
RECURSIVE
FUNCTIONS IN

COMPUTER
THEORY

RÓZSA PÉTER

AKADÉMIAI KIADÓ BUDAPEST

RECURSIVE FUNCTIONS IN
COMPUTER THEORY

by

RÓZSA PÉTER

The present book, based mainly on the author’s
own research, gives an insight into some possible
applications of recursive functions and their gener­
alization in computer theory. Since both the input
data and the sequential output of the results can be
encoded into natural numbers, it follows that the
functioning of a computer can always be considered
as the computation of a value of a numeric function.
In studying how the computation of partial recur­
sive number-theoretic functions can be programmed,
essentially all questions concerning the problems
soluble by computer are studied. These problems
always arise whenever a general mathematical theory
is applied to practical problems.
Rózsa Péter, Corresponding Member of the Hun­
garian Academy of Sciences, retired professor of the
Eötvös Loránd University of Budapest, died in
February 1977. By now she has become a classic
exponent of mathematical logic as one of the found­
ers of recursion theory. Besides being a great scientist,
she played a prominent role in the mathematical
profession in Hungary.

AKADÉMIAI KIADÓ, BUDAPEST

т ■* 7 ~ ■■ ■ - v. -.--v ■-- _ „• • . ■ -• • •",--: — **з*5р ? • \ ? 1<да£

.

RECURSIVE FUNCTIONS IN
COMPUTER SCIENCE

RECURSIVE FUNCTIONS IN
COMPUTER SCIENCE

RÓZSA PÉTER
formerly

Professor of Mathematics
Eötvös Loránd University of Budapest

AKADÉMIAI KIADÓ, BUDAPEST 1981

th is book is the English translation of the German edition
Rekursive Funktionen in der Komputer-Theorie

published by Akadémiai Kiadó, Budapest

Translated by

I. JUHÁSZ

©Akadémiai Kiadó, Budapest 1981

Joint edition published by
Akadémiai Kiadó

Publishing House of the Hungarian Academy of Sciences
H-1054 Budapest, Alkotmány u. 21. Hungary

and
Ellis Horwood Limited

Market Cross House, Cooper Street, Chichester, West Sussex, England

ISBN 963 05 2257 8

A ll rights reserved. N o p a r t o f th is p u b lica tion may be rep roduced , s to red in a retrieval system o r tran sm itted ,
in any form o r by any m eans, e lectronic, m echanical photocopying, recording o r otherw ise, w ithou t w ritten

perm ission.

P rin ted in H ungary

Table of Contents

Preface .. 9

Foreword by Prof. A. Hajnal... 11

Chapter 1 Recursions in Binary Computer Arithmetic
1.1 Binary Representation... 13
1.2 Digital Addition... 13
1.3 Digital Subtraction ... 14
1.4 Digital M ultiplication... 14
1.5 Circular Definitions... 15

Chapter 2 General Recursive Functions
2.1 Primitive Recursion... 17
2.2 Dummy Variables ... 19
2.2.1 The Functions 0 and n + 1 ... 19
2.2.2 Primitive Recursive Functions... 20
2.3 Recursive Operations... 20
2.3.1 Primitive Recursive Relations ... 21
2.4 Sign Functions... 21
2.4.1 Closure of Recursive Relations... 22
2.5 Definition by C ases... 22
2.6 Further Recursive Functions... 24
2.6.1 Sequential Calculation... 25
2.6.2 Restriction to Iterations ... 26
2.6.3 Course-of-values Recursion ... 27
2.7 Simultaneous Recursion ... 28
2.7.1 Nested Recursion... 28
2.7.2 Multiple Recursion ... 29
2.7.3 The Ackermann-Péter Function .. 29
2.8 General Recursive Functions........ 29

2.9 Partial Recursive Functions...
2.9.1 The Kleene Form ... ,1

Chapter 3 Recursive Word Functions
3.1 Symbol Sequences ... 33
3.2 Numeric Structures... 35
3.2.1 Word S e ts ... 35
3.2.2 Primitive Recursions in Word S e ts 35
3.3 Initial Functions.. 36
3.3.1 The Set of Natural N um bers... 37
3.3.2 The Idea of a Predecessor... 38
3.3.3 The Order of a Word ... 39
3.4 Representing Natural Num bers... 39
3.4.1 Number Functions and Word Set Relations...................... 40
3.4.2 Examples... 42
3.5 Definition by C ases... 43
3.5.1 Initial Segments ... 45
3.6 Basic Operations in Binary Form 45
3.6.1 Concatenation... 46
3.6.2 More Primitive Recursive Word Functions........................ 47
3.7 List Processing... 48
3.8 Coding Sequences of W ords... 49
3.8.1 General and Partial Word Functions................................. 50
3.9 McCarthy’s Conditions... 52

Chapter 4 The Recursivity of Everything Computable
4.1 Assembly Language.. 53
4.2 Computing [jfn\ ... 54
4.3 Computing Recursive Number Functions.......................... 55
4.4 Computing General Recursive Functions........................... 57
4.5 A Universal Program... 58
4.6 C oding.. 59
4.7 Recursion in Program Control... 60
4.7.1 An Example.. 61
4.7.2 Computable Functions ... 62
4.8 Partial Recursion in Binary Computer Arithmetic............ 63

Chapter 5 Sequential Program Translation
5.1 The Bracketless Form ... 65
5.1.1 The Three-address C o d e ... 67
5.1.2 Reduction to One-address Code... 69

6 Table of Contents

5.1.3 Translation into Word Functions .. 69
5.2 Push-down Stores.. 69
5.2.1 Some Conventions.. 70
5.2.2 Computation of Initial Functions....................................... 72
5.2.3 Computing Partial Recursive Functions............................. 74
5.2.4 Restriction to Three Push-down Stores 75
5.3 Partial Recursivity in Push-down Stores........................... 77
5.4 Illustration on Railway Marshalling................................... 80
5.5 Sequential Procedures ... 82
5.5.1 Kalmár’s Formula Controlled Com puter............................. 82

Chapter 6 Recursivity of Flow Charts
6.1 Graphical Representations ... 83
6.2 Flow Charts in Algol 6 0 ... 83
6.3 Flow Charts of Word Functions ... 86
6.4 Partial Recursivity of Flow Charts....................................... 87
6.4.1 Recursivity of Graphical Structure 90
6.5 The Computability of Flow C harts..................................... 92

Chapter 7 Recursive Procedures and Algol 60
7.1 The Converse Results.. 93
7.2 Recursion in Algol 60 .. 94
7.3 Non-recursive Algol Procedures... 96
7.4 Unfolding a Primitive Recursion... 98
7.4.1 The Resulting Flow Chart... 100
7.5 Normal Flow C harts ... 101
7.5.1 Determining Recursive Functions by Flow Charts............ 102
7.5.2 Reasons behind this Process... 106
7.6 The ^-Operations... 108
7.7 Eliminating Recursion from Algol 6 0 109

Chapter 8 The Epi-language of Algol 60
8.1 Definitions in “Epi-Algol” ... 113
8.2 Mathematical G ram m ars... 115
8.3 Eliminating Circularity... 117
8.4 An Example ... 119
8.5 Primitive Recursion in Epi-Algol 6 0 122
8.6 Predecessors in Algol 6 0 ... 124

Chapter 9 Two-level Grammar in Algol 68
9.1 An Auxiliary Theorem ... 125
9.2 Two-level Phrase Structured Grammars............................. 127

Table of Contents 7

8 Table of Contents

9.3 An Example of a Two-level Language................................ 129
9.3.1 The Primitive Recursivity of a Language............................ 131
9.4 The General Question... 131
9.5 Recursivity in Symbol Chains ... 132
9.6 Other Properties... 134
9.7 Recursive Enumerability... 137
9.8 Two-level Language with Finite Terminal Concepts........ 138

Chapter 10 Does Recursivity Mean Restriction?
10.1 The Recursivity of Everything Computable........................ 141
10.2 Church’s Thesis ... 142

Chapter 11 Recursivity of Lisp 1.5
11.1 A Set of Numeric S tructure... 143
11.2 Basic N o tions... 143
11.3 Primitive Recursion in Я ... 145
11.3.1 Initial Functions... 146
11.4 Examples... 146
11.5 The Order o(x) ... 148
11.6 Coding Lists by Elements... 150
11.7 Course-of-values Recursion in Я ... 151
11.7.1 More Recursions in Я ... 153
11.8 Examples... 154
11.9 General and Partial Recursive Functions in Я 157

Chapter 12 Decision Tables
12.1 Decision Tables versus Flow C harts.................................... 158
12.2 An Example ... 158
12.3 Changing Flow Charts into Decision Tables...................... 161
12.4 Systems of Tables... 163
12.5 Normalizing Flow C harts... 167
12.6 Regular Tables... 167
12.6.1 Subtables... 168
12.7 Turning Tables into Regular Tables................................... 169
12.7.1 An Example ... 171
12.8 Normal Systems of T ab les... 172
12.8.1 Comparison with Partial Recursive Functions.................. 174

Index 177

Preface

In different aspects of computer programming one meets definitions that
seem to be circular, in that the notion to be defined plays a role in the defini­
tion. A closer look, however, shows that in such cases we are always con­
cerned with recursive definitions, and the aim of this book is to develop
exact definitions of this background.

The action of a computer can always be thought of as a process such that in
response to given input data, the machine produces certain outputs. Since
both the input data and the sequential output of the results can be encoded
into natural numbers, it follows that the functioning of a computer can always
be considered as the computation of a value of a numeric function. With
the idealization that the contents of the computer store are unlimited, it
can be shown that the functions computable by a computer are identical
with the class of functions known as the “partial recursive functions” .

Therefore if we study how the computation of partial recursive number-
theoretic functions can be programmed, essentially all questions concern­
ing the problems solvable by a computer will be studied. The above idealiza­
tion (which will be assumed throughout in what follows) always arises
if a general mathematical theory is applied to practical problems. This is
often expressed by saying “the infinite is a useful approximation to the
large but finite”.

The computer does not understand and manipulate the data (including
the numbers) in substance, but only as sequences of symbols. Hence we
shall also have to deal with the generalization of the theory of recursive
functions to the case of sets of numeric structure.

The practical side of the subject does not fit into the framework of this
book. I am in the convenient situation that I do not even have to cite any

10 Preface

literature dealing with this: it suffices to refer to the references quoted in
Barron’s booktl]. However, because my own publications are not quoted
there and it is from these that almost the whole material of the present
book is derived, I shall refer to these and to several papers by other authors
throughout the book.

Almost no previous knowledge is necessary. The lengthy general proofs of
the quoted works will not be given. The arguments will be mostly illustrated
by examples.

Finally, may I express my gratitude to L. Kalmár, who persuaded me to
work in this field and to write this book; to B. Dömölki, who carefully read
the manuscript and helped me with valuable suggestions; and to G. Révész
and J. Urbán, who also read the manuscript and made useful remarks.

Rózsa Péter

[1] D. W. Barron: Recursive techniques in Programming, Macdonald and Co, London
(1968). References at the end of every chapter. See in particular J. McCarthy’s works
quoted there.

Foreword

Rózsa Péter, Corresponding Member of the Hungarian Academy of Scien­
ces, retired professor of the Eötvös Loránd University of Budapest died in
February 1977. Her scientific career started in the late 1920s. By now,
she became a classic of mathematical logic as one of the founders of recur­
sion theory. In her early works she has made important contributions to
the development of the concept of recursive functions. In 1951 she was
the first to publish a monograph on this subject. The present book, based
mainly on her own research conducted in about the last twenty years of
her life, gives an insight to possible applications of recursive functions and
their generalizations in computer theory.

Besides being a great scientist, she has played a prominent role in the mathe­
matical life of our country. Her kind forceful personality and her striving for
justice made her a natural champion of all good causes we aimed at in
organizing mathematics in Hungary.

Interviewed by the Hungarian Television in 1970, asked by the reporter
whether her subject in mathematics had practical applications, she answered:
“I must admit that I never thought of this while doing research work. The
problems I dealt with arose as a consequence of inevitable inner develop­
ments in mathematics. This made them exciting for me and I would not
even have dreamed that my results might have practical applications.
It should be a warning example to all those who want to discourage
research in pure mathematics that they are preventing the cause of the
applications of mathematics as well.”

This book was first published in German, in 1976. We should express our
thanks to dr. István Juhász, who with indefatigable zeal worked to make
it available in English.

András Hajnal

Chapter 1

Recursions in Binary
Computer Arithmetic

1.1 Binary Representation

The fact that we can build a computer out of parts, each one of which is
capable of having two states, is due to the recursive dependence of the
basic operations between natural numbers on their binary digits [2].
We have to take care that the digits of the same place-value of the operands
a and b should stand in the same order, and the appearing empty spaces be
occupied by 0. The final (that is first from the right) of the binary digits
of a and b will be denoted by a0 and b0, the next to the last ones by ax
and bx, and so on.

1.2 Digital Addition

When we add a and b let the corresponding digits of their sum be denoted by
,s'o, sx, s2, and so on, and those of the carry from the right-hand neigh­
bouring place by 0, ux,u 2, etc. Using the notation & for “and”, and V
for “or” (the Latin “vel”, permits the occurrence of both alternatives),
and taking that the carry 1 occurs if at least two of the values an, bn, un is
equal to 1, we obtain the following relationship:

и о = 0
[1, if a„ = b„= lVa„ = un = I4b„ = un = 1 (1.2.1)

!<"+1 (О otherwise,
s _ f l , if (un = 0&an jí h„) V (м„ = 1 &a„ = bn)
" [0 otherwise.

[2] The binary representation of a natural number is

written in brief as
2k*űfc-f 2к-1 + ... -b l 'ű i + űoí

tfkűk-l aiaOi
where each one of the digits a0, alt ..., ak is either 0 or 1. It can be required that ak= 1
or an arbitrary number of zeroes may be added to the left.

14 Recursions in Binary Computer Arithmetic [Ch. 1

For the computer it is still simpler, if two states are distinguished according
to whether the carry is 0 or 1. In order to be able to indicate the change of
states, we put, in general,

f 1, if c = 0
C jo otherwise,

and the digits of the sum at different states will be distinguished by upper
primes. Since for n„=0 a change of state occurs if an=b„ = \, and for u„ = 1
if an=bn= 0, the definition of the sum a+b reads more precisely as follows;

f»0 = 0
I _ fn„, if On = bn ^u„ (1.2.2)
(iin+1 \u„ otherwise,

, П, if ап^ Ь п
S" ~ jo. if a„= bn,

„ _ Í 1» if a. = bn
S " jo, if an ?±bn,

_ K , if “„ = o
S n - k , if un = i.

1.3 Digital Subtraction

It is easy to see that for a ^ b the digits of the difference a — b can be obtained
in exactly the same way, if the definition of the carry, which we will denote
by u~, is modified like this:

uö = 0
u- = K ~ , if a„ — bn (1.3.1)

n+1 [u~ otherwise.

1.4 Digital Multiplication

In multiplying a given multiplicand a with a given multiplier b we have to
use the fact that the addition of two summands can already be done digit-
wise, hence so can be done the special case of the multiplication in which
the multiplier is 2, since

2 'C = c + c.

Sec. 1.5] Circular Definitions 15

This can more easily be done directly, since the digits Z„ of the double of c
are obtained by affixing 0 to the right-hand end of the binary form of c :

jz0 = 0

i Zn + l = Сл-

In general the multiplication is carried out in such a way that a is multiplied,
step by step, by

bo> 2 • blt 22 • b2, ... ,

and then these products are summed up. This can also be accomplished so
that first (that is at step zero) a is taken by itself, then it is doubled, then the
result is again doubled, etc. and the value obtained in the nth step is taken
as a summand if and only if b„=1. The addition of the subproducts can also
be carried out step by step. Precisely,

i d (0) — a
|d (n + 1) = 2 • d(n) (1A1)

and
s(0) - 0

fsOO, if bn = 0 (1.4.2)
S {n + l)~ \s (n) + d(n), if b„= 1.

If bk is the last digit of b (from the right) that is not equal to 0, then
a -b = s (k + 1),

which can be computed digit by digit as above.

In the last two definitions, the functional notation d(n) and s(n) was used.
The indexed letters could also be written in this form; e.g. the value of the
digit an depends on n, hence it could be written as a(n). There is no need
to give other well-known examples of definitions in the basic binary arithme­
tic of the computer, for the ones given so far already show the basic prob­
lems of such definitions.

1.5 Circular Definitions

The definitions denoted by (1.2.1), (1.2.2), (1.3.1), (1.4.1) and (1.4.2) seem
to be circular because in order to compute a value of the functions defined
in them other values of the functions to be defined are needed. In full gene­
rality such definitions are indeed useless. If e.g. we omit the first line in
definition (1.4.1) or we replace the second by

d(n + l) = d(2-n),

16 Recursions in Binary Computer Arithmetic [Ch. 1

then in the first case none of the values d(n) and in the second case none
of those with «>1, could be computed.
Equation (1.4.1), however, is a particular example of primitive recursion,
by means of which a numeric function (that is one defined for and taking
its values from the natural numbers) is uniquely determined. Here this
function is

d*(n) = 2" • a,
since

d* (0) = 2° • a = a,
and

d*(n+ 1) = 2”+1 • a = 2-(2n • a) = 2-d*(n)
яге satisfied.

Moreover this is the only function satisfying (1.4.1). Indeed, if the numeric
function d**(n) satisfies it as well, then

d**(0) = a = d*{ 0),
and if for some n we have

d**(n) = d*(n),

then this equality is also valid for и+ l , since then

d**(n+1) = 2-d**(n) = 2 -d*(n) = d*(n+ 1).

Thus d**(n) is identical with d*(ri)=2n -a.

Thus (1.4.1) yields the special case of multiplication in which the multiplier
is an arbitrary power of 2. The computer, however, knows nothing about
2" • a. It can only recognize that in a storage location going from the right
to the left, first 0 occurs n times and then the digits of a occur in order. If,
purely formally, a is considered as the sequence of its binary digits, then
(1.4.1) determines a new kind of primitive recursion, whereby a function
which is not numeric but whose arguments and values are finite sequences
of symbols. That is why in the following chapters we shall consider such
generalizations of the notion of recursivity.

Chapter 2

General Recursive Functions

2.1 Primitive Recursion

First I restrict myself to the case of numeric functions.

Since the natural numbers can be obtained from 0 by means of the operation
“counting 1 along”, it is usual to prove a numeric statement by showing
that it is satisfied for 0 and that its validity is “ inherited” from any natural
number to its successor (mathematical induction). Moreover we can define
a numeric function by prescribing its value at 0 and providing a method
for obtaining its value at л + l from n and the value at n, for any given
number n. Such a definition, by means of which the value of the function
to be defined is computable in a finite number of steps for any given argu­
ment, is called a primitive recursion. It has the form

where a is a given number and ß(n, w) is an already known function of n
and w. In addition to the “recursion variable” n other variables, known as
parameters, can also occur in ß.

There is always exactly one function (p*(n), which satisfies the defining
system of equations (2.1.1). L. Kalmár[3] has shown this by using a sequence
of partially defined functions (that is functions defined for a subset of the
natural numbers), which he called “partial solutions” of (2.1.1). By this
we mean that

(1) if such a function ф is defined at 0, then
i/í(0) = a.

L. Kalmár: On the Possibility o f Definition by Recursion, Acta Sei. Math. 9 (1940) pp.
227-232.

<p{ 0) = a
(p(n+ 1) = ß(n, (p(n)),

(2. 1. 1)

18 General Recursive Functions [Ch. 2

(2) if i/t(n + l) is defined for some n, then so is ijs(n) and [4J,
ф (п+ \) = ß(n, iИ«))-

If and iß2 are partial solutions of (2.1.1) and both are defined for n,
then

»Ai(«) = ^ 2 00,
since this is true for n= 0 by (1) and is induced from n to n-f-l by (2).
Now Kalmár defined a sequence of functions

(p0,(Pi,(p2, - (2.1.2)

for finite subsets of the natural numbers as follows: Let (p0 be defined for
0 only by

<Po(0) = a.
This is obviously a partial solution of (2.1.1). If a partial solution <pn of
(2.1.1) is now given, for which <p„(0) and cpn(n) are defined but (p„(n + l) is
not (as is the case for n —0), then b y [4] <p„ is only defined for arguments less
than n + 1. We define q>n+1 for an argument less than и + l if and only if
cpn is defined there, with the same value, but we also define it for the argu­
ment и + l as follows:

<Pn+i(n + l) = ß(n, <pn(n)).
Thus, this defined partial function (pn+l inherits the above properties of
(pn. Firstly, if <p„(0) was defined then so is <pn+1(0), moreover

(Pn+1(0) = <Pn(0) = a-
Hence <pn+1 satisfies (1).
<Pn+i(n + l) was defined, however (p„+i((n + 1) + 1) was not, since otherwise
<p„((n +1) + 1), and therefore by (2) (p„(n + 1), would be defined.
Finally (pn+1 also satisfies (2), and therefore is a partial solution of (2.1.1).
Indeed, assume that <p„+1(m + l) is defined for an m (^ (n + l) + l). If m ^n ,
then (pn(m +1) and thus by (2) <p„(m), are also defined in such a way that

(Pn+i(ra + l) = <Pn(™ + 1) = ß{rn, (Pn(mj) = ß(m, (ptt+1(mj).
If m=n, then

<Pn + i(n + l) = ß (n , 4>„{n)) = ß (n , <pn + 1 (n))

by the definition of cpn+1. Hence <p„+1 satisfies condition (2).

t4] Note implies that whenever ip is defined for n+ 1 it is also defined for all the smaller
numbers. However, in his proof, Kalmár avoided the use of the relation m <n, since this
is defined in terms of addition like this: “there exists a number r different from 0 such that

n = m +r,”

while addition is defined through a primitive recursion.

Sec. 2.2] Dummy Variables 19

The members of the above defined sequence (2.1.2) are partial solutions of
(2.1.1), moreover for each n the function (p„ is defined for n.
It follows that if (p*{n) denotes the common value at n of the partial solu­
tions of (D) defined for n, then cp*(ri) is defined for each n and is the unique
{complete) solution o f (2.1.1).
The existence of a unique solution for the types of recursion to be mentioned
below could be proved similarly, but we shall not discuss it here.

2.2 Dummy Variables

The functions defined in Ch. 1 were all primitive recursive, in a sense to be
defined. To demonstrate this, we shall examine those definitions more
closely.

2.2.1 The Functions 0 and n +1

The simplest of the definitions was used to define the “change of states”
in the addition. Replacing the variable c used there by the more usual n,
and taking into account that every number different from 0 can be written
in the form n+ 1, this definition reads as follows:

This is a primitive recursive definition of the function n, where 1 stands for
the constant a appearing in (2.1.1) and the function ß(n, w) is represented
by the constant 0, which can also be considered as a function of n and w.
We shall always allow the use o f dummy variables, on which a function does
not really depend. The constant 0 (including dummy variables) will be taken
as an initial function.
The constant 1 also plays a role in the above definition but we do not
have to take this as an initial function. Indeed, it is convenient to take the
“successor function” и + l, which is more elementary than the sum [5] and
therefore is often denoted by n', as an initial function. Clearly 1 is obtained
by substituting 0 into it.

t5] It was observed that school children, who can immediately name the successor of an
arbitary natural number, have difficulty when they have to write down in an equation the
successor of x. It is not obvious for them that this is obtained as the sum x + 1.

— 1lu+ 1 = 0 .

20 General Recursive Functions [Ch. 2

2.2.2 Primitive Recursive Functions

All the larger numbers can be obtained by substitution from the initial
functions. We obtain 3, for example if first in n + \ we replace n by n + 1,
then in the resulting (и + 1) + 1 we do the same, finally in ((n + l) + l) + l
we replace n by 0. Thus all the natural numbers are primitive recursive, for
the general definition of this concept goes as follows:

A numeric function is called primitive recursive i f it can be obtained from 0
and n + \ by means o f finitely many substitutions and primitive recursions.

2.3 Recursive Operations

As a simple example of a primitive recursive function we can consider the
identity function (p(n)=n, since it can be defined directly from the initial
functions by the primitive recursion

f<HO) = o
j<p(n+l) = Л + 1.

In the primitive recursive definition of the sum

<p(n, a) = a + n,

in addition to the recursion variable n a parameter a also occurs. Thus the
value of (p for л = 0 is not a constant, but is already a given function of the
parameter. Here this is the identity function tp(n)—n, corresponding to
a (a) = a.

|<p(0, a) = a
\(p (n+ l, a) = cp(n, a)+ l.

The function corresponding to ß(n, a, w) of the general definition, which
of course depends on the parameter a, is represented here by the initial
function

ß(n, a,w) = w + 1,

with n and a as dummy variables.
Using the sum, the product

(p(n, a) = a • n

is also obtained as a primitive recursive function, since (я -fl) times a can
be obtained from n times a by adding a to i t : -

i<P(0, a) = 0
l<p(n + 1, a) = (p(n,a) + a.

Sec. 2.4] Recursive Operations 21

Within the scope of the natural numbers we can only define the “arithmeti­
cal difference” (denoted by a — n), which is the non-negative part of a — n;
that is it is 0 if a is less than n. First we consider cp(n)=n — 1, this is obtained
by the primitive recursion

(Ф(0) = 0
\(p(n+ \) = n.

Moreover for <p(n, a)=a — n we have

|<P(0, a) = a
1<р(л + 1, a) = (p(n, a) — 1.

One of the values a - b and b — a is always 0, and the other is the absolute
value of a—b. Thus

\a—b\ = (a — b)+(b — a)

is obtained by substitution from the sum and the arithmetical difference.
Hence it also is primitive recursive.

2.3.1 Primitive Recursive Relations

In Ch. 1 we have seen definitions by cases according to whether two numbers
were equal or not. Equality is said to be a primitive recursive relation, since
a=b if and only if the primitive recursive function \a—b\ vanishes. In
general a numeric relation В (ax, ..., ar) (for r = \a property) is called primi­
tive recursive i f it has a primitive recursive “characteristic” function ß(ax, ...
..., ar), which vanishes exactly for those arguments that satisfy B.
Thus a<Z> is also a primitive recursive relation, as it is satisfied exactly for
those a and b for which

(a + 1) — b = 0 .

2.4 Sign Functions

From the primitive recursivity of given relations we can deduce the pri­
mitive recursivity of certain others, which are built up from them.
For example, the negation of a relation В is primitive recursive if В is.
Indeed, let ß be a primitive recursive characteristic function of B. Of course,
what is relevant about ß is the places where it vanishes. In other words we
are only interested in the “sign” of ß, where we have in mind the function

sign (a) =
1, if a =» 0
0, if a = 0

— 1, if a < 0,

22 General Recursive Functions [Ch.

defined for all integers. Since here negative numbers are not considered, a
suitable sign function can be defined by means of the following primitive
recursion: -

fsg(0) = 0
jsg(n + l) = 1.

For the negation В of В the exact opposite of this (denoted by sg) is used: -
fsg(O) = 1
jsg(n + l) = 0.

This was actually introduced earlier in Ch. 1 for another purpose, with the
notation c. Clearly sg(/?) is a primitive recursive characteristic function of
B, since it vanishes if and only if В is not satisfied.

2.4.1 Closure of Recursive Relations

In definition (1.2.1) (and, implicitely, in (1.2.2) and (1.3.1) as well) combina­
tions of relations by “and” (conjunction) and “or” (disjunction) occur.
Together with Bx and B2 the relations

Bx & Bo and Bx V B.,
are also primitive recursive. Indeed, if ß1 and ß2 are primitive recursive
characteristic functions of B1 and B2, respectively, then ßx+ß2 and ßx-ß2
are primitive recursive characteristic functions of BX&B2 and ВгуВ2,
respectively.
The implication BX-*B2 (which means “ if Bx is valid, so is B2”) can also be
written as

SiVÄ,;
it is also primitive recursive if Bx and B., are.
For the negation a = b I will use the more usual notation a ̂ b .

2.5 Definition by Cases

As was noted earlier, in Ch. 1 we used definitions by cases. In general we
have: - If a2, ..., a* are primitive recursive functions and Bx, B2, ...
...,B k^1 are pairwise exclusive primitive recursive relations, then the
function (p, defined as follows, is also primitive recursive:

al5 if Bx is true

CD =
a*-!, if Bk_x is true
ak otherwise.

Sec. 2.5] Definition by Cases 23

First of all, the “ otherwise” can be replaced here by
Bk = B1 & J32 & ... & Bk _ j .

Secondly, assume that ßlt ..., ßk are primitive recursive characteristic func­
tions of Bx, ..., Bk, respectively. As these relations are pairwise exclusive,
for each argument exactly one of the values s g ^) , ..., sg(ßk) is equal to 1
(namely Ig(/?,)=1, if ßt —0, that is, if B, is satisfied). Thus <p can be defined
by

q> = cq • sg (ft) + oq • sg (ft) + ... + oq • sg (ft).

The built up function cp remains primitive recursive if in its definition by
cases the right-hand side contains the value of (p taken at the immediately
preceding value of the recursion variable. An example for this is given
below as a modification of definition (1.2.2). The same is true for definitions
by cases of other types of recursion that we shall treat later on.
A particular example of a built up primitive recursive function is a(n),
the nth digit from the right of a number a, given in binary form. If for
example

a = 10111,
then

1, if n = 0
1, if n = 1
1, if n = 2

“ ‘" H o , if „ = 3
1, if n = 4
0 otherwise.

In this sense all the functions defined in Ch. 1 are primitive recursive. Consider,
fo - example, (1.2.2) in which a and b are fixed numbers and instead of u„, an,
bn the notation u(n), a(n), b(n) is used. Then

n(0) = 0

{u(n), if a(n) — b(n) ^ u(n)
и (n) otherwise.

As we have said already, here
й(п) = sg (u(n)).

Since the function
fsg(w), if a(n) — b(n) & b(n) ^ w

B(n,w) = \(w otherwise,

is primitive recursive, u(n) is thus defined by the primitive recursion: -
fu(0) = 0
|к (л -Н) = ß(n,u(n)).

24 General Recursive Functions [Ch. 2

2.6 Further Recursive Functions

After having given the above examples, in what follows I shall list other
primitive recursive numeric functions, without however giving any actual
proofs that they really are primitive recursive. For these I shall refer the
reader to my book [6]. The functions used in elementary number theory
are all primitive recursive, for example the nth prime number pn as a func­
tion of n, the exponentiation a", the exponent exp„(a) of the nth prime num­
ber p„ in the unique prime factor representation of a (we put exp„(0)=0),

the “arithmetical quotient” |j^ j (which is 0 if n = 0 and the largest number

contained in — otherwise), or the remainder res (a, n), obtained when divid­

ing a by и (this is understood to be a if n=0). This shows that the nth binary
digit of the number a is a primitive recursive function of n and a, namely it is

res((y]4
Also |^-j for n^O was defined as the smallest number /' up to (and including)

a, for which (i +1) • n is already bigger than a. In general, for any primitive
recursive relation B, the expression

Pi[i ~ n & B (i,a1, . . . ,ar)],

(which means the smallest number i up to (and including) n satisfying
B(i, a-i, ..., ar), if there is such a number, and 0 otherwise), is a primitive
recursive function of a1, . . . ,a r. Here the implicit bounded existential
qualification, denoted by

(Ei)[i s n & B(i, űj, ..., ar)]

yields a primitive recursive relation of n, alt ...,a r for a primitive recursive
B, similar to the expression

(Of* =n -* B (i,au ar)j,

meaning that “ for each i up to n B(i, ax, ..., ar) holds true” .

The largest i for which the rth binary digit of ат'-О is 1 (where the first digit
from the right is considered “Oth”) is then

pt[i ^ a & 2i+1 > a],

t6i R. Péter: Recursive Functions, Budapest, New York, London (1967); earlier published
in German, Russian and Chinese.

Sec. 2.6] Further Recursive Functions 25

which is a primitive recursive function of a. It would be easy to provide
here a smaller upper bound for i than a. However it is not worth-while to
calculate the exact upper bound, this being irrelevant with respect to
the smallest i of the given property. Denoting this by к (a) and the nth
binary digit of a by z(n, a) we have

Ha)
a = 2 z (n> a)-2".

n = 0

Here the values of a primitive recursive function of n are added up, from
n= 0 to a non-constant bound. In general, if (p(n,aly ...,a r) is primitive
recursive, then

ь
2 <p(n, al9 . . . ,a r)

n = a

and
b

n <p(n, Ű1, • - , a T)
n=a

are primitive recursive functions of a, b, au ..., ar.

2.6.1 Sequential Calculation

According to the above, the binary digits of the value of any primitive
recursive function cp can be obtained as primitive recursive functions of the
binary digits of its arguments: first the arguments as primitive recursive
functions of their digits, then q> of these arguments, finally the digits of the
obtained <p-\alue.

These detours can actually be avoided. The digits of the values of primitive
recursive functions can be computed successively from the right to the left,
from the digits of the arguments.
For the initial functions 0 and n + 1 this can be seen immediately. Every
digit of 0 is 0 (independently of the variables), while n +1 is the particular
case of the sum a+b, with b= 1, having the digits

ho = 1» ki — 0, b% — 0, ... ,

for which this has already been established. Of course, it could also be
shown directly. Next, if the digits of the values of the functions <x, ßlf ...
...,ß s are obtainable as primitive recursive functions of the digits of their

26 General Recursive Functions [Ch. 2

arguments, then this holds also for the function

oc(ft(űi, ar), ..., ßs(a1, ..., ar)),

obtained from them by substitution. Finally, this property is carried over
from the functions a(aj, ..., ar) and ß(n, alt ..., ar,w) to the function
(p determined by the primitive recursion

|ф (0, аг, ..., ar) = a(a1, ...,a r)
\(p(n + l ,a 1, ..., ar) = ß(n ,a1, ar, (p{n, alf ...,a r)).

Indeed, for n=0 this can be seen immediately, and it is transferred from
n to n + 1. If it is true for the value cp(n, ax, ..., ar), then it is also true for
(p(n + l , аг, ...,a r) obtained from this value and ß by substitution.
Thus the digits of the arithmetical quotient and of the remainder in division
can be obtained consecutively from the digits of the dividend and divisor.
Following through the construction of a primitive recursive function out
of the initial ones, however, might bring with it unnecessary detours. In
this construction of the sum a+n, for instance, the multiple application of
the successor function is needed, whereas we also have a direct way of
computing the digits of the sum from those of the summands. In practice
one always strives for constructions with the fewest possible detours.

2.6.2. Restriction to Iterations

In the rest of this chapter, I will list several facts about number theoretic
recursive functions, mainly without proofs. For these proofs I again refer
to my book [e].
First I want to mention that in the construction of the primitive recursive
functions, we can restrict ourselves to the following simplest particular
case of primitive recursion:

<P(0) = 0

<p(n + 1) = ß (q > (n)) ,

provided that we also admit further initial functions; for example the sum
a+n, the product a-n , the arithmetical difference д-=-и, and the “arithmeti­
cal square root” [fn] (the largest integer not exceeding /и). In fact, the num­
ber of necessary initial functions can be reduced to three.

