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Preface

In different aspects of computer programming one meets definitions that
seem to be circular, in that the notion to be defined plays a role in the defini-
tion. A closer look, however, shows that in such cases we are always con-
cerned with recursive definitions, and the aim of this book is to develop
exact definitions of this background.

The action of a computer can always be thought of as a process such that in
response to given input data, the machine produces certain outputs. Since
both the input data and the sequential output of the results can be encoded
into natural numbers, it follows that the functioning ofa computer can always
be considered as the computation of a value of a numeric function. With
the idealization that the contents of the computer store are unlimited, it
can be shown that the functions computable by a computer are identical
with the class of functions known as the “partial recursive functions”.

Therefore if we study how the computation of partial recursive number-
theoretic functions can be programmed, essentially all questions concern-
ing the problems solvable by a computer will be studied. The above idealiza-
tion (which will be assumed throughout in what follows) always arises
if a general mathematical theory is applied to practical problems. This is
often expressed by saying “the infinite is a useful approximation to the
large but finite”.

The computer does not understand and manipulate the data (including
the numbers) in substance, but only as sequences of symbols. Hence we
shall also have to deal with the generalization of the theory of recursive
functions to the case of sets of numeric structure.

The practical side of the subject does not fit into the framework of this
book. I am in the convenient situation that | do not even have to cite any
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literature dealing with this: it suffices to refer to the references quoted in
Barron’s booktl]. However, because my own publications are not quoted
there and it is from these that almost the whole material of the present
book is derived, | shall refer to these and to several papers by other authors
throughout the book.

Almost no previous knowledge is necessary. The lengthy general proofs of
the quoted works will not be given. The arguments will be mostly illustrated
by examples.

Finally, may | express my gratitude to L. Kalmar, who persuaded me to
work in this field and to write this book; to B. Démélki, who carefully read
the manuscript and helped me with valuable suggestions; and to G. Révész
and J. Urban, who also read the manuscript and made useful remarks.

Rézsa Péter

[1] D. W. Barron: Recursive techniques in Programming, Macdonald and Co, London
(1968). References at the end of every chapter. See in particular J. McCarthy’s works
quoted there.



Foreword

Rozsa Péter, Corresponding Member of the Hungarian Academy of Scien-
ces, retired professor of the E6tvds Lorand University of Budapest died in
February 1977. Her scientific career started in the late 1920s. By now,
she became a classic of mathematical logic as one of the founders of recur-
sion theory. In her early works she has made important contributions to
the development of the concept of recursive functions. In 1951 she was
the first to publish a monograph on this subject. The present book, based
mainly on her own research conducted in about the last twenty years of
her life, gives an insight to possible applications of recursive functions and
their generalizations in computer theory.

Besides being a great scientist, she has played a prominent role in the mathe-
matical life of our country. Her kind forceful personality and her striving for
justice made her a natural champion of all good causes we aimed at in
organizing mathematics in Hungary.

Interviewed by the Hungarian Television in 1970, asked by the reporter
whether her subject in mathematics had practical applications, she answered:
“l must admit that | never thought of this while doing research work. The
problems | dealt with arose as a consequence of inevitable inner develop-
ments in mathematics. This made them exciting for me and | would not
even have dreamed that my results might have practical applications.
It should be a warning example to all those who want to discourage
research in pure mathematics that they are preventing the cause of the
applications of mathematics as well.”

This book was first published in German, in 1976. We should express our
thanks to dr. Istvan Juhasz, who with indefatigable zeal worked to make
it available in English.

Andras Hajnal






Chapter 1

Recursions in Binary
Computer Arithmetic

1.1 Binary Representation

The fact that we can build a computer out of parts, each one of which is
capable of having two states, is due to the recursive dependence of the
basic operations between natural numbers on their binary digits [2].

We have to take care that the digits of the same place-value of the operands
a and b should stand in the same order, and the appearing empty spaces be
occupied by 0. The final (that is first from the right) of the binary digits
of a and b will be denoted by a0 and b0, the next to the last ones by ax
and bx, and so on.

1.2 Digital Addition

When we add aand b let the corresponding digits of their sum be denoted by
S0 sx,s2, and so on, and those of the carry from the right-hand neigh-
bouring place by 0, ux,u2, etc. Using the notation & for “and”, and V
for “or” (the Latin “vel”, permits the occurrence of both alternatives),
and taking that the carry 1 occurs if at least two of the values an, bn, un is
equal to 1, we obtain the following relationship:

mo =20
[1, if a,=b,=1Va, =un=l14b,,=un=1 (1.2.1)
K'+1 (O otherwise,
s _fl, if (un= 0&anji h,)V(wm,= 1&a, = bn
" [0 otherwise.

[2] The binary representation of a natural number is

2k*(ifc-f 2k-1 + ...-blI'Gi+ Goi
written in brief as
k-1 aiaQ
where each one of the digits a0, alt ..., ak is either 0 or 1 It can be required that ak=1
or an arbitrary number of zeroes may be added to the left.
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For the computer it is still simpler, if two states are distinguished according
to whether the carry is 0 or 1 In order to be able to indicate the change of
states, we put, in general,
f1, if ¢c=0
C jo otherwise,

and the digits of the sum at different states will be distinguished by upper
primes. Since for n,,=0 a change of state occurs if an=b,,=\, and for u,= 1
if an=bn=0, the definition of the sum a+b reads more precisely as follows;

f»0 =0
_ fn,, if Oh=bn’u,, (1.2.2)
(iintl  \u,, otherwise,

, N, if an*bn
S'~ jo. if a,,=bn,

._ 1> if a =bn
« JO, if an?+bn,

K, if “,=o0
Sn-k, if un=.

1.3 Digital Subtraction

It is easy to see that for a”b the digits of the difference a—b can be obtained
in exactly the same way, if the definition of the carry, which we will denote
by u~, is modified like this:

u =0
u- = K~, if a,,— bn (1.3.1)
ml [u~  otherwise.

1.4 Digital Multiplication

In multiplying a given multiplicand a with a given multiplier b we have to
use the fact that the addition of two summands can already be done digit-
wise, hence so can be done the special case of the multiplication in which
the multiplier is 2, since

2'C=c+c
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This can more easily be done directly, since the digits Z,, of the double of ¢
are obtained by affixing 0 to the right-hand end of the binary form of c:

jz0=10

i Zn+l = Cn-
In general the multiplication is carried out in such a way that a is multiplied,
step by step, by

bo>2 eblt 22402, ...,

and then these products are summed up. This can also be accomplished so
that first (that is at step zero) a is taken by itself, then it is doubled, then the
result is again doubled, etc. and the value obtained in the nth step is taken
as a summand if and only if b,,=1 The addition of the subproducts can also
be carried out step by step. Precisely,

id(0) —a
[d(n + 1) = 2+d(n) (1A1)
and
s(0) -0
fsOO, if bn=20 (1.4.2)

S{n+1)~\s(n) +d(n), if b,,=1
If bk is the last digit of b (from the right) that is not equal to O, then
a-b = s(k+1),
which can be computed digit by digit as above.

In the last two definitions, the functional notation d(n) and s(n) was used.
The indexed letters could also be written in this form; e.g. the value of the
digit an depends on n, hence it could be written as a(n). There is no need
to give other well-known examples of definitions in the basic binary arithme-
tic of the computer, for the ones given so far already show the basic prob-
lems of such definitions.

1.5 Circular Definitions

The definitions denoted by (1.2.1), (1.2.2), (1.3.1), (1.4.1) and (1.4.2) seem
to be circular because in order to compute a value of the functions defined
in them other values of the functions to be defined are needed. In full gene-
rality such definitions are indeed useless. If e.g. we omit the first line in
definition (1.4.1) or we replace the second by

d(n+ 1) = d(2-n),



16 Recursions in Binary Computer Arithmetic [Ch. 1

then in the first case none of the values d(n) and in the second case none
of those with «>1, could be computed.
Equation (1.4.1), however, is a particular example of primitive recursion,
by means of which a numeric function (that is one defined for and taking
its values from the natural numbers) is uniquely determined. Here this
function is

d*(n) = 2" «a,
since

d*(0) = 2°+a = g,
and

d*(n+1) = 2”+lea = 2-(2nea) = 2-d*(n)

Are satisfied.

Moreover this is the only function satisfying (1.4.1). Indeed, if the numeric
function d**(n) satisfies it as well, then

d**(0) = a = d*{0),
and if for some n we have
d**(n) = d*(n),

then this equality is also valid for n+1, since then
d**(n+1) = 2-d**(n) = 2-d*(n) = d*(n+1).

Thus d**(n) is identical with d*(ri)=2n-a.

Thus (1.4.1) yields the special case of multiplication in which the multiplier
is an arbitrary power of 2. The computer, however, knows nothing about
2"ea. It can only recognize that in a storage location going from the right
to the left, first 0 occurs n times and then the digits of a occur in order. If,
purely formally, a is considered as the sequence of its binary digits, then
(1.4.1) determines a new kind of primitive recursion, whereby a function
which is not numeric but whose arguments and values are finite sequences
of symbols. That is why in the following chapters we shall consider such
generalizations of the notion of recursivity.



Chapter 2

General Recursive Functions

2.1 Primitive Recursion
First | restrict myselfto the case of numeric functions.

Since the natural numbers can be obtained from 0 by means of the operation
“counting 1 along”, it is usual to prove a numeric statement by showing
that it is satisfied for 0 and that its validity is “inherited” from any natural
number to its successor (mathematical induction). Moreover we can define
a numeric function by prescribing its value at 0 and providing a method
for obtaining its value at n+ | from n and the value at n, for any given
number n. Such a definition, by means of which the value of the function
to be defined is computable in a finite number of steps for any given argu-
ment, is called a primitive recursion. It has the form

F0) = a
(p(n+ 1) = B(n, (p(n)),

where a is a given number and R(n, w) is an already known function of n
and w. In addition to the “recursion variable” n other variables, known as
parameters, can also occur in L.

(219

There is always exactly one function (p*(n), which satisfies the defining
system of equations (2.1.1). L. Kalmar[3] has shown this by using a sequence
of partially defined functions (that is functions defined for a subset of the
natural numbers), which he called “partial solutions” of (2.1.1). By this
we mean that

(1) if such a function ¢ is defined at O, then
ii(0) = a

L. Kalmar: On the Possibility of Definition by Recursion, Acta Sei. Math. 9 (1940) pp.
227-232.
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(2) if it(n+ 1) is defined for some n, then so is §s(n) and [4],
G (n+\) = B(n, N«))-

If  and if2 are partial solutions of (2.1.1) and both are defined for n,
then
»Ai(«) = ~2 00,

since this is true for n=0 by (1) and is induced from n to n-f-I by (2).
Now Kalmar defined a sequence of functions

0,(Pi,(p2, - (2.1.2)
for finite subsets of the natural numbers as follows: Let (p0 be defined for
0 only by

<Po(0) = a.
This is obviously a partial solution of (2.1.1). If a partial solution <m of
(2.1.1) is now given, for which 0) and gn(n) are defined but (p,(n+1) is
not (as is the case for n—0), then by[4] q, is only defined for arguments less
than n+ 1 We define gnt+l for an argument less than n+ | if and only if
gnis defined there, with the same value, but we also define it for the argu-
ment n+ | as follows:
<PrH(n+ 1) = B(n, m(n)).
Thus, this defined partial function (n+l inherits the above properties of
(. Firstly, if {0 was defined then so is s,+1(0), moreover
(PHL(0) = <0) = a
Hence sm+1 satisfies (1).
<Mi(n+ 1) was defined, however (p,,+((n+ 1)+ 1) was not, since otherwise
P(h+1) + 1), and therefore by (2) (p,{n+ 1), would be defined.
Finally (ol also satisfies (2), and therefore is a partial solution of (2.1.1).
Indeed, assume that u+1(m+ 1) is defined for an m (*(n + 1) + I). If m"n,
then (pn(m+1) and thus by (2) <p,(m), are also defined in such a way that

(Prti(ra+ 1) = <™+ 1) = R{rn, (Pn(mj) = B(m, (pt+L(mj).
If m=n, then
@+i(n +1) = §(n, 4>,{n) = B(n, @+1(n))
by the definition of qn+1. Hence <p,t1 satisfies condition (2).

t4] Note  implies that whenever ipis defined for n+ 1it is also defined for all the smaller
numbers. However, in his proof, Kalmar avoided the use of the relation m <n, since this
is defined in terms of addition like this: “there exists a number I different from 0 such that

n=m+r,”

while addition is defined through a primitive recursion.
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The members of the above defined sequence (2.1.2) are partial solutions of
(2.1.1), moreover for each n the function (p, is defined for n.

It follows that if (p*{n) denotes the common value at n of the partial solu-
tions of (D) defined for n, then qo*(ri) is definedfor each n and is the unique

{complete) solution of (2.1.1).
The existence of a unique solution for the types of recursion to be mentioned
below could be proved similarly, but we shall not discuss it here.

2.2 Dummy Variables

The functions defined in Ch. 1were all primitive recursive, in a sense to be
defined. To demonstrate this, we shall examine those definitions more
closely.

2.2.1 The Functions 0 and N+1

The simplest of the definitions was used to define the “change of states”
in the addition. Replacing the variable c used there by the more usual n,
and taking into account that every number different from 0 can be written
in the form n+ 1, this definition reads as follows:

lmF1ko0.

This is a primitive recursive definition of the function n, where 1 stands for
the constant a appearing in (2.1.1) and the function B(n, w) is represented
by the constant 0, which can also be considered as a function of n and w.
We shall always allow the use of dummy variables, on which afunction does
not really depend. The constant0 (including dummy variables) will be taken
as an initial function.

The constant 1 also plays a role in the above definition but we do not
have to take this as an initial function. Indeed, it is convenient to take the
“successor function” u+ I, which is more elementary than the sum [5] and
therefore is often denoted by n', as an initial function. Clearly 1is obtained
by substituting 0 into it.

t5] It was observed that school children, who can immediately name the successor of an
arbitary natural number, have difficulty when they have to write down in an equation the
successor of x. It is not obvious for them that this is obtained as the sum x+ 1
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2.2.2  Primitive Recursive Functions

All the larger numbers can be obtained by substitution from the initial
functions. We obtain 3, for example if first in n+\ we replace n by n+1,
then in the resulting M+ 1)+ 1 we do the same, finally in (n+ )+ 1)+ 1
we replace n by 0. Thus all the natural numbers are primitive recursive, for
the general definition of this concept goes as follows:

A numeric function is called primitive recursive if it can be obtainedfrom 0
and n+\ by means offinitely many substitutions and primitive recursions.

2.3 Recursive Operations

As a simple example of a primitive recursive function we can consider the
identity function (p(n)=n, since it can be defined directly from the initial
functions by the primitive recursion

f<HO) = o

j<p(n+l) = N+ 1
In the primitive recursive definition of the sum

<p(n, a) = a+n,

in addition to the recursion variable n a parameter a also occurs. Thus the

value of (pfor n=0 is not a constant, but is already a given function of the
parameter. Here this is the identity function tp(n)—n, corresponding to
a@=a

|<p(0,a) = a

\(p(n+1, a) = cp(n, a)+1.
The function corresponding to 3(n, a, w) of the general definition, which

of course depends on the parameter a, is represented here by the initial
function

B(n,a,w) = w+1,
with n and a as dummy variables.
Using the sum, the product
(p(n, @) = a-<n

is also obtained as a primitive recursive function, since (a-fl) times a can
be obtained from ntimes a by adding a to it: -

i<P(0,a) =0

I<p(n+ 1, a) = (p(n.a) +a.
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Within the scope of the natural numbers we can only define the “arithmeti-
cal difference” (denoted by a—n), which is the non-negative part of a—n;
that is it is O if a is less than n. First we consider cp(n)=n —1, this is obtained
by the primitive recursion
(P@0) =0
\(p(n+\) =n.
Moreover for <p(n, a)=a —n we have
|<P(0,a) = a
I<p(n+ 1 @) = (p(n,a) —1

One of the values a-b and b—a is always 0, and the other is the absolute
value of a—b. Thus

\a—h\ = (a—b)+(b —a)
is obtained by substitution from the sum and the arithmetical difference.
Hence it also is primitive recursive.

2.3.1 Primitive Recursive Relations

In Ch. 1 we have seen definitions by cases according to whether two numbers
were equal or not. Equality is said to be a primitive recursive relation, since
a=b if and only if the primitive recursive function \a—b\ vanishes. In
general a numeric relation B (ax, ..., ar) (for r=\a property) is called primi-
tive recursive if it has a primitive recursive “characteristic’’function B(ax, ...
..., ar), which vanishes exactly for those arguments that satisfy B.

Thus a<Z> is also a primitive recursive relation, as it is satisfied exactly for

those a and b for which
(@+1)—b=0.

2.4 Sign Functions

From the primitive recursivity of given relations we can deduce the pri-
mitive recursivity of certain others, which are built up from them.

For example, the negation of a relation B is primitive recursive if B is.
Indeed, let 8 be a primitive recursive characteristic function of B. Of course,
what is relevant about B is the places where it vanishes. In other words we
are only interested in the “sign” of 3, where we have in mind the function

[y

, if a»0
sign(@ = 0, if a=0
—1, if a<@,
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defined for all integers. Since here negative numbers are not considered, a
suitable sign function can be defined by means of the following primitive
recursion: -
fsg(0) = 0
jsg(n+1) =1
For the negation B of B the exact opposite of this (denoted by sg) is used: -
fsg(O) = 1
jsg(in+1)=0.
This was actually introduced earlier in Ch. 1 for another purpose, with the

notation c. Clearly sg(/?) is a primitive recursive characteristic function of
B, since it vanishes if and only if B is not satisfied.

2.4.1 Closure of Recursive Relations

In definition (1.2.1) (and, implicitely, in (1.2.2) and (1.3.1) as well) combina-
tions of relations by “and” (conjunction) and “or” (disjunction) occur.
Together with Bx and B2the relations

Bx&Bo and BxVB,
are also primitive recursive. Indeed, if R1 and B2 are primitive recursive
characteristic functions of B1and B2, respectively, then Bx+R2and Bx-R2
are primitive recursive characteristic functions of BXB2 and BryB2,
respectively.
The implication BX*B2 (which means “if Bxis valid, so is B2’) can also be
written as

SiVA,;

it is also primitive recursive if Bxand B, are.
For the negation a=b | will use the more usual notation a”b.

2.5 Definition by Cases

As was noted earlier, in Ch. 1 we used definitions by cases. In general we
have: - If az, ..., a* are primitive recursive functions and Bx, B2, ...
...,Bk*1 are pairwise exclusive primitive recursive relations, then the
function (p, defined as follows, is also primitive recursive:

al5 if Bx is true

a*-1, if Bk _x is true
ak otherwise.
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First of all, the “otherwise” can be replaced here by
Bk= B: &R & ... &Bk_j.

Secondly, assume that RIt ..., Bk are primitive recursive characteristic func-
tions of Bx, ..., Bk, respectively. As these relations are pairwise exclusive,
for each argument exactly one of the values sg”), ..., sg(K) is equal to 1
(namely Ig(/?,)=1, if Bt—0, that is, if B, is satisfied). Thus spcan be defined
by

= cgesg (ft) + ogesg (ft) +... + ogesg (ft).
The built up function @ remains primitive recursive if in its definition by
cases the right-hand side contains the value of (ptaken at the immediately
preceding value of the recursion variable. An example for this is given
below as a modification of definition (1.2.2). The same is true for definitions
by cases of other types of recursion that we shall treat later on.
A particular example of a built up primitive recursive function is a(n),
the nth digit from the right of a number a, given in binary form. If for
example

a = 10111,
then
1, if n=0
1, if n=1
1, if n=2
“*"Ho, if ,=3
1, if n=4
0 otherwise.

In this sense all the functions defined in Ch. 1are primitive recursive. Consider,
fo -example, (1.2.2) in which a and b are fixed numbers and instead of u,, an,
bn the notation u(n), a(n), b(n) is used. Then

n(0) =0
n), if a(n) —b(n) * u(n)
(n)  otherwise.
As we have said already, here
i(n) = sg (u(n)).

B(n,w) = fsg(w), if - a(n) —b(n) &b(n) * w

Since the function

w otherwise,

is primitive recursive, u(n) is thus defined by the primitive recursion: -
fu(0) = 0

[K(n-H) = B(n,u(n)).
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2.6 Further Recursive Functions

After having given the above examples, in what follows | shall list other
primitive recursive numeric functions, without however giving any actual
proofs that they really are primitive recursive. For these | shall refer the
reader to my book [6]. The functions used in elementary number theory
are all primitive recursive, for example the nth prime number pnas a func-
tion of n, the exponentiation a", the exponent exp,,(a) of the nth prime num-
ber p,, in the unique prime factor representation of a (we put exp,,(0)=0),

the “arithmetical quotient” |j~j (which is O if n=0 and the largest number

contained in — otherwise), or the remainder res (a, n), obtained when divid-

ing a by u (this is understood to be a if n=0). This shows that the nth binary
digit of the number a is a primitive recursive function of n and a, namely it is

e((y]4

Also |"-j for n*O was defined as the smallest number / up to (and including)

a, for which (i+1) *n is already bigger than a. In general, for any primitive
recursive relation B, the expression

Pi[i ~ n & B(i,al, ...,an),

(which means the smallest number i up to (and including) n satisfying
B(i, &i, ..., ar), if there is such a number, and 0 otherwise), is a primitive
recursive function of al,...,ar. Here the implicit bounded existential
qualification, denoted by

ED[i s n & B(, Gj, ..., an)]

yields a primitive recursive relation of n, alt ...,ar for a primitive recursive
B, similar to the expression

(Of* =n -*B(i,au arj,
meaning that “for each i up to n B(i, ax, ..., ar) holds true”.
The largest i for which the rth binary digit of ar-Ois 1 (where the first digit
from the right is considered “Oth”) is then
pt[i * a & 2i+l > g,

t6i R. Péter: Recursive Functions, Budapest, New York, London (1967); earlier published
in German, Russian and Chinese.
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which is a primitive recursive function of a. It would be easy to provide
here a smaller upper bound for i than a. However it is not worth-while to
calculate the exact upper bound, this being irrelevant with respect to
the smallest i of the given property. Denoting this by k(a) and the nth
binary digit of a by z(n, a) we have

Ha)
a= 2 z(n>a)-2".
n=0

Here the values of a primitive recursive function of n are added up, from
n=0 to a non-constant bound. In general, if (p(n,aly ...,ar) is primitive

recursive, then
b
2 <p(n al9 ...,an
n=a

and
b

n <pn UL, e«,a’
n=a

are primitive recursive functions of a, b, au ..., ar.

2.6.1 Sequential Calculation

According to the above, the binary digits of the value of any primitive
recursive function @ can be obtained as primitive recursive functions of the
binary digits of its arguments: first the arguments as primitive recursive
functions of their digits, then g=of these arguments, finally the digits of the
obtained <p-alue.

These detours can actually be avoided. The digits of the values of primitive
recursive functions can be computed successively from the right to the left,
from the digits of the arguments.

For the initial functions 0 and n+ 1 this can be seen immediately. Every
digit of 0 is 0 (independently of the variables), while n+1 is the particular
case of the sum a+b, with b= 1, having the digits

ho= » ki —0, B4—0, ...,

for which this has already been established. Of course, it could also be
shown directly. Next, if the digits of the values of the functions < RBIf ...
...,3s are obtainable as primitive recursive functions of the digits of their
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arguments, then this holds also for the function
oc(ft(di, an, ..., Bs(al, ..., an),

obtained from them by substitution. Finally, this property is carried over
from the functions a(aj, ..., ar) and B(n, alt ..., ar,w) to the function
(p determined by the primitive recursion

| (O, ar, ..., ar) = a(al, ...,ar)
\(p(n+1,a1, ..., an = B(n,al, ... ar, (p{n, alf ...,ar).

Indeed, for n=0 this can be seen immediately, and it is transferred from
nto n+ 1 If it is true for the value cp(n, ax, ..., ar), then it is also true for
(p(n+1,ar, ...,ar) obtained from this value and B by substitution.

Thus the digits of the arithmetical quotient and of the remainder in division
can be obtained consecutively from the digits of the dividend and divisor.
Following through the construction of a primitive recursive function out
of the initial ones, however, might bring with it unnecessary detours. In
this construction of the sum a+n, for instance, the multiple application of
the successor function is needed, whereas we also have a direct way of
computing the digits of the sum from those of the summands. In practice
one always strives for constructions with the fewest possible detours.

2.6.2. Restriction to Iterations

In the rest of this chapter, | will list several facts about number theoretic
recursive functions, mainly without proofs. For these proofs | again refer
to my book [e].

First | want to mention that in the construction of the primitive recursive
functions, we can restrict ourselves to the following simplest particular
case of primitive recursion:

F0) =0
<p(n+ 1) = B(g>(n)),

provided that we also admit further initial functions; for example the sum
a+n, the product a-n, the arithmetical difference g-=-u, and the “arithmeti-
cal square root” [fn] (the largest integer not exceeding /n). In fact, the num-
ber of necessary initial functions can be reduced to three.
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In the above special primitive recursion the values of @ are obtained as
follows: -

0) = 0.
cp(\) = B(o).
$(2) = B(Bm

<H3) = B(B(B(9)))-

This, therefore is simply the iteration of the function B at the argument O,
also denoted by /2(n)(0).

2.6.3 Course-of-values Recursion

There are types of recursive definitions of numeric functions different
from primitive recursion. Some of these can be reduced to primitive recur-
sion, but not all of them.

In course-of-values recursion the value of the function at a given argument
is expressed by means of values of the same function taken at arbitrary
previous places (not only the immediately preceding one). The “course of
values” of a function @up to n can be encoded by the number

pjw.pf pjw,

where pnis the «th prime number in increasing order (2 being the “Oth”).
By the uniqueness of the prime factor representation of integers the value
(p(i) for i“n can be obtained from this number as

exp,{/I;pr/ ’
the exponent of the /th prime number. Thus, in general, the course-of-
values recursion has the form

¢Pp) = a

<P(n+1) = B[n, g pfJ),
J=0
where a (constant or depending on the parameters) and R are given primi-
tive recursive functions.
Here the course-of-values function

®(n) =0, P2
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belonging to (p can be defined by the following primitive recursion: -
f (0)= Po(Q = 2
W(n+i) = = ¢p{n) 'pNe w ,
and cp(n) is obtained from (n) by the substitution
(Pin) = exp,,(IA00).

This shows that the course-of-value recursion remains within the class
of the primitive recursive functions.

2.7 Simultaneous Recursion

The definition of two (and similarly more) functions by simultaneous
recursion has the form

i9>i(0) = fl1 i<P2(0) = &2

Wi(n+ 1) = 8i(n, i), pr(n)), I<p2n+ 1) = 82(n, (pr(n), p2(m)).
This can be reduced to the definition of the function

<) = (") « 37in),
from which the functions sl and <R arise by the following substitutions: -
<Pi(n) = expo (tpin)), q2(n) = expx(@(n)).

Using the primitive recursive auxiliary function

B(N, M) = 2~dn’expotw)»exPi(°)) . 322 (n, expijiut.expjiu))"

<pis determined by the following primitive recursion: -
J<p(0) = 2932
I<p(n+ 1) = B(n, (pin)).

Thus simultaneous recursion does not extend the class of the primitive
recursive functions, either.

2.7.1 Nested Recursion

So far the parameters have played an incidental role, which is why sometimes
they were not even indicated. There are, however, recursive definitions, in
which the parameters do not remain unchanged. They might have to satisfy
some conditions, even depending on previous values of the function to be
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defined. This might also lead to nestings of the previous function values
in the definition, as in the following example:

|<P(0, a) = a(a)

\(p(n+1,a) = B(n, a, (n, y(n, a, cp(n, a)))).
If in such a definition the maximum number of nestings is fixed, then this
does not extend the class of primitive recursive functions. However, the
number of nestings can also be varied, and even be dependent on earlier
values of the function to be defined. By means of such definitions it is pos-
sible to define functions that are not primitive recursive.

2.7.2 Multiple Recursion

There are also recursions on several variables simultaneously, as in the
example below: -

<P(0,n) = aa(n)
(p(m+1,0) -a2(m)
P(m+1,n+ 1) = B(m, n, pm y(m, n)), tp(m+ 1, n)),

where (p{m,y{m,ri)) and $(m+1,n) can be considered as “previous”
values of g in m and n respectively.

2.7.3 The Ackermann-Péter Function

If no nestings of the previous values occur, then these multiple recursions
remain within the class of primitive recursive functions. However, consider
the following double recursion with a single nesting

PO, N =n+1
cp(m+1 0) = cp(m, 1)
cp(m+ 1, n+ 1) = (p(m, (p(m+ 1, n))

which defines (p. It is known as the Ackermann-Péter function, and is
not primitive recursive.

2.8 General Recursive Functions

I will not list any further variations of recursive definitions. They all agree
in that the whole construction of the function to be defined out of the
initial functions is obtained via a defining system of equations of the form
r=s, where both r and s are terms built out of natural numbers, number



30 General Recursive Functions [Ch. 2

variables, symbols for the function to be defined and some auxiliary func-
tions [7]. The value of the function under definition, at any given argument,
is obtained by applying the following simple steps a finite number of times.

A) the substitution of natural numbers for variables in an (original or
derived) equation,

B) the replacement in an equation of a subterm, also occurring as the left-
hand side of an equation, by the right-hand side of this second equation.

The above is the actual definition of general recursion. The functions
computable from systems of equations of the above kind by finitely many
applications of steps A) and B) are called general recursive.

Let us consider the primitive recursive function defined in (1.4.1) denoted
by (p0(n) for the sake of homogeneity of notation. Then (1.4.1) reads as
follows: -

J<Po(0) = a

I<p,(n+ 1) = 2-<p0(n).
The auxiliary function
<Pi(n) = 2en(= n+n)

is used here. Taking into account the known definition of the sum
(2{n, m) = m+n
(cf. section 2.3), the complete definition of q(n) is as follows:

M®O) - a (2.8.1)
<Po() = <Fi{<Po(n) (28.2)
<Pi(n) = <vke «) (2.8.3)
(p2(0,m) —m (2.8.4)
q2(n’', m) = (h2(u1, m))'. (2.8.5)

Clearly, the sides of these equations are terms of the required form.

[71 More precisely, the successor function has to be denoted by ri (=n+1) here. Hence
the natural numbers

01, 2 ..
are

0,00,...

The number 0 and the numerical variables are terms. If a is a term, then so is a'. Thus
all the natural numbers are terms. If ax, ..., ar are terms and <gis a symbol for an /--place
function, then < (ax, ..., ar) is also a term. All the terms are generated in this way.
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Let us carry out, for this simple example the steps of the computation of
the value of g0at n=1(—0), when a=0"(=2). To the right of the newly
derived equations we indicate whether they are obtained by the step A)
or B), and the number of the equation(s) to which this step was applied.
To start with, (2.8.1) has to be repeated with a=0":

Process applied to

€q. no.

(0) = 0* (2.8.6)
A 2 m(0) = q{opo(0)) (28.7)
B 7-6 <0(0) = r(0") (2.8.8)
A 3 cpfo") = 420", 0") (2.8.9)
A 5 qR0" 0" = (42(0\ 0")) (2.8.10)
A 5  q0,0" =(<p2(0,0"))' (2.8.11)
A 4 420,07 =0" (2.8.12)
B 11-12 20", 0") —O" (2.8.13)
B 10-13 <42(0", 0") = 0"" (2.8.14)
B 9-14 @4(0") = 0"" (2.8.15)
B 815 <q0(0)=0"" (2.8.16)

Thus we obtained 1) =4, if a=2.

2.9 Partial Recursive Functions

The notion of general recursive functions includes more than the types of
special recursive functions we have seen above. So far every concrete
numeric function, whose values are effectively computable for all arguments,
has proved to be a general recursive function.
It is an interesting fact that this extensive generality can already be achieved
if, in the definition

I*ili = n &B(i, ax, ..., an\

of section 2.6, the upper bound n for i is omitted. Indeed, Kleene has
shown that every general recursive function can be constructed, starting
from several primitive recursive functions, by finitely many applications
of substitutions and u-operations. For a relation B(n, ax, ..., ar) such that
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for every ax, ..., ar there is an i satisfying B(i, ax, ..., ar) the //-operation
ax, ..., anj

means the smallest such i [8].

If we omit the above requirement that for every ax, ...,ar there be an i
with B(i, ax, ..., ar), that is we allow that nt[B(i, ax, ..., ar)] be not defined
everywhere, then the above procedure leads us to the partial recursive
functions. These are also those partially defined numeric functions whose
values for all arguments, where they are defined, can be computed from a
system of equations with finitely many applications of steps A) and B),
just as in the case of general recursive functions. Thus the general recursive
functions are exactly those partial recursive ones that are everywhere defined.
The identity of two partial recursive functions is denoted by

<P, ..., a,) =Fpax, ..., a,)
and is to be understood as follows: both are defined for the same values of
ax, ..., ar, and wherever they are defined they take the same value.

2.9.1 The Kleene Form

Kleene has constructed a primitive recursive function ¢(n) and for each r
a primitive recursive function

T(, /7 ax, ...,un
such that
L, fli. «J1= t(b M ax, ..., an) = 0]

yields a universal explicit form of an /-place partial recursive functions, in
the sense that to every system of equations defining a partial recursive function
(p(ax, ..., ar) one can determine a natural number n (called “Gdédel number”),
for which

cp{ax, ,arn ™ £{n,ax, ...,an.

In a system of equations defining a function, all the auxiliary functions
occur as well as the ones connected with the function to be defined. Thus
any one of them, if the admitted steps of computation at no place yield
two different values, can also be taken as the function to be defined. Then
the others are considered auxiliary. That is why what we said is also valid
for the simultaneous partial recursive definition of several functions. Each
of these can be brought into the Kleene explicit form.

See S. C. Kleene: General recursive functions of natural numbers, Math. Annalen 112
(1936) pp. 727-742.



Chapter 3

Recursive Word Functions

3.1 Symbol Sequences

As was indicated at the end of Ch. 1, a computer does not understand
our number theory, it can only notice that it received certain sequences
of the symbols 0 and 1, and depending on these it can in turn emit such a
sequence. The mathematician first has to consider very carefully how the
binary digits of the result of an operation arise from the digits of the ope-
rands. He reasons that since

1.2"+1-2n= 2-2" = 2n+l = 1.2n+1+ 0-2B

a “carry” lresults if we twice add the digit 1 Afterwards he observes what
this implies for sequences of digits, and then this can be applied mechani-
cally [9].

Because of the carry, even taking the successor needs some consideration
for numbers in binary form. Let us denote the successor of x, given in
binary form, by s(x), the last (that is first from the right) binary digit of
X by Ib(x), the “initial part” of x remaining after the omission of Ib(x)
by at(x) and the empty sequence by A. Then the following rule can be ob-
served for taking the binary form of the successor (where 1 is considered

I can illustrate this with an example from my teaching experience. When solving
equations the elimination of a subtrahend from one side was for a time always carried
out with the explanation: “The equilibrium of a pair of scales is not disturbed if the same
weight is placed into both scales”. After a while, in order to speed things up, a student
was asked to say without thinking what distinguished the two equations obtained in this
way. She could say: “A subtrahend disappeared from the left-hand side of the first
equation and it appeared as a summand on the right-hand side of the second”. From here
on it was done mechanically: “We transfer the subtrahend as a summand to the other
side”.
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as the successor of the empty sequence):

1, if X=A
*(*x) = at0)1, if ibO)=o0
s(at0))0, if ibO) = .

In fact, for the binary forms

0, 1, 10, 11, 100, ...
of the natural numbers
0, 1,2, 34, ..
we obtain in order:
s(0) =at(@1=n1=1
s(I) = s(at(l))0 = s(A)0= 10.
s(10) = at(10)1 = 1L
s(Il) =s(at(l1))0 = s(1)0=100.
5(100) = at (100)1 = 101

and so on.

These are the successors
1, 10, 11, 100, 101, ...

of the natural numbers in binary form.

The definition of v(x) is apparently some kind of recursion, but for finite
sequences of symbols instead of natural numbers. The sequence s(x) is
determined in terms of s(at(x)), and the initial part at(x) of the sequence x
can be considered as “a place earlier than x”. Taking all the time such earlier
places we get back to the empty sequence J1, for which s(A) is defined
as the single-termed sequence 1 The role of 0 in numeric recursion is taken
over here by A.

A conspicuous difference from the numeric case occurs here, in that x
is not the only sequence immediately following at(x). For example, both
x = 1011 and y —1010 immediately follow

at (x) = 101 (= at (y)).
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3.2 Numeric Structures

In a lecture on September 3, 1959 at the International Symposium on the
Foundations of Mathematics (Infinitistic Methods) in Warsaw [10], | out-
lined a far-reaching generalization of the theory of recursive functions for
abstract sets, which, in a certain sense, have a numeric structure. Here a set
of elements plays the role of 0, and a set of functions the role of the succes-
sor function.

3.2.1 Word Sets

As one of the most important particular cases | mentioned the set of “words
over an alphabet A” (where A is a non-empty set, the members of which
are called letters), that is the set of all finite sequences of elements of A.
The role of 0 is played here by A, the empty sequence, while the attachments
of a single letter to the end of a word play the role of the successor function.
Thus, for each aEA, here xa is a successor function.

3.2.2 Primitive Recursions in Word Sets

Temporarily | shall restrict myself to the particular case in which the pre-
decessors of a word

are its initial segments

ali al@i2> eee><*122... Rf-1, diC>2---Clr.

Here the last one is of course not a “proper predecessor”, while the one
before the last, that is at(x), is an immediate predecessor, at(A) is, by de-
finition, A itself. The general form of a primitive recursion is, in this parti-
cular case (assuming, as we can, that we have a finite alphabet), as follows: -

if *=n
[h(x,/ (at(x))) otherwise, 321

[10] In the same month | submitted a long paper about this, which only appeared several
years after the date of submission in two parts: R. Péter: Uber die Verallgemeinerung der
Theorie der rekursiven Funktionen fir abstrakte Mengen, Acta Math. Acad. Sei. Hung.
12 (1961) pp. 271-314; second part: 13 (1962) pp. 1-24. Further references concerning
this can also be found there. My later works contain new results and several corrections.
The last one is R. Péter: Die Pairschen freien Binoiden als Spezialfalle der angeordneten
freien holomorphen Mengen, Acta Méht. Acad. Sei. Hung. 21 (1970) pp. 297-313.
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or with parameters: -
if X=A
XXP ' X" ~\h(x,x1, ..., X,,,/(at(x), X, ..., X)) otherwise,

where g and h are given word functions. In the case with no parameters g
is a constant word.

The primitive recursive word functions are generated from certain initial
functions by means of finitely many applications of substitutions and pri-
mitive recursions.

3.3 Initial Functions

Clearly s(x), as defined in section 3.1, is a word function in a word set M
over an alphabet A containing 0 and 1 If h(x, y) is defined by

at(x)l, if 1b(x)=0
h(x,y)=yO, if Ib(x)=1
A otherwise,

(where “otherwise” means Ib(x) = A, that is x= A, if A contains no letters
different from 0 and 1), then s(x) is determined by the following primitive
recursion: -
1, if x=A
s(x) =i h

(x, s(at (x))) otherwise.

