé l. Ü g y ira tszám : 27.799/1947.
V II.ü .o . C ím zés a  lev é l a l já n  és a  b o ríté k o n . B a lra  le n t :  „ A  k ia d v á n y  h i t e l é ü l .....................
I ro d a v e z e tő ” .

/9  M D K - C - I - 1 8 /8 3 .  G é p p e l í r t  lev é l m á so d p é ld án y a . K ö ze leb b i cím zés n é lk ü l. A  h á tla p o n  
tö b b , c e ru záv a l ír t  fe ljegyzés.

20 M D K - C - I - 1 8 /8 4 .1 -2 . G é p p e l so k szo ro síto tt m eg h ív ó  a  „F é sz e k ”  M ű v észek  K lu b ja  nyom ­
ta to t t  b o ríté k já b an .

ii  M D K - C - I - 1 8 /8 5 .1 - 2 .  D r . G eg esi K iss P á l egyetem i ny. r . ta n á r  n y o m ta to tt le v é lp ap ír ján  
íro tt levél.

22 M D K - C - I - 1 8 /8 6 .  P o sta i lev e lező lap . F e la d ó :  B án B éla , Bp. V ,, B ajcsy-Z silioszky  ú t 50. 
B án  B éla  (1 9 0 9 -1 9 7 2 ) festőm űvész.

23 M D K - C - I - 1 8 /9 3 .  D r . G egesi K iss P á l egyetem i ny. r. ta n á r  n y o m ta to tt le v é lp a p ír já n  íro tt 
lev é l.



24 M D K —C —I—18/87. D r . G egesi K iss P á l egyetem i ny. r. ta n á r  n y o m ta to tt le v é lp a p ír já n  írt 
lev é l.

2; G e ra  É v a  tu la jd o n a . „M ag y ar K o m m u n ista  P á r t  K ö zp o n ti V eze tő ség e  É rte lm iség i O sz tá ly , 
B u d a p e s t”  fe lírású  n y o m ta to tt lev é lp ap íro n .

26 M D K - C - I - 1 8 /8 8 .1 - 2 .  A  „48-as L án ch íd  B izo ttság ” n y o m ta to tt m eg h ív ó ja , e re d e ti  a lá ­
írással.

27 M D K - C - I - 18 /9 1 .1 -2 . A  „M ag y a r V a llá s - és K ö zo k ta tá sü g y i M in isz té r iu m "  sten c ile ze tt 
n y o m ta tv án y a , e re d e ti a lá írá ssa l. S zám a: 84 .977 /1947 /V II.

28 M D K - C - I - 18/92 .1—2. D r . G eg esi K iss P á l egyetem i ny. r. ta n á r  n y o m ta to tt lev é lp a p ír já n  
ír t  levél.

29 M D K - C - I - 1 8 /9 4 .  A  „F ö ld m u n k áso k  és K isb ir to k o so k  O rszág o s S zö v etség e”  n y o m ta to tt 
lev é lp a p ír já n  ír t  levé l. A lá írá s , k ö rp ec sé t.

30 M D K - C - I - 1 8 /9 5 . „M ag y ar T á jék o z ta tá sü g y i M in isz te r”  fe lírá sú  nyom tato tt; lev é lp ap íro n  
ír t levél.

)i M D K - C - I - .  18 /98 .1 -2 . „ B u d a p e s t S zékesfőváros P o lg á rm e ste re”  fe lírá sú , n y o m ta to tt le v é l­
p ap íro n  k ü ld ö t t  é r tesítés . Ü g y ira tszám : 2 2 2 .9 4 9 /1 9 4 7 -X I.ü .o . B a lra  le n t :  „ A  k iad m án y  h i­
te lé ü l B p. 1947. jú l. 25. B eniczky S án d o r s. hiv . ig azg a tó ” .

32 M D K - C - I - 18/97. A  „M ag y ar V a llá s - és K ö zo k ta tá sü g y i M in isz té r iu m ” h iv a ta lo s  é r te s í­
té se . Ü g y ira tszám : 8 7 .369/1947.V II. E lő a d ó : d r. B orecky L ász ló  m in. t i tk á r .  B a lra  le n t:  
„ A  k iad m án y  h ite léü l Szilágyi ro v a tv e z e tő ” .

33 M D K - C - I - 1 8 /9 9 .1 -2 . „M ag y a r K öz lek ed ésü g y i M in isz té riu m  S a jtó szo lg á la tá n ak  V eze tő je”  
fe lírású  n y o m ta to tt lev é lp a p íro n . A  bo ríték o n  ce ru záv a l k é sz ü lt v á z la to k  a p lak e tth ez .

34 M D K - C - I - 18/96. G ép p e l so k szo ro síto tt lev é l.
35 M D K - C - I - 1 8 /1 0 0 .1 - 2 .  „B u d a p e s t S zékesfőváros K é p tá r a ” fe lírású  n y o m ta to tt b o ríté k b an  

k ü ld ö t t  levé l. C ím zése: B okros B ierm an n  D ezső  szob rászm űvész  ú rn ak , B u d a p es t, V I., 
E ö tv ö s  u. 58.

36 M D K - C - I - 1 8 /1 0 1 .  „M ag y ar K o m m u n ista  P á r t  K ö zp o n ti V eze tő ség é  É rte lm iség i O sz tá ly , 
B u d a p e s t”  fe lírású  n y o m ta to tt lev é lp a p íro n  ír t levé l.

37 M D K - C - I - 1 8 /1 0 2 .  A  „M ag y ar V a llá s -  és K ö zo k ta tá sü g y i M in isz té riu m  M ű v észe ti Ü gy­
o sz tá ly a” fe lírású  n y o m ta to tt lev é lp ap íro n .

38 M D K -C -I -1 1 8 /1 0 3 . „M ag y ar K o m m u n ista  P á r t  K ö zp o n ti V eze tő ség e  É rte lm iség i O sztály , 
B u d a p e s t” fe lírású  n y o m ta to tt lev é lp ap íro n  ir t lev é l. A lá írá s , k ö rp ecsé t.

39 M D K - C - I - 1 8 /1 0 4 .  G é p e lt  lev é l, a lá írá ssa l.
40 M D K - C - I - 1 8 /108. G é p e lt  lev é l. C ím zés: T . B okros B ierm an n  D ezső  ú rn ak , szobrász- 

m űvész , B u d a p est, V ., K a to n a  J . u. 28. sz.
41 M D K - C - I - 1 8 /1 1 0 .  G é p p e l í r t  m eg á llap o d ás .
42 M D K - C - I - 1 8 / i ' i i .  A lá írá s  n é lk ü li á tv é te li  e lism erv én y .
43 M D K - C - I - 1 8 /1 13. „M ag y ar K o m m u n ista  P á r t  K ö zp o n ti V eze tő ség e  É rte lm iség i O sz tá ly , 

B u d a p e s t” 'felírású  n y o m ta to tt le v é lp a p ír . A lá írá s , k ö rp eo sé t. A  m eg szó lítá s  fe le t t :  „B o k ro s- 
B ierm an  e lv tá rsn ak , B u d a p es t” .

44 M D K - C - I - 1 8 /1 18. T á b o ri p o sta i lev e lező lap . F e la d ó :  Szegi P á l, B p. I I . ,  B rany iszkó  ú t  11/c. 
Szegi P á l (1902—1958) m űvészeti író , 1949-1953  k ö z ö tt  a  S zab ad  M ű v észe t cím ű fo ly ó ­
ir a t  fő szerkesztő je .

45 M D K - C - I - 1 8 /1 15. G ép írá so s  lev é l.
S za la tn a i R ezső  író , m ű fo rd ító , iro d a lo m k ritik u s .

46 M D K - C - I - 1 8 /1 1 7 .1 - 2 .  „M ag y a r K o m m u n is ta  Párt K ö zp o n ti V eze tő ség e  É rte lm iség i O sz ­
tá ly , B u d a p e s t”  fe lírá sú  n y o m ta to tt lev é lp ap íro n  ír t lev é l. Aláírás, k ö rp ecsé t. M egszó lítás 
h e ly e tt:  „B o k ro s-B irm an n  e lv tá rs , B u d a p es t” .

47  M D K - C - I —18/119. P o sta i lev e lező lap . C e ru záv a l í r t  szöveg  és cím zés. F e la d ó  n é lk ü l, de 
az  „ U b u l”  a lá írá s  K á lla i  E rn ő re  u ta l. A  po stab é ly eg ző  k e l te :  1948. I I . 6.
K á lla i  E rn ő  (1 8 9 0 -1 9 5 4 ) m ű v észe ti író , k r itik u s .

48 M D K - C - I - 1 8/121. A z E x p ressio n s e lnevezésű  gen fi g a lé r ia  eb b en  a lev é lb en  rö g z íti B okros 
m ű v e in ek  a  g a lé r iá b a n  tö r té n ő  k iá llítá s i fe lté te le it .
A  lev é l fo rd ítá s a :
„U ram ,
M ű v e i 1948. fe b ru á r  2 3 -m áro iu s  4. k ö z ö tt  g a lé r iá n k b a n  ren d ezen d ő  k iá llítá sá n a k  fe lté te le it  
a z  a lá b b ia k b a n  rö g z ítjü k :
1. 3 0 0 ,-  fr  (három száz  fran k ) , am elybő l 1 5 0 ,-  f r-o t (százö tven  fran k o t)  m eg k ap tu n k  és 
1 5 0 ,-  fr  (százö tv en  frank ) ré szü n k re  tö r té n ő  b e fize té se  leg k éső b b  1948. fe b ru á r  25-ig ;
2. k ö z lem én y t fogunk  m eg je len te tn i a T rib u n e  d e  G e n év e -b en  és a  Jo u rn a l de  G en év e -b en , 
és 300 m eg h ív ó t p o stán  k ü ld ü n k  sz é t;
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3- a  k iá llítá s  1948. f e b ru á r  z j - á n  11 ó ra k o r  n y íl ik ;  a  ren d ezés  k ö ltsé g e i ö n ö k e t «érhetik . 
F o g a d ja  u ram , m eg b ecsü lésü n k  k ife je z é sé t.”