Sec. 2.6] Further Recursive Functions 27

In the above special primitive recursion the values of cp are obtained as
follows: -

cp(0) = 0.

cp(\) = ß(0).

<p(2) = ß (ß m
<P(3) = ß(ß(ß(0)))-

This, therefore is simply the iteration of the function ß at the argument 0,
also denoted by /?(n)(0).

2.6.3 Course-of-values Recursion

There are types of recursive definitions of numeric functions different
from primitive recursion. Some of these can be reduced to primitive recur­
sion, but not all of them.

In course-of-values recursion the value of the function at a given argument
is expressed by means of values of the same function taken at arbitrary
previous places (not only the immediately preceding one). The “course of
values” of a function cp up to n can be encoded by the number

p jw .p f pjw,

where pn is the «th prime number in increasing order (2 being the “Oth”).
By the uniqueness of the prime factor representation of integers the value
(p(i) for i ^ n can be obtained from this number as

exp,Í П pH ’V=0 /
the exponent of the /th prime number. Thus, in general, the course-of-
values recursion has the form

q>(0) = a

<P(n+1) = ß[n, Я p f J)) ,
' J = 0 '

where a (constant or depending on the parameters) and ß are given primi­
tive recursive functions.
Here the course-of-values function

Ф (п) = П P?U>j=o

28 General Recursive Functions [Ch. 2

belonging to (p can be defined by the following primitive recursion: -

f (0) = Po(0) = 2“
W (n + i) = = ф{п) ' р№ ш ,

and cp(n) is obtained from ф(п) by the substitution

(Pin) = exp„(iA 00).

This shows that the course-of-value recursion remains within the class
of the primitive recursive functions.

2.7 Simultaneous Recursion

The definition of two (and similarly more) functions by simultaneous
recursion has the form

Í9>i(0) = fl1 Í<P2(0) = ö2
Wi(n + 1) = ß i (n, <j»i(n), <рг (п)) , l<p2(n + l) = ß 2(n, (рг (п), ф2(п)).

This can be reduced to the definition of the function

<p(n) = 2«,i(") • 3**in),

from which the functions <p1 and <p2 arise by the following substitutions: -

<Pi(n) = expo (tpin)), cp2 (n) = expx (cp (n)).

Using the primitive recursive auxiliary function
ß(n, и) = 2 ^ d n’ expotw)»exP i (°)) . 3 ^ 2 (n, ex p i jiu t .exp ji u))^

<p is determined by the following primitive recursion: -

J <p(0) = 2“i • 3a2
l<p(n + l) = ß(n, (pin)).

Thus simultaneous recursion does not extend the class of the primitive
recursive functions, either.

2.7.1 Nested Recursion

So far the parameters have played an incidental role, which is why sometimes
they were not even indicated. There are, however, recursive definitions, in
which the parameters do not remain unchanged. They might have to satisfy
some conditions, even depending on previous values of the function to be

Sec. 2.8] Simultaneous Recursion 29

defined. This might also lead to nestings of the previous function values
in the definition, as in the following example:

|<P(0, a) = a (a)
\(p(n + l, a) = ß(n, a, <p(n, y(n, a, cp(n, a)))).

If in such a definition the maximum number of nestings is fixed, then this
does not extend the class of primitive recursive functions. However, the
number of nestings can also be varied, and even be dependent on earlier
values of the function to be defined. By means of such definitions it is pos­
sible to define functions that are not primitive recursive.

2.7.2 Multiple Recursion

There are also recursions on several variables simultaneously, as in the
example below: -

<P(0,n) = a a(n)
(p(m + 1, 0) - a2(m)
<p(m + l , n + 1) = ß(m, n, <p(m, y(m, n)), tp(m + 1, n)),

where (p{m,y{m,ri)) and <p(m + l ,n) can be considered as “previous”
values of cp, in m and n respectively.

2.7.3 The Ackermann-Péter Function

If no nestings of the previous values occur, then these multiple recursions
remain within the class of primitive recursive functions. However, consider
the following double recursion with a single nesting

(p (0, n) = n+ 1
cp(m+1, 0) = cp(m, 1)
cp(m + 1, n + 1) = (p(m, (p(m + 1, n))

which defines (p. It is known as the Ackermann-Péter function, and is
not primitive recursive.

2.8 General Recursive Functions

I will not list any further variations of recursive definitions. They all agree
in that the whole construction of the function to be defined out of the
initial functions is obtained via a defining system of equations of the form
r=s, where both r and s are terms built out of natural numbers, number

30 General Recursive Functions [Ch. 2

variables, symbols for the function to be defined and some auxiliary func­
tions [7]. The value of the function under definition, at any given argument,
is obtained by applying the following simple steps a finite number of times.

A) the substitution of natural numbers for variables in an (original or
derived) equation,

B) the replacement in an equation of a subterm, also occurring as the left-
hand side of an equation, by the right-hand side of this second equation.

The above is the actual definition of genera l recursion. The functions
computable from systems of equations of the above kind by finitely many
applications of steps A) and B) are called genera l recursive.

Let us consider the primitive recursive function defined in (1.4.1) denoted
by (p0(n) for the sake of homogeneity of notation. Then (1.4.1) reads as
follows: -

J<Po(0) = a
l<p„(n + l) = 2 -<p0(n).

The auxiliary function
<Pi(n) = 2 • n (= n + n)

is used here. Taking into account the known definition of the sum
(p2{n, m) = m + n

(cf. section 2.3), the complete definition of <p0(n) is as follows:

<p0(0) - a (2.8.1)

<Po(n') = <Pi{<Po(n)) (2.8.2)
<Pi(n) = <M«> «) (2.8.3)
(p2(0,m) — m (2.8.4)

cp2(n', m) = (ф2(и, m))'. (2.8.5)

Clearly, the sides of these equations are terms of the required form.

[7] More precisely, the successor function has to be denoted by rí (= л + 1) here. Hence
the natural numbers

0,1, 2, ...
are

0, O', O',... .
The number 0 and the numerical variables are terms. If a is a term, then so is a'. Thus
all the natural numbers are terms. If ax, ..., ar are terms and <pt is a symbol for an /--place
function, then <p, (ax, ..., ar) is also a term. All the terms are generated in this way.

Sec. 2.9] Partial Recursive Functions 31

Let us carry out, for this simple example the steps of the computation of
the value of cp0 at и = 1(—O'), when a=0"(=2). To the right of the newly
derived equations we indicate whether they are obtained by the step A)
or B), and the number of the equation(s) to which this step was applied.
To start with, (2.8.1) has to be repeated with a=0":

Process applied to
eq. no.

<P 0(0) = 0* (2.8.6)

A 2 <pa(0') = cpx{cp o(0)) (2.8.7)

В 7-6 <p0(0') = <рг(0") (2.8.8)

A 3 cpfO") = <p2(0", 0") (2.8.9)

A 5 cp2(0", 0") = (<p2(0\ 0"))' (2.8.10)

A 5 cp2(0',0") =(<p2(0,0"))' (2.8.11)

A 4 <p2(0,0") = 0 " (2.8.12)

В 11-12 <p2(0', 0") — O'" (2.8.13)

В 10-13 <p2(0", 0") = 0"" (2.8.14)

В 9-14 q>1(0") = 0"" (2.8.15)

В 8-15 <p0(0') = 0"" (2.8.16)

Thus we obtained <p0(1) =4, if a = 2.

2.9 Partial Recursive Functions

The notion of general recursive functions includes more than the types of
special recursive functions we have seen above. So far every concrete
numeric function, whose values are effectively computable for all arguments,
has proved to be a general recursive function.
It is an interesting fact that this extensive generality can already be achieved
if, in the definition

l*i[i = n &B(i, ax, ..., ar)\

of section 2.6, the upper bound n for i is omitted. Indeed, Kleene has
shown that every general recursive function can be constructed, starting
from several primitive recursive functions, by finitely many applications
of substitutions and ц-operations. For a relation B(n, ax, ..., ar) such that

32 General Recursive Functions [Ch. 2

for every a x, ..., ar there is an i satisfying B(i, a x, ..., ar) the //-operation

a x, . . . , ar)]

means the smallest such i [8].
If we omit the above requirement that for every a x, . . . , a r there be an i
with B (i , a x, ..., ar), that is we allow that nt[B(i, ax, ..., ar)] be not defined
everywhere, then the above procedure leads us to the p a r t ia l recursive
functions . These are also those partially defined numeric functions whose
values for all arguments, where they are defined, can be computed from a
system of equations with finitely many applications of steps A) and B),
just as in the case of general recursive functions. Thus the general recursive
functions are exactly those partial recursive ones that are everywhere defined.
The identity of two partial recursive functions is denoted by

<P(ax, ..., a,) =* ф(ах, ..., a,)

and is to be understood as follows: both are defined for the same values of
a x, . . . , ar , and wherever they are defined they take the same value.

2.9.1 The Kleene Form

Kleene has constructed a primitive recursive function ф (n) and for each r
a primitive recursive function

such that
T(i, /?, ax, ...,u r)

Ш , fli. «Л = t(b П, a x, ..., ar) = 0])

yields a universal explic i t f o r m of an /'-place partial recursive functions, in
the sense that to every system of equations defining a partial recursive function
(p(ax, ..., ar) one can determine a natural number n (called “Gödel number”),
for which

ср{ах, , a r) ^ £ { n , a x, . . . , a r).

In a system of equations defining a function, all the auxiliary functions
occur as well as the ones connected with the function to be defined. Thus
any one of them, if the admitted steps of computation at no place yield
two different values, can also be taken as the function to be defined. Then
the others are considered auxiliary. That is why what we said is also valid
for the simultaneous partial recursive definition of several functions. Each
of these can be brought into the Kleene explicit form.

See S. C. Kleene: General recursive functions o f natural numbers, Math. Annalen 112
(1936) pp. 727-742.

Chapter 3

Recursive Word Functions

3.1 Symbol Sequences

As was indicated at the end of Ch. 1, a computer does not understand
our number theory, it can only notice that it received certain sequences
of the symbols 0 and 1, and depending on these it can in turn emit such a
sequence. The mathematician first has to consider very carefully how the
binary digits of the result of an operation arise from the digits of the ope­
rands. He reasons that since

1.2" + l -2n = 2-2" = 2n+1 = 1 .2n+1 + 0-2B,

a “carry” 1 results if we twice add the digit 1. Afterwards he observes what
this implies for sequences of digits, and then this can be applied mechani­
cally [9].
Because of the carry, even taking the successor needs some consideration
for numbers in binary form. Let us denote the successor of x, given in
binary form, by s(x), the last (that is first from the right) binary digit of
X by lb(x), the “initial part” of x remaining after the omission of lb(x)
by at(x) and the empty sequence by A. Then the following rule can be ob­
served for taking the binary form of the successor (where 1 is considered

I can illustrate this with an example from my teaching experience. When solving
equations the elimination of a subtrahend from one side was for a time always carried
out with the explanation: “The equilibrium of a pair of scales is not disturbed if the same
weight is placed into both scales” . After a while, in order to speed things up, a student
was asked to say without thinking what distinguished the two equations obtained in this
way. She could say: “A subtrahend disappeared from the left-hand side of the first
equation and it appeared as a summand on the right-hand side of the second” . From here
on it was done mechanically: “We transfer the subtrahend as a summand to the other
side” .

34 Recursive Word Functions [Ch. 3

as the successor of the empty sequence):

() =
1,
at 0)1,
s(at O))0,

if X = A
if ibO) = o
if ibO) = i.

In fact, for the binary forms

of the natural numbers

we obtain in order:

0, 1, 10, 11, 100, ...

0, 1,2, 3, 4, ...

s(0) = at (0)1 =Л1 = 1.
s(l) = s(at(l))0 = s(A)0= 10.
s(10) = at (10)1 = 11.

s(ll) = s (a t(l l))0 = s(l)0= 100 .

s(100) = at (100)1 = 101
and so on.
These are the successors

1, 10, 11, 100, 101, ...

of the natural numbers in binary form.
The definition of v(x) is apparently some kind of recursion, but for finite
sequences of symbols instead of natural numbers. The sequence s(x) is
determined in terms of s(at(x)), and the initial part at(x) of the sequence x
can be considered as “a place earlier than x” . Taking all the time such earlier
places we get back to the empty sequence Л, for which s(A) is defined
as the single-termed sequence 1. The role of 0 in numeric recursion is taken
over here by A.
A conspicuous difference from the numeric case occurs here, in that x
is not the only sequence immediately following at(x). For example, both
x = 1011 and y —1010 immediately follow

at (x) = 101 (= at (у)).

Sec. 3.2] Numeric Structures 35

3.2 Numeric Structures

In a lecture on September 3, 1959 at the International Symposium on the
Foundations of Mathematics (Infinitistic Methods) in Warsaw [10], I out­
lined a far-reaching generalization of the theory of recursive functions for
abstract sets, which, in a certain sense, have a numeric structure. Here a set
of elements plays the role of 0, and a set of functions the role of the succes­
sor function.

3.2.1 Word Sets

As one of the most important particular cases I mentioned the set of “words
over an alphabet A ” (where A is a non-empty set, the members of which
are called letters), that is the set of all finite sequences of elements of A.
The role of 0 is played here by A, the empty sequence, while the attachments
of a single letter to the end of a word play the role of the successor function.
Thus, for each a£A, here xa is a successor function.

3.2.2 Primitive Recursions in Word Sets

Temporarily I shall restrict myself to the particular case in which the pre­
decessors of a word

are its initial segments

a l i a l ű 2> •••> <*1а 2 . . . ß f - l , diC>2---Clr .

Here the last one is of course not a “proper predecessor”, while the one
before the last, that is at(x), is an immediate predecessor, at (A) is, by de­
finition, A itself. The general form of a primitive recursion is, in this parti­
cular case (assuming, as we can, that we have a finite alphabet), as follows: -

[l0] In the same month I submitted a long paper about this, which only appeared several
years after the date of submission in two parts: R. Péter: Ü b er d ie V era llgem ein eru n g d e r
T heorie d e r rek u rsiven F u n k tion en f ü r a b s tr a k te M e n g e n , Acta Math. Acad. Sei. Hung.
12 (1961) pp. 271-314; second part: 13 (1962) pp. 1-24. Further references concerning
this can also be found there. My later works contain new results and several corrections.
The last one is R. Péter: D ie P a irsch en fr e ie n B in o iden a ls S p e z ia lfä lle d e r an geordn eten
f r e ie n h o lom orph en M e n g e n , Acta Mäht. Acad. Sei. Hung. 21 (1970) pp. 297-313.

if * = л
[h (x, / (at (x))) otherwise, (3.2.1)

36 Recursive Word Functions [Ch. 3

or with parameters: -

X’ Xl’ ' " ,X" ~ \ h (x , x 1, ...,x „ ,/(a t(x), X
if X = A

, ..., x„)) otherwise,

where g and h are given word functions. In the case with no parameters g
is a constant word.

The primitive recursive word functions are generated from certain initial
functions by means of finitely many applications of substitutions and pri­
mitive recursions.

3.3 Initial Functions

Clearly s(x), as defined in section 3.1, is a word function in a word set M
over an alphabet A containing 0 and 1. If h(x, y) is defined by

(where “otherwise” means lb(x) = A, that is x = A, if A contains no letters
different from 0 and 1), then s(x) is determined by the following primitive
recursion: -

Thus if the built up function h(x, у) is primitive recursive, so is ,v(x).
Here A and the successor functions xa, for a€A, are always taken as initial
and the attaching of A to x, that is the identity function

can also be added to the list of the initial functions. We shall see later that
at(x) is primitive recursive. Therefore so is at(x)l, which is obtained from
xl by substituting at(x) into it. It will also be shown that a function built
up from primitive recursive functions and relations, similar to the numeric
case, is again primitive recursive. Therefore it remains only to examine
the primitive recursivity of the function lb(x) and the relation of equality.

a t(x)l, if lb(x) = 0
h (x , y) = y O , if lb (x) = 1

A otherwise,

s(x) = i
h (x, s (at (x))) otherwise.
1, if x = A

/(x) = xA = x,

Sec. 3.3] Initial Functions 37

3.3.1 The Set of Natural Numbers

In the numeric case the primitive recursive function \x—y\ was a char­
acteristic function of the equality x=y. It is instructive to keep in
mind here the role of the natural numbers in counting objects. One can
for example, indicate the occurring objects, each in turn, with a correspond­
ing occurrence of the symbol 1. Thus the numbers 1, 2, 3, ... can be repre­
sented by

1, 11, 111,

that is by finite sequences of 1, where 0 corresponds to the empty sequence.
Of course 1 is not considered here as a numeral of the corresponding num­
ber in a number system. If the length of x is at least as big as the length
of y, then of course \x— y\ is obtained if we omit those l ’s from x that are
in y. If nothing is left, then |x—y|= 0 . With the above notation the natural
numbers yield a special word set, namely a word set over an alphabet
consisting of a single letter, which is denoted by 1.
If we have two letters, the subtraction does not make sense anymore. If
for example

Ul, ^2^^, Uj 7̂ #2,

how could one “subtract” the letters of y = a 2 ... a2 from x = a x ... alt or
vice versa? It is therefore reasonable to add a characteristic function eq(x, y)
to the initial functions, for example

ГЛ, if x = y
eq (x, y) = j ,otherwise,

where a0 is a fixed element of A.
The same is true for lb (x), namely that it has to be added to the initial
functions. It was not a coincidence that lb(x) appeared in our first recursive
definition of a word function. Now observe that (3.2.1) is not a perfect
analogue of definition (2.1.1). Such an analogue would read

f / (A) = g
\ f(xa) = h (x, / (x)), for afA-

Here x=at(xa), and thus the value of / anywhere would only depend on
the initial part at that place, completely independently of its last letter.
It is clearly not desirable to restrict the class of primitive recursive functions
in this way. The possible dependence on lb(x) must somehow be ensured

38 Recursive Word Functions [Ch. 3

in the defining system[11]. In (3.2.1) this is achieved by putting x, together
with its last letter, as the first argument of h, instead of at(x). In the nu­
meric case (in which the alphabet contains only 1) this is of course irrelevant.
From at (x) we obtain x by simply attaching 1 to it.

3.3.2 The Idea of a Predecessor

It is actually quite arbitrary to consider only the initial segments of a
word as its predecessor, for example

X = ű j Ű 2 a 3 (^ 1 , <?2 > Ü3£ A) ,

A, Ui, агаг üiü3ü3.

At first I have considered all “connected pieces” of x as its predecessors.
In the above example they are

A, Uj, Q i Q 2, Я3, й 2 о 3 , ü i ü 2 ü 3 .

Since not every predecessor of x is also that of the initial part a t(x)= a1a2,
in addition to at(x), I have taken the final part (obtained by dropping the
first letter), as an immediate predecessor of x. In our example this is et(x) =
= a2a3. Every proper predecessor of x is then a predecessor of at least one
of its immediate predecessors. Accordingly, in a primitive recursion, the
value of / at x is determined in terms of both /(at(x)) and /(et(x)).
In certain applications, however, even this turned out to be insufficient.
In an application of recursive word functions to mathematical grammars[12],
I found it necessary also to consider random pieces of x as its predecessors.
In the above example ага3 is one. For the case of countable alphabets, these
helped the representation (by means of a coding) only in the numeric case,
where the notions of initial piece, connected piece, and random piece
coincide. Indeed, in this case what matters is only the number of letters
in a word and the value of / only depends on the digit of the letter in the
word. In the numeric case

Cli = = 1,

[11̂ In my paper quoted in footnote t10-1, as well as in several further papers, this was
ensured by taking the auxiliary function h to be dependent on a (the last letter of the ar­
gument). This requires a separate defining equation for every letter from the alphabet,
and possibly an infinite number of equations. We could obtain constructive definitions
from these by suitable restrictions, corresponding to the applications under consideration.
Both lb (jc) and eq(x, y) can be defined by such primitive recursions.
[12] R. Péter: Zur Rekursivität der mathematischen Grammatiken, Computational Lin­
guistics Budapest 9 (1973) pp. 133-216, Submitted in December 1969.

Sec. 3.4] Initial Functions 39

and the variable here is x = 111. The different parts of this in any case can
only be A, 1, 11, or 111.
Also the random part is identical with 11.
Thus we see that, if the alphabet is countable, we can restrict ourselves to
the case in which the predecessors of a word are its initial segments, and
primitive recursions have the form (3.2.1) [13].

3.3.3 The Order of a Word

A word over a non-empty alphabet A can be obtained from A by means
of as many applications of the successor functions as its order, i.e. the
number of letters it contains. Thus

x — aia2a3 (űj, a2, o3(zA)

is obtained from A and the successor functions

f i (x) — xa1, f 2(x) = xa2, / 3(x) = xa3

by the following substitutions: -

giO) = /s(/a(*)) = xa2a3,

gi(x) = gi(fi(xj) = х а ^ а з ,

g2(A) = a1a2a 3.

3.4 Representing Natural Numbers

The order of a word, which will play an important role in what follows,
is a natural number. This makes it desirable that the natural numbers be
present in the word set. The steps of an enumeration can be indicated by
a fixed element of the alphabet. In a word set M, which is concerned with
the basic code of a computer, I shall always choose 1 as this element. Hence
the natural numbers will be identified with the words consisting of Fs
only. In particular, 0 will be identified with A. Thus there arises a double
meaning of the words consisting solely of l ’s. This will not lead to
confusion, if the symbol of an operation, meant to be carried out digit-wise,
is distinguished from the symbol of the corresponding absolute operation,

t13-1 See: Lisp 1.5-Programmers Manual, The Computation Center and Research Labora­
tory of Electronics. Massachusetts Inst, of Technology (1962).

40 Recursive Word Functions [Ch. 3

which is independent of the number system, by writing 2 under the former
(for example, +).
Now, the order o(x) of the word x can be defined by the following primitive
recursion:

|Л , if x = A
°^X'> jo (at(x))l otherwise

where o(at(x))l is obtained from the successor function xl by substitution.
Clearly, X is a natural number if and only if

X = o(x).

It follows that the iteration of о (x) does not change anything: -

o(o(x)) = o(x).

3.4.1 Number Functions and Word Set Relations

In this way, every numeric primitive recursive function can be represented
by a primitive recursive function in the word set. In order to see this we
shall prove the following: To every primitive recursive numeric function
(p(n1, ..., nr) there is a primitive recursive word function f (x 1, ..., xr) such
that

(3.4.1) o(f(x1, ..., xr)) = <7>(°(xi), •••, o(xrj)

holds for all xl5 ..., xr.

Proof. Firstly, this is true for the initial functions 0 and n + 1; for (p= 0
we can take/= Л , and for cp(n)=n + l for exam ple/(x)=xl.
Next, this property is preserved by substitution: If (3.4.1) holds for

<Pi (hi, nr), <р*(и15 nr), ф(m1, mk)
with

/ l (* l , ■ ■ ; X r) , . . . , / * (* i , xr), g(yk, . . . ,yk)

respectively, then (3.4.1) also holds for фUp1, ..., (pk) with g(f_, .
as the assumptions imply

o(g(fi(x1 , ..., Xr), ...Ju iX j, ..., xr))) =

= Ф{о(/i(xj, ..., xP)), ..., о(Л(х1? ..., xr))) =

= Ф{<РЛо(Хг), o(xr)), ..., %(o(Xi), ..., o(xr))).

Sec. 3.4] Representing Natural Numbers 41

Finally, this property is also preserved under primitive recursion. Indeed,
let (p be determined by the primitive recursion

М О , щ, ..., n r) = a(n1; . . . ,nr)
\(p(n+ l,wl5 ..., nr) = ß(n, n1, ..., nr, <p(n, nl5 ..., nr))

where (3.4.1) holds for

a O h ,..., nr) and ß(n, nl5 ..., nr, m)
with

gO i, . . . ,xr) and h (х,хг, . . . ,xr,y),

respectively. Then (3.4.1) also holds for <p with the word function / defined
by the following primitive recursion:

_ fsOh> •••> *')> if * = Л
X, x i, ■■■, xr j й(at (x), Xj, ..., xr, f (at (x), хг, . . . , xr))) otherwise.

Indeed, by our original assumption,

о(/(Л , •••> ^r)) = o(g(xl5 ..., xrj) = a (o fe), o(xr)) =

= <p(0, o(xj), ..., o(xr)) =

= <p(o(A), ofa), ..., o(xr)).
Here we used o(A)=0.
Now suppose that, for some natural number n, for every x with о(х)=и
we have

о{f{x, xl5 ..., xr)) = <p(o(x), o(xx), ..., o(xr)).

Then the same is also valid for each x of order o(x)=n + l, since for such
an x we have o(at(x))=n, and so by assumption

o(/(x, Xj, ..., xr)) = о (hint (x), xx, ..., xr, / (at(x), xl5 xr))) =

=ß(o(at(x)), о (xj), ..., o(xr), о (/(a t (x), xl5..., xr))) =

= /(o (a t (x)), o(xj), ..., o(xr), ф(о(at(x)), o(Xi), ..., o(xr))) =

= <p(o(at (x)) + l, o(Xi), ..., o(xr)) =

= ф(о(х), о(хг), o(xr)).

Replacing in (3.4.1) each xl5 ..., xr in turn with o/xd, ..., o(xr) we obtain,

o(/(o(x!), ..., o(xr))) = ф(о(х!), ..., o(xr)).

On the left-hand side, there stands a primitive recursive word function,
which at every place depends only on the order of its arguments, i.e. on
natural numbers, and also takes natural numbers as values. Clearly, for
natural numbers its value is equal to the value of cp. In particular, it vanishes

42 Recursive Word Functions [Ch. 3

for the same natural numbers as cp. Thus it can be considered as a represen­
tative of (p in the word set. In what follows the representatives of numeric
functions, as functions of the orders of their arguments, will be denoted in
the same way as the corresponding numeric functions.
This also applies to the numeric relations; they can likewise be represented
by primitive recursive relations in the word set, for the primitive recursivity
of a relation means here also the existence of a primitive recursive charac­
teristic function, which vanishes if the relation is satisfied, and otherwise
can be defined to be 1. Since A is the empty sequence, “vanishes” can be
taken here literally.

f A, if X — A
11 otherwise,

Г1, if x = A
1A otherwise.

3.4.2 Examples

In our word set the counterparts of the numeric functions sg(x) and sg(x)
can be defined by the following primitive recursions:

sig (x)

sig(x) =

and these are characteristic functions of the relations

x = A and X 7̂ A.

Exactly as in the numeric case, it follows also here that if the relation В
is primitive recursive, then so is its negation B. If ft is a characteristic func­
tion of B, then sig(h) is a characteristic function of B.

However, not everything can be copied from number theory. We found
there that the disjunction B^\/B2 of the primitive recursive relations B1
and B2 is also primitive recursive by multiplying their characteristic func­
tions bi and b2. In the word set we use the following trick: Let

Í A, i f X = A

otherwise.

Then d(x, y) vanishes if and only if at least one of x and у does, that is

d(b1, b2)

is a characteristic function of B1\JB2.

Sec. 3.5] Definition by Cases 43

The primitive recursivity of the conjunction B^&B, now follows from the
above, for it is equivalent to

Щ
and thus

sig (d (sig (hi), sig (b2)))

is a characteristic function of BxSlB2.
Similarly

B\ -*■ B2 = B1V B2

implies that, together with Bx and B2, Bx—B2 is also primitive recursive.

3.5 Definition by Cases

Now we can turn to the definitions by cases (in analogy with section 2.5.1),
which have the form

gx, if Bx is true

gk- i , if Bk_x is true
gk otherwise,

where gx, ...,gk are primitive recursive word functions and Bx, .. . ,Вк_л
are primitive recursive relations, and “otherwise” means that

Bk = Bx & .. .& B k. x
is satisfied.
In the numeric case the corresponding function was

ai*sg08i) + .. •+<**• sg (At),
where

_ [n, if m = 0
"'Sg(m) = io otherwise.

was the property of the product that we needed. The property of the sum
we use is that it is equal to one of the summands if all the others vanish.
In the present context we have to do something similar without multiplicat­
ion and addition.
The first case is easy; we simply put

SiO> У) = R
if X — \
otherwise,

44 Recursive Word Functions [Ch. 3

The following definitions lead us to the remaining cases

, N [Л . i f T i = A
'< * • * > = 1 * otherwise,

s8 Oh, Уз, Уз) = ф-ЛУп Уз), Уз),

sAyi, Уз, Уз, У4) = s2(s3(yi, у2, у3), у4),

SfcĈ i» — >Ук) = Sa(st-i(Ti. - , У к - i), Ук)-

For i = 2, 3, к and j = 1, 2, i we have

s 4(Л , А , У у , Л , Л) = Уу ,

hence for уу=Л
S|(A, Л) = Л.

Using the definition of s2

s2(A ,y 2) = y2,
since

, л> | Л- if Ь = л
^ (Л ' Л) = Ь , otherwise,

we have in any case
s2(y i , A) = yk.

It follows from
S i + lOh, y, + i) = s2 (st(yi, Уд, У1 + 1)

that if the property under consideration holds for an si with i< k, then it
also holds for yi+1. Indeed, for j ^ i + 1 we have

si+1 (A, A,yy, A, A) = s2 (s,-(A, A,yy, A, A), A) =
= Sj(A, A, yy, A, A) =

= 3T>
and for 7 ' = / + 1

si+i(A, A, yi+1) = s2(st(A , A), yi+1) =

= s2(A, yi+1) =

= Ti+i-
Thus sk has the desired property of the sum. It follows that if bk, . . . ,bk
are characteristic functions of Bu ..., Bk, respectively, then the built up
function f is obtained as

/ = sk{si(bi, gi), Sj(fo2, g2), ..., s4(bk, gkj).

Consequently it is primitive recursive.

Sec. 3.6] Definition by Cases 45

3.5.1 Initial Segments

In view of the above, it follows that

A:
f (x , у ,z)= X,

z,

if o(x) < o(y)
if o(x) = o(y)
if О (x) > Ű (y)

is a primitive recursive word function. This can be used to give a primitive
recursive definition of the initial segment of x consisting of o(y) letters
(denoted by a(x, y)), which is meant to be A if o(x)<o(y), and, of course,
x itself if o(x)=o(y). Since for o(x)>o(y), this is the same as the corres­
ponding initial segment of at(x), using the above / it can be defined by

is a primitive recursive word function. Moreover the o(y)th letter b,(x, y)
from the left in x can be written as

bi(x, y) = lb (a (x, y)),

which implies that the o(y)th letter br(x, y) from the right in x is

br(x, y) = b,(x, o(xl) -o(y)).

Thus we have solved our problem from the beginning of this chapter: the
function h{x, y) defined in section 33, hence also i(x), the binary form of
the successor of a natural number of the binary form x, (defined in section
3.1) are primitive recursive word functions over an alphabet containing 0
and 1, provided that, in addition to the successor functions, the identity
function, a characteristic function of the equality, and lb(x) are taken to
be initial functions.

3.6 Basic Operations in Binary Form

In such a word set M the binary forms of the results of the digitwise opera­
tions of Ch. 1 turn out to be primitive recursive. Indeed, the binary form of
a natural number is a word, and its nth digit from the right (which is actually
the (n + l)th as the first one has index 0), is the same as the nth letter, from
the right, of the word. Every number n can be written in the form o(y), and

ÍA, if x = A
Cl (X> У) {/(x, y, a (at (x), y)) otherwise.

In particular, we obtain that

at(x) = a{x, o (x)-o (l))

46 Recursive Word Functions [Ch. 3

br(x,y), the о (>>)th letter from the right in л; is primitive recursive. It can
be seen from its meaning, but also from the construction of the functions

f (x ,y ,z) , a(x,y), b,(x, y), br(x,y),
that we have

br{x, y) = br(x, o(y)).

Let us consider for example the addition of two binary forms x and y. It
is easy to check that if we denote the “carry” and the resulting digit at the
o(z)th place from the right by u(x, y, z) and s(x, y, z), respectively, then
definition (1.2.1) can be formulated in M as follows:
Putting first the variable w in place of the function и to be defined, we obtain
for n=o(z)?i A (i.e. for z ^ A) the auxiliary function

1,
h(x, y, z, w) = •

if br(x, z) = br(y, z) = 1V br(x ,z)
= w = 1 Vbr(y, z)
= w = 1

otherwise,

which, by definition, is identical with h{x, y, o(z), w).

3.6.1 Concatenation

A similar statement holds, consequently, for the following functions defined
by means of h. We have

and

u(x, y, z) = [h(x, y, at (z), u(x, y, at (z)))
if z = A
otherwise,

s(x, y, z) =
1,

0

if (u(x, y, z) = 0 & br(x, z) br(y, z))V
V(u(x, y, z) = 1 & br(x, z) = br(y, z))

otherwise.

It is irrelevant what this gives for words consisting not only of 0’s and l ’s.
The elements of the binary form of x +y, which result from the digits ob­
tained step by step as above, will be denoted by t(x, y, o(z)). This can be
defined by

f A, if z = A
(’ |s (x , y, at (z))t(x, y, at (z)) otherwise.

Indeed, denoting the digit

s(x, y ,z) = s(x, y,o(z))

Sec. 3.6] Basic Operations in Binary Form 47

simply by s0(z) , we obtain

t(x,y,A) =A
t (x ,y , 1) = s(x, y, A)A = sa

t (x ,y , 11) = s(x, y, l)sA = SiSA
t(x, y, 111) = s(x, y, IOSí Sa = 5цSjSA

and so on, where A, 1, 11, 111, ... represent in M the natural numbers
0, 1, 2, 3, ..., and are not considered as binary forms. With

fo(x), if o(x)m o(y)
max (x, y) =

lo(y), if o (x)< o(y)

the binary form of x £y is

t(x, y, max (x, y) l),

with at most one unnecessary 0 at the left end of the word, which could
easily be eliminated.
In the definition of t, however, we applied the concatenation of two words.
This is such an important operation in word sets that in general it has to
be added to the initial functions. But if the alphabet is finite, and we can
restrict ourselves to this case because a computer can recognize only finitely
many symbols, it can be shown easily that

f i x , y) = xy

is primitive recursive.

3.6.2 More Primitive Recursive Word Functions

In this section I will list a few more primitive recursive word functions and
relations, without giving proofs.
The “final segments” of order o(y) of x, denoted by e(x, y) and in particular
the “final part” et(x) of x, obtained by omitting its first letter, are also
primitive recursive. The first letter eb(x) of x, being equal to a(x, 1), has
already been shown to be primitive recursive.
The relation “y is a predecessor (i.e. initial segment) of x”, denoted shortly
by y ^ x , is primitive recursive. This occurs in the relations

(Ey) [y ^ x & B(y, x l t ..., xr)],

(x) [y ^ x - B{y, xl5 ..., xr)],
and in the function

цу [у< ,х& В (у , x1; . . . ,x r)]

48 Recursive Word Functions [Ch. 3

(the “bounded /^-operation”), which respectively have the following mean­
ings: -
“There is a predecessor у of x such that B(y, x1, xr) holds” ;
“For every predecessor у of x B(y, x1(xr) holds” ; and
“A fixed predecessor у of x, for which B(y, xl5 xr) holds, if there is
such; &Л otherwise” .
If В is primitive recursive, each one of these is also. In fact so is every set
having a numeric structure.