Thus if the built up function h(x, y) is primitive recursive, so is ,v(x).
Here A and the successor functions xa, for a€A, are always taken as initial
and the attaching of A to x, that is the identity function

[(X) = XA = X,

can also be added to the list of the initial functions. We shall see later that
at(x) is primitive recursive. Therefore so is at(x)l, which is obtained from
x| by substituting at(x) into it. It will also be shown that a function built
up from primitive recursive functions and relations, similar to the numeric
case, is again primitive recursive. Therefore it remains only to examine
the primitive recursivity of the function Ib(x) and the relation of equality.
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3.3.1 The Set of Natural Numbers

In the numeric case the primitive recursive function \x—y\ was a char-
acteristic function of the equality x=y. It is instructive to keep in
mind here the role of the natural numbers in counting objects. One can
for example, indicate the occurring objects, each in turn, with a correspond-
ing occurrence of the symbol 1. Thus the numbers 1, 2, 3, ... can be repre-
sented by

111, 111, ...

that is by finite sequences of 1, where 0 corresponds to the empty sequence.
Of course 1lis not considered here as a numeral of the corresponding num-
ber in a number system. If the length of x is at least as big as the length
of y, then of course \x—\ is obtained if we omit those |’s from x that are
in y. If nothing is left, then |x—y|=0. With the above notation the natural
numbers yield a special word set, namely a word set over an alphabet
consisting of a single letter, which is denoted by 1

If we have two letters, the subtraction does not make sense anymore. If
for example

UL, A2/ Y T2,

how could one “subtract” the letters of y=a- ... & from x=ax... alt or
vice versa? It is therefore reasonable to add a characteristic function eq(x, y)
to the initial functions, for example

mn, if x=y
eq(x,y) = j otherwise,

where ao is a fixed element of A.

The same is true for Ib(x), namely that it has to be added to the initial
functions. It was not a coincidence that Ib(x) appeared in our first recursive
definition of a word function. Now observe that (3.2.1) is not a perfect
analogue of definition (2.1.1). Such an analogue would read

fI(A)= g
\f(xa) = h(x,/ (x)), for afA-

Here x=at(xa), and thus the value of/ anywhere would only depend on
the initial part at that place, completely independently of its last letter.
It is clearly not desirable to restrict the class of primitive recursive functions
in this way. The possible dependence on Ib(x) must somehow be ensured
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in the defining system[11]. In (3.2.1) this is achieved by putting x, together
with its last letter, as the first argument of h, instead of at(x). In the nu-
meric case (in which the alphabet contains only 1) this is of course irrelevant.
From at(x) we obtain x by simply attaching 1to it.

3.3.2 The Idea of a Predecessor

It is actually quite arbitrary to consider only the initial segments of a
word as its predecessor, for example

X = GjU02a3 ("1, ®»>U3£A),
A, Ui, arar aiu3u3.

At first | have considered all “connected pieces” of x as its predecessors.
In the above example they are

A, Uj, QiQ2, A3, 203, wia2a3.

Since not every predecessor of x is also that of the initial part at(x)=ala2,
in addition to at(x), I have taken the final part (obtained by dropping the
first letter), as an immediate predecessor of x. In our example this is et(x) =
= aZa3. Every proper predecessor of x is then a predecessor of at least one
of its immediate predecessors. Accordingly, in a primitive recursion, the
value of/ at x is determined in terms of both /(at(x)) and /(et(x)).

In certain applications, however, even this turned out to be insufficient.
In an application of recursive word functions to mathematical grammars[17],
| found it necessary also to consider random pieces of x as its predecessors.
In the above example ara3is one. For the case of countable alphabets, these
helped the representation (by means of a coding) only in the numeric case,
where the notions of initial piece, connected piece, and random piece
coincide. Indeed, in this case what matters is only the number of letters
in a word and the value of/ only depends on the digit of the letter in the
word. In the numeric case

di= =1,

[127 In my paper quoted in footnote t104 as well as in several further papers, this was
ensured by taking the auxiliary function h to be dependent on a (the last letter of the ar-
gument). This requires a separate defining equation for every letter from the alphabet,
and possibly an infinite number of equations. We could obtain constructive definitions
from these by suitable restrictions, corresponding to the applications under consideration.
Both Ib (jo and eq(x, y) can be defined by such primitive recursions.

[12] R. Péter: Zur Rekursivitat der mathematischen Grammatiken, Computational Lin-
guistics Budapest 9 (1973) pp. 133-216, Submitted in December 1969.
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and the variable here is x= 111. The different parts of this in any case can
only be A, 1, 11, or 111
Also the random part is identical with 11.

Thus we see that, if the alphabet is countable, we can restrict ourselves to
the case in which the predecessors of a word are its initial segments, and
primitive recursions have the form (3.2.1) [13].

3.3.3 The Order of a Word

A word over a non-empty alphabet A can be obtained from A by means
of as many applications of the successor functions as its order, i.e. the
number of letters it contains. Thus

X —aia2a3 (dj, a2, 03(zA)
is obtained from A and the successor functions
fi(x) —xal, f2(x) =xa2, /3(x) = xa3

by the following substitutions: -
gio) = /s(/a(*)) = xa2a3,
gi(x) = gi(fi(xj) =xa"as,

g2(A) = ala2a3.

3.4 Representing Natural Numbers

The order of a word, which will play an important role in what follows,
is a natural number. This makes it desirable that the natural numbers be
present in the word set. The steps of an enumeration can be indicated by
a fixed element of the alphabet. In a word set M, which is concerned with
the basic code ofa computer, | shall always choose 1 as this element. Hence
the natural numbers will be identified with the words consisting of Fs
only. In particular, O will be identified with A. Thus there arises a double
meaning of the words consisting solely of I’s. This will not lead to
confusion, if the symbol of an operation, meant to be carried out digit-wise,
is distinguished from the symbol of the corresponding absolute operation,

t131 See: Lisp 1.5-Programmers Manual, The Computation Center and Research Labora-
tory of Electronics. Massachusetts Inst, of Technology (1962).
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which is independent of the number system, by writing 2 under the former
(for example, +).
Now, the order o(x) of the word x can be defined by the following primitive

recursion:
[, if x=A
°AX> jo(at(x))l otherwise

where o(at(x))l is obtained from the successor function x| by substitution.
Clearly, Xis a natural number if and only if

X = 0(x).
It follows that the iteration of 0(x) does not change anything: -

o(o(x)) = o(x).

3.4.1 Number Functions and Word Set Relations

In this way, every numeric primitive recursive function can be represented
by a primitive recursive function in the word set. In order to see this we
shall prove the following: To every primitive recursive numeric function
(p(n1, ..., nr) there is a primitive recursive word function f(x1, ..., xr) such
that

(34.1) o(f(x1, ..., xn) = <7>(°(xi), s, o(xn)
holds for all xI5 ..., xr.

Proof. Firstly, this is true for the initial functions 0 and n+ 1; for (p=0
we can take/=J1, and for cp(n)=n+1 for example/(x)=xl.
Next, this property is preserved by substitution: If (3.4.1) holds for

A (hi, nr), U5 nn), d(mil, mK)
with
N, mmsxn, L (ci, . XD, g(yk, .., YK

respectively, then (3.4.1) also holds for U, ..., (K with g(f_, .
as the assumptions imply

o(g(fi(xt, ..., X, ...JuiXj, ..., xn)) =
= ofo(/i(x], ..., XB), ..., o(JI(x1? ..., xn)) =

= ®<Plo(Xr), .... o(x1), ..., %(0(Xi), ..., o(XD)).
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Finally, this property is also preserved under primitive recursion. Indeed,
let (p be determined by the primitive recursion

MO, W, ...,nr) = a(nl; ...,nn
\(p(n+ LLwl5 ..., n) = B(n, n1, ..., nr, <p(n, nI5 ..., nr))

where (3.4.1) holds for

aOh,..,nn and B(n,nl5 ..., nr,m)
with
gOi, ...,xH) and h(x,xr, ...,xr,y),

respectively. Then (3.4.1) also holds for pwith the word function/ defined
by the following primitive recursion:

_ fSOh> ees>*)> if *=1
X, xi, mmxr ji(at (x), Xj, ..., xr,f(at(x), xr,..., xr)) otherwise.

Indeed, by our original assumption,

o(/(n, w>1r)) = o(g(xI5 ..., x1j) = a(ofe), o(xn) =
<0, o(xj), ..., o(xn) =

= <p(o(A), ofa), ..., o(xn).

Here we used o(A)=0.
Now suppose that, for some natural number n, for every x with o(x)=wu

we have
off{x, xI5 ..., xn) = <p(0(x), o(xR, ..., o(xn)).

Then the same is also valid for each x of order o(x)=n + I, since for such
an x we have o(at(x))=n, and so by assumption

o(/(x, Xj, ..., xn)) = o(hint (x), XX, ..., xr,/(at(x), xI5 .... xn)) =

=R(o(at(x)), o(xj), ..., o(xr), o(/(at (x), xI5..., x1))) =

= /(o(at (x)), o(xj), ..., o(xr), d(o(at(x)), o(Xi), ..., o(xn)) =

= <p(o(at (X)) + 1, o(Xi), ..., o(xr) =

h(o(x), o(xr), .... o(xn).

Replacing in (3.4.1) each xI5 ..., xr in turn with o/xd, ..., o(xr) we obtain,
o(/(o(xh), ..., o(xn)) = Pp(o(x}), ..., o(xr)).

On the left-hand side, there stands a primitive recursive word function,
which at every place depends only on the order of its arguments, i.e. on
natural numbers, and also takes natural numbers as values. Clearly, for
natural numbers its value is equal to the value of ¢ In particular, it vanishes
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for the same natural numbers as g Thus it can be considered as a represen-
tative of (pin the word set. In what follows the representatives of numeric
functions, as functions of the orders of their arguments, will be denoted in
the same way as the corresponding numeric functions.

This also applies to the numeric relations; they can likewise be represented
by primitive recursive relations in the word set, for the primitive recursivity
of a relation means here also the existence of a primitive recursive charac-
teristic function, which vanishes if the relation is satisfied, and otherwise
can be defined to be 1 Since A is the empty sequence, “vanishes” can be
taken here literally.

3.4.2 Examples

In our word set the counterparts of the numeric functions sg(x) and sg(x)
can be defined by the following primitive recursions:

_ fA, if X—A
sig () 11  otherwise,
T if x=A
sig(x) = 1A  otherwise.

and these are characteristic functions of the relations
x=A and X7 A.

Exactly as in the numeric case, it follows also here that if the relation B
is primitive recursive, then so is its negation B. If ft is a characteristic func-
tion of B, then sig(h) is a characteristic function of B.

However, not everything can be copied from number theory. We found
there that the disjunction B"\/B2 of the primitive recursive relations Bl
and B2is also primitive recursive by multiplying their characteristic func-
tions bi and b2. In the word set we use the following trick: Let

A if X=A
otherwise.

Then d(x, y) vanishes if and only if at least one of x and y does, that is
d(b1, b2

is a characteristic function of B1\JB2.
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The primitive recursivity of the conjunction B*"&B, now follows from the
above, for it is equivalent to

and thus
sig (d (sig (hi), sig (b2))

is a characteristic function of BxSIB2.
Similarly
B\ “mB2= B1VB2

implies that, together with Bx and B2, Bx—B2 is also primitive recursive.

3.5 Definition by Cases

Now we can turn to the definitions by cases (in analogy with section 2.5.1),
which have the form
0x, if Bx istrue

gk-i, if Bk _x is true
gk otherwise,

where gx, ...,gk are primitive recursive word functions and Bx, ...,Bk_n
are primitive recursive relations, and “otherwise” means that

Bk = BXx&...&Bk. x
is satisfied.
In the numeric case the corresponding function was

ai*sg08i) + .. e+<**e 5 (Al),
where
[n, if m=20

"'$(rT)ZIO otherwise.

was the property of the product that we needed. The property of the sum
we use is that it is equal to one of the summands if all the others vanish.
In the present context we have to do something similar without multiplicat-
ion and addition.

The first case is easy; we simply put

_ it x—\
SIo>Y) = R otherwise,
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The following definitions lead us to the remaining cases

, N [n. if Ti=A
'<*e*> = 1*  otherwise,

ssOh, ¥3, Y3) = b-J1Y N ¥3), ¥3),
sAyi, ¥3, ¥3, ) = s2(s3(yi, y2, 3, y4,

SC¥» —>W) = Sa(st-i(Ti. -, Y k-i), W-

For i=2, 3, Kandj= 1,2 i we have
sa(n, A, Yy, N, ny = vy,
hence for yy=/1
S|(A, m=n
Using the definition of sz
2Ay2 =y2,

since
, n> | N-if b =n
AN N)=>b, otherwise,
we have in any case
s2(yi, A) =yk.
It follows from
sitlOh, y,+i) = s2(st(vi, Yn, Yi+1)

that if the property under consideration holds for an si with i<k, then it
also holds for yi+1. Indeed, forj” i+ 1we have
Si+i (A, Ay, A, A) = s (s-(A Ay, A A), A) =
= Sj(A, A vy, A A) =

= 3>
and forz:=/+ 1

si+i(A, A, yi+l)

S2st(A , A),yi+l) =
S2(A, yi+l) =

= Ti+i-
Thus sk has the desired property of the sum. It follows that if bk, ...,bk

are characteristic functions of Bu ..., Bk, respectively, then the built up
function f is obtained as

I = sk{si(bi, gi), Si(fo2, g2, ..., s4(bk, gkj).

Consequently it is primitive recursive.
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3.5.1 Initial Segments
In view of the above, it follows that

A if o(x) < ofy)
f(x,y .z)= X if o(x) = o(y)
z, if o(X) > o)

is a primitive recursive word function. This can be used to give a primitive
recursive definition of the initial segment of x consisting of o(y) letters
(denoted by a(x, y)), which is meant to be A if o(x)<o(y), and, of course,
x itself if o(x)=o(y). Since for o(x)>o(y), this is the same as the corres-
ponding initial segment of at(x), using the above / it can be defined by

A, if x=A
eey) {/(x,y,a(at(x),y)) otherwise.

In particular, we obtain that
at(x) = a{x, o(x)-o(l))

is a primitive recursive word function. Moreover the o(y)th letter b,(x,y)
from the left in x can be written as

bi(x, y) = b (a(x, y)),
which implies that the o(y)th letter br(x, y) from the right in x is

br(x, y) = b,(x, o(xI) -o(y)).

Thus we have solved our problem from the beginning of this chapter: the
function h{x, y) defined in section 33, hence also i(x), the binary form of
the successor of a natural number of the binary form x, (defined in section
3.1) are primitive recursive word functions over an alphabet containing 0
and 1, provided that, in addition to the successor functions, the identity
function, a characteristic function of the equality, and Ib(x) are taken to
be initial functions.

3.6 Basic Operations in Binary Form

In such a word set M the binary forms of the results of the digitwise opera-
tions of Ch. 1turn out to be primitive recursive. Indeed, the binary form of
a natural number is a word, and its nth digit from the right (which is actually
the (n+ 1)th as the first one has index 0), is the same as the nth letter, from
the right, of the word. Every number n can be written in the form o(y), and
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br(x,y), the o(>>th letter from the right in 51 is primitive recursive. It can
be seen from its meaning, but also from the construction of the functions

f(x.y.z), a(xy), b.(xy), brxy),

br{x, y) = br(x, o(y)).

Let us consider for example the addition of two binary forms x and y. It
is easy to check that if we denote the “carry” and the resulting digit at the
o(z)th place from the right by u(x, y, z) and s(x, y, z), respectively, then
definition (1.2.1) can be formulated in M as follows:
Putting first the variable win place of the function v to be defined, we obtain
for n=0(z)?i A (i.e. for z*A) the auxiliary function

that we have

1 if br(x, z) = br(y, z) = 1Vbr(x,z)
= w= 1Vbr(y, 2)

h(x,y,z,w) =« - w= 1

otherwise,

which, by definition, is identical with h{x, y, 0(z), w).

3.6.1 Concatenation

A similar statement holds, consequently, for the following functions defined
by means of h. We have

if z=A
ux.y, 2) = [h(x, y, at(2), u(x, y, at (z))) otherwise,
and
1 if (u(x,y, z) =0&bDbr(x, z) br(y, 2)V
s(x, ¥, 2) = V(u(x,y, z) = 1&br(x, z) = br(y, z))
0  otherwise.

It is irrelevant what this gives for words consisting not only of 0°’s and |’s.
The elements of the binary form of x +y, which result from the digits ob-
tained step by step as above, will be denoted by t(x, y, o(z)). This can be
defined by
fA, if z=A
(> [s(X, Yy, at (2))t(x, y, at (z)) otherwise.

Indeed, denoting the digit
s(x,y,z) = s(x, y,0(2))
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simply by sQ(z) , we obtain
t(x,y,A) =A
t(x,y, ) =s(x,y, AA= sa
t(x,y, 1) =s(x,y, I)sA= SiSA
t(x, y, 111) = s(x, y, 10SiSa= 5uSjSA

and so on, where A, 1, 11, 111, ... represent in M the natural numbers
0, 1,2, 3, ..., and are not considered as binary forms. With

fo(x), if o(x)mo(y)
lo(y), if o(x)<o(y)

max (x, y) =

the binary form of x£y is
t(x, y, max (x, y) ),

with at most one unnecessary 0 at the left end of the word, which could
easily be eliminated.

In the definition of t, however, we applied the concatenation of two words.
This is such an important operation in word sets that in general it has to
be added to the initial functions. But if the alphabet is finite, and we can
restrict ourselves to this case because a computer can recognize only finitely
many symbols, it can be shown easily that

fix,y) = xy

is primitive recursive.

3.6.2 More Primitive Recursive Word Functions

In this section | will list a few more primitive recursive word functions and
relations, without giving proofs.

The “final segments” of order o(y) of x, denoted by e(x, y) and in particular
the “final part” et(x) of x, obtained by omitting its first letter, are also
primitive recursive. The first letter eb(x) of x, being equal to a(x, 1), has
already been shown to be primitive recursive.

The relation “y is a predecessor (i.e. initial segment) of x”, denoted shortly
by y”~x, is primitive recursive. This occurs in the relations

(Ey) [y x &B(y, xIt..., xn],

) y™ x- B{y, xI5 ..., xn)],
and in the function

uy[y<,x&B(y, x1; ...,x1]
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(the “bounded /~-operation”), which respectively have the following mean-
ings: -

“There is a predecessor y of x such that B(y, x1,  xr) holds”;

“For every predecessor y of x B(y, x1(  xr) holds”; and

“A fixed predecessor y of x, for which B(y, xI5  xr) holds, if there is
such; &J1 otherwise”.

If B is primitive recursive, each one of these is also. In fact so is every set
having a numeric structure.

3.7 List Processing

As an application, we consider the basic notions of “list processing”,
which has been used frequently as a kind of model of the complex relations
between the different kinds of information stored in a computer.

What we have to deal with here are finite linear arrays, called “lists”, which
are constructed from certain elements. The empty array NIL is the only
object which can be considered both as an element and a list. A list / has

the form
I =(X], ..., X,),

where every x; is either an element or a list. According to the above we
have
NIL = (NIL),

but if x is different from NIL, then x and (x) are distinct. We also make
the convention that

(x5 ..., x,) = (XL; ..., X,,, NIL)
holds.

In the above list / the entry xxis called the head and the list
(X2, ..., %,,)
remaining after xx is omitted, is called the tail of /. In notation
Xi = hd[Z], (x2, ..., %,) = tl[]

(In order to avoid misunderstandings, the arguments of list functions will
be put in square brackets.)

By means of the function cons, / can be recovered from its head and tail:
If x is an element or a list and y is a list, then cons [x, y\ is the list with x
as head and y as tail. Thus for the above /: -

cons [xx, (X2, ..., )] = 1.
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3.8 Coding Sequences of Words

In a formal sense the lists are words of a word set M (0 over an alphabet
A(l) containing the elements, the parantheses, and the comma. (The paren-
theses and the comma will be printed boldface, when considered as letters.)
The functions hd[x], tI[x] and cons [x, y] are primitive recursive in Mw.
Let us first observe the heads of several lists:

hd[(x1,x2,x3] = x1

hd [((*!, x2, j] = (xI5x3

hd [((*!, (x2,x3), (x4, x9, mB] = (x4, (x2, x3)
hd [(((x))., >)] = ()

hd [((x))] = hd [((x), NIL)] = (x)

and so on.

As can be seen, the head of a list x is obtained by removing its opening
parenthesis, that is taking its final part et(x), and then the initial segment
of smallest order of et(x) for which the following relation B holds: the
number of its left parentheses coincides with the number of its right pa-
rentheses.

In order to check, which is the initial segment of smallest order of a word
x satisfying B, one can examine the letters of x one by one, starting from
the left. At a letter different from the parentheses we do nothing; at a left
parenthesis we write down an ao (where a0 can be e.g. a fixed element), at a
right parenthesis we erase one of the a(s already written down. The first
time that A is obtained in this way is when we have the shortest initial
segment with property B. The function kl(X, y), defined by primitive re-
cursion in M (), does exactly this for o(y)=1, 2, ...

A, if y=A
K (Y ,u= .kl (*>at(0). if b(x y) (&b,(x,y) %)

kl (x, at Cy))a0, if b,(x, y)=(

at (kl (x, at Qy))), if b,(x, y)=).
Here we used the function bL(x, y) (the o(y)th letter of x from the left),
which was introduced in section (3.5.1).
If this is applied to et(x), where x is a list, then reaching the smallesto(y)" A
such that kl[at(x), y]= A means that we have reached the last letter of
hd[x]. Since the initial segment of x of order o(y) is denoted by a(x,y),
we have then

hd [X] = a(et (x), uy\y< o(et(x)) &y N&Kl(et(x),y)= nJ),
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if Xis a list. For words that are not lists the value of hd is irrelevant. The
same applies to the following: -
If Xis a list, then we can obtain its tail tI[x] by first removing its initial
segment

(hd [x],

and then attaching an opening parenthesis to the front of the remaining word
of order

o(x)-o((hd[x],).

Since the final segment of x of order o(y) is denoted by e(x,y), we have
tl [X] = (e(x, o(x) —o((hd [x],)).

Finally if x is an element or a list and y is a list, cons [x, y] is built by remov-
ing the opening parenthesis of y, whereby we obtain et(y). Then we put

cons [x, y] = (%, et ().

All the further notions of list processing can be shown to be primitive
recursive in M (l) in a similar way.

From this basis of list processing is constructed the programming language
LISP 15. For more details about this see Chapter 11

3.8.1 General and Partial Word Functions

Generalizations of primitive recursion similar to the numeric case can also
be introduced into word sets. These can or cannot be reduced to primitive
recursion, just like their counterparts in the theory of numbers.

The methods, however, cannot be copied. We do not have here, for example,
any unique prime factor representation. In the numeric case this was
essential in order to reduce the course-of-values recursion to a primitive
recursion, by establishing a coding of finite sequences of integers by single
numbers.

What we need here is a correspondence between a finite sequence of words
and a single word, from which the terms of the sequence can be recovered.
The simple concatenation of the members of the sequence clearly will not
do, unless certain *“separating symbols” are used between the words.
Clearly this could be achieved by taking a new letter as a separating symbol.
However, it is still possible without extending the alphabet to produce
separating symbols out of two fixed letters. These in what follows, will be
denoted by 0 and 1 If the alphabet consists of a single letter, as in the
numeric case, this method is not applicable.
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For a finite sequence of words
...j
in M, we can determine a suitable separating symbol as follows. Let

1n .1
i
denote the word consisting of i ones. Let i be the largest number, for which
such a word occurs as a connected piece in at least one ofthe words x0, XX, ...
Then
Qil ... 10
|:|.i
is a suitable separating symbol for our sequence. This can be made to corre-
spond to the word

c,(X0, x1; ..., x,,) = x0011 ... IOXiOll ... 10...x,,011 ... 10
i+l i+l i+l

which depends primitive recursively on the members of the sequence.

The relation “x is a word that corresponds to a finite sequence of words”
is primitive recursive. So are the number of terms denoted by long (x),
and the o(>)th term kOy)(x), for o(y)=0, 1, 2, ..., long (x), of the sequence
corresponding to x.

The notions of general and partial recursive functions can be transferred
to word sets in the same way. If the alphabet is countable, they can be
obtained from the primitive recursive functions by substitutions and the
applications of unbounded /(-operations, though the meaning of this last
concept has still to be clarified. In the theory of numbers, this meant the
smallest number with a given property, but what do we mean by “the
smallest word with a given property”? What we can have is a word of
smallest index in a given infinite sequence of words. Such a sequence can be
considered as a word function/(o(x)), which depends only on the order of
x and possibly on the order of other variables. /(0(x)) is the o(x)th term
of the sequence. If/(o(x)) is primitive, general or partial recursive, we
say that the sequence is primitive, general, or partial recursive, respectively.
According to this the unbounded /(-operation

B f(, (y))\xi ..xn]

means the value f(o{y)) of the smallest index for which B(f (o(y)), xIt..., xr)
holds, provided that to the arguments xI5 ..., xr under consideration there
is a y with B[f(o{y)), xI5 ..., xr). Otherwise the result of the operation is
undefined for these arguments.



52 Recursive Word Functions [Ch. 3

3.9 McCarthy’s Conditions

I would like to remark that in the considerations of section 3.5 on built up
definitions, we have hardly used the fact that we are dealing with word
sets. With slight changes these arguments can be carried out in general for
sets of numeric structure. The conditional expression

f=[BO0-*ei, ...,Bn—g]),

introduced by McCarthy in connection with partial computations by the
computer (see the book quoted in footnote[1]), does not extend outside the
class of partial recursive functions over a set of numeric structure either.
Here €0, are symbolic expressions and BO, Bn are relations be-
tween such expressions, while all of these can be undefined. The order of
the expressions is essential, as follows from the following definition of the
meaning of the conditional expression/: / is undefined, if either none of
the .6;s is true, or if to the left of the first true B{there is an undefined Bj;
otherwise the value of/ is that et towards which the arrow of the first true
Bi points.

Let us suppose that in a non-trivial set of expressions there are two different
elements, say €' and e". Using these, we have corresponding to each relation
B the characteristic function

, if B istrue

", if B s true,
which is defined if and only if B is defined. For an undefined B we have
neither B, nor B, i.e. neither b—e', nor b—e"). Thus McCarthy’s definition
is equivalent to the following built up definition: -
€0, if bo=¢
,_ elt if b0=e”&bi=¢

en, if bo—e" =e"&b,=¢€.

It can be shown that if €0, e, and bo, bnare partial recursive in a set

H of numeric structrure (that is in a holomorphic set), then so is the function
/ defined above.



Chapter 4

The Recursivity of
Everything Computablef

4.1 Assembly Language

The words of the binary language of a computer, consisting solely of
the letters 0 and 1, are difficult for people to understand. In an assembly
language, these are replaced by sentences of symbols that reflect their mean-
ing, yet they can still be translated easily back to the language of computer
and the addresses within the computer can be denoted by numbers in their
ordinary decimal form. The programs in this chapter will be written in
such an assembly language.

For a computer with a very simple system of statements it can be shown
that, if no bound is put on the size of its memory, for every partial recursive
function there is a program such that computation with this program yields
the value of the function, if it is defined, and goes on forever, without
calculating anything if it is not [14L1

I will restrict myself to two registers: the statement counter W and a re-
sult register E. We also have the following one-address statements, where
addresses are always positive numbers; (X) denotes the contents of the add-
ress or register x, x=>(y) denotes putting x into y with the erasure of the
earlier contents of y, and finally 0=>(x) means the deletion of x: -

La (load statement): (a) =>(E)

SPa (store statement): (E)=>(a)

SP°a  (store and delete statement): (E)=>(a); 0=>(£)
Aa (addition statement): (E)+(a) =a(f)

Sa (subtraction statement): (£)—a)=>(E)

[14] See J. C. Shepherdson and H. E. Sturgis: Computability o f recursive functions, Journ.
of the ACM 10 (1963) pp. 217-255, and R. Péter: Programmierung und partiell-rekursive
Functionen, Acta Math. Acad. Sei. Hung. 14 (1963) pp. 373-401.
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Ma (multiplication statement): (E) X (a) = (E)

Ga (go to statement): a=(W)

G~a\ f(E)y=0
G>a | (conditional go to statement): a=>(W) if j(E)=0
Gral I(£)woO

ST (stop statement):  Stop.

In computing the values of a numeric function, which 1 will simply call
computing the function, we need the arithmetical difference a—n instead
of a—n. This can be computed by means of the following program:

Initially, let the contents of the addresses 1 and 2 be the given arguments a
and n. Also let the contents of the following addresses be the following
statements: -

address statement result
3. LI (E)=a
4, 52 (E) = a—n
rfa go to address 7,
5 Ge7 {ie. (W)=1
6. SP°S (E)=0
7. ST Stop.

If “Stop” is reached, then (E)—a—n.

4.2 Computing [fn]

As a somewhat more complicated example, we consider a program to

compute [in]. This is the smallest number i, for which (/+ 1)2>/?, therefore
it is certainly not greater than n. Hence

IYW] = M1=2 n&(i + 1)2> ]
is a primitive recursive function.
To start with, let 1, n, i=0, 0 be the contents of the addresses 1, 2, 3, 4,

respectively. Address 4 serves as a working space. Let the contents of the
following addresses be: -
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address statement result
5. L3 (BE) =i
/6. Al (£) =i+ 1
7. SP4 (4)=i+1
8. M4 (BE) = (i+1)2
) 52 (F) = (i+D)2-n
,{n r 14 fIf (i+1)2>n, go to
U °>i4 {address 14 ie. (IF) = 14
11 £4 (£) = i+1
12. SP3 @} =i+1
UW) = 6; here everything starts
n {anew, with i+1 as the new i
14. £3 (E) —the required value of i
15. ST Stop.

If “Stop” is reached, then (E) =\fn].

The program looks circular, since from the statement in address 13 every-
thing starts anew. However, with i+1 instead of i, it only goes on until i,
increased by 1 for each new start, does not satisfy (/+ 1)2>u. Then the sta-
tement at address 10 orders to jump out of the “circle”. The statements
under the addresses 6—13 form a cycle, which is not a closed circle, but
rather an ever progressing spiral.

4.3 Computing Recursive Number Functions

It was mentioned in section 2.6.2 that, starting from the functions a+n,
a-n, a—n and []n] (which, according to the above, can be computed by
our computer, that is they are machine computable), every primitive re-
cursive numeric function can be obtained with the application of finitely
many substitutions and iterations of the form

f<KO) = o

\(p(n +1) = B(<p(n)).
If the functions

« K, ..., mp), ey DY), o, Br{nx, ..., N9
are machine computable, then so is
<K't> "',ns) = «(ft(«i. ns), E>gr (), "'>«*))

which can be obtained from them by substitution. Indeed, if for any given
nx, ..., ns the values of Rx, ..., B&r can be computed and stored, then the
value of a can be computed for these arguments.
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Now, if the function B(n) is machine computable, then so is the function

9 (n) — R M (0)

obtained from R by the above iteration.

Since <p(0)=0 is known, it suffices to do the computation for 0.

By our assumption, we can use a “subroutine” for the calculation of 3(n).
This will obtain its argument from a fixed address (here this will be address
4), and put the computed value into E. Let us add to our system of state-
ments a subroutine calling statement.

The contents of the addresses 1,2,3,4 are initially 1, u, i=\,a—0,
respectively. Here a denotes the subresult successively taking the values

B(0), B(R(0)), B(R(B(0))), .- -

This changes after each call of the subroutine. The contents of the following
addresses are: -

address statement result
icall of the B

A {subroutine for R A a)

6. SP4 4 = R(a)

7. L3 (E) =i

8. S2 (E) = i-n

9 (7=14 &If i=n %o to

address 14 i.e. (W) —14

' 10. L3 (E) = i

11. Al (E)=i+1

12, SP°3 (E) —0, (3 =i+l

) = 5, here everything starts
new with i+1 instead of i
nd R(a) instead of a

\ . T. ((B) = the latest value
4 14 {of 1
15. ST Stop.

As i increases gradually to n, one will get out of the cycle with
(E) = BM(0).

It follows, from the above, that every primitive recursive numeric function
is machine computable. This could have been obtained without computing
[Yu], provided that we had not restricted ourselves to iteration, which is
a particular case of primitive recursion. In the computation of [/i1], however,
| wanted to give a non-trivial concrete example, to which | shall want to
return later.



Sec. 4.4] Computing General Recursive Functions 57
4.4 Computing General Recursive Functions

Machine computability is also preserved in the application of a /*-operation,
not only in the bounded case, as we could see in the example of [fn], but
in the unbounded case as well.

For a relation B, whose characteristic function 8 is machine computable,
put

(p(n) = nl
that is

<p(n) = BAR(, n) = 0].

For functions of several variables we can proceed similarly. By the defini-
tion in section 2.9, for an n such that there is at least one i with B(i, n)=0,
(p(n) is the smallest such i.

Assume therefore that we have a subroutine for the computation of 8 (m, n)
and to start with, let the contents of addresses 1,2, 3 be 1,n, i=0, respec-
tively. The contents of the following addresses are: -

address statement result
(Call of the sub- o
4 routine for (3), (2) (E) = 8(im)
_ If B(i, n) = 0 go to
S G=10 iaddress 10 i.e. (W) = 10
c Li (E) =i
5 Al () =i+l
8. SP°3 (£) =0,(3) = i-H
(tF) = 4; here everything
S G4 starts anew with i+1
10. Li (£) = the required i
11 ST Stop.

If there is an i and an n with (i, ri)=0, then we get out of the cycle with
the smallest such i as (£). Otherwise the cycle never ends. The computer
computes nothing, in accordance with the fact that <p(n) is undefined.

In view of the Kleene explicit form of partial recursive functions, given in
section 2.9.1, it follows from the results of this chapter that every numeric
partial recursive function is machine computable. Thus, in particular,
every general recursive function is machine computable.
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4.5 A Universal Program

The universal Kleene explicit form of r-place partial recursive numeric
functions can be made even more universal, namely independent of the
number of variables. Indeed, the arguments ax, ..., ar of an r-place function
can be represented for example by the number

a=pp -pa

(where, as above, pt denotes the tth prime number). Thus we obtain the
universal explicit form of partial recursive numeric functions of arbitrarily
many variables (since the exponent of pt in the prime factor representation
of a was denoted by exp, (a)) as the two-place partial recursive function

X{n, a) = i/l(pi[r(i, n, exp! (a), ..., expr(a)) = 0]),

where i and T are fixed primitive recursive functions. If n is the Gddel
number of a system of equations defining the r-place partial recursive func-
tion (p, then we have

(p(ai, ..., a,) =*A(n,pp

According to the above, the function X, which is constructed from primi-
tive recursive functions with the help of a single /*-operation, is machine
computable. A program computing its values can be considered as a univer-
sal program. If it is stored in the memory of the computer, then the compu-
ter yields automatically the values of every partial recursive numeric func-
tion, at any point where it is defined, provided that as further information
the Godel number of a system of equations defining our function, and the
arguments in question, are also stored in the machine.

The construction of a program for X would still not be simple. That is why
I have constructed[15] a universal program for the computation of all par-
tial recursive functions, without having to resort to the Kleene explicit
form. In this program, the defining systems of equations are considered as
sequences of symbols, that iswords over a finite alphabet, and the admissible
steps of computation from them are considered as passing from one se-
quence of symbols to another, that is as word functions.

[lo] R. Péter: Automatische Programmierung zur Berechnung der partielle-rekursiven
Funktionen, Studia Sci. Math. Hung. 5 (1969) pp. 447-463.
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4.6 Coding

It is not only true that the partial recursive functions are all machine compu-
table, the converse also holds: - Whatever is machine computable, is also
partial recursive. We shall consider this in detail using as an example
the computation of [J/m] (see section 4.2).

The codes
ST,L,SP, A, S, M, G G

for the types of statements which occur are not directly understood by
the computer anyway. We could as well use the natural numbers

0,12 34,567

for the codes of these statements. The codes of the addresses are already
natural numbers, in our example from 1to 15. Instead of W and E, as the
codes of the statement counter and result register, we shall use 0 and 16,
respectively. In what follows they will be dealt with just like the store
addresses.

If for some positivej S | the statement of typej refers to the address a, then

2)-3a

is the code number of the resulting statement. The only 0-address statement,
type ST, is in itself a statement, and has already the code number 0.

It will not cause any confusion that several of the code numbers of state-
ments also occur as address code numbers. They will always be used in

distinct roles.

The program for the computation of [in], using all these code numbers,
can be represented by the following primitive recursive numeric function
p(m, ri), which determines the contents of each address m at the beginning
of the computation:

5, if m=0
1, if m=1
n, if m=2
2133 =54, if m=5
p(m, ) = <2331 =24, if m=6
22034 =324, if m=7
0, if m=15
0 otherwise.

The lines indicated by dotting could be read off the program, equally easily.
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4.7 Recursion in Program Control

The program is executed step by step. At each step one statement is executed.
This is the next statement if the previous one was not a go to statement.
First we need a small modification. We also have a subtraction statement.
This should be replaced by the arithmetic difference, which here yields the
same result. We have already given a subroutine for the arithmetical differ-
ence a—n.

Alongside the program, we have indicated the results of the single steps.
Checking these we can see that, in executing any statement of type j~ |
referring to the address a, only the contents of a, 0 (that is W) and 16
(that is E) might change. Moreover they only depend onj, a and the present
contents (a), (0), (16), which are now considered as variables. Let us denote
the resulting new contents of a, 0, and 16 by

9(i. a, (a), (0), (16)), gw(j, a (a), (0), (16))
and
9E(}, a, (a), (0), (16)).

These can be obtained by means of the following definitions by cases (as
can easily be seen from the corresponding statements): -

@, if j=0,1,34, 567
(i, (), (0) (16)) = j (16), it =2
0 otherwise,
0), if j=0
(0)+l, if j= 1,2,3,4,5
or
j=7 d (16 0
W), 2. 0), () (18) =~ , o e
or
j=7 and (16)> 0
0 otherwise,
((16), if =026 7
@), if j= 1
GE(, 2 (@), . (19) =~ () 1t 17
16)X(a), if j=5

otherwise.
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Here all these functions are primitive recursive, and so is the following
built up function

9{j, a (f),(0), (26)), if m=a

; _gw(1 a (a), (0), (16)), if m=o
f{i, a (a), (), (16), (M), m) = GEC. 2 (). (), (16), if m=16
(m) otherwise,

where (m) denotes the present contents of the address m. This gives, for
each address m, the contents of m after the execution of the statement in
question.

4.7.1 An Example

Let us denote by <p(i, m, ri) the contents of address m after the execution of
the ;'th step. Step O is the input of the program into the computer. Hence

(p(0,m,n) = p(m, n).

Now assume that for some i the values g=(i, m, ri) are already given for each

m. If the statement to be executed is of type j and refers to the address a,
then according to the above

cp(i+ 1, m, n) =1(j, a, (a), (16), (m), m).

The address of the statement to be executed is, however, the present con-
tents of the statement counter, which is

cp(i, o, n).
The contents of this address is
®fi, <, 0, ri), n),

and it has to be a statement, i.e. its prime factor representation is of the
form
2)3°.