49  M D K - C - I - 18 /123 .i - A  A  „M a g y a r  V a llá s -  és K ö zo k ta tá sü g y i M in isz té riu m  K ü lfö ld i 
K u ltu rá lis  K a p c s o la to k ”  stb . fe lírá sú  n y o m ta to tt le v é lp a p íro n  í ro tt  le v é l. C ím zés a  b o r í té ­
k o n : „M . D é s iré  B ö k ro s-B irm ao , P en sio n  E lisa , 12 ru e  d e  C h a n te p o u le t. G e n e v e . S u isse .”

j o  M D K - C —1 -1 8 /9 .2 . B okros ce ru záv a l' í r t  szö v eg e .
J г M D K —C - I - 1 8 /9 .1 - 4 .  G é p írá so s  sz ö v e g ; a  h á to ld a lo n  id e g e n  k éz írá s .
52 M D K - C - I - 118/9.3-4. G é p írá so s  szöveg . F e n t B o k ro s ír á s á v a l :  „ P á n n a l á to lv a s ta tn i  és 

m ag y a r  n y e lv re  á t te n n i .”
53 M D K - C - I - 1 8 /5 1 7 .1 -2 . A z  „U n io n  In te rn a tio n a le  d e  R a d io d if fu s io n ”  n y o m ta to tt  b o r í té k ­

já b a n  k ü ld ö t t  lev é l. P o stab é ly eg ző  n é lk ü l. C ím zése : „ M o n s ie u r  B o k ro s-B irm an , P ension  
E lis a , C h a n te p o u le t, E . V .”
A  lev é l fo rd ítá s a :
„ K e d v e s  B o k ro s-B irm an  Ú r,
Ö rü lö k , hogy a  Jo u rn a l d e  G e n év e -b en  m a reggel m e g je len t a  c ikk  (b izo n y ára  lá tn i 
fo g ja ). N ag y o n  e lé g e d e tt  vag y o k , ho g y  R h e in w a ld n a k  te tsz ik  az  A d y -b ü sz t.
A  fo tó k a t a d ja  á t  K r is tó ffy n a k  az  I l lu s tré  ré szé re , v ag y  a d ja  le  n á lam  egyik  n ap , ha 
e r re  já r. R em é lem , hogy  a  d o lo g n ak  ez  a  ré sze  m en n i fog . H a  tu d o k , hí>1 n ap  fe lu g ro k  
m ag áh o z  a p en z ió b a . T e g n a p  nag y o n  el v o lta m  fo g la lv a , egy k a to n a i  v iz sg á la t m ia tt, én 
szegény  b a k a !
B ocsásson  m eg  e ls ie te tt  so ra im ért és fo g a d ja  sz ívélyes ü d v ö z le te m e t

G ilb e r t  T ro ll ie t
H a  nem  v ag y o k  o tth o n , o t t  le h e t hag y n i a  b o r íté k o t az  a jtó m  e lő tt  (a  b e lső n é l) , ha  a  
lev é lszek ré n y  tú l kicsi len n e .
V iszem  m a jd  K o m ló s u rn á k  a  H u b a y n a k  szóló le v e le t. E g y  v a g y  k é t fén y k ép rő l is fogok 
beszé ln i a  P ré sen ce  ré szé re  (le  R e v u e ) .”

54 M D K - C - I - 1 8 /5 1 2 .1 - 2 .  F ra n c iá u l ír t  lev é l m ag y ar fo rd ítá s a . G é p e l t  sz ö v eg ; ja v ítá so k  
tin tá v a l.

J5  M D K - C - I - 1 8 /1 2 6 .1 - 2 .  A  „M a g y a r  V a llá s -  és K ö zo k ta tá sü g y i M in isz té r iu m ” d o m b o ríto tt 
fe lírá sú  le v é lp a p ír já n , B okros B irm an  D ezső n ek  P á r iz sb a  k ü ld ö t t  lev é l. Ü g y ira tszám : 
2 4 5 .1 18/1948.X . E lő a d ó :  D r . B o ro n k ay  A n ta l  m in isz te r i t i tk á r .  C ím zés a  lev é l a l já n  és 
a  b o rító k o n .

56 M D K - C - I - 1 8 /1 2 8 .1 -2 . B okros k éz írá so s  lev é lfo g a lm azv án y a .
J 7 M D K - C - I - 1 8 /1 2 9 .1 - 2 .  A  „M a g y a r  V a llá s -  és K ö zo k ta tá sü g y i M in isz té riu m  K ü lfö ld i  K u l­

tu rá lis  K a p c s o la to k ”  stb . fe lírá sú  le v é lp a p ír já n  í ro tt  lev é l. C ím zés a  b o r íté k o n : „M . D és iré  
B okros B irm ann  c/o  M . E tie n n e  L e lk es , In s ti tu t  H o n g ro is , 18 ru e  P ie rre  C u rie , P aris 
5е. F ra n c e .”

58 M D K - C —I —18/927. „ ifj. F isd h er T ib o r  te rv e z ő  és ta n á c s a d ó  é p íté s z ”  fe lírású  n y o m ta to tt 
le v é lp a p íro n  íro tt  lev é l. A  szö v eg rész  in d ig ó v a l készü lt. A  cím zés e r e d e ti  g é p e lé s ű : B okros 
B irm an n  D ezső  ú rn ak , szob rászm űvész , B u d a p est, V ., K a to n a  Jó z se f u. 28.

59 M D K - C - I - 1 8 /1 3 0 .1 - 2 .  S im a le v é lp a p íro n , író g ép p e l ír t  lev é l.
5 0 M D K - C - I - 1 8 /8 9 .  B okros kézze l ír t  lev é lfo g a lm azv án y a  a  P á riz s i M a g y a r In té z e t  igaz­

g a tó jáh o z , L e lkes Is tv á n h o z . A t in ta  h e ly e n k é n t e lm o só d o tt. A k ih a g y o tt szó : „ p ro p á n g a ”  
-  p ro p a g a n d a ?

61 M D K - C - I - 1 8 /5 2 3 .  N é m e t A la d á r  n y o m ta to tt le v é lp a p ír já n  kézze l ír t  (nem  B okros k éz ­
írá sa )  m e g á lla p o d á s , a  m ű v ész  a lá írá sá v a l.

61 M D K - C - I - 1 8 /1 3 4 .  G é p p e l ír t, ce ru záv a l ja v íto tt  lap .
63 M D K - C - I - 1 8 /1 3 5 .  G é p p e l ír t  lev é l m á so d p é ld án y a .
64 M D K - C - I - 1 8 /1 3 6 .  P o sta i le v e lező lap .
6j  M D K - C - I - 1 8 /1 3 7 .1 - 2 .  „M a g y a r  M ű v é sze t”  stb . fe lírá sú  n y o m ta to tt  le v é lp a p íro n  ír t 

le v é l.
66 M D K - C - I - 1 8 /1 3 8 .  G é p írá so s  lev é l m áso d p é ld án y a . A  c ím ze tt: Szenes Á rp á d , P á riz sb an  

élő  m ag y a r  szárm azású  festőm űvész .
67 M D K - C - I - 1 8 /1 3 9 .1 - 2 .  „ A  V a llá s -  és K ö zo k ta tá sü g y i M in isz te r tő l”  fe lírá sú  n y o m ta to tt 

le v é lp a p íro n  és b o rító k b a n  k ü ld ö tt  é rte s íté s . B a lra  le n t :  B okros B ie rm an n  D ezső  ú rn ak , 
szob rászm űvész , B u d a p e s t, K a to n a  Jó z se f  u . 28.

68 M D K - C - I - 1 8 /1 4 0 .  „ In s t i tu t  H o n g ro is”  stb . fe lírású  n y o m ta to tt lev é lp a p íro n  P á riz sb ó l 
k ü ld ö t t  le v é l. S zám a: 1435/1948.

69 M D K - C - I - 1 8 /1 4 2 .  G é p p e l í r t  le v é l m á so d p é ld án y a .
70 M D K - C - I - 1 8 /1 4 5 .  G é p p e l í r t  lev é l m á so d p é ld án y a .
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M D K - C - I - ' i  8 /146. „ In s ti tu t  H o n g ro is”  stb . fe lírá sú , P á riz sb ó l k ü ld ö t t  lev é l. S zám a: 
1665/1948.

72 M D K - C - I - 1 8 /1 4 7 .1 - 2 .  „S á ro sp a tak i S zab ad m ű v e lő d és i A k a d é m ia ”  fe lírá sú  n y o m ta to tt 
le v é lp a p íro n  ír t  lev é l.

73 M D K - C - I - 1 8 /1 5 0 .1 -2 . „ In s ti tu t  H o n g ro is”  stb . fe lírású  n y o m ta to tt le v é lp a p íro n  ír t  levél.
74 M D K - C - I - .1 8 /1 5 3 .1 -2 . „ B u d a p e s ti É p íté s i H iv a ta l”  stb . fe lírású  n y o m ta to tt lev é lp ap íro n  

ír t  lev é l. B a lra  f e n t:  B akus (sic!) B irm an  D ezső  szob rászm űvész  ú rn ak , B u d a p est, K a to n a  
Jó z se f u tca  28. II. 11.

7} M D K - C - I - 1 8 /1 5 5 .1 -2 . Szegi P á l kézze l ír t  leve le .
76 M D K - C —I—1 8 /1 56.1—2. G ép írá so s  k ö rlev é l. C ím zés a  b o ríté k o n .
77 M D K - C - I - 1 8 / 1 59 .1 -2 . A z  „ In s ti tu t  H o n g ro is”  n y o m ta to tt le v é lp a p ír já n  íro tt  levé l.
78 M D K - C - I - 1 8 /1 6 5 .  A  V a llá s -  és K ö z o k ta tá sü g y i M in isz té riu m  é rte s íté se . Ü g y ira tszám : 

220 .859 /1 9 4 8 .V II. B a lra  l e n t :  „ A  'k iad v án y  h ite léü l D o m a  S án d o r iro d a v e z e tő  h .”
79 M D K - C - I - 1 8 /5 0 6 .  A  lev é l fe lső  jo b b  s a rk á b a n : T a lló s  P . Is tv á n , M a g y a ró v á r, V á ro s ­

k a p u  té r  5.
So M D K - C - I - 1 8 /1 76. T a lló s  P . Is tv á n  p o sta i le v e le z ő la p ja . F e la d ó  fe ltü n te té se  né lk ü l.
Sí G e ra  É v a  tu la jd o n a . A  „ M a g y a r  K ép ző m ű v észek  S z a b a d s z e rv e z e te ”  n y o m ta to tt  le v é l­

p a p ír já n . A lá írá s  asak  író g é p p e l;  kö rp ecsé t.
S2 M D K - C - I - 18/499. A z 1949. év i tá v i r a t  szö v eg é t b e tű  sz e rin t k ö zö ljü k .
83 G e ra  É v a  tu la jd o n a . G é p p e l í r t  lev é l m á so d p é ld án y a .
84 M D K - C — I—18/1181. A  „ F É S Z E K  M ű v észek  K lu b ja  e ln ö k e ”  n y o m ta to tt fe lírá sú  le v é lp a ­

p íro n  í r t  g é p e lt m eg h ív ó . A  m egszó lítás fe le t t :  B o k ro s-B ie rm an n  szo b rászm ű v ész  ú rn ak , 
B u d ap est.