3.7 List Processing

As an application, we consider the basic notions of “list processing”,
which has been used frequently as a kind of model of the complex relations
between the different kinds of information stored in a computer.
What we have to deal with here are finite linear arrays, called “lists”, which
are constructed from certain elements. The empty array NIL is the only
object which can be considered both as an element and a list. A list / has
the form

l = (Xj, ..., x„),

where every x; is either an element or a list. According to the above we
have

NIL = (NIL),

but if x is different from NIL, then x and (x) are distinct. We also make
the convention that

(xl5 ..., x„) = (x1; ..., x„, NIL)
holds.
In the above list / the entry xx is called the head and the list

(x2, ..., x„)

remaining after xx is omitted, is called the tail of /. In notation

Xi = hd[Z], (x2, ..., x„) = tl [/].

(In order to avoid misunderstandings, the arguments of list functions will
be put in square brackets.)
By means of the function cons, / can be recovered from its head and tail:
If x is an element or a list and у is a list, then cons [x, y\ is the list with x
as head and у as tail. Thus for the above /: -

cons [xx, (x2, ..., x„)] = l.

Sec. 3.8] Coding Sequences of Words 49

3.8 Coding Sequences of Words

In a formal sense the lists are words of a word set M (0 over an alphabet
A(l) containing the elements, the parantheses, and the comma. (The paren­
theses and the comma will be printed boldface, when considered as letters.)
The functions hd [x], tl[x] and cons [x, y] are primitive recursive in M w.
Let us first observe the heads of several lists:

hd[(x1,x 2,x 3)] = x1

hd [((*!, x2), jc8)] = (xl5 x2)

hd [((*!, (x2, x3)), (x4, x5), дс6)] = (x4, (x2, x3))

hd [(((x)), >')] = ((x))

hd [((x))] = hd [((x), NIL)] = (x)
and so on.

As can be seen, the head of a list x is obtained by removing its opening
parenthesis, that is taking its final part et(x), and then the initial segment
of smallest order of et(x) for which the following relation В holds: the
number of its left parentheses coincides with the number of its right pa­
rentheses.
In order to check, which is the initial segment of smallest order of a word
x satisfying B, one can examine the letters of x one by one, starting from
the left. At a letter different from the parentheses we do nothing; at a left
parenthesis we write down an a0 (where a0 can be e.g. a fixed element), at a
right parenthesis we erase one of the a0s already written down. The first
time that A is obtained in this way is when we have the shortest initial
segment with property B. The function kl(x, y), defined by primitive re­
cursion in M (/), does exactly this for o(y) = 1, 2, ...:

Here we used the function bL (x, y) (the o(y)th letter of x from the left),
which was introduced in section (3.5.1).
If this is applied to et(x), where x is a list, then reaching the smallest o(y)^ A
such that kl[at(x), y] = A means that we have reached the last letter of
hd[x]. Since the initial segment of x of order o(y) is denoted by a(x, y),
we have then

hd [x] = a (et (x), цу _у < о (et (x)) & у Л & kl (et (x), у) = Л]),

A, if у = А
к] (Y „ч = . kl (*> at (0). if Ь,(х, у) (& b,(x, у) 9*)

kl (x, at Cy))a0, if b,(x, у) = (
at (kl (x, at Cy))), if b,(x, у) =).

50 Recursive Word Functions [Ch. 3

if X is a list. For words that are not lists the value of hd is irrelevant. The
same applies to the following: -
If X is a list, then we can obtain its tail tl[x] by first removing its initial
segment

(hd [x],

and then attaching an opening parenthesis to the front of the remaining word
of order

o(x)-o((hd[x],).

Since the final segment of x of order o(y) is denoted by e(x,y), we have

tl [x] = (e(x, o(x) — o((hd [x],)).

Finally if x is an element or a list and у is a list, cons [x, y] is built by remov­
ing the opening parenthesis of y, whereby we obtain et(y). Then we put

cons [x, y] = (x, et (>')).

All the further notions of list processing can be shown to be primitive
recursive in M (l) in a similar way.
From this basis of list processing is constructed the programming language
LISP 1.5. For more details about this see Chapter 11.

3.8.1 General and Partial Word Functions

Generalizations of primitive recursion similar to the numeric case can also
be introduced into word sets. These can or cannot be reduced to primitive
recursion, just like their counterparts in the theory of numbers.
The methods, however, cannot be copied. We do not have here, for example,
any unique prime factor representation. In the numeric case this was
essential in order to reduce the course-of-values recursion to a primitive
recursion, by establishing a coding of finite sequences of integers by single
numbers.
What we need here is a correspondence between a finite sequence of words
and a single word, from which the terms of the sequence can be recovered.
The simple concatenation of the members of the sequence clearly will not
do, unless certain “separating symbols” are used between the words.
Clearly this could be achieved by taking a new letter as a separating symbol.
However, it is still possible without extending the alphabet to produce
separating symbols out of two fixed letters. These in what follows, will be
denoted by 0 and 1. If the alphabet consists of a single letter, as in the
numeric case, this method is not applicable.

Sec. 3.8] Coding Sequences of Words 51

For a finite sequence of words

• • • j

in M, we can determine a suitable separating symbol as follows. Let

11 . . . 1
i

denote the word consisting of i ones. Let i be the largest number, for which
such a word occurs as a connected piece in at least one of the words x0, xx, ...

Then
Oil ... 10

F+i

is a suitable separating symbol for our sequence. This can be made to corre­
spond to the word

c„(x0, x1; ..., x„) = x0011 ... lOXiOll ... 10...x„011 ... 10
i + l i+1 i+1

which depends primitive recursively on the members of the sequence.
The relation “x is a word that corresponds to a finite sequence of words”
is primitive recursive. So are the number of terms denoted by long (x),
and the о (>)th term k0(y)(x), for o(y) = 0, 1, 2, ..., long (x), of the sequence
corresponding to x.
The notions of general and partial recursive functions can be transferred
to word sets in the same way. If the alphabet is countable, they can be
obtained from the primitive recursive functions by substitutions and the
applications of unbounded /(-operations, though the meaning of this last
concept has still to be clarified. In the theory of numbers, this meant the
smallest number with a given property, but what do we mean by “the
smallest word with a given property” ? What we can have is a word of
smallest index in a given infinite sequence of words. Such a sequence can be
considered as a word function/(o(x)), which depends only on the order of
x and possibly on the order of other variables. /(o(x)) is the o(x)th term
of the sequence. If /(o(x)) is primitive, general or partial recursive, we
say that the sequence is primitive, general, or partial recursive, respectively.
According to this the unbounded /(-operation

B f („ (y)) \ X j , ..., xr)]

means the value f(o{y)) of the smallest index for which B(f (o(y)), x l t ..., xr)
holds, provided that to the arguments xl5 ..., xr under consideration there
is a у with B[f(o{y)), xl5 ..., xr). Otherwise the result of the operation is
undefined for these arguments.

52 Recursive Word Functions [Ch. 3

3.9 McCarthy’s Conditions

I would like to remark that in the considerations of section 3.5 on built up
definitions, we have hardly used the fact that we are dealing with word
sets. With slight changes these arguments can be carried out in general for
sets of numeric structure. The conditional expression

f = [B 0 -*ei, . . . ,Bn — e„],

introduced by McCarthy in connection with partial computations by the
computer (see the book quoted in footnote[1]), does not extend outside the
class of partial recursive functions over a set of numeric structure either.
Here e0, are symbolic expressions and B0, Bn are relations be­
tween such expressions, while all of these can be undefined. The order of
the expressions is essential, as follows from the following definition of the
meaning of the conditional expression / : / is undefined, if either none of
the .6;s is true, or if to the left of the first true В{ there is an undefined Bj;
otherwise the value of / is that et towards which the arrow of the first true
Bi points.
Let us suppose that in a non-trivial set of expressions there are two different
elements, say e' and e". Using these, we have corresponding to each relation
В the characteristic function

{e', if В is true
e", if В is true,

which is defined if and only if В is defined. For an undefined В we have
neither B, nor B, i.e. neither b—e', nor b—e"). Thus McCarthy’s definition
is equivalent to the following built up definition: -

e0, if b0 = e'
, _ elt if b0 = e” & b1 = e'

en, if b0 — e" = e"& b„ = e'.

It can be shown that if e0, e„ and b0, bn are partial recursive in a set
H of numeric structrure (that is in a holomorphic set), then so is the function
/ defined above.

Chapter 4

The Recursivity of
Everything Computable * I

4.1 Assembly Language

The words of the binary language of a computer, consisting solely of
the letters 0 and 1, are difficult for people to understand. In an assembly
language, these are replaced by sentences of symbols that reflect their mean­
ing, yet they can still be translated easily back to the language of computer
and the addresses within the computer can be denoted by numbers in their
ordinary decimal form. The programs in this chapter will be written in
such an assembly language.
For a computer with a very simple system of statements it can be shown
that, if no bound is put on the size of its memory, for every partial recursive
function there is a program such that computation with this program yields
the value of the function, if it is defined, and goes on forever, without
calculating anything if it is not [141.
I will restrict myself to two registers: the statement counter W and a re­
sult register E. We also have the following one-address statements, where
addresses are always positive numbers; (x) denotes the contents of the add­
ress or register x, x=>(y) denotes putting x into у with the erasure of the
earlier contents of y, and finally 0=>(x) means the deletion of x: -

La (load statement): (a) => (E)

SPa (store statement): (E) => (a)

SP°a (store and delete statement): (E)=>(a); 0=>(£)

A a (addition statement): (E)+(a) =>■(£)

Sa (subtraction statement): (£)—(a)=>(E)

[14] See J. C. Shepherdson and H. E. Sturgis: C o m p u ta b ility o f recu rs ive fu n c tio n s , Journ.
of the ACM 10 (1963) pp. 217-255, and R. Péter: P ro g ra m m ieru n g u n d p a r tie ll-re k u r s iv e
F u n ction en , Acta Math. Acad. Sei. Hung. 14 (1963) pp. 373-401.

54 The Recursivity of Everything Computable [Ch. 4

Ma (multiplication statement): (E) X (a) => (E)

Ga (go to statement): a => (W)

G~a \ f (E) = 0
G>a I (conditional go to statement): a=>(W) if j (E) =- 0
G^a J l (£) ш 0

ST (stop statement): Stop.

In computing the values of a numeric function, which I will simply call
computing the function, we need the arithmetical difference a — n instead
of a — n. This can be computed by means of the following program:

Initially, let the contents of the addresses 1 and 2 be the given arguments a
and n. Also let the contents of the following addresses be the following
statements: -

address statement

3. LI
4. 52

5. Ge 7
6. SP°S
7. ST

If “Stop” is reached, then (E)—a — n.

4.2 Computing [fn]

As a somewhat more complicated example, we consider a program to
compute [in]. This is the smallest number i, for which (/+ 1)2>/?, therefore
it is certainly not greater than n. Hence

1УЙ] = ^[1=2 n&(i + l)2> n]

result

(E) = a
(E) = a — n
Г If a go to address 7,
{ i.e. (W) = l
(E) = 0
Stop.

is a primitive recursive function.

To start with, let 1, n, i= 0, 0 be the contents of the addresses 1, 2, 3, 4,
respectively. Address 4 serves as a working space. Let the contents of the
following addresses be: -

address statement result

5. L3 (E) = i
/6 . A 1 (£) = i + l

7. SP4 (4) = i + l
8. M4 (E) = (i +1)2
9. 52 (F) = (i+ l)2- n

,]n r 14 flf (i+ l) 2> n , go to
1U- ° > i4 {address 14 i.e. (IF) = 14
11. £4 (£) = i+1
12. SP3 (3) = i + 1

UW) = 6; here everything starts
^ {anew, with i+1 as the new i
14. £3 (E) — the required value of i
15. ST Stop.

Sec. 4.3] Computing Recursive Number Functions

If “Stop” is reached, then (E) = \fn].
The program looks circular, since from the statement in address 13 every­
thing starts anew. However, with i +1 instead of i, it only goes on until i,
increased by 1 for each new start, does not satisfy (/+ 1)2>и. Then the sta­
tement at address 10 orders to jump out of the “circle”. The statements
under the addresses 6— 13 form a cycle, which is not a closed circle, but
rather an ever progressing spiral.

4.3 Computing Recursive Number Functions

It was mentioned in section 2.6.2 that, starting from the functions a+n,
a-n, a — n and []n] (which, according to the above, can be computed by
our computer, that is they are machine computable), every primitive re­
cursive numeric function can be obtained with the application of finitely
many substitutions and iterations of the form

f<KO) = o
\(p(n + \) = ß(<p(n)).

If the functions

« K , ..., mr), ..., ns), ..., ßr{nx, ..., ns)

are machine computable, then so is

<K"t> •••’ n s) = «(ft(«i. n s) , ■••> ß r (" l , •••> «*))

which can be obtained from them by substitution. Indeed, if for any given
nx, ..., ns the values of ßx, ..., ßr can be computed and stored, then the
value of a can be computed for these arguments.

55

Now, if the function ß(n) is machine computable, then so is the function

9 (n) — ß M (0)

obtained from ß by the above iteration.
Since <p(0)=0 is known, it suffices to do the computation for 0.
By our assumption, we can use a “subroutine” for the calculation of ß(n).
This will obtain its argument from a fixed address (here this will be address
4), and put the computed value into E. Let us add to our system of state­
ments a subroutine calling statement.
The contents of the addresses 1 ,2 ,3 ,4 are initially 1, и, i = \ , a —0,
respectively. Here a denotes the subresult successively taking the values

ß(0), ß(ß(0)), ß(ß(ß(0))),

This changes after each call of the subroutine. The contents of the following
addresses are: -

address statement result

Í Call of the _
^ {subroutine for ß ^ a)
6. SP4 (4) = ß(a)
7. L3 (E) = i
8. S2 (E) = i - n
9 (7=14 {If i = n go to

{address 14 i.e. (W) — 14
' 10. L3 (E) = i

11. A 1 (E) = i + 1
12. SP° 3 (E) — 0, (3) = i +1

{(tC) = 5, here everything starts
anew with i +1 instead of i
and ß(a) instead of a

\ . T . ((E) = the latest value
14' 14 {of я
15. ST Stop.

As i increases gradually to n, one will get out of the cycle with

(E) = ßM (0).

It follows, from the above, that every primitive recursive numeric function
is machine computable. This could have been obtained without computing
[Уи], provided that we had not restricted ourselves to iteration, which is
a particular case of primitive recursion. In the computation of [/й], however,
I wanted to give a non-trivial concrete example, to which I shall want to
return later.

56 The Recursivity of Everything Computable [Ch. 4

Sec. 4.4] Computing General Recursive Functions 57

4.4 Computing General Recursive Functions

Machine computability is also preserved in the application of a /^-operation,
not only in the bounded case, as we could see in the example of [fn], but
in the unbounded case as well.

For a relation B, whose characteristic function ß is machine computable,
put

(p(n) = n)],
that is

<p(n) = BÄß(i, n) = 0].

For functions of several variables we can proceed similarly. By the defini­
tion in section 2.9, for an n such that there is at least one i with ß(i, n) = 0,
(p(n) is the smallest such i.

Assume therefore that we have a subroutine for the computation of ß (m, n)
and to start with, let the contents of addresses 1, 2, 3 be 1, n, i=0, respec­
tively. The contents of the following addresses are: -

address statement result

(Call of the sub­
ro u tin e for (3), (2)

G= 10
L i
A1
SP° 3
G4
L i
ST

(E) = ß (i , n)
! If ß(i, n) = 0 go to
i address 10 i.e. (W) = 10
(£) = i
(£) = i + l
(£) = 0 ,(3) = i-H
(tF) = 4; here everything
starts anew with i+1
(£) = the required i
Stop.

If there is an i and an n with ß(i, ri)=0, then we get out of the cycle with
the smallest such i as (£). Otherwise the cycle never ends. The computer
computes nothing, in accordance with the fact that <p(n) is undefined.
In view of the Kleene explicit form of partial recursive functions, given in
section 2.9.1, it follows from the results of this chapter that every numeric
partial recursive function is machine computable. Thus, in particular,
every general recursive function is machine computable.

4.

5.

‘ 5:
8.

9.
10.

1 1 .

58 The Recursivity of Everything Computable [Ch. 4

4.5 A Universal Program

The universal Kleene explicit form of r-place partial recursive numeric
functions can be made even more universal, namely independent of the
number of variables. Indeed, the arguments ax, ..., ar of an r-place function
can be represented for example by the number

a = pap - p ap,

(where, as above, pt denotes the tth prime number). Thus we obtain the
universal explicit form of partial recursive numeric functions of arbitrarily
many variables (since the exponent of pt in the prime factor representation
of a was denoted by exp, (a)) as the two-place partial recursive function

X{n, a) = i//(pi[r(i, n, exp! (a), ..., expr (a)) = 0]),

where i]/ and т are fixed primitive recursive functions. If n is the Gödel
number of a system of equations defining the r-place partial recursive func­
tion (p, then we have

(p(ai, ..., а,) =*А(п,рр

According to the above, the function X, which is constructed from primi­
tive recursive functions with the help of a single /^-operation, is machine
computable. A program computing its values can be considered as a univer­
sal program. If it is stored in the memory of the computer, then the compu­
ter yields automatically the values of every partial recursive numeric func­
tion, at any point where it is defined, provided that as further information
the Gödel number of a system of equations defining our function, and the
arguments in question, are also stored in the machine.
The construction of a program for X would still not be simple. That is why
I have constructed[15] a universal program for the computation of all par­
tial recursive functions, without having to resort to the Kleene explicit
form. In this program, the defining systems of equations are considered as
sequences of symbols, that is words over a finite alphabet, and the admissible
steps of computation from them are considered as passing from one se­
quence of symbols to another, that is as word functions.

[lo] R. Péter: Automatische Programmierung zur Berechnung der partielle-rekursiven
Funktionen, Studia Sci. Math. Hung. 5 (1969) pp. 447-463.

Sec. 4.6] Coding 59

4.6 Coding

It is not only true that the partial recursive functions are all machine compu­
table, the converse also holds: - Whatever is machine computable, is also
partial recursive. We shall consider this in detail using as an example
the computation of []/лг] (see section 4.2).

The codes
ST, L, SP, A, S, M, G, G>

for the types of statements which occur are not directly understood by
the computer anyway. We could as well use the natural numbers

0, 1,2, 3,4, 5, 6,7

for the codes of these statements. The codes of the addresses are already
natural numbers, in our example from 1 to 15. Instead of W and E, as the
codes of the statement counter and result register, we shall use 0 and 16,
respectively. In what follows they will be dealt with just like the store
addresses.
If for some positive j S l the statement of type j refers to the address a, then

2J -3a

is the code number of the resulting statement. The only 0-address statement,
type ST, is in itself a statement, and has already the code number 0.
It will not cause any confusion that several of the code numbers of state­
ments also occur as address code numbers. They will always be used in
distinct roles.
The program for the computation of [in], using all these code numbers,
can be represented by the following primitive recursive numeric function
p(m, rí), which determines the contents of each address m at the beginning
of the computation:

p(m, rí) = <

5, if m = 0
1, if m = 1
n, if m = 2
21 • 33 = 54, if m = 5
23 • 31 = 24, if m = 6
22 • 34 = 324, if m = 7

0, if m = 15
0 otherwise.

The lines indicated by dotting could be read off the program, equally easily.

60 The Recursivity of Everything Computable [Ch. 4

4.7 Recursion in Program Control

The program is executed step by step. At each step one statement is executed.
This is the next statement if the previous one was not a go to statement.
First we need a small modification. We also have a subtraction statement.
This should be replaced by the arithmetic difference, which here yields the
same result. We have already given a subroutine for the arithmetical differ­
ence a — n.
Alongside the program, we have indicated the results of the single steps.
Checking these we can see that, in executing any statement of type j ^ l
referring to the address a, only the contents of a, 0 (that is W) and 16
(that is E) might change. Moreover they only depend on j, a and the present
contents (a), (0), (16), which are now considered as variables. Let us denote
the resulting new contents of a, 0, and 16 by

These can be obtained by means of the following definitions by cases (as
can easily be seen from the corresponding statements): -

g(j, a, (a), (0), (16)), gw(j, a, (a), (0), (16))
and

gE(j, a, (a), (0), (16)).

(a) ,

g(j, a, (a), (0), (16)) = j (16),
0

if j = 0,1, 3,4, 5, 6,7
if j = 2
otherwise,

(0), if j = 0
(0)+l , if j = 1,2, 3,4, 5

or

gw{), a. 0) , (0), (16)) = ^
j = 7 and (16) s 0

a, if j = 6
or
j = 7 and (16) > 0

0 otherwise,

((16), if j = 0, 2, 6, 7

gE(j, a, (a), (0), (16)) = ^

(a), if j = 1
(16) + (a), if j = 3
(1 6)-(a), if j = 4
(16)X(a), if j = 5

otherwise.

Sec. 4.7] Recursion in Program Control 61

Here all these functions are primitive recursive, and so is the following
built up function

f { j , a, (a), (0), (16), (m), m) =

g{j, a, (fl) ,(0), (16)),
gw(Л a, (a), (0), (16)),
gE(f, a, (a), (0), (16)),
(m)

if m = a
if m = 0

if m = 16
otherwise,

where (m) denotes the present contents of the address m. This gives, for
each address m, the contents of m after the execution of the statement in
question.

4.7.1 An Example

Let us denote by <p (i, m, rí) the contents of address m after the execution of
the ;'th step. Step 0 is the input of the program into the computer. Hence

(p(0,m,n) = p(m, n).

Now assume that for some i the values q>(i, m, rí) are already given for each
m. If the statement to be executed is of type j and refers to the address a,
then according to the above

cp(i + l, m, n) = f (j , a, (a), (16), (m), m).

The address of the statement to be executed is, however, the present con­
tents of the statement counter, which is

cp(i, 0 , n).

The contents of this address is

cp{i, <p(i, 0, rí), n),

and it has to be a statement, i.e. its prime factor representation is of the
form

2J • 3°.

We obtain j and a from here as the exponents of the 0th and 1st prime
numbers, respectively: -

j = expo (cp(i, q>(i, 0 , n), «)), a = expj (<p(i, cp(i, 0 , n), n)),

showing that the present contents of the address a is

(a) = (p(i, expx (cp(i, <p(i, 0 , n), n)), n).

In addition to the expression

(0) = <p(i, 0 , n)

62 The Recursivity of Everything Computable [Ch. 4

which we have already used, we also have

(16) = <p(i, 16, n),
and

(m) = (p (i, m, rí).

Putting all this into the expression obtained earlier for cp(i+l,m, rí), and
using the known expression for (p (0 , m, n), we obtain a definition of <p by
the following nested recursion: -

<p(0, m, n) = p(m, n)
<p(i + 1 , m, n) = /(ex p 0 (<p(i, <p(i, 0 , n), n)), expj (<̂ >(i, (p(i, 0 , n), n)).
(p (i , exp! (<p(i, <p(i, 0, n), n)) , c p (i , 0, n), <p(i, 16, n).
(p(i, m, n), m).

Such a recursion, however, as was noted in section 2.7.1, still remains within
the class of primitive recursive functions.
Therefore the function cp(i, m, n) representing the execution of the program
is primitive recursive. This is the consequence of the fact that the occuring
cycle is not a circle.

4.7.2 Computable Functions

But what about the result? We saw that after the /th step the statement to
be executed has the form

j = exp,, (cp(i, (p(i, 0 , n), nj).

If this is 0, which codes the stop statement, then the result is the contents
of the result register, that is <p(i, 16, rí). Hence, to obtain the result, we have
to search for the smallest i with the indicated property, that is for

/fi [expo (<p(i, (p(h 0 , rí), n)) = 0],

and then substitute this for i in <p(i, 16, n).
In our example, it is easy to give an upper bound for this i. The program
has a cycle of 8 terms, moreover 3 statements. The cycle is repeated as many
times as there are positive numbers, the squares of which do not exceed n.
Clearly, there are at most n such numbers. Therefore the number of steps
in executing the program is at most 8n+3.
Consequently, the result of the computation with our program is

<p(H'[i < 8 / 1 + 3 & expoOp(i, <p(i, 0, n), n)) = 0], 16, n),

which is a primitive recursive function.

Sec. 4.8] Partial Recursion in Binary Computer Arithmetic 63

4.8 Partial Recursion in Binary Computer Arithmetic

We have known, of course, already that this program computes the primi­
tive recursive function [fn], But our reasoning can be generalized to apply
to a computer with an arbitrary system of statements (for which the result
appears not necessarily as (E), but can also be a sequence). In my paper
quoted in footnote[14] I have shown in this way that the result of an arbitrary
- suitably coded and stored - program with the input parameters

ill, «2, "r

can be obtained from primitive recursive functions by means of a single
/q-operation. If a primitive recursive upper bound can be found for i,
then the result is a primitive recursive function. If this is not the case but
it can be proved that for every choice of the input parameters, there is
such an i, then the result of the program is still general recursive. It is,
however, always partial recursive.
Consequently, we can indeed say that whatever is machine computable, is
also partial recursive.

Thus if we study the programming problems of the computation of partial
recursive functions, this means, in principle, the study of programming
of all the machine solvable problems.
The coding by natural numbers is, however, something extraneous to the
computer. It understands only whatever can be coded by finite sequences
of the symbols 0 and 1. Its mother tongue is the binary language, that is the
word set M with an alphabet consisting solely of 0 and 1. The whole of the
above reasoning can, however, be carried out in this word set. Instead of
the code numbers of the addresses we can consider their binary forms as
code words in M, and instead of the arithmetical operations between num­
bers we have the digital operations between their binary forms, which by
section 3.6 are primitive recursive functions in M. The codes of statement
types can also be expressed as binary forms of numbers. Here, of course,
to code a statement, whose type is coded by j, and which is referred to by
the address coded as a, we cannot make use of the unique prime factor
representation of natural numbers. Instead, the same end is served in M
by the primitive recursive function c(J, a) introduced in section 3.8.
This makes a word w correspond to the two-term sequence j, a, from which
the respective terms can be recovered by means of the functions

k0(w), fciO),

64 The Recursivity of Everything Computable [Ch. 4

which are primitive recursive in M. Let us consider e.g. the statement SPA,
which was earlier coded by the number

22 • 34.

As the binary forms 10 of 2 and 100 of 4 contain only one occurrence of 1,
the appropriate “separating symbol” here is 0110. Hence the code word
of the two-term sequence, representing the statement, is

c (1 0 , 1 0 0) = 1 0 0 1 1 0 1 0 0 0 1 1 0 .

The sequence of symbols 0110 at the end of this word shows that (after
having checked that the word has no connected part of the form 1 1 1 or
0110110) this sequence plays the role of a separating symbol. Hence the
terms of the sequence can be uniquely recovered from this word as

k0(1001101000110) = 10, ^(1001101000110) = 100.

In this manner we have arrived at the following result: everything obtainable
by a computer is partial recursive in the binary language o f the computers.

Chapter 5

Sequential Program Translation

5.1 The Bracketless Form

Programs are not formulated in the language of the computer. They must
first be translated into that language. This can happen in several stages.

Let us consider, as a simple example the statement requiring the computa­
tion of the expression

(b + bXc) Xa + c,

which is composed of several arithmetical operations. Let the first stage
of the translation be the transformation of this expression into a bracketless
form.

Several such forms are known. The first of these is due to Lukasiewicz[16].
Here we shall use the so called “reversed-Polish” form

bbcX + a X c + ,

in which the operation symbol is placed after the two operands. Its meaning
can be read off by checking the symbols one by one, going from right to
left, as follows: -

“A sum, whose second term is c and first term is a product, whose second
factor is a and the first factor is a sum, for which the second term is a pro­
duct with c as second and b as first factor, and b is the first term.” According­
ly, the first operation symbol from the left is the innermost.

[16] Concerning the uniqueness of this form see for example, L. Kalmár: Another proof o f
the Markov-Post theorem, Acta Math. Acad. Sei. Hung. 3 (1952) pp. 1-27. The uni­
queness of the “reversed form” can be proved in a similar way.

66 Sequential Program Translation [Ch. 5

The translation to this form can be carried out by an algorithm due to
E. W. Dijkstra [17], which he has illustrated by “railway marshalling”
statements.
For this, the different symbols occurring in the given expression (variable
symbols, operation symbols, and left and right parentheses) will represent
railway cars of different types. Here however every car has an engine.
Appropriate cars form our expression into a train, and the task is to send
this train, with its cars re-arranged in the reversed-Polish form, from track
1 to track 2. In the course of this, track 3 with a sidetrack (denoted as str)
is at our disposal. See the diagram below.

In our expression bX c is not put in parentheses, since, by convention,
multiplication takes precedence over addition. We shall express this by
saying that each operation has associated with it a priority, namely addition
has priority 1 , multiplication has priority 2 , the priority of subtraction is
also 1, while exponentiation has priority 3.
Now the marshalling instructions are as follows: Separate the cars. The
opening parenthesis has to go to track 3. The next variable always has to
go to track 2. The next operation symbol goes to track 3 temporarily, but
unless it meets there an operation symbol of lower priority, it has to give
way; that is it has to pull onto the side track, while this other operation
symbol of higher or equal priority goes to track 2. Only afterwards can it
go back to track 3. If the next symbol to leave track 1 is a closing parenthesis,
put it on the side track. Then let the operation symbols from track 3 go to
track 2 one by one, until we reach an opening parenthesis. Add this to the
closing parenthesis waiting on the side track and discard this pair of used
up parentheses, in other words, send them to the depot. Finally, if nothing
is left on track 1, let the symbols still waiting on track 3 go one by one to
track 2 .

[l71 E. W. Dijkstra: Making a translator for Algol 60, A. P. I. C. Bull. 7 (1961) pp. 3-11.
See also B. Randell and L. J. Russel: Algol60 implementation (1964) London, New York.

Sec. 5.1] The Bracketless Form 67

In the following table, the successive execution of the marshalling instruc­
tions is indicated in detail in the case of our expression: -

track 1 track 2 track 3 str

(b + b x c) x a + c — — —
b + b X c) Xa +c — (—

+ bXc) Xa + c b (—
b X c) Xa +c b (+ -

Xc)Xa + c bb (+ —
c)Xa + c bb (+ X -

) Xa + c bbc (+ X -
X a + c bbc (+ X)
Xa + c bbcX (+)
X a + c bbcX+ ()
X a +c bbcX+ — —

a + c bbcX+ X —
+ c bbcX+a X -

c bbcX+a X +
c b b c X + a X + —

b b c X + a X c + —
— b b c X + a X c + — —

At the end the reversed-Polish form of our expression has appeared on
track 2 .

5.1.1 The Three-address Code

Looking at the meaning of this form it is easy to deduce from it an algo­
rithm for its decomposition into three-address computer statements of the
form Ouvw, where 9 is an operation symbol. The statement requires the
execution of the corresponding operation for the contents of и and v and
placing the result in w. Proceeding from the left to the right, one always
has to look for the first operation-symbol “car” (corresponding to the
“innermost” operation), attach the two immediately preceding cars and a
car of a new type (brought from the depot) after it, and then let the train
put together in this way go to a new track. A second copy of the above car
of new type is also to be brought from the depot, in order to fill up the
resulting gap in the old train. This contains the result of the operation
just executed, which, from here on, is treated as an operand. Then every­
thing starts again from the beginning. One has to look for the first operation
symbol from the left in the modified train, and so on.

68 Sequential Program Translation [Ch. 5

By means of suitable switching devices and marshalling instructions, the
separate small trains (each consisting of 4 cars) can be collected on a track
sequentially (i.e. the cars will occur in their original order), as happened
in putting the train on track 2. I will not go into the details of this here.
However, the sequentiality of the procedure is certainly disturbed by the
fact that, in the train on track 2 , one has to look for the first operation
symbol, and then eventually one has to return to earlier symbols. This
can be avoided if the new procedure is carried out simultaneously with the
old one. We start the collection of the train on track 2 according to the
original algorithm, until an operation symbol appears on track 2. With this
we proceed as has just been described. Only afterwards is the original
algorithm continued, until the next operation symbol appears. This is
illustrated in the following table, in which the symbol indicates that
the small trains on track 4 are not attached to each other.
track 1 track 2 track 3 str track 4
(■b + bXc)Xa + c - - - -
b + bXc)Xa + c - (- -

+ bXc) Xa + c b (— -
bXc) Xa + c b (+ — —

Xc)Xfl + c bb (+ — —
c)Xa + c bb (+ X — —
)Xa + c bbc (+ X — —
X a + c bbc (+ X) —
Xa + c bbcX (+) -
Xa + c bv± (+) Xbcv1:
Xa + c bvt + () Xbcvj:
Xa + c v2 () xbcv1: + bv1v2:
Xa + c v2 — — Xbcv^. + b v ^ :

a + c v2 X — Xbcvi. + bv^z.
+ c v2a X — Xbcv+. + bvxn2:

c v2a X + Xbcv+. + b v ^ :
c v2a X + — Xbcv1: + bv1v2:
c v3 + - xbcv1: + bv1v2:Xv2av3:

— v3c + — xbcv1: + bv1v2:Xv2av3:
— v3c+ — — Xbcv1: + bv1v2:Xv2av3:
— vt — — Xbcv1: + bv1v2:Xv2a3:+v3cv,

Finally, only vt remains on track 2, which, however, contains the value of
our expression, for according to the above, the respective statements on
track 4 have the following meanings: -
bXc=>v+, b + bXc=*v2; (b + bX c)X a => v3; (b + bX c)X a + c =>v4.

Sec. 5.2] Push-down Stores 69

5.1.2 Reduction to One-address Code

A three-address statement, of course, can be decomposed very simply
into three one-address statements of the sort we introduced in section 4.1.
For example

and
Xbcvt into Lb; Me; SPl\

+ y3 cr4 into Lv3; Ac; SPv4.

5.1.3 Translation into Word Functions

In translating programming languages, certain sequences of symbols are
replaced by others. The sequences of symbols can be considered as words
over an alphabet containing all the necessary symbols. Hence here we
are dealing with word functions. Using a suitable notation, we can always
restrict ourselves to a finite alphabet; e.g. from the two symbols x and |
one can build the following infinite sequence of variables:

*l,*ll>*lll, ••• •
For the sake of clarity, however, I shall adopt the more usual notation
with lower indices.