We obtain j and a from here as the exponents of the Oth and 1st prime
numbers, respectively: -

j = expo(cp(i, >(i, 0, 1), «)), & = expj (<P, cp(i, 0, N), N)),
showing that the present contents of the address a is

(@ = (p(i, expx(ep(i, <p(i, o, n), M), n).

In addition to the expression

() = <pli,o,n)
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which we have already used, we also have
(16) = <, 16, n),
(m) = (p(i, m, ri).

Putting all this into the expression obtained earlier for cp(i+I,m, ri), and
using the known expression for (p(c, m, n), we obtain a definition of by
the following nested recursion: -

and

0, m, n) = p(m, )

<pli+ 1, m, n) =/(expo (P, (i, 0, n), ), expj (&, (p(i, o, n), N)).

(p(i, exp! (<p(i, <p(i, 0, n), n)), cp(i, 0, n), (i, 16, n).

(i, m, n), m).
Such a recursion, however, as was noted in section 2.7.1, still remains within
the class of primitive recursive functions.
Therefore the function cp(i, m, n) representing the execution of the program
is primitive recursive. This is the consequence of the fact that the occuring
cycle is not a circle.

4.7.2 Computable Functions

But what about the result? We saw that after the /th step the statement to
be executed has the form

j = exp,, (cp(i, (p(, o, n), nj).
If this is 0, which codes the stop statement, then the result is the contents

of the result register, that is <p(i, 16, ri). Hence, to obtain the result, we have
to search for the smallest i with the indicated property, that is for

ffi[expo (<p(i, (p(h o, 1), m)) = o],

and then substitute this for i in <, 16, n).

In our example, it is easy to give an upper bound for this i. The program
has a cycle of s terms, moreover 3 statements. The cycle is repeated as many
times as there are positive numbers, the squares of which do not exceed n.
Clearly, there are at most n such numbers. Therefore the number of steps
in executing the program is at most 8n+3.

Consequently, the result of the computation with our program is

<PpH[i < 81 + 3 & expoOp(i, (i, 0, n), n)) = 0], 16, n),

which is a primitive recursive function.
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4.8 Partial Recursion in Binary Computer Arithmetic

We have known, of course, already that this program computes the primi-
tive recursive function [fn], But our reasoning can be generalized to apply
to a computer with an arbitrary system of statements (for which the result
appears not necessarily as (E), but can also be a sequence). In my paper
quoted in footnote[14] I have shown in this way that the result of an arbitrary
- suitably coded and stored - program with the input parameters

ill, «2, r

can be obtained from primitive recursive functions by means of a single
/g-operation. If a primitive recursive upper bound can be found for i,
then the result is a primitive recursive function. If this is not the case but
it can be proved that for every choice of the input parameters, there is
such an i, then the result of the program is still general recursive. It is,
however, always partial recursive.

Consequently, we can indeed say that whatever is machine computable, is
also partial recursive.

Thus if we study the programming problems of the computation of partial
recursive functions, this means, in principle, the study of programming
of all the machine solvable problems.

The coding by natural numbers is, however, something extraneous to the
computer. It understands only whatever can be coded by finite sequences
of the symbols 0 and 1 Its mother tongue is the binary language, that is the
word set M with an alphabet consisting solely of 0 and 1 The whole of the
above reasoning can, however, be carried out in this word set. Instead of
the code numbers of the addresses we can consider their binary forms as
code words in M, and instead of the arithmetical operations between num-
bers we have the digital operations between their binary forms, which by
section 3.6 are primitive recursive functions in M. The codes of statement
types can also be expressed as binary forms of numbers. Here, of course,
to code a statement, whose type is coded by j, and which is referred to by
the address coded as a, we cannot make use of the unique prime factor
representation of natural numbers. Instead, the same end is served in M
by the primitive recursive function c(J, a) introduced in section 3.8.
This makes a word w correspond to the two-term sequencej, a, from which
the respective terms can be recovered by means of the functions

ko(w), fO0),
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which are primitive recursive in M. Let us consider e.g. the statement SPA,
which was earlier coded by the number

22234

As the binary forms 10 of 2 and 100 of 4 contain only one occurrence of 1,
the appropriate “separating symbol” here is 0110. Hence the code word
of the two-term sequence, representing the statement, is

C(10, 100) = 1001101000110,

The sequence of symbols 0110 at the end of this word shows that (after
having checked that the word has no connected part of the form 111 or
0110110) this sequence plays the role of a separating symbol. Hence the
terms of the sequence can be uniquely recovered from this word as

k0(1001101000110) = 10, ~(1001101000110) = 100.

In this manner we have arrived at the following result: everything obtainable
by a computer is partial recursive in the binary language of the computers.
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Sequential Program Translation

5.1 The Bracketless Form

Programs are not formulated in the language of the computer. They must
first be translated into that language. This can happen in several stages.

Let us consider, as a simple example the statement requiring the computa-

tion of the expression
(b+bXc)Xa +c,

which is composed of several arithmetical operations. Let the first stage
of the translation be the transformation of this expression into a bracketless
form.

Several such forms are known. The first of these is due to Lukasiewicz[16].
Here we shall use the so called “reversed-Polish” form

bbcX +aXc +,

in which the operation symbol is placed after the two operands. Its meaning
can be read off by checking the symbols one by one, going from right to
left, as follows: -

“A sum, whose second term is ¢ and first term is a product, whose second
factor is a and the first factor is a sum, for which the second term is a pro-
duct with c as second and b as first factor, and b is the first term.” According-
ly, the first operation symbol from the left is the innermost.

[16] Concerning the uniqueness of this form see for example, L. Kalmar: Anotherproofof
the Markov-Post theorem, Acta Math. Acad. Sei. Hung. 3 (1952) pp. 1-27. The uni-
queness of the “reversed form™ can be proved in a similar way.
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The translation to this form can be carried out by an algorithm due to
E. W. Dijkstra [17], which he has illustrated by “railway marshalling”
statements.

For this, the different symbols occurring in the given expression (variable
symbols, operation symbols, and left and right parentheses) will represent
railway cars of different types. Here however every car has an engine.
Appropriate cars form our expression into a train, and the task is to send
this train, with its cars re-arranged in the reversed-Polish form, from track
1to track 2. In the course of this, track 3 with a sidetrack (denoted as str)
is at our disposal. See the diagram below.

In our expression bXc is not put in parentheses, since, by convention,
multiplication takes precedence over addition. We shall express this by
saying that each operation has associated with it a priority, namely addition
has priority 1, multiplication has priority 2, the priority of subtraction is
also 1, while exponentiation has priority 3.

Now the marshalling instructions are as follows: Separate the cars. The
opening parenthesis has to go to track 3. The next variable always has to
go to track 2. The next operation symbol goes to track 3 temporarily, but
unless it meets there an operation symbol of lower priority, it has to give
way; that is it has to pull onto the side track, while this other operation
symbol of higher or equal priority goes to track 2. Only afterwards can it
go back to track 3. If the next symbol to leave track 1is a closing parenthesis,
put it on the side track. Then let the operation symbols from track 3 go to
track 2 one by one, until we reach an opening parenthesis. Add this to the
closing parenthesis waiting on the side track and discard this pair of used
up parentheses, in other words, send them to the depot. Finally, if nothing
is left on track 1, let the symbols still waiting on track 3 go one by one to
track 2.

[I72 E. W. Dijkstra: Making a translator for Algol 60, A. P. I. C. Bull. 7 (1961) pp. 3-11.
See also B. Randell and L. J. Russel: Algol60 implementation (1964) London, New York.
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In the following table, the successive execution of the marshalling instruc-
tions is indicated in detail in the case of our expression: -

track 1 track 2 track 3 str
(b+bxc)xa+c — — —
b+bXc)Xa+c — ( —
+bXc)Xa+c b ( —
bXc)Xa+c b (+ -
Xc)Xa+c bb (+ —
c)Xa+c bb (+X -
)Xa+c bbc (+X -
Xa+c bbc (+X )
Xa+c bbcX (+ )
Xa+c bbcX+ ( )
Xa+c bbcX+ — —
a+c bbcX+ X —
+C bbcX+a X -
c bbcX+a X +
c bbcX+aX + —
bbcX+aXc + —
— bbcX+aXc+ — —

At the end the reversed-Polish form of our expression has appeared on
track 2.

5.1.1 The Three-address Code

Looking at the meaning of this form it is easy to deduce from it an algo-
rithm for its decomposition into three-address computer statements of the
form Ouww, where 9 is an operation symbol. The statement requires the
execution of the corresponding operation for the contents of n and v and
placing the result in w. Proceeding from the left to the right, one always
has to look for the first operation-symbol “car” (corresponding to the
“innermost” operation), attach the two immediately preceding cars and a
car of a new type (brought from the depot) after it, and then let the train
put together in this way go to a new track. A second copy of the above car
of new type is also to be brought from the depot, in order to fill up the
resulting gap in the old train. This contains the result of the operation
just executed, which, from here on, is treated as an operand. Then every-
thing starts again from the beginning. One has to look for the first operation
symbol from the left in the modified train, and so on.
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By means of suitable switching devices and marshalling instructions, the
separate small trains (each consisting of 4 cars) can be collected on a track
sequentially (i.e. the cars will occur in their original order), as happened
in putting the train on track 2. | will not go into the details of this here.
However, the sequentiality of the procedure is certainly disturbed by the
fact that, in the train on track 2, one has to look for the first operation
symbol, and then eventually one has to return to earlier symbols. This
can be avoided if the new procedure is carried out simultaneously with the
old one. We start the collection of the train on track 2 according to the
original algorithm, until an operation symbol appears on track 2. With this
we proceed as has just been described. Only afterwards is the original
algorithm continued, until the next operation symbol appears. This is

illustrated in the following table, in which the symbol indicates that
the small trains on track 4 are not attached to each other.
track 1 track 2 track 3 str track 4
@+bXc)Xa+c - - - -
b+bXc)Xa+c - ( - -
+bXc)Xa+c b ( — -
bXc)Xa+c b (+ —_ -
Xc)Xfl+c bb (+ —_- —
c)Xa+c bb (+X —_- -
)Xa +c¢ bbc (+X - —
Xa+c bbc (+X ) —
Xa+c bbeX (+ ) -
Xa +c bvt (+ ) Xbcvl:
Xa+c bvt+ ( ) Xbcevj:
Xa+c v2 ) xbcvl:+ bvlvz:

(
Xa+c v2 — XbevA. +bvA:
a+c v2 X —  Xbcevi. +bv”z.

+Cc v2a X —  Xbecv+. + bvxn2:
c V2a X + Xbev+. +bvAh:
c v2aX + —  Xbcevl:+ bviv2:
c V3 + - xbcv1:+ bvlv2: Xv2av3:
— Vv3c + —  Xxbcvl:+ bviv2: Xv2av3:
— Vv3c+ — —  Xbcvl:+ bvlv2: Xv2av3:
— vt — —  Xbcevl:+ bviv2: Xv2a3:+v3cy,

Finally, only vt remains on track 2, which, however, contains the value of

our expression, for according to the above, the respective statements on
track 4 have the following meanings: -

bXc=>v+, b+bXc=*v2; (b+bXc)Xa =v3; (b+bXc)Xa +c=>4.
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5.1.2 Reduction to One-address Code

A three-address statement, of course, can be decomposed very simply
into three one-address statements of the sort we introduced in section 4.1.

For example
Xbecvt into Lb; Me; SPA

and .
+yscrs into  Lv3; Ac; SPv4.

5.1.3 Translation into Word Functions

In translating programming languages, certain sequences of symbols are
replaced by others. The sequences of symbols can be considered as words
over an alphabet containing all the necessary symbols. Hence here we
are dealing with word functions. Using a suitable notation, we can always
restrict ourselves to a finite alphabet; e.g. from the two symbols x and |
one can build the following infinite sequence of variables:

FLENS*N], ooo o

For the sake of clarity, however, | shall adopt the more usual notation
with lower indices.

5.2 Push-down Stores

In determining (that is computing) the successive symbols of a function
value, one examines the separate symbols of the arguments. It is convenient
to move up and down among these symbols. Hence it is always reasonable
to look for a sequential computation procedure, in which the symbols of
the arguments are taken into consideration successively, in their correct
order. The application of push-down stores will help us to achieve this
goal. In the above examples the role of the push-down stores was played
by the tracks.

A push-down store is a symbolic store, in which letters of the alphabet
and perhaps also some auxiliary letters can be placed. These can be taken
out of the store, either in such a way that the corresponding letter is erased
there, or the letter which is taken out also stays in the store, that is only a
copy of it is taken out. In the railway analogy, this corresponds to bringing
a car of the same type from the depot. Such a store satisfies the following
conditions: - Whenever a letter is placed in the store, it pushes down all
the letters already there one place deeper (that is the train backs up). When-
ever a letter is taken out, this must be the top letter, that is the most recently
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added letter is removed first. If a letter is taken out with erasure, then the
other letters in the store automatically pop up one place (that is the train
pulls forward). Whatever has to be done at a given step of the computation
of the function value depends on the current symbol at the top of the
push-down store, which we call the top symbol.

The push-down stores make it possible to move up and down among the
letters of the arguments, without disturbing the sequential character of the
computation. Indeed, all the letters of the arguments can be poured, one
by one, into a push-down store, where they are kept until the end. Then if
one of these letters is needed, the letters placed on top of it can be poured
into another push-down store, and after the work is done they can be
poured back again. The same can be done with the intermediate results of
the computation. In a recursive procedure, this must be done many times.
I have given [18] a general method for the sequential computation of every
recursive partial word function over a finite alphabet, in which the number
of push-down stores is independent of the arguments. J. Urban [19 has
later shown that the use of three pushdown stores always suffices. Conversely,
I have also shown that every word function sequentially computable with
the help of push-down stores is partial recursive in the word set, extended
with some auxiliary letters.

Comparing this with the final conclusion of Ch. 4, we can say the following:
Everything which can be calculated by a computer, can be calculated sequen-
tially, with the use of three push-down stores.

5.2.1 Some Conventions

In the proofs mentioned above, the following notation was used: -

We had a word set M over a finite alphabet A, the letters of which | will
denote here by a perhaps with some indices

For the sake of brevity, we assume that on the bottom of every push-down
store is the symbol L (denoting empty); hence the top symbol of an empty
push-down store is L. Further, if a symbol is erased, then we say that it
is replaced by /, and the top symbol of an arbitrary push-down store is the
first symbol, counted from the top, which is different from /. Of course,
neither L nor | can occur among the letters of A. These auxiliary symbols

[18] R. Péter: Uber die sequenzielle Berechnenbankeit von rekursiven Wortfunktionen durch
Kellerspeicher, Acta Math. Acad. Sei. Hung. 16 (1965) pp. 231-253.

J. Urban: Die Minimalisierung der zur sequenziellen Berechnung der partiell-rekursiven
Wortfunktionen notwendigen Kellerspeicher, Acta Math. Acad. Sei. Hung. 17 (1966)
pp. 335-358.
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are distinct from the symbol introduced earlier for the empty word. This
symbol has to be written out and dealt with in the same way as the other
symbols of the alphabet, although in the result it is to be considered as
something non-existent. The reason for this is that, in the course of the
computation, an intermediate value might turn out to be A, with which
one has to deal just like with any other intermediate value.

Instead of listing from the bottom to the top, the symbols obtained in a
push-down store will be listed from the left to the right, as it happened in
the railway analogy.

The push-down stores will be denoted by capital letters, among them one
called I for input and another called O for output. Their current top symbols
will be denoted by the corresponding small letters.

The computation of a word function f(xx, ..., xn) for the arguments

s, 1e%ehn m
always starts with pouring the symbols of this chain (which I will denote
by ), one by one, proceeding from the right to the left, into | (including
the comma, which is not a letter). Initially therefore the contents of I
(after L) is the chain of symbols

Myr,, 80, 19%>M 1 "m", 1
(denoted by s) and the contents of every other store is L. At the end of
the computation we find in O after L the required function value as a chain
of letters and J1-symbols. This chain will be denoted symbolically as f(s),
while in all the other stores we find L.
The computation procedure is in separate stages, which will be denoted
by q (with indices). It starts with qy (after placing s in 1), and ends with a
stage calling for stop.
What has to be done at a given moment depends only on the current stage
and the current top symbols of the stores. Depending on these the new
top symbols are obtained and a new stage follows. These are not necessarily
different from the earlier ones. In the short description of a computational
step, only the top symbols which are affected, will be indicated. For example,
suppose that in a stage g, the top symbol of I is to be removed and placed
in the store K unless the top symbol of K is L, and then the stage quis to
follow. This will be denoted by
gt{k -*L)\(i  K)qu,
while the same operation when i is kept in I, will be denoted by
gt{k*L)\{i*){i*K)qu.
If i has to be erased only, and not placed anywhere, we denote this by
I —i.
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5.2.2 Computation of Initial Functions

We consider below as an example the computation of the initial functions
of M.
To compute

I
>

fixi,
one has to empty | and place A in O;
gx(i L\ -* i)gx
?i(i = L)|(A -~0)qg2

IStop.
To compute
xa (atA)
one has to pour s out of I into O, by which the original order of the letters,
that is s, is recovered. Then a has to be added to the end: -

L)\(i-*0)ql
gql(i = L)\(a -*0)q2
, 1Stop.

To compute
fix1l ....X,,) = Xj(1lsj n)
one has to remove from | everything that comes after Xj. Then the letters
of the argument Xj are to be poured into O, where they regain their original
order. Finally everything that still remained in | must be erased. To begin
with, fory>1, we have the stages
g (t=12..J-)
with the effect
q,ii - g,
AC =>)I1- 0 + 1
Then follows
g ?A)('3*L)\ii —O)qj
qjii =,)1 (i -+ Oqj+i
gj(i = L)\q}H2
gj+iii A T)|(Z -»i)qgj+1
gj+i’ii = L) lgj+2
+2 1Stop!

For the computation of
Ib (x),
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the last letter of x, it is actually counter-productive to pour the letters of
the argument into I, since in this way the last letter gets to the bottom.
However, this is done for the sake of uniformity. One has to remove the
top symbol of I and put itin 0. If I is now empty, this was the last letter of
the argument. If not, this letter has to be erased from O and the procedure
has to be repeated with the new top symbol of I, thus: -

ME- 0)g2
g2{i ™ L)\(I *~0)gl
g2(i = L)\g3

$BIStop.
To compute
mn, if x=y

eq (x,y) = fao otherwise,

where a0is a fixed element of A, the two arguments x, y are to be poured into
two different push-down stores. O can be one of these temporarily. The
other is denoted by I. Then we can compare and erase their letters one by
one and if they are all found identical, we put a0into O, which has been
emptied by that time. Otherwise we put A into O, thus: -

<O 5*010 -* I)tfi

410 =>)I (J- 072

g2(i L) I(i ‘mO)q2

g2(i = L)\g3
q,('*W=o0)\(lI-~I)(!'~0)qga
g3(i=L){o=Z,)|(A- 0)"6
g3(l=L)(o L)Iqt

aflo eL)\(1 - o)™

<h(o = L)\(a0- 0)<?6

s3IV L)(V 0)\g5
gb(I*L)\{I-i)q,

gb(1= L)\q,

$61Stop.
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5.2.3 Computing Partial Recursive Functions

As a further example, assume that the word functions
f(x,y),  9(x), h(x)

are sequentially computable by means of three push-down store systems,
which start with the input stores

) (WARA¥
and end with the output stores

0/5 O,

respectively. Using these, we are able to produce a push-down store system
for the computation of

f(g(x), h(x)).

Here it is possible to identify O with O/.
Initially I contains s, and by simply pouring this into another store we get
s, whereas our task isto place s in both Igand IA Therefore we have to take
an additional push-down store I. The first step is then to pour the contents
of I into I, and then to pour them out of | into both Igand IA In this way
the order of the letters will be that required. We can then follow the steps of
the (already known) computation of the value of g, which together will be
denoted by the symbol Qa. This ends with gfs) in Og (after L), and with L
n all the other stores except 1A The steps of the computation of the value
of h (denoted by QB should now follow, where at the end h(s) appears in
On (after L). Finally, the contents of Ohand then of 0 9 have to be poured
into //, separated by a comma. After this can follow the steps of the com-
putation of/ for these arguments, denoted together by Qf. The stage sym-
bols gt belonging to

Qgi Qnt Qf

respectively, should be distinguished from each other and from the stage
symbols with no index, by corresponding indices g, h,f We now have to
add the initial stage of Qhto this at the end of Qg, instead of “Stop”, and
to put the stage gx at the end of Qhinstead of “Stop”. This procedure can be
described as follows:

<@~ £)IG - D<h

gql(i = L)\q2

g2(i*mi-~\)(i-19q3

93K7-1/,)?2

~(I=L)\Qg
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Qn
gAOh * L) I(oh- if)q4
4en= 1) ICml/) B
Z(°97 LLICIN 1) %
FK = M)I6/-

It was shown in a similar way in the paper quoted in footnote [18 that com-
putability by means of push-down stores is preserved under arbitrary
substitutions, and (which is somewhat more tedious) under primitive recur-
sions, and also under /r-operations. This yields the methods of sequential
computation of all the recursive functions by means of push-down stores.

5.2.4 Restriction to Three Push-down Stores

The result of the paper quoted in footnoteCl9) namely that three push-down
stores always suffice, is achieved by a suitable blocking of the separate
stores. For this, L is used in a new role, and a new auxiliary symbol o is
also needed, which makes it possible to store several different sequences
of symbols in the same store.

We shall illustrate this with the example of the previous section, where
of course the additional assumption is made that the functions

f(x.y), 9(x), h(x)

can be computed with the help of 3 push-down stores. For the initial
functions this is true. To compute the function

f(g(x), h(x))

we have then the following procedure, using only the three stores I, I, O: -
The values g(s) and h(s), in this order, separated by a symbol L, will be
placed in O. In order that the place where this begins can be found again,
first the symbol o is put in O, and then on top of it another L: -

9il(o0 —0)Qq2
g2\(L - O)<3.

We could now carry out the computation Qg of g(.y) using the three stores
I, I, O. However i must also be preserved for the computation of h(s).
Therefore, we first put s simultaneously into | and O, then from O we pour



76 Sequential Program Translation [Ch. 5

it back into I, while in |1 we block it by an L. Then we can start Qg: -

?3(*5*£)1(«-1)0'-1)?4

gA\( - 0)g3

g3(i = L)\q&

gA°rL)\(o -1)?5

gt(o =L)\(L*I)Qe.
Qgends with g(s) on top of the highest L in O, and with L as the top symbol,
in the other stores. The L from | has to be taken out and used to block O.
Thus s will be opened up again in I. So we can pour it into | again. Now
our stores are ready for the computation Qhof h(s): -

ge\(i-~0)q7
g7 LI Dqg7
gAi=L)\Qh.

After this the contents of O are
Lo Lg(s)Lh(s),
and what we have to do is to compute/ for the chain of arguments
g(s). HO-
This can be poured (in the required reversed order) from O into I, meanwhile
erasing and replacing by a comma the first L from the right. We still have
to erase the auxiliary symbols o L from O, so that only the original L will
remain. After this the computation Of of/ for the desired arguments can
be executed:
ga(o”™L)|(o- 1)as
ge (0 = 1(Z- o)ga
I(.- Otfio
?io(0 L) I(° D) <o
ql00 = £)[(/- o)qu
niq-w°)Qfm
Of course, in this, Stop at the end of Qghas to be replaced by gs, and Stop
at the end of Qhby ga.
It happened here that, at the beginning of a computation of a function value

the contents of the stores | or O were not just L. In more complicated cases,
it can also happen that | also contains a chain of symbols below Ls. The
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chain of symbols up to (and including) the highest L which can be found
in a store at the beginning of a computation is called a kernel chain. This
remains unchanged during the computation, at the end of which in | and |
we will find their kernel chains, while in O is left its kernel chain with the
result of the computation on top of it. This result is completely independent
of the kernel chains.

In a similar way one can show that sequential computability with 3 push-
down stores is also preserved for arbitrary substitutions, primitive recursions,
and /i-operations.

5.3 Partial Recursivity in Push-down Stores

The converse of this is also true. Whatever can be computed by means
of push-down stores in a word set M over a finite alphabet A, is partial
recursive in the word set M' over the alphabet A', which, in addition to
the letters of A, also contains the auxiliary symbols

A\L-,I

and in the case of the method applied for the minimization of the number
of push-down stores, also o . The proof of this will be illustrated using as
an example the computation of Ib(x), executed in section 5.2.2. The succes-
sive instructions of the computation were as follows: -

4il(i - 0)g2

or(* 5*L) I(/ -»O) gx
g2(i = L)\q3
q31Stop.

In every computation there are only a finite number of instructions (here 4),
in which a finite number of stages occur (here 3). In the Oth moment, that
is before the computations starts, the contents of the stores I, I, O are the
kernel chains

wxL, w2L, w3L,

respectively. Moreover, in I, on top of this, is the reversed argument chain
which in our example is the single argument x. The reverse x of a word
x is primitive recursive in every word set, since it can be defined by the
following primitive recursion: -

fA, if x=A

x m Ib (x) at (xX) otherwise.
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Let us denote the contents of I, I, O and the index of the current stage in
the o(z)th moment of the computation by

i (wi,w2,ws,X,2)

I (WI5wW2,w3x, 2)

co(wl; w2, Ws X, z)

(T(wi5 W2, VB, X z)
respectively. As the parameters

Wi,W2, w3, *
do not change in the course of the computation, | shall denote them by
i(2), 1(2), cu(z), ff(2),

respectively.
In our example, in which | does not appear, these functions can be defined
as follows (where a top symbol means the last letter of a word, the erasure
of which yields the initial part of the word): -

W1LX, if . =A
i(z) = at(/(at(2))),if z™ N&<r(@t(z)) =1
r(at (2)) otherwise,
wsl, if z=1
o (at @) Ib(/(at (2)), if z"A&.(at(z))=1
C ~ at (cu(at(2))), if zn A&<r(@at(z)=2&Ib(i(at ()" L
to(at (2)) otherwise,
1 if z=A
- 1 if zX2A&u(at(z)) = 2&Ib(i(at(z))) L
a 2, if z A&u(at(z)) —1
3 otherwise.

Here 1,2, ... denote those words which represent the corresponding natural
numbers in M".

It should be noted that on the right-hand side of these definitions, unless
z= A, z appears only as an argument of at, i, c and a. Therefore, as was
explained in section 3.8, these simultaneous recursions can be reduced to
primitive recursions of the following form: -

1LX, if z= A
il(i(at(z)))  otherwise,
iWaL, if z—A
(/ig(ui(at (z))) otherwise,
n, if z= A

j/13(<7(at(z))) otherwise.
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These definitions, however, are pure iterations. From the first, for example,
we obtain

WijLX, if z=A,
_ h(wilx), if o(z) =1
»0) = hiihrwiLxj), if o(z) =2

h\(h\ (hx(WiLx))), if o(z) = 3.

Hence i(z) is the o(z)th iteration of hx at the place wx_x, which will be
denoted by

i(z) =h{«*n(wllLx).
Similarly we obtain

m(z) = h[o(z))(w3L),

<r(2) = 14(2)(2).
Clearly, these functions, which do not depend on z but only on o(z) (and
parameters u”®, w3, x which are not shown), are primitive recursive se-
quences.
The result of the computation is obtained in the first such moment m, in

which the stop stage
a(m) =3

is reached. Hence, by the definition of the ~-operation from section 3.8,
m = bl-Aa(°00) = 3].

The result, then, is the word obtained from co(m) by erasing the kernel chain
w3 from its beginning, or in other words, the final segment (see section
3.6.2) of order

o(co(m))-o(w3L)

which is independent of the kernel chain. Hence the value of our function
Ib for the argument x is

Ib (x) = e(co(x, m), o(g(x, m)) —o(w3L))

with the above m.

It is easy to find an upper bound for this m on the basis of the computing
instructions above.

One has to move the characters of x (if x= A their number is 1, otherwise
it is 0(x)) one by one from | into O. Here all but the last one of them have
to be erased, and then comes the transition to the stop stage. For x= A
this means 2 steps, otherwise 2+0(x) steps. Hence in any case there are
at most 2 «0(x)+2 steps.

Consequently, m is definable by means of the bounded "-operation

m=nzf[zs 2*o(x)+2 & a(z) -3
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z, as a predecessor of a natural number, must itself be a natural number.
Hence z=o0(z). Thus m is primitive recursive and consequently the result
of our computation is primitive recursive.

Of course, we already knew this for Ib(x), but our reasoning can be genera-
lized to show that the result is always obtainable from primitive recursive
word functions by means of a single ~-operation (to which, in general, no
primitive recursive bound is available). Hence every word function compu-
table by means of push-down stores is (after a suitable extension of the
alphabet by auxiliary symbols), partial recursive.

5.4 Mlustration on Railway Marshalling

Now these simple computation steps have a very natural translation into a
“railway marshalling language”, in which every letter or auxiliary symbol
has associated with it a car type (denoted by it), the push-down stores
correspond to tracks, and the stages to marshalling yards.

In this way, the word functions can be defined by railway marshalling graphs
and traffic regulations corresponding to these [20i. A railway marshalling
graph means a finite, connected, directed graph containing only triple
edges. These correspond to the tracks. The edges connecting the same
vertices (which will be called parallel) are directed in the same way, and
will be denoted by I, I and O. The vertices correspond to yards with suitable
switching devices. So now we are able to execute the following simple instruc-
tions concerning the last cars of the trains standing simultaneously on the
three parallel tracks:

1) Disconnect the last car from the train standing on one of the tracks
and send it to the depot. (This corresponds to the erasure of a given top
symbol.)

2) Bring a car of a given type from the depot and join it to the last car of a
train standing on one of the tracks. (This corresponds to putting a certain
symbol into a given push-down store.)

3) Disconnect the last car of a train on one of the tracks and join it to the
end of another. (This corresponds to moving a top symbol from one store
another.)

4) Bring out of the depot a car of the same type as the last car of a fixed
train and join this to the end of one of the trains. (This corresponds to

[2°] p Péter: Veranschaulichung eines sequenziellen Berechnung der rekursiven Funktionen
durch ,,eisenbahnrangierende Graphen”, Periodica Math. Hung. 3 (1973) pp. 183-187.
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the transfer of a certain to symbol into another fixed push-down store,
while it also stays in the original store.)

The graph has two important vertices: an initial station, where three
edges run in from the outside world (these will also be denoted by I, 1, 0),
and a final station (the stop station), from which no edges run out. Every
other vertex is at the intersection of both incoming and outgoing edges.
After this we can start the computation of the value at the argument chain
s of the word function f defined by such a “railway marshalling graph”.
The first step is to have three trains standing on the three tracks coming in
from the outside word to the initial station. These will be called the “kernel
trains 1, 1, O respectively, and they all end with a railcar denoted by the
symbol L. To the end of the kernel train | are also joined, one by one, the
cars denoted by the symbols of s. Then the three trains are started in such
a way that they arrive at the initial station simultaneously. Here, as at
every other station except the final station, the traffic regulations of the
graph, depending on the last cars of the three trains standing on the
parallel tracks, determine which station they have to proceed to (without
changing their track symbols), and whether they remain unchanged in the
course of this or undergo one of the modifications 1), 2), 3), 4). They again
have to arrive at the next station simultaneously. The “next” station can
actually coincide with this one, but in this case at least one of the modifica-
tions must be carried out. Cars from the kernel trains are never discon-
nected.

Following the traffic regulations, the trains might have to return often
to the same station, and this can be repeated without any limitation. If the
trains never arrive at the final station, then/is not defined for the arguments
under consideration.

Furthermore, the traffic instructions are chosen in such a way that if eventu-
ally the trains arrive at the final station, then the kernel trains I and I will stand
on the tracks | and | while on track O will stand the kernel train O together
with a chain W of cars joined to its end. Here the symbols denoting the
cars in W are either letters of the alphabet or A. The word composed of
these symbols is the value of/ for the given arguments. If W contains only
A, then this word is also A. Otherwise, of course, the symbols A have to
be omitted. This value is independent of the kernel trains.

Thus, we have sketched a new translation of the “push-down store method”.
In accordance with section 5.1.3 we have, then: Everything obtainable by
a computer can also be obtained by means of a railway marshalling graph
with very simple regulations. In short, the regulations might, depending on
the last cars of the three trains at a station require the disconnection of
the last car of a train or the joining of a certain car onto the end of a train.
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5.5 Sequential Procedures

I would like to mention here briefly that the significance of sequential
procedures, and in particular of the push-down store method, goes far
beyond program translations. Of the numerous applications | would like
to emphasize its connections with the constructibility of formula controlled
computers.

5.5.1 Kalmar’s Formula Controlled Computer

As is proved by several patents, F. L. Bauer and K. Samelson have actually
considered the application of the method for this purpose. The fundamental
ideas of a different solution (compatible with the notation system using
parentheses) for formula controlled automata were sketched by L. Kalmar
as early as September 1959, at the Warsaw Symposium. He had in mind a
computer which can be programmed in a mathematical formula language,
and which executes the symbols of a program, written in such a language,
one after the other as statements. After this L. Kalmar worked out a ver-
sion of such computers feasible in practice[21]. According to an oral com-
munication by Z. L. Rabinovic (Cybernetical Institute of the Ukrainian
Academy of Sciences), the first universal formula controlled computer was
built in this Institute (1963-1966), on the basis of Kalmar’s ideas.

t21* See also L. Kalmar: Uber einen Rechenautomaten, der eine mathematische Sprache
versteht, Zeitschrift flir Angew. Math, und Mech. 40 (1960) pp. 64-65; and L. Kalmar:
On a digital computer which can be programmed in a mathematical formula language.
Second Hungarian Math. Congress Budapest 24-31 August (1960) Abstract of lectures
2, pp. 3-16.



Chapter 6

Recursivity of Flow Charts

6.1 Graphical Representations

In assembly languages as well as in higher level programming languages
(which are closer to the language of mathematics, but farther from the
language of a computer) it is usual to accompany the trains of thought
that is the logical structure of the program by diagrams called flow charts.
These make translation into computer language easier. | shall deal with
this notion, which in practice is used without sufficient precision, in the
exact form due to Kaluznin, and | shall use his terminology for it: graph
scheme.

6.2 Flow Charts in Algol 60

Let us consider the following procedure to define the values of a numeric
function f(a, b), given in the programming language Algol 60:

integer procedure f(a, b); value a, b; integer a, b; begin integer i, w; i:=0;
w:=l; c: if i=Db then go to e else begin w:=wXa; i:=i+|; go to ¢ end;
e:f: =wend;

Even for somebody not familiar with the language Algol 60 it is easy to
understand what this means; a procedure to compute the integer value of
f(a, b), provided that integer values are given to a and b. The procedure
consists of statements, while begin and end play the roles of an opening
and closing parenthesis, respectively. First it is stated that the auxiliary
variables i, w are also given integer values. Then 0 is set as the initial value
of i and 1 as the initial value of w. Now follows a statement marked by the
symbol c. If i=b, then go (immediately) to the statement marked by e.
Otherwise the statements follow in their normal order within the parenthe-
ses begin and end. Replace the actual value of wby w ea and the actual value
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of i by i+ 1 Then go back to the statement marked by c: (for cycle). Finally,
the statement marked by e: (for end) says that/ takes the last value of w.
This is the value of the function/ for the pair of arguments (a, b).

This value w can be considered as a one-term sequence. The arguments
(a, b) form a two-term sequence. The intermediate values also depend on
the auxiliary variables i and w, that is on four-term sequences. In the course
of the computation sequences of natural numbers are transformed into
other similar sequences. This transformation can be represented by a finite,
connected, directed graph, the vertices of which are associated with certain
variables, where these variables run through sequences of natural numbers
with a given number of terms. The values of these functions are also such
sequences, possibly with a different number of terms. A vertex associated
with a relation is called a logical vertex. Two edges issue from such a vertex,
one denoted by T (for true), and one by F (for false). The other vertices are
called mathematical vertices. A single edge issues from each such vertex
with the exception of one particular vertex, the output vertex, from which
no edge issues. Every vertex has an edge which ends there, with the
exception of another particular vertex, called the input vertex.

The above computation of f(a, b) is represented by the following graph
scheme G: -

where E4is the input and E4is the output. Moreover
b) = (a b, 0,1),
B2(a, b, i,w)=i=b,
a3(a, b, w)= (a, b, i+1, wXa),
ad(a, b, i, w) = w.

Here axa, b), a3a, b, i, iv) and a4a, b, i, w) are functions, the variables
of which are two-term and four-term sequences of natural numbers, respec-
tively. The same applies to the relation

B2(a, b, i, w).
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As the argument of the function associated with the input Exis (a, b), and
the value of the function associated with the output is a number, we say
that the graph scheme G determines (or computes) a numeric func-
tion G(a, b) of two variables. The computation consists of the follow-
ing steps. To begin with, the argument (a, b) is given to E4. Then a4is
computed at this place and its value {a, b, 0, 1) is sent as an argument along
the unique edge leading from Erto Ea. From this logical vertex, it is sent
further as an unchanged argument along either edge T or edge F to the
vertex E4or E3, according to whether B>istrue or false that is 0=b or O”b.
In the second case the function a3associated with E3 is computed for this
argument, and its value (a, b, 1 a) is sent back to E2along the edge leading
from it. Here everything starts all over again. Whenever a certain (a, b, i, w)
is taken to E3, the value (a, b, z'+l, w-a) is sent back from here to E2
to see whether the third term has become equal to b. If the answer is
affirmative, then we proceed along the edge T to the output E4, and the
value of a4 obtained here is the value of the function G(a, b) computed by
G. As can be seen from the above description of the computation steps,
this coincides with / (a, b) computed by our Algol procedure.

Actually, G(a, b) is a well-known function. Indeed, the above procedure
yields us the following (denoting the transition from certain number se-
quences to others by —and JL):

(a, b)——-a(a, b, 0, 1)

1, if b=0 (a, b, 1, a) otherwise
4

i H
a, if b=1 (a, b, 2 a-a) otherwise

i |
a-a, if b=2 (a b, 3, a*a+a) otherwise

aeaea if b=3
Thus we see that G computes the Z#h power of a, that is

f(a, b) = G(a, b) = ah



86 Recursivity of Flow Charts [Ch. 6

6.3 Flow Charts of Word Functions

It is possible to read off the determining graph scheme directly from the
definition of a function.

Let us consider e.g. the following definition of a function /(x,y) in a
word set M over a finite alphabet A : -

fix, ¥) = g(x, A y),

g if o(x) = o(u)
{(x,uao, at (i) otherwise.

Here a0 is an element of A, such that the words which are built out of it
represent in M the natural numbers and consequently also the orders of the
words.

The definition shows that the first step is to move from (x, y) to (x, A, y).
Then begins the computation of g by cases, according to whether or not the
orders of the first and second terms coincide. In the first case one has to
take the third term of the three-term word sequence. In the second case,
however, one has to pass to a new three-term sequence, with uaOinstead of
the previous u as the second term, and with at(y) instead of the previous v
as the third term. Then one has to return with this new argument to the
point where the computation of g began. This can be represented by a graph
of the same structure as above: -

where g is defined by

However with
<i(x,y) = (X AY),

B2(x, u, v) = o(x) - o(u),
d3(x, u, v) = (X, uaa, at (v)).

ad(x, u, v) = V.
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The function determined by this graph scheme is computed through the
following steps; -

(X, y)------- x, Ay)

3 1
y, if o(x)=11 (x, a0, at (y)) otherwise
|
1
at(y), if o(x) = a, (x, aca0, at(at(y))) otherwise

I 1
at (at (y)), if o(x) = aca0c (X, aca a0, at (at (at (y)))) otherwise

I 1
at (at (at (y))), if o(x) = a0a0a0

Clearly, this is the o(x)th iteration of the function at for the argumenty: -

f(x, y) = at(@W) ().