85 M D K - C - I - 1 8 /1 8 2 .  „ A  m ag y ar k ö z tá rsa ság i e ln ö k  t i tk á ra ”  n y o m ta to tt  fe lírá sú  lev é lp ap íro n
ír t  é r tesítés . B a lra  le n t :  B okros B ie rm an n  D ezső  ú rn a k , B u d a p est.

86 G e ra  É v a  tu la jd o n a . A  „M ag y a r D o lg o zó k  P á r t ja  K ö z p o n ti V eze tő ség e , F ő t i tk á rs á g ”  fe l­
írá sú  n y o m ta to tt lev é lp ap íro n . S zám a : F M /2 3 4 7 . M eg szó lítás  h e ly e tt :  B okros B irm an  D e ­
zső e lv tá rsn ak , B u d a p es t, V ., K a to n a  Jó z se f u. 28. I I . 12.

81 M D K - C - I - i '8 /1 '8 3 .  A  „M ag y a r M ű v észe ti T a n á c s”  n y o m ta to tt  le v é lp a p ír já n  ír t  levé l. 
S zám a : 334/1949. K ép ző - és ip a rm ű v észe ti szak tan ácso k . E lő a d ó :  D r . Z o m b o ri M ik lós. 
B a lra  le n t :  „ A  k ia d v á n y  h i te lé ü l:  1949. áp rilis  1. [o lv a sh a ta tla n  a lá ír á s ] .”

88 M D K - C - I - 1 8 /1 8 4 .1 - 2 .  A  „M ag y a r M ű v észe ti T a n á c s”  n y o m ta to tt  le v é lp a p ír já n  ír t  levé l. 
C ím zés a  b o ríté k o n .

89 M D K - C - I - 1 8 /1 8 5 .1 - 2 .  A  „M ag y a r M ű v észe ti T a n á c s”  n y o m ta to tt le v é lp a p ír já n  í r t  levé l. 
A  b o r íté k o n  a  cím zés a la t t :  „ T á v o llé té b e n  t i tk á ra  á lta l is f e lb o n ta n d ó !”

90  M D K - C - I - 1 8 /1 8 6 .  A  V a llá s -  és K ö zo k ta tá sü g y i M in isz té riu m  en g ed é ly e . S zám a: 267 .799/ 
i 949.X .

91 M D K - C - I - 1 8 /1 8 7 .  C e ru záv a l ír t  lev é l.
92 M D K - C - I - 1 8 /1 9 2 .1 - 2 .  A  V a llá s -  és K ö z o k ta tá sü g y i M in isz té riu m  lev e le . C ím zés a  b o r í­

ték o n  és a  lev é l v é g é n : B okros B ierm an n  Jó z se f (sic!) ú rn ak , B u d a p est. B a lra  le n t:  
,,A  k iad m án y  h ite léü l G ry lk a  Já n o s  iro d a v e z e tő .”

93 M D K - C - I - 1 8 /1 9 3 .  A z  É p íté s -  és K ö zm u n k aü g y i M in isz té riu m  (a „K ö zm u n k aü g y i”  k iü tv e )  
n y o m ta to tt le v é lp a p ír já n  íro tt  le v é l. S zám a: 10068/1949 .e ln ./b . K a rp e c s é t, a lá írá s .

94 M D K - C - I - 1 8 /1 9 6 .1 -2 . F ü s t M ilán  k éz írá so s  lev e le .
95 M D K - C - I - 1 8 /1 9 7 .  A  „M ag asé p íté s i T e rv ez ő  In téze t L a k ó é p ü le tte rv e z ő  I ro d a ”  n y o m ta to tt 

le v é lp a p ír já n  íro tt  lev é l. S zám a : I I I /1 6 0 8 /1 9 4 9 .K F /O K .
96 M D K - C - I - 1 8 /5 2 4 .  ö s s z e h a jto g a to tt  kockás fü z e tla p ra  c e ru záv a l ír t  lev é lfo g a lm azv án y .
97 M D K - C - I - 1 8 /1 9 8 .  L u ig i C icu tti k éz írásos lev e le  R ó m ábó l.

98 M D K - C - I - 1 8 /1 4 9 .  1 -2 . A  S zab ad  Száj c. sza tirik u s  h e ti la p  n y o m ta to tt le v é lp a p ír já n  ír t 
levé l.

99 M D K - C - I - 1 8 /2 0 0 .  G ép írá so s  lev é l.
100 M D K - C - I - 1 8 /2 0 1 .  G ép írá so s  lev é l.
101 M D K - C - I - i 8 /206 . A  „ M ű v észe ti S zövetségek  H á z a ”  n y o m ta to tt le v é lp a p ír já n  íro tt  levé l. 

K Ő rpecsét, a lá írá s . M egszó lítás  h e ly e t t :  B okros B ie rm an n  D ezső  ú rn a k , Bp.
юг M D K - C - I - 1 8 /2 0 9 .  G é p írá so s  lev é l m áso d p é ld án y a .
/0 3  M D K - C - I - 1 8 /2 1 2 .  G é p e lt  lev é l m á so d p é ld án y a . H á to ld a lá n  ce ru záv a l 'készü lt, o d a v e te tt  

v á z la to k  a S z tá lin -szo b o rh o z . S zö v eg ek : „ Ö rö k  h á la  és hűség  a  fe lsz a b a d ító  S zov je tun ió , 
a  d icső  S zov je t H ad se re g , n ép ü n k  b a rá tja  és ta n ító ja , a  nag y  S z tá lin  i r á n t!"  „B ek ü ld és  
m ájus 15”  s tb .

104 M D K - C - I - 1 8 /2 1 1 .  P o s ta i le v e lező lap . C ím zés: B okros B. R ezső  (sic!) szo b rász , K a to n a  
Jó z se f u. 8. F e la d ó :  V ed re s , K iss  J . a l tá b . 55. A  p o sta b é ly eg ző  k e l te :  50. 1. 23.
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ios MDK-G»I-i8/zi6. „ B u d a p e s t F ő v á ro s  p o lg á rm e s te re "  szövegű  g é p e lt  fe jlé c  a la t t  a  lev é l 
ügyszáffla: 3855 /59 /2 /1950 . XI. T á rg y : „ E lő le g  k iu ta lá sa  S z tá lin  g en era lissz im u sz  sz o b rán a k  
e lk ész íté sé re  m eg h ív o tt és z á r t p á ly áza to n  ré sz tv ev ő  szo b rászm ű v észék  r é sz é re ."  B a lra  
le n t :  „ A  k iad m án y  h ite lé ü l :  B u d a p est, 1950. m árc iu s 28. A  P o lg á rm e s te r i XI. Ü gyosztály .
L a jto s  G yö rg y  iro d a v e z e tő ” .

106 M D K - C - I - 1 8 /2 1 9 .  „B u d a p e s t F ő v á ro s  P o lg á rm e s te re , K ö zp o n ti L a k á sh iv a ta l”  h iv a ta lo s  
é r te s íté se  n y o m ta to tt ű r lap o n . Ik ta tó sz á m : a d  3276 /B /311 . A lá írá s  író g ép p e l, s. k. je lzésse l, 
iro d a v e z e tő  sz ignó ja , pecsé t.

loy M D K - C - I - 1 8 220. A  N ép m ű v e lé s i M in isz té riu m  h iv a ta lo s  m eg b ízása . E lő a d ó :  H ó ib a
T iv a d a r . Ik ta tó sz á m : 1 7 1 1 -B -1 0 . A lá írá s  író g ép p e l, s. k. je lzésse l. I ro d a v e z e tő  a lá írá sa  
(L e n h a rd ) , pecsét.

10S M D K - C - I - 1 8 /2 2 3 .  A B u d a p e s t-K ő b á n y a i  K ö z é p ítő  V á l la la t  lev e le . Je lz é s :  M űsz. o. 427. 
szám . S zén ás i/K B n é . A lá írá s :  G e llé r t. C égbélyegző . C ím zés: B okros N  (sic!) szo b rászm ű ­
vész  e lv tá rsn ak , B u d a p est, L eh e l t é r  2. „ D ”  épü le t. 

log M D K - C - I - 18/224. O rszág o s N y u g d íjin téze t h iv a ta lo s  é r te s íté se . J e lz é se : D r . S zabó /gye. 
II/4 .341.Ó 13/1950.

110 M D K - C - I - 18 /2 2 7 .1 -2 . A  M ű v észe ti A lk o tá so k  N . V . lev e le . C ím zés és u tó ira t  k iv é te lé ­
v e l g ép e lésse l so k szo ro síto tt lev é l. Je lz é s :  K M . Ü g y in téző : D r . F eh é r . A lá írá s  to lla l. A z 
u tó ira tb a n  k éz írásos k ie g é s z íté s : „B artio s é lm unkás p o r tré  c .”  

in  M D K - C - I - 1 8 /2 2 5. G é p írá so s  lev é l m áso d p é ld án y a . C ím zett nem  szerep e l.
112 M D K - C - I - 18/5 34. R ed ő  F e ren ch ez , a  N é p m ű v e lé s i M in isz té r iu m  K ép ző m ű v észe ti O sz­

tá ly a  a k k o r i  v eze tő jéh ez  í r t  le v é lte rv e z e t ja v íto tt  m á so d p é ld án y a , 
r í j  M D K - C - I - 1 8 /2 2 8 .  G ép írá so s  lev é l. Je lz é s :  D o lg o zó k  N y ilv á n ta r tá sa . N J /S z S .1 6 0 /1 9 5 1.

Ügyintéző: Nagy János. Aláírás tollal és géppel. Cégbélyegző.
114 M D K - C - I - 18/2 2 6 л - 2 .  K ézze l í ro tt  lev é l, k éz írá ssa l c ím ze tt b o r íté k b a n .
/ / }  M D K - C - I - 1 8 /2 3 0 .  G é p írá so s  szöveg  m á so d p é ld án y a .
116 M D K - C - I - 1 8 /2 5 3 .1 - 2 .  F ö ld a la tt i  V asú t B e ru h ázási V á l la la t  fe jléces p a p ír já n  ír t  fe lszó lí­

tá s . Ü g y ira tszám : 3525/1951. Ü g y in téző : d r. H o rv á th /S z n é . A lá írá s  to l la l  és g é p p e l;  cég­
bélyegző . K ézze l c ím zett b o rító k , h á tu l g é p írá s s a l: „ A  N é p m ű v e lé s i m in isz té riu m  a  K ö z ­
lek ed és -  és P o staü g y i m in isz té r iu m n á l e szközö lje  k i, hogy B okros B irm an n t m en tsék  fel 
a  v isszafize tés a ló l .”