5.2 Push-down Stores

In determining (that is computing) the successive symbols of a function
value, one examines the separate symbols of the arguments. It is convenient
to move up and down among these symbols. Hence it is always reasonable
to look for a sequential computation procedure, in which the symbols of
the arguments are taken into consideration successively, in their correct
order. The application of push-down stores will help us to achieve this
goal. In the above examples the role of the push-down stores was played
by the tracks.
A push-down store is a symbolic store, in which letters of the alphabet
and perhaps also some auxiliary letters can be placed. These can be taken
out of the store, either in such a way that the corresponding letter is erased
there, or the letter which is taken out also stays in the store, that is only a
copy of it is taken out. In the railway analogy, this corresponds to bringing
a car of the same type from the depot. Such a store satisfies the following
conditions: - Whenever a letter is placed in the store, it pushes down all
the letters already there one place deeper (that is the train backs up). When­
ever a letter is taken out, this must be the top letter, that is the most recently

V

70 Sequential Program Translation [Ch. 5

added letter is removed first. If a letter is taken out with erasure, then the
other letters in the store automatically pop up one place (that is the train
pulls forward). Whatever has to be done at a given step of the computation
of the function value depends on the current symbol at the top of the
push-down store, which we call the top symbol.
The push-down stores make it possible to move up and down among the
letters of the arguments, without disturbing the sequential character of the
computation. Indeed, all the letters of the arguments can be poured, one
by one, into a push-down store, where they are kept until the end. Then if
one of these letters is needed, the letters placed on top of it can be poured
into another push-down store, and after the work is done they can be
poured back again. The same can be done with the intermediate results of
the computation. In a recursive procedure, this must be done many times.
I have given [18] a general method for the sequential computation of every
recursive partial word function over a finite alphabet, in which the number
of push-down stores is independent of the arguments. J. Urbán [19] has
later shown that the use of three pushdown stores always suffices. Conversely,
I have also shown that every word function sequentially computable with
the help of push-down stores is partial recursive in the word set, extended
with some auxiliary letters.
Comparing this with the final conclusion of Ch. 4, we can say the following:
Everything which can be calculated by a computer, can be calculated sequen­
tially, with the use o f three push-down stores.

5.2.1 Some Conventions

In the proofs mentioned above, the following notation was used: -
We had a word set M over a finite alphabet A, the letters of which I will
denote here by a perhaps with some indices
For the sake of brevity, we assume that on the bottom of every push-down
store is the symbol L (denoting empty); hence the top symbol of an empty
push-down store is L. Further, if a symbol is erased, then we say that it
is replaced by /, and the top symbol of an arbitrary push-down store is the
first symbol, counted from the top, which is different from /. Of course,
neither L nor l can occur among the letters of A. These auxiliary symbols

[l8] R. Péter: Über die sequenzielle Berechnenbankeit von rekursiven Wortfunktionen durch
Kellerspeicher, Acta Math. Acad. Sei. Hung. 16 (1965) pp. 231-253.

J. Urbán: Die Minimalisierung der zur sequenziellen Berechnung der partiell-rekursiven
Wortfunktionen notwendigen Kellerspeicher, Acta Math. Acad. Sei. Hung. 17 (1966)
pp. 335-358.

Sec. 5.2] Push-down Stores 71

are distinct from the symbol introduced earlier for the empty word. This
symbol has to be written out and dealt with in the same way as the other
symbols of the alphabet, although in the result it is to be considered as
something non-existent. The reason for this is that, in the course of the
computation, an intermediate value might turn out to be A, with which
one has to deal just like with any other intermediate value.
Instead of listing from the bottom to the top, the symbols obtained in a
push-down store will be listed from the left to the right, as it happened in
the railway analogy.
The push-down stores will be denoted by capital letters, among them one
called I for input and another called О for output. Their current top symbols
will be denoted by the corresponding small letters.
The computation of a word function f (x x, ..., xn) for the arguments

■ * * s ^ n , 1 • * • ^ n , rn
always starts with pouring the symbols of this chain (which I will denote
by .s'), one by one, proceeding from the right to the left, into I (including
the comma, which is not a letter). Initially therefore the contents of I
(after L) is the chain of symbols

^n,r„ ■ * * ^n, 1 9 **•> 1̂,Г1 '*■ ^1,1
(denoted by s) and the contents of every other store is L. At the end of
the computation we find in О after L the required function value as a chain
of letters and Л-symbols. This chain will be denoted symbolically as f(s) ,
while in all the other stores we find L.
The computation procedure is in separate stages, which will be denoted
by q (with indices). It starts with qy (after placing s in I), and ends with a
stage calling for stop.
What has to be done at a given moment depends only on the current stage
and the current top symbols of the stores. Depending on these the new
top symbols are obtained and a new stage follows. These are not necessarily
different from the earlier ones. In the short description of a computational
step, only the top symbols which are affected, will be indicated. For example,
suppose that in a stage q, the top symbol of I is to be removed and placed
in the store К unless the top symbol of К is L, and then the stage qu is to
follow. This will be denoted by

qt{k 7 * L)\(i K)qu,
while the same operation when i is kept in I, will be denoted by

qt{ k * L) \ { i ^ \) { i ^ K) q u.
If i has to be erased only, and not placed anywhere, we denote this by

l — i.

72 Sequential Program Translation [Ch. 5

5.2.2 Computation of Initial Functions

We consider below as an example the computation of the initial functions
of M.
To compute

f i x i, = A

one has to empty I and place A in О ;

qx(i ^ L)\(l -* i)qx

?i(i = L)|(A - ~ 0) q 2

I Stop.
To compute

xa (a£A)

one has to pour s out of I into O, by which the original order of the letters,
that is s, is recovered. Then a has to be added to the end: -

L)\(i-*0)q1

q1(i = L)\(a -* 0)q 2
^2 1 Stop.

To compute
f i x 1, . . . ,X„) = X j (1 s j n)

one has to remove from I everything that comes after Xj. Then the letters
of the argument Xj are to be poured into O, where they regain their original
order. Finally everything that still remained in I must be erased. To begin
with, for y > l, we have the stages

q, (t = 1, 2...... J — 1)
with the effect

q,ii - i)q,

Я,(' =>)l(l - 0 + 1•
Then follows

q ?A)(! 5̂ L)\ii — O)qj

qjii = ,) l (i -+ Oqj+i
qj(i = L)\qJ+2

qj+iii ^ T)|(Z -► i)qj+1

qj+i’ii = L) I qj+2

+2 1 Stop!
For the computation of

lb (x),

Sec. 5.2] Push-down Stores 73

the last letter of x, it is actually counter-productive to pour the letters of
the argument into I, since in this way the last letter gets to the bottom.
However, this is done for the sake of uniformity. One has to remove the
top symbol of I and put it in 0 . If I is now empty, this was the last letter of
the argument. If not, this letter has to be erased from О and the procedure
has to be repeated with the new top symbol of I, thus: -

Ях\ (»' - 0)q 2

q2{i 7̂ L)\(l -*• o)q1

q2(i = L)\q3

Яз I Stop.
To compute

Г Л, if x = у
eq (x, y) = <[a0 otherwise,

where a0 is a fixed element of A, the two arguments x, у are to be poured into
two different push-down stores. О can be one of these temporarily. The
other is denoted by I. Then we can compare and erase their letters one by
one and if they are all found identical, we put a0 into O, which has been
emptied by that time. Otherwise we put A into O, thus: -

<7iO' 5 * 0 1 0 -* I)tfi

4i 0 =>)l (J - 0?2

q2(i 7̂ L) I (i -*■ O)q2

q2(i = L)\q3

q , (! * W = o) \ (l - ~ l) (! ~ o) q a

q3(i = L){o = Z ,) |(A - 0)^ 6

q3 (l = L)(o L) I qt

яЛо t±L)\(1 - o)^4

<h(o = L)\(a0 - 0)<?6

9 30 V L) (iV o)\q5

qb(l ^ L) \ { l - i) q ,

qb(l= L)\q,

Я61 Stop.

74 Sequential Program Translation [Ch. 5

5.2.3 Computing Partial Recursive Functions

As a further example, assume that the word functions

f (x ,y) , g(x), h(x)

are sequentially computable by means of three push-down store systems,
which start with the input stores

I / ’ ^9’
and end with the output stores

0/5 Ой,

respectively. Using these, we are able to produce a push-down store system
for the computation of

f(g(x), h(x)).

Here it is possible to identify О with О /.
Initially I contains s, and by simply pouring this into another store we get
s, whereas our task is to place s in both lg and IA. Therefore we have to take
an additional push-down store I. The first step is then to pour the contents
of I into I, and then to pour them out of I into both Ig and IA. In this way
the order of the letters will be that required. We can then follow the steps of
the (already known) computation of the value of g, which together will be
denoted by the symbol Qa. This ends with gfs) in Og (after L), and with L
n all the other stores except IA. The steps of the computation of the value

of h (denoted by Qh) should now follow, where at the end h(s) appears in
Ол (after L). Finally, the contents of Oh and then of 0 9 have to be poured
into / / , separated by a comma. After this can follow the steps of the com­
putation of / for these arguments, denoted together by Qf . The stage sym­
bols qt belonging to

Qgi Qht Qf

respectively, should be distinguished from each other and from the stage
symbols with no index, by corresponding indices g, h, f We now have to
add the initial stage of Qh to this at the end of Qg, instead of “Stop”, and
to put the stage qx at the end of Qh instead of “Stop”. This procedure can be
described as follows:

<7i(i ^ £)l(i - I) <h
q1(i = L)\q2

q2(i * m i - ~ \) (i - I g)q3

9зК7-1/,)?2
^ (l = L) \ Q g

Sec. 5.2] Push-down Stores 75

Q h

qÁOh * L) I (oh - if)q4

4\ (° h = L) I (> “*■ I/) <75
<7ö(°9 ^ -Ц I (°9 ^ I/) <7s

<7.5 К = ^) lö /-

It was shown in a similar way in the paper quoted in footnote [18J that com­
putability by means of push-down stores is preserved under arbitrary
substitutions, and (which is somewhat more tedious) under primitive recur­
sions, and also under /r-operations. This yields the methods of sequential
computation of all the recursive functions by means of push-down stores.

5.2.4 Restriction to Three Push-down Stores

The result of the paper quoted in footnoteC19J, namely that three push-down
stores always suffice, is achieved by a suitable blocking of the separate
stores. For this, L is used in a new role, and a new auxiliary symbol о is
also needed, which makes it possible to store several different sequences
of symbols in the same store.
We shall illustrate this with the example of the previous section, where
of course the additional assumption is made that the functions

f (x ,y) , g(x), h(x)

can be computed with the help of 3 push-down stores. For the initial
functions this is true. To compute the function

f(g(x), h(x))

we have then the following procedure, using only the three stores I, I, О : -
The values g(s) and h(s), in this order, separated by a symbol L, will be
placed in O. In order that the place where this begins can be found again,
first the symbol о is put in O, and then on top of it another L : -

9 il(o — O) q2

q2\(L - O)<73.

We could now carry out the computation Qg of g(.y) using the three stores
I, I, O. However í must also be preserved for the computation of h(s).
Therefore, we first put s simultaneously into I and O, then from О we pour

76 Sequential Program Translation [Ch. 5

it back into I, while in I we block it by an L. Then we can start Qg: -

?з(*5*£)1 (« -1)0 '-1)?4
qA\(i - O)q3

q3(i = L)\q&

q Á ° ^ L) \ (o - I) ? 5

qt (o = L) \ (L * l) Q e.

Qg ends with g(s) on top of the highest L in O, and with L as the top symbol,
in the other stores. The L from I has to be taken out and used to block O.
Thus s will be opened up again in I. So we can pour it into I again. Now
our stores are ready for the computation Qh of h(s): -

qe\(i -~ 0)q 7

q7(i L) I (i 1) q7

q A i= L) \Q h.

After this the contents of О are

L o Lg(s)Lh(s),

and what we have to do is to compute / for the chain of arguments

g(s). HO-
This can be poured (in the required reversed order) from О into I, meanwhile
erasing and replacing by a comma the first L from the right. We still have
to erase the auxiliary symbols о L from O, so that only the original L will
remain. After this the computation Of of / for the desired arguments can
be executed:

qa (o ^ L) | (o - I)qs

qe (о = L)1(Z - o)qa

l (. - Otfio
?io(o 5̂ L) I (° I) <7io

q10(o = £) | (/ - o) qu

4n I (1 “ *■ °)Qf ■

Of course, in this, Stop at the end of Qg has to be replaced by qs, and Stop
at the end of Qh by qa.
It happened here that, at the beginning of a computation of a function value
the contents of the stores I or О were not just L. In more complicated cases,
it can also happen that I also contains a chain of symbols below Ls. The

Sec. 5.3] Partial Recursivity in Push-down Stores 77

chain of symbols up to (and including) the highest L which can be found
in a store at the beginning of a computation is called a kernel chain. This
remains unchanged during the computation, at the end of which in I and I
we will find their kernel chains, while in О is left its kernel chain with the
result of the computation on top of it. This result is completely independent
of the kernel chains.
In a similar way one can show that sequential computability with 3 push­
down stores is also preserved for arbitrary substitutions, primitive recursions,
and /i-operations.

5.3 Partial Recursivity in Push-down Stores

The converse of this is also true. Whatever can be computed by means
of push-down stores in a word set M over a finite alphabet A, is partial
recursive in the word set M ' over the alphabet A', which, in addition to
the letters of A, also contains the auxiliary symbols

A \L-,l

and in the case of the method applied for the minimization of the number
of push-down stores, also о . The proof of this will be illustrated using as
an example the computation of lb(x), executed in section 5.2.2. The succes­
sive instructions of the computation were as follows: -

4i I (i - О)q2
9г(* 5̂ L) I (/ -► O) qx

q2(i = L)\q3
q31 Stop.

In every computation there are only a finite number of instructions (here 4),
in which a finite number of stages occur (here 3). In the Oth moment, that
is before the computations starts, the contents of the stores I, I, О are the
kernel chains

wxL, w2L, w3L,

respectively. Moreover, in I, on top of this, is the reversed argument chain
which in our example is the single argument x. The reverse x of a word
X is primitive recursive in every word set, since it can be defined by the
following primitive recursion: -

f A, if x = A
x ■ lb (x) at (x) otherwise.

78 Sequential Program Translation [Ch. 5

Let us denote the contents of I, I, О and the index of the current stage in
the о (z)th moment of the computation by

i (w1 ,w 2 ,w 3 , x , z)
l (wl5 w2,w 3,x , z)
co(w1; w2, w3 ,x , z)
(T (wl5 W2, W3, X, z)

respectively. As the parameters

Wi,W2, w3,*
do not change in the course of the computation, I shall denote them by

i(z), l(z), cu(z), ff(z),
respectively.
In our example, in which I does not appear, these functions can be defined
as follows (where a top symbol means the last letter of a word, the erasure
of which yields the initial part of the word): -

w1 Lx, if 2 = A
i(z) = at (/(at (z))), if z ^ Л & <r(at (z)) = 1

г (at (z)) otherwise,
w3 L, if z = Л
o) (at (z)) lb (/(at (z))), if z ^ A & a (at (z)) = 1

C° ~ at (cu(at(z))), if z ^ A & <r(at (z)) = 2 & lb (i (at (z))) ̂ L
to (at (z)) otherwise,

1, if z = A
. , 1, if z ?£ A& u(at(z)) = 2& lb(i(at(z))) L

a 2, if z A & u(at (z)) — 1
3 otherwise.

Here 1,2, ... denote those words which represent the corresponding natural
numbers in M ' .
It should be noted that on the right-hand side of these definitions, unless
z = A, z appears only as an argument of at, i, со and a. Therefore, as was
explained in section 3.8, these simultaneous recursions can be reduced to
primitive recursions of the following form: -

{w1 Lx, if z = A
/i1(i(at(z))) otherwise,

ivv3L, if z —A
(/ig (uí (at (z))) otherwise,
П, if z = A
j/!3(<7(at(z))) otherwise.

Sec. 5.3] Partial Recursivity in Push-down Stores 79

These definitions, however, are pure iterations. From the first, for example,
we obtain

»0) =

WjLx,
h1(w1Lx),
hiih^WiLxj),
h\(h\ (hx (Wi Lx))),

if z = A,
if o(z) = 1,
if o(z) = 2,
if o(z) = 3.

Hence i(z) is the o(z)th iteration of hx at the place wxLx, which will be
denoted by

i (z) =h{«*n (w1Lx).
Similarly we obtain

rn(z) = h[o(z))(w3L),

<r(z) = 140(Z))(1).
Clearly, these functions, which do not depend on z but only on o(z) (and
parameters и^, w3, x which are not shown), are primitive recursive se­
quences.
The result of the computation is obtained in the first such moment m, in
which the stop stage

a(m) = 3

is reached. Hence, by the definition of the ^-operation from section 3.8,

m = Ы -А а (°00) = 3].
The result, then, is the word obtained from co(m) by erasing the kernel chain
w3L from its beginning, or in other words, the final segment (see section
3.6.2) of order

o(co(m))-o(w3L)

which is independent of the kernel chain. Hence the value of our function
lb for the argument x is

lb (x) = e(co(x, m), о (új (x, m)) — o(w3L))

with the above m.
It is easy to find an upper bound for this m on the basis of the computing
instructions above.
One has to move the characters of x (if x = A their number is 1, otherwise
it is o(x)) one by one from I into O. Here all but the last one of them have
to be erased, and then comes the transition to the stop stage. For x = A
this means 2 steps, otherwise 2 • о (x) steps. Hence in any case there are
at most 2 • o(x)+2 steps.
Consequently, m is definable by means of the bounded ^-operation

m = nz[z s 2*o(x) + 2 & a (z) - 3]

80 Sequential Program Translation [Ch. 5

z, as a predecessor of a natural number, must itself be a natural number.
Hence z = o (z) . Thus m is primitive recursive and consequently the result
of our computation is primitive recursive.
Of course, we already knew this for lb(x), but our reasoning can be genera­
lized to show that the result is always obtainable from primitive recursive
word functions by means of a single ^-operation (to which, in general, no
primitive recursive bound is available). Hence every word function compu­
table by means of push-down stores is (after a suitable extension of the
alphabet by auxiliary symbols), partial recursive.

5.4 Illustration on Railway Marshalling

Now these simple computation steps have a very natural translation into a
“railway marshalling language”, in which every letter or auxiliary symbol
has associated with it a car type (denoted by it), the push-down stores
correspond to tracks, and the stages to marshalling yards.
In this way, the word functions can be defined by railway marshalling graphs
and traffic regulations corresponding to these [2o:i. A railway marshalling
graph means a finite, connected, directed graph containing only triple
edges. These correspond to the tracks. The edges connecting the same
vertices (which will be called parallel) are directed in the same way, and
will be denoted by I, I and O. The vertices correspond to yards with suitable
switching devices. So now we are able to execute the following simple instruc­
tions concerning the last cars of the trains standing simultaneously on the
three parallel tracks:
1) Disconnect the last car from the train standing on one of the tracks
and send it to the depot. (This corresponds to the erasure of a given top
symbol.)
2) Bring a car of a given type from the depot and join it to the last car of a
train standing on one of the tracks. (This corresponds to putting a certain
symbol into a given push-down store.)
3) Disconnect the last car of a train on one of the tracks and join it to the
end of another. (This corresponds to moving a top symbol from one store
another.)
4) Bring out of the depot a car of the same type as the last car of a fixed
train and join this to the end of one of the trains. (This corresponds to

[2°] p Péter: Veranschaulichung eines sequenziellen Berechnung der rekursiven Funktionen
durch „eisenbahnrangierende Graphen”, Periodica Math. Hung. 3 (1973) pp. 183-187.

Sec. 5.4] Illustration on Railway Marshalling 81

the transfer of a certain to symbol into another fixed push-down store,
while it also stays in the original store.)
The graph has two important vertices: an initial station, where three
edges run in from the outside world (these will also be denoted by I, I, 0),
and a final station (the stop station), from which no edges run out. Every
other vertex is at the intersection of both incoming and outgoing edges.
After this we can start the computation of the value at the argument chain
s of the word function f defined by such a “railway marshalling graph”.
The first step is to have three trains standing on the three tracks coming in
from the outside word to the initial station. These will be called the “kernel
trains I, I, O” respectively, and they all end with a railcar denoted by the
symbol L. To the end of the kernel train I are also joined, one by one, the
cars denoted by the symbols of s. Then the three trains are started in such
a way that they arrive at the initial station simultaneously. Here, as at
every other station except the final station, the traffic regulations of the
graph, depending on the last cars of the three trains standing on the
parallel tracks, determine which station they have to proceed to (without
changing their track symbols), and whether they remain unchanged in the
course of this or undergo one of the modifications 1), 2), 3), 4). They again
have to arrive at the next station simultaneously. The “next” station can
actually coincide with this one, but in this case at least one of the modifica­
tions must be carried out. Cars from the kernel trains are never discon­
nected.
Following the traffic regulations, the trains might have to return often
to the same station, and this can be repeated without any limitation. If the
trains never arrive at the final station, then /is not defined for the arguments
under consideration.
Furthermore, the traffic instructions are chosen in such a way that if eventu­
ally the trains arrive at the final station, then the kernel trains I and I will stand
on the tracks I and I while on track О will stand the kernel train О together
with a chain W of cars joined to its end. Here the symbols denoting the
cars in W are either letters of the alphabet or A. The word composed of
these symbols is the value of / for the given arguments. If W contains only
A, then this word is also A. Otherwise, of course, the symbols A have to
be omitted. This value is independent of the kernel trains.
Thus, we have sketched a new translation of the “push-down store method”.
In accordance with section 5.1.3 we have, then: Everything obtainable by
a computer can also be obtained by means o f a railway marshalling graph
with very simple regulations. In short, the regulations might, depending on
the last cars of the three trains at a station require the disconnection of
the last car of a train or the joining of a certain car onto the end of a train.

82 Sequential Program Translation [Ch. 5

5.5 Sequential Procedures

I would like to mention here briefly that the significance of sequential
procedures, and in particular of the push-down store method, goes far
beyond program translations. Of the numerous applications I would like
to emphasize its connections with the constructibility of formula controlled
computers.

5.5.1 Kalmár’s Formula Controlled Computer

As is proved by several patents, F. L. Bauer and K. Samelson have actually
considered the application of the method for this purpose. The fundamental
ideas of a different solution (compatible with the notation system using
parentheses) for formula controlled automata were sketched by L. Kalmár
as early as September 1959, at the Warsaw Symposium. He had in mind a
computer which can be programmed in a mathematical formula language,
and which executes the symbols of a program, written in such a language,
one after the other as statements. After this L. Kalmár worked out a ver­
sion of such computers feasible in practice[21]. According to an oral com­
munication by Z. L. Rabinovic (Cybernetical Institute of the Ukrainian
Academy of Sciences), the first universal formula controlled computer was
built in this Institute (1963-1966), on the basis of Kalmár’s ideas.

t21-* See also L. Kalmár: Über einen Rechenautomaten, der eine mathematische Sprache
versteht, Zeitschrift für Angew. Math, und Mech. 40 (1960) pp. 64-65; and L. Kalmár:
On a digital computer which can be programmed in a mathematical formula language.
Second Hungarian Math. Congress Budapest 24-31 August (1960) Abstract of lectures
2, pp. 3-16.

Chapter 6

Recursivity of Flow Charts

6.1 Graphical Representations

In assembly languages as well as in higher level programming languages
(which are closer to the language of mathematics, but farther from the
language of a computer) it is usual to accompany the trains of thought
that is the logical structure of the program by diagrams called flow charts.
These make translation into computer language easier. I shall deal with
this notion, which in practice is used without sufficient precision, in the
exact form due to Kaluznin, and I shall use his terminology for it: graph
scheme.

6.2 Flow Charts in Algol 60

Let us consider the following procedure to define the values of a numeric
function f(a, b), given in the programming language Algol 60:

integer procedure f(a , b); value a, b; integer a, b; begin integer i, w; i := 0;
w:=l; c: if i = b then go to e else begin w:=wX a; i:= i + l; go to c end;
e:f: = w end;

Even for somebody not familiar with the language Algol 60 it is easy to
understand what this means; a procedure to compute the integer value of
f(a, b), provided that integer values are given to a and b. The procedure
consists of statements, while begin and end play the roles of an opening
and closing parenthesis, respectively. First it is stated that the auxiliary
variables i, w are also given integer values. Then 0 is set as the initial value
of i and 1 as the initial value of w. Now follows a statement marked by the
symbol c. If i=b, then go (immediately) to the statement marked by e.
Otherwise the statements follow in their normal order within the parenthe­
ses begin and end. Replace the actual value of w by w • a and the actual value

84 Recursivity of Flow Charts [Ch. 6

of i by i + 1. Then go back to the statement marked by c: (for cycle). Finally,
the statement marked by e: (for end) says that / takes the last value of w.
This is the value of the function / for the pair of arguments (a, b).
This value w can be considered as a one-term sequence. The arguments
(a, b) form a two-term sequence. The intermediate values also depend on
the auxiliary variables i and w, that is on four-term sequences. In the course
of the computation sequences of natural numbers are transformed into
other similar sequences. This transformation can be represented by a finite,
connected, directed graph, the vertices of which are associated with certain
variables, where these variables run through sequences of natural numbers
with a given number of terms. The values of these functions are also such
sequences, possibly with a different number of terms. A vertex associated
with a relation is called a logical vertex. Two edges issue from such a vertex,
one denoted by T (for true), and one by F (for false). The other vertices are
called mathematical vertices. A single edge issues from each such vertex
with the exception of one particular vertex, the output vertex, from which
no edge issues. Every vertex has an edge which ends there, with the
exception of another particular vertex, called the input vertex.
The above computation of f(a, b) is represented by the following graph
scheme G: -

where E4 is the input and E4 is the output. Moreover

b) = (a, b, 0,1),

B2(a, b, i, w) = i = b ,

a3(a, b, w) = (a, b, i+ 1 , wXa),
a4(a, b, i, w) = w.

Here ax(a, b), a3(a, b, i, iv) and a4(a, b, i, w) are functions, the variables
of which are two-term and four-term sequences of natural numbers, respec­
tively. The same applies to the relation

B2(a, b, i, w).

Sec. 6.2] Flow Charts in Algol 60 85

As the argument of the function associated with the input Ex is (a, b), and
the value of the function associated with the output is a number, we say
that the graph scheme G determines (or computes) a numeric func­
tion G(a, b) of two variables. The computation consists of the follow­
ing steps. To begin with, the argument (a, b) is given to E4. Then a4 is
computed at this place and its value {a, b, 0, 1) is sent as an argument along
the unique edge leading from Ег to Ea. From this logical vertex, it is sent
further as an unchanged argument along either edge T or edge F to the
vertex E4 or E3, according to whether B.> is true or false that is 0=b or O^b.
In the second case the function a3 associated with E3 is computed for this
argument, and its value (a, b, 1, a) is sent back to E2 along the edge leading
from it. Here everything starts all over again. Whenever a certain (a, b, i, w)
is taken to E3, the value (a, b, z'+l, w-a) is sent back from here to E2,
to see whether the third term has become equal to b. If the answer is
affirmative, then we proceed along the edge T to the output E4, and the
value of a4 obtained here is the value of the function G(a, b) computed by
G. As can be seen from the above description of the computation steps,
this coincides with / (a, b) computed by our Algol procedure.
Actually, G(a, b) is a well-known function. Indeed, the above procedure
yields us the following (denoting the transition from certain number se­
quences to others by — and J L) :

(a, b) ------<■ (a, b, 0, 1)

1, if b = 0 (a, b, 1, a) otherwise

4
i H

a, if b = 1 (a, b, 2, a • a) otherwise

í Í
a-a, if b = 2 (a, b, 3, a • a • a) otherwise

T-------i
a • a • a, if b = 3

Thus we see that G computes the Z>th power of a, that is

f(a , b) = G(a, b) = ab.

86 Recursivity of Flow Charts [Ch. 6

6.3 Flow Charts of Word Functions

It is possible to read off the determining graph scheme directly from the
definition of a function.
Let us consider e.g. the following definition of a function / (x , y) in a
word set M over a finite alphabet A : -

f ix , У) = g(x, A, y),
where g is defined by

{V, if o(x) = o(u)
g(x,ua0, at (i>)) otherwise.

Here a0 is an element of A, such that the words which are built out of it
represent in M the natural numbers and consequently also the orders of the
words.
The definition shows that the first step is to move from (x, y) to (x, A, y).
Then begins the computation of g by cases, according to whether or not the
orders of the first and second terms coincide. In the first case one has to
take the third term of the three-term word sequence. In the second case,
however, one has to pass to a new three-term sequence, with ua0 instead of
the previous и as the second term, and with at(y) instead of the previous v
as the third term. Then one has to return with this new argument to the
point where the computation of g began. This can be represented by a graph
of the same structure as above: -

<*i (x,y) = (x, A, y),
However with

B2(x, u, v) = o(x) - o(u),

cf.3(x, u, v) = (x, uaa, at (v)).

a4(x, u, v) = V.

Sec. 6.4] Flow Charts of Word Functions 87

The function determined by this graph scheme is computed through the
following steps; -

(x, y)-------(x, A, y)

I-----------------------1
y, if о (х)= Л (x, a0, at (y)) otherwise

I| 1 |
at(y), if o(x) = a„ (x, a0 a0, at(at(y))) otherwise

I---------------------- 1
at (at (y)), if o(x) = a0 a0 (x, a0 a0 a0, at (at (at (у)))) otherwise

I-----------------------1
at (at (at (y))), if o(x) = a0a0a0

Clearly, this is the o(x)th iteration of the function at for the argument y: -

f (x , y) = at(oW) (y).

6.4 Partial Recursivity of Flow Charts

In general, with every graph scheme G, there is associated a set M G in such
a way that the domains of the functions, the ranges of the former, and the
relations associated with the vertices are subsets of M a. The same is then
true for the function determined by G. This is defined for those elements
of M G, for which as input arguments, the computational procedure described
in the examples never gets stuck before reaching the output. This can happen
as early as at the input, if the function or relation associated with it is
not defined for the input argument. Also the procedure must not contain
an infinite cycle, and the function associated with the (always mathematical)
output vertex must always be defined for the incoming argument.
In what follows, I will restrict myself to graph schemes defining numeric
functions of an arbitrary number of variables. Then M G can be chosen as
the set of all finite sequences of natural numbers.
One has to take certain initial functions and relations that can be associated
with the vertices. Then the functions defined by such graph schemes can be

88 Recursivity of Flow Charts [Ch. 6

associated with the mathematical vertices of new graph schemes, and so
on. It is easy to see, however, that if a mathematical vertex E of a graph
scheme G is replaced by the graph scheme determining the function asso­
ciated with E, then the modified graph scheme computes the same function
as G. Therefore we can restrict ourselves to graph schemes, the mathemati­
cal vertices of which only have the initial functions associated with them.
With a suitable choice of the initial functions and relations, I have proved[22]
that every numeric function computable by a graph scheme is partial recursive.
The proof will be illustrated for the example of section 6.2 without reducing
the functions occurring there to the initial functions.
Let us consider again this graph scheme and the functions and relations
associated with its vertices: -

<*fa, b) = (a, b, 0,1)

В f a , b, i,w) = i = b

a.fa, b, i, w) = (a, b,i + \ , w • a)

a f a , b, i, vv) = w.

We can code finite sequences of numbers by natural numbers, for example
the sequence (n1; n2, ..., nj) by the number n=21̂ 1 -p \ l ■ p nfi • ■■■
Then the sequence coded by n is simply denoted by a„. Here, as before,
is the ith prime number, with 2 considered as the Oth. The exponent of
Pi in the prime factor representation of n will be denoted by exp;(n). Tak­
ing into account that the nth prime number is certainly bigger than n, we
see that the number n codes an /-term sequence if the following primitive
recursive relation holds: -

Z fn) = exp0 (n) + 1 = l & (i) [i s n — (i > Z — exp; (n) = 0)].

[2 2] Péter: Über die Partiell-Rekursivität der durch Graphschemata definierten zahlen­
theoretischen Funktionen, Ann. Univ. Sei. Budapest 2 (1959) pp. 41-48.

Sec. 6.4] Partial Recursivity of Flow Charts 89

The sequences occurring in the definition of oq, a3 and a4 can be coded as
follows:

(a, b) — ani with n1 = 21 • 3° • 5b
and

(a, b, 0, 1) = ami with m1 = 23 • 3° • 5b • 7° • 111 = 44 • nx.
Also

(a, b, i, w) = a„2 with n2 = 23 • 3° • 5b • l l • 1 l w
and

(a, h, i + 1, w-a) = am2 with m2 = 23 • 3° • 5b • 7i+1 • l l w'° =

= 8 • 3exP d V . 5MP2K) . 7exp3(/i2) + l . J Jexp4(n2) exPl(n2)̂

w - атз with m3 = 2° • 3W = 3expd nd.

Let us put for j = 1, 3, 4

л _ { Ш’ if а/ а") = я™
^ П [O, if а7(а„) is undefined.

Then, since ax is defined for two-term sequences and a3 and a4 for four-term
sequences, ß(j,n) is determined by the following definition by cases as a
primitive recursive numeric function: -

ß (j . n) =

44n, if j = \ & Z 2(n)
g . 3 exP4t ”) . 5 <=xP2("> . 7exp3(n) + l . I JexpjW-expj (n)

Зехр4(я), j f j = 4 & Z 4 (n)

0 otherwise.

if j = 38cZi (n)

For /2=0 an was not defined. Therefore ß(j, n) vanishes if and only if a / a j
is not defined.
The primitive recursive function y(n), belonging to the logical vertex, and
defined by

in, if Z4(n)
 ̂ П { 0 otherwise

(in accordance with the fact that the values coming in to logical vertices
are sent onwards unchanged) vanishes if and only if B2(an) is not defined,
since B2 is defined for four-term sequences. Moreover if

n = 23 • 3° • 5b • 7‘ • 1 l w, that is an = (a, b, i, w),

then 0 and
B2(an) = i = b = exp3 (n) = exp2 (n).

90 Recursivity of Flow Charts [Ch. 6

6.4.1 Recursivity of Graphical Structure

So far we have defined primitive recursive counterparts of the functions
and relations associated with the vertices. Now the structure of the graph
G has to be described in a primitive recursive way.
For this purpose we define the following functions:

0, if Ej is a mathematical vertex,
v(j) = 1 , if Ej is a logical vertex,

2 otherwise;

j', if the edge starting out of the
z (j) = mathematical vertex Ej leads to Ey

0 otherwise;

j', if the edge T starting at the logical
x (j) — vertex Ej leads to Ey

0 otherwise;

j ' , if the edge F starting at the logical
l (j) = vertex Ej leads to Ej,

0 otherwise.

These can be defined as primitive recursive functions by the following
definitions by cases: -

v (j) =
0,
1,
2

if j = 1V/ = 3V; = 4
if j = 2
otherwise,

(2, if 7 = 1 Vj = 3
T J fo otherwise,

x(j) =

m =

4,
0

i 3*
|0

if j = 2
otherwise,

if 7 = 2
otherwise.