6.4 Partial Recursivity of Flow Charts

In general, with every graph scheme G, there is associated a set M Gin such
a way that the domains of the functions, the ranges of the former, and the
relations associated with the vertices are subsets of Ma. The same is then
true for the function determined by G. This is defined for those elements
of MG, for which as input arguments, the computational procedure described
in the examples never gets stuck before reaching the output. This can happen
as early as at the input, if the function or relation associated with it is
not defined for the input argument. Also the procedure must not contain
an infinite cycle, and the function associated with the (always mathematical)
output vertex must always be defined for the incoming argument.

In what follows, | will restrict myself to graph schemes defining numeric
functions of an arbitrary number of variables. Then MG can be chosen as
the set of all finite sequences of natural numbers.

One has to take certain initial functions and relations that can be associated
with the vertices. Then the functions defined by such graph schemes can be
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associated with the mathematical vertices of new graph schemes, and so
on. It is easy to see, however, that if a mathematical vertex E of a graph
scheme G is replaced by the graph scheme determining the function asso-
ciated with E, then the modified graph scheme computes the same function
as G. Therefore we can restrict ourselves to graph schemes, the mathemati-
cal vertices of which only have the initial functions associated with them.
With a suitable choice of the initial functions and relations, | have proved[2Z]
that every numericfunction computable by a graph scheme ispartial recursive.
The proof will be illustrated for the example of section 6.2 without reducing
the functions occurring there to the initial functions.

Let us consider again this graph scheme and the functions and relations
associated with its vertices: -

<*fa, b) = (a b, 0,1)
Bfa, b,i,w) =i=b
a.fa, b, i,w) = (a,b,i+\,wea)
afa, b, i, W) = w.

We can code finite sequences of numbers by natural numbers, for example
the sequence (n1; n2, ..., nj) by the number n=211-p\l pfi - mm

Then the sequence coded by n is simply denoted by a,,. Here, as before,

is the ith prime number, with 2 considered as the Oth. The exponent of
Pi in the prime factor representation of n will be denoted by exp;(n). Tak-
ing into account that the nth prime number is certainly bigger than n, we
see that the number n codes an /-term sequence if the following primitive
recursive relation holds: -

Zfn) = expO(n)+ 1= 1& @) [i s n—(i > Z—exp;(n) = 0)].

[22] Péter: Uber die Partiell-Rekursivitat der durch Graphschemata definierten zahlen-
theoretischen Funktionen, Ann. Univ. Sei. Budapest 2 (1959) pp. 41-48.
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The sequences occurring in the definition of og, a3 and a4 can be coded as

follows:
(a, b) —ani with nl= 21e3°«5p

and

(a, b0, 1) = ami with ml= 23¢3°e5he7°e111= 44 enXx.
Also

(@ b, i,w) = a2 with n2= 23¢3°¢5bellellw
and

(a h i+ 1 w-a) = an® with m2= 23¢3° «5he7i+lellW° =

= 8¢3exPdV . BMPZK) . Texp3(fid+1 . JJexpd(n2) exPl(n2*
w - am| with m3= 2°«3W= 3eqdnd.

Let us put for j= 1, 3,4

n_{Ww if a/ a)=ga™
AN [0, if a7(a,) is undefined.

Then, since axis defined for two-term sequences and a3and a4for four-term
sequences, R(j,n) is determined by the following definition by cases as a
primitive recursive numeric function: -

A4n,  if j=\& Z2n)

g . 3exPat”) . 5<sP2("> . Texp3(n)+1 . 1 JexpjW-expj ()  jf j = 38cZi(n)
B(j.n) = 3exp4(r), jf | = 4& Z4(n)

0 otherwise.

For /2=0 anwas not defined. Therefore 3(j, n) vanishes if and only ifa/aj
is not defined.
The primitive recursive function y(n), belonging to the logical vertex, and
defined by
in, if Z4(n)
AT o otherwise

(in accordance with the fact that the values coming in to logical vertices
are sent onwards unchanged) vanishes if and only if BZXar) is not defined,
since B2is defined for four-term sequences. Moreover if

n =233 «5phe7'e1lw that is an= (a b, i, w),

then 0 and
B2(an) = i = b = exp3(n) = exp2(n).
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6.4.1 Recursivity of Graphical Structure

So far we have defined primitive recursive counterparts of the functions
and relations associated with the vertices. Now the structure of the graph
G has to be described in a primitive recursive way.
For this purpose we define the following functions:

0, if Ej is a mathematical vertex,
v(j) =1, if Ej is a logical vertex,

2  otherwise;

j', if the edge starting out of the
z2(j) = mathematical vertex Ej leads to Ey

0 otherwise;

j', if the edge T starting at the logical
X(j) — vertex Ej leads to Ey

0 otherwise;

j', if the edge F starting at the logical
I(j) = vertex Ej leads to Ej,

0  otherwise.

These can be defined as primitive recursive functions by the following

definitions by cases: -

0, if j=1v/i=3V;=4
v(j)= 1, if j=2
2 otherwise,
(2, if 7=1Vvj=3
TJ fo  otherwise,
_ 4, if j=2
x(j) = 0 otherwise,
i3* if 7=2
M =10 otherwise.

The computation of G (a, b) is carried out at successive moments, where in
“moment 0” the argument (a, b) is to be taken, and in moment 1the func-
tion or relation associated with Exis to be dealt with.

Let

jn

i(r, a, b) =

if in moment r the computation has
to deal with Ej,

0 otherwise.
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Furthermore

the number corresponding to the argument (a, b) if r=0;
otherwise: the value of the function R or y belonging to

co(r, a, b) =1 the vertex of index i(r, a, b), computed at moment r,
according to whether El(rab) is a mathematical or
logical vertex.

Hence these functions can be defined by the following simultaneous recur-
sion: -

i(0,a, b) =0,
i(Ua, b) = 1,
and for rS|
c(i(r, a,b)), if v(i(r,a b)) =0
(i(r,a,b)), if wv(i(r, a, b)) - 1&exp3(w(r, a, b)) =
_ = exp2(co(r, a, b))
f(r+l, 2 b)= A(i(r, a, b)), if v(i(r, a, b)) = 1&exp3(to(r, a, b)) »
A exp2(m(r, a, b))
0 otherwise,
co(0, a, b) = 2-3*“5h
B(i(r+1,a, b), calr, a b)), if v(i(rt+la b)=0
to(r+1 a, b)y= y(m(r, a b)), if v(i(r+la b)=1

0 otherwise.

The i(r-f-1 a, b) occurring in the definition of w (r+ 1, a, b) can be replaced
by the right-hand side of the definition of i(r+1,a, b). Thus not only
i(r+1, a b), but also co(r+1, a, b) can be defined as primitive recursive
functions of i(r, a, b) and co(r, a, b). Such a simultaneous recursion, however,
can be always reduced to primitive recursive definitions of

i(r,a, b) and to(r, a b).

The value of G(a, b) is obtained at the first moment when the output vertex
E4is reached, and with a value, for which a4is defined, such that the corres-
ponding value of 8, and consequently of oo, is not O; in other words, at the
first moment r, in which both

i(r,a,b) =4 and w(r,a,b)+0

hold. The value of a4at moment r is the value of w at this moment: a single
number, that is a one-term sequence a,,, whose code is

n = 2°«3W= 3W
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Thus 3Wis the value of 8 belonging to this vertex in this moment, that is
o(r, a, b); now wcan be obtained from this as the exponent of 3in its prime
factor representation, that is as

expx(co(r, a, b)).
Thus we have

G(a, b) = expl(w(yr[r(r, a, b) = 4 & co(r, a, b) + 0], a, b)).

6.5 The Computability of Flow Charts

It is easy to give an upper bound for the ~-operation applied here: Whenever
a vertex is reached, one stays there for a moment. E4and E4 are reached
only once, E2and E3as many times as there are values of i to increase to
b from 0, that is, both are reached b times. This yields the upper bound
2b+2 for r. Hence the function

G(a, b) = expl(co(jur|> & 2+ 2b&i(r, a, b) = 4&co(r, a, b) + 0], a, b)),

determined by G, is primitive recursive.

Of course we knew this already, since G(a, b) is equal to the power ab.
But a similar way of reasoning applies to the general case, showing that all
the numeric functions computable by graph schemes (with suitably chosen
initial functions) are obtained from primitive recursive functions through
substitutions and a single /r-operation, and consequently they are partial
recursive. According to Chapter 4, however, every partial recursive func-
tion is computable by a computer. Hence we can conclude: -

Whatever can be computed by a graph scheme, is also computable by a
computer.



Chapter 7

Recursive Procedures and Algol 60

7.1 The Converse Results

What happens to the converse of the final conclusion in the previous
chapter? Everything obtainable by a computer is partial recursive. Can all
the partial recursive functions be computed by graph schemes?

In sections 6.2 and 6.3, this was shown for two particular cases, for the pri-
mitive recursive numeric function ab and for the primitive recursive word
function

I(x, y) = at(@Go)y)-

In the latter case, it was somewhat obscured by not taking the natural
primitive recursive definition of/ (x,y): -

Ly, if x=A
(*>Y) lat y)) otherwise.

Is it not possible to obtain from this a graph scheme determining /(x, y) ?
This definition starts with the decision whether x= J1 or not. This gives a
logical input vertex  with the associated relation

1o y)= = A

The edge F starting out of this vertex has to lead to a mathematical vertex
E2, with which is associated the function

Y) = (at(x), y).

Similarly the edge T has to lead to the output vertex, say E3, with which is
associated the function

<KX Y) = ¥
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This yields the final result. So far everything is all right: -

But how do we proceed after having reached E2? Our process fails here.
We would have to apply/ to the argument (at(x), y). Hence the edge originat-
ing at E2would have to lead back to Et, where the computation of/ started: -

However, this would start a rotation between Ej and E2, with pairs whose
second term is invariably y, and the order of whose first term is 1 less after
each turn. The “at” applied to/in the definition could not even be mention-
ed. After o(x) turns, one would end up in Exwith the pair (J1, y), for which
Blis true. Then one has to proceed to E3, where y is obtained as the result.
Hence this graph scheme would not compute

atfo(*» (y),
but

fix,y) =v.

Thus it was with good reason that we used a different definition of

at(OW) (y).

7.2 Recursion in Algol 60

The numeric function
f(a, b) = ab

was not given by a definition, but by an Algol procedure. The natural
definition would be: -
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It would not be correct in this case either to deduce from this definition a
graph scheme determining ab. In the same way we would have to take a lo-
gical input vertex Exand the relation

Bx(@, b)=b=20

associated with it. From Exthe edge F must lead to a mathematical vertex

E2with
aZ(a, b) = (a, b—1),

and the edge T must lead to the output vertex E3with

a3(a, b)- 1
Thus we would have

Here/ should be applied again to the pair (a, b—1) obtained in E2. Therefore
the edge starting out of E2 would have to lead back to the start of the
computation off that isto Ex. This cycle would have to continue with the
second term decreased by 1 for each repeat (without even mentioning the
multiplication by a), until finally the second argument is 0. Hence Bl
holds, in which case one has to proceed to the output E3. Here the constant
1 is obtained as the result of the computation. Consequently this graph
scheme does not compute a*.

From the above natural definition of ab we should obtain the following
Algol procedure for its computation: -

integer procedure f(a,b); value a, b\ integer a, b;
/:= if b=0then 1else/(a, b—I)Xa;

This is essentially different from the procedure given in section 6.2; namely
it calls itself for the computation of/ at another place. Such sections of
program are called recursive procedures. Among these are counted the
simultaneous procedures which call one another mutually.



96 Recursive Prodceures and Algol 60 [Ch. 7

7.3 Non-recursive Algol Procedures

If we could have deduced from the primitive recursive definition of/ (a, b)=
=ab a graph scheme determining it, then this would have yielded us a
non-recursive procedure. Indeed, in generalC3, if a numeric function is
computable by a graph scheme, then a non-recursive Algol procedure can be
givenfor its computation.

The general reasoning will again be illustrated with the example of a graph
scheme G, which was used earlier as an example of a general kind in section
6.4: -

Now, however, the variables of the different functions and relations have
to be denoted in a different way, and in the values of the functions (which
are finite sequences) the dependences of the separate terms on the corres-
ponding variables have to be indicated. (For the sake of clarity, | shall
use lower indices and also Greek letters. It is easy to replace these by
expressions admissible in Algol.) Thus we have

*i(G,i> 1,2) —(ai, i (yi,i> vi,t> ai,2(Ti,i> vi,2)’ al3bL1> A, 2s ai,4(G,i> M2);

where
Gfi.iOfi.u G.4) = G,i> *1,2(g ,i>vist) = vi,2>ai,3(yi,i> ®i,s) =

“14(»1,1. G,a) = 1;
N (M2, 722> 723> M 4) = N23= 122>
a3(”3,1> 73,2> y3,3? 73,4) = (a3,i(*3,i> v3,21 73,3> 73,4)» a3,2(y3, i> "3,2943,3) ~3,4)5

a3,3("3,1> ~3,2573,3) V3,i)t 73,4 (G, 1?"3,2> 73,3> ~35))>
where

ApCA3. 1> 73,25 V3,3i A3,4) = U3,li ~-3,273,11 A3,2* 73,3» V3,l) = y3,2>
a3,3(T3g> "3,2) "3,3> "3,4) = "3,3T 1i ®e4("3,1»"3,2? /3,3» "3,4) = 34X 314»
~AIPT,15 G,2> G,3i M4,4) —ad,I(GLI! G,2> G,3> M ,4))

[23] Péter: Die prinzipielle Ausschaltbarkeit des rekursiven Prozeduren aus der Prog-
rammierungssprache Algol 60, Acta Cybernetica 1 (1972) pp. 219—231.
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whence
a4,1(L4,1»Ih,2, # 31 IH,4) = Vi,i-

The heading of the Algol procedure deduced from G reads as follows: -
integer procedure f(a, b); value a, b; integer a, b’
In the procedure body first the necessary variables are declared by
begin integer y1>4, r12, P21, 13,21 1%8,3, 185,04, 13,1, 15,2, 15,3, P34, 1,1, 14,2,
1*43, 1*4.4'

Then, starting at Els the statements belonging to the vertices follow, which
if necessary can be marked by the symbols of the corresponding vertices.
Firstly by the general method we have

Ay A b\ o1 (1,1, 1H2)r B, A (N, (1,20 5,5 ®s
(i*i,i. 1%,2); 13,4 1=al,q (i%i,i. 1,2); E2: if v2B=v22 then begin ViA:=vl,
He=1%,2; M,3—1%,3; ™,2°=15,4; g0 to E4 end else begin v3A\=v2A\

V3,2-=V 2,2\ V3,3-=V 23> 1*34* 1*24i 1*2]1 a3,1(**3,1. 1*3,2>1*33>1*34) !
P22%= a32(1*3,1! %32 1*33 1%34); 123'= *3 3(1*3 1! 1*32 1*33 1*34); 1*24e=*34
(15,1, 13,2, 5,3, %,4); g0 to E2; end; E4:/:=0Cq,i(t,i, 14,2, 15,3, 4,4 end;

In our example, replacing each ait] by its value, we obtain the following
statements: -

»l,1:=a; ¥2%= 7 1°21;= *1i ®22=t*i,2; P23’=0; th,a’= i> e2:if
1%23= 22 then begin i,i:=t*2,i; vit2—v2i2; %>3:=i*2,3; *,4:=i*24; go
to E4 end else begin r3,i:=i*2,i; M™32:= rr,2i r*3,3:=123 v3ti:=v2ti}
B =8 88,0 108,3;= 1%3,3TY; i% . 1= je Xi%ji; go to E: end,
E4:/:= rd4 end:

In this particular case several further simplifications are possible. Firstly,
one sees that during the procedure vitl, v21, v31 and r41 take only the value
a: further r1>2 v22, v32 and n42 take only the value b. Therefore these
variables are superfluous, wherever they occur they can be replaced by a
and b respectively. Moreover, it can be seen that "33:=:%,3, and then
%,3:—%,3+1 can be replaced by the statement %,5:=#%,3+1- Similarly
34:= 1% 4 and then v2i:—v3iXv31. That is, *24:= t*34Xa can be replaced
by the statement v2i:=v2iXa, finally Mi4:=i*24 and then /:=i*44 can be
replaced by /:= t24. Consequently the variables v33,r34 and r4 4are also
superfluous. So is r4 3, which is not used at all. After all these simplifications
we obtain the following Algol procedure: -
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integer procedure/(a, b); value a, b; integer a, b; begin integer n2>3, v2>4;
y2,5=0; vM:=I; E2:if v2t3—b then go to E4 else begin v2t3:=v2t3+ 1;
\2,i'-=v2i Xa; go to E2end E4:f:=v2A end;

This, with the notation

~"2357245E2, E4
instead of

coincides with the non-recursive procedure from which the graph scheme
G determining/was deduced in section 6.2.

7.4 Unfolding a Primitive Recursion

According to the above, it might seem that the functions defined by primi-
tive recursion are in general not computable by graph schemes. However
in my paper mentioned in footnote [23], | have proved that this is not the
case. Primitive recursions can always be replaced by other definitions suit-
able for the purpose.
Let us consider the general case of the definition by primitive recursion of
a two-place numeric functionf(a, b). The order of the variables is irrelevant
SO

fgo(a), if =0

\g(a,b —I,f(a,b —I)) otherwise.

We assume that we already have Algol procedures for the computation of
the functions g0and g. This suggests the following Algol procedure:

integer procedure/(a, ft); value a, b; integer a, b;f:= if b=0 then g0(a) else
g(a, b-I1,f(a, b - 1))

In the “else” case this procedure calls itself to compute the value of/ for
the arguments a, b—21 An ordinary computer program cannot do anything
with such a situation, unless the procedure is suitably expanded. From the
definition of/ we obtain gradually the following: -
If b=0, then
f(a, b) = g0(a);

otherwise

/(a, b) = g(a, b—1,f(a, b- 1))

If here b—1, so that b—1=0, then f(a, b—I)=gQ@a) and
f(a, b) = g(a, b—1,90(a)) = g(a, 0, g0(a)).
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Otherwise, given that (b—1)—1=b —2, then
fifl, b—1) = g(a, b—2, f(a, b—2)).
Hence we have to compute
/(a, b) = g(a,b—1, g(a, b-2, /(a, b-2))).
Now, if b=2, then

/(a, b—2) = g0(a).
Hence

I(a, b) = g(a, b—1, g(a, b-2, g0(a))) = g(a, 1, g(a, 0, g0(a)))

and so on.
It follows that for every b>0

/(a,b) =9g(a,b- 1 g(a b -2 .., 9(a 1 9(a, 0, g0(a)))..)}
holds.
Only after this expansion can the machine computation be carried out,
step by step. To begin with (in “step 0”) g0@@) is computed. Then with the
value w we obtained here g(a, 0, w) is computed; with the new w value
g(a, 1, w) is computed, and so on. If, in general, in step i the value w is
obtained, then in step r+ 1the computation of g(a, i, w) follows. Finally,
/ (a, b) is that value wwhich is obtained in step b.
This is reflected by the following definition of an auxiliary function h, which
for i<b gives the transition from step ito i+ I, and from the actual value
w to g(a, i, w), while for i=b yields the actual value of w:
iw, if i=b
h(a,b,i,w) vyh(a, b, i+1, g(a, i,w)) otherwise.
Since in step 0 we have w=g(Q(a), it remains to be proved that
h(a,b,0,go(aj)="f(a,b). (7.4.2)

Clearly, it suffices to prove the following proposition: -
For /Sb we have

h(a, b, 0,f(a, 0)) = h(a, b, i,f(a, i)). (7.4.2)
Indeed, for i=b, using/ (a, 0)=gQ@), we obtain from this exactly (7.4.1).
Now (7.4.2) is clearly satisfied if b=0, since then i (*b) is also 0. Hence
both sides are identical.
For b~O (7.4.2) is proved by induction on i. For /=0 both sides are iden-
tical. Assuming that (7.4.2) is valid for i«=b, we shall show that it is also
valid for i+ 1. Indeed, by the definitions of h and/ we have

h(a, b, 0,f(a, 0)) = h(a, b, i,f(a, i)) = b(a, b, i+1, g(a, i,f(a, i))) =
= h(a, b, i+1,/(a, i+1)).
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If, in particular
go(@d) = 1 and g(a, b, w) = wea,

then we have the primitive recursion defining
f(a,b) =ab
as in section 4.2. This function can be defined also as
f(a, b) = h(a, b, 0, 1),
with
Jw, if i=b

h{a,b, i, w) \h(a, b, i+\, wea) otherwise.

(7.4.3)

An added parameter or the omission of one or a series of arguments does
not change the above proof.
The numeric function determined by the general primitive recursion

J/I(0, alt ..., ar) = gO(als ...,an
101 +1,0!, ..., ar) =g(n,alt ...;ar,/(/i,als ..., an)
is also definable as

f(n,al5...,an = h(n,al9 ...,ar, 0, g0(al, .... ar)),
with

, if i=n
%n, flx, ..., ar, i+1, g(i, dj, ..., a,, w)) otherwise

7.4.1 The Resulting Flow Chart

The situation is similar for primitive recursions in a word set. Indeed, the
application of similar considerations for the primitive recursion from
section 7.1, by which the word function

at(°() (y)

was defined, leads to the definition of this function given in section 6.3,
which is analogous to the above. In other words, it leads to the definition,
from which the graph scheme determining

at(o(x)) (-

was deduced.

Similarly, it is possible to deduce, from definition (7.4.3) of the numeric
function /(a, b)=ab, a graph scheme determining it, which coincides with
the graph scheme deduced from the Algol procedure in section 6.3.

In (7.4.3), one first has to proceed from (a, b) to (a, b, 0, 1). Then begins
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the computation of h by cases, according to whether the second and third
terms of a four-term sequence coincide or not. In the first case, one has
to take the fourth term of the sequence as the result (“output”). In the
second, a new four-term sequence isto be taken, in which the first and second
terms remain unchanged, but instead of i we have /-H, and instead of w
we have wea, as the third and fourth terms respectively. Then, with this
new four-term sequence, one has to go back to the computation of h. This
is represented by the graph scheme: -

with
ai(a, b) = (a, b, 0, 9
B2(a, b, i, w) = i = b,
a3(a, b, i,w) = (a, b, i+1l, wea),
as(a, b, i, w) = w.

This is indeed the same as that from which, in section 7.3, the non-recur-
sive Algol procedure determining ab was deduced.

7.5 Normal Flow Charts

In order to be able to do the same in the general case, finally we have to
make precise the initial functions and relations to be associated with the
vertices of graph schemes.
We take as initial functions those functions a, which make /c-term sequences
into /-term sequences:

oc(nt, ..., Nk = QGnl,..., mt)

in such a way that every mi (/= 1, 2, ..., /) is either rj or tij+ 1 for some
7=1,2, .., k, orisequal to 0.
As initial relations we take those of the form

=ml= m2,

where both mland m2are one ofthe nt(/=1,2, ..., k).
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A graph scheme with every vertex associated with an initial function or

relation is called a normal scheme. The empty scheme is also assumed to

be normal.

I claim now that every primitive recursive function can be determined by a
normal scheme [24i.

7.5.1 Determining Recursive Functions by Flow Charts

The initial functions of normal schemes (which, as special cases, contain
the initial functions o and n+ | of the primitive recursive functions) can
immediately be defined by normal schemes. The corresponding scheme
consists of a single vertex, which is both the input and the output. The
function to be defined is associated with this vertex of course. It now remains
to be shown that computability by a normal scheme is preserved under
substitutions and primitive recursions.

Assume, for instance, that the functions

f{a,b,c), gfa,b), g2(a,b), g3(a,b)

are determined by normal schemata, represented by the following blocks
in which only the input and output vertices are explicitly indicated: -

"e~1 TT1 TEN [-ET

A A A A3

Then the function
1(gi(a, b), g2(a, b), g3(a b)),

obtained by substitution, is determined by the following normal scheme: -

[24] See R. Péter: Graphschemata und rekursive Funktionen, Dialectica 12 (1958)
pp. 373-393. Concerning these arguments, see also my paper quoted in footnote Kaluz-
nin’s definition of the graph schemes became known to me through an indirect oral com-
munication. Later it appeared in L. A. Kaluznin: Ob algoritmizacii mathematiceskich
zadac, Problemi Kibernetiki 2 Moscow (1959) pp. 51-67.
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where the following modifications of the above blocks (indicated by as-
terisks) have to be executed: -

After receiving the values for a and b first gx(a, b) has to be computed.
However the argument (a, b) must be preserved since it is also used for the
computation of g2a, b). Therefore the input vertex E* is taken with

d*(a, b) = (a, b, a, b),

and the block computing gx(a, b) has to be modified so that every sequence
(Ty, r2, ..., rs) occurring as an argument or value at one of its vertices has

to be replaced by
od,b,rx, ...,ro).

In particular, at the output vertex A\ we obtain, instead of wy (the value of
gxfor the arguments a, b), the sequence

(a, b, ug).

This sequence again has to be preserved, a and b for the computation of
g3a, b), and uq as the first argument to be put into /. That is why EIl is
added with

CL[(ab, w¥ = (a, b, ,a, b).

Now the block computing ga, b) has to be modified so that every sequence
(rlt ..., r) occurring as an argument or value at one of its vertices is re-
placed by

(a, b, wl,rl, ...,r9).
Thus, at A\ the sequence (a,b,wl,w2 is obtained instead of w2. Since
the terms of this sequence will be used later, we add E' with

a2a, b, w, wl = (a, b, wx, w2, a, b),

and the block computing g3a, b) is modified in a way similar to the
above. Thus at A* the sequence

(a, b, wis w2, w3

will be obtained instead of w3.
Now a and b are not needed anymore. Therefore we add E. with

aa(a, b, wis w2, wd = (wx, w2, w3

and (wx, w2, W8 is found as the argument for the block which computes f.
Thus we shall obtain at A the value /(wj, w2, w3, of/ for the arguments
wl tw2,w 3, where wt=gi(a, b) (fori—1, 2, 3) is the value of gt for the argu-
ments a, b.

Clearly, an initial function or relation is associated with every vertex.
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The proof that computability by a normal scheme is preserved by arbitrary
substitutions can be carried out in a similar way.
Now assume that the functions

go(@) and g(n,a,w)
are computable by the normal schemes represented by the blocks

EO Ej
. and ;
Ao AX

We show that the function/ (n, a), defined by the primitive recursion

i1(o,8) = ()
I[/(n+1,a) = g{n,a,f(n,aj)
is also definable by a normal scheme.
Let us first pass to the alternative definition, which was given in section
7.5 for the general case: -
f(n,a) = h(n, a, o, go(a))
with i
h ) _ Iw, if i=n
(. a0, w) = \h{n, a, i+ 1, g(i, a, w)) otherwise.
From this we obtain the following normal scheme, which determines
fin, a): -

This is interpreted as follows: -
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The arguments for / are n and a, but we actually want to compute the
function h for the arguments
n, a o,go(a).

The fourth of these, the value of go at a, has to be computed, while the other
three must be preserved. That is why the input vertex E is taken with
akE(n,a) = (n, a,0,a),

and the block computing g0(a) is modified in that every sequence (r1; ..., 5
occurring in it as an argument or value has to be replaced by

n,a o0,rX ...,r9).
Thus at A£, instead of w(=go(a)) the sequence
(n, a, o, WQ

is obtained.
Now, the computation of h begins for a four-term sequence (n, a, i, w).
We decide whether i=n or not. That is why the relation

B\n,a,i,w) =i=n

is associated with the logical vertex E'. If this test fails, the argument
(n, a, i, w) is sent along the edge F to the next vertex. Then according to
the definition of h we have to compute the value of h for the arguments

n,a,i+ 1, g(i, a, w.

This requires the computation of g(i, a, w), while the first three arguments
have to be preserved. That is why E* is added with

a*(n,a, i,w) = (n,a, i+1,i,a w.

Moreover the block computing g is modified in that every sequence (rx, ...
..., 1) occurring in it has to be replaced by

(n,a,i+ I,ris ...,r9).
Therefore, at A* we shall have the sequence

(n,a, i+, W)

instead of uy, which is the value of g for the arguments i, a, w.

With this sequence one returns to E' to check whether or not the new
value of its third term has reached the value n. This is repeated until i
does increase to the value n, whereupon one passes from E' along the edge
T to the output vertex A, with this vertex, by the definition of h,

@(n,a, i, w) = w
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is associated. Clearly, this w is equal to h(n, a, 0, go(a)), that is to the re-
quired function value/ (n, a).

This reasoning works the same way for an arbitrary number of parameters.
Thus “definability by a normal scheme” is preserved under primitive re-
cursions.

Consequently, every primitive recursive function can be defined by a normal
scheme.

7.5.2 Reasons behind this Process

This result was made possible because the primitive recursion

) igofaj, ..., an, if n=o
b= aI9...,ar9len -1,al9 an) otherwise,
(7.5.1)

from which no graph scheme determining/ could be deduced, was replaced
by the definition

f{n,au ...,an = h(n, a,, ..., ar,o, go(di. ..., an)

, if i=n
{{n,al, ..,ar, r+1,9( ax, ..., ar, w)) otherwise.
(7.5.2)

From the latter, it is possible to deduce a normal scheme for computing
fi and from this (by the result of section 7.3) a non-recursive Algol procedure
for the computation offi On the other hand, from (7.5.1) only a recursive
Algol procedure is deducible, which is not immediately understood by
a computer.

Thus, from the point of view of programming, definition (7.5.2) is much
simpler than (7.5.1). What is the explanation for this?

In any case, the definition of/by (7.5.2) is a particular case of partial re-
cursion, for it can be brought into the form of a defining system of equations

io if <=0 i1 if n—0

. = as follows: -
1 otherwise and sg(n)

by the use of sg(n)— (o otherwise

f(n,al, an = h(n,ais ...,ar,o,go(ais ...,ar)
h(n, al?..., ar, i, w) = sg(|n —i| *w+
+sg(|n-i])-/i(n,al, ..., ar, i+, g(i,alt ..., ar, w)).

For i=n, the second term and for iV n the first term on the right-hand side
of the second expression vanishes, and at the same time the first factor
reduces to 1 Clearly this definition yields a more complicated case of gene-
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ral recursions than primitive recursion. It is in fact general recursive,
although for i>n, (7.5.2) does not determine A since these values of A
are not needed for the computation of/. Indeed,/ is equal to an A-value
with i=0. This in turn is equal to an A-value with 1=1, and so on, until an
A-value with i=n is reached. This is obtainable without the application of
any further Avalue as its last argument. We could have put

h(n,al,...,ar,i,w) =w, if i n

Then Awould be general recursive. In (7.5.2) the value of Ais determined

at a point
(n,alt ...,ar,i,w) (for i< n)

by taking an Awvalue at such a point, where none of the arguments can be
considered preceding. Indeed n, alt ..., ar remain unchanged, and i is
increased by 1 Finally, in place of w we have g(i, a,, ..., ar, w), which in
general is not smaller than w. From the point of view of programming,
this mixed definition must still be called primitive.

L. Kalmar conjectured as soon as computers appeared that they might
bring changes in our conception of what is “simple” in mathematics.
He even thought it possible that in the lowest forms of the future school
the teaching of mathematics will start not with the four fundamental
arithmetic operations rather with the operations made possible by the
computer. By now this conjecture is actually realized in the field of recursive
functions.

However independent of programming considerations, we have nothing to
show us why the definition scheme (7.5.2) is simpler than (7.5.1). In both, the
value of the defined function (/ or A) at a given place is obtained with the
help of its value at another place. These latter values will be called shortly
applied /-value and applied Awvalue, respectively. The difference is
that in (7.5.2) the applied Avalue does not occur as the argument of a
function, while in (7.5.1) the applied /-value is an argument of g. This
is the decisive factor. In section 7.1 of this chapter the main point was that
g could not even be mentioned. The decision factor is not the way the ar-
guments of the applied /- and A-values were chosen. This contrasts with
our earlier notion of primitivity of a recursion, in which the applied/-value
had to be taken at the immediately preceding argument.
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7.6 The /~-Operations

For every definition by cases, the value of a function h is given at an arbi-
trary point either independently of h, or as the value of h at another point
(where the arguments at this other point are obtainable from the arguments
of the original point in an already known way). Then one can always find
a non-recursive Algol procedure for computing h. Although such defini-
tions could be called “primitive recursive” with respect to programming,
it would not be correct to call primitive recursive those functions which
are obtained from the initial functions by substitutions and this new kind
of primitive recursions, because the surprising fact is that these functions
are exactly the partial recursive functions. Indeed, we can show that the
/(-operation, by means of which all the partial recursive functions can be
obtained from the primitive recursive ones, does not extend the class of
all functions which are primitive recursive in this sense.

In fact, if for such a function g

f(alt = Aij[g(i,ai, ...,an = o],
then/ can also be defined by the substitution
f{ax, ...,an = h(ax, ...,ar,o0,9g(o,<q, ..., ar),
where h is defined by the new kind of primitive recursion
IT if w=o

h(cg, .. ar i w) \<2(/<q, o arn i+ g(i+l, <q, ..., ar» o#ljerwise.

FoT the Sake of Simphcity, We' shalt distuss this ift the special' ease
/(a) = /fi[g(b a) = 0],

since a change in the number of variables does not affect the reasoning at
all. In this case the claim is that/ (a) can also be defined by

/(a) = h(a,0,9(c, ),
with

h(a,i,w) Ur(a, i+ 1, g(i+1,a)) otherwise.

According to the definition, if the third argument of h is 0, then the value
of his equal to its second argument. Therefore, if

g(o,a): 0,
then

f(a) = h(a,0,0) - 0.
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Otherwise we have

f{d) = h(a, 1, g(l, a)),
and if here

g(l,a) =o,

then

f(a) = h(a, 1,0): 1.
Otherwise we have

/(a) = h{a, 2,9(=,a)),

g(2,a) =0,

and if here

then we have
m =h(a, z2,0) = 2,
and so on. Putting these together, we have
if g(,a) =0, then /(a) =o;
if g(,a) "™ o,g9(l,a =0, then f(a)=1;
if g(o,a) 9o,9(l,a) " o,09(2,a) =0, then f(a)=2;

etc. Hence f(a) is the smallest i for which g(i,a)=0, provided that such
an i exists at all. If there is no such i for a, then the computation of/ (a)
never ends. Consequently / (a) is not defined. This new kind of primitive
recursive definition really gives us

f(a) = A, [go,a) = o]

Thus the simplest recursion with respect to programming is also the most
general. It is much more difficult to decide what is simple in mathematics.

7.7 Eliminating Recursion from Algol 60

From the definition
7 (@) = h(a, 0,9(,a))
ji, if w=o
h(d,iw) |/r@@i-fl,g(i+ 1 a)) otherwise

of the function
lo)=h[g(i,a) = o]

we can deduce a normal scheme for its computation, assuming that we
already have a normal scheme determining g. The latter is represented by
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the block

Ei

Ai
It requires a little thought to see that the cases are distinguished here accord-
ing to whether w- o or not and w- o does not belong to the initial relations.
Ofcourse it would be easy to add all these simple relations to the initial ones.
I shall choose, however, a different way: the reduction of this relation to
the original initial relations. This is achieved by taking a new variable,

which is given the value 0 once and for all. Thus we get the following normal
scheme: -

Here the given block is modified as follows: - we have to take a as the
argument off but a new variable v has to be added (for example, as the
first term of the sequence of variables), and this has to be given the value o
at the start. We actually have to compute h for the arguments a, 0, g(0, a).
Here first g(0, a) is to be computed, while the others have to be preserved.
That is why we have the input vertex E with

ag@) = (0,a,0,0,a),

and the block computing g(i, a) has to be modified accordingly. However,
one always has to compute new /r-values for the arguments

a, i,g(i, a

(with i increasing), where first g(i, a) has to be computed while preserving
the others. Therefore, the block computing g{i, a) is modified in that every
sequence (T, ..., IS) occurring at a vertex has to be replaced by

(v,a,i, rlt ...;r9.
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Thus, in particular, at A* instead of w which is the value of g for the
arguments i, a, the sequence
(v, a, i, w)

is obtained.
Then follows the decision whether or not w=0 (that is w=v). This is why
the relation

B'(v,a, i,w)=w=v
is associated with the logical vertex E'.
If the test fails, then the same argument is sent along the edge F to E".
Now, by the definition, the function h has to be computed for the arguments

a,i+l,g(i+\,a)
while v and a have to be preserved. That is why the function
a'(v,a, i,w) = (v,a,i+1,i+1,a)

is associated with E". If this value is received by the modified block for the
computation of

(v, a, 1, g(i, a)),
then the result obtained at Af will be

(v,a, i+ 1, w),

where now w=g(i+1, a). Here it has to be decided again whether or not
w=0 (that is w=v). If not, then everything starts anew with an increasing
value of i, until the relation

Blv,a,i,w)=w=v

becomes valid. Then the argument is sent along the edge T to A. Here, by
the definition of h, one has to pass to its third term. Consequently, we
associate with A the function

«a(v, a, i, w) =i
Its value is the smallest / for which
w= g(i,a) =o,

if such an i exists at all. Otherwise one never gets out of the cycle. For such
an a the graph scheme does not determine any value.

Here, an initial function or relation was associated with every vertex.
Thus it follows that the property of being computable by a normal scheme
is preserved not only under substitutions and primitive recursions, but also
under /r-operations.

Consequently, every partial recursive numeric function is definable by a
normal scheme.
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It was earlier pointed out in the preface that the functioning of a computer
can always be considered as the computation of the values of a numeric
function. In Ch. 4 it was shown that every machine computable numeric
function is partial recursive. Now we have seen that every partial recursive
numeric function is definable by a normal scheme. In section 7.3, it was
mentioned that a function computable by a normal scheme is also compu-
table by a non-recursive Algol procedure.

From all this we obtain the following result: - Recursive procedures (includ-
ing simultaneous ones) can always be eliminated from Algol 60 programs.
A similar result holds for other programming languages too.



Chapter 8

The Epi-language of Algol 60

8.1 Definitions in “Epi-Algol”

As is well known, for the description of the language Algol 60, a certain
meta-language is used, which should now rather be called “epi-language”,
because “meta-language” is used in a different sense with respect to Algol
ss. In this language, definitions of the following form occur:

(expression) ::= (term)l(expression) (additive operator) (term).

This notation has come to be known as Backus Normal Form. This is only
a part of the definition of (expression) occurring in “Epi-algol”. The
definition will be complete, if (as | shall do here for the sake of simplicity)
one restricts oneself to expressions constructed from natural numbers and
scalar variables denoted by small Latin letters, perhaps with numerical
indices, by means of addition, arithmetical subtraction, denoted by 7
instead of “—" and multiplication. Here (expression) means a general
and not a concrete expression, and the same applies to (term), which, of
course, still has to be defined. The stroke | stands here for “or”, and the
symbol has to be read as “is by definition”. Hence the sense of the
above definition is: “An expression is either a term, or it consists of an
expression and a term connected by an additive operator.”