117 G e ra  É v a  tu la jd o n a . G é p írá so s  szöveg  ce ru záv a l ja v íto tt  m áso d p é ld án y a .
115 M D K - C - I - 1 8 /2 5 5 .1 -2 . „ N é p m ű v e lé s i M in isz te r”  fe lírá sé , n y o m ta to tt fe jléces p ap íro n  ír t 

lev é l. S zám a: 2533/1951. O lv a s h a ta tla n  a lá írá s , köirbélyegző.
ug G e ra  É v a  tu la jd o n a . Id eg en  k éz írású  lev é lfo g a lm azv án y .
120 G e ra  É v a  tu la jd o n a . A  „M ag y a r D o lg o zó k  P á r t ja  K ö zp o n ti V eze tő ség e”  n y o m ta to tt le ­

v é lp a p ír já n . S zám a : K /K /5 8 3 6 9 /9 5 1.
121 M D K - C - I - 18/2 32. G é p p e l í r t  le v é l m áso d p é ld án y a .
122 M D K - C - I - 18/2 3 3 .1 -2 . H iv a ta lo s  lev é l. J e lz é s : 5 2 /4 4 7 7 /H n é /N n é . A lá ír á s :  o lv a s h a ta tla n .
12) M D K - C - I - 18 /234. M a g y a r M ű v é sz e ttö r té n e ti M u n k a k ö zö sség  lev e le . Ü g y ira tszám :

56/1952. A lá írá s , pecsé t.
124 M D K - C - I - 1 8 /2 3 5 .  A  M ag y ar N é p k ö z tá rs a sá g  K ép ző m ű v észe ti A la p ja  lev e le . H iv . sz ám : 

8 7 7 1 0 -2 -7 9 . E lő a d ó :  B a k o r/B L n é . A lá írá s  g ép p e l, a la t ta :  m b . B o k o r V ilm os. P ecsét.
12$ M D K - C - I - 1 8 /2 3 6 .1 - 2 .  A  N é p m ű v e lé s i M in isz té riu m  n y o m ta to tt fe jléoes p a p ír já n  ír t  lev é l.

A lá írá s  tollal és géppel. Pecsét.
126 M D K - C - I - 1 8 /2 3 7 .  G ép írá so s , k ézze l tö b b  he lyen  ja v íto tt ,  k ieg é sz íte tt  fo g a lm azv án y . -  

A m en o p h is  k irá ly  e m líte tt  p o r tré ja  a  M ű v é sze ti L ex ik o n  I. k ö te te  szerin t je len leg  a  
S taa tlich e  M useen  zu  B erlin  tu la jd o n á b a n  van .

Í2 7  M D K - C - I - 18/2 38. G é p írá so s  lev é l m á so d p é ld án y a .
128 M D K - C - I - 1 8 /2 3 9 .  A  M ű v észe ti D o lg o zó k  S zak sze rv eze te  n y o m ta to tt fe jléces p a p ír já n  ír t 

lev é l. A lá írá s  to lla l és g ép p e l. B é ly eg ző : M ag y ar M ű v é sze ti D o lg o zó k  S zak sze rv eze te  k é p ­
zőm ű v észe ti és ip a rm ű v észe ti fele lős.

121) M D K - C - I - 1 8 /2 5 6 .  E rő m ű  B e ru h ázási V á lla la t  fe jléces p a p ír já n  ír t  le v é l. Ü g y ira tszám : 
1 3 .1 0 0 /I /In /G G /S z n é . Ü g y in téző : G e la . 

i}0 M D K - C - I - i 8 /240 . A  m ű v ész  g ép íráso s lev e lén ek  m á so d p é ld án y a . 
i)i  G e ra  É v a  tu la jd o n a . G ép írá so s  szö v eg ; k ieg ész íté sek  id eg en  k éz írá ssa l.
1)2 G e ra  É v a  tu la jd o n a . G é p p e l ír t  le v é l m áso d p é ld án y a . t
i ) ) M D K - C - I - 1 8 /2 5 7 .1 - 2 .  A  „M ag y a r D o lg o zó k  P á r t ja  K ö z p o n ti V eze tő ség e  A g itác ió s és 

P ro p a g a n d a  O s z tá ly a ”  fe jléces p a p ír já n  ír t  lev é l. Ü g y in té z ő : T I/M n é . 
i)4 M D K - C - I - 18/241. P o s ta i lev e lező lap .
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735 M D K - C - I - 1 8 /2 4 2 .  P o sta i lev e lező lap . F e la d ó ;  B ú k o r B éla  T ib o r . X II.. F o h ász  lépcső  T4. 
A  po stab é ly eg ző  k e lte :  1952. V III . 19.
B úkor B é la  B okros tan ítv án y a  és szem élyi ti tk á ra , ak irő l a  m űvész a  jó l ism ert portré- 
fe je t m in táz ta .

1 ) 6  G e ra  É v a  tu la jd o n a . G ép p e l ír t  le v é lte rv e z e t;  rá írá so k  ce ru záv a l, p l . : .  „ ú jra  m eg íra tn i és 
e lk ü ld e n i” .

i)7 G e ra  É v a  tu la jd o n a . G ép p e l ír t  tlevél m áso d p é ld án y a .
1)8 M D K —C - I -1 8 /2 4 3 .  G ép íráso s  lev é l m áso d p é ld án y a . H á to ld a lá n  ce ru záv a l ír t  feljegyzések .
i ) g  M D K - C —I—18/575.8. O rv o si jav a s la t. H osszú  b é ly eg ző : „K ú tv ö lg y i ú ti Á lla tn i K ó rh á z  és 

R e n d e lő in téz e t Ideg g y ó g y ásza ti O sz tá ly a , B u d a p est, X II., K ú tv ö lg y i ú t 4 .”  H áro m szö g le tű  
bé ly eg ző : „ B u d a p e s t F őv . T an ácsa  R e n d e lő in téz e te . X II/2 . Id e g .”

140 M D K - C - I - 1 8 /2 4 4 .1 - 2 .  F ü s t M ilán  kézze l ir t  leve le .
141 M D K - C - I - 1 8 /2 4 ; .  G ép p e l ír t  la p ;  a szöveg  a la t t  ce ruzával Irt feljegyzések .
142 M D K - C - 1- 18/247. G ép írá so s  lev é l m áso d p é ld án y a .
14) M D K - C - I - i 8 /2 4 8 .1 -2 . A  V L llam osm űvek K ö zp o n ti Jo g i C so p o rtján a k  fe lszó lítá sa . Ü gy­

ira tszám : 1532/53. A lá írá s  g ép p e l, fe le tte  to lla l. T o lla l  ír t  k ieg é sz íté s : „m e r t a  b izo ttság  
a  p á ly á z a tá t  nem  fo g a d ta  e l.”

144 M D K - C —I—18/248.2. G ép p e l ír t  fe lszó lítá s . A lá írá s . A  .hátlapon  a  m űvész  ce ru záv a l ír t 
so ra i:  „ A  fe lszó lítás  v é te le  u tán i n ap o n  e lm o n d ta m  az ü g y v éd em n ek  é sz re v é te le im e t! e rre  
H . a z t m o n d ta  -  ja , ez m ás, te h á t  ez t nem  is lelhet p e r  ú tján  e lin tézn i. E z t  a z  ügyet 
k iveszem  a  p e res ügyekbő l -  ezt nem  leh e t a z  a lp e res  á lta l  e lő a d o tta k  alapiján p e re ln i -  
áp rilis  ó ta  nem  is v o lt  ró la  szó .”

745 M D K - C - I - 1 8 /2 5 0 .  A  m ű v ész  k ézze l ír t  lev e le  (fo g a lm azv á n y a? ).
146 M D K - C - I - i 8 /251. G ép p e l ír t  lev é l ( fo g a lm azv án y ?).
147 M D K - C - I - 1 8 /2 5 2 .1 - 2 .  A  „M ag y a r D o lg o zó k  P á r tja  K ö z p o n ti V eze tő ség e”  n y o m ta to tt 

fejlóces p a p ír ján  ír t  levé l. A lá írá s to lla l. A  b o ríté k  cím zése u a ., fe lü l g é p p e l: „M ag y ar 
D o lg o zó k  P á r t ja  O rszágos K ö z p o n tja .”

148 M D K - C - I - 1 8 /2  5 9 .1 -2 . F ü st M ilán  leve le .
14g M D K - C - I - 18/260. A  Szerzői Jo g v é d ő  H iv a ta lh o z  in téze tt g ép írásos lev é l m áso d p é ld án y a .
i)o M D K - C - I - 1 8 /2 6 1 .  A  F ő v á ro si E m lék m ű  F elü g y e lő ség  író g ép p e l so k szo ro síto tt fe lszó lí­

tása . A z  ö sszeh a jto tt la p  kü lső  o ld a lá n  cím zés: B okros B irm ann  S. (sic!) szob rászm űvész 
k a rtácsn ak , B u d a p est, X III ., É lm u n k ás  té r 2/d .

i)i  M D K - C - I - 1 8 /2 6 2 .1 .  G ép p e l ír t lev é l m áso d p é ld án y a .
1)2 M D K -C - I - 1 8 /2 6 2 .2 .  G é p p e l i t t  e red e ti levé l.
i))  M D K - C — I —18/263. P o sta i lev e lező lap o n  ce ru záv a l ír t lev é l. C ím zés: B okros B irm an

D ezső . K o ssu th -d íja s  szobrászm űvész. B a la to n fü re d , S z ívkó rház . F e la d ó  n ev e  és cím e. A  
po stab é ly eg ző  k e l te :  1953. V III . 20.

1)4 M D K - C - I - 1 8 /2 6 4 .  H iv a ta lo s  végzés, k itö ltö tt  ű r lap o n . S zám a: 8 0 9 - I-9 8 /1 9 5 5 . E lő a d ó :
Szilágyi. H iv a tk . sz ám : 1 4 1 9 -M -1 4 . B a lra  le n t :  „ A  k iad m án y  h i te lé ü l:  B p. 1953. aug . 28. 
K ocsi Im re  iro d a v e z e tő ” .
A  V ég h a tá ro z a t sz ö v eg é t 'k ihagyásokkal k ö zö ljü k .