The computation of G (a, b) is carried out at successive moments, where in
“moment 0” the argument (a, b) is to be taken, and in moment 1 the func­
tion or relation associated with Ex is to be dealt with.
Let

j, if in moment r the computation has
to deal with Ej,

0 otherwise.
i(r, a, b) =

Sec. 6.4] Partial Recursivity of Flow Charts 91

Furthermore

co(r, a, b) = 1

the number corresponding to the argument (a, b) if r= 0 ;
otherwise: the value of the function ß or у belonging to
the vertex of index i(r, a, b), computed at moment r,
according to whether El(r a b) is a mathematical or
logical vertex.

Hence these functions can be defined by the following simultaneous recur­
sion: -

i(0, a, b) = 0,

i(Ua, b) = 1,
and for r S l

/ (r + l , a, b) =

c(i(r, a,b)), if v(i(r, a, b)) = 0
(i (r ,a ,b)), if v(i(r, a, b)) - 1 &exp3(w(r, a, b)) =

= exp2(co(r, a, b))
A(i(r, a, b)), if v(i(r, a, b)) = 1 & exp3 (ю(г, a, b)) ^

^ exp2(m(r, a, b))
0 otherwise,

co(0, a, b) = 2-3“ • 5b,

ю (г+ 1, a, b) =
ß (i(r+ 1, a, b), ca(r, a, b)),
y(m(r, a, b)),
0

if v (i(r+ 1, a, b)) = 0
if v (i(r+ 1, a, b)) = 1
otherwise.

The i (r -f-1, a, b) occurring in the definition of w (r+ 1, a, b) can be replaced
by the right-hand side of the definition of i(r + l,a , b). Thus not only
i (r + l, a, b), but also со (r+l , a, b) can be defined as primitive recursive
functions of i(r, a, b) and co(r, a, b). Such a simultaneous recursion, however,
can be always reduced to primitive recursive definitions of

i(r, a, b) and to(r, a, b).

The value of G(a, b) is obtained at the first moment when the output vertex
E4 is reached, and with a value, for which a4 is defined, such that the corres­
ponding value of ß, and consequently of со, is not 0; in other words, at the
first moment r, in which both

i(r,a,b) = 4 and w(r, a, b) + 0

hold. The value of a4 at moment r is the value of w at this moment: a single
number, that is a one-term sequence a„, whose code is

n = 2° • 3W = 3W.

92 Recursivity of Flow Charts [Ch. 6

Thus 3W is the value of ß belonging to this vertex in this moment, that is
со (r, a, b); now w can be obtained from this as the exponent of 3 in its prime
factor representation, that is as

Thus we have
expx (co(r, a, b)).

G(a, b) = ехр1(ш(;иг[г(г, a, b) = 4 & co(r, a, b) + 0], a, b)).

6.5 The Computability of Flow Charts

It is easy to give an upper bound for the ^-operation applied here: Whenever
a vertex is reached, one stays there for a moment. E4 and E4 are reached
only once, E2 and E3 as many times as there are values of i to increase to
b from 0, that is, both are reached b times. This yields the upper bound
2b+2 for r. Hence the function

G(a, b) = exp1(co(jur|> ä 2 + 2b&i(r, a, b) = 4&co(r, a, b) + 0], a, b)),

determined by G, is primitive recursive.
Of course we knew this already, since G(a, b) is equal to the power ab.
But a similar way of reasoning applies to the general case, showing that all
the numeric functions computable by graph schemes (with suitably chosen
initial functions) are obtained from primitive recursive functions through
substitutions and a single /r-operation, and consequently they are partial
recursive. According to Chapter 4, however, every partial recursive func­
tion is computable by a computer. Hence we can conclude: -

Whatever can be computed by a graph scheme, is also computable by a
computer.

Chapter 7

Recursive Procedures and Algol 60

7.1 The Converse Results

What happens to the converse of the final conclusion in the previous
chapter? Everything obtainable by a computer is partial recursive. Can all
the partial recursive functions be computed by graph schemes?
In sections 6.2 and 6.3, this was shown for two particular cases, for the pri­
mitive recursive numeric function ab, and for the primitive recursive word
function

/(x , y) = at(o(jc))(y).

In the latter case, it was somewhat obscured by not taking the natural
primitive recursive definition of/ (x, y): -

[y, if x = A
/(*> У) I at y)) otherwise.

Is it not possible to obtain from this a graph scheme determining /(x , y) ?
This definition starts with the decision whether x = Л or not. This gives a
logical input vertex with the associated relation

^ 1 y) = л: = A.

The edge F starting out of this vertex has to lead to a mathematical vertex
E2, with which is associated the function

У) = (at (x), y).

Similarly the edge T has to lead to the output vertex, say E3, with which is
associated the function

<*з(х, У) = У-

94 Recursive Procedures and Algol 60 [Ch. 7

This yields the final result. So far everything is all right: -

But how do we proceed after having reached E2? Our process fails here.
We would have to apply/ to the argument (at (x), y). Hence the edge originat­
ing at E2 would have to lead back to Et , where the computation of/ started: -

However, this would start a rotation between Ej and E2, with pairs whose
second term is invariably y, and the order of whose first term is 1 less after
each turn. The “at” applied to / in the definition could not even be mention­
ed. After o(x) turns, one would end up in Ex with the pair (Л, y), for which
B1 is true. Then one has to proceed to E3, where у is obtained as the result.
Hence this graph scheme would not compute

f ix , y) = y.

Thus it was with good reason that we used a different definition of

at(oW) (y).

7.2 Recursion in Algol 60

The numeric function

was not given by a definition, but by an Algol procedure. The natural
definition would be: -

4.

a t f° (* » (y) ,

but

f(a , b) = ab

Sec. 7.2] Recursion in Algol 60 95

It would not be correct in this case either to deduce from this definition a
graph scheme determining ab. In the same way we would have to take a lo­
gical input vertex Ex and the relation

Bx(a, b) = b = 0

associated with it. From Ex the edge F must lead to a mathematical vertex
E2 with

a2(a, b) = (a, b — 1),

and the edge T must lead to the output vertex E3 with

a3(a, b) - 1.
Thus we would have

Here/ should be applied again to the pair (a, b — 1) obtained in E2. Therefore
the edge starting out of E2 would have to lead back to the start of the
computation of f that is to Ex. This cycle would have to continue with the
second term decreased by 1 for each repeat (without even mentioning the
multiplication by a), until finally the second argument is 0. Hence B1
holds, in which case one has to proceed to the output E3. Here the constant
1 is obtained as the result of the computation. Consequently this graph
scheme does not compute a*.
From the above natural definition of ab we should obtain the following
Algol procedure for its computation: -

integer procedure f (a ,b); value a, b\ integer a, b;
/ := if b = 0 then 1 else/(a, b — l)Xa;

This is essentially different from the procedure given in section 6.2; namely
it calls itself for the computation of / at another place. Such sections of
program are called recursive procedures. Among these are counted the
simultaneous procedures which call one another mutually.

96 Recursive Prodceures and Algol 60 [Ch. 7

7.3 Non-recursive Algol Procedures

If we could have deduced from the primitive recursive definition of/ (a, b) =
=ab a graph scheme determining it, then this would have yielded us a
non-recursive procedure. Indeed, in generalC23], i f a numeric function is
computable by a graph scheme, then a non-recursive Algol procedure can be
given for its computation.
The general reasoning will again be illustrated with the example of a graph
scheme G, which was used earlier as an example of a general kind in section
6.4: -

Now, however, the variables of the different functions and relations have
to be denoted in a different way, and in the values of the functions (which
are finite sequences) the dependences of the separate terms on the corres­
ponding variables have to be indicated. (For the sake of clarity, I shall
use lower indices and also Greek letters. It is easy to replace these by
expressions admissible in Algol.) Thus we have

*i(G,i> ^1 ,2) — (ai,i(yi,i> vi,ú> ai,2(Ti,i> vi,2)’ а1,з(Ь1,1> ^1 ,2)5 ai,4(G,i> ^1,2));
where

Gfi.iOfi.u G.ä) = G ,i> ^1,2(g , i > v i ,s t) = v i , 2> a i ,3 (yi,i> ®i,s) =

“ 1 ,4 (» 1 ,1 . G ,a) = 1 ;

^ 2 (^2 ,1» 2̂,2> 2̂,3> ^2 ,4) = 2̂,3 = 2̂,2>

а з (^ з , 1 > ^ з ,2 > y 3 ,3 ? ^ 3 , 4) = (a 3 , i (^ 3 , i > v 3 , 21 ^3 ,3 > ^ 3 ,4)» а з , 2 (у з, i> ^3 ,2 9 ^ 3 , 3) ^3 ,4)5

a 3, 3 (^ 3 , 1> ^ 3 ,2 5 ^ 3 , 3) V3 , i) t ^ 3 , 4 (G , 1 ? ^3 ,2 > ^3 ,3 > ^ З д)) >
where

^ д С ^ З . 1> ^3 ,2 5 V3 , 3 i ^ 3 , 4) = U3 , l i ^ - 3 , 2 ^ 3 , 1 1 ^ 3 ,2 * ^ 3 ,3 » V3 , l) = y 3,2>

аз,з(Тзд> ^з,2j ^з,з> ^3,4) = ^3,3T 1 i ®з,4(^3,1» ^3,2? ^з,з» ^3,4) = ^здХ^зд»

^4ÍPí , 1 s G,2> G ,3 i ^4 , 4) — a4 ,l(G ,l! G,2> G,3> ^4 ,4))

[23] Péter: Die prinzipielle Ausschaltbarkeit des rekursiven Prozeduren aus der Prog­
rammierungssprache Algol 60, Acta Cybernetica 1 (1972) pp. 219—231.

Sec. 7.3] Non-recursive Algol Procedures 97

whence
a4,1 (U4,1» 1*4,2, **4,3! 1*4,4) = Vi , i -

The heading of the Algol procedure deduced from G reads as follows: -

integer procedure f (a, b); value a, b; integer a, b'

In the procedure body first the necessary variables are declared by

begin integer у1>4, r12, i*2| 1 , 1*2 ,2 ! 1*2 ,3 , 1*2 ,4 , 1*3 ,1 , 1*3 ,2 , 1*3 ,3 , i*3,4, 1*4 ,1 , 1*4 ,2 ,

1*4,3, 1*4,4'

Then, starting at Els the statements belonging to the vertices follow, which
if necessary can be marked by the symbols of the corresponding vertices.
Firstly by the general method we have

1*1 ,1 ’—a; 1*1 ,2 '—b\ t*2>1:—0(1 1 (1*1 ,1 , 1*1 2): 1*2 ,2 * "OCj,2 (̂ *1 ,i! (*1 ,2) 1 1*2 ,3 *—®i, 3

(i*i,i. 1*1 ,2); 1*2 ,4 :=ai,4 (i*i,i. 1*1 ,2); E2: if v2<3=v2<2 then begin viA :=v2y ,

1*4 ,2 •= 1*2 ,2 ; 1*4 ,3 — 1*2 ,3 ; 1*4 ,4 •= 1*2 ,4 ; go to E4 end else begin v3A\=v2A\

V3 ,2 -= V 2,2,\ V3 ,3 -= V 2,3> 1*3,4 *= 1*2,4 i 1*2,1 a 3 ,1 (**3,1. 1*3,2 > 1*3,3 > 1*3,4) !

1*2,2 *= a3,2(l*3,l! 1*3,2. 1*3,3. 1*3,4); 1*2, з'= *3, з(1*3,1! 1*3,2! 1*3,3! 1*3,4); 1*2,4 •= *3,4
(1*3 ,1 , 1*3 ,2 , i*3 ,3 , 1*3 ,4); go to E2; end; E4: /:=oc4 ,i(t*4 ,i, 1*4 ,2 , г*4 ,з, i*4,4) end;
In our example, replacing each a.itJ by its value, we obtain the following
statements: -

»1,1:= a ; 1*1,2*= *̂; 1*2,1 ;= 1*1,1 i **2,2-= t*i,2; 1*2, з ’= 0 ; t*2,4 ’= i> e 2: if

1*2,3= 1*2,2 then begin i’4,i:=t*2,i; vit2:—v2i2; i*4>3 :=i*2,3; i*4,4 :=i*2,4; go

to E4 end else begin r 3,i:=i*2,i; г*з,2:= г*г,2i г*з,з:= 1*2,3! v3t i :=v2ti',

1*2 , 1 := 1*3 ,1 ; t*2 ,2 "= 1*3 ,2 ! 1*2 ,з;= 1*з,зТ1; i*2 4 := ü3 j4 X i*3 ji ; go to Е2 end,

Е4: / := г*4,4 end:

In this particular case several further simplifications are possible. Firstly,
one sees that during the procedure vltl, v21, v31 and r41 take only the value
a: further r1>2, v2 2, v3>2 and n4>2 take only the value b. Therefore these
variables are superfluous, wherever they occur they can be replaced by a
and b respectively. Moreover, it can be seen that i*3,3: = 1*2 ,3 , and then
1*2,3 :—1*3,3 +1 can be replaced by the statement 1*2,3 : = 1*2,3 +1- Similarly
1*3,4:= 1*2 , 4 and then v2 i :—v3 i Xv31. That is, i*2,4: = t*3,4Xa can be replaced
by the statement v2 i :=v2 i Xa, finally i*4i4:=i*2 4 and then /:= i*4 4 can be
replaced by / : = t*2,4. Consequently the variables v3 3, r34 and r4 4 are also
superfluous. So is r4 3, which is not used at all. After all these simplifications
we obtain the following Algol procedure: -

98 Recursive Procedures and Algol 60 [Ch. 7

integer procedure/ (a , b); value a, b; integer a, b; begin integer n2>3, v2>4;

y2,s:=0; vM := l; E2: if v2t3—b then go to E4 else begin v2t3:=v2t3+ 1;
V2,i'-=v2 i Xa; go to E2 end E4: f:= v2A end;

This, with the notation
2̂,3 5 2̂,4 5 E2, E4

instead of
i, w, c, e,

coincides with the non-recursive procedure from which the graph scheme
G determining/was deduced in section 6.2.

7.4 Unfolding a Primitive Recursion

According to the above, it might seem that the functions defined by primi­
tive recursion are in general not computable by graph schemes. However
in my paper mentioned in footnote [23], I have proved that this is not the
case. Primitive recursions can always be replaced by other definitions suit­
able for the purpose.
Let us consider the general case of the definition by primitive recursion of
a two-place numeric function f(a , b). The order of the variables is irrelevant
so

fgo(a), if й = 0
\g (a ,b — l , f (a ,b — l)) otherwise.

We assume that we already have Algol procedures for the computation of
the functions g0 and g. This suggests the following Algol procedure:

integer procedure/(a, ft); value a, b ; integer a, b;f:= if b = 0 then g0(a) else
g(a, b - l , f (a , b - 1));

In the “else” case this procedure calls itself to compute the value of / for
the arguments a, b — 1. An ordinary computer program cannot do anything
with such a situation, unless the procedure is suitably expanded. From the
definition o f / we obtain gradually the following: -
If b= 0, then

f(a , b) = g0(a);
otherwise

/(a , b) = g(a, b — 1, f(a , b - 1)).

If here b — 1, so that b — 1=0, then f(a , b — l)= g 0(a) and

f(a , b) = g(a, b — 1, g0(a)) = g(a, 0, g0(a)).

Sec. 7.4] Unfolding a Primitive Recursion 99

Otherwise, given that (b — 1) — 1 =b — 2, then

fifl, b — 1) = g(a, b — 2, f(a , b — 2)).

Hence we have to compute
/(a , b) = g(a, b — 1, g(a, b - 2 , /(a , b -2))).

Now, if b= 2, then
/(a , b — 2) = g0(a).

Hence

/(a , b) = g(a, b — 1, g(a, b - 2 , g0(a))) = g(a, 1, g(a, 0, g0(a)))

and so on.
It follows that for every b > 0

/(a , b) = g(a, b - 1, g(a, b - 2, ..., g(a, 1, g(a, 0, g0(a)))...)}
holds.
Only after this expansion can the machine computation be carried out,
step by step. To begin with (in “step 0”) g0(a) is computed. Then with the
value w we obtained here g(a, 0, w) is computed; with the new w value
g(a, 1, w) is computed, and so on. If, in general, in step i the value w is
obtained, then in step г + 1 the computation of g(a, i, w) follows. Finally,
/ (a, b) is that value vv which is obtained in step b.
This is reflected by the following definition of an auxiliary function h, which
for i<b gives the transition from step i to i + l, and from the actual value
w to g(a, i, w), while for i=b yields the actual value of w:

Í w, if i = b
h (a ,b ,i ,w) yh(a, b, i+ l, g(a, i,w)) otherwise.

Since in step 0 we have w=g0(a), it remains to be proved that

h (a ,b ,0 ,go(a j)= f(a ,b). (7.4.1)

Clearly, it suffices to prove the following proposition: -
For /S b we have

h(a, b, 0,f(a , 0)) = h(a, b, i,f(a , i)). (7.4.2)

Indeed, for i=b, using / (a, 0) =g0(a), we obtain from this exactly (7.4.1).
Now (7.4.2) is clearly satisfied if b=0, since then i (^b) is also 0. Hence
both sides are identical.
For b^O (7.4.2) is proved by induction on i. For /= 0 both sides are iden­
tical. Assuming that (7.4.2) is valid for i«=b, we shall show that it is also
valid for i+ l . Indeed, by the definitions of h and/ we have

h(a, b, 0 ,f(a , 0)) = h(a, b, i,f(a , i)) = b(a, b, i+ l , g(a, i,f(a , i))) =

= h(a, b, i+ l , / (a , i+ l)).

100 Recursive Procedures and Algol 60 [Ch. 7

If, in particular
go (a) = 1 and g(a, b, w) = w • a,

then we have the primitive recursion defining

f(a ,b) = ab

as in section 4.2. This function can be defined also as

with
f(a , b) = h(a, b, 0, 1),

h{a,b, i, w)
J w, if i = b
\h(a, b, i+ \, w • a) otherwise. (7.4.3)

An added parameter or the omission of one or a series of arguments does
not change the above proof.
The numeric function determined by the general primitive recursion

J/(0, alt ..., ar) = g0(als . . . ,a r)
1 / 0 1 + 1 , 0 !, ..., ar) = g(n, alt . . . , a r, / (/ i ,a ls ..., ar))

is also definable as

f(n , a l5 ..., ar) = h(n, al9 . . . ,a r, 0, g0(a1, ar)),
with

{w, if i = n
h[n, flx, ..., ar, i+ l , g(i, űj, ..., a,, w)) otherwise

7.4.1 The Resulting Flow Chart

The situation is similar for primitive recursions in a word set. Indeed, the
application of similar considerations for the primitive recursion from
section 7.1, by which the word function

a t (°(*)) (y)

was defined, leads to the definition of this function given in section 6.3,
which is analogous to the above. In other words, it leads to the definition,
from which the graph scheme determining

at(o(x)) (>■)-
was deduced.
Similarly, it is possible to deduce, from definition (7.4.3) of the numeric
function / (a , b)=ab, a graph scheme determining it, which coincides with
the graph scheme deduced from the Algol procedure in section 6.3.
In (7.4.3), one first has to proceed from (a, b) to (a, b, 0, 1). Then begins

Sec. 7.5] Unfolding a Primitive Recursion 101

the computation of h by cases, according to whether the second and third
terms of a four-term sequence coincide or not. In the first case, one has
to take the fourth term of the sequence as the result (“output”). In the
second, a new four-term sequence is to be taken, in which the first and second
terms remain unchanged, but instead of i we have /-H , and instead of w
we have w • a, as the third and fourth terms respectively. Then, with this
new four-term sequence, one has to go back to the computation of h. This
is represented by the graph scheme: -

with
ai(a, b) = (a, b, 0, 1)

B2(a, b, i, w) = i = b,

a3(a, b, i, w) = (a, b, i+ 1 , w • a),

a4 (a, b, i, w) = w.

This is indeed the same as that from which, in section 7.3, the non-recur-
sive Algol procedure determining ab was deduced.

7.5 Normal Flow Charts

In order to be able to do the same in the general case, finally we have to
make precise the initial functions and relations to be associated with the
vertices of graph schemes.
We take as initial functions those functions a, which make /с-term sequences
into /-term sequences:

oc(nt , ..., nk) = Cm1, . . . , mt)

in such a way that every mi (/= 1, 2, ..., /) is either rtj or tij + 1 for some
7 = 1 , 2, ..., k, or is equal to 0.
As initial relations we take those of the form

= m1 = m2,

where both m1 and m2 are one of the nt (/= 1 ,2 , ..., k).

102 Recursive Procedures and Algol 60 [Ch. 7

A graph scheme with every vertex associated with an initial function or
relation is called a normal scheme. The empty scheme is also assumed to
be normal.
I claim now that every primitive recursive function can be determined by a
normal scheme [24i.

7.5.1 Determining Recursive Functions by Flow Charts

The initial functions of normal schemes (which, as special cases, contain
the initial functions 0 and л + l of the primitive recursive functions) can
immediately be defined by normal schemes. The corresponding scheme
consists of a single vertex, which is both the input and the output. The
function to be defined is associated with this vertex of course. It now remains
to be shown that computability by a normal scheme is preserved under
substitutions and primitive recursions.
Assume, for instance, that the functions

f{a ,b ,c) , g fa ,b), g2(a,b), g3(a,b)

are determined by normal schemata, represented by the following blocks
in which only the input and output vertices are explicitly indicated: -

" ё ~1 Г Т 1 Г Ё Л [~Ё Г

А А, А2 А3

Then the function
/ (g i (a, b), g2(a, b), g3(a, b)),

obtained by substitution, is determined by the following normal scheme: -

[24] See R. Péter: Graphschemata und rekursive Funktionen, Dialectica 12 (1958)
pp. 373-393. Concerning these arguments, see also my paper quoted in footnote Kaluz-
nin’s definition of the graph schemes became known to me through an indirect oral com­
munication. Later it appeared in L. A. Kaluznin: Ob algoritmizacii mathematiceskich
zadac, Problemi Kibernetiki 2 Moscow (1959) pp. 51-67.

Sec. 7.5] Normal Flow Charts 103

where the following modifications of the above blocks (indicated by as­
terisks) have to be executed: -
After receiving the values for a and b first gx(a, b) has to be computed.
However the argument (a, b) must be preserved since it is also used for the
computation of g2(a, b). Therefore the input vertex E* is taken with

cl* (a, b) = (a, b, a, b),

and the block computing gx(a, b) has to be modified so that every sequence
(ту, r2, ..., rs) occurring as an argument or value at one of its vertices has
to be replaced by

0 a ,b ,rx, ...,r s).

In particular, at the output vertex A \ we obtain, instead of vvy (the value of
gx for the arguments a, b), the sequence

(a, b, uq).

This sequence again has to be preserved, a and b for the computation of
g3(a, b), and uq as the first argument to be put into / . That is why EÍ is
added with

CL[(a,b, vvx) = (a, b, щ ,а , b).

Now the block computing g2{a, b) has to be modified so that every sequence
(rlt ..., rs) occurring as an argument or value at one of its vertices is re­
placed by

(a, b, w1,r 1, . . . ,r s).

Thus, at A \ the sequence (a ,b ,w 1,w 2) is obtained instead of w2. Since
the terms of this sequence will be used later, we add E' with

a2(a, b, щ , w2) = (a, b, wx, w2, a, b),

and the block computing g3(a, b) is modified in a way similar to the
above. Thus at A* the sequence

(a, b, wl 5 w2, w3)

will be obtained instead of w3.
Now a and b are not needed anymore. Therefore we add E2 with

aá(a, b, wl 5 w2, w3) = (wx, w2, w3)

and (wx, vv2, vv3) is found as the argument for the block which computes f.
Thus we shall obtain at A the value /(w j, w2, w3), of / for the arguments
wl t w2,w 3, where wt=gi(a, b) (for i— 1, 2, 3) is the value of gt for the argu­
ments a, b.
Clearly, an initial function or relation is associated with every vertex.

104 Recursive Procedures and Algol 60 [Ch. 7

The proof that computability by a normal scheme is preserved by arbitrary
substitutions can be carried out in a similar way.
Now assume that the functions

g0 (a) and g(n ,a ,w)
are computable by the normal schemes represented by the blocks

E0 Ej
• and ;

A0 Ax

We show that the function / (n, a), defined by the primitive recursion

j / (0 , a) = g0 (a)
l /(n + l,a) = g {n ,a ,f(n ,a j)

is also definable by a normal scheme.
Let us first pass to the alternative definition, which was given in section
7.5 for the general case: -

f(n ,a) = h(n, a, 0 , g0 (a))
with

if i = n
w)) otherwise.

From this we obtain the following normal scheme, which determines
f in , a): -

Í w,
h(n, a, i, w) = \ ,l h{n, a, i + l, g(i, a,

This is interpreted as follows: -

Sec. 7.5] Normal Flow Charts 105

The arguments for / are n and a, but we actually want to compute the
function h for the arguments

n, a, 0 , g0 (a).

The fourth of these, the value of g0 at a, has to be computed, while the other
three must be preserved. That is why the input vertex E is taken with

aE(n, a) = (n, a, 0 , a),

and the block computing g0(a) is modified in that every sequence (r1; ..., rs)
occurring in it as an argument or value has to be replaced by

(и, a, 0 , rx, . . . ,r s).

Thus at A£, instead of vv0(= g 0(a)) the sequence

(n, a, 0 , w0)
is obtained.
Now, the computation of h begins for a four-term sequence (n, a, i, w).
We decide whether i=n or not. That is why the relation

B \n , a, i, w) = i = n

is associated with the logical vertex E'. If this test fails, the argument
(n, a, i, w) is sent along the edge F to the next vertex. Then according to
the definition of h we have to compute the value of h for the arguments

n ,a , i+ 1 , g(i, a, w).

This requires the computation of g(i, a, w), while the first three arguments
have to be preserved. That is why E* is added with

a*(n, a, i, w) = (n, a, i + 1 , i, a, w).

Moreover the block computing g is modified in that every sequence (rx, ...
..., rs) occurring in it has to be replaced by

(n ,a ,i+ l , r l 5 . . . , r s).

Therefore, at A* we shall have the sequence

(.n ,a , i + 1 , Wj)

instead of иу, which is the value of g for the arguments i, a, vv.
With this sequence one returns to E' to check whether or not the new
value of its third term has reached the value n. This is repeated until i
does increase to the value n, whereupon one passes from E' along the edge
T to the output vertex A, with this vertex, by the definition of h,

ccA(n,a, i, w) = w

106 Recursive Procedures and Algol 60 [Ch. 7

is associated. Clearly, this w is equal to h(n, a, 0, g0(a)), that is to the re­
quired function value / (n, a).
This reasoning works the same way for an arbitrary number of parameters.
Thus “definability by a normal scheme” is preserved under primitive re­
cursions.
Consequently, every primitive recursive function can be defined by a normal
scheme.

7.5.2 Reasons behind this Process

This result was made possible because the primitive recursion

igofaj, ..., ar), if n = 0
J űl , . . . , 0*) -- I / 1 Л/ - .al9 . . . ,a r9f (n - 1 , al9 ar)) otherwise,

(7.5.1)

from which no graph scheme determining / could be deduced, was replaced
by the definition

f{n, au . . . ,a r) = h(n, a „ ..., ar, 0 , g0 (űi. ..., ar))

{w, if i = n
h{n,a1, ...,a r, г + 1 , g((, ax, ..., ar, w)) otherwise.

(7.5.2)

From the latter, it is possible to deduce a normal scheme for computing
f i and from this (by the result of section 7.3) a non-recursive Algol procedure
for the computation of fi On the other hand, from (7.5.1) only a recursive
Algol procedure is deducible, which is not immediately understood by
a computer.
Thus, from the point of view of programming, definition (7.5.2) is much
simpler than (7.5.1). What is the explanation for this?
In any case, the definition of / b y (7.5.2) is a particular case of partial re­
cursion, for it can be brought into the form of a defining system of equations

by the use of sg (n) —Í0 if « = 0

(1 otherwise and sg(n) =
Í1 if n—0
(0 otherwise as follows: -

f (n ,a 1, ar) = h(n, a l 5 . . . ,a r , 0 , g0 (a l 5 . . . ,a r))
h(n, a1? ..., ar, i, w) = sg(|n —i| • w +

+ s g (|n - i |) - / i (n ,a 1, ..., ar, i+ 1 , g(i,a lt ..., ar, w)).

For i=n, the second term and for iVn the first term on the right-hand side
of the second expression vanishes, and at the same time the first factor
reduces to 1. Clearly this definition yields a more complicated case of gene­

Sec. 7.5] Normal Flow Charts 107

ral recursions than primitive recursion. It is in fact general recursive,
although for i>n, (7.5.2) does not determine A, since these values of A
are not needed for the computation of / . Indeed, / is equal to an A-value
with i=0. This in turn is equal to an A-value with 1=1, and so on, until an
A-value with i=n is reached. This is obtainable without the application of
any further А-value as its last argument. We could have put

h(n,a1, . . . , a r,i,w) = w, if i ^ n.

Then A would be general recursive. In (7.5.2) the value of A is determined
at a point

(n, alt . . . ,a r, i, w) (for i < n)

by taking an А-value at such a point, where none of the arguments can be
considered preceding. Indeed n, alt ..., ar remain unchanged, and i is
increased by 1. Finally, in place of w we have g(i, a , , ..., ar, w), which in
general is not smaller than w. From the point of view of programming,
this mixed definition must still be called primitive.
L. Kalmár conjectured as soon as computers appeared that they might
bring changes in our conception of what is “simple” in mathematics.
He even thought it possible that in the lowest forms of the future school
the teaching of mathematics will start not with the four fundamental
arithmetic operations rather with the operations made possible by the
computer. By now this conjecture is actually realized in the field of recursive
functions.
However independent of programming considerations, we have nothing to
show us why the definition scheme (7.5.2) is simpler than (7.5.1). In both, the
value of the defined function (/ or A) at a given place is obtained with the
help of its value at another place. These latter values will be called shortly
applied /-value and applied А-value, respectively. The difference is
that in (7.5.2) the applied А-value does not occur as the argument of a
function, while in (7.5.1) the applied /-value is an argument of g. This
is the decisive factor. In section 7.1 of this chapter the main point was that
g could not even be mentioned. The decision factor is not the way the ar­
guments of the applied / - and A-values were chosen. This contrasts with
our earlier notion of primitivity of a recursion, in which the applied /-value
had to be taken at the immediately preceding argument.

108 Recursive Procedures and Algol 60 [Ch. 7

7.6 The /^-Operations

For every definition by cases, the value of a function h is given at an arbi­
trary point either independently of h, or as the value of h at another point
(where the arguments at this other point are obtainable from the arguments
of the original point in an already known way). Then one can always find
a non-recursive Algol procedure for computing h. Although such defini­
tions could be called “primitive recursive” with respect to programming,
it would not be correct to call primitive recursive those functions which
are obtained from the initial functions by substitutions and this new kind
of primitive recursions, because the surprising fact is that these functions
are exactly the partial recursive functions. Indeed, we can show that the
/(-operation, by means of which all the partial recursive functions can be
obtained from the primitive recursive ones, does not extend the class of
all functions which are primitive recursive in this sense.
In fact, if for such a function g

f(a lt = Aij[g(i,ai, . . . ,a r) = 0],

then / can also be defined by the substitution

For the sake of simplicity, we shall discuss this in the special case

/(a) = /fi[g(b a) = 0],

since a change in the number of variables does not affect the reasoning at
all. In this case the claim is that/ (a) can also be defined by

According to the definition, if the third argument of h is 0, then the value
of h is equal to its second argument. Therefore, if

f{a x, . . . ,a r) = h(ax, . . . ,a r, 0 , g(0 , <q, ..., ar)),

where h is defined by the new kind of primitive recursion

Гг, if w = 0

h (cq, ..., ar , i, w) i , / \\ +ul«(<q, ..., ar, i + l, g (i+ l , <q, ..., ar)) otherwise.

[н /Л t* +1лл ПЛ 1гл л! РИЛЛлЬлч+ХГ Т1ТЛ Л U ,“»11 /I . Р 1 р р 4-U . Р .4P Г U Р pmpp.p I рррр

/(а) = h(a, 0 , g(0 , а)),
with

h(a ,i,w) I/г(а, i + l, g (i+ 1 , a)) otherwise.

g(0 , a) = 0 ,
then

f(a) = h(a, 0 , 0) - 0 .

Sec. 7.7] The ^-Operations 109

Otherwise we have
f{d) = h(a, 1 , g(l, a)),

and if here
g(l, a) = 0 ,

then
f(a) = h(a, 1 , 0) = 1 .

Otherwise we have
/(a) = h{a, 2 , g(2 , a)),

and if here
g(2, a) = 0,

then we have
m = h(a, 2 , 0) = 2 ,

and so on. Putting these together, we have

if g(0 , a) = 0 , then /(a) = 0 ;

if g(0 , a) ^ 0 , g(l, a) = 0 , then f(a) = 1 ;

if g(0 , a) 9̂ 0 , g(l, a) ^ 0 , g(2 , a) = 0 , then f(a) = 2 ;

etc. Hence f(a) is the smallest i for which g(i,a)= 0, provided that such
an i exists at all. If there is no such i for a, then the computation of / (a)
never ends. Consequently / (a) is not defined. This new kind of primitive
recursive definition really gives us

Thus the simplest recursion with respect to programming is also the most
general. It is much more difficult to decide what is simple in mathematics.

7.7 Eliminating Recursion from Algol 60

From the definition

f (a) = /J, [g0 , a) = 0].

7 (a) = h(a, 0 , g(0 , a))
j i , if w = 0

h (d ,i,w) | / г(а> í -f-l,g(í + 1, a)) otherwise

of the function
/ 0) = h, [g(i, a) = 0]

we can deduce a normal scheme for its computation, assuming that we
already have a normal scheme determining g. The latter is represented by

п о Recursive Procedures and Algol 60 [Ch. 7

the block

Ei

Ái

It requires a little thought to see that the cases are distinguished here accord­
ing to whether w= 0 or not and w= 0 does not belong to the initial relations.
Of course it would be easy to add all these simple relations to the initial ones.
I shall choose, however, a different way: the reduction of this relation to
the original initial relations. This is achieved by taking a new variable,
which is given the value 0 once and for all. Thus we get the following normal
scheme: -

Here the given block is modified as follows: - we have to take a as the
argument of f but a new variable v has to be added (for example, as the
first term of the sequence of variables), and this has to be given the value 0

at the start. We actually have to compute h for the arguments a, 0, g(0, a).
Here first g(0, a) is to be computed, while the others have to be preserved.
That is why we have the input vertex E with

a£(a) = (0 , a, 0 , 0 , a),

and the block computing g(i, a) has to be modified accordingly. However,
one always has to compute new /г-values for the arguments

a, i, g(i, a)

(with i increasing), where first g(i, a) has to be computed while preserving
the others. Therefore, the block computing g{i, a) is modified in that every
sequence (ту, ..., rs) occurring at a vertex has to be replaced by

(v,a ,i, rlt . . . ,r s).