Immediately this definition looks circular, since the notion under definition
is used in it. The situation, however, is even more complicated. Indeed, in
the definition of the notion (term) such further auxiliary notions will be
applied, which in turn will be defined using the notion (expression).
Therefore it is very important to check that we are not dealing here with
senseless definitions, but with recursions.
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I shall not use the symbol Instead | shall list one by one the possible
cases of a definition. For this purpose | introduce the symbol to be
read as “is by one of the possible definitions”.

Now the definition of our (restricted) notion of (expression) reads as
follows:

1 (expression) = (term)

2 (expression) := (expression) (additive operator) (term)
3 (term) := (factor)

4 (term) = (term) X (factor)

5 (additive operator) := +

s (additive operator) := —

7 (factor) = (number)

s (factor) = (variable)

9 (factor) = ((expression))

1o (number) (digit)

11 (number) = (number) (digit)
12 (variable) := (letter)

13 (variable) := (variable) (digit)
14 (digit) =0

..................................... (this should be written out for all the digits)

23 (digit) =9

24 (letter) = a
49 (letter) =z

Here (term) appears in the definition of (expression). In the definition
of (term), (factor) appears, and finally, in the definition of (factor), (expres-
sion) appears. Hence the circle is closed.

If in the 9th line, no parentheses were used, then the lines

(expression) := (term)
(term) := (factor)

(factor) = (expression)



Sec. 8.2] Mathematical Grammars 115

would indeed form a circle, from which one could not get out, just as

with the circle
(number) := (number),

which would result if (digit) were omitted in line 11.

8.2 Mathematical Grammars

These problems belong to the field of mathematical grammars.
There is a trend in linguistics to define the concept of “grammatically
correct sentences” (and other “category concepts”) with the same precision
with which the concept of the well-formed formulae is defined in mathema-
tics, partly because of the needs of machine translation. This led to the
creation of “mathematical grammars” of different kinds. The Epi-Algol
rules belong to a particular class of these, known as “phrase structured
grammars” [2].
In general, a phrase structured grammar is determined by four non-empty
finite sets: -

T, H, P, K.
The elements of T (the terminal vocabulary) represent the terminal con-
cepts, which stand by themselves in that they are not defined by means of
any other notions. Examples of this in Epi-Algol are the digits 0, 1, ..., 9.
The elements of H (the auxiliary vocabulary) represent the category names,
which in Epi-Algol appear in angled brackets. It is usual to distinguish
several special types of these category names which form the set K. In
the grammar of Epi-Algol, (expression) can be considered to be one of
these special types.
The elements of P, called the productions, represent the grammatical rules
which are used to “produce” (in other words “generate”) the concepts of
different categories. In the context-free phrase structured grammars (the
case to which we restrict ourselves) these productions define equations in
the sense of the “possible equality :=  having the form

h wilw2... w,,.

Here Aiis a member of H, and every wt (i=1, ..., n) is either an element
of T or an element of H (in short u*TUH). The productions correspond
to the lines in our definition of (expression). (It is admissible to have empty

productions of the form
h:=.

See for example B. N. Chomsky: Syntactic Structures ’S-Gravenhage (1957).
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It is then advisable to denote the empty right-hand side by some symbol,
for example by M, and to add this symbol to the terminal vocabulary.) In
particular, every auxiliary concept has to be defined in this way. Hence
every element of H is the left-hand side of at least one production.
A chain wx ... w, with

W, ..., w,£TUH

is called a construction, and n is called its order. We say that a construction
¢ is “directly generated” by a construction tp, if §/ results from (p by the
“application of a production belonging to P”. More precisely: tp has the
form 0 ... vm, P contains a production

» = wi..w,,
for some /=1, ..., m, and ¢ has the form

vli...vi_1wl...wnvi+l...vm.

We say that ¢ is “generated” by o if there is a generating sequence

HA=mq;, . mpr=0 (3.2.1)
of constructions, in which <1 is directly generated by <Pi-i for every i=
=2, .., r. A construction is called terminal if only members of T occur

in it.

Now the exact meaning of the statement “a construction g belongs to the
category denoted by the name A’ (A£H) is as follows: ip is terminal and is
generated by h. In this sense, it is said that a terminal construction of the
Epi-Algol language (that is one consisting of digits, letters, parentheses
and operation symbols) is an expression, factor or term, provided that it
can be generated by (expression), (factor), or (term), respectively, with
the given Epi-Algol rules as productions.

A natural problem is to decide whether a given terminal construction
belongs to a certain category or not. The solution of this problem follows
from the next result[2e]: - If the category names (auxiliary concepts) of a
phrase structured grammar are defined without circularity in such a way
that they do not generate themselves (as is true in Epi-Algol), then the
property ““to belong to a category” is primitive recursive in the word set over
the terminal vocabulary T as alphabet.

[8] r Péter: Uber die Rekursivitat der Begriffe der mathematischen Grammatiken, Publ.
Math. Inst, of the Hung. Acad, of Sci. 8 (1963) pp. 214-228.
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8.3 Eliminating Circularity

First the required “freedom from circularity” has to be examined more
closely.

In any case, one has to require that no sequence could be formed from
the members of P of the form: -

h :=h2
h2.'= h3
K-= hi.

Of course, for r=1, we exclude a production of the form hx:=hx. It can be
shown that in Epi-Algol this requirement is satisfied.

If this requirement is satisfied and / is the number of elements of H, then
for r é/ we cannot have a sequence of the form

hi h2
h2:= h3
hr:= hr+1

from members of P even (i hr+1*hr, since otherwise at least two terms
of the sequence

hx, hr+l
would coincide. If we had
K = hi+
for some /</m. 1 and o </"r . 1— then the subsequence
hi = hi+l
hf+i  := hi+
h;4j- 1+= hiH

would generate ht by itself.
Sequences of productions of the form

hi ;= h:
h. := h3
hr:= hr+1,

where Al ..., hr+l are arbitrary elements of H, will be called “dangerous”
for any rS 1.
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The freedom from circularity enables us to replace P by a production set
P', containing no “dangerous productions” at all, that is no productions
of the form

K :=h2 (A, W),

while the elements of H generate the same terminal constructions through
the productions of P' as through those of P.
The transition from P to P' can be carried out in (at most) / steps. In the
first step we form a production set Pxout of P= Po in such a way that every
element of P of the form

hi:=h2 (VM H)

is replaced by those productions in which a construction directly generated
by h2 is put instead of h2. Such constructions must exist, since h2 is the
left-hand side of at least one production.

Now, if the construction sequence

(P = K\ q2= h2; (@B; (ot (8.2.2)

generates through P the terminal construction @ by hi, then qBis directly
generated by h2, hence
hi := cp3

was added to Px. Therefore, the construction sequence

Fi=K, 98, .... @ (8.2.3)
generates the same o through Px. Conversely, if
hi:= (p3
is a new production added to Pxbecause
hi *—h2

appeared in P, and the construction sequence (8.2.3) generates < through
Px, then the sequence (8.2.2) generates the same o through P.

If Pj still contains dangerous productions, then P2 is formed out of Px
in the same way as Pxwas obtained from PO, and so on.

Now if in Pt, for isi, a dangerous production of the form

hil—h2

appears, this can only happen if, for iS 1, in P._% there are dangerous
productions
hi:=h3 and h3 h2
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forming a dangerous sequence of length two. If /S2, these can exist only
if in Pj_2there are dangerous productions

lii ;= hi := h3
ha'.— |i5, h s h2,

which together form a dangerous sequence of length four. In general, for
every i'=1, 2, ... we get that, if P; contains a dangerous production, then
P =P 0 contains a dangerous sequence of length 2. However, this is not
possible for 2‘sl; therefore, if i is the smallest number with 2‘wl, then
Pt contains no more dangerous productions. Hence we can put

P'=P,
since we have proved that the steps of transition from P to P' leave un-
changed the set of terminal constructions generated by elements of H.

The precaution we took was somewhat exaggerated. A production of the

form
K .—h2 (hu h2£H),

in which the constructions directly generated by h2 are terminal, surely
does not involve any danger. Hence these need not be eliminated. | did
not want to interrupt the reasoning with this point.

8.4 An Example

Let us consider as an example, the sublanguage of Epi-Algol by means
of which the category name (expression) was defined in section 8.1. In this
case the terminal vocabulary T consists of the digits, letters, parentheses,
and operation symbols. The auxiliary vocabulary H contains the category
names

(expression), (term), (additive operator),

(factor), (number), (variable)
(digit), (letter);

Finally, P contains the productions used in the definition of (expression).
Among these the following are dangerous:

(expression) := (term)
(term) := (factor)
(factor) = (number)

(factor) := (variable).
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At first glance the productions
(number) := (digit)
(variable) := (letter)

also look dangerous. In fact these are harmless, since (digit) generates
directly only the terminal constructions

Ol 1’ 1 9!
while (letter) generates only the terminal constructions
a, b,

The really dangerous productions in the first step of the method described
in the previous section are amended as follows: -

replace (expression) := (term)
by
(expression) := (factor)

(expression) := (term) X (factor);

then
(term) := (factor)
by
(term) = (number)
(term) := (variable)
(term) := ((expression));
then
(factor) = (number)
by
(factor) = (digit)
(factor) = (number) (digit),

finally replace

(factor) := (variable)
by

(factor) := (letter)

(factor) := (variable) (digit).

Among these new productions three are really dangerous. In the second
step they will be replaced by new productions as follows: -

replace (expression) := (factor)
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by

then replace

by

finally replace

by
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(expression) := ((expression))
(expression) := (digit)
(expression) := (number) (digit)
(expression) := (letter)

(expression) := (variable) (digit);

(term)  (number)

(term) := (digit)

(term) := (number) (digit);
(term) := (variable)

(term) := (letter)
(term) := (variable) (digit).

Among these productions there are not any dangerous ones anymore. The
elements of the production set P' are therefore the following: -

(expression)
(expression)
(expression)
(expression)
(expression)
(expression)
(expression)
(term)
(term)
(term)
(term)
(term)

(term)

:= (expression) (additive operator) (term)

:= (term) X (factor)

:= ((expression))

:= (digit)

:= (humber) (digit)

:= (letter)
(variable) (digit)

:= (term) X (factor)

:= ((expression))

:= (digit)

:= (number) (digit)

:= (letter)

:= (variable) (digit)

(additive operator) := +

(additive operator) := —

(factor)

:= ((expression))
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(factor) = (digit)

(factor) = (number) (digit)
(factor) := (letter)

(factor) := (variable) (digit)
(number) := (digit)

(number) := (number) (digit)
(variable) := (letter)
(variable) := (digit) (variable)
(digit) =0

(digit) =9

(letter) =a

(letter) =1z

8.5 Primitive Recursion in Epi-Algol 60

Now we carry on our reasoning on this example to show that the property
“to be a terminal construction generated by a given element of H” is pri-
mitive recursive.

Let M be the word set over the alphabet T, and ij be a fixed letter of this
alphabet. Let us denote the characteristic functions of the properties: -
“to be an expression, an additive operator,

a term, a factor, a digit,
a number, a letter, a variable”,
in this order, by
ex, ao, te, fa, di, nu, le, va
respectively.
Several of these can be shown to be primitive recursive very easily: -

[A, if (x=+)V(x=-)
W =7 Ginerwise,

. A, if x=0Vx=1IV..Vx=
di(x) = h  otherwise,

A if X= fIVX= bV..VX =
le(A) =

otherwise

(where the argument is denoted by capital X since x is also a letter).
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It can be seen that every argument for which
ao(x)=A, or dix)=A, or le(X)=A

holds, must be a member of the alphabet T and thus cannot be equal to A.
Therefore nu(x) and va(x) can be defined as primitive recursive functions
in the following way:

0, if di(x) =A V(nu(at(x)) = A&di (Ib (x)) = A)
nu (x) = \q

A, if le(x) =A V(va(at(x)) =A&di(lb(x)) =A)
Van 1h otherwise.

otherwise,

As functions which are already known, these can be applied in the defini-
tions of ex(x), te(x) and fa(x).

Here all the connected pieces of x must be considered as predecessors of x,
not only its initial segments. Let y<x denote that y is a predecessor of x
in this wider sense. Now the definitions of the above functions read as
follows:

A, if (EyJ(Eya(Ey3[yxy2,y: x &ex(y] =A&ao (y» = A&
&te (yd = A&x = ylyy3V
V(EyY)) (Ey3) [y'i,Y: <x& te(yx) = N&fa(y2d = N&

ex(x) =i & x = g

V(Ey) [y <xX& ex(y) = l&n = (y)]V
Vdi (x) = NV(nu (at (x)) = N&di(Ib (x)) = M)V
Vie (x) = AV(va (at (x)) = 1&di (Ib (x)) = )

A otherwise.

Here we used shorter notations, for example,
(Eyx) (Eyd [yr,y2 < x & ...] instead of (EyO[yr< x &(Eyd[y2" x&...]].
Moreover

A, if (EyD(Ey2[yly2 "x&te(yD=A&fa(yd=A&x =
= YIx V3IV(EY) [y x&ex(y) = A&x = (y)]V
te(x) = Vdi(x) = N1V(nu (at (x)) =A&di(lb(x)) =A)V
Ve (x) = M1V(va (at (X)) = A&di (Ib (X)) = A)
otherwise,

A if (Ey)ly < x&ex(u) = A&x = (Y)IV

d = di (Ib =
o) - VIeGe) = A VRG] - A& dIIDGO) = )

t1  otherwise.
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8.6 Predecessors in Algol 60

The values of the functions
ex (x), te(x), fa(x)

are defined here by using values of the same function, as well as of the other
two at properly preceding places. Among these predecessors not only initial
segments occur, but also predecessors in the wider sense (as for example
¥Y1,¥Yr and y3in the first alternative with ex(x)=/1). Even these are not
necessarily immediate predecessors. Hence we are dealing here with a si-
multaneous course-of-values recursion. In an earlier paper [27] of mine, |
have shown that such a definition can be reduced to course-of-values recur-
sion of the separate functions to be defined. These, in turn, can be reduced
to primitive recursions with the help of substitutions. All this, of course,
is meant with the extended notion of predecessor. In what follows, | shall
continue to use this extended notion of predecessor. For this application,
this extension of predecessor offers itself as a natural notion, but the more
restricted notation which we used so far is more convenient to work with.
As was pointed out in section (3.3.2), on the method of coding, in number
theory, the above definitions can be transformed into recursive definitons
of the same type with the earlier notion of predecessor. Since the reasoning
we applied in this particular example can be extended to the general case,
we can obtain primitive recursive definitions of the properties "to be in a ca-
tegory of a phrase structuredgrammar”. In our example these properties are
“to be an expression, term, factor” respectively.

The value of a primitive recursive function, however, can be computed at
every argument in a finite number of steps. Consequently, a method must
exist to decide whether or not an arbitrary chain of terminal elements is
one case of a notion introduced in a phrase structured grammar (for example,
in Epi-Algol).

[2~ R. Péter: Primitive-rekursive Wortbeziehungen in der Programmierungssprache “Algol
607, Publ. Math. Inst, of the Hung. Acad, of Sei. 6 (1961) pp. 137-144.



Chapter 9

Two-level Grammar in Algol 68

9.1 An Auxiliary Theorem
Let us consider an example of a construction sequence of the type (8.1.1),
generating a terminal expression by the category name (expression) through
the productions belonging to P' of section 8.3. In this | shall use obvious
abbreviations, like (ex) for (expression), (adop) for (additive operator),
and so on: -
(ex); «ex»; «te)X(fa»;

(«ex»X<fa)); («ex> (adop) <te))X<fa»;

(«di) (adop) <te»X(fa»;

«1 (adop) (te»X(fa)); «1+(te»X(fa»;

«1 +<va) (di»X(fa>);

(1 + (le) <dinX<fa»; «1l+x(di»x(fa»;

«l+xl)X<fa»; «l+x1)X(di»;

(+x1)x2).

The outer parentheses are used as a precaution: the expression obtained
might have to be used further on.

The structure of this becomes more apparent if, from every auxiliary con-
cept to which a production was applied, we draw edges pointing to the ele-
ments of the result, as can be seen on the following graph: -
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To every end point a single path leads from the initial point. If these paths
are considered one after the other, from the left to the right, then their end
points yield the following terminal expression: -

((L+jcl)X2).
Along some of these paths, several instances of the same auxiliary concept
can be found. For example, along the path leading to the first digit 1,
(ex) occurs four times. This is not a coincidence. Since there are only a
finite number of auxiliary concepts, it can be seen that such repetitions must
occur on at least one of the paths leading from the initial point to the
end points, provided that the graph represents the generation of a suffi-
ciently long expression. | shall not go into the proof here.
Let us examine the resulting expression if, in the above-mentioned path,
we apply to the third occurrence of (ex) the same production as we did
to its second occurrence. Then the same generating steps are applied to
the result as above: -
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The terminal expression deducible from this is

((1+X1)X2)X2).

Let us compare this with the original
((1+x1)x2).

The part 1+xI1 (printed boldface) occurs in both. Here it is generated by
the fourth (ex), in the original it was generated by the third (ex). Apart from
this part, the things generated by the second (ex) in the first graph, that is
“(and “(X2” were doubled, while the remaining parts “(” and “)” were
left unchanged.

It can be shown through a similar representation that, in general, to every
language S, generated by a context-free phrase structured grammar (that
is not containing any dangerous productions in the sense of section 8.3),
there exists a natural number g such that every terminal construction
belonging to a category of S, and consisting of at least q letters, can be
written in the form

OFi/A0£2)22a3.

Here among the (empty or non-empty) subchains
al? Rli ~2, «3
at least one of R1and R2is not empty. Moreover

MBIBIMRT BRI @

also belongs to S. I will refer to this result as the Bar-Hillel-P'erles-Shamir
theorem [28].

9.2 Two-level Phrase Structured Grammars

The grammar of the more recent programming language Algol 68 is a
phrase structured grammar in a generalized sense, in that the correspond-
ing production set is infinite, while the set of separate category names
remains finite. To specify the infinite production set one uses a meta-
language. It was because of this terminology that | used earlier the term@3

[28] J. Bar-Hillel, C. Gaifman, E. Schamir: Onformal properties ofsimple phrase structure
grammars, Zeitschrift flir Phonetik, Sprachwissenschaft und Kommunikationsforschung
14 (1961) pp. 143-172. The above theorem is merely a particular case of a more gene-
ral theorem in this paper.
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“Epi-Algol”, instead of “Meta-Algol”. Epi-Algol is generated by a phrase
structured grammar in the original sense.
More precisely, a two-level phrase structured grammar is determined by
five finite, non-empty sets
Z, M, P, V, K,
where
Z, M, P

denote the vocabulary, the auxiliary vocabulary and the production set
of the meta-language. Their elements will be called symbols, meta-symbols
and meta-productions, respectively. Furthermore, the elements of V and K
are called preproductions and category names, respectively. By means of
the first three sets one builds the infinite number of productions of the
second level grammar, from which the terminal and auxiliary vocabularies
of the second level are also obtained. The last two are the separate auxiliary
concepts of the second level.

For the exact definition we introduce certain modifications in the notation,
which will save us the use of angled brackets. The necessary separation of
symbol sequences at the second level is done by commas, and the terminal
concepts on the second level are distinguished from the auxiliary concepts
in that they do not occur as left-hand sides of productions.

That is why in what follows, | shall use three different words for finite
sequences: - “chain”, “list”, “sequence”, according to whether the ele-
ments are respectively simply put one after each other, or separated by
commas, or separated by semicolons. From the elements of Z one builds
chains, and from these symbol-chain lists. Furthermore, from the elements
of ZUM mixed chains are built and from these mixed chain lists will be
formed.

The elements of P (the meta-productions) have the form

m:i=v,

where mEM and v is a mixed chain.

A terminal expression generated by a metasymbol mEM is simply called
“a value of m”. The productions of second level will be obtained by sub-
stituting such values into preproductions. More precisely: every element
of V, (that is every preproduction), has the form

S=0,
where 3 is a mixed chain and 0 is a mixed chain list. For example,

zImImz\—z2m1z3ml, zxm3,
with
21522, 236 Z and ml,m2 m3EM.
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A production is obtained if in a preproduction every occurring meta-symbol
(in our example mx, nu and m3 is replaced by one of its values, wherever
it occurs. In our example mx occurs on both sides. Consequently, the left-
hand side of a production is a symbol chain, while its right-hand side is a
symbol-chain list.

The left-hand sides of the productions (of which a large finite number form
the set K of distinct category names) are called potential category names,
or more shortly auxiliary concepts. They constitute the auxiliary vocabulary
at the second level. Those terms of the lists standing on the right-hand sides
of productions, which do not occur as left-hand sides are called terminal
concepts. They form the terminal vocabulary.

The original definitions can be transfered to the new notation in a natural
way. For example, a symbol chain list 02 is directly generated by the
symbol chain list 0 Xif it is obtainable from 0 Xby means of a production,
or more precisely if 0 2is obtained by replacing one auxiliary concept-term
9 of 0 Xby the right-hand list of a production whose left-hand side is 9.
A symbol chain list 0ris generated by 0, if there is a generating sequence

01,02,...,0r (9.2.1)

in which 0 ; is directly generated by 0t xfor every /=2, ..., r. A symbol-
chain list is called terminal if each of its terms is a terminal concept. The
terminal concepts generated by a category name (that is by an element of
K) constitute the category designated by this name. By “the language ge-
nerated in two levels”, we mean the correspondence between the categories
and their names.

9.3 An Example of a Two-level Language

Since the set K of category names is finite, the question arises whether a
language generated at two levels could also be defined by means of finitely
many productions, that is, at one level through a simple phrase structured
grammar in the original sense.

This can be refuted by the following very simple counter-example [29].
Let us consider the two-level grammar determined by the sets

Z={#1,22,z3, M= {m}, P= {m:=zxmzl,m:=zZ}
V = {z3:= mz2mj, K = {z3}

t29] See R. Péter: Zur zweistufigen Satzstruktur-Grammatik Il. Studia Sci. Math. Hung.
3 (1968) pp. 181-194.
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Here the single meta-symbol m occurs on the right-hand side of the first
meta-production only. Hence both meta-productions have to apply di-
rectly to this, resulting in

zxz1lmzxzx and zxz2zXx,

where the second is already terminal, that is a value of m. Now, applying
both meta-productions to the first, we obtain

zXzxzxmzxzxzx and z1z1z2z1z1,

where the latter is again a value of m, and so on. We can thus see that all
the values of the single meta-symbol m are as follows: -

z171...217z271z71...z1, (for n=10,1,2,...).
n-times n-times
Substituting these values of m into the single preproduction, we obtain all
the terminal constructions generated by the single category name z3, in
the form

ZX...z1z2z1... zxz3zx... z1z2z1... zx for n—0,1,2,

If this language could be generated by a one-level phrase structured gram-
mar, then according to the Bar-Ilillel-Perles-Shamir theorem (quoted in
section 9.1), for large enough n, the terminal construction consisting of
4n+3 symbols and generated by z3could be written in the form

Zi...Zi DhZi... 2iz22j ... 2j22Zj ... Z  alRla2?a3

Hence for ri>n we should have

Zlew 21227 | wMZy 27 ... 2127 ... Zj —YIRIBI YR 2R 2a3

n n n n

where at least one of the subchains u R2is not empty. In both left-hand
sides here, z2 occurs exactly three times. However the doubling of B1 and
R2would increase the number of occurrences of z2if one of these happen-
ed to contain z2. Therefore, both Bxand B2must be those parts of subchains
of order n of our first symbol chain, which contain the symbol zx only.
The doubling of Rx and R2 therefore increases the number of occurrences
of the symbol zx in at least one of these subchains, but in at most two
subchains, while in the remaining two such subchains this number stays
at n. Hence it cannot increase to n".

Consequently, this language generated at two levels, cannot be generated
at a single level.
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9.3.1 The Primitive Recursivity of a Language

The counter-example is a very simple language. If zx and z2 were abbrevia-
tions for the words “sweet” and “Mary”, respectively, then we could say
that this is the language of enchanted admirers of Mary, who can utter
only such sighs as: -

Mary Mary Mary

sweet Mary sweet Mary sweet Mary sweet

sweet sweet Mary sweet sweet Mary sweet sweet Mary sweet sweet

and so on indefinitely.

Membership of this language can be defined as a primitive recursive relation
in the word set over the alphabet consisting of zxand z2as follows (choosing
zx as the fixed element of the alphabet): -

Let us denote by/ (x) and sm(x) the characteristic functions of the pro-
perties “to consist solely of zxX”, including the case “to be empty”, and “to
belong to the above language” (the “sweet Mary” language), respectively.
The first of these can be defined as

[A, if x=AV (/n(at(x))=A&Ib(x) = z)
/r.W -jzj otherwise.

This can be transformed into a normal primitive recursion. The same
applies to many of the following definitions. The second is defined by the
following definition-by-cases: -

M, if (Ey)[y<x&fa200=N&x = yz2yz.y72y]
SmM = U otherwise.

9.4 The General Question

What about the recursivity in general of a language generated at two
levels A>by the finite sets

Z, M, P, V,K

in the manner described in section 9.2?
This requires recursive definitions of the characteristic functions At(x) of
the properties “to belong to a category of the language” (that is, to be a

t30! See R. Péter: Zur Frage der Rekursivitat der im ,,Algol 68 verwendeten zweistufigen
Grammatik, Ann. Univ. Sei. Budapest 15 (1972) pp. 89-101.
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terminal expression generated by an element kt of K), in the word set W
over the alphabet Z' containing in addition to the elements of Z the auxiliary
symbols and

More precisely, an x£W satisfies this property if it is a terminal symbol
chain list which is the last term of a generating sequence of symbol chain
lists of the type (9.2.1), beginning with a AfEK.

Therefore, we first have to study the recursivity of the notions *“sequence
of symbol chain lists”, “last term”, “terminal” and “to generate”.

9.5 Recursivity in Symbol Chains

Of the following natural definitions it is not always immediately obvious
that they determine primitive recursive word functions. Nevertheless
every one of them can be reduced to primitive recursions and substitutions.
Let the elements of Z (the symbols) be

Us5r22 ees

and let Zj be the fixed elements of our alphabet Z'. Then the characteristic
functions
z(X), zk (%), zkl(x), zKIf(x)

of the properties

“to be a symbol, a symbol chain,

a symbol chain list,

a sequence of symbol chain lists”, respectively
can be determined by means of the following definitions (leading to course-
of-values recursions): -

1A, if x=2ZjV.-Vx = z
Z | :x otherwise,

A, if z(X)=AV(EyD(Eyd[yly2<x&zk(y)= A&
zk (x) = &z(y) = A&x = yty?
Zj  otherwise,

A, if zk(x) =AV(EyD(Ey9[pi,y2"x& zkl(y]) = A&
zZkl(x) = = &zk(y2) =A&x = ylt yA
Zj  otherwise,

A, if zkl (xX) = NV(EyX (EyD [yr,y2 < x &zkIf (yX = A&
zkIf (x) = &zKl (y) = A&x =yr;y2
zx  otherwise.
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Here zk(x) was defined in the same way as the succeeding ones only for
the sake of homogeneity. It could have been defined more simply.

Similarly, the symbols, the symbol chain, the symbol chain lists and the
sequences of symbol chain lists can be arranged into primitive recursive
sequences. For this we use the theorem [31], denoted by (HB), which says
that two primitive recursive numeric functions

oyOz) and a2(n)

can be defined with the following property: - the pairs of natural numbers
can be arranged in a sequence in such a way that the nth term of this se-
quence is the pair

(0-i(n), <¥(m)).

For the sake of homogeneity, let us arrange our large finite number of
symbols into the infinite sequence

NM525m, 7, 4,7, ... .
Since the natural numbers are represented here by
Nizi,zizi, e»>

this sequence can be defined as

A if x=A

Zj, if ox)=12
Zo(X)=y 2, if oX)=z1z1

zt, if o(x) > z1z1... Zj.

i-times

It is a general fact that finite sequences consisting of the terms of a primi-
tive recursive sequence vofY) can themselves be arranged in a primitive
recursive sequence wo(X). This can be seen as follows: -

One-term sequences have already been arranged in the primitive recursive
sequence vo(X). Now, assuming that for some a= | the a-term sequences
have already been arranged in a primitive recursive sequence

the (a+ I)-term sequences can be enumerated as
*voy) (0(x), o(y) = 1,2,...).

[31] See D. Hilbert-P. Bernays: Grundlagen der Mathematik I. Berlin (1934) pp. 321
and 328.
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Hence, using theorem (HB), they can be arranged into the primitive re-
cursive sequence

wo(x) ™<n(.o(x))*unor(.o(x))1
where the asterisk * stands for the separating symbol between the terms
(hence neither for nor for Consequently

is obtained, by means of the definition
A if y=A
P = veeo. if o(y)=1
*»,.(,()) Otherwise,

as a primitive recursive function of x and y, depending on o(x) and o(y)
only. The values of this, for o(y)= 1,2, ..., are the o (y)-term sequences
built of the terms of the sequence vO(x). By a repeated application of theorem
(HB), all these can be arranged in the primitive recursive sequence

no®  Ne7(ox) «
LetfOx) denote this primitive recursive sequence of all finite sequences of
symbol chain lists. We shall apply it later.

9.6 Other Properties

The characteristic functions

lg(x,y) and fg(x,y)
of the relations “y is a term of the list x, or list sequence x” respectively
can be defined by the following definitions-by-cases: -

A, if zkl(x) = A&zk(y) =A& (X = yV(EU)[u* x&X = u,y]M
, . V(Em [m" X &x =y, UV(EiQ) (EmXnj, w < x &x =
—uii Y1uil)
,ZX otherwise,
A, if zklf(x) = A&zkI(y) = A&(x =y V(Em[m;< x& X =
f, s =u;y]V(Eu)[u < x &x=y;u]\V/(Eny)(Ew)[n:,m2< x &X =
=«a;T;nd)

7] otherwise.

The last term Ifg(x) of a sequence x of symbol-chain lists is determined by
the definition

Ifg(x) = uyly < x&fg(x,y) = A&(x = yV(Eu)[u < x&Xx = u; y])]

as primitive recursive.
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For the notions “terminal” and “generated” we have to look more closely
into the definition of our grammar.
Let the elements of M (the meta-symbols) be

ml, m2, ..., mr,
and let
mt(x) (i=12 ...1

denote the characteristic function of the property “to be a value of m?”,
that is to belong to the category denoted by mi of the language generated
in the first level by the phrase structured grammar (in the original sense).
It was shown in the previous chapter that these are primitive recursive over
the terminal vocabulary, which is here Z. The same is valid in the word
set W over the extended alphabet Z'.

Let the elements of V (the preproductions) be

»L, V2, ...,V

The productions of the second level are obtained from these by suitable
substitutions of the values of the meta-symbols. Let

IPi(x) (=12 s

denote the characteristic function of the property “to be the left-hand side
of a production resulting from v”, and let

lpri(x,y) (i —1,2, S)

be the characteristic function of the relation “x and y are the left- and right-
hand sides, respectively, of a production resulting from v ™. If, for example,
vx is the preproduction

ZXMiM2 1= Z2M12321,ZimM3,
then Ip! (x) and Jprx (X, y) are determined with the help of the functions
TX(X), m2(x), m3(x)
by the following definitions-by-cases: -
A if (EyJ(Eyd[ylLy2"x& mUy)=A&m2jdI=A&
IPi(*)= &x =

zx otherwise,
and

A, if (Eu)(Eud(Eu3[iil, u2® x&u3” =A&
Ipri .y = &m2 (U =N&T3(M3 =/\&X = Z1U1U2&Y =

zx otherwise.

LTI
Z2W 12321, z~Uu~\
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Using these, the characteristic functions

Ip(x) and lpr(x,y)
of the property “to be the left-hand side of a production” (or “to be a po-
tential category name”), and of the relation “x and y occur as the left- and
right-hand sides respectively of the same production” can be defined as
follows: -
[A, if IPi(x) = AV..VIps(x) = A
N X {zx otherwise

_fA if IpuOc, y)=AV..VIprs(x,y) = A
lprx, V) =1 z, otherwise.

Just as easily we could have given primitive recursive definitions for the
property “to be a term of the right-hand side of a production” and with
this of “to be a terminal concept”; however, these will not be needed.
A symbol chain list can be called “potentially terminal” if none of its terms
occurs as the left-hand side of a production. Thus the characteristic function
t{x) of the property “to be a potentially terminal symbol chain list” can
be defined as

{n. if zkl(x) =N&0)[> =<X- (lg(x,y) = A-IpGO = ¢j)]
[z4 otherwise.
Since, in direct generating, the left-hand side of a production, which occurs
as a term of a list is replaced by the right-hand side of the same production,

the characteristic function dg(x, y) of the relation *y is directly generated
by the symbol chain list x” can be defined as follows:

A, if zkl(x) =A&(Eul(Eu?(Eus)(Eud[ul,u2,ud3< x&ud< y&
dg(x,y) —m  &Ig (x, n2d = A&Ipr(n2, u4 = A& x = Wn2vn3&y = miming
zX otherwise.

Finally, the characteristic function

gf(x, ¥)
of the relation *y is a generating sequence of the type (9.2.1), beginning
with x” is given by the following definition, which leads to a course-of-
values recursion: -
A, if zkl(x) = A&zkIf (y) =A&(y —xV
V(EUX (Em) wi,uz<y& gf(x, w) = A&
gf(x, y)=-\ &zkl(n2 =A8cy = ur; u2&
&dg (Ifg (M), ug = A)

Z] otherwise.
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9.7 Recursive Enumerability

With this, we have a primitive recursive definition of every notion necessary
for the formulation of the basic question concerning the language generated
by a two-level grammar: - “If Ais a category name, how can we decide
what belongs to the category denoted by A?” This is true of x, if x is a po-
tentially terminal symbol chain list, and there is a generating sequence of
symbol chain lists which begins with k and terminates with x, for example, if

t(x) =A&(Ey)[of (x y) - N1& Ifg(y) = X]

holds. If the characteristic function of this property was also primitive
recursive, then so would be the corresponding language. However for the
y in (By) [...], we might not be able to provide an upper bound, and an
unbounded relation (Ey) [...] cannot even be guaranteed to be general
recursive.

We might have expected this on the basis of the similarity between generat-
ing a language and generating the theorems of an axiomatic mathematical
theory. In the latter, a formula/ is a theorem of the theory if there exists
a sequence of formulae, starting with axioms and terminating with /,
such that every term of the sequence can be “generated” from earlier terms
with the application of certain rules of inference. In general an axiomatic
theory is not recursively decidable. The corresponding “there exists” rela-
tion might not be general recursive. Concerning questions of decidability
it would be senseless to use partial recursivity.

The recursivity of languages definable by two-level grammars, like Algol 68,
is an open question.

The language generated in two levels in the way described above is, in any
case, primitive-recursively enumerable in the sense that, for every category
name, we can define a primitive recursive function the values of which
are exactly the terminal constructions generated by this category name. Using
the primitive recursive sequence fax) from section 9.5, in which all the
sequences of symbol-chain lists are arranged, the following function does
this for a kEK: -

Mg (Lx)» it *(ifg (<) = A&gfO,/,(*) = A
k(x) —In otherwise.
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9.8 Two-level Language with Finite Terminal Concepts

In developing Algol 60, it was conceivable that one could use a two-level
grammar containing only a finite number of terminal concepts.

However, a language generated by such a grammar can also be generated
in one level [32].

The proof of this is rather complicated. In the proof one has to take into
consideration the preproductions from which the separate productions
were deduced (by substituting certain values of their meta-symbols). The
basic idea of the proof is the following: - If there are only finitely many
terminal concepts, then the terms of the right-hand side of a production,
different from these and from the (finitely many) category names, can only
have a regulatory kind of role. Specially they only determine which prepro-
ductions generate such productions as they are applicable to the term under
consideration. By this is determined the order in which terminal concepts
will occur in the terminal constructions generated by the category names.
Since there are only a large finite number of combinations of the finitely
many preproductions, from this point of view the regulating right-hand
side terms of the productions can be divided into a large finite number of
sets. What matters is only the set to which such a term belongs, not its
concrete form.

A simple example might make this clearer. Let us consider the two-level
grammar with

Z = {zjj z2;z3; tx\t} M = {m} P = {m:= z"mz*.m = z2%}
VvV = {m:= zImzl, t1;z1mz1:= t2;z23 m} K = {z3}

Since M and P are the same as in the “sweet Mary” language of section
9.3, the values of the single metasymbol m are again the symbol chains

z1...ziz3z1...z21 for n=0,1,2,...,

n-times n-times

which | shall denote by an.
Clearly, if m=an, then
zlmzl = an+l.

Hence the following productions are obtained from V for n=0, 1,2, ...: -

an:= anti> h
antl h
z3:= an.

[321 See my paper quoted in footnote [2e].
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Among the right-hand side terms, only txand t2do not occur as left-hand
side terms. Hence only these two are the terminal concepts of the language.
Therefore the terminal constructions generated by the single category
name z3can be lists consisting of txand t2only. The right-hand side terms
anand ant+l have simply a regulating role to decide the order in which tx
and t2 occur in these lists. What matters here is, for which combinations
C of the left-hand sides of the preproductions will the terms ant+l or a,
occur in the left-hand sides of the productions generated by the preproduc-
tions in C? In this simple example there are only two possibilities: a0
occurs in the left-hand side of a production only if it is obtained from the
first preproduction. Hence aOcan be replaced by the list

ail' h
only where ax is one of the values an+1, while an+1 can always be replaced

by both
an+2>h

and t2, where ar+2 is again one of the values an+1. Since all the values an+l
have the same effect, they can all be replaced by a single new symbol g.
Hence we obtain the following five productions: -

ao:= g, h
g:=gh
gm=h
z3 a0
23:= ¢

These have the same effect as the original infinite number of productions.
It would be easy to obtain further simplifications. However, here we shall
deal only with the finiteness of the number of productions. At the stage
we have now reached, we have sufficient information to obtain all the ter-
minal constructions generated by z3. Only a0 and g are directly generated
by z3; by a0 only
g h
is directly generated, while by g
g, tx and t2,

where the second is already terminal. To the first both the second and third
productions can be applied, with the results

g,t5,t1 and t2,tx,
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where the second is again terminal. From the first we obtain similarly
g,t1,t1,t1 and t2,tl,t1,

and so on. Clearly, every terminal construction generated by the category
name z3begins with t2, followed by a chain consisting solely of tx.
It is easy to see that this simple language can also be generated by the follow-

ing two productions:
z3:= z3, 11

z3 t2m

But the purpose of this example was to elucidate the elaborate general
considerations, by means of which one can show that in the case of a large
finite number of terminal concepts, a language generated in two levels can
also be generated by a one-level phrase-structured grammar. So, if it is not
circular, such a language is primitive recursive.



Chapter 10

Does Recursivity Mean Restriction?

10.1 The Recursivity of Everything Computable

It was shown in Ch. 4 that everything obtainable by a computer is partial
recursive. Actually, a really partial recursive function might not be obtained
at all. If one can decide for every argument whether the function/ under
consideration is defined there or not, then the situation is clear. If this
decision is made in a general recursive way, then the agreement that the
function take a fixed value wherever / is not defined turns the definition
of/into the definition of a general recursive function. However, for proper
partial recursive functions the possibility of finding such a decision proce-
dure is hopeless. If a program for the computation of such a function is
fed into a computer and, after the input of arbitary arguments, the com-
puter starts calculating, one can never know whether the computer has
failed to stop because the computation is too lengthy, or if it will work on
forever, without computing anything.