755 M D K -C -I - 1 8 /2 6 Ó . G é p e lt  lev é l m áso d p é ld án y a , a lá írá ssa l. A  h á tlap o n  tö b b , c e ru záv a l i t t  
feljegyzés.

i)6 M D K - C - I - 1 8 /2 6 7 .1 - 2 .  G é p e l t  lev é l m áso d p é ld án y a .
i)7 M D K - C - I - 1 8 /3 7 6 .  M árffy  Ö d ö n  (1 8 7 8 -1 9 5 9 ) festőm űvész  k éz írásos lev e le .
1)8 Gera Éva tulajdona. Gépírásos levél másodpéldánya.
; 39 M D K - C - I - 1 8 /2 6 8 .1 - Z .  A  „M ag y a r K ép ző m ű v észek  és Ip a rm ű v észek  S zö v etség e”  n yom ­

ta to t t  fe jléces p a p ír já n  ír t le v é l. Ik ta tó sz á m : 2055/1953.
160 M D K - C - I - 1 8 /3 :2 . G ép írá so s  lev é l m á so d p é ld án y a .
j ó i  M D K - C - I - 1 8 /2 6 9 .  G é p e k  lev é l m áso d p é ld án y a .
162 M D K - C - I - 1 8 /2 7 1 .  G é p e k  lev é lte rv e z e t.
16) M D K - C - I - 1 8 /2 7 0 .  G é p e lt  le v é l m áso d p é ld án y a .
764 M D K - C - I - 1 8 /2 7 3 .
1 6 ) M D K - C - I - I 8 / 2 7 4 . I - 2 .  F ü s t M ilán  lev e le . C ím zés a  k o o k ás fü z e tla p b ó l rag a sz to tt b o r í­

ték o n .
1 6 6  M D K - C - I - 1 8 /2 7 5 .  A  M ű v észe ti D o lg o zó k  S zak szerv eze te  K ép ző m ű v ész  és Ip a rm ű v ész  

T a g o z a tá n a k  lev e le , m e ly e t m in d en  v a ló sz ín ű ség  szerin t B okros k é ré sé n ek  tám o g a tá sá ra
a  m ű v észn ek  a d ta k  á t. B élyegző, a lá írá s .

167 M D K - C - I - 1 8 /2 7 6 .1 - 2 .  G é o e lt  levé l vagy le v é lte rv e z e t m áso d p é ld án y a , a lá írá s  nélkü l.
168 M D K - C - I - i 8 /277 . A  B u d a p esti 16. sz. Ü g y v éd i M u n k ak ö zö sség  n y o m ta to tt fe jléces p a ­

p ír já n  ír t  lev é l. Ü gyszám : 2897. Ü g y in téző : Cs. D .
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lóg M D K - C - I - 1 8 /2 7 8 .  A  N ép m ű v e lé s i M in isz té riu m  n y o m ta to tt fe jléces p a p ír já n  í r t  levé l. 
Ik t. s z . : 1 4 1 8 -B -2 0 . E lő a d ó :  C seh M ik lós . A lá írá s  í ró g é p p e l;  pecsé t. B a lra  le n t :  „ A  k i­
ad v á n y  h i te lé ü l : B ab o tay  iro d a v e z e tő .”

/7 0  M D K - C - I - i 8/279. A  B u d ap esti 16. sz. Ü g y v éd i M u n k ak ö zö sség  n y o m ta to tt  fe jléces p a ­
p írján  ír t  lev é l. Ü g y szám : 2897. Ü g y in téző : Cs. D .

171 M D K - C - I - 18/2 8 0 .1 -2 . A  S zab ad  N é p  sz e rk e sz tő ség én ek  n y o m ta to tt  fe jléces p a p ír já n  ir t  
levé l.

172 M D K - C - I - 1 8 /2 8 1 .1 - 2 .  A  M ag y ar F o to  n y o m ta to tt fe jléces p a p ír já n  ír t  lev é l. J e l :  V A . 
Ü g y in téző : B usztin . C égbélyegző , a lá írá s .

173 M D K - C - I - 1 8 /2 8 2 .  P o rta i lev e lező lap o n  ce ru záv a l ír t  lev é l. F e la d ó  n ev e  és cím e.
174 M D K - C - I - 1 8 /2 8 ;. Ö sszeh a jto tt p a p ír la p o n , to lla l i t t  lev é l.

D uck a  Á kos k ö ltő  D u tk a  M á ria  (Ba'by) m ű v é sz e ttö rté n é sz  éd esap ja .
/7 }  M D K - C - I - i  8 /2 8 4 .1 -2 .
176 M D K - C - I - i8 / } 7 5 a .  A  „ B u d a p e s ti X III . k é r . T an ács  V é g re h a jtó  B izo ttság án ak  S zo c iá lp o li­

t ik a i C so p o rtja ” á lta l k iad o tt, g é p e lt fe jléces v é g h a tá ro z a t. Ü g y ira tszám : 831 / B - 5 0 6 /1954. 
E lő a d ó :  E p erje ssy  E . B a lra  le n t :  „ A  k iad m án y  h ite lé ü l:  [o lv a sh a ta tla n  a lá írá s ] , B u d a p est, 
1954. 'szept. 8 .”

177 M D K —C - I -1 8 /2 8 5 . L evél a  B u d a p esti 16. sz. Ü g y v éd i M u n k ak ö zö sség  n y o m ta to tt f e jlé ­
ces p a p ír já n . Ü g y szám : 2897. Ü g y in té z ő : Cs. D .

178 G e ra  É v a  tu la jd o n a . A  N ép m ű v e lé s i M in isz té riu m  n y o m ta to tt lev é lp a p ír já n  í r t  lev é l. 
Ik ta tó sz á m : 8 7 7 1 3 -3 -3 5 /1 9 5 4 . E lő a d ó :  F a lu d i G yörgy . B a lra  le n t :  „ A  k iad m án y  h ite lé ü l:  
[o lv a sh a ta tla n  a lá írá s ] , iro d a v e z e tő .”

/7 9  G e ra  É v a  tu la jd o n a . G é p p e l í r t  lev é l m á so d p é ld án y a .
1S0 M D K - C - I - 1 8 /2 8 6 .2 .  A  H e re n d i P o rc e lán g y ár  lev e le . J e l :  G O /D n é .  Ü g y in téző : G e isse  

O ttó . C égbélyegző . K é t o lv a s h a ta tla n  a lá írá s .
181 M D K - C - I - 1 8 /2 8 7 .  A  M ag y ar N é p k ö z tá rsa sá g  K ép ző m ű v észe ti A la p ja  lev e le . S zám a: 

8628. E lő a d ó :  Z ö ld n é .
182 M D K - C - I - 1 8 /2 8 9 .  G é p p e l ír t  le v é l m á so d p é ld án y a .
18 i M D K - C - I - 1 8 /2 9 0 .  G é p e lt  lev é l m áso d p é ld án y a .
184 M D K - C - I - 1 8 /2 9 1 .  A  X IV . k e rü le ti  T an ács  V é g re h a jtó  B izo ttság a  á lta l  k iá l l í to t t  h iv a ta lo s  

írás. B élyegző, a lá írá s .
J Í5  M D K - C - I - 1 8 /2 9 2 .  V é rte s  G yö rg y  g ép íráso s lev e le . A  jo b b  fe lső  sa ro k b a n  ce ru záv a l fe l­

írv a  V é rte s  G yörgy  cím e.
V érte s  G yö rg y  sze rk e sz tő , ú jság író , az  O rszággyű lési K ö n y v tá r  n y u g a lm azo tt ig azg a tó ja .

186 M D K - C - I - 1 8 /2 9 3 .1 - 2 .  V é rte s  G y ö rg y  g ép írásos lev e le . C ím zés a  borítékom .
187 M D K - C - I -  r 8 /2 9 4 .1 -2 . G ép írá so s  lev é l. C ím zés a  b o ríté k o n .
188 M D K - C - I - 1 8 /2 9 5 .1 - 2 .  A  S zépm űvésze ti M úzeum  S zo b o ro sz tá ly á ró l íro tt  lev é l. C ím zés a  

b o ríté k o n . M egszó lítás h e ly e tt a  l e v é le n : B o k ro s-B irm an  D ezső  szob rászm űvész .
18g M D K - C - I - 1 8 /2 7 2 .1 - 2 .  G é p e lt  ig azo lás fo g a lm azv án y a  és a  tis z tá z a t  m á so d p é ld á n y a . A  fo ­

g a lm azv án y ra  c e ru záv a l fe lírv a :  „ H é tfő  H a n to s h o z ” . 
igo M D K - C - I - i  8 /2 9 6 .1 -2 . G é p írá so s  lev é l. C ím zés a  b o ríték o n . 
ígi M D K - C - I - 1 8 /2 9 7 .  G é p p e l í r t  és g ép p e l a lá ír t  lev é l.
/9 2  M D K - C - I - i 8/299. G ép íráso s  le v é l m áso d p é ld án y a .
/9 3  M D K - C - I - 1 8 /3 0 0 .  A z  O rszágos S zépm űvésze ti M úzeum  á tv é te li  e lism erv én y e . B élyegző,

a lá írá s .
Г94 M D K - C - I - 1 8 /3 0 2 .  A z  O rszág o s S zép m ű v észe ti M úzeum  lev e le . Ü g y ira tsz á m : 8 6 3 - 0 3 -  

2 2 }/9  5 5. B élyegző, a lá írá s . 
igj  M D K - C - I - 1 8 /3 0 3 .  G é p e lt  lev é l, a lá írv a . 
igó M D K - C - I - 1 8 /3 0 4 .  G é p e lt  le v é lte rv e z e t, a lá írv a .
/9 7  M D K - C - I - 1 8 /3 0 5 .  L ev é l „N ép m ű v e lé s i M in isz té riu m , M in isz te rh e ly e tte s”  fe lírá sé  nyom ­

ta to t t  le v é lp ap íro n . A lá írá s , k ö rp ecsé t.
ig8 M D K - C - I - i  8 /3 0 7 .1 -2 . G é p e l t  lev é l m á s o d -  és h a rm a d p é ld á n y a , a lá írv a . 
igg M D K - C - I - 1 8 /3 0 8 .  A  B u d a p esti 16. sz. Ü g y v éd i M u n k ak ö zö sség  n y o m ta to tt le v é lp a p ír já n  

ír t lev é l. Ü g y szám : 2897. Ü gy in téző  nev e . -  A  lev é lb en  k ö z ö lt  ré sz le te s  e lszám o lást k i­
h a g y tu k  !

200 M D K - C - I - 1 8 /5 3 2 .  G ép írá so s  fe ljegyzés.
201 M D K - C - I - 1 8 /3 0 9 .1 -2 . A  K ü lk e re sk e d e lm i M in isz té riu m  n y o m ta to tt le v é lp a p ír já n  ír t  lev é l.

Ü g y ira tszám : V Z - 2 j7 i - i i9 5 5 .
202 M D K - C - I - 1 8 /3 1 0 .  G ép írá so s  lev é l m áso d p é ld án y a .
203 M D K - C - I - 1 8 /3 1 3 .  G ép írá so s  lev é l m á so d p é ld án y a . -  A  le v é lb e n  k ö zö lt ré sz le te s  e ls z á ­

m o lás t k ihagy tuk !
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204 M D K —С —I—1 8 /3 15. Gépírásos levél másodpéldánya. 4
205 M D K —С —I— 18 / 3 16. A z  O rszágos S zépm űvésze ti M úzeum  n y o m ta to tt le v é lp ap ír ján  í r t  levél.