Sec. 7.6] Eliminating Recursion from Algol 60 111

Thus, in particular, at A* instead of w which is the value of g for the
arguments i, a, the sequence

(v, a, i, w)
is obtained.
Then follows the decision whether or not w=0 (that is w=v). This is why
the relation

B'(v, a, i, w) = w = v

is associated with the logical vertex E'.
If the test fails, then the same argument is sent along the edge F to E".
Now, by the definition, the function h has to be computed for the arguments

a ,i + l ,g (i+ \,a)

while v and a have to be preserved. That is why the function

a"(v, a, i, w) = (v, a, i+ 1 , i + 1 , a)

is associated with E". If this value is received by the modified block for the
computation of

(v, a, i, g(i, a)),

then the result obtained at A f will be

(v, a, i + 1, w),

where now w = g(i+ 1, a). Here it has to be decided again whether or not
w=0 (that is w=v). If not, then everything starts anew with an increasing
value of i, until the relation

В \v , a, i, w) = w = v

becomes valid. Then the argument is sent along the edge T to A. Here, by
the definition of h, one has to pass to its third term. Consequently, we
associate with A the function

« 4 (v, a, i, w) = i.

Its value is the smallest / for which
w = g(i, a) = 0 ,

if such an i exists at all. Otherwise one never gets out of the cycle. For such
an a the graph scheme does not determine any value.
Here, an initial function or relation was associated with every vertex.
Thus it follows that the property of being computable by a normal scheme
is preserved not only under substitutions and primitive recursions, but also
under /r-operations.
Consequently, every partial recursive numeric function is definable by a
normal scheme.

112 Recursive Procedures and Algol 60 [Ch. 7

It was earlier pointed out in the preface that the functioning of a computer
can always be considered as the computation of the values of a numeric
function. In Ch. 4 it was shown that every machine computable numeric
function is partial recursive. Now we have seen that every partial recursive
numeric function is definable by a normal scheme. In section 7.3, it was
mentioned that a function computable by a normal scheme is also compu­
table by a non-recursive Algol procedure.
From all this we obtain the following result: - Recursive procedures (includ­
ing simultaneous ones) can always be eliminated from Algol 60 programs.
A similar result holds for other programming languages too.

Chapter 8

The Epi-language of Algol 60

8.1 Definitions in “Epi-Algol”

As is well known, for the description of the language Algol 60, a certain
meta-language is used, which should now rather be called “epi-language” ,
because “meta-language” is used in a different sense with respect to Algol
6 8 . In this language, definitions of the following form occur:

(expression) : := (term)l(expression) (additive operator) (term).

This notation has come to be known as Backus Normal Form. This is only
a part of the definition of (expression) occurring in “Epi-algol”. The
definition will be complete, if (as I shall do here for the sake of simplicity)
one restricts oneself to expressions constructed from natural numbers and
scalar variables denoted by small Latin letters, perhaps with numerical
indices, by means of addition, arithmetical subtraction, denoted by ”
instead of “ — ” and multiplication. Here (expression) means a general
and not a concrete expression, and the same applies to (term), which, of
course, still has to be defined. The stroke | stands here for “or”, and the
symbol has to be read as “is by definition” . Hence the sense of the
above definition is: “An expression is either a term, or it consists of an
expression and a term connected by an additive operator.”

Immediately this definition looks circular, since the notion under definition
is used in it. The situation, however, is even more complicated. Indeed, in
the definition of the notion (term) such further auxiliary notions will be
applied, which in turn will be defined using the notion (expression).
Therefore it is very important to check that we are not dealing here with
senseless definitions, but with recursions.

114 The Epi-language of Algol 60 [Ch. 8

I shall not use the symbol Instead I shall list one by one the possible
cases of a definition. For this purpose I introduce the symbol to be
read as “is by one of the possible definitions”.
Now the definition of our (restricted) notion of (expression) reads as
follows:

1 (expression) := (term)

2 (expression) := (expression) (additive operator) (term)

3 (term) := (factor)

4 (term) := (term) X (factor)

5 (additive operator) := +

6 (additive operator) := —

7 (factor) := (number)

8 (factor) := (variable)

9 (factor) := ((expression))

1 0 (number) (digit)

1 1 (number) := (number) (digit)
1 2 (variable) := (letter)

13 (variable) := (variable) (digit)

14 (digit) := 0

.....................................(this should be written out for all the digits)

23 (digit) := 9
24 (letter) := a

49 (letter) := z.

Here (term) appears in the definition of (expression). In the definition
of (term), (factor) appears, and finally, in the definition of (factor), (expres­
sion) appears. Hence the circle is closed.
If in the 9th line, no parentheses were used, then the lines

(expression) := (term)

(term) := (factor)

(factor) := (expression)

Sec. 8.2] Mathematical Grammars 115

would indeed form a circle, from which one could not get out, just as
with the circle

(number) := (number),

which would result if (digit) were omitted in line 1 1 .

8.2 Mathematical Grammars

These problems belong to the field of mathematical grammars.
There is a trend in linguistics to define the concept of “grammatically
correct sentences” (and other “category concepts”) with the same precision
with which the concept of the well-formed formulae is defined in mathema­
tics, partly because of the needs of machine translation. This led to the
creation of “mathematical grammars” of different kinds. The Epi-Algol
rules belong to a particular class of these, known as “phrase structured
grammars” [25].
In general, a phrase structured grammar is determined by four non-empty
finite sets: -

T, H, P, K.
The elements of T (the terminal vocabulary) represent the terminal con­
cepts, which stand by themselves in that they are not defined by means of
any other notions. Examples of this in Epi-Algol are the digits 0, 1, ..., 9.
The elements of H (the auxiliary vocabulary) represent the category names,
which in Epi-Algol appear in angled brackets. It is usual to distinguish
several special types of these category names which form the set K. In
the grammar of Epi-Algol, (expression) can be considered to be one of
these special types.
The elements of P, called the productions, represent the grammatical rules
which are used to “produce” (in other words “generate”) the concepts of
different categories. In the context-free phrase structured grammars (the
case to which we restrict ourselves) these productions define equations in
the sense of the “possible equality : = having the form

h w 1 w 2 . . . w „ .

Here A is a member of H, and every wt (i= 1, ..., n) is either an element
of T or an element of H (in short u^T U H). The productions correspond
to the lines in our definition of (expression). (It is admissible to have empty
productions of the form

h:= .

See for example B. N. Chomsky: Syntactic Structures ’S-Gravenhage (1957).

116 The Epi-language of Algol 60 [Ch. 8

It is then advisable to denote the empty right-hand side by some symbol,
for example by M , and to add this symbol to the terminal vocabulary.) In
particular, every auxiliary concept has to be defined in this way. Hence
every element of H is the left-hand side of at least one production.
A chain wx ... w„ with

Wj, ..., w„£TUH

is called a construction, and n is called its order. We say that a construction
ф is “directly generated” by a construction tp, if tj/ results from (p by the
“application of a production belonging to P”. More precisely: tp has the
form Dj ... vm, P contains a production

»i := wi...w„

for some / = 1 , ..., m, and ф has the form

v1...vi_1w1...wnvi+1...vm.

We say that ф is “generated” by cp, if there is a generating sequence

<Pi = cp; cp2; ...■ (pr = ф (8 .2 .1)

of constructions, in which <p: is directly generated by <Pi-i for every i=
= 2 , ..., r. A construction is called terminal if only members of T occur
in it.
Now the exact meaning of the statement “a construction <p belongs to the
category denoted by the name А” (A£H) is as follows: ip is terminal and is
generated by h. In this sense, it is said that a terminal construction of the
Epi-Algol language (that is one consisting of digits, letters, parentheses
and operation symbols) is an expression, factor or term, provided that it
can be generated by (expression), (factor), or (term), respectively, with
the given Epi-Algol rules as productions.
A natural problem is to decide whether a given terminal construction
belongs to a certain category or not. The solution of this problem follows
from the next result[2e]: - If the category names (auxiliary concepts) of a
phrase structured grammar are defined without circularity in such a way
that they do not generate themselves (as is true in Epi-Algol), then the
property “to belong to a category” is primitive recursive in the word set over
the terminal vocabulary T as alphabet.

[2в] r Péter: Über die Rekursivität der Begriffe der mathematischen Grammatiken, Publ.
Math. Inst, of the Hung. Acad, of Sci. 8 (1963) pp. 214-228.

Sec. 8.3] Eliminating Circularity 117

8.3 Eliminating Circularity

First the required “freedom from circularity” has to be examined more
closely.
In any case, one has to require that no sequence could be formed from
the members of P of the form: -

h := h2

h2 .'= h3

K-= h j.

Of course, for r = l , we exclude a production of the form hx:=hx. It can be
shown that in Epi-Algol this requirement is satisfied.
If this requirement is satisfied and / is the number of elements of H, then
for г ё / we cannot have a sequence of the form

hi h2

h2 := h3

hr := hr + 1

from members of P even ű hr+1^ h r, since otherwise at least two terms
of the sequence

hx, hr+1
would coincide. If we had

К = hi+J

for some /</■ + 1 and 0 < / ^ r + 1 — then the subsequence

hi := hi+1

hf+i := hi+2

h; + j - 1 •= hi+j
would generate ht by itself.
Sequences of productions of the form

hi := h2

h2 := h3

hr := hr+1,
where A1; ..., hr+1 are arbitrary elements of H, will be called “dangerous”
for any r S 1 .

118 The Epi-language of Algol 60 [Ch. 8

The freedom from circularity enables us to replace P by a production set
P', containing no “dangerous productions” at all, that is no productions
of the form

К := h2 (Äx, й2€ И),

while the elements of H generate the same terminal constructions through
the productions of P' as through those of P.
The transition from P to P' can be carried out in (at most) / steps. In the
first step we form a production set Px out of P = P0 in such a way that every
element of P of the form

h i := h2 (V M H)

is replaced by those productions in which a construction directly generated
by h2 is put instead of h2. Such constructions must exist, since h2 is the
left-hand side of at least one production.
Now, if the construction sequence

(Pi = K \ cp2 = h2; (p3; (pt (8.2.2)

generates through P the terminal construction cp, by h i , then cp3 is directly
generated by h2, hence

h i := cp3

was added to Px. Therefore, the construction sequence

(Pi = К', <p3, ...; cp, (8.2.3)

generates the same cp, through Px. Conversely, if

h i := (p3

is a new production added to Px because

h i *— h2

appeared in P, and the construction sequence (8.2.3) generates <pt through
Px, then the sequence (8.2.2) generates the same cp, through P.
If Pji still contains dangerous productions, then P2 is formed out of Px
in the same way as Px was obtained from P0, and so on.
Now if in Pt, for i s i , a dangerous production of the form

h i !— h2

appears, this can only happen if, for iS 1, in P._1# there are dangerous
productions

hi := h3 and h3 h2

Sec. 8.4] An Example 119

forming a dangerous sequence of length two. If /S 2 , these can exist only
if in Pj_2 there are dangerous productions

Iii := hi := h3

ha'.— Ii5, I1 5 h2,

which together form a dangerous sequence of length four. In general, for
every i '= l, 2 , ... we get that, if P; contains a dangerous production, then
P = P 0 contains a dangerous sequence of length 2‘. However, this is not
possible for 2‘s l ; therefore, if i is the smallest number with 2‘ш1, then
Pt contains no more dangerous productions. Hence we can put

P' = P„
since we have proved that the steps of transition from P to P ' leave un­
changed the set of terminal constructions generated by elements of H.
The precaution we took was somewhat exaggerated. A production of the
form

К .— h2 (hu h2£ H),

in which the constructions directly generated by h2 are terminal, surely
does not involve any danger. Hence these need not be eliminated. I did
not want to interrupt the reasoning with this point.

8.4 An Example

Let us consider as an example, the sublanguage of Epi-Algol by means
of which the category name (expression) was defined in section 8.1. In this
case the terminal vocabulary T consists of the digits, letters, parentheses,
and operation symbols. The auxiliary vocabulary H contains the category
names

(expression), (term), (additive operator),

(factor), (number), (variable)

(digit), (letter);

Finally, P contains the productions used in the definition of (expression).
Among these the following are dangerous:

(expression) := (term)

(term) := (factor)

(factor) := (number)

(factor) := (variable).

120 The Epi-language of Algol 60 [Ch. 8

At first glance the productions

(number) := (digit)

(variable) := (letter)

also look dangerous. In fact these are harmless, since (digit) generates
directly only the terminal constructions

0, 1, , 9,

while (letter) generates only the terminal constructions

a, b,

The really dangerous productions in the first step of the method described
in the previous section are amended as follows: -

replace (expression) := (term)
by

(expression) := (factor)

(expression) := (term) X (factor);
then

(term) := (factor)
by

(term) := (number)

(term) := (variable)

(term) := ((expression));
then

(factor) := (number)
by

(factor) := (digit)

(factor) := (number) (digit),
finally replace

(factor) := (variable)
by

(factor) := (letter)

(factor) := (variable) (digit).

Among these new productions three are really dangerous. In the second
step they will be replaced by new productions as follows: -

replace (expression) := (factor)

Sec. 8.4] An Example 121

by
(expression) := ((expression))

(expression) := (digit)

(expression) := (number) (digit)
(expression) := (letter)
(expression) := (variable) (digit);

then replace
(term) (number)

by
(term) := (digit)

(term) := (number) (digit);
finally replace

(term) := (variable)
by

(term) := (letter)

(term) := (variable) (digit).

Among these productions there are not any dangerous ones anymore. The
elements of the production set P ' are therefore the following: -

(expression) := (expression) (additive operator) (term)

(expression) := (term) X (factor)

(expression) := ((expression))
(expression) := (digit)

(expression) := (number) (digit)

(expression) := (letter)

(expression) (variable) (digit)

(term) := (term) X (factor)

(term) := ((expression))
(term) := (digit)
(term) := (number) (digit)

(term) := (letter)

(term) := (variable) (digit)
(additive operator) := +
(additive operator) := —
(factor) := ((expression))

122 The Epi-language of Algol 60 [Ch. 8

(factor) := (digit)
(factor) := (number) (digit)
(factor) := (letter)
(factor) := (variable) (digit)
(number) := (digit)
(number) := (number) (digit)
(variable) := (letter)
(variable) := (digit) (variable)
(digit) := 0

(digit) := 9
(letter) := a

(letter) := z.

8.5 Primitive Recursion in Epi-Algol 60

Now we carry on our reasoning on this example to show that the property
“to be a terminal construction generated by a given element of H” is pri­
mitive recursive.

Let M be the word set over the alphabet T, and ij be a fixed letter of this
alphabet. Let us denote the characteristic functions of the properties: -

“to be an expression, an additive operator,
a term, a factor, a digit,
a number, a letter, a variable”,

in this order, by
ex, ao, te, fa, di, nu, le, va

respectively.
Several of these can be shown to be primitive recursive very easily: -

[A ,
a° w = | ?i

di(x) =

le(A) =

A,
h
A,

if (x = +)V (x = -)
otherwise,
if x = OVx = IV ... Vx =
otherwise,
if X = flVX= bV...VX =
otherwise

(where the argument is denoted by capital X since x is also a letter).

Sec. 8.5] Primitive Recursion in Epi-AIgol 60 123

It can be seen that every argument for which

ao (x) = A, or di (x) = A, or le (X) = A

holds, must be a member of the alphabet T and thus cannot be equal to A.
Therefore nu(x) and va(x) can be defined as primitive recursive functions
in the following way:

1Л, if di(x) =A V(nu(at(x)) = A & di (lb (x)) = A)
nu (x) = \ ,[q otherwise,

ÍA, if le(x) =A V(va(at(x)) =A & di(lb(x)) =A)
Va ^ 1 h otherwise.

As functions which are already known, these can be applied in the defini­
tions of ex(x), te(x) and fa(x).
Here all the connected pieces of x must be considered as predecessors of x,
not only its initial segments. Let y < x denote that у is a predecessor of x
in this wider sense. Now the definitions of the above functions read as
follows:

A, if (EyJ (Ey a) (Ey3) [у x, y 2 , y 3 ■<, x & ex (y J == A & ao (y ̂ = A &
& te (y3) = A & x = у! у 2 y3] V
V (Eyj) (Еуз) [y'i, У 2 < x & te (ух) = Л & fa (у2) = Л&

ех (х) = i & х =У 1 Ху2] V
w V (Еу) [у < х & ех (у) = Л & л = (у)] V

Vdi (х) = Л V(nu (at (х)) = Л & di (lb (x)) = Л) V
Vie (x) = A V(va (at (x)) = Л & di (lb (x)) = Л)

A otherwise.

Here we used shorter notations, for example,

(Еух) (Ey2) [уг, у 2 < x & ...] instead of (ЕуО [уг < x & (Ey2) [y2 ^ x & ...]].

Moreover

A, if (Ey1)(Ey2)[y1,y 2^ x & te (y 1)= A & fa (y 2) = A & x =
= У1 x Уз] ̂V (Еу) [у ^ x & ex (y) = A & x = (у)] V

te(x) =■< Vdi(x) = Л V (nu (at (x)) =A & di(lb(x)) =A)V
Vle (x) = Л V(va (at (x)) = A & di (lb (x)) = A)
otherwise,

A, if (Ey)[y < x&ex(u) = A & x = (y)]V
Vdi (x) = A V(nu (at (x)) = Л & di (lb (x)) = A)V

ta(x) - Vle(jc) = д V(va(at(jc)) - A& d i(ib(x)) = Л)
t1 otherwise.

124 The Epi-language of Algol 60 [Ch. 8

8.6 Predecessors in Algol 60

The values of the functions

ex (x), te (x), fa (x)

are defined here by using values of the same function, as well as of the other
two at properly preceding places. Among these predecessors not only initial
segments occur, but also predecessors in the wider sense (as for example
У1 ,Уг and y3 in the first alternative with ex (х)=Л). Even these are not
necessarily immediate predecessors. Hence we are dealing here with a si­
multaneous course-of-values recursion. In an earlier paper [27] of mine, I
have shown that such a definition can be reduced to course-of-values recur­
sion of the separate functions to be defined. These, in turn, can be reduced
to primitive recursions with the help of substitutions. All this, of course,
is meant with the extended notion of predecessor. In what follows, I shall
continue to use this extended notion of predecessor. For this application,
this extension of predecessor offers itself as a natural notion, but the more
restricted notation which we used so far is more convenient to work with.
As was pointed out in section (3.3.2), on the method of coding, in number
theory, the above definitions can be transformed into recursive definitons
of the same type with the earlier notion of predecessor. Since the reasoning
we applied in this particular example can be extended to the general case,
we can obtain primitive recursive definitions o f the properties "to be in a ca­
tegory o f a phrase structured grammar”. In our example these properties are
“to be an expression, term, factor” respectively.
The value of a primitive recursive function, however, can be computed at
every argument in a finite number of steps. Consequently, a method must
exist to decide whether or not an arbitrary chain of terminal elements is
one case of a notion introduced in a phrase structured grammar (for example,
in Epi-Algol).

[2' ̂ R. Péter: Primitive-rekursive Wortbeziehungen in der Programmierungssprache “Algol
60”, Publ. Math. Inst, of the Hung. Acad, of Sei. 6 (1961) pp. 137-144.

Chapter 9

Two-level Grammar in Algol 68

9.1 An Auxiliary Theorem

Let us consider an example of a construction sequence of the type (8.1.1),
generating a terminal expression by the category name (expression) through
the productions belonging to P ' of section 8.3. In this I shall use obvious
abbreviations, like (ex) for (expression), (adop) for (additive operator),
and so on: -

(ex); «ex»; « te)X (fa»;

(«ex»X<fa)); («ex> (adop) <te))X<fa»;

(«di) (adop) <te»X(fa»;

«1 (adop) (te»X(fa)); « 1 +(te»X (fa» ;

«1 +<va) (di»X(fa>);

((1 + (le) <di»X<fa»; « 1 + x (d i» x (fa » ;

« l+ x l)X < fa» ; « l+ x l)X (d i» ;

((1 + x l)x2) .

The outer parentheses are used as a precaution: the expression obtained
might have to be used further on.

The structure of this becomes more apparent if, from every auxiliary con­
cept to which a production was applied, we draw edges pointing to the ele­
ments of the result, as can be seen on the following graph: -

126 Two-level Grammar in Algol 68 [Ch. 9

To every end point a single path leads from the initial point. If these paths
are considered one after the other, from the left to the right, then their end
points yield the following terminal expression: -

((1+ jc1)X2).
Along some of these paths, several instances of the same auxiliary concept
can be found. For example, along the path leading to the first digit 1,
(ex) occurs four times. This is not a coincidence. Since there are only a
finite number of auxiliary concepts, it can be seen that such repetitions must
occur on at least one of the paths leading from the initial point to the
end points, provided that the graph represents the generation of a suffi­
ciently long expression. I shall not go into the proof here.
Let us examine the resulting expression if, in the above-mentioned path,
we apply to the third occurrence of (ex) the same production as we did
to its second occurrence. Then the same generating steps are applied to
the result as above: -

Sec. 9.2] An Auxiliary Theorem 127

The terminal expression deducible from this is

(((1+X1)X2)X2).

Let us compare this with the original

((l+ x l)x 2) .

The part 1 + x l (printed boldface) occurs in both. Here it is generated by
the fourth (ex), in the original it was generated by the third (ex). Apart from
this part, the things generated by the second (ex) in the first graph, that is
“(’’and “(X2” were doubled, while the remaining parts “(” and “)” were
left unchanged.
It can be shown through a similar representation that, in general, to every
language S, generated by a context-free phrase structured grammar (that
is not containing any dangerous productions in the sense of section 8.3),
there exists a natural number q such that every terminal construction
belonging to a category of S, and consisting of at least q letters, can be
written in the form

0£i/?i0£2)?2a3.

Here among the (empty or non-empty) subchains

a l? ß li ^2, «3

at least one of ß 1 and ß 2 is not empty. Moreover

^ l ß l ß l ^ ß i ßl «3

also belongs to S. I will refer to this result as the Bar-Hillel-P'erles-Shamir
theorem [28:|.

9.2 Two-level Phrase Structured Grammars

The grammar of the more recent programming language Algol 68 is a
phrase structured grammar in a generalized sense, in that the correspond­
ing production set is infinite, while the set of separate category names
remains finite. To specify the infinite production set one uses a meta­
language. It was because of this terminology that I used earlier the term 28

[28] J. Bar-Hillel, C. Gaifman, E. Schamir: On formal properties o f simple phrase structure
grammars, Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung
14 (1961) pp. 143-172. The above theorem is merely a particular case of a more gene­
ral theorem in this paper.

128 Two-level Grammar in Algol 68 [Ch. 9

“Epi-Algol”, instead of “Meta-Algol” . Epi-Algol is generated by a phrase
structured grammar in the original sense.
More precisely, a two-level phrase structured grammar is determined by
five finite, non-empty sets

Z, M, P, V, K,
where

Z, M, P

denote the vocabulary, the auxiliary vocabulary and the production set
of the meta-language. Their elements will be called symbols, meta-symbols
and meta-productions, respectively. Furthermore, the elements of V and К
are called preproductions and category names, respectively. By means of
the first three sets one builds the infinite number of productions of the
second level grammar, from which the terminal and auxiliary vocabularies
of the second level are also obtained. The last two are the separate auxiliary
concepts of the second level.
For the exact definition we introduce certain modifications in the notation,
which will save us the use of angled brackets. The necessary separation of
symbol sequences at the second level is done by commas, and the terminal
concepts on the second level are distinguished from the auxiliary concepts
in that they do not occur as left-hand sides of productions.
That is why in what follows, I shall use three different words for finite
sequences: - “chain”, “list” , “sequence” , according to whether the ele­
ments are respectively simply put one after each other, or separated by
commas, or separated by semicolons. From the elements of Z one builds
chains, and from these symbol-chain lists. Furthermore, from the elements
of ZUM mixed chains are built and from these mixed chain lists will be
formed.
The elements of P (the meta-productions) have the form

m := V,

where m£M and v is a mixed chain.
A terminal expression generated by a metasymbol m£M is simply called
“a value of m”. The productions of second level will be obtained by sub­
stituting such values into preproductions. More precisely: every element
of V, (that is every preproduction), has the form

S:= 0,

where 3 is a mixed chain and 0 is a mixed chain list. For example,

z1m1mz \— z2m1z3 ml , zx m3,
with

z 1 5 z 2 , z 36 Z and m1,m 2,m 3£M.

Sec. 9 3] Two-level Phrase-Structured Grammars 129

A production is obtained if in a preproduction every occurring meta-symbol
(in our example mx, nu and m3) is replaced by one of its values, wherever
it occurs. In our example mx occurs on both sides. Consequently, the left-
hand side of a production is a symbol chain, while its right-hand side is a
symbol-chain list.
The left-hand sides of the productions (of which a large finite number form
the set К of distinct category names) are called potential category names,
or more shortly auxiliary concepts. They constitute the auxiliary vocabulary
at the second level. Those terms of the lists standing on the right-hand sides
of productions, which do not occur as left-hand sides are called terminal
concepts. They form the terminal vocabulary.
The original definitions can be transfered to the new notation in a natural
way. For example, a symbol chain list 0 2 is directly generated by the
symbol chain list 0 X if it is obtainable from 0 X by means of a production,
or more precisely if 0 2 is obtained by replacing one auxiliary concept-term
9 of 0 X by the right-hand list of a production whose left-hand side is 9.
A symbol chain list 0 r is generated by 0 , if there is a generating sequence

0 ! , 0 2, . . . , 0 r (9.2.1)

in which 0 ; is directly generated by 0 t_x for every /= 2, ..., r. A symbol-
chain list is called terminal if each of its terms is a terminal concept. The
terminal concepts generated by a category name (that is by an element of
K) constitute the category designated by this name. By “the language ge­
nerated in two levels”, we mean the correspondence between the categories
and their names.

9.3 An Example of a Two-level Language

Since the set К of category names is finite, the question arises whether a
language generated at two levels could also be defined by means of finitely
many productions, that is, at one level through a simple phrase structured
grammar in the original sense.
This can be refuted by the following very simple counter-example [29].
Let us consider the two-level grammar determined by the sets

Z = {z1;z2;z3}, M = {m}, P = {m := zx mz1; m := z2},

V = {z3 := mz2mj, К = {z3}.

t29] See R. Péter: Zur zweistufigen Satzstruktur-Grammatik II. Studia Sci. Math. Hung.
3 (1968) pp. 181-194.

130 Two-level Grammar in Algol 68 [Ch. 9

Here the single meta-symbol m occurs on the right-hand side of the first
meta-production only. Hence both meta-productions have to apply di­
rectly to this, resulting in

zx z1 m zx zx and zx z2 zx,

where the second is already terminal, that is a value of m. Now, applying
both meta-productions to the first, we obtain

zxzxzxmzxzxzx and z1z1z2z1z1,

where the latter is again a value of m, and so on. We can thus see that all
the values of the single meta-symbol m are as follows: -

z1z1...z 1z2z1z1...z 1, (for n = 0 ,1 ,2 ,...) .
л-tim es л-tim es

Substituting these values of m into the single preproduction, we obtain all
the terminal constructions generated by the single category name z3, in
the form

zx ... z1z2z1... zxz3zx ... z1z2z1... zx for n — 0 ,1,2,

If this language could be generated by a one-level phrase structured gram­
mar, then according to the Bar-IIillel-Perles-Shamir theorem (quoted in
section 9.1), for large enough n, the terminal construction consisting of
4n+3 symbols and generated by z3 could be written in the form

Zi . . . Z i Z% Z i . . . Z i Z2 Z j . . . Z j Z2 Z j . . . Z- alßl a2/?2 a3

Hence for ri>n we should have

Z1 • • • Z1 Z2 zl ■■■ Zy Z2 Zi ... Z1 Z2 Zj ... Zj — У-lßlßl У-2 ß‘2 ß‘2 a3
n' n' n' n'

where at least one of the subchains ßu ß2 is not empty. In both left-hand
sides here, z2 occurs exactly three times. However the doubling of ß1 and
ß2 would increase the number of occurrences of z2 if one of these happen­
ed to contain z2. Therefore, both ßx and ß2 must be those parts of subchains
of order n of our first symbol chain, which contain the symbol zx only.
The doubling of ßx and ß2 therefore increases the number of occurrences
of the symbol zx in at least one of these subchains, but in at most two
subchains, while in the remaining two such subchains this number stays
at n. Hence it cannot increase to n'.
Consequently, this language generated at two levels, cannot be generated
at a single level.

S e c . 9 .4] A n E x a m p l e o f a T w o - l e v e l L a n g u a g e 131

9.3.1 The Primitive Recursivity of a Language

The counter-example is a very simple language. If zx and z2 were abbrevia­
tions for the words “sweet” and “Mary”, respectively, then we could say
that this is the language of enchanted admirers of Mary, who can utter
only such sighs as: -

Mary Mary Mary

sweet Mary sweet Mary sweet Mary sweet

sweet sweet Mary sweet sweet Mary sweet sweet Mary sweet sweet

and so on indefinitely.
Membership of this language can be defined as a primitive recursive relation
in the word set over the alphabet consisting of zx and z2 as follows (choosing
zx as the fixed element of the alphabet): -
Let us denote by / (x) and sm(x) the characteristic functions of the pro­
perties “to consist solely of zx”, including the case “to be empty” , and “to
belong to the above language” (the “sweet Mary” language), respectively.
The first of these can be defined as

[A, if x = A V (/n (at(x))= A & lb(x) = z1)
/ r . W - j z j otherwise.

This can be transformed into a normal primitive recursion. The same
applies to many of the following definitions. The second is defined by the
following definition-by-cases: -

Г л, if (Ey) [y < x & f 21 OO = Л & X = yz2yz 2 yz 2y]
Sm M = U otherwise.

9.4 The General Question

What about the recursivity in general of a language generated at two
levels c30:> by the finite sets

Z, M, P, V, К

in the manner described in section 9.2?
This requires recursive definitions of the characteristic functions At,(x) of
the properties “to belong to a category of the language” (that is, to be a

t30! See R. Péter: Zur Frage der Rekursivität der im „Algol 68” verwendeten zweistufigen
Grammatik, Ann. Univ. Sei. Budapest 15 (1972) pp. 89-101.

132 Two-level Grammar in Algol 6 8 [Ch. 9

terminal expression generated by an element k t of K), in the word set W
over the alphabet Z' containing in addition to the elements of Z the auxiliary
symbols and
More precisely, an x £ W satisfies this property if it is a terminal symbol
chain list which is the last term of a generating sequence of symbol chain
lists of the type (9.2.1), beginning with a A:f€E K.
Therefore, we first have to study the recursivity of the notions “sequence
of symbol chain lists”, “last term”, “terminal” and “to generate” .

9.5 Recursivity in Symbol Chains

Of the following natural definitions it is not always immediately obvious
that they determine primitive recursive word functions. Nevertheless
every one of them can be reduced to primitive recursions and substitutions.
Let the elements of Z (the symbols) be

%1 5 ^ 2 ? • • •> Zt

and let Zj be the fixed elements of our alphabet Z ' . Then the characteristic
functions

z (x), zk (x), zkl (x), zklf (x)
of the properties

“to be a symbol, a symbol chain,
a symbol chain list,
a sequence of symbol chain lists”, respectively

can be determined by means of the following definitions (leading to course-
of-values recursions): -

ÍA, if x = ZjV.-.Vx = z,
Z I : x otherwise,

A, if z(x)=A V (E y1)(Ey2)[y1,y 2< x & z k (y 1) = A&
zk (x) = & z (y2) = A & x = y t y2]

Zj otherwise,

A, if zk(x) =AV(Ey1)(Ey2)[p i,y 2^ x & z k l(y 1) = A&
zkl(x) = ■ & zk(y2) = A & x = ylt y2\

Zj otherwise,

A, if zkl (x) = Л V (Eyx) (Ey2) [уг, y 2 < x & zklf (ух) = A &
zklf (x) = & zkl (y2) = A & x = уг; y2]

zx otherwise.

Sec. 9.5] Recursivity in Symbol Chains 133

Here zk(x) was defined in the same way as the succeeding ones only for
the sake of homogeneity. It could have been defined more simply.
Similarly, the symbols, the symbol chain, the symbol chain lists and the
sequences of symbol chain lists can be arranged into primitive recursive
sequences. For this we use the theorem [31], denoted by (HB), which says
that two primitive recursive numeric functions

oyOz) and cr2(n)

can be defined with the following property: - the pairs of natural numbers
can be arranged in a sequence in such a way that the nth term of this se­
quence is the pair

(o-i(n), <т2 (п)).

For the sake of homogeneity, let us arrange our large finite number of
symbols into the infinite sequence

1̂5 2̂ 5 ■ ■ • , Z, , Zi , Z, ,

Since the natural numbers are represented here by

Лi zi , zi zi , • •• >

this sequence can be defined as

A, if x = A
Zj, if o(x) = Zj

z0 (x)= y 2, if o(x) = z1 z1

zt, if o(x) >: z1 z1... Zj.
i-times

It is a general fact that finite sequences consisting of the terms of a primi­
tive recursive sequence vo{x) can themselves be arranged in a primitive
recursive sequence wo(x). This can be seen as follows: -
One-term sequences have already been arranged in the primitive recursive
sequence vo(x). Now, assuming that for some я = I the я-term sequences
have already been arranged in a primitive recursive sequence

the (я + l)-term sequences can be enumerated as

* v0(y) (о (x), о (y) = 1 ,2 ,...).

[31] See D. Hilbert-P. Bernays: Grundlagen der Mathematik I. Berlin (1934) pp. 321
and 328 .

134 Two-level Grammar in Algol 6 8 [Ch. 9

Hence, using theorem (HB), they can be arranged into the primitive re­
cursive sequence

w o (x) ™ < п (.о (х))* иог(.о(х)) 1

where the asterisk * stands for the separating symbol between the terms
(hence neither for nor for Consequently

is obtained, by means of the definition

A, if y = A
^(^))) = V 0 (X) , if o(y)= 1

* »„(„(,)) Otherwise,
as a primitive recursive function of x and y, depending on o(x) and o(y)
only. The values of this, for o(y) = l,2 , ..., are the 0 (y)-term sequences
built of the terms of the sequence v0(x). By a repeated application of theorem
(HB), all these can be arranged in the primitive recursive sequence

no(x) №<7l(o(x)) •
Let f 0(x) denote this primitive recursive sequence of all finite sequences of
symbol chain lists. We shall apply it later.

9.6 Other Properties

The characteristic functions

lg (x, у) and fg (x, y)
of the relations “y is a term of the list x, or list sequence x” respectively
can be defined by the following definitions-by-cases: -

A, if zkl(x) = A&zk(y) =A & (x = yV(Eu)[u ^ x& x = u,y]M
. , . _ V (E m) [m ^ x & x = у, u] V (Eiq) (EmjXmj , u2 < x & x =

— uíi У1 ui\)
, zx otherwise,

A, if zklf(x) = A&zkl(y) = A&(x = y V(Em)[m ;< x& x =
f , s _ =u;y]\/(Eu)[u < x &х=у;и]\/ (Еи 1)(Ещ)[и1 ,и2<, x & x =

= « 1 ;т ;и 2])
Zj otherwise.