One always strives to feed “reasonable” programs into the computer,
whereby for arbitrary initial data the calculation will come to a halt after
a (large) finite number of computing steps. With this, the above statement
can be reduced to the following: - whatever can really be obtained by the
use of a computer is general recursive. Moreover, after suitable coding,
it can become a general recursive numeric function. Thus the question
arises: - Does this mean an essential restriction on the abilities of the com-
puter?
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10.2 Church’s Thesis

Assuming Church’s well-known thesis [33] does not mean any restriction.
According to this thesis, every numeric function is general recursive if its
values are computable in a finite number of steps for all arguments. Of
course, this is not an exact mathematical proposition, because the term
“computable” is not exactly defined. Consequently, it can be neither proved
nor disproved mathematically. There are many arguments for, and some
against, the plausibility of Church’s thesis. Perhaps the most striking argu-
ment against it is due to L. Kalmar[34]. He has proved that the validity of
Church’s thesis would imply the following hardly believable fact: There
exists a simple proposition (namely that there is a natural number n, for
which a fixed numeric function cp(n, m) does not vanish for all tri) which
we know is true, but still cannot be proved in any way.

I myself agree with Kalmar’s conviction that effective computability is one
of those notions the definition of which can never be considered complete
in the course of the development of mathematics.

As a matter of fact, up to now no effectively computable numeric func-
tion (that is one computable everywhere in a finite number of steps) has
been found which is not general recursive. Therefore, computers, which in
principle are capable of computing every general recursive function, yield
the most that can be expected according to the present state of our knowl-
edge. Let us hope, provided a counter-example to Church’s thesis is
made known, then, one hopes, the technological means will develop to
modify computers to enable them to compute such functions.

[33* A. Church: An unso/vable problem of elementary number theory, Amer. Journ. Math.
58 (1936) pp. 345-363.

L. Kalmar: Solution ofa problem of K. Schréter concerning the definition of the notion
of general recursive functions. MTA I1l. O. Kdézi. Publ. of class I1l. of the Hung. Acad.
Sei. 7 (1957) pp. 19-38 (in Hungarian).
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Recursivity of Lisp 15

11.1 A Set of Numeric Structure

The recursive theory of the programming language Lisp 1.5[3%] indicated
in section 3.7, can not only be dealt with by embedding it in a word set.
A holomorphic set is a typical example for another case of a set with a
numeric structure. As to general information on such sets, | refer to foot-
note [10].

Here we are going to study lists, that is, finite linear arrays which are built
out of certain elements. These are elements of a word set over a finite
alphabet containing letters, digits and several special symbols. However,
the lengths of words used for this purpose are bounded. Hence the set
A of elements is finite. Let this be denoted by

A = {(ij, a2, =, ot}

11.2 Basic Notions

In what follows, each of these is considered as a single symbol (and not
as a chain of symbols). All the elements play the role of 0 in our holomorphic
set. Since the set of O-elements is customarily denoted by HO, we put

HO= A

The terms of a list are either elements or lists that have been constructed
earlier. One does not have to consider lists of arbitrarily many terms, since
they can be decomposed into pairs. To the first term of the list, the list of

351 See the paper quoted in footnote t13], and R. Péter: Die Rekursivitat der Programmie-
rungssprache ,,Lisp 1.5" in Spezialfallen der angeordneten freien holomorphen Mengen,
submitted to Acta Cybernetica on February 1, 1973.
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the remaining terms can be chosen as the second item of the pair. The
latter list can again be considered as a pair in a similar way. To the last
term of the given list, the empty list is to be chosen as the mate. This is
denoted by “NIL” and is also considered to be an element.

Thus instead of lists, we shall deal with symbolic expressions or in short
S-expressions. In the first place, the elements are S-expressions. Moreover,
if and s2are arbitrary S-expressions, then the pair

S= (S, 9
is also.
Thus if s corresponds to a list, then sx corresponds to its first term (the
head) and s2to that (perhaps empty) list which results if the first term is
removed from the original list (the tail).
Here sxand s2as functions of s will be denoted by

sx= car(s), and s2= cdr (s),
while i as a function of sxand s2will be denoted by
S= COnS (Sj, s2.

This two-place function cons plays the role of a successor function here.
If s is an element of HO, that is

s€#o,

then we say that the order of s is 0, that is
o(s) = 0.

If ij and s2are at most of order n, but at least one of them has order n, then

the order of
S = cons (X, $9
isn+ 1, that is
o(s) = n+1.

The set of S-expressions of order n will be denoted by Hn, while H is the
union of the sets Hnfor n=0, 1,2, ... .
Every element x of H is either an element or has the form

cons (XI5 x2 = (xxex2,
where xx and x2are uniquely determined:
xX(= car(x))

is that S-expression which results if one omits the opening parenthesis of
the symbol chain x, and then copies its symbols (going from left to right)
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until the numbers of the left and right parentheses coincide. Furthermore
x2(= cdr (X))

will be that chain of symbols which results if, from this remaining part of
X, one omits the point at the beginning and the last closing parenthesis.
Every element is the only (not proper) predecessor of itself. The immediate
predecessors of

X = Cons (X]j, %)
are xxand x2, and the proper predecessors of x are the predecessors of X
and x2. Consequently the order of a proper predecessor y of x (denoted
by y-<x) is less than o(x).
The natural numbers

0, 1L 2,..

will be identified in H by a fixed member of each

#o, #i,
respectively, that is by

hO—NIL, hx= cons (h0,Z), h2—cons (hl5/q), ....

Thus for every natural number i we have

i = o(i) = o(hi) = ht.
Moreover
o(x) < o(y)
is equivalent to
o(x)  of(y)
and
x ™ o(y)

implies that x is a natural number, that is

X = 0o(X).

11.3 Primitive Recursion in H

Now the scheme of primitive recursion in H reads as follows: -

f{a, ult ..., u,) = ga(ul, ..., u,), if aEHO(= A)
f (cons (xx, Xa), Mi,..., u,) =
= g (xx, X2, «!, ... un/(xx Uj, ..., uy,), /(x2, U],
where
Sa’ S
are already defined functions.
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11.3.1 Initial Functions

As initial functions we take the elements of HO, the successor function
“cons”, and the characteristic function of the equality: -

equal (x, >).

Here b is said to be the characteristic function of a relation B, if everywhere
b takes the value hOor hxaccording to whether B is valid at the corresponding
point or not. Also here we saythat if B is primitive recursive so isb. Thus we

have | \I'hO, oy —y

equal {x,y) = .

qual {x, y) if x™y.
A function is primitive recursive in H if it can be obtained from the initial
functions by means of finitely many applications of substitutions and primi-
tive recursions.

11.4 Examples

Next we list several examples of primitive recursive functions in H.
1. The identity function
id(x) = x

can be obtained by the primitive recursion

rid(@ = a, if a£#0

(id (cons (x1; x2) = cons (xI5x32,
where the constant

8a = a
and the function
g = cons

are initial functions. Here g depends only on the two indicated variables,
but the introduction of dummy variables, on which a function does not
really depend, is also permitted in H.
2. The definitions of the immediate predecessors of x are

rcar (@) = NIL = h0o, if af£HO
\ car (cons (xy, X2) = xX,
rcdr (a) = ho, if a£HO
I cdr (cons (xj, X2) = x2.
3. The natural numbers
ho, hi, h2, ...
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are primitive recursive, since this is true for the element hQ, and its validity
can be proved by induction hnto hn+1. This can be obtained by the substi-
tution

cons (hn,hn).

4. The characteristic function
atom (x)

of the property “to be an element of H(O”, that is to be an element, and its
opposite
atom (x)

can be defined by the following primitive recursions: -

ratom (a) = ho, if a£#0
I atom (cons (x1, x2) = hl

om (a) = hl, if a”HO
tom (cons (x15x2) = hO.

These correspond to the functions
sg(x) and sg(x)

in number theory as well as to the functions
sig(x) and sig(x)

in word sets. They have their counterparts in every set of numeric structure.
They can always be used to prove the following statements: -
i) The primitive recursive relations are closed under negations, conjunc-
tions and implications.
ii) A function built up from primitive recursive functions by means of pri-
mitive recursive relations is also a primitive recursive function. The exact
meaning of this was formulated in both the case of number theory and of
word sets, and the theory can be generalized to other sets of numeric
structure.
iii) Using i) and ii), one can show that if B(u0,L,, un is primitive re-
cursive, then so are

(Ey) [y < x &B(y, uL;

GO[y" x - B(y, Uj ..., uj]
WIY * x&B(y, Uj, ..., un].

The meaning of their counterparts was given in section 3.6.2.

and
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5. The characteristic function pred(x,y) of the relation y<x occurring
above has the following primitive recursive definition: -

pred (a, y) = equal (y,a), if a£HO
ho, if cons(xI5x2 =
I pred (cons (*!, x2,y) = »« = yVpred (xr,y) = /i0Vpred (x2,y) = h0
hj  otherwise.
Consequently the relation

y<$x=y<x &y "X
is also primitive recursive.
6. Finally o(x) is also primitive recursive in H. Indeed, if

X = cons (Xj, x2),

then one of «(Xj), 0o(x2 must be exactly one less than o(x). Moreover for
each number n, the successor of n is

cons (n, n).
Hence o(x) can be defined by
o(a) = ho, if af£tfo
_ fcons(o(x!), 0Cxj)), if oCx"oiXi)
olpons (X, X = { cons o(x2, 0(x2) otherwise.

11.5 The Order o(x)

We add three important remarks to the definition of o(x): -
a) For
X = cons (xt, x2
o(x) was defined with the help of the earlier value o(x-1), where in general

x-1 denotes a fixed predecessor of x of order o(x) —1, in our case this

was a fixed one of xb x2, the order of which is not less than that of the
other.

It is useful that the scheme

I/(a) = ga, if aeHO
I/(cons (xI5x3) = g(xI5Xa./IxO./CxallJfcons-1(xI5 x2))

(where parameters are admitted) remains within the class of functions which

are primitive recursive in H. Indeed, applying the primitive recursive auxili-
ary function

, rg(Xj, X2, Dj, vz, vy, if o(x3 ~ OIX)
9 (X, x2, vitvg) = {/g(xl ,x2,v1,v2,v) otherwise,
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the above function/is also definable by the primitive recursion

i/0) = ga, if af£HO
1/(cOnS (Xj, x2) = g'(Xj, XzJixJJixz)).
In the particular case

ga=a
and
g(*i, x2, vu v2, Vj) = v3,

X-1 itself is obtained as a primitive recursive function.
For every natural number n, we have

nl=n—1

b) Instead of the natural numbers it is more appropriate to use the func-
tion o(x) in H. For instance, the o(x)th iterate of a primitive recursive
function/ at a place y has the following primitive recursive definition in
H: -

(fO@)Xy) =y, if atH(

V(o (cons(x,,12))(y) = /(/(0 (cons-1(Xj, x2))
The iteration

(Nit(x, y)

yields an example of a primitive recursive sequence:

(/,it,,(x)0),

since it does not really depend on x, but only on o(x).
Since o(x) is always a natural number,

o(o(x)) = o(x),

that is every non-zero-th iterate of o(x), is equal to o(x).

¢) In section 3.4.1, we referred to the fact that, what we proved there
for word sets (namely that every numeric primitive recursive function
can be represented by a primitive recursive word function) is valid in every
set of numeric structure, in particular in H. More precisely, for every pri-
mitive recursive numeric function

_ _ (p(mr, ..., m,)
there is a function
i, ol
primitive recursive in H such that for all w, ..., u,

o(/(uj, -...u,)) = o(dj, ...,0(u,.)).

The function

o(/(0(«i), e, o(un))
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can be considered as the representative of @ in H. The representatives of
the numeric functions can be denoted in the same way as the originals.
Through their characteristic functions, the numeric primitive recursive
relations can also be represented by primitive recursive relations in H
(which are denoted in the same way).

11.6 Coding Lists by Elements

In order to be able to handle course-of-values recursions, we have to code
sequences of elements of H, by elements of H, in such a way that the terms
of a sequence can be recovered from its code. For a set of numeric structure,
in which one of the successor functions is of at least two variables (as in
the present case), in my paper quoted in [loi | have constructed a rather
simple example of such coding. In the present particular case, however,
it is more natural to use another method, which can also be generalized.
In this, a finite sequence is considered as a list (of S-expressions), with
which we have previously associated an S-expression: -

with the list s, the S-expression (sO-NIL)
with the list sO, sx  the S-expression (s, *(sx*NIL))

with the list S4jS”Ss the S-expression (s, *(sx*(s2*NIL)))

and with the empty list e. g. NIL(=A0.
Thus with the list

MOOMNLS ==

the element
X= C,s0, 95 ..., S) = AS(s0, QO S(ij, ..., cons (s,,,/1,,)...))

is associated. It can be seen that

fi = o(n) * o(x)
is satisfied here.
The terms of the list can be recovered from its code x as primitive recursive
functions of x: -

s0 = car (x), sx= car (cdr (X)), ..., S, = car (cdr({) (X)).

Moreover
cdr(ntl) (x) = hO.
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Consequently, the characteristic function list(x) of the property “x codes
a list” can be defined as a primitive recursive function: -

ho, if x = hOV(Ey) [y~ o(x) &cdr(o(,)(x)$HO&
list (x) — &cdr(oW+1)(x) = /iq
h+ otherwise.

The “length” long(x) (the above ri) can be obtained as follows:
long (x) = Uy[y o(x)&cdr))(x)<4//0&cdr(<KIZHYX) = hQl.
The expression
Hly d, M, ....,)]
needs a little explanation. Its value is obtained as the first term y of a
certain list, enumerating all the predecessors of z, which satisfies the rela-
tion
B{y, w, ..., un
and is hO, if this relation is not satisfied by any predecessor of z. Thus we

have
long (x) = hO

exactly, if x codes the empty list or does not code any list at all. Since
y~ro(x), long(x) is necessarily a natural number.

A primitive recursive sequence which enumerates predecessors of x, and
which if x codes a list, for

o(y) < long(x)
yields the o(y) th term of this list, can be defined as follows: -

rcar (cdr@})(x)), if list (x) = h0&o(y) < long (X)
kay)(x) 1Ix otherwise.

11.7  Course-of-values Recursion in H

consists precisely of the predecessors of x (with x *x for /</), then the
“course-of-values function” of a function/is defined as

[*(*) = ¢,(/(x0, ...,/(x,)).

Every earlier value of/ can be obtained from this as

I(*)) = ki(/*(*))
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(with ;</). Therefore the scheme of course-of-values recursion in H reads
as follows: -
/(a) = ga, if a£HO

/(cons (x2, x2)

g(x1,x2,f*(xl), f*(x2),

where the functions ga and g are primitive recursive (and might contain
parameters).
It turns out to be helpful if we choose the sequence (11.7.1) in such a way
that for xEHO
| —0 and x0—X
and for
X = cons (xx, X2

we first enumerate the predecessors of x2in their already given order, then
the predecessors of xr in their given order, and finally put

X = xt.
It can be shown then that I=1{x) as well asf*(x) will be primitive recursive.
With this, moreover, we have
Ne = kHx)(f*(x))

is primitive recursive as well. Therefore, the course-of-values recursion does
not extend the class of functions which are primitive recursive in H. This
holds true in general for sets of numeric structure, after several further
initial functions are chosen. In our case, however, these can be defined as
primitive recursive.

As a simple application of the functions ¢, and kt(x) | also mention the
reducibility of the simultaneously recursive definition of several functions

to the recursive definition of the single function
/= c,(lo, ...1,,).
From this, the original function can be recovered by the substitutions

o - K,(1, ...l = K(F).
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11.7.1 More Recursions in H

In the paper quoted in[13] the characteristic function

eq (X, y)

of the property “x and y are equal elements” was taken as an initial func-
tion, and from this

equal (a,y) = eq(a,y), if af£HO
ho, if equal (xj, car (y)) =

equal (cons (xx, X2, y) = = h0&equal (x2,cdr(y)) ho
hx  otherwise

was defined later. | want to add here two remarks.
1) | show that
eq (x, )

can be defined as a primitive recursive function in H.
First of all the characteristic function/- of the property to be equal to the

element
at (I=12 ..,1)

can be defined by the primitive recursion

wag- K
(only for i — 1)
fi(ai-i) - >h
Mai) = hO
fi(ai+l) = K )
(only for i =1t)
Ma,) = K

/(cons (xj, X2) = hj.
Using these we can put

. ho, if (x=ax&y = aj)V..V(x = a &y = a)

& (X’-’:—lf_tr otherwise.
2) The above definition of
equal (x,y),
which, by means of the primitive recursive auxiliary function
\hO, if x = h0&y = h0
otherwise
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can also be written in the form

fequal (a,y) = eq(a, y), if a€#0
lequal (cons (xI5x2), >) = g(equal (xI5 car (>)), equal (x2, cdr (>)),

is not a primitive recursion, since the argument y in it does not remain
unchanged. First it is replaced by car(y) and then by cdr(y).

In my paper quoted in[10], | pointed out that, possibly after adding suitable
auxiliary functions, such a definition can be reduced to course-of-values
recursions. Thus, it can be reduced to primitive recursions as well, even in
the case of a “nested recursion”, in which the expressions substituted for
the parameters may depend on earlier values of the functions to be defined.
However it was used there in the sense that the characteristic function of
the equality (in our case

equal (x,y)

itself) was an initial function. Now, in our particular case the adding of
such further initial functions is not necessary. | shall illustrate this reduc-
tion with an example, which is applied in Lisp 15.

11.8 Examples

Let Xand y correspond to lists of elements of the same length: -
(n1;b0, and Oq, v2, ..., ),

and let z correspond to a third list. Let us attach to the beginning of this
third list the pair-list

(cons (uj, ig), cons W2, v2, ..., cons (u,,, Vi)

constructed from the first two lists. Let the S-expression corresponding to
this list be denoted by
pairlis (X, y, 2)

whose value is irrelevant if X, y, z are not of the above type.

If x is an element, it can only correspond to the empty list. Hence the same
is true for y, and thus nothing is attached to the third list. Consequently
we obtain the following definition: -

irlis(a,y,z) —z, if a£#0
%irlis(cons (xj,x2,y, z) = cons(cons(xt,car (>)), pairlis (x2,cdr (y), 2)).
UsTng the primitive recursive function

g(uj, u2,u3 = cons (cons (iqg, car (u?), wd
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we have the shorter definition

irlis(a,y,z) = z, if aE£HO /y 8n
airlis(cons(xj.x""z) = g(xI5y, pairlis (x2,cdr (y),z)) v

For this definition, in which
cdr(y)

is substituted for the parameter y, | shall illustrate the steps of the reduction
to course-of-values recursions. In this simple example it goes easily, but
the methods indicated can also be applied to nested recursions.
From (11.8.1) values of the following types are obtained for
pairlis (x,y, z): -
z, if X£#0,
gfo.y.z), if x = cons(x!,x2 &x2eHO,
g(*i>y>g(*21,cdr(y),z)), if x2 = cons(x,,,x2) &x26#,,,

g(xj,y,g(x2L,cdr(y), g(x22 cdr (cdr(y)), 2))),

if x2= cons(Xx2L,x2a) & x 2% # O,
and so on.
It can be seen that the function values are built from nestings of the func-

tions
cdr(u), gCu™u*Ua),

where no function is substituted for w,. Let a function / (x,y, z) satisfy
the following conditions: -
(1) for everyy and z there are x' and x" with

f(x',y,2) =y and fix",y,2) = gz
(2) foreveryy, z, uthere is an x with
f(x,y, z) = cdr (/(u, y, 2)),
(3) foreveryy, z, ux, u2, Wthere is an x with

fix,y, z) = g(«!,/(u2,y, z),/(u3,y, 2)).
Then / (x,y, z) has all such nestings among its values, in particular all
the values of pairlis (x,y, 2).
Now, such an/ (x,y, z) can be defined by means of the primitive recursive
functions
kfu), c,,iu0, «u ..., m)
for i=0, 1, 2, 3; n=0, 1, 3, where for i*n

ki{cniu0, Uj, ...,u,,)) =
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in the following way: -

f(a,y,z) =y, if aeHO (11.8.2
Z, if o(kO(xD) = ho
j/(cons(x1,x2,y,z) cdT(f(k1(xD,y,2)), if o(kO(xD) = hl

g(k1(xD,f(k2(xD,y,z),f(k3(x],y,z)) otherwise.
Indeed, properties (I)-(3) are satisfied by

x' = h0 and x" = cons (cO(h0, x2,

x = cons (cl(h1,u), x2,

*1

respectively by choosing x2, for example x2=h0.

Furthermore, by a definition of type (11.8.2), (I shall return to th equestion
of reformulating these as course-of-values recursions) one can obtain a
function w(x, W, u?d, which unfolds the nested values of the function /
in the sense that, for all values of the arguments,

[(x,/(mi,y, 2),f(u2yy, z)) =/(w(x, tq, ud,y, z)

holds.

With the use of this function, we can finally, through primitive recursion,
define a function g(x) which, so to say, sifts out the value of pairlis (X, y, z)
from the value of/ (x,y, z). Similarly, for all the values of the arguments,

pairlis (x, y, z) =f(q(x), Y, 2)
and the function w(x, w, u? can be defined primitive recursively in the
same way as pairlis(x, y, 2).
According to the definition of ko(y)(x) the values

fei(Xi) (i=0, 1,2,3)

occurring in (11.8.2) are predecessors of xx. If kt(x) is the v(x, i)th in the
list (11.8.1) of the predecessors of x, and f*(x,y, z) denotes the course-of-
values function of/ (x,y, z), then by section 11.7

f(ki (X)), y, 2) = kv(xui) (/*(xI5 y, 2)).

If we substitute the right-hand sides of these identities instead of their left-
hand sides in (11.8.2) for i=0, 1, 2, 3, we can see that since v(x, i) is primi-
tive recursive, a course-of-values recursion is obtained. This shows that
for a general set of well-behaved numeric structure the function corres-
ponding to v(x, i) has to be added to the initial functions.
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In our special case, however, v(x, i) can be defined in a primitive recursive
way in H.

Thus pairlis (X, y, X) is primitive recursive in H. It can be shown in a similar
way that recursions, in which substitutions occur for the parameters (even
if nested values of the function to be defined occur among these), do not
lead out of the class of functions primitive recursive in H.

11.9 General and Partial Recursive Functions in H

In every set H of “numeric structure”, hence also in the set of S-expressions,
one can introduce the general recursive functions similarly as in the number
theoretic case. The values of these can be obtained everywhere from defin-
ing systems of equations by means of finitely many substitutions of ele-
mentary terms (in our particular case S-expressions) for variables and sub-
stitutions of one side of an equality for the other. By omitting the require-
ment “everywhere”, we obtain the partial recursive functions in H. (All
of these can also be defined by primitive recursions and suitable “un-
bounded /i-operations”.)



Chapter 12

Decision Tables

12.1 Decision Tables versus Flow Charts

For some time it has been a tendency in practice to use decision tables[3]
instead of flow charts, if, in the flow charts several logical vertices would
follow one after the other, thus making the structure and flow of the cal-
culations difficult to follow[37].

12.2 An Example

We return now to the idea of a graph scheme which was introduced in Ch. 6
for the computation of the Ath binary digit sk of the sum of two numbers
given in the binary form: -

where arbitrarily many digits 0 can stand left to the last digit 1 One has
to take into consideration that snfor any n depends not only on anand h,
but also on the remainder r resulting from the already executed addition
of the digits to the right.

The associates of the vertices will be denoted in the same way as it is custo-
mary in (non-exact) practice. They will be written into squares and
hexagons, which represent the mathematical and logical vertices, respec-
tively. In the mathematical vertices statements of the form

c=V

[36] See R. Péter: Mathematische Fassung der sogenannten ,,Entscheidungs-Tabellen”,
Acta Cyb. 2 (1973), pp. 89—108.

[3,] See R. Thurner: Entscheidungs-Tabellen, Disseldorf (1972), with the references given
there.
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figure, meaning that a variable v has to be given the value c (disregarding
the fact that possibly v has already been given a value earlier). In the logical
vertices, questions of the form

c= b?
are written.
These are obtained in the following way from the mathematical and logical
functions associated with the vertices of the appropriate graph scheme.
We compute the digits s,,, slt ~ of the sum, step by step, until we reach
sk. We introduce auxiliary variables n, r, s to denote the step number, the
current remainder, and the current digit of the sum, which will vary in the
course of the computation. When we say that sOis “computed in step 0”
(where of course the remainder is 0) we mean that both n and r have to
take the initial value 0. For s we can also take the irrelevant initial value 0.
The input vertex of the graph scheme has to be a mathematical vertex,
with which, since the initial data form the sequence

(k Uy ... ak, h(, ... bic),
the mathematical function

ai(k, Uy, ..., &, bp, ..., bk - (c, Ug ..., &, bo, ..., bk, 0, 0, 0)

is associated. Initially, in the flow chart, r and n are declared to have the

value 0, for this
0=>r

will be written in the input vertex, and the simple edge starting from here
will lead to another mathematical vertex with

0 =>n.
Here the procedure branches according as the remainder is 0 or not. Hence

there must follow a logical vertex. In the case of the graph scheme, this is
associated with the relation

B/k, a0, ..., ak, bo, ..., bk, n,r,s) =r =0,
in the case of the practical flow diagram with the question
r= 07
the edges starting at this logical vertex, according as the answer is “yes”
or “no”, will be marked by T and F in the graph scheme and by Y and N
in the flow chart.

Then in both cases another branching follows, according as a,,=bn or not.
Thus we have a logical vertex again, with the relation

B2(k, a0, ..., ak, bO, mmbk, n, r,s) = an= h,
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in the graph scheme, and with the question
a,=Dhb,?
in the flow chart.

In the next step there appears an auxiliary variable nwhich has to be given
a value 0 or 1 In the graph scheme, this is accomplished by the functions
ai(k,ao, ...,ak, bo, ..., bk,n, r, s) = (k,a0, ...,ak, b0, ..., bk, n, r, 0),
ccj(k,ao, ...,ak, bo, ..., bk,n, r, s) = (k,a0, ..., ak, bo, ..., bk, n, r, 1),

and in the flow chart, by the statements

0 =>s,

1=>s.
This process continues repeatedly in the same way. In the graph scheme
2k + 6-term sequences

(k,a0, ...,ak, bo, ..., bk,n, r, s)

will occur, with the exception of the output vertex, where the 1-term se-
quence skis obtained as the function value. In the flow chart, this is expressed
(after introducing an auxiliary variable e for the result) by the statement

s=>e.

Meanwhile, before each step in the computation, the question is put
whether n=k1 If so, one proceeds to the output. If not, then n is increased
by 1, and one goes back to the first branching point.

It is easy to see that the flow chart constructed according to the above
instructions does compute the required digit sk of the sum: -
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12.3 Changing Flow Charts into Decision Tables

The flow chart belonging to the above simple problem is nevertheless still
rather complicated. So the parts consisting of several logical vertices will
be replaced by decision tables.

A decision table (or simply a table) is divided into four quadrants as fol-
lows: -

Il v

In quadrant | different questions, and in quadrant 111 different statements
will be indicated. The other two quadrants I and IV will be divided into
a certain number of columns. In the upper part (thatis in Il) every column
contains a variation of Y, N and the “empty” symbol. In the lower part
(that is 1) every column contains a variation of X and the “empty” symbol.
To explain the meaning of such tables, let us consider an example. Suppose
that I and Ill, and one of the columns are as follows: -

F, Y
F2

F3 N
AX

A, X
A3 X
A4 X

This means that if the answer to question Fj is “Yes”, and to F3is “No” >
then (independently of the answer to F2 the statements A2, A3and A4
have to be executed.

Clearly the upper halves of two columns cannot be identical, because then,
if we want to avoid contradictions, their lower halves would also be identical.
Hence one of them would be superfluous.

Let us consider a part of the flow chart given in section 12.2, containing
several connected logical vertices.
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This can be replaced by a table, by first traversing all possible directed
paths of edges starting at the initial vertex. These will be called “lines”.
The questions found along the way (each one occurs only once) are written in |
and the statements are written in I1l. For every line, a column is filled in as
follows: - The row of a question is empty if the question does not occur
along this line, Y and N is written if the question occurs and the edge on
the line following the corresponding logical vertex is marked by Y or N,
respectively. Finally, for every statement X; or, nothing, is written, accord-
ing as a vertex with this statement is traversed by the line or not.

By always choosing the leftmost line first, we obtain the following table
in our example: -

r=0? Y Y N N
a, = b,? Y N Y N

C=a X X
1=m X X

Now if we wanted to reconstruct the above subgraph from this table, this
could not be done in a unique way. From the first two columns we can

still uniquely recover the part

as well as the fact that the line belonging to the third column starts with
the edge N at the initial vertex. This edge however, could lead to the middle
vertex with the question “an=bnT ’, and further it could lead along the edge
Y starting there, which contradicts the final statement of the actual third
column: -

Therefore it is advisable to drop the requirement that the questions in 1
and the statements in 111 are different. We consider the rows of the table
as belonging to the different vertices rather than to different questions or
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statements. In what follows | will often say “points” instead of vertices.
Then the table belonging to the above subgraph looks as follows: -

PU1 r=07? Y Y N N
Pu a,= K1 Y N

Pis a=hbnl Y N
T*:

P11 0=>s X

P'2 1=% X

Pi3 1=*s X

Pl 0=>s X

where P j.and P';denote the ith logical vertex and the j'th mathematical
vertex, respectively, which are used in the construction of table T2.
From this, the subgraph can be reconstructed in only one way.

12.4 Systems of Tables

Considering the whole graph of section 12.2 we see that the continuations
of the subgraph, dealt with in section 12.3 again lead to logical vertices.
Starting from one of these vertices (for example the one on the left), let us
consider again the subgraph consisting of those lines, which from here lead
to the first mathematical vertex or (if this were the case) to a vertex already
encountered. (If the mathematical endpoint of a line is followed by further
mathematical vertices, then the line has to be extended to the first new
logical vertex or return to a point already encountered, respectively.)
Thus we obtain the subgraph

to which the following table belongs

P21 a,,=1? Y N N

P22 n=/c? Y N
T * .
2' Ki 1=>r X
P2 s=>¢ X

P23 n+1=n X
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Here all points are different from the points of T*.
Now only one logical vertex remained in the graph of section 12.2. Start-
ing with this, similarly we can deduce the following subgraph: -

Y *
4 O

The dotted edge, marked by Y, leads to the logical point P22 of the above
subgraph corresponding to T2. Its continuation is the part of this sub-
graph starting at this point. This corresponds to the following “subtable”
of T*

P22 n=kl Y N
T2'2' P2.2 s=e X
P2.3 n+ l=>n X

Therefore, it is convenient to add statements of the form “go to Tu” as
“exits” from tables, which require the execution of the subtable of T;
starting at the point P; j-.

Then the table belonging to the last subgraph looks as follows: -

Pan fln—1? Y N
-5.5‘ Ps.1 0 =T X
goto T2 X
where P31 and P3r are different from the points of both TJ”and T2.
The addition of an “exit part” to the table (which is not assumed to belong
to the “lower part” of the table) is also useful because it shows where the

last edge belonging to a column must lead to.
Putting into Ts the augmented form T . instead of T. 2, we obtain

P3g a,=I? Y N
T,: P3g 0o =>r X
goto T22 X X

We have similar augmented versions of T" and T- as well.
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The mathematical points on the line leading from the input vertex to the
first logical point still do not occur in any of the tables. For these we construct
the following table with a single column, and empty upper part: -

Pon ONr X
-EO‘- Pa: 0=n X
go to Tj X

where T, for />0 means the subtable Tjfl of T;.
Thus the following system of tables is associated with the graph of section
122:-

Pui 0=>r X
p . RQ2 0= X
goto Tj X
P14 r=0? Y Y N N
Pr.2 an=bnl Y N
Pis «n=h,? Y N
Pi.! 0=>s X
T. Pi., 1=m X
Pi., 1 X
P1A O7s X
go to T2 X
go to T22 X X

go to T3 X
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Here we have

P22 n=/c? Y N

P20 X
T22: p22 n+ |=>n X

stop X
go to Tj X

P21 a,= 1? Y N N

P22 n=k? Y N

Ki 1=>/o X

P22 s=>e X

T:

P23 n+1l=n X
goto T22 X
stop X
go to Tj X

P3g, «,,=17? Y N
T3: P3g 0=>r X

goto T22 X X

The computation procedure is represented by these tables in a somewhat
clearer way than by the graph of section 12.2.

It is also important that several people can work on the separate tables.
Some of the tables can even be extended (or changed in some other way),
without disturbing their connections. The statements “go to T ” or ‘“go
to Tjj” then really call for walking - namely to the desk of the person
working on table T, or T;j-, respectively. So certain edges of the flow
diagram can be represented by such walks.
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12.5 Normalizing Flow Charts

It can happen that on a line being used to build a column of a table, two
different points are associated with the same question F in such a way that
in the corresponding column, the answers to this question are either super-
fluous or contradictory. However, the basic graph can always be replaced
by an other one, for which such situations do not occur. The graph in this
respect is said to be normalized.

I will not go into the details of this normalization here.

I have one more remark. If a line returns to the mathematical point Pg 2
(to which the edge starting at the input vertex leads), then afterwards the
part

PO, 0=>n X

goto Tx X

of TO has to be executed. This table is called the subtable Tg2 of TO
belonging to P 2. Thus in the exit of a table statements of the form “go
to T;j ” can also occur.

12.6 Regular Tables

As in the example above, we can obtain from every normalized flow chart
a system of tables giving the same result. 1 will list here the characteristic
properties of such systems of tables, which I will call regular. These also
reflect the fact that always the leftmost line was chosen for constructing
the next column of a table.

(@) A table system consists of finitely many tables without common points

T1,T2, .., T,, and perhaps TO.

TO(and only TO, if it occurs) does not have an upper part. Moreover none
of the tables has an exit “go to T,,”. If TOdoes not occur, then none of the
tables has the exit “go to TX’. For every other table T;, however, there is
at least one column exit “go to Tr” perhaps in the form “go to T;1”.

(b) As column exits of a table Tm(m ~n) statements of the form

stop, go to Tk, go to Tm, goto Tu,
can serve.
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(c) The exit “stop” belongs to only one table column.

Next we describe what is meant by saying that the tables of the system are
“regular”. This concerns both the upper and lower parts of the tables and
requires that the following properties be satisfied:

(d) In the first row, belonging to the first point of the table, there are no
empty places, since every line used for the construction of the table starts
at this point.

(e) In the upper part of the first column the non-empty symbols must all
be Y’s and follow each other without a gap. In the last column, and
only in the last, no Y smymbol occurs.

(f) (1) For every appropriate /the contents of the (/+1)th column coincides
with the contents of the /th column, up to the last Y symbol of the latter,
instead of which N occurs in the (/+1)th column. (2) The first non-empty
symbol after this N in the upper part of the (/+1)th column belongs to the
first such row, in which none of the 1st through to the /th columns contain
a Y or N symbol, since after a line branches from the earlier one only new
points are traversed by the new line. In the first portion of the upper part
of the (I-fl)th column the non-empty symbols— which are all Y’s follow
each other without a gap.

(g) The questions really to be considered in a column (that is the ones
belonging to non-empty symbols) as well as the questions following these
after possibly empty places in the lower parts of other tables, are all dif-
ferent. This follows from the normalization of the graphs mentioned in
section 12.5. This property also applies to the exits.

(h) In the lower part of every column, the X symbols follow each other
without a gap, in the first column from the first row on, for every appropriate
/. On the other hand, in the (Z+ 1)th column they follow from the row just
below the row in which the last X occurred in the /th line because the
mathematical points of lines used to construct the columns are all different.

12.6.1 Subtables

The subtables have to be constructed as follows: -

The subtable T; j-of T; is obtained by omitting the first (j—1) rows, then all
the columns which are empty in the/th row, and finally all the rows in which
after this row none of the symbols Y, N, X remain.

In constructing Tjj, one has to do the same, after the whole upper part of
T, is omitted. Here of course, the */th row” means the/th row of the remain-
ing part of T;. Thus T ;; has always only a single column.
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For example, with the particular table T, of section 12.4 we have

P13 1S X
T13: P1A O”s X
go to T2 X
goto T3 X
and
Pi.3 1=>5 X
Ti.3:
goto T3 X

Clearly, T'g is the table TOitself, and for every MO T(1 is equal to T;.

From a regular table system it is easy to construct a flow chart leading to
the same result.

12.7 Turning Tables into Regular Tables

Tables occurring in practice, and in the literature, are in general not regular.
It is important, however, to be able to turn these into graph schemes as
well, since the latter, as is shown in section 7.3, can immediately be translated
into certain programming languages.

This can be achieved by turning these systems of tables into regular systems.
If the connections between the tables of an arbitrary table system are given
in a reasonable way, they can always be formulated by means of the exits
introduced above.

Requirement (c), which is the one most often violated in practice, can also
be dropped. If there are several points in the graph, from which no edges
originate, this can only be a fragment of a graph scheme (a graph scheme
serving the same ends can always be constructed, however), but the effect
of such a fragment can also be translated into programming languages.
For similar reasons, the requirement that no edge may lead to a certain
point can also be dropped.

In any case, we have to restrict ourselves to table systems satisfying property
(g) of section 12.6.
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According to the above, we do not have to worry any more about the
exits from the tables. In what follows, however, we show that every table,
containing different questions and statements only, which does not contain
two columns with identical upper parts (even “implicitly” in a sense to be
clarified soon), can be respresented by a regular table having the same
effect.

The lower part of any table T, can easily be made regular. Let us assume that
the number of X symbols in the first column is xx, in the second x2, ...,
in the last x,. Then we take new mathematical points

1Pi',19 *ix5 P;.Xla E‘i‘xl+ 17 **e > E;‘X]."'XZ, &il‘xi + X2+ L. +Xt*

In the same order, we take rows corresponding to these points instead of
the earlier rows of the lower part of T;. Then the X symbols of the first
column, together with the corresponding statements, are put one by one into
the rows belonging to Pfg, ..., P - . The X symbols of the second column
together with the corresponding statements (among which earlier ones
might occur) are put by one into the rows belonging to P(iXi+1, Pije+lt,
and so on.

This makes (h) of section 12.6 valid, and then it remains to deal with the
upper parts of tables.

Concerning the upper parts of table columns, it will be useful to consider
the empty symbol in such a way that the statements in the columns are
independent of the corresponding question, that is they yield the same for
both answers “yes” and “no”. Therefore it is usual to split each column
containing an empty symbol into two, which differ from the original only
in that the first replaces the empty symbol by Y, the second by N. It could
happen, however, that in doing this the upper part of a new column coinci-
des with the upper part of an old one.

Therefore the essential difference between the upper parts of two columns
must be understood as the existence of at least one row in which one of the
columns has Y, and the other has N. If this holds, then the table does not
have two columns with the same upper parts even implicitly.