Ü g y ira tszám : 8 6 3 -0 3 -1 8 /9 5 6 . A lá írá s , k ö rp ecsé t.
206 M D K - C - I - u 8/317. A z O rszágos S zépm űvésze ti M úzeum  lev e le . Ü g y ira tszám : 8 6 3 - 0 1 -  

42 /956 . Ü g y in téző : L á z á r  G y u lán é . B élyegző, a lá írá s .
207 G e ra  É v a  tu la jd o n a . G ép íráso s  le v é l m áso d p é ld án y a .
208 M D K - C - I - 1 8 /3 1 8 .  G ép írá so s  lev é l m áso d p é ld án y a .
209 M D K - C - I - 18 /319. A z O rszágos S zépm űvésze ti M úzeum  lev e le . Ü g y ira tszám : 8 6 3 - 1 3 -  

9 /956 . B élyegző, a lá írá s .
210 M D K - C - I - 1 8 /3 2 0 . I - 2 .  C ím zés a  b o r íté k o n : B okros B irm an  D ezső . K o ssu th -d íja s  szob­

rászm űvész , S á ro sp a tak , R á 'kóczi-vár. F e la d ó : B. b . T . B p. É lm u n k ás  té r  2/d .
211 M D K - C - I - 1 8 /3 2 2 .1 - 2 .  C ím zés a  b o r íté k o n : B okros B irm an  D ezső . K o ssu th -d íja s  szobrász- 

m űvész, B u d a p est, Éknunfcás t é r  2 /d . U n g arn . F e la d ó  n ev e  és bécsi cím e.
212 M D K - C - I - 1 8 /3 2 5 .  K ézze l í r t  levé l.
21) M D K - C - I - 1 8 /3 2 6 .1 - 2 .  G ép p e l ír t  levé l. C ím zés a  b o ríték o n .

214 M D K - C - I - 1 8 /3 3 2 .  „ M ű v e lő d ésü g y i M in isz té riu m , M in isz te rh e ly e tte s”  fe lírású  n y o m ta to tt 
lev é lp ap íro n  k ü ld ö tt  é r tesítés . S2ám a: 27 /1958 .M .h .t. A lá írá s , kö rpeosé t.

21) M D K -C - I - U 8 /3 3 3 .  P o sta i lev e lező lap . A  po stab é ly eg ző  k e lte :  1958. jan . 24.
216 M D K —C —1 -1 8 /3 3 5 .1 —2. R om án  G yö rg y  festőm űvész  kéz írásos le v e le . C ím zés és fe lad ó  a  

b o ríté k o n . A  po stab é ly eg ző  k e l te :  1958. febr. 28.
2 /7  M D K - C - I - 1 8 /3 3 8 .  P o sta i lev e lező lap . C ím zés, fe lad ó  az  e lő lap o n . A  po stab é ly eg ző  k e l te :  

1958. á p r . 25.
218 M D K - C - I - 18/340. G ép p e l ír t  llevél m áso d p é ld án y a .
219 M D K - C - I - 1 8 /3 4 4 .  K odkás fü ze tlap o n  kézze l ír t  levé lfo g a lm azv án y .
220 M D K - C - I - 1 8 /3 4 9 .  G ép íráso s  levé l.
221 M D K - C - I - 1 8 /3 5 0 .  A  S á ro sp a tak i R ákóczi M úzeum  n y o m ta to tt levé l p a p ír ján  íro tt  levé l.
222 M D K - C - I - 1 8 /3 5 4 .  P o sta i lev e lező lap .
223 M D K - C - I - 1 8 /3 5 5 .  A z  É le t  és Iro d a lo m  szerk e sz tő ség én ek  n y o m ta to tt lev é lp a p ír já n  íro tt 

levé l.
224 M D K - C - I - 1 8 /3 5 7 .1 - 2 .  N év jeg y  nagyságú  k a r to n o n  ír t lev é l. C ím zés a  b o ríté k o n . A  p osta - 

bélyegző  k e lte :  959. jan . 12.
22) M D K - C - I - i 8 /363 . A  M űv e lő d ésü g y i M in isz té riu m  lev e lén ek  a  M ag y ar N é p k ö z tá rsa sá g  

K ép ző m ű v észe ti A la p já n á l k é sz íte tt  h ite le s  m áso la ta . B a lra  l e n t :  „ A  k ia d m á n y  h ite lé ü l: 
[o lv a sh a ta tlan  a lá írá s ]  s . k .,  i ro d a v e z e tő . A  m á s o la t h ite le s :  K ő szeg i” .

226 M D K - C - I - 1 8 /3 6 4 .  K éz íráso s m eg h a ta lm azás  (nem  B okros k é z írá sa ) .
227 M D K - C - I - I 8 / 5 0 0 . I - 2 .  A  zá ró je len té s  h iv a ta li szám a a  b o r íté k o n : 82221/59.
225 M D K - C - I - 1 8 /3 6 5 .  A  S zép iro d a lm i K ö n y v k iad ó  n y o m ta to tt lev é lp a p ír já n  ír t  le v é l. A  lev é l 

je le :  D M /B A . O lv a s h a ta tla n  a lá írá s , cégbélyegző.
229 M D K - C - I - 18 /574. A  „K ép ző m ű v észek , Ip a rm ű v észek  és M ű v észe ti D o lg o zó k  S zakszer­

v e z e te ”  n y o m ta to tt lev é lp a p ír já n  í r t  le v é l. A lá írá s , k ö rp ecsé t.
230 M D K - C - I - 1 8 /3 6 8 .  S ten c ileze tt ű r lap o n  k ü ld ö t t  h iv a ta lo s  é rte síté s . S zám a : k jő  8 5 7 2 1 /1 9 5 8 -5 . 

B a lra  le n t :  „ A  k iad m án y  h i te lé ü l:  M o ln á r  L ász ló n é  iro d av eze tő , 136/B . K ö zjeg y ző  á lta l 
e lre n d e lt k ö z v e tle n  le tiltá s  m eg szü n te té se . K ia d m á n y .”

2)i M D K - C - I - 1 8 /3 7 3 .1 - 2 .  G ép írá so s  lev é l. C ím zés és fe lad ó  a  b o ríték o n .
2)2 M D K - C - I - 18/378. B okros Szenes Á rp ád h o z , a  P á riz sb an  élő  m ag y ar szárm azású  fe s tő ­

m űvészhez  íro tt  g ép írá so s le v e lé n e k  m á so d p é ld án y a .
233 M D K - C - I - 1 8 /3 8 1 .  A  M ag y ar Ú jság író k  O rszágos S zövetségébő l k ü ld ö t t  lev é l.
234 M D K -C -I - H 8 /3 8 4 . G é p e lt  le v é l m áso d p é ld án y a .
23j  G e ra  É v a  tu la jd o n a . G ép írá so s  le v é l, a lá írá ssa l.
236 M D K - C - I - 1 8 /5 36. Id eg en  k éz  á l ta l ,  to lla l  ír,t lev é lte rv eze t.
237 M D K -C -I - .1 8 /3 8 5 . A  M ag y ar S zocialista  M u n k á sp á r t n y o m ta to tt lev é lp ap ír ján .
2)8 M D K - C - I - 1 8 /3 8 7 .  A  M űve lő d ésü g y i M in isz té riu m  K ép ző m ű v észe ti O s z tá ly án ak  é r te s í­

tése . Ü g y ira tszám : 7 2 .059 /1960 .IX .
239 M D K - C - I - 1 8 /3 8 9 .  P o sta i lev e lező lap . F e la d ó : d r. B o k o r L ajo s, M ag y ar T á v ira ti  I ro d a .
240 M D K - C - I - 1 8 /3 8 6 .1 - 2 .  K e le ti A r th u r  n év jeg y k a rto n o n  í r t ,  kéz írá so s lev e le . A  p o s ta b é ­

lyegző k e l te :  i9 6 0 . I . 18.
241 M D K - C - I - 1 8 /3 9 0 .  G é p e lt  lev é l m áso d p é ld án y a .
242 M D K - C - I - 1 8 /3 9 1 .1 - 2 .  Szenes Á rp á d  P á riz sb an  élő  m ag y ar szárm azású  festőm űvész  kézze l 

íro tt  lev e le . (F e le ség e : M a ria  H e le n a  V ie ira  d a  S ilva p o rtu g á l szárm azású  festőm űvésznő .) 
A  po stab é ly eg ző  k e l te :  i9 6 0 . I. 26.

243 M D K - C - I - i 8 /395. G ép írá so s  lev é l m áso d p é ld án y a .
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244 M D K - C - I - i 8 / } 9 5 -  G ép írá so s  l e v é l  m á so d p é ld án y a .
245 M D K - C - I - 18/493. A  X III . k e rü le ti  T an ács  V é g re h a jtó  B izo ttság a  h iv a ta lo s  p a p ír já n  fo ­

g a lm azo tt h a tá ro z a t. Ü g y ira tszám : j i o / i / i p 6 o .s z a b .
246 M D K - C - I - i 8 /4 7 0 .1 -2 . G é p e lt  le v é l. F e la d ó ja  B alázs A n n a  írónő .
247 M D K - C - I - 1 8 /3 9 4 .1 - 3 .  B a lázs A n n a  író n ő  le v e le  R o m án  G y ö rg y  fe stő m ű v észh ez . -  

A  le v é ln e k  csak B okros B irm an ra  v o n a tk o zó  ré szé t k ö zö ljük .
248 M D K - C - I - 18/396. G ép íráso s  lev é l m á so d p é ld án y a .
24g M D K - C - I - 1 8 /3 9 9 .  P o sta i lev e lező lap o n  a  m ű v ész  kézze l ír t  so rai.
230 M D K - C - I - 1 8 /4 0 1 .1 -2 . G é p p e l ír t  le v é lte rv e z e t első - és m á so d p é ld án y a .
z j r  M D K - C - I - 1 8 /5 3 1 .  C e ru záv a l, v a ló sz ín ű le g  a  n e v e z e tt á l ta l  ír t  ig azo lás te rv eze t.
252 M D K - C - I - 1 8 /4 0 3 .1 - 2 .  „ In s ti tu t  H o n g ro is”  s tb . fe lírású  n y o m ta to tt le v é lp a p íro n  géppel 

ír t levé l.
253 M D K - C - I - 1 8 /4 0 4 .  G é p e lt  le v é l m áso d p é ld án y a .
254 M D K - C - I - i 8/406. C e ru záv a l ír t  lev é l.
2 } j M D K - C - I - 1 8 /5 3 3 .  G é p p e l ír t  lev é lte rv e z e t.
236 M D K - C - I - 1 8 /4 1 5. A  M ag y ar T u d o m án y o s A k a d é m ia  B a rtó k  A rch ív u m án ak  n y o m ta .o a  

lev é lp ap ír ján .
257 M D K - C - I - 18/416. A  M ű v e lő d ésü g y i M in isz té riu m  K ép ző m ű v észe ti O s z tá ly á n a k  lev e le .