The last term lfg(x) of a sequence x of symbol-chain lists is determined by
the definition

lfg(x) = цу[у < x & fg (x ,y) = A&(x = yV(Eu)[u < x & x = u; y])]
as primitive recursive.

V

Sec. 9.6] Other Properties 135

For the notions “terminal” and “generated” we have to look more closely
into the definition of our grammar.
Let the elements of M (the meta-symbols) be

and let
m1, m2, ..., mr,

mt(x) (i = 1, 2, r)

denote the characteristic function of the property “to be a value of m ”,
that is to belong to the category denoted by mi of the language generated
in the first level by the phrase structured grammar (in the original sense).
It was shown in the previous chapter that these are primitive recursive over
the terminal vocabulary, which is here Z. The same is valid in the word
set W over the extended alphabet Z'.
Let the elements of V (the preproductions) be

»1, V2, ..., V

The productions of the second level are obtained from these by suitable
substitutions of the values of the meta-symbols. Let

lPi(x) (i = 1, 2, s)

denote the characteristic function of the property “to be the left-hand side
of a production resulting from v ”, and let

lpri (x, y) (i — 1,2, s)

be the characteristic function of the relation “x and у are the left- and right-
hand sides, respectively, of a production resulting from v ”. If, for example,
vx is the preproduction

zxm1 m2 := z2 m1 z3 z1 , z i m3,

then lp! (x) and]prx (x, y) are determined with the help of the functions

тх(х), m2(x), m3(x)

by the following definitions-by-cases: -

A, if (EyJ(Ey2)[y1,y 2^ x & m 1(y1)= A & m 2(j 2)= A &
lP i(*)= & x =

zx otherwise,
and

A, if (Eu1)(Eu2)(Eu3)[ií1, u2 ^ x& u3 ^ =A&
, . . &m 2 (u2) = / \& т 3 (и3) = / \& x = z 1 u1 u2&y =
l p r ^ .y) = _„ „ i

— Z 2 W 1 Z 3 Z 1 , Z ^ U ^ \

zx otherwise.

136 Two-level Grammar in Algol 68 [Ch. 9

Using these, the characteristic functions

lp(x) and lpr (x,y)

of the property “to be the left-hand side of a production” (or “to be a po­
tential category name”), and of the relation “x and у occur as the left- and
right-hand sides respectively of the same production” can be defined as
follows: -

[A, if lPi(x) = AV...Vlps(x) = A
^ X {zx otherwise

f A, if lpuOc, y)=A V ...V lprs (x,y) = A
lpr (x, V) = i z, otherwise.

Just as easily we could have given primitive recursive definitions for the
property “to be a term of the right-hand side of a production” and with
this of “to be a terminal concept” ; however, these will not be needed.
A symbol chain list can be called “potentially terminal” if none of its terms
occurs as the left-hand side of a production. Thus the characteristic function
t{x) of the property “to be a potentially terminal symbol chain list” can
be defined as

{Л. if zkl(x) = Л & 0)[> =< X - (lg(x, y) = A -lpG O = cj)]
[z4 otherwise.

Since, in direct generating, the left-hand side of a production, which occurs
as a term of a list is replaced by the right-hand side of the same production,
the characteristic function dg(x, y) of the relation “y is directly generated
by the symbol chain list x ” can be defined as follows:

A, if zkl(x) =A&(Eu1)(Eu2)(Eus)(Eu4)[u1,u2,u3 < x&u4 < y&
dg(x,y) — ■ &lg (x, n2) = A&lpr(n2, u4) = A& x = щи2и3&у = м1м4п3]

zx otherwise.

Finally, the characteristic function

gf (x, У)

of the relation “y is a generating sequence of the type (9.2.1), beginning
with x” is given by the following definition, which leads to a course-of-
values recursion: -

A, if zkl(x) = A&zklf (y) = A & (y — xV
V (Eux) (Em2) [wj , u z < y & gf (x, щ) = A &

gf(x, y)= -\ & zkl(n2) =A8cy = иг; u2&
&dg (lfg (Wi), u2) = A])

Z] otherwise.

Sec. 9.7] Recursive Enumerability 137

9.7 Recursive Enumerability

With this, we have a primitive recursive definition of every notion necessary
for the formulation of the basic question concerning the language generated
by a two-level grammar: - “If A: is a category name, how can we decide
what belongs to the category denoted by A?” This is true of x, if x is a po­
tentially terminal symbol chain list, and there is a generating sequence of
symbol chain lists which begins with к and terminates with x, for example, if

holds. If the characteristic function of this property was also primitive
recursive, then so would be the corresponding language. However for the
у in (Ey) [...], we might not be able to provide an upper bound, and an
unbounded relation (Ey) [...] cannot even be guaranteed to be general
recursive.
We might have expected this on the basis of the similarity between generat­
ing a language and generating the theorems of an axiomatic mathematical
theory. In the latter, a formula / is a theorem of the theory if there exists
a sequence of formulae, starting with axioms and terminating with / ,
such that every term of the sequence can be “generated” from earlier terms
with the application of certain rules of inference. In general an axiomatic
theory is not recursively decidable. The corresponding “there exists” rela­
tion might not be general recursive. Concerning questions of decidability
it would be senseless to use partial recursivity.
The recursivity of languages definable by two-level grammars, like Algol 68,
is an open question.
The language generated in two levels in the way described above is, in any
case, primitive-recursively enumerable in the sense that, for every category
name, we can define a primitive recursive function the values of which
are exactly the terminal constructions generated by this category name. Using
the primitive recursive sequence f a(x) from section 9.5, in which all the
sequences of symbol-chain lists are arranged, the following function does
this for a k£K: -

_ Ílfg (/„(*))» if *(lfg (/„<*))) = A & gf O ,/„(*)) = A
k(x) — I л otherwise.

t(x) = A & (Ey) [gf (к, у) - Л& lfg(y) = x]

138 Two-level Grammar in Algol 68 [Ch. 9

9.8 Two-level Language with Finite Terminal Concepts

In developing Algol 60, it was conceivable that one could use a two-level
grammar containing only a finite number of terminal concepts.
However, a language generated by such a grammar can also be generated
in one level [32].
The proof of this is rather complicated. In the proof one has to take into
consideration the preproductions from which the separate productions
were deduced (by substituting certain values of their meta-symbols). The
basic idea of the proof is the following: - If there are only finitely many
terminal concepts, then the terms of the right-hand side of a production,
different from these and from the (finitely many) category names, can only
have a regulatory kind of role. Specially they only determine which prepro­
ductions generate such productions as they are applicable to the term under
consideration. By this is determined the order in which terminal concepts
will occur in the terminal constructions generated by the category names.
Since there are only a large finite number of combinations of the finitely
many preproductions, from this point of view the regulating right-hand
side terms of the productions can be divided into a large finite number of
sets. What matters is only the set to which such a term belongs, not its
concrete form.
A simple example might make this clearer. Let us consider the two-level
grammar with

Z = {zjj z2; z3; tx\ t2} M = {m} P = {m := z^mz^.m := z2}

V = {m:= z1mz1, t1;z1mz1 := t2;z3 m} К = {z3}.

Since M and P are the same as in the “sweet Mary” language of section
9.3, the values of the single metasymbol m are again the symbol chains

z1. . . z i z3z1. . . z1 for n = 0 ,1 ,2 , . . . ,
л-tim es л-tim es

which I shall denote by an.
Clearly, if m=an, then

zl mzl = an+1.

Hence the following productions are obtained from V for л=0, 1,2, ...: -

an:= an+i> h

an+1 h
z3:= an.

[321 See my paper quoted in footnote [2e].

Sec. 9.8] Two-level Language with Finite Terminal Concepts 139

Among the right-hand side terms, only tx and t2 do not occur as left-hand
side terms. Hence only these two are the terminal concepts of the language.
Therefore the terminal constructions generated by the single category
name z3 can be lists consisting of tx and t2 only. The right-hand side terms
an and an+1 have simply a regulating role to decide the order in which tx
and t2 occur in these lists. What matters here is, for which combinations
C of the left-hand sides of the preproductions will the terms an+1 or a„
occur in the left-hand sides of the productions generated by the preproduc­
tions in C? In this simple example there are only two possibilities: a0
occurs in the left-hand side of a production only if it is obtained from the
first preproduction. Hence a0 can be replaced by the list

a i! h

only where ax is one of the values an+1, while an+1 can always be replaced
by both

an+2>h

and t2, where an+2 is again one of the values an+1. Since all the values an+1
have the same effect, they can all be replaced by a single new symbol g.
Hence we obtain the following five productions: -

ao := g, h

g := g> h

g ■= h
z3 a0

23 := g-

These have the same effect as the original infinite number of productions.
It would be easy to obtain further simplifications. However, here we shall
deal only with the finiteness of the number of productions. At the stage
we have now reached, we have sufficient information to obtain all the ter­
minal constructions generated by z3. Only a0 and g are directly generated
by z3; by a0 only

g> h
is directly generated, while by g

g, tx and t2,

where the second is already terminal. To the first both the second and third
productions can be applied, with the results

g ,t1, t 1 and t2, t x,

140 Two-level Grammar in Algol 68 [Ch. 9

where the second is again terminal. From the first we obtain similarly

g , t1, t 1, t 1 and t2, t l , t 1,

and so on. Clearly, every terminal construction generated by the category
name z3 begins with t2, followed by a chain consisting solely of tx.
It is easy to see that this simple language can also be generated by the follow­
ing two productions:

z3 := z3, t1

z3 t2 ■

But the purpose of this example was to elucidate the elaborate general
considerations, by means of which one can show that in the case of a large
finite number of terminal concepts, a language generated in two levels can
also be generated by a one-level phrase-structured grammar. So, if it is not
circular, such a language is primitive recursive.

Chapter 10

Does Recursivity Mean Restriction?

10.1 The Recursivity of Everything Computable

It was shown in Ch. 4 that everything obtainable by a computer is partial
recursive. Actually, a really partial recursive function might not be obtained
at all. If one can decide for every argument whether the function / under
consideration is defined there or not, then the situation is clear. If this
decision is made in a general recursive way, then the agreement that the
function take a fixed value wherever / is not defined turns the definition
of / in to the definition of a general recursive function. However, for proper
partial recursive functions the possibility of finding such a decision proce­
dure is hopeless. If a program for the computation of such a function is
fed into a computer and, after the input of arbitary arguments, the com­
puter starts calculating, one can never know whether the computer has
failed to stop because the computation is too lengthy, or if it will work on
forever, without computing anything.

One always strives to feed “reasonable” programs into the computer,
whereby for arbitrary initial data the calculation will come to a halt after
a (large) finite number of computing steps. With this, the above statement
can be reduced to the following: - whatever can really be obtained by the
use of a computer is general recursive. Moreover, after suitable coding,
it can become a general recursive numeric function. Thus the question
arises: - Does this mean an essential restriction on the abilities of the com­
puter?

142 Does Recursivity mean Restriction? [Ch 10

10.2 Church’s Thesis

Assuming Church’s well-known thesis [33] does not mean any restriction.
According to this thesis, every numeric function is general recursive if its
values are computable in a finite number of steps for all arguments. Of
course, this is not an exact mathematical proposition, because the term
“computable” is not exactly defined. Consequently, it can be neither proved
nor disproved mathematically. There are many arguments for, and some
against, the plausibility of Church’s thesis. Perhaps the most striking argu­
ment against it is due to L. Kalmár[34]. He has proved that the validity of
Church’s thesis would imply the following hardly believable fact: There
exists a simple proposition (namely that there is a natural number n, for
which a fixed numeric function cp(n, m) does not vanish for all tri) which
we know is true, but still cannot be proved in any way.

I myself agree with Kalmár’s conviction that effective computability is one
of those notions the definition of which can never be considered complete
in the course of the development of mathematics.

As a matter of fact, up to now no effectively computable numeric func­
tion (that is one computable everywhere in a finite number of steps) has
been found which is not general recursive. Therefore, computers, which in
principle are capable of computing every general recursive function, yield
the most that can be expected according to the present state of our knowl­
edge. Let us hope, provided a counter-example to Church’s thesis is
made known, then, one hopes, the technological means will develop to
modify computers to enable them to compute such functions.

Г33-* A. Church: An unso/vable problem o f elementary number theory, Amer. Journ. Math.
58 (1936) pp. 345-363.

L. Kalmár: Solution o f a problem o f K. Schröter concerning the definition o f the notion
o f general recursive functions. MTA III. O. Közi. Publ. of class III. of the Hung. Acad.
Sei. 7 (1957) pp. 19-38 (in Hungarian).

Chapter 11

Recursivity of Lisp 1.5

11.1 A Set of Numeric Structure

The recursive theory of the programming language Lisp 1.5[35:| indicated
in section 3.7, can not only be dealt with by embedding it in a word set.
A holomorphic set is a typical example for another case of a set with a
numeric structure. As to general information on such sets, I refer to foot­
note [10].

Here we are going to study lists, that is, finite linear arrays which are built
out of certain elements. These are elements of a word set over a finite
alphabet containing letters, digits and several special symbols. However,
the lengths of words used for this purpose are bounded. Hence the set
A of elements is finite. Let this be denoted by

A = {űj, a2, •• •, ot}.

11.2 Basic Notions

In what follows, each of these is considered as a single symbol (and not
as a chain of symbols). All the elements play the role of 0 in our holomorphic
set. Since the set of О-elements is customarily denoted by H0, we put

H0 = A.

The terms of a list are either elements or lists that have been constructed
earlier. One does not have to consider lists of arbitrarily many terms, since
they can be decomposed into pairs. To the first term of the list, the list of

f35l See the paper quoted in footnote t13], and R. Péter: Die Rekursivität der Programmie­
rungssprache „Lisp 1.5" in Spezialfällen der angeordneten freien holomorphen Mengen,
submitted to Acta Cybernetica on February 1, 1973.

144 Recursivity of Lisp 1.5 [Ch. 11

the remaining terms can be chosen as the second item of the pair. The
latter list can again be considered as a pair in a similar way. To the last
term of the given list, the empty list is to be chosen as the mate. This is
denoted by “NIL” and is also considered to be an element.
Thus instead of lists, we shall deal with symbolic expressions or in short
S-expressions. In the first place, the elements are S-expressions. Moreover,
if and s2 are arbitrary S-expressions, then the pair

S = (Sj, S2)
is also.
Thus if s corresponds to a list, then sx corresponds to its first term (the
head) and s2 to that (perhaps empty) list which results if the first term is
removed from the original list (the tail).
Here sx and s2 as functions of s will be denoted by

sx = car (s), and s2 = cdr (s),

while í as a function of sx and s2 will be denoted by

S = COnS (Sj, s2).

This two-place function cons plays the role of a successor function here.
If s is an element of H0, that is

s€#o,

then we say that the order of s is 0, that is

o(s) = 0.

If íj and s2 are at most of order n, but at least one of them has order n, then
the order of

is n + l, that is
s = cons (sx, s2)

o(s) = n+1.

The set of S-expressions of order n will be denoted by Hn, while H is the
union of the sets Hn for n=0, 1, 2,
Every element x of H is either an element or has the form

cons (xl5 x2) = (xx • x2),

where xx and x2 are uniquely determined:

xx(= car(x))

is that S-expression which results if one omits the opening parenthesis of
the symbol chain x, and then copies its symbols (going from left to right)

Sec. 11.3] Basic Notions 145

until the numbers of the left and right parentheses coincide. Furthermore

x2(= cdr (x))

will be that chain of symbols which results if, from this remaining part of
X, one omits the point at the beginning and the last closing parenthesis.
Every element is the only (not proper) predecessor of itself. The immediate
predecessors of

X = Cons (Xj, X2)

are xx and x2, and the proper predecessors of x are the predecessors of Xj
and x2. Consequently the order of a proper predecessor у of x (denoted
by y-<x) is less than o(x).
The natural numbers

0, 1, 2 ,...

will be identified in H by a fixed member of each

#o, # i ,
respectively, that is by

h0 — NIL, hx = cons (h0, Zz0), h2 — cons (hl5 /q),

Thus for every natural number i we have

i = o(i) = o(hi) = ht.
Moreover

o(x) < o(y)
is equivalent to

and
o(x) o(y)

x ^ o(y)

implies that x is a natural number, that is

x = o(x).

11.3 Primitive Recursion in H

Now the scheme of primitive recursion in H reads as follows: -

f{a , ult ..., u„) = ga(u1, ..., u„), if a£H0 (= A)
f (cons (xx, Xa), Mi,..., u„) =
= g (xx, X2, «!, . . . ,и п, / (х х, Uj, ..., u„), / (x 2, Uj,

where
Sat ’ S

are already defined functions.

146 Recursivity of Lisp 1.5 [Ch. 11

11.3.1 Initial Functions

As initial functions we take the elements of H0, the successor function
“cons”, and the characteristic function of the equality: -

equal (x, >’).

Here b is said to be the characteristic function of a relation B, if everywhere
b takes the value h0 or hx according to whether В is valid at the corresponding
point or not. Also here we say that if В is primitive recursive so is b. Thus we
have . .rÍ h0, if x — у

equal {x, y) = \
if x ^ y.

A function is primitive recursive in H if it can be obtained from the initial
functions by means of finitely many applications of substitutions and primi­
tive recursions.

11.4 Examples

Next we list several examples of primitive recursive functions in H.
1. The identity function

id (x) = x

can be obtained by the primitive recursion

r id (a) = a, if a £ # 0
(id (cons (x1; x2)) = cons (xl5 x2),

where the constant

and the function
8a = a

g = cons

are initial functions. Here g depends only on the two indicated variables,
but the introduction of dummy variables, on which a function does not
really depend, is also permitted in H.
2. The definitions of the immediate predecessors of x are

r car (a) = NIL = h0, if a£H0
\ car (cons (xy, x2)) = x x,

r cdr (a) = h0, if a£H0
l cdr (cons (xj, x2)) = x2.

3. The natural numbers
h0, hi, h2,

Sec. 11.4] Examples 147

are primitive recursive, since this is true for the element h0, and its validity
can be proved by induction hn to hn+1. This can be obtained by the substi­
tution

cons (hn,h n).

4. The characteristic function
atom (x)

of the property “to be an element of H0”, that is to be an element, and its
opposite

atom (x)

can be defined by the following primitive recursions: -

r atom (a) = h0, if a £ # 0
l atom (cons (x1, x2)) = h1

{atom (a) = h1, if a^H 0
atom (cons (xl5 x2)) = h0.

These correspond to the functions

sg(x) and sg (x)

in number theory as well as to the functions

sig(x) and sig(x)

in word sets. They have their counterparts in every set of numeric structure.
They can always be used to prove the following statements: -
i) The primitive recursive relations are closed under negations, conjunc­
tions and implications.
ii) A function built up from primitive recursive functions by means of pri­
mitive recursive relations is also a primitive recursive function. The exact
meaning of this was formulated in both the case of number theory and of
word sets, and the theory can be generalized to other sets of numeric
structure.
iii) Using i) and ii), one can show that if В(и0,щ , un) is primitive re­
cursive, then so are

(Ey) [y <, x & B(y, u1;

GO [y ^ x - B(y, Uj, ..., u j]
and

Иу[У ^ x & B (y , Uj, ..., un)].

The meaning of their counterparts was given in section 3.6.2.

148 Recursivity of Lisp 1.5 [Ch. 11

5. The characteristic function pred(x, y) of the relation y < x occurring
above has the following primitive recursive definition: -

pred (a, у) = equal (у , a),

I pred (cons (*!, x2), y) = •

if a£H0
h0, if cons(xl5x2) =
= у V pred (хг, y) = /i0Vpred (x2, y) = h0
hj otherwise.

Consequently the relation

у <; x = у :< x & у 7̂ X
is also primitive recursive.
6. Finally o(x) is also primitive recursive in H. Indeed, if

X = c o n s (X j , x 2) ,

then one of «(xj), o(x2) must be exactly one less than o(x). Moreover for
each number n, the successor of n is

cons (n, n).
Hence o(x) can be defined by

o(a) = h0, if a £ tf0
f cons(o(x!), oCxj)), if oC x^^oiX i)

olcons (x., X2)) = 1 / 74 ' l cons (o(x2), о (x2)) otherwise.

11.5 The Order o(x)

We add three important remarks to the definition of o(x): -
a) For

x = cons (xt , x2)

o(x) was defined with the help of the earlier value o(x-1), where in general
x-1 denotes a fixed predecessor of x of order o(x) —1, in our case this
was a fixed one of хъ x2, the order of which is not less than that of the
other.
It is useful that the scheme

I / (a) = ga, i f aeH0
l/(cons (xl5 x2)) = g(xl5 Xa./IxO./CxalJfcons-1 (xl5 x2)))

(where parameters are admitted) remains within the class of functions which
are primitive recursive in H. Indeed, applying the primitive recursive auxili­
ary function

rg(Xj, X2, Dj, V2 , V j) , if o(x2) ^ OÍXj)
g (Xi, x2, vlt v2) = 1 . ..

Vg(xl , x 2, v 1, v 2, v2) otherwise,

Sec. 11.5] The Order о Ос) 149

the above function/ i s also definable by the primitive recursion

i / 0) = ga, if a£H0
l/(cOnS (Xj , x2)) = g'(Xj , XzJixJJixz)) .

In the particular case

and
ga = a

g(*i, x2, vu v2, V.j) = v3,

X-1 itself is obtained as a primitive recursive function.
For every natural number n, we have

n_1 = n — 1.

b) Instead of the natural numbers it is more appropriate to use the func­
tion o(x) in H. For instance, the o(x)th iterate of a primitive recursive
function / at a place у has the following primitive recursive definition in
H: -

(f (0(a))(y) = y, i f a£H(i
\ f (o (cons (x, , I 2))) (y) = / (/ (0 (cons-1 (Xj, x2)))

The iteration
(/)it(x, y)

yields an example of a primitive recursive sequence:

(/,it„(x)0),

since it does not really depend on x, but only on o(x).
Since o(x) is always a natural number,

o(o(x)) = o(x),

that is every non-zero-th iterate of o(x), is equal to o(x).
c) In section 3.4.1, we referred to the fact that, what we proved there
for word sets (namely that every numeric primitive recursive function
can be represented by a primitive recursive word function) is valid in every
set of numeric structure, in particular in H. More precisely, for every pri­
mitive recursive numeric function

(p(mr, ..., m„)
there is a function

i, ••■,«„)

primitive recursive in H such that for all щ, ..., u„

o(/(u j, ...,u„)) = q>{o(ú j , ...,o(u„)).

o(/(o(«i), •••, o(un,)))
The function

150 Recursivity of Lisp 1.5 [Ch. 11

can be considered as the representative of cp in H. The representatives of
the numeric functions can be denoted in the same way as the originals.
Through their characteristic functions, the numeric primitive recursive
relations can also be represented by primitive recursive relations in H
(which are denoted in the same way).

1 1 . 6 Coding Lists by Elements

In order to be able to handle course-of-values recursions, we have to code
sequences of elements of H, by elements of H, in such a way that the terms
of a sequence can be recovered from its code. For a set of numeric structure,
in which one of the successor functions is of at least two variables (as in
the present case), in my paper quoted in [lo:i I have constructed a rather
simple example of such coding. In the present particular case, however,
it is more natural to use another method, which can also be generalized.
In this, a finite sequence is considered as a list (of S-expressions), with
which we have previously associated an S-expression: -

with the list s„ the S-expression (s0-NIL)

with the list s0, sx the S-expression (s„ • (sx • NIL))

with the list SqjS^Ss the S-expression (s„ • (sx • (s2 • NIL)))

and with the empty list e. g. NIL(=A0).
Thus with the list

0̂ 9 1̂ 5 • * * >

the element

X = C„(s0, Sl5 ..., S„) = COnS (s0, COnS (íj , ..., cons (s„,/!„)...))

is associated. It can be seen that

/i = o(n) ^ o(x)
is satisfied here.
The terms of the list can be recovered from its code x as primitive recursive
functions of x: -

s0 = car (x), sx = car (cdr (x)), ..., s„ = car (cdr(n) (x)).
Moreover

cdr(n+1) (x) = h0.

Sec. 11.7] Coding Lists by Elements 151

Consequently, the characteristic function list(x) of the property “x codes
a list” can be defined as a primitive recursive function: -

list (x) —
ho, if x = h0V(Ey) [y ^ o(x) & cdr(o(,,))(x) $ H0 &

&cdr(oW + 1)(x) = /i0]
h± otherwise.

The “length” long(x) (the above rí) can be obtained as follows:

long (x) = Цу[у o(x)&cdr(o(>,))(x) <1 / /0&cdr(<T(>,)+1)(x) = h0].

The expression
Hy[y d, Mj, ...,«„)]

needs a little explanation. Its value is obtained as the first term у of a
certain list, enumerating all the predecessors of z, which satisfies the rela­
tion

B{y, щ, ..., un)

and is h0, if this relation is not satisfied by any predecessor of z. Thus we
have

long (x) = h0

exactly, if x codes the empty list or does not code any list at all. Since
y ^ o (x) , long(x) is necessarily a natural number.
A primitive recursive sequence which enumerates predecessors of x, and
which if x codes a list, for

o(y) < long(x)

yields the o(y) th term of this list, can be defined as follows: -

r car (cdr(o(},))(x)), if list (x) = h0&o(y) < long (x)
k0(y)(x) I x otherwise.

1 1 .7 Course-of-values Recursion in H

consists precisely of the predecessors of x (with x ^ x for /< /), then the
“course-of-values function” of a function/is defined as

/* (*) = c ,(/(x 0), ...,/(x ,)).

Every earlier value of / can be obtained from this as

/(* ,) = ki (/*(*))

152 Recursivity of Lisp 1.5 [Ch. 11

(with ;< /). Therefore the scheme of course-of-values recursion in H reads
as follows: -

/(a) = ga, if a£H0

/(cons (x2, x2)) = g(x1, x 2, f* (x l), f * (x 2)),

where the functions ga and g are primitive recursive (and might contain
parameters).
It turns out to be helpful if we choose the sequence (11.7.1) in such a way
that for x£H0

and for
l — 0 and x0 — X,

X = cons (xx, x2)

we first enumerate the predecessors of x 2 in their already given order, then
the predecessors of хг in their given order, and finally put

x = x t .

It can be shown then that l=l{x) as well asf*(x) will be primitive recursive.
With this, moreover, we have

№ = kHx)(f*(x))

is primitive recursive as well. Therefore, the course-of-values recursion does
not extend the class of functions which are primitive recursive in H. This
holds true in general for sets of numeric structure, after several further
initial functions are chosen. In our case, however, these can be defined as
primitive recursive.
As a simple application of the functions c„ and k t(x) I also mention the
reducibility of the simultaneously recursive definition of several functions

to the recursive definition of the single function

/ = c„(/o, ...,/„).

From this, the original function can be recovered by the substitutions

/о - к „(Л, ...,/„ = K(f).

Sec. 11.7] Course-of-values Recursion in H 153

11.7.1 More Recursions in H

In the paper quoted in[13] the characteristic function

eq (x, y)

of the property “x and у are equal elements” was taken as an initial func­
tion, and from this

equal (a,y) = eq(a,y),

equal (cons (xx, x 2), y) =

if a£H0
h0, if equal (xj, car (y)) =

= h0 & equal (x2, cdr (y))
hx otherwise

h0

was defined later. I want to add here two remarks.
1) I show that

eq (x, y)

can be defined as a primitive recursive function in H.
First of all the characteristic function/- of the property to be equal to the
element

at (i = 1, 2, ..., t)

can be defined by the primitive recursion

Ш д - К

f i (ai-i) = >h

Mai) = h0

f i (ai + l) = К

Ma,) = К .
/(cons (xj, x2)) = hj.

Using these we can put

h0, if (x = ax & y = aj)V...V(x = a, & y = a,)

(only for i — 1)

(only for i = t)

-= i:req (x, ,, — , ,1 u otherwise.

2) The above definition of
equal (x, y),

which, by means of the primitive recursive auxiliary function

\h0, if x = h0& y = h0
otherwise

154 Recursivity of Lisp 1.5 [Ch. 11

can also be written in the form

f equal (a, y) = eq (a, y), if a € # 0
1 equal (cons (xl5 x2), >’) = g (equal (xl5 car (>’)), equal (x2, cdr (>’))),

is not a primitive recursion, since the argument у in it does not remain
unchanged. First it is replaced by car(y) and then by cdr(y).
In my paper quoted in [10], I pointed out that, possibly after adding suitable
auxiliary functions, such a definition can be reduced to course-of-values
recursions. Thus, it can be reduced to primitive recursions as well, even in
the case of a “nested recursion”, in which the expressions substituted for
the parameters may depend on earlier values of the functions to be defined.
However it was used there in the sense that the characteristic function of
the equality (in our case

equal (x, y)

itself) was an initial function. Now, in our particular case the adding of
such further initial functions is not necessary. I shall illustrate this reduc­
tion with an example, which is applied in Lisp 1.5.

11.8 Examples

Let X and у correspond to lists of elements of the same length: -

(и1;ы2, and Oq, v2, ..., vn),

and let z correspond to a third list. Let us attach to the beginning of this
third list the pair-list

(cons (uj, iq), cons (w2, v2), ..., cons (u„, vn))

constructed from the first two lists. Let the S-expression corresponding to
this list be denoted by

pairlis (x, y, z)

whose value is irrelevant if x, y, z are not of the above type.
If x is an element, it can only correspond to the empty list. Hence the same
is true for y, and thus nothing is attached to the third list. Consequently
we obtain the following definition: -

{pairlis (a, y, z) — z, if a £ # 0
pairlis (cons (xj, x2), y, z) = cons (cons (xt , car (>’)), pairlis (x2, cdr (y), z)).

Using the primitive recursive function

g(uj, u2, u3) = cons (cons (iq, car (u2)), w3)

Sec. 11.8] Examples 155

we have the shorter definition

{pairlis (a, y,z) = z, if а£Н0 / ц 8 n

pairlis (cons (x j .x ^ ^ z) = g(xl5y, pairlis (x2, cdr (y),z)) v

For this definition, in which
cdr(y)

is substituted for the parameter у, I shall illustrate the steps of the reduction
to course-of-values recursions. In this simple example it goes easily, but
the methods indicated can also be applied to nested recursions.
From (11.8.1) values of the following types are obtained for
pairlis (x, y, z): -

z, if x £ # 0,
gfo .y .z), if x = cons(x!,x2) & x2eH0,

g(*i>y> g (*2 1 , cdr (y),z)), if x2 = cons(x„,x22) & x226 # „ ,

g (x j, у, g (x21, cdr (y), g (x221, cdr (cdr (y)), z))),

if x22 = cons(x221 ,x22 а) & x222€ # 0,
and so on.
It can be seen that the function values are built from nestings of the func­
tions

cdr(u), gCu^u^Ua),

where no function is substituted for щ . Let a function / (x, y, z) satisfy
the following conditions: -
(1) for every у and z there are x ' and x" with

f (x ' , y, z) = у and f ix" , y, z) = z,

(2) for every y, z, и there is an x with

f (x , y, z) = cdr (/(u, y, z)),

(3) for every y, z, ux, u2, Щ there is an x with

f i x , y, z) = g (« !,/(u2, y, z),/(u3, y, z)).

Then / (x, y, z) has all such nestings among its values, in particular all
the values of pairlis (x, y, z).
Now, such an / (x, y, z) can be defined by means of the primitive recursive
functions

kfu), c„iu0, «и ..., m„)

for i=0 , 1, 2, 3; n=0, 1, 3, where for i ^ n

ki{cniu0, Uj, ...,u„)) =

156 Recursivity of Lisp 1.5 [Ch. 11

in the following way: -

f (a ,y ,z) = y, if aeH0 (11.8.2)

j/(co n s(x 1,x 2),y ,z)
z, if o(k0(x1)) = h0
cdT(f(k1(x1),y,z)), if o(k0(x1)) = h1
g(k1(x1) ,f(k2(x1) ,y ,z) , f(k3(x1),y,z)) otherwise.

Indeed, properties (l)-(3) are satisfied by

x ' = h0 and x" = cons (c0(h0), x2),

x = cons (c1(h1,u), x2),

x = cons (c3 (h2, Uj, u2,u 3), x2),
— “ V ------------------- '

*1

respectively by choosing x2, for example x2=h0.
Furthermore, by a definition of type (11.8.2), (I shall return to th equestion
of reformulating these as course-of-values recursions) one can obtain a
function vv(x, щ, u2), which unfolds the nested values of the function /
in the sense that, for all values of the arguments,

/ (x, / (mi, y, z),f(u2,y , z)) = /(w (x , tq, u2), y, z)
holds.
With the use of this function, we can finally, through primitive recursion,
define a function q(x) which, so to say, sifts out the value of pairlis (x, y, z)
from the value of / (x, y, z). Similarly, for all the values of the arguments,

pairlis (x, y, z) = f(q(x), y, z)

and the function w(x, щ, u2) can be defined primitive recursively in the
same way as pairlis (x, y, z).
According to the definition of ko(y)(x) the values

fci(Xi) (i = 0 , 1,2,3)

occurring in (11.8.2) are predecessors of xx. If k t(x) is the v(x, i)th in the
list (11.8.1) of the predecessors of x, and f* (x ,y , z) denotes the course-of-
values function of/ (x, y, z), then by section 11.7

f(k i (Xj), y, z) = kv(Xui) (/*(xl5 y, z)).

If we substitute the right-hand sides of these identities instead of their left-
hand sides in (11.8.2) for i=0, 1, 2, 3, we can see that since v(x, i) is primi­
tive recursive, a course-of-values recursion is obtained. This shows that
for a general set of well-behaved numeric structure the function corres­
ponding to v(x, i) has to be added to the initial functions.

Sec. 11.9] Examples 157

In our special case, however, v(x, i) can be defined in a primitive recursive
way in H.
Thus pairlis (x, y, x) is primitive recursive in H. It can be shown in a similar
way that recursions, in which substitutions occur for the parameters (even
if nested values of the function to be defined occur among these), do not
lead out of the class of functions primitive recursive in H.

11.9 General and Partial Recursive Functions in H

In every set H of “numeric structure”, hence also in the set of S-expressions,
one can introduce the general recursive functions similarly as in the number
theoretic case. The values of these can be obtained everywhere from defin­
ing systems of equations by means of finitely many substitutions of ele­
mentary terms (in our particular case S-expressions) for variables and sub­
stitutions of one side of an equality for the other. By omitting the require­
ment “everywhere”, we obtain the partial recursive functions in H. (All
of these can also be defined by primitive recursions and suitable “un­
bounded /i-operations” .)