Furthermore, it is also customary to add new columns to a table with a new
statement called “error”, to emphasize that the variation of answers to the
questions given in this column is not appropriate for our purposes. Instead
of applying the new statement “error” it would serve the same ends to
prescribe in the exit the return of the last edge belonging to the column to
its initial point, thereby producing an infinite cycle. This would show then
that the result of the procedure represented by the table is undefined for
the corresponding variation of answers.
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With the above splitting and adding of new columns, the upper part of any
table can be transformed in such a way that the upper parts of the columns
will yield all the possible variations of the symbols Y and N. If we have n
questions, their number is 2"

If these variations are arranged in such a way that one of them precedes the
other if and only if, at the first place where they differ, it contains Y (and
the other N), and the columns are arranged accordingly, this will precisely
correspond to the leftmost choice of the lines according to which the co-
lumns of the table corresponding to a flow chart were constructed. We still
have to ensure the validity of requirement (f) (2) of section 12 s, that is the
reflection of the fact that, after every choice of an edge starting at a branch-
inr noint only new points will be traversed by the corresponding line.

12.7.1 An Example

Let us consider as an example the case of 3 questions Fx, F2, F3. The upper
part of the table containing all the variations of answers in the above order
is the following:

Ft Y Y Y Y N N N N
F2 Y Y N N Y Y N N
F3 Y N Y N Y N Y N

H Y Y Y Y N N N N

F2 Y Y N N

F3 Y N

F3 Y N

F2 Y Y N N
F3 Y N

F3 Y N

This is already the upper part of a regular table.
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12.8 Normal Systems of Tables

In the different particular cases, it is not always necessary to fill in all the
empty places, or to form all possible variations. In actual practice, one stri-
ves for the simplest possible transition to a corresponding flow chart.
Let us consider for example a decision table with applications to company
organisation, which is given on p. 19 of the book quoted in footnote[37.
Using the notation

F.,F.,Fs,F+ and Aj, Ll,a, A3, A4

for the questions and statements, respectively (whose meaning is irrelevant
to our investigations), this can be written as follows: -

Fi Y Y N
F2 Y N N Y
F3 N
F4 Y N

Aj X

A2 X
A3 X

A4 X

Now we have to examine the properties given in section 12.6.

Firstly, because of the empty place in the first row, (d) is not satisfied.
Therefore the third column has to be split into two (we could have switched
the first two rows instead): -

Fi Y Y Y N N
F2 Y N N N Y
F3 N

F4 Y N N

A4 X

A2 X

A3 X

Ad X X
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In the fourth column, no Y occurs, hence (€) is not satisfied. This can be
remedied by switching the last two columns: -

Fx Y Y Y N N
F2 Y N N Y N
F3 N N
F4 Y N

A X

A2 X

A3 X

Ad X X

In the 4th and 5th columns the last requirement of (f) is not satisfied,
namely that after a branching point, only Y edges can occur on the initial
part of a line belonging to a column. Therefore a new row with the state-
ment “error” has to be added: -

Fj Y Y Y N N N N

F2 Y N N Y Y N N
F3 Y N

F4 Y N Y N

As X

Az X

As X

As X X
error X X

Finally, the non-empty symbols of all the columns have to be placed into
the rows as prescribed by (f) and (h), together with their corresponding
question and statement symbols: -
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Pj F Y Y Y N N N N

P2 F, Y N

P3 F4

P4 F2 Y Y N N
P5 F3 Y N

Pc F4 Y N
Pi As X

Pi As X

Pi As X

Pi error X

Pi A, X

Pi error X

Pi A X

This is already a regular table with 7 columns and not 24=16 columns
which would be needed if all the possible answers to the 4 questions were
to be used.

From this table, the lines of the corresponding flow diagram (starting at
Pj) can be read off immediately. Thus we obtain

12.8.1 Comparison with Partial Recursive Functions

The transition from a graph scheme to an ordinary flow chart, which in
section 12.2 was illustrated with an example, can of course be reversed.
Instead of the questions and statements at the points, we can return (per-
haps after a suitable coding) to logical and mathematical functions.
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According to the above, every normal scheme (a notion which was introdu-
ced in section 7.5) can be represented by a normal system of tables having
the same effect. By the latter, we mean a system of regular tables such that,
in quadrant I. of each table initial relations, and in quadrant Ill. initial
functions are contained. Moreover the converse of this statement is also

valid.

Consequently the functions definable by normal systems of tables coincide
with the partial recursive functions, and thus with the machine computable
functions, since for the functions computable by normal schemes this was

shown in Chapters s and 7.
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253-
(A mvész kdszdnblevele) o
Budapest, 1961. jOnius 12.

Hars Gyorgy elvtarsnak
Budapest

Népszabadsag SzerkesztOsége
Kedves Hars Elvtars!
A Népszabadsidgban megjelent rélam sz6ld, meleg, barati hangl irdsodat ez-
aton kdszoéndm meg.
Szivélyes udvozlettel

254-
(Az albérl6 levele)

A ,raktar”-helyiséget egyéb hely hianyaban nem 4&ll mdédomban biztositani.
A raktar’-helyiséget egyébként megegyezésiink szerint vettem annak idején
igénybe, mint az albérlemény tartozékat, tehat a lakbért ezutan is fizettem!
Felhivom nb. figyelmét, hogy ha hasonl6 ,fébérl6i” alllirokkel kivanja meg-
zavarni azt a csendet, melyet egyedil az én figyelmességem (elsésorban ko-
rara valo tekintettel) és tlrelmem teremtett meg, Ggy kénytelen leszek olyan
- jogomban &ll6 - retorziokkal élni, amelyekbdl (az eddigi helyzethez viszo-
nyitva) csak kara, vesztesége, bosszankodasa sth. stb. fog szarmazni.

Oriilnék, ha ezt komolyan megfontolna és békében hagyna élni.

[Budapest, is]si. IX. s. G.

255
(A mivesz levele)

Kallai Gyula miniszterhelyettes [!] elvtarsnak

Kedves Kallai baratom!

Nem panaszkodni akarok, csak a tényeket kozolni.

Rossz helyzetben vagyak, bar egész évben dolgoztam, tiz (j plasztikat csinal-
tam és kiallitdsra készulok. lgaz, hogy van kétezer forint nyugdijam; ez azon-
ban a megélhetésemhez sem elég, és a kiéllitasra készulédés minden fillére-
met felemésztette. Dolgozni akarok, és nem engedem, hogy élve eltemessenek.
Hacsak kevés anyagot vésarolok, akkor mér felborul az amugy is nagyon la-
bilis anyagi helyzetem. Mar ideje volna ruhat csinaltatnom, kopott vagyok;
nem hiszem, hogy vonz6 latvany egy Kossuth-dijas rossz ruhdban. De ezt nem
bantam volna, a munkéahoz volt szikségem pénzre. Szerényen ezer forintot ker-
tem a KépzOmdivészeti Alaptol. Szilard igazgatdé azonban nem irta ald a kiuta-
last azzal az indokkal, hogy van kétezer forint adéssagom és nem vagyok ke-
res milvész ... Ez igaz, mert nem engednek keresni, bar dolgozom és nem
megvetendd alkotasokat készitek. Ha nem tudnam, hogy nalam érdemtele-
nebbeknek sok-sok ezer forint addssaguk van az Alapnal, nem sz6lnék Szi-
lard igazgatd kemény dontése ellen. Nekem ebben a mi népi allamunkban nincs
lehet6ségem leveg6hoz jutni? Pedig ezért a rendszerért én tettem is valamit,
egy egész élet munkéajaval kizdottem érte. Most készitettem két kis portrét,
Bartokrdl és Lisztr6l, melyeket a Keramia Szdvetkezet szeretne sokszorositva
arulni. Ez megadna azt a kevés osszeget, ami szlkséges ahhoz, hogy szerény
életmodom mellett is meglevé pénzzavarom megszinjék. Mar el6ére félek, mert
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a Képzémlivészeti Alap zs(irije elé kell kildettem, oda, ahol tiz éve minden
munkdmat visszautasitjak - nalam sokkal kisebb szobraszok. Pedig ez a két
fej szocialista realista, teljesen érthet6 miivészeti nyelven van megalkotva. Tiz
;év: nem vagyok fiatalember, életem utolsd termékeny esztendeit raboljak el t6-
em.
Nagyon kérlek, intézkedj, hogy segitsenek rajtam. De ne engedd, hogy Ugy te-
gyenek, mint tavaly, amikor segitséged kdvetkeztében vettek télem egy szob-
rot, de a tizezer forintbol hatezret egydsszegben addssagra levontak. Igaz, hogy
most csak kétezer forint adéssagom van.
Nigyon kérlek, tégy valamit, hogy ebbdl a keserves elakadashdl kikertilhes-
sek.
Remélem, hogy helyt adsz kérésemnek, hisz tudod, hogy nem fordulok hozzad,
csak ha nagy bajban vagyok.

Elvtarsi tGdvozlettel régi hived és baratod

2j6.

(Levél a Magyar Tudoményos Akadémia
Bartok Archivumatol)
Budapest, 1962. januar 1s.
Tisztelt Mdvész Ur!
Minthogy tudomasunk van az On Bartdk Béla-szobrardl, és mivel intézetiink
figyelmét szeretndk Kiterjeszteni a Bartdkkal kapcsolatos képzém(ivészeti alko-
tasokra is, rendkivil lekdtelezne bennlinket, ha a szobor megtekintésére maodot
nyUjtana. Legcélszerlbb lenne, ha a mlivet az Archivum érdekl6d6 munka-
tarsainak be tudna mutatni, illetve, ha ifj. Bartok Béla Ur megtekinthetné azt.
Mindenesetre kérjik, hogy a lehetéségek tisztazasa véget sziveskedjék ben-
nunket telefonon megkeresni a délel6tti vagy a koradélutani 6rakban (161-522).
Szives vélaszat varva maradunk teljes tisztelettel
Dr. Szabolcsi Bence
igazgatd
-257-

(Levél a M(ivelédésigyi Minisztériumbol)

Ertesitem, hogy a Bartok Bélardl készitett portréjat bronzban 2500 Ft érték-
ben megvasaroltam.

Jelen levelemmel egyidejlileg a Képzémlivészeti Alapndl intézkedtem, hogy a
tiszteletdijat levonas nélkil fizessék ki az On részére.

Budapest, 1962. februar 27.
Szentesi Antal s. k
osztalyvezet6 h.
zj8.

(Levél az Orszaggy(lési Kdnyvtar igazgatdjatol)
Kedves Dezs6!

Az Elet és lrodalom e heti szamaban megjelent a Fiiggetlen Magyarorszagért-
plakatod fényképe. Amennyiben még nem kildtek honorariumot érte, Ugy je-
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lentkezzél a szerkeszt6ségben. A rendelkezésre bocsatott fényképet nekem fog-
jak visszakiildeni, és majd eljuttatom Hozzad.

Sajnalom, hogy mdteremkiallitasodat nem tekinthettem meg, pont akkor eld-
adast tartottam.

Az Ady-fejet illetéen megbizottad jelentkezhet a napokban.

Budapest, 1962. marcius 22.
Szivélyes dvozlettel
Veértes Gyorgy

259.

(Levél a Magyar Forradalmi Munkés-Paraszt Kormany
Elndkhelyettesének Titk&rsagatol)

Kedves elvtars!

Kallai elvtarshoz irt levelét megvizsgéltattuk a Miuvel6désugyi Minisztérium-
mal. A Képzémlivészeti Osztaly a Bartdk-szobor bronz példanyat megvasarol-
ja, s a Képzémlivészeti Alap igazgatdjaval megbeszéli, hogy a vasarlasi 6sz-
szegh6l ne vonja le az On tartozasait.

Egyébkeént Kallai elvtars a kiéllitasa megnyitéjara szolé meghivét megkapta,
de betegsége miatt azon nem tudott részt venni.

Budapest, 1962. mércius 24.

Elvtarsi tdvozlettel:
Nagy LészIld

260.
(Levél a Jokai Szinhaz igazgatojatdl)
Budapest, 1962. aprilis 10.

Kedves Bokros-Bierman elvtars!

Mdtermi kidllitasara szol6 meghivéjat érommel vettem kézhez, de - sajnos -
abban az id6ében nem voltam Pesten, kilfoldon Iéptem fel és igy megtisztelé
meghivasanak nem tehettem eleget.

Abban a reményben, hogy alkalmam lesz az utdbbi id6ben késziilt mdveit lat-
nom, maradok mivészetének és 6nnek

tiszteld hive
Keres Emil

261.
(Uzenet az albérlének)

Budapest, 1962. aprilis 11.

Furcsa teremtmény az ember. Ha kell, szamolni sem tud. 76,- Ft-nak nem
30,- Ft a 70%. lgaz, 6n 23 napot nem toltott lakasaban - de gondoskodott ar-
rél, hogy masik két személy pétolja Ont tavollétében.
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Furcsa teremtmény az ember! Nem mindig buta, csak néha azért korlatolt. A
70%-ot potolja ki, s csak azt mondom: furcsa teremtmény az ember!

B. B.
262.

(Levélfogalmazvany az Ujkori Torténeti Mazeum igazgatdjahoz)

[Budapest, i]1962. V. 18.

Tisztelt Igazgato elvtars!

Ismerve az On altal vezetett intézet érdeklGdési korét, Ggy gondolom, helye-
sen teszem, ha felhivom a figyelmét két - tulajdonomban levé munkamra.
Achim Andras-emlékm(i terve az egyik, melyet 1924-ben készitettem és 1925-
ben egy a Mentor-beli kiallitdson mutattam be.

A masik az Egységfront c. plakettem. 1930-ban készilt.

Amennyiben érdekli Onoket a nevezett két munkam, kérem, keressenek fel mi-
termemben.

Joveteliik id6pontjat elézbleg egy lapon kozoljék velem.

1962. V. 18. postara téve.

263.
(Levélfogalmazvany Csehszlovakiaba)
Kedves Domotor Teréz!

Azért fordulok Onhoz levelemmel, hogy a kossuthi martir-emlékmdirél ittjarta-
kor tudomasomra hozott értestiléseit levél Gtjan Ujra kikérjem. Nagyon kérem,
irjon le pontosan mindent, amit ebben az ligyben tud.

Lehetséges ugyanis, hogy rovidesen személyesen is felkeresem a szoban for-
g6 emlékmivet.

1962. V. 18. postara téve.
264.
(A miivész értesitése)
Budapest, 1962. augusztus 23.
Kallai Gyula elvtarsnak
Budapest

Kedves Gyula!

Az elmult tél folyaman igéretet tettem Neked, hogy készitek szdmodra egy kis-
plasztikat. Erre mostanaban kerilt sor: elkészitettem részedre egy Bartok-bronz
kisplasztikat, melyet szeretnék Neked személyesen atadni. Kérlek, kozold ve-
lem, hogy mikor és hol adhatnam ezt at Neked.
Valaszod véarva, vagyok

elvtarsi Gdvozlettel



265.
(A bronzontd levele)

Igen tisztelt Mdvész Ur!

Elnézést kérek a zavarasért, valdszin(leg el tetszett felejtkezni rélam, ti. a kis
Bartok-fejekért még 450 Ft jarandosdga van a MUivész arnak. Nagyon meg-
kérem, sziveskedjék postafordultaval elintézni.

Még egyszer elnézést kérek.

B[uda]pest, 1963. aug. 26. maradtam teljes tisztelettel
Baumgartner Jozsef

) 266.
(Ugyvédi jegyz&konyv)

Tényvazlat

Felvéve az 1 sz. UMK-ban 1963. oktdber hé 8. napjan, Bp. V. kér. Kecskeméti
u. 13 Il. em. dr. Kramer Istvan tgyvéd altal.

Megjelenik Bokros Birman Dezs6 nyugdijas szobraszmivész és eladja a ko-
vetkezOket :

Ismeretlen tettes ellen feljelentést tettem a XIIl. kér. Teve u. 6. renddrségen,
mert egy nagyérték(i szobromat elloptak a lakasombodl.

Gyanakodom az albérlémre, barati korére, ill. a feljelentésben is szerepld ta-
nitvanyomra.

Albérlém egy izben mar lopott télem plasztelint, ezzel az tggyel mar fordul-
tam a renddrséghez. Akkor 6 a plasztelint vissza is adta.

Kérem, hogy nézzenek utana a rend6rségen: hogyan all ez az ligy, és az eset-
leges I1épéseket megtenni sziveskedjenek.

Ugyfél tudomasul veszi, hogy a munkadij a késdbbiekben, az eljarasok meny-
nyiségétdl fiiggben, ill. a tevékenység mindsége megdllapitasa utdn lesz meg-
allapitva.

Kéri Ggyintéz6ul kijeldlni dr. Kramer Istvan Ggyvédet.

Tudomasul veszi, hogy 10 Ft illetékbélyeget a meghatalmazasra le kell réni.

Kmf.

267.

(Megallapodas a Napbanézd cimi szoborra vonatkozélag)

Megallapodas

Mely kottetett egyrészr6l Bokros Birman Dezs§ szobraszm(ivész, masrészrél
Laczkovich Alice kozott.

Bokros Birman Dezs6 szobr. m. Napbanéz6 c. szobra 2.20-as méretben vald
elkészitéséért, a szobor gipszben valo atadasadért Laczkovich Alice 14 000, azaz
Tizennégyezer Ft-ot kap fent nevezett Bokros Birman Dezs§ szobr. m.-t6l. A
fizetés harom részletben torténik. Az elsG részlet, 5000, azaz Otezer Ft a meg-
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alla'podés alairdsakor, a masodik részlet, 4000, azaz Négyezer Ft az agyag-
szobor elkésziilésekor, a harmadik részlet, 5000, azaz Otezer Ft a szobor gipsz-
ben valé atadasakor torténik.

B [uda]p[est,] 1964. szept. 23.

268.
(Levél a Magyar Nemzeti Galériatol)

Kedves Mester!

Engedd meg, hogy hetvendtdodik sziletésnapodon a Magyar Nemzeti Galé-
ria dolgoz6i nevében sok szeretettel kdszontselek.

A tdbbi magyar mdveészettdrténészhez hasonléan a Galériaban miakodék is
meghatott tisztelettel gondolnak Rad ma, amikor Benned egyszemélyben (idvo-
z0lhetik az él6 hagyomanyt és az eleven alkotd géniuszt, s mint fiatalabb kor-
tarsak koszonhetik meg Neked munkassagod szép eredményeit, képzémivésze-
tiink maradand6 termésének gyongyszemeit.

Azt kivanjuk valamennyien, hogy jo egészségben folytasd &ldasos tevékenysé-
gedet, tovabbi remekmdivekkel gyarapitsd hazank kulturdlis kincstarat.

Budapest, 1964. november 19. Barati tdvozlettel hived
dr. Pogany O. Gabor
féigazgato

269.
(Levél a Hazafias Népfront
XII1. kér. Bizottsagatdl)

Budapest, 1965. jan. 15.
Kedves Mester!

Orommel vettiik értesitését, hogy szivesen latja keriileti Népfront Bizottsa-
gunk Kisiparos Akcidbizottsaganak latogatasat az On mitermében.
A meghivasnak eleget téve, 1965. januar 23-a4n, szombaton du. 4 drakor lato-
gatjuk meg Ont.
Hazafias Udvozlettel:
Garami Gy6z6né
titkar

270.
(Részlet egy Ujsagcikkhol)
Magyar Nemzet
kedd, 1965. januar 26.

Bokros Birman Dezsé Kossuth-dijas szobraszmivész, a Magyar Népkoztar-
sasag érdemes miivésze, életének 75. évében villamosszerencsétlenség kovetkez-
tében meghalt. Az elhunyt mivészt a Magyar Képzémlivészek SzOvetsége és
a Magyar Népkoztarsasag Képz6ml(ivészeti Alapja sajat halottjanak tekinti.
Temetésérdl kesébb torténik intézkedeés.

1Qo



JEGYZETEK A LEVELEZESHEZ

1Az MTA Mivészettorténeti Kutato Csoportjdnak Adattardban: Mvészettdorténeti Doku-
mentaciés Kozpont (a tovabbiakban: MDK) C-1-18/578. Nyomtatott (rlapon kidllitott
anyakonyvi kivonat. Szdma: 32/1964. Felul gépirdssal: ,Személyazonossagi igazolvany cél-
jara illetékmentes.” - Az itt kozlésre kerul6 kilénbéz6 dokumentumokban a mivész nevét
nem egyforman irtdk. Ezen nem véltoztattunk. A levelezésben el6fordulé nevek kozul
néhanyat csak monogrammal jelolunk, anélkil, hogy erre esetenként kiulén felhivnank a
figyelmet.

2 MDK-C-1-18/498. ,Modern Iparmivészet Domborm( Vallalat” stb. felirdsd nyomtatott
lapon kiéllitott, Okmanybélyeggel ellatott bizonyitvany.

3 MDK-C-1-18/567. Az ,Orszdgos Magy.-Kir. Iparmivészeti Iskola” okménybélyeggel el-
latott hivatalos bizonyitvanya.

4 MDK—C——18/59. »Budapest Székesfévaros Tandcsa” nyomtatott felirdsi hivatalos papir.

5 MDK-C-1—18/63.1-2. Cimzés a boritékon: Bokros Birman Dezs6 szobraszm(ivész Gr, Buda-
pest, XIV., Ajtési Diirer sor 13. Felad6: Marton Odén, Budapest, Il. Bimb6 at 5.

6 MDK-C-1-18/570. A Svéd Voroskereszt magyarorszagi fémegbizottjAnak véddlevele. A
lap aljdn Bokros felragasztott fényképe; harom korpeosét.

7 MDK-C-1-18/577. Stencilezett Grlap, nyomtatott fejléccel. Ugyiratszam: 221.785.1945. XX.
(1.0.786/6. Lent balra: ,A kiadvany hiteléul Szabé s. hiv. igazgaté”.

8 MDK—C-1-18/69.1-2. A ,Munkas Kultarszévetség Orszagos Kozpontja, Budapest” fel-
frasi nyomtatott levélpapiron irt levél.

9 MDK—C-1—-18/72. A ,Magyar Kommunista Part Koézponti Vezetésége Propaganda Osztaly”
felirdsd nyomtatott levélpapiron irt levél. Alairds, korpecsét.

I0MDK-C-1-18/73. Gépelt levél mésodpéldadnya, pontosabb cimzés és aldirds nélkal. (A
hatlapon ceruzaval, Bokros irasaval: ,RADIO FELOLVASASROL IRNI")

A levél szovegéb6l kidertl, hogy Bokros testvére a cimzett.

M MDK-C-1-18/75.1-2. ,Dr. Gegesi Kiss Pal egyetemi ny. r. tanar” felirdsG nyomtatott
levélpapiron géppel sokszorositott levél. Cimzés a boritékon.

11 M DK-C-1-18/530. Ceruzaval irt levélfogalmazvany.

|) MDK-C—-18/76. A Magyar Nemzeti MGzeum régi (1945 el6tti) nyomtatott levélpapirjan
frott levél.

14 MDK-C-1-18/77.1-2. ,Magyar Vallas- és Kozoktatasiigyi Minisztérium” domboritott fel-
irasi levélpapiron irott hivatalos levél. Ugyiratszam a boritékon: 131.880/1946.VII.

ij MDK-C-1-18/79. Gépelt elszdmoléastervezet. Egy korabbi (1946. november 28.), MDK-
C—+4—18/78. It.sz.-on szerepld laphoz képest modositott, felemelt végosszegl elszémolas.

16 MDK-C-1-18/80. Dr. Gegesi Kiss P&l egyetemi ny. r. tandr nyomtatott levélpapirjan
géppel sokszorositott levél.

il MDK-C-1-18/81.1-2. A ,Magyar Téjekoztatdsigyi Minisztérium, Belfoldi Osztaly” fel-
irdst boritékban ‘'hivatalosan kildott levél.

BMDK-C-1—18/82.1-2. A ~Magyar Vallds- és Koézoktatasiigyi Minisztérium” domboritott
felirasa, cimeres levélpapirjan irt, géppel sokszorositott levél. Ugyiratszam: 27.799/1947.
VIl.i.o. Cimzés a levél aljan és a boritékon. Balra lent: ,A kiadvany hiteléul
Irodavezetd”.

/9 MDK-C-1-18/83. Géppel irt levél méasodpélddnya. Kozelebbi cimzés nélkil. A hétlapon
tobb, ceruzaval irt feljegyzés.

20 M DK-C-1-18/84.1-2. Géppel sokszorositott meghivé a ,Fészek” Miivészek Klubja nyom-
tatott boritékjaban.

iil MDK-C-1-18/85.1-2. Dr. Gegesi Kiss P&l egyetemi ny. r. tandr nyomtatott levélpapirjan
frott levél.

22 MDK-C-1-18/86. Postai levelez6lap. Felad6: Béan Béla, Bp. V,, Bajcsy-Zsilioszky ut 50.
Ban Béla (1909-1972) festémvész.

23 MDK-C-1-18/93. Dr. Gegesi Kiss P&l egyetemi ny. r. tandr nyomtatott levélpapirjan irott
levél.
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MDK—-C—4—18/87. Dr. Gegesi Kiss P&l egyetemi ny. r. tandr nyomtatott levélpapirjan irt
levél.

Gera Eva tulajdona. ,Magyar Kommunista Part Koézponti Vezet6sége Ertelmiségi Osztaly,
Budapest” felirdsi nyomtatott levélpapiron.

MDK-C-1-18/88.1-2. A ,48-as Lanchid Bizottsag” nyomtatott meghivdja, eredeti ala-
irassal.

M DK-C-1-18/91.1-2. A ,Magyar Vallas- és Kozoktatadsligyi Minisztérium" stencilezett
nyomtatvanya, eredeti aldirdssal. Szdma: 84.977/1947/V1I.

M D K-C-1-18/92.1—2. Dr. Gegesi Kiss P&l egyetemi ny. r. tanar nyomtatott levélpapirjan
irt levél.

MDK-C-1-18/94. A ,Foldmunkésok és Kishirtokosok Orszdgos SzoOvetsége” nyomtatott
levélpapirjan irt levél. Aldiras, korpecsét.

MDK-C-1-18/95. ,Magyar Tajékoztatdsigyi Miniszter” felirdsd nyomtatott; levélpapiron
irt levél.

MDK-C-1-.18/98.1-2. ,Budapest Székesfévaros Polgarmestere” felirdsi, nyomtatott levél-
papiron kiildott értesités. Ugyiratszam: 222.949/1947-X1.i.0. Balra lent: ,A kiadmany hi-
telétul Bp. 1947. jul. 25. Beniczky Sandor s. hiv. igazgat6”.

M DK-C-1-18/97. A ,Magyar Vallas- és Kozoktatasigyi Minisztérium” hivatalos értesi-
tése. Ugyiratszam: 87.369/1947.VII. El6ad6: dr. Borecky Laszl6 min. titkar. Balra lent:
»A kiadmany hiteléul Szilagyi rovatvezetd”.

M DK-C-1-18/99.1-2. ,Magyar Kozlekedéstigyi Minisztérium Sajtészolgalatanak Vezet§je”
felirasi nyomtatott levélpapiron. A boritékon ceruzéval készult véazlatok a plaketthez.

M D K-C-1-18/96. Géppel sokszorositott levél.

MDK-C-1-18/100.1-2. ,Budapest Székesf6varos Képtara” felirdsi nyomtatott boritékban
kuldott levél. Cimzése: Bokros Biermann Dezs6é szobrdszmivész urnak, Budapest, VI,
Edtvés u. 58.

MDK-C-1-18/101. ,Magyar Kommunista Part Koézponti Vezet6ségé Ertelmiségi Osztaly,
Budapest” felirdsi nyomtatott levélpapiron irt levél.

MDK-C-1-18/102. A ,Magyar Vallas- és Kozoktatasiigyi Minisztérium Mdvészeti Ugy-
osztalya” felirdsi nyomtatott levélpapiron.

MDK-C-1-118/103. ,Magyar Kommunista Part Kozponti Vezet6sége Ertelmiségi Osztaly,
Budapest” felirdst nyomtatott levélpapiron irt levél. Aldiras, korpecsét.

MDK-C-1-18/104. Gépelt levél, alairassal.

M D K-C-1-18/108. Gépelt levél. Cimzés: T. Bokros Biermann Dezsé Uurnak, szobréasz-
m(vész, Budapest, V., Katona J. u. 28. sz.

MDK-C-1-18/110. Géppel irt megéllapodés.

M D K-C-1-18/i'ii. Alairds nélkuli atvételi elismervény.

MDK-C-1-18/113. ,Magyar Kommunista Part Kézponti Vezetdsége Ertelmiségi Osztaly,
Budapest” ‘felirdsi nyomtatott levélpapir. Alé4ir4s, korpeosét. A megszdlitds felett: ,Bokros-
Bierman elvtarsnak, Budapest”.

M DK-C-1-18/118. Tabori postai levelez6lap. Feladd: Szegi Pal, Bp. Il., Branyiszké ut 11/c.
Szegi P&l (1902—1958) m(ivészeti ir6, 1949-1953 kozott a Szabad Mivészet ciml folyé-
irat fészerkeszt6je.

MDK-C-1-18/115. Gépirdsos levél.

Szalatnai Rezs6é iré, mifordité, irodalomkritikus.

MDK-C-1-18/117.1-2. ,Magyar Kommunista Part Kézponti Vezetdsége Ertelmiségi Osz-
taly, Budapest” felirasi nyomtatott levélpapiron irt levél. AlAiras, kérpecsét. Megszélitas
helyett: ,Bokros-Birmann elvtars, Budapest”.

M D K -C-1—18/119. Postai levelez6lap. Ceruzaval irt széveg és cimzés. Feladé nélkul, de
az ,Ubul” aldirds Kallai Ernére utal. A postabélyegz6 kelte: 1948. Il. 6.

Kallai Erné (1890-1954) mivészeti ir6, kritikus.

M DK-C-1-18/121. Az Expressions elnevezési genfi galéria ebben a levélben régziti Bokros
miveinek a galéridban térténd kiallitasi feltételeit.

A levél forditasa:

LUram,

Mivei 1948. februdr 23-maroius 4. kozott galéridnkban rendezend6 kiallitdsdnak feltételeit
az aldbbiakban rogzitjuk:

1. 300,- fr (h&dromszaz frank), amelyb6l 150,- fr-ot (szdzotven frankot) megkaptunk és
150,- fr (szdzotven frank) résziinkre térténd befizetése legkés6bb 1948. februdr 25-ig;

2. kozleményt fogunk megjelentetni a Tribune de Genéve-ben és a Journal de Genéve-ben,
és 300 meghivot postan kildink szét;
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3 a kiallitds 1948. februar zj-4&n 11 6rakor nyilik; a rendezés koltségei ondket «érhetik.
Fogadja uram, megbecsilésink kifejezését.”
M DK-C-1-18/123.i-A A ,Magyar Vallads- ¢és Kozoktatastigyi Minisztérium Kulfoldi
Kulturalis Kapcsolatok” sth. felirdsd nyomtatott levélpapiron firott levél. Cimzés a borité-
kon: ,M. Désiré Bokros-Birmao, Pension Elisa, 12 rue de Chantepoulet. Geneve. Suisse.”
M D K-C—1-18/9.2. Bokros ceruzaval' irt szévege.
MDK—-1-18/9.1-4. Gépiradsos szoéveg; a hatoldalon idegen kéziras.
M DK -C-1-118/9.3-4. Gépirdsos szoveg. Fent Bokros firdséaval: ,Pannal A&tolvastatni és
magyar nyelvre attenni.”
M DK-C-1-18/517.1-2. Az ,Union Internationale de Radiodiffusion” nyomtatott boriték-
jaban kuldott levél. Postabélyegzé nélkil. Cimzése: ,Monsieur Bokros-Birman, Pension
Elisa, Chantepoulet, E. V.”
A levél forditasa:
.Kedves Bokros-Birman Ur,
Orilék, hogy a Journal de Genéve-ben ma reggel megjelent a cikk (bizonyara latni
fogja). Nagyon elégedett vagyok, hogy Rheinwaldnak tetszik az Ady-biszt.
A fotokat adja &t Kristoffynak az Illustré részére, vagy adja le nalam egyik nap, ha
erre jar. Remélem, hogy a dolognak ez a része menni fog. Ha tudok, histnap felugrok
magahoz a penziéba. Tegnap nagyon el voltam foglalva, egy katonai vizsgéalat miatt, én
szegény baka!
Bocsésson meg elsietett soraimért és fogadja szivélyes tudvdzletemet

Gilbert Trolliet
Ha nem vagyok otthon, ott lehet hagyni a boritékot az ajtom eldtt (a belsénél), ha a
levélszekrény tal kicsi lenne.
Viszem majd Komlés urndk a Hubaynak sz6l6 levelet. Egy vagy két fényképrél is fogok
beszélni a Présence részére (le Revue).”
MDK-C-1-18/512.1-2. Francidul irt levél magyar forditdsa. Gépelt szoveg; javitdsok
tintaval.
MDK-C-1-18/126.1-2. A ,Magyar Vallads- és Kozoktatastigyi Minisztérium” domboritott
felirasa levélpapirjan, Bokros Birman Dezs6nek Parizsba kildott levél. Ugyiratszam:
245.118/1948.X. El6ad6: Dr. Boronkay Antal miniszteri titkdr. Cimzés a levél aljan és
a boritokon.
M D K-C-1-18/128.1-2. Bokros kézirasos levélfogalmazvénya.
MDK-C-1-18/129.1-2. A ,Magyar Vallds- és Kozoktatdstigyi Minisztérium Kiulféldi Kul-
turalis Kapcsolatok” sth. felirasa levélpapirjan irott levél. Cimzés a boritékon: ,M. Désiré
Bokros Birmann c/o M. Etienne Lelkes, Institut Hongrois, 18 rue Pierre Curie, Paris
5e. France.”
M DK-C—+4—18/927. ,ifj. Fisdher Tibor tervezd és tanacsad6 épitész” felirdsi nyomtatott
levélpapiron irott levél. A szdvegrész indigéval készult. A cimzés eredeti gépelésii: Bokros
Birmann Dezs6 Urnak, szobrdszm(ivész, Budapest, V., Katona Jozsef u. 28.
MDK-C-1-18/130.1-2. Sima levélpapiron, ir6géppel irt levél.
MDK-C-1-18/89. Bokros kézzel irt levélfogalmazvdnya a Péarizsi Magyar Intézet igaz-
gatdjahoz, Lelkes Istvanhoz. A tinta helyenként elmosddott. A kihagyott sz6: ,propanga”
- propaganda?
MDK-C-1-18/523. Német Aladar nyomtatott levélpapirjan kézzel irt (nem Bokros kéz-
irdsa) megallapodas, a miivész alédirasaval.
MDK-C-1-18/134. Géppel irt, ceruzéaval javitott lap.
MDK-C-1-18/135. Géppel irt levél masodpéldanya.
MDK-C-1-18/136. Postai levelezglap.
MDK-C-1-18/137.1-2. ,Magyar Mi{ivészet” stb. felirdsi nyomtatott levélpapiron irt
levél.
MDK-C-1-18/138. Gépirasos levél méasodpéldanya. A cimzett: Szenes Arpéad, Parizsban
€16 magyar szarmazéasu festémi(ivész.
MDK-C-1-18/139.1-2. ,A Vallas- és Kozoktatadstigyi Minisztert6l” felirdsiG nyomtatott
levélpapiron és boritokban kildott értesités. Balra lent: Bokros Biermann Dezs6 Urnak,
szobrdszmivész, Budapest, Katona Jozsef u. 28.
MDK-C-1-18/140. ,Institut Hongrois” sth. felirasi nyomtatott levélpapiron Parizshol
kuldott levél. Szama: 1435/1948.
MDK-C-1-18/142. Géppel irt levél masodpéldanya.
MDK-C-1-18/145. Géppel irt levél mésodpéldanya.
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M DK-C-I-'i 8/146. ,Institut Hongrois” stb. felirast, Parizsbdél kuldott levél. Szama:
1665/1948.

72 MDK-C-1-18/147.1-2. ,Séarospataki Szabadmivel6dési Akadémia” felirdsi nyomtatott
levélpapiron irt levél.

73 MDK-C-1-18/150.1-2. ,Institut Hongrois” stb. felirasi nyomtatott levélpapiron irt levél.

74 MDK-C-1-.18/153.1-2. ,Budapesti Epitési Hivatal” stb. felirdisG nyomtatott levélpapiron
irt levél. Balra fent: Bakus (sic!) Birman Dezséd szobrdszmiivész Urnak, Budapest, Katona
Jozsef utca 28. II. 11.

7} MDK-C-1-18/155.1-2. Szegi Pal kézzel irt levele.

76 MDK-C—4—18/156.1—2. Gépirdsos korlevél. Cimzés a boritékon.

77 MDK-C-1-18/159.1-2. Az ,Institut Hongrois” nyomtatott levélpapirjan irott levél.

78 MDK-C-1-18/165. A Vallas- és Kozoktatasiigyi Minisztérium értesitése. Ugyiratszam:
220.859/1948.VII. Balra lent: ,A ‘'kiadvéany hiteléil Doma Séandor irodavezeté h.”

79 MDK-C-1-18/506. A levél fels6 jobb sarkdban: Tallé6s P. Istvan, Magyardvar, Varos-
kapu tér 5.

SO MDK-C-1-18/176. Tallés P. Istvan postai levelez6lapja. Felad6 feltintetése nélkil.

Si Gera Eva tulajdona. A ,Magyar Képzémiivészek Szabadszervezete” nyomtatott levél-
papirjan. Aldirds asak ir6géppel; korpecsét.

2 M DK-C-1-18/499. Az 1949. évi tavirat szOvegét betl szerint kozoljuk.

8 Gera Eva tulajdona. Géppel irt levél masodpéldanya.

8 MDK-C——18/1181. A ,FESZEK Mivészek Klubja elnéke” nyomtatott felirdsd levélpa-
piron irt gépelt meghivé. A megsz6litds felett: Bokros-Biermann szobrdszmivész darnak,
Budapest.

8 MDK-C-1-18/182. ,A magyar koztarsasdgi elnok titkdra” nyomtatott felirdsu levélpapiron
irt értesités. Balra lent: Bokros Biermann Dezs6 urnak, Budapest.

8 Gera Eva tulajdona. A ,Magyar Dolgoz6k Péartja Kozponti Vezetdsége, FOtitkarsag” fel-
irdési nyomtatott levélpapiron. Szédma: FM/2347. Megsz6litds helyett: Bokros Birman De-
zs6 elvtarsnak, Budapest, V., Katona Jézsef u. 28. II. 12.

8l MDK-C-1-i'8/1'83. A ~Magyar Miivészeti Tandcs” nyomtatott levélpapirjdn irt levél.

Széma: 334/1949. Képz6- és iparmlvészeti szaktandcsok. El6adé: Dr. Zombori Miklés.

Balra lent: ,A kiadvany hitelédl: 1949. &prilis 1. [olvashatatlan al&irds].”

MDK-C-1-18/184.1-2. A ,Magyar M{ivészeti Tandcs” nyomtatott levélpapirjan irt levél.

Cimzés a boritékon.

8 MDK-C-1-18/185.1-2. A ~Magyar Miivészeti Tandcs” nyomtatott levélpapirjan irt levél.
A boritékon a cimzés alatt: ,Tavollétében titkara altal is felbontand6!”