Ü g y ira tszám : 72 .366 /1962 . E lő a d ó :  K m e tty  Já n o sn é . B a lra  le n t :  „ A  k iad m án y  h ite lé ü l: 
[o lv a sh a ta tlan  a lá írá s ] , iro d a v e z e tő ” .

25 Í M D K - C - I - 18/417. A z  O rszággyű lési K ö n y v tá r  n y o m ta to tt le v é lp a p ír já n  ír t lev é l. A  „ p la ­
k á t ”  szó ny ilv án  e l í r á s ;  B okros F ü g g e tlen  M a g y a ro rsz ág é rt cím ű p la k e ttjé rő l v a n  szó.

259 M D K - C - I - 1 8 /3 9 2 .  A  „ M a g y a r  F o rra d a lm i M u n k á s-P a ra sz t K o rm án y  E ln ö k h e ly e tte sén ek  
T itk á rs á g a ” n y o m ta to tt le v é lp a p ír já n .

2Í0 M D K - C - I - 1 8 /4 1 8 .  A  Jó k a i S zínház n y o m ta to tt  lev é lp a p ír já n .
261 M D K - C - I - i 8 /4 1 9 .1 -2 . G ép írá so s  ü zen e t k é t p é ld á n y b a n , m in d k e ttő  ce ru záv a l sz ignálva.
262 M D K - C - I - 1 8 /4 2 2 .  B okros t i tk á rá n a k  c e ru záv a l í r t  lev é lfo g a lm azv án y a . C ím : G ere ly es

ig azg a tó  e lv tá rs , Ú jk o ri T ö rté n e lm i M úzeum , Jó z se f n á d o r  té r  2.
263 M D K - C - I - 18/423. B o k ro s ti tk á rá n a k  ce ru záv a l ír t  lev é lfo g a lm azv án y a . C ím : D ö m ö tö r

T e réz , S am arja  (na A s to v e ), C séhsz lovák ia .
264 M D K - C - I - 1 8 /4 2 6 .  G é p p e l ír t le v é l m áso d p é ld án y a .
26j  M D K - C - I - 1 8 /4 5 6 .1 - 2 .  B a u m g a rtn e r  Jó z se f b ro n zö n tő  lev e le .
266 M D K - C - I - 1 8 /з  54. G é p e lt  lap .
267 M D K - C - I - 18/447. Id eg en  k éz írá ssa l (L aczk o v ich  A lice) k é szü lt, B okros á lta l  a lá ír t  m eg­

á lla p o d á s .
265 M D K - C - I - 1 8 /4 5 3 .  A  M ag y ar N em ze ti G a lé r ia  n y o m ta to tt le v é lp a p ír já n  í r t  le v é l. A lá írá s , 

k ö rp eo sé t.
269 M D K - C - I - 18 /463. 1 -2 . A  H aza fia s  N é p f ro n t X III . k é r . B izo ttság a  n y o m ta to tt le v é lp a ­

p ír já n  í r t  levé l. A lá írá s , k ö rp ecsé t.
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KÉPEK JEGYZÉKE

R ö v id íté s e k : J . =  Je lezv e
J. a . =  Je lzé s  n é lk ü l 

M N G  =  M a g y a r N e m z e ti G a lé r ia  
tú l. =  tu la jd o n a

A  S Z Ö V E G  K Ö Z Ö T T :

I. A  m űvész  ró z sad o m b i m ű te rm é b en , 1919 
k ö rü l

11. E g y  la p  a  J ó b -m a p p á b ó l, 1920
I I I . A  m ű v ész  1937-ben
IV. A  m ű v ész  1947-ben

V . A  m ű v ész  P á r iz sb a n , 1948-ban
VI. M ű v é szek  k ö z ö tt  a  s á ro s p a ta k i a lk o tó ­

h á z b a n , 1949-ben
VII. A  szo b rász  és ö n p o r tré ja  
Vili. A  75 év es  m űvész

1. A lv ó  leán y , 1916 
M á rv án y , 113 cm
J . : B okros B irm an , 1916 
M N G  5 8 .1 9 -N

2. T o rz ó , 1917 
G ip sz
Ism ere tlen  helyen

3. J ó n a p  A n d o m é , 1915 k ö rü l 
G ip sz , 33 cm
J. n.
J ó n a p  A n d o rn é  tú l.

4. Ü lő  fiú  a k t ,  1919 
B ronz , 30 cm
J . : B okros B irm an , 1919 
D r . P o d o sk i Jó z se f  tú l.

5. Ü lő  n ő i to rzó , 1922 
T e rra k o t ta ,  25,5 cm 
J . : B. B ., 922 
F ra n k fu r t  Jó z se f tú l.

6. G u g g o ló  nő , 1921 
20  om
J . : B . B., 1921 
Szegi P á ln é  tú l.

7. N é g y k é z lá b á lló , 1921 
B ronz
Ism ere tlen  he lyen  

S. A k ro b a ta , 1921 
Ism ere tlen  helyen  

9. H íd , 1921 
G ip sz , 21 cr>
J . n.
R o s ta  Já n o sn é  tú l.

10. A n y a  és lán y a , 1922 
G ip sz , 93 cm 
J . : B okros B irm an  922 
B okros B irm ar. h ag y a ték a  

1 / .  L ász ló  M ih á ly , 1923 
B ronz , 36 cm 
J. n.
K isce íli M úzeum  tú l.

12. ö le lk e z ő k , 1923 
B ronz, 30 cm
J . : B . B. 1923 
B oros Is tv á n  tú l.

13. ö n p o r t r é ,  1923 
G ip sz , 35 cm
J . : B okros B irm an  1923 
K o v ács  G y ö rg y  tú l.

14. A d y  E n d re , 1924 
B ronz , 35,5 cm
J . : B o k ro s B irm an  924 
M N G  5 6 .1 1 3 -N

í j . A ch im  A n d rá s-em lék m ű  te rv , 1924 
G ip sz , 37 cm 
J . : B. B. 1924 
B okros B irm an  h a g y a té k a  

16. A d y -s írem lék  te rv , 1927 
G ip sz
Ism ere tien  he lyen

/7 . A d y -fe j a  s írem lék te rv h ez , 1927 
B ronz , 17,5 ctn 
J. n.
S zm etana  E rn ő  tú l.

15. B ro n z  d o m b o rm ű  az  A d y -s írem lék  
te rv h e z
].: B. B.
Ism ere tlen  he ly en

/9 . G a lic zán é , 1926 
G ip sz , 34 cm 
J . : B okros B irm an  1926 
B okros B irm an  h ag y a ték a  

20. K e le t i  A r tú r , 1927 
G ip sz , 48 cm 
J . n.
Keleti Artúr h ag y a ték a  

21-гг. K . F ü re d i R ó z a , 1927 
B ro n z , 38,5 cm 
J . : В. B. 1927 
V a d a s  L ász ló n é  tú l.
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2}-24- S zágelné , 1927 
B ronz , 30 cm 
J . : В. В. 1927 
B o lg á r B é lá n é  tu i.

25. Ú jv á r i  P é te r , 1927 
G ip sz , 37 cm
J. n.
M N G  5 9 .1 0 5 -N

26. K a la p o s  ö n p o r tré , 1927 
B ronz, 32 cm
J . : В. B. 1927 
M N G  6 3 .5 5 - N  

2 7 -2 # . F iú  a k t, 1928
Ism ere tlen  h e ly en

29. D o n  Q u ijo te , 1929 
B ronz, 32 cm
J . : B o k ro s B irm an  
M N G  5 6 .6 7 -N

30. D o n  Q u ijo te , 1929 
B ronz, 117 cm
J . : B okros 1929 
M N G  5 6 .1 3 5 -N  

)i-)2. Don Quijote-fej (részlet)
33. B irm an  Izsó n é , 1929 

G ip sz , 29 cm
J. n.
B irm an  Izsó  tú l.

34. G eg esi K iss  P á l, 1930 
B ronz , 29 cm
J . : B okros 1930 
M N G  6 6 .1 4 -N  

3 j .  Szőllősi E n d re , 1930 
T e rra k o tta , 32 cm 
J . : B okros B irm an  
G á d o r  Is tv á n  tú l .

36. M asa ry k , 1930 
G ip sz , 29 cm
J . : B okros 1950 
H a u s w irth  M a g d a  tú l.

37. G á d o r  Is tv á n n á , 1931 
T e rra k o tta , 43 cm
J . : B okros 1931 
G á d o r  I s tv á n n á  tú l.

)S. „ T e re m té s” , 1932 
B ronz, 44 cm 
J . : B o k ro s-B irm an  1932 
M N G  6 6 .5 - N

39. S ohultheisz  B ab a , 1932 
B ronz , 24 cm
J . : В. B. 1932 
S chu lthe isz  M ik sa  tú l.

40. F u tó k , 1933 
B ronz, 2 0 X 2 1  cm 
J . : B okros 1933'
B okros B irm an  h a g y a té k a

41. S che iber H u g ó , 1933 
B ronz , 31 cm
J . : B okros B irm an  1933 
M N G  6 Ó .8 0 -N

42. M a d a m e  Sans G é n é , 1934 
B ronz, 33 cm
J . :  B . B. 1934 
M N G  5 9 .1 0 4 -N

43. K ö szö n tő , 1935 
B ronz , 39,5 cm 
J . n .
M N G  6 6 .4 - N

44. P á n  Im rén é , 1935 
G ip sz , 36 cm
J. n.
Bokros Birman hagyatéka

45. B író  H e n r ik , 1936 
B ronz , 38 cm
J . : B okros B irm an  1936 
M N G  5 9 .1 0 2 -N

46. Ö n p o r tré ,  1939 
G ip sz , n X n  cm 
J . :  B . B. 1939 
F ra n k fu r t  Jó z se f  tú l.

4 7 - 4 Í .  N a p b a n é z ő  bán y ász  (v á l to z a t) ,  1941 
B ronz , 37 cm 
J . : B okros B irm an  1941 
D r . G eg es i K iss P á l tú l.

4 9 -5 0 . Á lló  n ő i a k t  
G ip sz , 41 cm 
D r. G egesi K iss P á l tú l.

52. É s  v id d  m ag ad d a l . . ., 1940 
G ip sz , 16,5 cm 
J . :  B. B. 1940 
B okros B irm an  h ag y a ték a  

52. Jó z se f  A tt i la ,  1942 
B ronz , 16,5 cm 
J . : B okros B irm an  1942 
M N G  5 6 .1 4 0 -N

5 3 -5 4 . T é k o z ló  fiú  m eg té ré se , 1941 
B ronz, 34 cm 
J. n.
Z sid ó  M úz. tű i.