90 MDK-C-1-18/186. A Vallas- és Koézoktatdsligyi Minisztérium engedélye. Széma: 267.799/
i949.X.

91 MDK-C-1-18/187. Ceruzaval irt levél.

92 MDK-C-1-18/192.1-2. A Vallas- és Kozoktatastigyi Minisztérium levele. Cimzés a bori-
tékon és a levél végén: Bokros Biermann Joézsef (sic!) arnak, Budapest. Balra lent:
A kiadmany hiteléul Grylka Janos irodavezet§.”

93 MDK-C-1-18/193. Az Epités- és Kézmunkaligyi Minisztérium (a ,Kézmunkaiigyi” Kiiitve)
nyomtatott levélpapirjdn irott levél. Szadma: 10068/1949.eln./b. Karpecsét, aléirés.

94 MDK-C-1-18/196.1-2. Fust Milan kézirasos levele.

95 MDK-C-1-18/197. A ,Magasépitési Tervezd Intézet Lakéépilettervezd Iroda” nyomtatott
levélpapirjan irott levél. Szama: 111/1608/1949.KF/OK.

% MDK-C-1-18/524. 0sszehajtogatott kockas fiuizetlapra ceruzaval irt levélfogalmazvany.

97 MDK-C-1-18/198. Luigi Cicutti kézirdsos levele Rdmabol.

9B MDK-C-1-18/149. 1-2. A Szabad Sz4j c. szatirikus hetilap nyomtatott levélpapirjan irt
levél.

99 MDK-C-1-18/200. Gépirasos levél.

100 MDK-C-1-18/201. Gépirasos levél.

101l MDK-C-1-i8/206. A ,Mivészeti Szovetségek H&za” nyomtatott levélpapirjan irott levél.
KOrpecsét, aldiras. Megsz6litdas helyett: Bokros Biermann Dezsé Grnak, Bp.

IO MDK-C-1-18/209. Gépirdsos levél masodpéldanya.

/03 MDK-C-1-18/212. Gépelt levél mésodpéldanya. Hatoldalan ceruzaval ‘'készilt, odavetett
vazlatok a Sztalin-szoborhoz. Szévegek: ,Orok hala és hiség a felszabadité Szovjetunio,
a dicsé Szovjet Hadsereg, néplink baratja és tanitéja, a nagy Sztalin irant!™ ,Bekildés

majus 15" stb.
MDK-C-1-18/211. Postai levelezélap. Cimzés: Bokros B. Rezsd (sic!) szobrdsz, Katona

Jozsef u. 8. Feladd: Vedres, Kiss J. altdb. 55. A postabélyegz6 kelte: 50. 1. 23.
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MDK-G»1-i8/zi6. ,Budapest Févaros polgarmestere” szévegl gépelt fejléc alatt a levél
igyszaffla: 3855/59/2/1950. Xl. Targy: ,El6leg kiutaldsa Sztalin generalisszimusz szobranak
elkészitésére meghivott és zAart pélyazaton résztvevé szobrdszmivészék részére." Balra
lent: ,A kiadmény hiteléiil: Budapest, 1950. marcius 28. A Polgarmesteri XI|. Ugyosztaly.
Lajtos Gyorgy irodavezet§”.

MDK-C-1-18/219. ,Budapest F6varos Polgarmestere, Kozponti Lakdashivatal” hivatalos
értesitése nyomtatott Grlapon. lIktatészdm: ad 3276/B/311. Alairds irégéppel, s. k. jelzéssel,
irodavezet6 szignoja, pecsét.

M DK-C-1-18220. A Népmivelési Minisztérium hivatalos megbizdsa. El6ad6: Hoiba
Tivadar. Iktatészam: 1711-B-10. Alairas ir6géppel, s. k. jelzéssel. Irodavezetd aldirdsa
(Lenhard), pecsét.

MDK-C-1-18/223. A Budapest-K6banyai Kozépit6 Vallalat levele. Jelzés: Misz. o. 427.
szam. Szénési/KBné. Alairas: Gellért. Cégbélyegz6. Cimzés: Bokros N (sic!) szobrdszmii-
vész elvtarsnak, Budapest, Lehel tér 2. ,D” épilet.

M D K -C -1-18/224. Orszagos Nyugdijintézet hivatalos értesitése. Jelzése: Dr. Szabd/gye.
11/4.341.013/1950.

M DK -C-1-18/227.1-2. A Mivészeti Alkotdsok N. V. levele. Cimzés és utdirat kivételé-
vel gépeléssel sokszorositott levél. Jelzés: KM. Ugyintéz6: Dr. Fehér. Alairas tollal. Az
utdiratban kézirdsos kiegészités: ,Bartios élmunkas portré c.”

M D K -C -1-18/225. Gépirasos levél masodpéldanya. Cimzett nem szerepel.

M DK-C-1-18/534. Red6 Ferenchez, a Népmdvelési Minisztérium Képzémivészeti Osz-
talya akkori vezet6jéhez irt levéltervezet javitott masodpéldanya,

MDK-C-1-18/228. Gépirasos levél. Jelzés: Dolgozok Nyilvantartasa. NJ/SzS.160/1951.
Ugyintéz6: Nagy Janos. Alairas tollal és géppel. Cégbélyegz6.

M DK-C-1-18/226n-2. Kézzel irott levél, kézirassal cimzett boritékban.

MDK-C-1-18/230. Gépirdsos széveg mésodpéldanya.

MDK-C-1-18/253.1-2. Féldalatti Vasat Beruhdzéasi Vallalat fejléces papirjan irt felszéli-
tés. Ugyiratszam: 3525/1951. Ugyintéz6: dr. Horvath/Szné. Alairas tollal és géppel; cég-
bélyegzd. Kézzel cimzett boriték, hatul gépirdssal: ,A Népmivelési minisztérium a Koz-
lekedés- és Postaligyi minisztériumnél eszko6zolje ki, hogy Bokros Birmannt mentsék fel
a visszafizetés aldl.”

Gera Eva tulajdona. Gépirdsos széveg ceruzéaval javitott masodpéldanya.
MDK-C-1-18/255.1-2. ,Népmfvelési Miniszter” felirdsé, nyomtatott fejléces papiron irt
levél. Szdma: 2533/1951. Olvashatatlan aldirds, kdirbélyegzé.

Gera Eva tulajdona. ldegen kézirdsi levélfogalmazvany.

Gera Eva tulajdona. A ,Magyar Dolgozék Partja Kézponti Vezetdsége” nyomtatott le-
vélpapirjan. Szama: K/K/58369/951.

M D K -C-1-18/232. Géppel irt levél méasodpéldanya.

M DK -C-1-18/233.1-2. Hivatalos levél. Jelzés: 52/4477/Hné/Nné. Alairds: olvashatatlan.
M DK -C-1-18/234. Magyar Mivészettdrténeti Munkakézosség levele. Ugyiratszam:
56/1952. Alairds, pecsét.

MDK-C-1-18/235. A Magyar Népkoztarsasdg Képzémivészeti Alapja levele. Hiv. szadm:
87710-2-79. El6ad6: Bakor/BLné. Alairds géppel, alatta: mb. Bokor Vilmos. Pecsét.
MDK-C-1-18/236.1-2. A Népmdvelési Minisztérium nyomtatott fejléoes papirjan irt levél.
Alairas tollal és géppel. Pecsét.

126 MDK-C-1-18/237. Gépirdsos, kézzel tobb helyen javitott, kiegészitett fogalmazvany. -

N
~

I/l*

Amenophis kirdly emlitett portréja a Mivészeti Lexikon |I. kotete szerint jelenleg a
Staatliche Museen zu Berlin tulajdondban van.

M D K -C-1-18/238. Gépirasos levél masodpéldanya.

MDK-C-1-18/239. A Mi{vészeti Dolgozék Szakszervezete nyomtatott fejléces papirjan irt
levél. Alairds tollal és géppel. Bélyegz6: Magyar M{ivészeti Dolgoz6k Szakszervezete kép-
z6mvészeti és iparm(vészeti felelds.

MDK-C-1-18/256. Erémi Beruhazasi Vallalat fejléces papirjan irt levél. Ugyiratszam:
13.100/1/In/GG/Szné. Ugyintéz6: Gela.

M D K -C-1-i8/240. A milivész gépirdsos levelének méasodpéldanya.

Gera Eva tulajdona. Gépirasos szoveg; kiegészitések idegen kézirassal.

Gera Eva tulajdona. Géppel irt levél masodpéldénya.

MDK-C-1-18/257.1-2. A ,Magyar Dolgozék Partja Kozponti Vezet6sége Agitaciés és
Propaganda Osztalya” fejléces papirjan irt levél. Ugyintéz6: TI/Mné.

M D K -C-1-18/241. Postai levelez6lap.
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MDK-C-1-18/242. Postai levelez6lap. Feladé; Bukor Béla Tibor. XIl.. Fohasz lépcsé T4
A postabélyegzd kelte: 1952. VIIl. 19.

Bukor Béla Bokros tanitvdnya és személyi titkara, akir6l a mivész a jol ismert portré-
fejet mintazta.

Gera Eva tulajdona. Géppel irt levéltervezet, rairdsok ceruzéaval, pl.:. ,ajra megiratni és
elkildeni”.

Gera Eva tulajdona. Géppel irt tlevél méasodpéldénya.

MDK—-1-18/243. Gépirdsos levél méasodpéldanya. Hatoldaldn ceruzéval irt feljegyzések.
M DK-C——18/575.8. Orvosi javaslat. Hossz( bélyegz6: ,Katvolgyi Gti Allatni Kérhaz és
Rendeldintézet ldeggydégydaszati Osztdlya, Budapest, XIl., Kuatvélgyi Gt 4.” Héaromszogletd
bélyegz6: ,,Budapest F6v. Tandcsa Rendeldintézete. X11/2. ldeg.”

MDK-C-1-18/244.1-2. Fiust Milan kézzel irt levele.

MDK-C-1-18/24;. Géppel irt lap; a szoéveg alatt ceruzéaval Irt feljegyzések.

M D K -C -1- 18/247. Gépir4sos levél masodpéldanya.

M DK-C-1-i8/248.1-2. A VLllamosmivek Kézponti Jogi Csoportjanak felszélitasa. Ugy-
iratszam: 1532/53. Alairds géppel, felette tollal. Tollal irt kiegészités: ,mert a bizottsag
a péalyazatat nem fogadta el.”

M D K-C—4—18/248.2. Géppel irt felsz6litds. Aléairds. A .hatlapon a miivész ceruzdval irt
sorai: ,,A felsz6litds vétele utdni napon elmondtam az dgyvédemnek észrevételeimet! erre
H. azt mondta - ja, ez més, tehat ezt nem s lelhet per Gtjdn elintézni. Ezt az Uugyet
kiveszem a peres Ugyekbd&l - ezt nem lehet az alperes altal el6adottak alapijan perelni -
aprilis 6ta nem is volt réla sz6.”

MDK-C-1-18/250. A miivész kézzel irt levele (fogalmazvénya?).

M D K -C -1-i8/251. Géppel irt levél (fogalmazvéany?).

MDK-C-1-18/252.1-2. A ,Magyar Dolgozék Péartja Kozponti Vezet§sége” nyomtatott
fejléces papirjan irt levél. Alairas tollal. A boriték cimzése ua., felil géppel: ,Magyar
Dolgoz6k Partja Orszdgos Kdzpontja.”

MDK-C-1-18/2 59.1-2. Fiust Milan levele.

M D K -C-1-18/260. A Szerz6i Jogvédd Hivatalhoz intézett gépirdsos levél mésodpéldanya.
MDK-C-1-18/261. A F&varosi Emlékm( Feluigyel6ség iré6géppel sokszorositott felszdli-
tdsa. Az Osszehajtott lap kilsé oldalan cimzés: Bokros Birmann S. (sic!) szobrdszmi(ivész
kartédcsnak, Budapest, X1Il., Elmunkas tér 2/d.

MDK-C-1-18/262.1. Géppel irt levél masodpéldanya.

MDK-C-1-18/262.2. Géppel itt eredeti levél.

M D K-C——18/263. Postai levelezélapon ceruzdval irt levél. Cimzés: Bokros Birman
Dezs6. Kossuth-dijas szobrdszm(vész. Balatonfiired, Szivkérhédz. Feladé neve és cime. A
postabélyegz6 kelte: 1953. VIII. 20.

MDK-C-1-18/264. Hivatalos végzés, kitdltott Grlapon. Sz&ma: 809-1-98/1955. El6add:
Szilagyi. Hivatk. szdm: 1419-M-14. Balra lent: ,A kiadmany hitelétul: Bp. 1953. aug. 28.
Kocsi Imre irodavezet§”.

A Véghatarozat szovegét 'kihagyasokkal koézoljuk.

MDK-C-1-18/260. Gépelt levél masodpéldanya, aldirassal. A hatlapon tébb, ceruzaval itt
feljegyzés.

MDK-C-1-18/267.1-2. Gépelt levél méasodpéldanya.

MDK-’C—I—18/376. Marffy Odoén (1878-1959) fest6mi(ivész kézirasos levele.

Gera Eva tulajdona. Gépirasos levél masodpéldanya.

MDK-C-1-18/268.1-Z. A ,Magyar Képzémivészek és Iparmiivészek Szdvetsége” nyom-
tatott fejléces papirjan irt levél. lktatdszam: 2055/1953.

MDK-C-1-18/3:2. Gépirasos levél méasodpéldanya.

MDK-C-1-18/269. Gépek levél masodpéldanya.

MDK-C-1-18/271. Gépek levéltervezet.

MDK-C-1-18/270. Gépelt levél méasodpéldanya.

MDK-C-1-18/273.

MDK-C-1-18/274.1-2. Fust Mildn levele. Cimzés a kookés fluzetlapb6l ragasztott bori-
tékon.

MDK-C-1-18/275. A Miivészeti Dolgozék Szakszervezete Képzdmi(ivész és Iparm(vész
Tagozatanak levele, melyet minden valészin(iség szerint Bokros kérésének tdmogatasara
a mivésznek adtak &t. Bélyegzd, aldirés.

MDK-C-1-18/276.1-2. Géoelt levél Vagy levéltervezet méasodpéldanya, aldirds nélkil.
M DK-C-1-i8/277. A Budapesti 16. sz. Ugyvédi Munkakdzdsség nyomtatott fejléces pa-
pirjan irt levél. Ugyszam: 2897. Ugyintéz6: Cs. D.



I()g MDK-C-1-18/278. A Népmivelési Minisztérium nyomtatott fejléces papirjan irt levél.
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Ikt. sz.: 1418-B-20. El6ad6é: Cseh Miklés. Alairds ir6géppel; pecsét. Balra lent: ,A Kki-
advany hitelétl: Babotay irodavezet§.”

M DK -C-1-i8/279. A Budapesti 16. sz. Ugyvédi Munkakozésség nyomtatott fejléces pa-
pirjan irt levél. Ugyszam: 2897. Ugyintéz6: Cs. D.

M DK-C-1-18/280.1-2. A Szabad Nép szerkesztdségének nyomtatott fejléces papirjan irt
levél.

MDK-C-1-18/281.1-2. A Magyar Foto nyomtatott fejléces papirjan irt levél. Jel: VA.
Ugyintéz6: Busztin. Cégbélyegz6, alairas.

MDK-C-1-18/282. Portai levelezélapon ceruzéval irt levél. Feladé neve és cime.

M D K -C -1-18/28;. Osszehajtott papirlapon, tollal itt levél.

Ducka Akos k6lt6 Dutka Méria (Ba'by) miivészettorténész édesapja.

M DK-C-1-i8/284.1-2.

MDK-C-1-i8/}75a. A ,Budapesti XIII. kér. Tandcs Végrehajté Bizottsagdnak Szociéalpoli-
tikai Csoportja” altal kiadott, gépelt fejléces véghatarozat. Ugyiratszam: 831/B -506/1954.
El6ad6: Eperjessy E. Balra lent: ,A kiadmany hiteléil: [olvashatatlan al&irds], Budapest,
1954. 'szept. 8.”

MDK—C-1-18/285. Levél a Budapesti 16. sz. Ugyvédi Munkakozésség nyomtatott fejlé-
ces papirjan. Ugyszam: 2897. Ugyintéz6: Cs. D.

Gera Eva tulajdona. A Népmivelési Minisztérium nyomtatott levélpapirjan firt levél.
Iktatészam: 87713-3-35/1954. El6add: Faludi Gyorgy. Balra lent: ,A kiadmény hiteléil:
[olvashatatlan alé&fras], irodavezetd.”

Gera Eva tulajdona. Géppel irt levél méasodpéldanya.

MDK-C-1-18/286.2. A Herendi Porcelangyar levele. Jel: GO/Dné. Ugyintéz6: Geisse
Ott6. Céghélyegz6. Két olvashatatlan aldiras.

MDK-C-1-18/287. A Magyar Népkoztarsasdg Képzémivészeti Alapja levele. Szédma:
8628. El6ad6: Zo6ldné.

MDK-C-1-18/289. Géppel irt levél masodpéldéanya.

MDK-C-1-18/290. Gépelt levél méasodpéldanya.

MDK-C-1-18/291. A XIV. keruleti Tandcs Végrehajté Bizottsdga 4&ltal kiéallitott hivatalos
irds. Bélyegzd, aldirés.

MDK-C-1-18/292. Vértes Gydrgy gépirdsos levele. A jobb fels6 sarokban ceruzaval fel-
frva Vértes Gyorgy cime.

Vértes Gyorgy szerkesztd, Ujsdgiré, az Orszaggy(ilési Konyvtar nyugalmazott igazgatéja.
MDK-C-1-18/293.1-2. Vértes Gyorgy gépirdsos levele. Cimzés a boritékom.

M DK-C-1-r8/294.1-2. Gépirdsos levél. Cimzés a boritékon.

MDK-C-1-18/295.1-2. A Szépmiivészeti Mulzeum Szoborosztalyardél irott levél. Cimzés a
boritékon. Megszélitds helyett a levélen: Bokros-Birman Dezsd szobrdszmivész.
MDK-C-1-18/272.1-2. Gépelt igazolds fogalmazvénya és a tisztdzat masodpéldanya. A fo-
galmazvéanyra ceruzaval felirva: ,Hétf6 Hantoshoz”.

M DK-C-1-i8/296.1-2. Gépirdsos levél. Cimzés a boritékon.

MDK-C-1-18/297. Géppel irt és géppel aléirt levél.

M D K -C-1-i8/299. Gépirdsos levél masodpéldanya.

MDK-C-1-18/300. Az Orszagos Szépmi(ivészeti Muzeum atvételi elismervénye. Bélyegzd,
alairas.

MDK-C-1-18/302. Az Orszagos Szépmiivészeti Muazeum levele. Ugyiratszam: 863-03-
22}/955. Bélyegzd, alairés.

MDK-C-1-18/303. Gépelt levél, alairva.

MDK-C-1-18/304. Gépelt levéltervezet, aldirva.

MDK-C-1-18/305. Levél ,Népmdivelési Minisztérium, Miniszterhelyettes” felirdsé nyom-
tatott levélpapiron. Alairds, korpecsét.

M DK-C-1-i8/307.1-2. Gépelt levél masod- és harmadpéldanya, alairva.

MDK-C-1-18/308. A Budapesti 16. sz. Ugyvédi Munkakoéz6sség nyomtatott levélpapirjan
irt levél. Ugyszam: 2897. Ugyintéz6 neve. - A levélben k&z6lt részletes elszamolast Ki-
hagytuk !

MDK-C-1-18/532. Gépirasos feljegyzés.

M D K-C-1-18/309.1-2. A Kilkereskedelmi Minisztérium nyomtatott levélpapirjan irt levél.
Ugyiratszam: V Z-2j7i-ii955.

MDK-C-1-18/310. Gépirdsos levél méasodpéldanya.

MDK-C-1-18/313. Gépirdsos levél mésodpéldanya. - A levélben ko6zdlt részletes elsza-
molast kihagytuk!
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204 MDK—c——18/315. Gépirasos levél masodpéldanya. 4

206 MDK—C——18/316. Az Orszdgos Szépmiivészeti Mlzeum nyomtatott levélpapirjan irt levél.
Ugyiratszam: 863-03-18/956. Alairas, kdrpecsét.

26 MDK-C-1-u8/317. Az Orszdgos Szépmivészeti Muazeum levele. Ugyiratszam: 863-01-
42/956. Ugyintéz6: Lazar Gyulané. Bélyegz6, alairas.

207 Gera Eva tulajdona. Gépirasos levél masodpéldanya.

208 MDK-C-1-18/318. Gépirdsos levél méasodpéldanya.

209 M DK-C-1-18/319. Az Orszagos Szépmi(vészeti Miazeum levele. Ugyiratszam: 863-13-
9/956. Bélyegz6, aléirés.

210 MDK-C-1-18/320.1-2. Cimzés a boritékon: Bokros Birman Dezs6. Kossuth-dijas szob-
raszm(vész, Séarospatak, Ré&'kéczi-var. Feladé: B. b. T. Bp. Elmunkéas tér 2/d.

211 MDK-C-1-18/322.1-2. Cimzés a boritékon: Bokros Birman Dezs§. Kossuth-dijas szobrész-
mvész, Budapest, Eknunfcas tér 2/d. Ungarn. Feladé neve és bécsi cime.

212 MDK-C-1-18/325. Kézzel irt levél.

21) MDK-C-1-18/326.1-2. Géppel irt levél. Cimzés a boritékon.

214 MDK-C-1-18/332. ~Mivel6désigyi Minisztérium, Miniszterhelyettes” felirdsd nyomtatott
levélpapiron kuldott értesités. S24ma: 27/1958.M.h.t. Aldiras, kérpeosét.

21) MDK-C-1-U8/333. Postai levelez6lap. A postabélyegz6 kelte: 1958. jan. 24.

216 MDK—€—1-18/335.1—2. Roman Gyorgy festém(ivész kézirdsos levele. Cimzés és feladd a
boritékon. A postabélyegz6 kelte: 1958. febr. 28.

2/7T MDK-C-1-18/338. Postai levelezélap. Cimzés, feladé az el8lapon. A postabélyegz6 kelte:
1958. apr. 25.

218 M D K -C -1-18/340. Géppel irt llevél masodpéldanya.

219 MDK-C-1-18/344. Kodkas fluzetlapon kézzel irt levélfogalmazvany.

220 MDK-C-1-18/349. Gépirasos levél.

221 MDK-C-1-18/350. A Sarospataki Ré&kéczi Muazeum nyomtatott levélpapirjan irott levél.

22 MDK-C-1-18/354. Postai levelezélap.

223 MDK-C-1-18/355. Az Elet és Irodalom szerkeszt6ségének nyomtatott levélpapirjan firott
levél.

224 MDK-C-1-18/357.1-2. Névjegy nagysagl kartonon irt levél. Cimzés a boritékon. A posta-
bélyegzd kelte: 959. jan. 12.

22) M DK-C-1-i8/363. A Mivel6désigyi Minisztérium levelének a Magyar Népkdztarsasag
Képzdmi(ivészeti Alapjanal készitett hiteles mésolata. Balra lent: ,A kiadméany hiteléul:
[olvashatatlan aléirés] s. k., irodavezet6. A maéasolat hiteles: K&szegi”.

226 MDK-C-1-18/364. Kézirasos meghatalmazas (nem Bokros kézirasa).

227 MDK-C-1-18/500.1-2. A zaro6jelentés hivatali szdma a boritékon: 82221/59.

225 MDK-C-1-18/365. A Szépirodalmi Konyvkiadé nyomtatott levélpapirjan irt levél. A levél
jele: DM/BA. Olvashatatlan alairds, céghélyegzé.

229 MDK-C-1-18/574. A ,Képzéml(ivészek, Iparm(vészek és Miivészeti Dolgozok Szakszer-
vezete” nyomtatott levélpapirjan irt levél. Aldirds, korpecsét.

230 MDK-C-1-18/368. Stencilezett Grlapon kildétt hivatalos értesités. Szdma: kjé 85721/1958-5.
Balra lent: ,A kiadmany hiteléil: Molnar L&szléné irodavezetd, 136/B. Kozjegyzdé Aaltal
elrendelt kdzvetlen letiltds megszintetése. Kiadmany.”

2)i MDK-C-1-18/373.1-2. Gépirdsos levél. Cimzés és feladé a boritékon.

2)2 M DK-C-1-18/378. Bokros Szenes Arpadhoz, a Parizsban €l6 magyar szarmazéasi fest6-
mvészhez irott gépirdsos levelének méasodpéldanya.

233 MDK-C-1-18/381. A Magyar Ujsagirok Orszagos Szovetségéb6l kildott levél.

234 MDK-C-1-H8/384. Gépelt levél méasodpéldanya.

23j Gera Eva tulajdona. Gépirasos levél, alairassal.

236 MDK-C-1-18/536. Idegen kéz altal, tollal irt levéltervezet.

237 MDK-C-1-.18/385. A Magyar Szocialista Munkéaspart nyomtatott levélpapirjan.

2)8 MDK-C-1-18/387. A Mivel6désigyi Minisztérium Képzémivészeti Osztalyanak értesi-
tése. Ugyiratszam: 72.059/1960.1X.

239 MDK-C-1-18/389. Postai levelez6lap. Felad6: dr. Bokor Lajos, Magyar Tavirati Iroda.

240 MDK-C-1-18/386.1-2. Keleti Arthur névjegykartonon irt, kézirdsos levele. A postabé-
lyegz6 kelte: i960. 1. 18.

241 MDK-C-1-18/390. Gépelt levél masodpéldanya.

242 MDK-C-1-18/391.1-2. Szenes Arpad Parizsban é16 magyar szarmazast fest6mivész kézzel
irott levele. (Felesége: Maria Helena Vieira da Silva portugél szarmazést festémiivészné.)
A postabélyegz6 kelte: i960. I. 26.

243 M D K-C-1-i8/395. Gépirdsos levél mésodpéldanya.
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244
245

246
247

248
230
zjr
252

253
254
2}
236

257

259

210

263

264

26

267

269

M DK-C-1-i8/}95- Gépirdsos levél masodpéldanya.

M D K-C-1-18/493. A XIIl. kertleti Tandcs Végrehajté Bizottsdga hivatalos papirjan fo-
galmazott hatarozat. Ugyiratszam: jio/i/ip6o.szab.

M DK -C-1-i8/470.1-2. Gépelt levél. Feladéja Baldzs Anna iréné.

MDK-C-1-18/394.1-3. Baldzs Anna ir6n6 levele Roman Gyoérgy festémi(ivészhez. -
A levélnek csak Bokros Birmanra vonatkoz6 részét kozoljuk.

M D K -C-1-18/396. Gépirdsos levél masodpéldanya.

MDK-C-1-18/399. Postai levelez6lapon a mivész kézzel irt sorai.

M D K-C-1-18/401.1-2. Géppel irt levéltervezet els6- és masodpéldanya.

MDK-C-1-18/531. Ceruzaval, valészinlileg a nevezett altal irt igazolastervezet.
MDK-C-1-18/403.1-2. ,Institut Hongrois” stb. felirdsd nyomtatott levélpapiron géppel
irt levél.

MDK-C-1-18/404. Gépelt levél masodpéldanya.

M D K -C -1-i8/406. Ceruzaval irt levél.

MDK-C-1-18/533. Géppel irt levéltervezet.

MDK-C-1-18/415. A Magyar Tudomdanyos Akadémia Bartok Archivuméanak nyomta.oa
levélpapirjan.

M D K-C-1-18/416. A Mi{ivel6désigyi Minisztérium Képzémivészeti Osztadlydnak levele.
Ugyiratszam: 72.366/1962. ElGad6: Kmetty Janosné. Balra lent: ,A kiadmany hiteléil:
[olvashatatlan al&irds], irodavezetd”.

M D K-C-1-18/417. Az Orszaggy(ilési Konyvtar nyomtatott levélpapirjan irt levél. A ,pla-
kat” sz6 nyilvan elirds; Bokros Fliggetlen Magyarorszagért ciml plakettjér6l van sz6.
MDK-C-1-18/392. A ,Magyar Forradalmi Munkéas-Paraszt Korméany ElIn6khelyettesének
Titkarsdga” nyomtatott levélpapirjan.

MDK-C-1-18/418. A Jékai Szinhdz nyomtatott levélpapirjan.

M DK -C-1-i8/419.1-2. Gépirdsos Ulzenet két példanyban, mindkettd ceruzadval szignélva.
MDK-C-1-18/422. Bokros titkdrdnak ceruzadval irtlevélfogalmazvanya. Cim: Gerelyes
igazgaté elvtars, Ujkori Torténelmi Mdazeum, Jézsef nador tér 2.

M D K -C -1-18/423. Bokros titkdranak ceruzéval irtlevélfogalmazvéanya. Cim: Domotor
Teréz, Samarja (na Astove), Cséhszlovakia.

MDK-C-1-18/426. Géppel irt levél méasodpéldanya.

MDK-C-1-18/456.1-2. Baumgartner Jézsef bronzéntd levele.

M DK-C-1-18/354. Gépelt lap.

M D K -C -1-18/447. Idegen kézirdssal (Laczkovich Alice) készilt, Bokros &ltal al&irt meg-
4llapodas.

MDK-C-1-18/453. A Magyar Nemzeti Galéria nyomtatott levélpapirjan irt levél. Alairas,
kdérpeosét.

M DK -C-1-18/463. 1-2. AHazafias Népfront XIIl. kér. Bizottsdga nyomtatott levélpa-

pirjan irt levél. Alairas, korpecsét.
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KEPEK JEGYZEKE

Roviditések: J. = Jelezve
J. a. = Jelzés nélkil
MNG = Magyar Nemzeti Galéria
tal. = tulajdona

A SZOVEG KOZzZOTT:

l. A mivész ré6zsadombi mitermében, 1919 V. A miivész Périzsban, 1948-ban
Koral VL. Mivészek kozott a sarospataki alkoto-
11. Egy lap a Jéb-mappabdl, 1920 hazban, 1949-ben
I11. A m(ivész 1937-ben VJ|. A szobrész és onportréja
. A mivész 1947-ben Vili. A 75 éves mivész
1 Alvé leany, 1916 12. 6lelkez6k, 1923
Marvéany, 113 cm Bronz, 30 cm
J.: Bokros Birman, 1916 J.: B. B. 1923
MNG 58.19-N Boros Istvan tal.
2. Torz6, 1917 13. dnportré, 1923
Gipsz Gipsz, 35 cm
Ismeretlen helyen J.: Bokros Birman 1923
3.J6nap Andomé, 1915 koril Kovécs Gyorgy tal.
Gipsz, 33 cm 14. Ady Endre, 1924
J.n Bronz, 355 cm
Jéonap Andorné tul. J.: Bokros Birman 924
4,016 fig akt, 1919 MNG 56.113-N
Bronz, 30 cm ij. Achim Andras-emlékm( terv, 1924
J.: Bokros Birman, 1919 Gipsz, 37 cm
Dr. Podoski Jozsef tual. J.: B. B. 1924
5. 016 néi torzo, 1922 Bokros Birman hagyatéka
Terrakotta, 25,5 cm 16. Ady-siremlék terv, 1927
J.: B. B, 922 Gipsz
Frankfurt Jézsef tal. Ismeretien helyen
6. Guggolé né, 1921 /7. Ady-fej a siremléktervhez, 1927
20 om Bronz, 17,5 ctn
J.: B. B, 1921 J. n.
Szegi P&lné tal. Szmetana Erné tal.
7. Négykézlaballo, 1921 15. Bronz domborm(i az Ady-siremlék
Bronz tervhez
Ismeretlen helyen ]: 8. B

S Akrobata, 1921

Ismeretlen helyen
Ismeretlen helyen

9. Hid, 1921 /9. Ge_illczane, 1926
Gi 21 cr> Gipsz, 34 cm
] 'F:]SZ’ er J.: Bokros Birman 1926
Rosta Janosné tal. Bokros Birman hagyatéka
10. Anya és lanya, 1922 20. Keleti Artar, 1927
Gipsz, 93 cm Gipsz, 48 cm
J.: Bokros Birman 922 Jono .
Bokros Birmar. hagyatéka Keleti Artdr hagyatéka
1/. Laszl6 Mihaly, 1923 21-IT. K. Furedi Réza, 1927
Bronz, 36 cm Bronz, 38,5 cm
J. n. J.: B. B. 1927
Kisceili Mazeum tal. Vadas Léaszléné tul.



2}-24- szagelng, 1927

Bronz, 30 cm

J.: B. B. 1927

Bolgéar Bélané tui.
25. Ujvari Péter, 1927

Gipsz, 37 ¢cm

J.n.

MNG 59.105-N
2. Kalapos onportré, 1927

Bronz, 32 cm

J.: B. B. 1927

MNG 63.55-N

27-2#. Fia akt, 1928

Ismeretlen helyen
29. Don Quijote, 1929
Bronz, 32 cm

J.: Bokros Birman
MNG 56.67-N
30. Don Quijote, 1929
Bronz, 117 cm
J.: Bokros 1929
MNG 56.135-N

)i-)2. Don Quijote-fej (részlet)
33

202

. Birman lzs6né, 1929
Gipsz, 29 cm
J.n.
Birman 1zsé tal.
34. Gegesi Kiss Pal, 1930
Bronz, 29 cm
J.: Bokros 1930
MNG 66.14-N
3j. Sz6l16si Endre, 1930
Terrakotta, 32 cm
J.: Bokros Birman
Gador Istvan tal.
36. Masaryk, 1930
Gipsz, 29 cm
J.: Bokros 1950
Hauswirth Magda tal.
37. Gador Istvanna, 1931
Terrakotta, 43 cm
J.: Bokros 1931
Gador Istvanna tal.
)S. »Teremtés”, 1932
Bronz, 44 cm
J.: Bokros-Birman 1932
MNG 66.5-N
39. Sohultheisz Baba, 1932
Bronz, 24 cm
J.: B. B. 1932
Schultheisz Miksa tul.
40. Futok, 1933
Bronz, 20X21 cm
J.: Bokros 1933
Bokros Birman hagyatéka
41 scheiber Hug6, 1933
Bronz, 31 cm
J.: Bokros Birman 1933
MNG 60.80-N

42.

43.

45.

47-41.

49-50.

52.

5

N

53-54.

55.

56.

51

59.

Madame Sans Géné, 1934
Bronz, 33 cm

J.: B. B. 1934

MNG 59.104-N
Kdszont6, 1935

Bronz, 39,5 cm

J.n.

MNG 66.4-N

P&n Imréné, 1935
Gipsz, 36 cm
J.n.

Bokros Birman hagyatéka
Bir6 Henrik, 1936

Bronz, 38 cm

J.: Bokros Birman 1936
MNG 59.102-N
Onportré, 1939

Gipsz, n X n cm

J.: B. B. 1939

Frankfurt Jézsef tal.

Napbanéz6 banyadsz (valtozat), 1941

Bronz, 37 cm

J.: Bokros Birman 1941
Dr. Gegesi Kiss Pal tal.
All6 néi akt

Gipsz, 41 cm

Dr. Gegesi Kiss Pal tal.
Es vidd magaddal ..., 1940
Gipsz, 16,5 cm

J.. B. B. 1940

Bokros Birman hagyatéka

. Jozsef Attila, 1942

Bronz, 16,5 cm

J.: Bokros Birman 1942
MNG 56.140-N

Tékozlé fid megtérése, 1941
Bronz, 34 cm

J.on.

Zsid6 Muz. tdi.

Vildg proletarjai egyesiuljetek, 1941

Terrakotta, 20X50 ont
J.on.
Bokros Birman hagyatéka

Fuggetlen Magyarorszagért, 1942

Terrakotta, 24,5X5? ¢m
J.: B, B. 1942
MNG 65.22-N

. Kubikos, 1941

Bronz, 16 cm
J.: Bokros Birman
MNG 56.141-N

. Aszfaltozé, 1943

Bronz, 19,6 cm

J.: Bokros Birman 1943
MNG 52.855-N

Tomi, 1942

Bronz, 25 cm

J.: B. B. 1942

MNG 57.32-N



60. Rokkant katona, 1944

61-6).

Bronz, 27 cm

J.: Bokros 1944

MNG 55.862-N

Ruth és Noémi, 1944
Bronz, 25 cm

J.. B. B. D.

Dr. Gegesi Kiss Pal tual.

64. Glick Marianne, 1945

6.

Gipsz, 30 cm

J.: B. B. 1945

Dr. Gluak Tiborné tal.
Dézsa Gydrgy, 1946
Gipsz, 40 cm

J.n.

Bokros Birman hagyatéka

66. Duna-vdlgyi népék koérusa, 1946

67.

69.

70.

77.

72.

73-74.

Bronz, 23,5 cm

J.n.

MNG 57.33-N
Bocskoros paraszt, 1948
Gipsz, 67 cm

J.: Bokros Birman
Bokros Birman hagyatéka

. Kucsmés paraszt, 1948

Gipsz, 69 cm

J.: Bokros Birman
Bokros Birman hagyatéka
N6 tekndshékaval, 1947
Bronz, 25 cm

J. n.

Dr. Gegesi Kiss Pal tal.
Géaspar Endre, 1947
Bronz, 32 cm

J.: B. B. 1947

MNG 56.138-N
Vasmunkas (vazlat)
Gipsz, 2s cm

J.n.

Bokros Birman hagyatéka
Vasmunkas, 1948

Bronz, 220 cm

Feldllitva: a SZOT Székhaz eldtt
Bukor Béla, 1948

Bronz, 32 cm

J.: Bokros Birman

MNG 56.134-N

7j-76. Téglahord6, 1949

77.

Gipsz, 48 cm

].: B. B. 1949

Bokros Birman hagyatéka
Ulysses, 1949

Bronz, 20 cm

J. n.

MNG 69.16-N

78.

79.

0.

8L

&

8).

Ségorom, 1946

Bronz, 18X16 cm

J.: B. B. 1946

Bokros Birman hagyatéka
Mednyanszky, 1955
Bronz, 36 cm

J.: Bokros Birman 1955
M NG 54.1948

Halaszfita, 1955

Bronz, 24 cm

J. n.

Bokros Birman hagyatéka
6nportré, 1955

Gipsz, 4; cm

J.: Bokros Birman 1955
MNG 57.3i-N

Cica, 1937

Plasztelm, 8,5 cm

J.n.

Bokros Birman hagyatéka
Munkasfit, 1957

Gipsz, 70 cm

J.n.

Bokros Birman hagyatéka

84 vetk6z6 n6, 1957

8.

.

8.

88.

90.
9L

Bronz, 17 cm

J.n.

MNG 68.39-N
Démoszthenész, 1957
Gipsz, 24 cm

J. n.

Bokros Birman hagyatéka
Szenes Zsuzsa, 1959
Terrakotta, 24 cm

J.: Bokros 1959
Erdélyeié Szenes Zsuzsa tul.
Bartok Béla, i960

Gipsz, 16 cm

J.n

Bokros Birman hagyatéka
Meditalo, 960

Gipsz, 89 cm

J-1 1960

Bokros Birman hagyatéka
Szputnyiknézék, 1962
Gipsz, 51,5 cm

J.on.

Bokros Birman hagyatéka
Szputnyiknéz6k (részlet)
Kontyos néi fej, 1962
Gipsz, 37 cm

J.n

Bokros Birman hagyatéka
All6 férfi, 1964

Gipsz, 84 cm

J.n.

Bokros Birman hagyatéka
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