55. V ilá g  p ro le tá r ja i  eg y esü lje tek , 1941 
T e rra k o t ta ,  2 0 X 5 0  ont
J . n.
B okros B irm an  h ag y a ték a

56. F ü g g e tlen  M a g y a ro rsz ág é rt, 1942 
T e rra k o tta , 24,5X5? cm
J . : B , B. 1942 
M N G  65.2 2 - N  

/7 .  K u b ik o s , 1941 
B ronz , 16 cm 
J . : B okros B irm an  
M N G  5 6 .1 4 1 -N  

5 I . A sz fa lto zó , 1943 
B ronz, 19,6 cm 
J . : B o k ro s B irm an  1943 
M N G  5 2 .8 5 5 -N  

59. T o m i, 1942 
B ronz , 25 cm 
J . : B. B. 1942 
M N G  5 7 .3 2 -N
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6o. R o k k a n t k a to n a , 1944 
B ronz, 27 cm 
J . : B okros 1944 
M N G  5 5 .8 6 2 -N  

61-6). R u th  és N o ém i, 1944 
B ronz, 25 cm 
J . :  B. B. D .
Dr. Gegesi Kiss Pál túl.

64. G lü ck  M a rian n e , 1945 
G ip sz , 30 cm 
J . :  B. B . 1945 
D r . G lü ak  T ib o rn é  tú l.

6j .  D ó z sa  G y ö rg y , 1946 
G ip sz , 40  cm 
J . n.
B okros B irm an  h ag y a ték a

66. D u n a-v ö lg y i n é p é k  k ó ru sa , 1946 
B ronz, 23,5 cm
J . n.
M N G  57.33 - N

67. B ocskoros p a ra sz t, 1948 
G ip sz , 67 cm
J . : B okros B irm an  
B okros B irm an  h ag y a ték a

68. K ucsm ás p a ra sz t, 1948 
G ip sz , 69 cm
J . : B o k ro s B irm an  
B okros B irm an  h ag y a ték a

69. N ő  te k n ő s b é k á v a l, 1947 
B ronz , 25 cm
J. n.
D r . G eg esi K iss P á l tú l.

70 . G á s p á r  E n d re , 1947 
B ronz , 32 cm
J . :  B. B. 1947 
M N G  5 6 .1 3 8 -N  

77. V asm u n k ás  (v áz la t)
G ip sz , 2s cm 
J. n.
B okros B irm an  h ag y a ték a  

72. V asm u n k ás , 1948 
B ronz , 220 cm
F e lá l l í tv a :  a  S Z O T  S zékház  e lő tt 

7 3 -7 4 . B ú k o r B é la , 1948 
B ronz , 32 cm 
J . :  B okros B irm an  
M N G  5 6 .1 3 4 -N  

7 j - 7 6. T é g la h o rd ó , 1949 
G ip sz , 48 cm 
].: B. B. 1949 
B okros B irm an  h ag y a ték a  

77. U lysses, 1949 
B ronz , 20 cm 
J . n.
M N G  6 9 .1 6 -N

78. S ógorom , 1946 
B ronz , 1 8 X 1 6  cm 
J . : B. B. 1946
B okros B irm an  h ag y a ték a

79. M ed n y án szk y , 1955 
B ronz , 36 cm
J . : Bokros Birman 1955 
M N G  54.1948

80. H a lá sz fiú , 1955 
B ronz , 24 cm 
J . n.
B okros B irm an  h ag y a ték a

81. ö n p o r t r é ,  1955 
G ip sz , 4 ;  cm
J . : B okros B irm an  1955 
M N G  57 .3 i - N

82. C ica , 1937 
P la sz te lm , 8,5 cm 
J . n.
B o k ro s B irm an  h ag y a ték a  

8}. M u n k ásfiú , 1957 
G ip sz , 70  cm 
J . n.
B o k ro s B irm an  h ag y a ték a  

84. V e tk ő ző  nő , 1957 
B ronz , 17 cm 
J . n.
M N G  6 8 .3 9 -N

83. D ém o sz th en ész , 1957 
G ip sz , 24 cm
J. n.
B okros B irm an  h ag y a ték a

86. S zenes Z su zsa , 1959 
T e rra k o t ta ,  24 cm 
J . : B okros 1959 
E rd é ly e ié  S zenes Z su zsa  tú l.

87. B a rtó k  B é la , i9 6 0  
G ip sz , 16 cm
J. n.
B okros B irm an  h ag y a ték a

88. Meditáló, i 960 
G ip sz , 89 cm 
J - : i9 6 0
B okros B irm an  h ag y a ték a

89. S zp u tn y ik n éző k , 1962 
G ip sz , 51,5 cm
J. n.
Bokros Birman hagyatéka

90. S zp u tn y ik n éző k  (rész le t)
91. K o n ty o s  n ő i fe j, 1962 

G ip sz , 37 cm
J. n.
B okros B irm an  h ag y a ték a

92. Á lló  fé rfi, 1964 
G ip sz , 84 cm 
J . n.
B o k ro s  B irm an  h ag y a ték a
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KÉPEK





1. Alvó leány, 1916

2 0 7



2. Torzó, 1917

2 0 8



j .  J ó n a p  A n d o r n e ,  1915 k ö r ü l

2 0 9



4• Ülő fiú akt, 1919

2 1 0



5- Ü lő női torzó, 1922

2 IX



6. Guggoló nő, 1921

212



~ Ncz y kézlábálló' 1921

2 *3



8. Akrobata, 1921

2 1 4



p. Híd, 1921

2 1 5



1 о. Anya és lánya, 1922

2 1 6



и .  László Mihály, 1923

2 1 7



12. Ölelkezők, 1923

2 1 8



í j .  Ö nportré, 1923

2 1 9



í j .  Ady Endre, 1924

2 2 0



1 5 - Á c h im  A n d r á s - e m lé k m ű  te r v ,  1924 
16. A d y - s í r e m lé k  t e r v ,  19 2 7

2 221



íy. Ady-£ej a síremléktervhez, 1927



и
to
OJ 18. B r o n z  d o m b o r m ű  a z  A d y - s í r c m lc k  t e r v h e z



lg . Galiczáné, 1926

2 2 4



го. Keleti Artúr, 1927

2 2 5



21. К. Füredi Róza, 1927

226



22. К. Füredi Róza, 1927

2 2 7



2j. Szágelné, 1927

2 2 8



24. Szágelné, 1927

229



2j. Ú jvári Péter, 1927

2 3 0



гб. Kalapos önportré, 1927

231



27. Fiú akt, 1928

2 3 2



2 8 . Fiú akt, 1928

23З



2p. D on Q uijote, 1929

234



jo .  D on Quijote, 1929

2 3 5



31. D on Quijote-fej (részlet)

2 3 6



32. D on Quijote-fej (részlet)

3 237



Birm an Izsóné, 1929

238



34- Gegesi Kiss Pál, 1930

239



3$. Szőllősi Endre, 1930

2 4 0



Зб. Masaryk, 1930

2 4 1



37- Gádor Istvánné, 1931

2 4 2



38. „Terem tés” , 1932

24З



39- Schultheisz Baba, 1932

2 4 4



4 о. Futók, 1933



41. Scheiber H ugó, 1933

2 4 6



42. Madame Sans Géné, 1934

247



43• Köszöntő, 1935

2 4 8



I

44. Pán Im réné, 1935

249



45• B író  H enrik , 1936

25O



46. Ö nportré, 1939

2 5 1



47- Napbanéző bányász (változat), 1941

252



48. N tpban  éző bányász (változat), 1941

4 25З



4 9 • Á l l ó  n ő i  a k t

254



SO.  Á l l ó  n ő i  a k t



És vidd magaddal . . 1940

2 5 6



52. József Attila, 1942

257



5 j. Tékozló fiú megtérése, 1941

258



54- Tékozló fiú megtérése, 1941

259



2Ó
0

55. Világ proletárjai egyesüljetek, 1941





57- Kubikos, 1941

262



58. Aszfaltozó, 1943

2 6 3



j>p. Tom i, 1942

2 6 4



6o. R okkant katona, 1944

265



6i.  R u th  és N oém i, 1944

2 6 6



Ó2. R u th  és N oém i, 1944

2 6 7



R uth  és Noém i, 1944

268



(>4 - Glück Marianne, 1945

5
2 6 9



65. Dózsa György, 1946

270



66. D una-völgyi népek kórusa, 1946

2 7 1



67. Bocskoros paraszt, 1948

272



68. Kucsmás paraszt, 1948

27З



6g. N ő  teknősbékával, 1947

274



I

yo. Gáspár Endre, 1947

2 7 5



71-  V a s m u n k á s  ( v á z l a t )

2 7 6



72. Vasmunkás, 1948

2 7 7



73■ B úkor Béla, 1948

2 7 8



74- B úkor Béla, 1948

2 7 9



75- Téglahordó, 1949

2 8 0



j6 . Téglahordó, 1949

281



77- Ulysses, 1949

282



78. Sógorom , 1946

283



79- M ednyánszky, 1955

2 8 4



8o. Halászfiú, 1955

б 2 8 5



8i.  Ö nportré, 1955

2 8 6



82. Cica, 1957

2 8 7



8 j. Munkásfiú, 1957

288



84■ Vetkőző nő, 1957

2 8 9



85. Dcmoszthenész, 1957

290



86. Szenes Zsuzsa, 1959

291



87- Bartók Béla, i960

2 9 2



8 8 . Meditáló, i960

293



г
t

89. Szputnyiknézők, 1962

294



g o .  Szputnyiknézők (részlet)

295



p í. Kontyos női fej, 1962

296



92. Álló férfi, 1964

297
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A z Akadémiai Kiadó sorozata:

MŰVÉSZETTÖRTÉNETI
FÜ Z E T E K

1.  M o j z e r  M i k l ó s

TORONY, KUPOLA, KOLONNÁD

78 oldal . Fűzve 21,— Ft

2 . G a l a v i c s  G é z a

PROGRAM ÉS MŰALKOTÁS 
A 1 8 . SZÁZAD VÉGÉN

71 oldal . Fűzve 18,— Ft

3 , Szabó Júlia
A MAGYAR AKTIVIZMUS 
TÖ R TÉN ETE
83 oldal . Fűzve 22,— Ft

4. Gervers-Molnár Vera
A K Ö Z É PK O R I MAGYARORSZÁG 
ROTUNDÁI

93 oldal . Fűzve 28,— Ft

5. Vayerné Zibolen Agnes 
K ISFA LU D Y  KÁROLY
A művészeti rom antika kezdetei 
Magyarországon

72 oldal . Fűzve 20,— Ft

6 . Sz. Koroknay Éva

MAGYAR RENESZÁNSZ 
KÖNYVKÖTÉSEK

125 oldal . Fűzve 34,— Ft

AKADÉM IAI KIA D Ó  • BUDAPEST



Á r a :  62,— Ft

BOKROS
BIRMAN
DEZSŐ
ÖNÉLETRAJZA,

LEVELEZÉSE,
MÜVEI

AKADÉMIAI KIADÓ, B U D A P E S T
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