Chapter 12

Decision Tables

12.1 Decision Tables versus Flow Charts

For some time it has been a tendency in practice to use decision tables[36]
instead of flow charts, if, in the flow charts several logical vertices would
follow one after the other, thus making the structure and flow of the cal­
culations difficult to follow[37].

12.2 An Example

We return now to the idea of a graph scheme which was introduced in Ch. 6
for the computation of the Ath binary digit sk of the sum of two numbers
given in the binary form: -

where arbitrarily many digits 0 can stand left to the last digit 1. One has
to take into consideration that sn for any n depends not only on an and b„
but also on the remainder r resulting from the already executed addition
of the digits to the right.
The associates of the vertices will be denoted in the same way as it is custo­
mary in (non-exact) practice. They will be written into squares and
hexagons, which represent the mathematical and logical vertices, respec­
tively. In the mathematical vertices statements of the form

c => V

[36] See R. Péter: Mathematische Fassung der sogenannten „Entscheidungs-Tabellen”,
Acta Cyb. 2 (1973), pp. 89—108.
[3,] See R. Thurner: Entscheidungs-Tabellen, Düsseldorf (1972), with the references given
there.

Sec. 12.2] An Example 159

figure, meaning that a variable v has to be given the value c (disregarding
the fact that possibly v has already been given a value earlier). In the logical
vertices, questions of the form

c = b?
are written.
These are obtained in the following way from the mathematical and logical
functions associated with the vertices of the appropriate graph scheme.
We compute the digits s„, slt of the sum, step by step, until we reach
sk. We introduce auxiliary variables n, r, s to denote the step number, the
current remainder, and the current digit of the sum, which will vary in the
course of the computation. When we say that s0 is “computed in step 0”
(where of course the remainder is 0) we mean that both n and r have to
take the initial value 0. For s we can also take the irrelevant initial value 0.
The input vertex of the graph scheme has to be a mathematical vertex,
with which, since the initial data form the sequence

(k, Uq, . . . , ak, h(j, . . . , bfc),

the mathematical function

ai(k, Uq, ..., Qk, bp, ..., bk) - (/c, Uq, ..., Qk, bo, ..., bk, 0, 0, 0)

is associated. Initially, in the flow chart, r and n are declared to have the
value 0, for this

0 =>r

will be written in the input vertex, and the simple edge starting from here
will lead to another mathematical vertex with

0 =>n.

Here the procedure branches according as the remainder is 0 or not. Hence
there must follow a logical vertex. In the case of the graph scheme, this is
associated with the relation

ВЛк, a0, ..., ak, b0, ..., bk, n ,r ,s) = r = 0,

in the case of the practical flow diagram with the question

r = 0?

the edges starting at this logical vertex, according as the answer is “yes”
or “no”, will be marked by T and F in the graph scheme and by Y and N
in the flow chart.
Then in both cases another branching follows, according as a„=bn or not.
Thus we have a logical vertex again, with the relation

B2(k, a0, ..., ak, b0, ■■■, bk, n, r, s) = an = b„

160 Decision Tables [Ch. 12

in the graph scheme, and with the question
a„ = b„?

in the flow chart.
In the next step there appears an auxiliary variable л which has to be given
a value 0 or 1. In the graph scheme, this is accomplished by the functions

ai(k ,a0, ...,a k, b0, ..., bk,n , r, s) = (k ,a0, ...,a k, b0, ..., bk, n, r, 0),
ccj(k,a0, ...,a k, b0, ..., bk,n , r, s) = (k ,a0, ..., ak, b0, ..., bk, n, r, 1),

and in the flow chart, by the statements

0 =>s,
1 =>s.

This process continues repeatedly in the same way. In the graph scheme
2k + 6-term sequences

(k ,a0, ...,a k, b0, ..., bk, n, r, s)
will occur, with the exception of the output vertex, where the 1-term se­
quence sk is obtained as the function value. In the flow chart, this is expressed
(after introducing an auxiliary variable e for the result) by the statement

s => e.
Meanwhile, before each step in the computation, the question is put
whether n = k l If so, one proceeds to the output. If not, then n is increased
by 1, and one goes back to the first branching point.
It is easy to see that the flow chart constructed according to the above
instructions does compute the required digit sk of the sum: -

Sec. 12.3] Changing Flow Charts into Decision Tables 161

12.3 Changing Flow Charts into Decision Tables

The flow chart belonging to the above simple problem is nevertheless still
rather complicated. So the parts consisting of several logical vertices will
be replaced by decision tables.
A decision table (or simply a table) is divided into four quadrants as fol­
lows: -

I II

III IV

In quadrant I different questions, and in quadrant III different statements
will be indicated. The other two quadrants П and IV will be divided into
a certain number of columns. In the upper part (that is in II) every column
contains a variation of Y, N and the “empty” symbol. In the lower part
(that is IV) every column contains a variation of X and the “empty” symbol.
To explain the meaning of such tables, let us consider an example. Suppose
that I and III, and one of the columns are as follows: -

F, Y
F2
F3 N

Ax
A, X
A3 X
A4 X

This means that if the answer to question Fj is “Yes”, and to F3 is “No” >
then (independently of the answer to F2) the statements A2, A3 and A4
have to be executed.
Clearly the upper halves of two columns cannot be identical, because then,
if we want to avoid contradictions, their lower halves would also be identical.
Hence one of them would be superfluous.
Let us consider a part of the flow chart given in section 12.2, containing
several connected logical vertices.

162 Decision Tables [Ch. 12

This can be replaced by a table, by first traversing all possible directed
paths of edges starting at the initial vertex. These will be called “lines”.
The questions found along the way (each one occurs only once) are written in I
and the statements are written in III. For every line, a column is filled in as
follows: - The row of a question is empty if the question does not occur
along this line, Y and N is written if the question occurs and the edge on
the line following the corresponding logical vertex is marked by Y or N,
respectively. Finally, for every statement X; or, nothing, is written, accord­
ing as a vertex with this statement is traversed by the line or not.
By always choosing the leftmost line first, we obtain the following table
in our example: -

r = 0? Y Y N N
a„ = b„? Y N Y N

О =>a X X
1=м X X

Now if we wanted to reconstruct the above subgraph from this table, this
could not be done in a unique way. From the first two columns we can
still uniquely recover the part

as well as the fact that the line belonging to the third column starts with
the edge N at the initial vertex. This edge however, could lead to the middle
vertex with the question “an = bnT ’, and further it could lead along the edge
Y starting there, which contradicts the final statement of the actual third
column: -

Therefore it is advisable to drop the requirement that the questions in I
and the statements in III are different. We consider the rows of the table
as belonging to the different vertices rather than to different questions or

Sec. 12.4] Systems of Tables 163

statements. In what follows I will often say “points” instead of vertices.
Then the table belonging to the above subgraph looks as follows: -

Р1Л r=0? Y Y N N
P u a„ = K1 Y N
P1.3 a = b nl Y N

T*:
Р'1Л 0 =>s X
P '2 1 =>s X
Pi 3 1 =*s X
PÍ.4 0=>s X

where P j . and P ' ; denote the ith logical vertex and the j'th mathematical
vertex, respectively, which are used in the construction of table T2.
From this, the subgraph can be reconstructed in only one way.

12.4 Systems of Tables

Considering the whole graph of section 12.2 we see that the continuations
of the subgraph, dealt with in section 12.3 again lead to logical vertices.
Starting from one of these vertices (for example the one on the left), let us
consider again the subgraph consisting of those lines, which from here lead
to the first mathematical vertex or (if this were the case) to a vertex already
encountered. (If the mathematical endpoint of a line is followed by further
mathematical vertices, then the line has to be extended to the first new
logical vertex or return to a point already encountered, respectively.)
Thus we obtain the subgraph

to which the following table belongs

Р2Л a„= l? Y N N
P2.2 n = /c? Y N

T * . --
2' K i 1 =>r X

P2 2 s=>e X
P2.3 n + 1 =>n X

164 Decision Tables [Ch. 12

Here all points are different from the points of T*.
Now only one logical vertex remained in the graph of section 12.2. Start­
ing with this, similarly we can deduce the following subgraph: -

Y 4 *0=»r

The dotted edge, marked by Y, leads to the logical point P2>2 of the above
subgraph corresponding to T2. Its continuation is the part of this sub­
graph starting at this point. This corresponds to the following “subtable”
ofT*

P2.2 n = kl Y N

T2'2' P2.2 s=>e X
P 2 .3 n + l=>n X

Therefore, it is convenient to add statements of the form “go to Tu ” as
“exits” from tables, which require the execution of the subtable of T;
starting at the point P; j-.
Then the table belonging to the last subgraph looks as follows: -

T*. 1 a •

Рзл fln— 1? Y N

P3.1 0 =>-r X

go to T2 2 X

where P3л and P3 г are different from the points of both TJ” and T2.
The addition of an “exit part” to the table (which is not assumed to belong
to the “lower part” of the table) is also useful because it shows where the
last edge belonging to a column must lead to.
Putting into T3 the augmented form T2 2 instead of T2 2, we obtain

T,:

Рзд a„= l? Y N

Рзд 0 =>r X

go to T 2 2 X X

We have similar augmented versions of T ̂ and T2 as well.

S ec . 12 .4] Systems of Tables 165

The mathematical points on the line leading from the input vertex to the
first logical point still do not occur in any of the tables. For these we construct
the following table with a single column, and empty upper part: -

Рол O^r X
T . Pq 2 0 =>n X1 0 •

go to Tj X

where T, for /'>0 means the subtable Tjfl of T;.
Thus the following system of tables is associated with the graph of section
12.2 : -

P'.i 0=>r X

p . PÓ.2 0=>П X

go to Tj X

Р1Д r = 0? Y Y N N

Рг.2 an = bnl Y N

Pis «n = b„? Y N

Pi.! 0=>s X

T . Pi., 1=м X
Pi., 1 X

P'1A O^s X

go to T2 X
go to T2.2 X X

go to T3 X

166 Decision Tables [Ch. 12

Here we have

P2.2 n = /c? Y N

Р2Д X

T2.2: P2.2 n + l=>n X

stop X

go to Tj X

P21 a„ = 1 ? Y N N
P2.2 n = k? Y N

K i !=>/• X

P2 2 s=>e X
T :

P2 3 n +1 =>n X

go to T2 2 X
stop X

go to Tj X

Рзд «„=1? Y N

T3: Рзд 0=>r X

go to T2.2 X X

The computation procedure is represented by these tables in a somewhat
clearer way than by the graph of section 12.2.
It is also important that several people can work on the separate tables.
Some of the tables can even be extended (or changed in some other way),
without disturbing their connections. The statements “go to T ” or “go
to Tj j” then really call for walking - namely to the desk of the person
working on table T, or T; j-, respectively. So certain edges of the flow
diagram can be represented by such walks.

Sec. 12.6] Normalizing Flow Charts 167

12.5 Normalizing Flow Charts

It can happen that on a line being used to build a column of a table, two
different points are associated with the same question F in such a way that
in the corresponding column, the answers to this question are either super­
fluous or contradictory. However, the basic graph can always be replaced
by an other one, for which such situations do not occur. The graph in this
respect is said to be normalized.
I will not go into the details of this normalization here.
I have one more remark. If a line returns to the mathematical point Рд 2
(to which the edge starting at the input vertex leads), then afterwards the
part

PÓ.2 0=>n X

go to Tx X

of T0 has to be executed. This table is called the subtable Тд2 of T0
belonging to Рд 2. Thus in the exit of a table statements of the form “go
to T;j ” can also occur.

12.6 Regular Tables

As in the example above, we can obtain from every normalized flow chart
a system of tables giving the same result. I will list here the characteristic
properties of such systems of tables, which I will call regular. These also
reflect the fact that always the leftmost line was chosen for constructing
the next column of a table.
(a) A table system consists of finitely many tables without common points

T1; T2, ..., T„ and perhaps T0.

T0 (and only T0, if it occurs) does not have an upper part. Moreover none
of the tables has an exit “go to T„” . If T0 does not occur, then none of the
tables has the exit “go to Tx” . For every other table T;, however, there is
at least one column exit “go to Тг” perhaps in the form “go to T;1”.
(b) As column exits of a table Tm (m ^ n) statements of the form

stop, go to Tk, go to Tи , go to T u ,
can serve.

168 Decision Tables [Ch. 12

(c) The exit “stop” belongs to only one table column.
Next we describe what is meant by saying that the tables of the system are
“ regular”. This concerns both the upper and lower parts of the tables and
requires that the following properties be satisfied:
(d) In the first row, belonging to the first point of the table, there are no
empty places, since every line used for the construction of the table starts
at this point.
(e) In the upper part of the first column the non-empty symbols must all
be Y’s and follow each other without a gap. In the last column, and
only in the last, no Y smymbol occurs.
(f) (1) For every appropriate / the contents of the (/+ l)th column coincides
with the contents of the /th column, up to the last Y symbol of the latter,
instead of which N occurs in the (/' +1)th column. (2) The first non-empty
symbol after this N in the upper part of the (/+ l)th column belongs to the
first such row, in which none of the 1st through to the /th columns contain
a Y or N symbol, since after a line branches from the earlier one only new
points are traversed by the new line. In the first portion of the upper part
of the (l-fl)th column the non-empty symbols— which are all Y’s follow
each other without a gap.
(g) The questions really to be considered in a column (that is the ones
belonging to non-empty symbols) as well as the questions following these
after possibly empty places in the lower parts of other tables, are all dif­
ferent. This follows from the normalization of the graphs mentioned in
section 12.5. This property also applies to the exits.
(h) In the lower part of every column, the X symbols follow each other
without a gap, in the first column from the first row on, for every appropriate
/. On the other hand, in the (Z + l)th column they follow from the row just
below the row in which the last X occurred in the /th line because the
mathematical points of lines used to construct the columns are all different.

12.6.1 Subtables

The subtables have to be constructed as follows: -
The subtable T; j- of T; is obtained by omitting the first (j — 1) rows, then all
the columns which are empty in the/th row, and finally all the rows in which
after this row none of the symbols Y, N, X remain.
In constructing Tj j, one has to do the same, after the whole upper part of
T, is omitted. Here of course, the “/th row” means the /th row of the remain­
ing part of T;. Thus T ;; has always only a single column.

Sec. 12.7] Regular Tables 169

For example, with the particular table T, of section 12.4 we have

and

Pí.3 a = b n? Y N

PÍ.3 1 =̂ S X
T13: P'1A O^s X

go to T22 X

go to T3 X

PÍ.3 1 =>s X
Tí.3: ------------------------------------

go to T3 X

Clearly, Т 'д is the table T0 itself, and for every MO T(1 is equal to T;.
From a regular table system it is easy to construct a flow chart leading to
the same result.

12.7 Turning Tables into Regular Tables

Tables occurring in practice, and in the literature, are in general not regular.
It is important, however, to be able to turn these into graph schemes as
well, since the latter, as is shown in section 7.3, can immediately be translated
into certain programming languages.
This can be achieved by turning these systems of tables into regular systems.
If the connections between the tables of an arbitrary table system are given
in a reasonable way, they can always be formulated by means of the exits
introduced above.
Requirement (c), which is the one most often violated in practice, can also
be dropped. If there are several points in the graph, from which no edges
originate, this can only be a fragment of a graph scheme (a graph scheme
serving the same ends can always be constructed, however), but the effect
of such a fragment can also be translated into programming languages.
For similar reasons, the requirement that no edge may lead to a certain
point can also be dropped.
In any case, we have to restrict ourselves to table systems satisfying property
(g) of section 12.6.

170 Decision Tables [Ch. 12

According to the above, we do not have to worry any more about the
exits from the tables. In what follows, however, we show that every table,
containing different questions and statements only, which does not contain
two columns with identical upper parts (even “implicitly” in a sense to be
clarified soon), can be respresented by a regular table having the same
effect.
The lower part of any table T; can easily be made regular. Let us assume that
the number of X symbols in the first column is xx, in the second x2, ...,
in the last x ,. Then we take new mathematical points

P ' p ' p ' p '
1 Í , 1 9 * ‘ * 5 1 Í , X l 9 X Í , X 1 + 1 ’ * * • > X Í , X1 + X2, P 'x i , X i + X 2 + . . . + X t *

In the same order, we take rows corresponding to these points instead of
the earlier rows of the lower part of T;. Then the X symbols of the first
column, together with the corresponding statements, are put one by one into
the rows belonging to Pfд , ..., P - . The X symbols of the second column
together with the corresponding statements (among which earlier ones
might occur) are put by one into the rows belonging to P(iXi+1, Pí>je +Jt ,
and so on.
This makes (h) of section 12.6 valid, and then it remains to deal with the
upper parts of tables.
Concerning the upper parts of table columns, it will be useful to consider
the empty symbol in such a way that the statements in the columns are
independent of the corresponding question, that is they yield the same for
both answers “yes” and “no”. Therefore it is usual to split each column
containing an empty symbol into two, which differ from the original only
in that the first replaces the empty symbol by Y, the second by N. It could
happen, however, that in doing this the upper part of a new column coinci­
des with the upper part of an old one.
Therefore the essential difference between the upper parts of two columns
must be understood as the existence of at least one row in which one of the
columns has Y, and the other has N. If this holds, then the table does not
have two columns with the same upper parts even implicitly.
Furthermore, it is also customary to add new columns to a table with a new
statement called “error”, to emphasize that the variation of answers to the
questions given in this column is not appropriate for our purposes. Instead
of applying the new statement “error” it would serve the same ends to
prescribe in the exit the return of the last edge belonging to the column to
its initial point, thereby producing an infinite cycle. This would show then
that the result of the procedure represented by the table is undefined for
the corresponding variation of answers.

Sec. 12.7] Turning Tables into Regular Tables 171

With the above splitting and adding of new columns, the upper part of any
table can be transformed in such a way that the upper parts of the columns
will yield all the possible variations of the symbols Y and N. If we have n
questions, their number is 2 ".
If these variations are arranged in such a way that one of them precedes the
other if and only if, at the first place where they differ, it contains Y (and
the other N), and the columns are arranged accordingly, this will precisely
correspond to the leftmost choice of the lines according to which the co­
lumns of the table corresponding to a flow chart were constructed. We still
have to ensure the validity of requirement (f) (2) of section 1 2 .6 , that is the
reflection of the fact that, after every choice of an edge starting at a branch-
in г noint only new points will be traversed by the corresponding line.

12.7.1 An Example

Let us consider as an example the case of 3 questions Fx, F2, F3. The upper
part of the table containing all the variations of answers in the above order
is the following:

Ft Y Y Y Y N N N N
F2 Y Y N N Y Y N N
F3 Y N Y N Y N Y N

In order to satisfy (f) we build from this the following upper table: -

Fj Y Y Y Y N N N N

F2 Y Y N N

F3 Y N

F3 Y N
F2 Y Y N N

F3 Y N

F3 Y N

This is already the upper part of a regular table.

172 Decision Tables [Ch. 12

12.8 Normal Systems of Tables

In the different particular cases, it is not always necessary to fill in all the
empty places, or to form all possible variations. In actual practice, one stri­
ves for the simplest possible transition to a corresponding flow chart.
Let us consider for example a decision table with applications to company
organisation, which is given on p. 19 of the book quoted in footnote[37J.
Using the notation

F1 ,F 2 ,F 3 ,F 4 and Aj, Да, A3, A4

for the questions and statements, respectively (whose meaning is irrelevant
to our investigations), this can be written as follows: -

Fj Y Y N
F2 Y N N Y

F3 N

F4 Y N

Aj X

A2 X
A3 X
A4 X

Now we have to examine the properties given in section 12.6.
Firstly, because of the empty place in the first row, (d) is not satisfied.
Therefore the third column has to be split into two (we could have switched
the first two rows instead): -

Fj Y Y Y N N

F2 Y N N N Y

F3 N
F4 Y N N

A4 X

A2 X

A3 X

A4 X X

Sec. 12.8] Normal Systems of Tables 173

In the fourth column, no Y occurs, hence (e) is not satisfied. This can be
remedied by switching the last two columns: -

Fx Y Y Y N N
F2 Y N N Y N
F3 N N

F4 Y N

Aj X

A2 X
A3 X
A4 X X

In the 4th and 5th columns the last requirement of (f) is not satisfied,
namely that after a branching point, only Y edges can occur on the initial
part of a line belonging to a column. Therefore a new row with the state­
ment “error” has to be added: -

Fj Y Y Y N N N N

F2 Y N N Y Y N N

F3 Y N
F4 Y N Y N

A4 X

A2 X
A3 X
A4 X X

error X X

Finally, the non-empty symbols of all the columns have to be placed into
the rows as prescribed by (f) and (h), together with their corresponding
question and statement symbols: -

174 Decision Tables [Ch. 12

Pj Fj Y Y Y N N N N

P2 F, Y N N

P3 F4 Y N

P4 F2 Y Y N N

P5 F3 Y N
Pc F4 Y N

Pi A 4 X

Pi A3 X
Pi A4 X
Pi error X

Pi A, X

Pi error X

Pi A4 X

This is already a regular table with 7 columns and not 24=16 columns
which would be needed if all the possible answers to the 4 questions were
to be used.
From this table, the lines of the corresponding flow diagram (starting at
Pj) can be read off immediately. Thus we obtain

12.8.1 Comparison with Partial Recursive Functions

The transition from a graph scheme to an ordinary flow chart, which in
section 1 2 . 2 was illustrated with an example, can of course be reversed.
Instead of the questions and statements at the points, we can return (per­
haps after a suitable coding) to logical and mathematical functions.

Sec. 12.8] Normál Systems of Tables 175

According to the above, every normal scheme (a notion which was introdu­
ced in section 7.5) can be represented by a normal system of tables having
the same effect. By the latter, we mean a system of regular tables such that,
in quadrant I. of each table initial relations, and in quadrant III. initial
functions are contained. Moreover the converse of this statement is also
valid.
Consequently the functions definable by normal systems o f tables coincide
with the partial recursive functions, and thus with the machine computable
functions, since for the functions computable by normal schemes this was
shown in Chapters 6 and 7.

Index

A

Ackermann-Péter function 29
Algol 60, eliminating recursion from 109

flow charts in 85
recursion in 94

assembly language 53
atom (list processing function) 147

computing partial recursive functions 74
recursive number functions 55

concatenation 49
cons 48, 144
construction, order of 116
course-of-values recursion 27

D

В

backus normal form 113
Bar-Hillel-Perles-Shamir theorem 127,130
basic operations in binary form 45
binary representation 13
bounded p-operation 48
bracketless form 65

C

car 144
cases s e e definition by cases
“category concepts” 115
category names 128
cdr 144
chains 128
chains mixed 128
Church’s thesis 142
circular definitions 15
closure of recursive relations 22, 151
coding 59
coding lists by elements 150
coding sequences of words 49
computability of f lo w ch a rts 95
computable functions 62, 175

“dangerous” 117
dangerous productions 118
decidability 137
decision tables versus flow charts 158

changing, into flow charts
161

definition by cases 22, 43, 108
digital addition 13

subtraction 14
multiplication 14

Dijkstra, E. W. railway marshalling
statement 66

dummy variables 19

E

effective computability 142
eliminating circularity 117
eliminating, recursion from Algol 60

109, 112

F

finite terminal concepts, two-level
language with 138

178 Index

flow charts in Algol 60 83, 85
changing into decision tables
161
computability of 92
decision tables versus 158
determinig recursive functions
by 102
of word functions 86
partial recursivity of 87

G

general and partial word function 50
general recursion 29
general recursive functions 29, 30
(Gödel number) 32
“grammatically correct sentences” 155
graph scheme 83, 88

H

head 48
holomorphic set 52, 143

I

induction, mathematical 17
initial segment 45
iteration, restriction to 26

К

Kalmár, L. 17, 142
Kalmár’s formula controlled computer

82
Kalmár’s partial solution 17
Kaluznin 83

L

Lisp 15, 143
list processing 48
logical vertex (of a graph) 84

M

machine computable 55, 59, 63
machine computable functions 175

mathematical grammars 115
mathematical induction 17
mathematical vertices 84, 85
McCarthy’s Condition 52
Meta-Algol 128
Meta-language 113
Meta-production 128
Meta-symbols 128
p-operation 24, 31, 57, 108

bounded 48
unbounded 157

mixed chains 127, 128
multiple recursion 29
mutual recursion se e simultaneous recur­

sion

N

natural numbers 37
natural representation 39
nested recursion 28, 154
NIL (null list element) 144
non-recursive Algol procedures 96
normal flow charts 101
normalizing flow charts 167
normal scheme 101, 102, 106, 111
normal system of tables 172, 175
I f r] 54
numeric relations 42

structures 35

О

one-address code, reduction to 69
order of a construction 116
order o (x) in Lisp 13, 148
order of a word 39

P

pairlis 154
parameters 17
partial recursion in push-down stores 77
partial recursive functions 31, 108, 175
partial recursive numeric function 111
partial recursivity 137

of flow charts 87
partial word function 50

Index 179

“phase structured grammars” 115
predecessor, the idea of a 38
predecessors in Algol 60 124
preproductions 128
productions 115
primitive recursion and programming 17,

108
primitive recursion in Epi-Algol 60 122
primitive recursion in word sets 35
primitive recursion, unfolding a 98
primitive recursive word functions 35, 40
primitive recursivity of a language 131
primitive relations 21
push-down stores 69

R

railway marshalling graph 80, 81
railway marshalling language 80
railway marshalling statements 66
recursion, in Algol 60 94

course of values 27
general 29
multiple 28
mutual se e simultaneous
nested 28
partial 31
in program control 60
simultaneous 28
variable 17

recursive operations 20
recursive procedures 112
recursivity of everything computable 141

of graphical structure 90
of language at two levels 131
of Lisp 15
in symbol chains 132

registers 53
regular tables 167, 169
restriction to iterations 26
result register 53
“reversed-Polish” 65, 66
(root of n) У~п 54

S

sequential calculation 25
sequential procedures 82
S-expressions 144, 150
sign functions 21
simultaneous recursion 28
square root function se e У n (root of rí)
stack se e push-down store
statement-counter 53
subroutine 56
subtables 168
successor function 19, 33-34, 144
symbols 128

chain lists 128
sequences 33

T

tables se e decision tables
system of 163
turning, into regular tables 169

tail 48
terminal concepts 115, 129
terminal construction 116
three-adress code 67

push-down stores restriction
to 75

Turing’s thesis se e Church’s thesis
two-level language, an example 129
two-level language with finite terminal

concepts 138
two-level phrase-structured grammars

127, 128

U

“unbounded p-operation” 157
unfolding a primitive recursion 98
universal explicit form 32
universal program 58
Urbán, J. 70

W

word sets 35

FRO M THE REVIEWS
O F THE G E R M A N VERSION

REKURSIVE FUNKTIONEN
IN DER KOMPUTER-THEORIE

by

RÓZSA PÉTER

In German — 1976 — 190 pages — 17X 25 cm
Cloth - ISBN 963 05 0509 6

This book is distinguished by its unique style,
every researcher in recursive function theory who
appreciates Peter’s by now classical work on “R e­
cursive Functions” is familiar with. The lines o f
thought are followed in a truly genetic way, illustrat­
ed and motivated by numerous examples. It is
this that makes the book an excellent text even for
beginning students o f computer science. It is a
pleasure to read this book, which certainly deserves
a more widespread distribution than is assured by
the fact that up to now it is available in German
only.”

ZENTRALBLATT FÜ R M ATHEM ATIK, Berlin

” ... This book is a valuable first course in the field
o f theoretical computer science...”

REVUE ROUM AINE DE MATHÉMATIQUES PURES
ET APPLIQUÉES, Bucarest

Distributors:
K U L TÚ R A

H-1389 Budapest, P.O.B. 149

.

fr

*

. .
»
t

i-

4

;

fr-

L
> V •„ : ■

ISBN 963 05 2257 8

;

I.

(A művész köszönőlevele)
253-

Budapest, 1 9 6 1 . június 1 2 .
Hárs György elvtársnak
Budapest

Népszabadság Szerkesztősége
Kedves Hárs Elvtárs!
A Népszabadságban megjelent rólam szóló, meleg, baráti hangú írásodat ez­
úton köszönöm meg.

Szívélyes üdvözlettel

(Az albérlő levele)
254-

A „raktár”-helyiséget egyéb hely hiányában nem áll módomban biztosítani.
A „raktár”-helyiséget egyébként megegyezésünk szerint vettem annak idején
igénybe, mint az albérlemény tartozékát, tehát a lakbért ezután is fizettem!
Felhívom nb. figyelmét, hogy ha hasonló „főbérlői” allűrökkel kívánja meg­
zavarni azt a csendet, melyet egyedül az én figyelmességem (elsősorban ko­
rára való tekintettel) és türelmem teremtett meg, úgy kénytelen leszek olyan
- jogomban álló - retorziókkal élni, amelyekből (az eddigi helyzethez viszo­
nyítva) csak kára, vesztesége, bosszankodása stb. stb. fog származni.
Örülnék, ha ezt komolyan megfontolná és békében hagyna élni.

[Budapest, i 9] 6 i. IX. 8 .
255-

(A művész levele)

G.

Kállai Gyula miniszterhelyettes [!] elvtársnak

Kedves Kállai barátom!
Nem panaszkodni akarok, csak a tényeket közölni.
Rossz helyzetben vagyak, bár egész évben dolgoztam, tíz új plasztikát csinál­
tam és kiállításra készülök. Igaz, hogy van kétezer forint nyugdíjam; ez azon­
ban a megélhetésemhez sem elég, és a kiállításra készülődés minden fillére­
met felemésztette. Dolgozni akarok, és nem engedem, hogy élve eltemessenek.
Hacsak kevés anyagot vásárolok, akkor már felborul az amúgy is nagyon la­
bilis anyagi helyzetem. Már ideje volna ruhát csináltatnom, kopott vagyok;
nem hiszem, hogy vonzó látvány egy Kossuth-díjas rossz ruhában. De ezt nem
bántam volna, a munkához volt szükségem pénzre. Szerényen ezer forintot kér­
tem a Képzőművészeti Alaptól. Szilárd igazgató azonban nem írta alá a kiuta­
lást azzal az indokkal, hogy van kétezer forint adósságom és nem vagyok ke­
reső művész . . . Ez igaz, mert nem engednek keresni, bár dolgozom és nem
megvetendő alkotásokat készítek. Ha nem tudnám, hogy nálam érdemtele­
nebbeknek sok-sok ezer forint adósságuk van az Alapnál, nem szólnék Szi­
lárd igazgató kemény döntése ellen. Nekem ebben a mi népi államunkban nincs
lehetőségem levegőhöz jutni? Pedig ezért a rendszerért én tettem is valamit,
egy egész élet munkájával küzdöttem érte. Most készítettem két kis portrét,
Bartókról és Lisztről, melyeket a Kerámia Szövetkezet szeretne sokszorosítva
árulni. Ez megadná azt a kevés összeget, ami szükséges ahhoz, hogy szerény
életmódom mellett is meglevő pénzzavarom megszűnjék. Már előre félek, mert

185

a Képzőművészeti Alap zsűrije elé kell küldettem, oda, ahol tíz éve minden
munkámat visszautasítják - nálam sokkal kisebb szobrászok. Pedig ez a két
fej szocialista realista, teljesen érthető művészeti nyelven van megalkotva. Tíz
év: nem vagyok fiatalember, életem utolsó termékeny esztendeit rabolják el tő­
lem.
Nagyon kérlek, intézkedj, hogy segítsenek rajtam. De ne engedd, hogy úgy te­
gyenek, mint tavaly, amikor segítséged következtében vettek tőlem egy szob­
rot, de a tízezer forintból hatezret egyösszegben adósságra levontak. Igaz, hogy
most csak kétezer forint adósságom van.
Nagyon kérlek, tégy valamit, hogy ebből a keserves elakadásból kikerülhes­
sek.
Remélem, hogy helyt adsz kérésemnek, hisz tudod, hogy nem fordulok hozzád,
csak ha nagy bajban vagyok.

Elvtársi üdvözlettel régi híved és barátod

2 jó.

(Levél a Magyar Tudományos Akadémia
Bartók Archívumától)

B udapest, 1 9 6 2 . jan u ár 1 8 .
Tisztelt Művész Űr!
Minthogy tudomásunk van az Ön Bartók Béla-szobráról, és mivel intézetünk
figyelmét szeretnők kiterjeszteni a Bartókkal kapcsolatos képzőművészeti alko­
tásokra is, rendkívül lekötelezne bennünket, ha a szobor megtekintésére módot
nyújtana. Legcélszerűbb lenne, ha a művet az Archívum érdeklődő munka­
társainak be tudná mutatni, illetve, ha ifj. Bartók Béla úr megtekinthetné azt.
Mindenesetre kérjük, hogy a lehetőségek tisztázása véget szíveskedjék ben­
nünket telefonon megkeresni a délelőtti vagy a koradélutáni órákban (161-522).
Szíves válaszát várva maradunk teljes tisztelettel

Dr. Szabolcsi Bence
igazgató

-257-

(Levél a Művelődésügyi Minisztériumból)

Értesítem, hogy a Bartók Béláról készített portréját bronzban 2500 Ft érték­
ben megvásároltam.
Jelen levelemmel egyidejűleg a Képzőművészeti Alapnál intézkedtem, hogy a
tiszteletdíjat levonás nélkül fizessék ki az Ön részére.

Budapest, 1962. február 27.

zj8.

Szentesi Antal s. k.
osztályvezető h.

(Levél az Országgyűlési Könyvtár igazgatójától)

Kedves Dezső!
Az Élet és Irodalom e heti számában megjelent a Független Magyarországért-
plakátod fényképe. Amennyiben még nem küldtek honoráriumot érte, úgy je-

186

lentkezzél a szerkesztőségben. A rendelkezésre bocsáto tt fényképet nekem fog­
ják v isszaküldeni, és m ajd e lju tta tom H ozzád.
Sajnálom, hogy műteremkiállításodat nem tekinthettem meg, pont akkor elő­
adást tartottam.
Az Ady-fejet illetően megbízottad jelentkezhet a napokban.

Budapest, 1962. március 22.
Szívélyes üdvözlettel

Vértes György

259.

(Levél a Magyar Forradalmi Munkás-Paraszt Kormány
Elnökhelyettesének T it kár s ágát ól)

Kedves elvtárs!
Kállai elvtárshoz írt levelét megvizsgáltattuk a Művelődésügyi Minisztérium­
mal. A Képzőművészeti Osztály a Bartók-szobor bronz példányát megvásárol­
ja, s a Képzőművészeti Alap igazgatójával megbeszéli, hogy a vásárlási ösz-
szegből ne vonja le az Ön tartozásait.
Egyébként Kállai elvtárs a kiállítása megnyitójára szóló meghívót megkapta,
de betegsége miatt azon nem tudott részt venni.

Budapest, 1962. március 24.
Elvtársi üdvözlettel:

Nagy László

260.
(Levél a Jókai Színház igazgatójától)

Kedves Bokros-Bierman elvtárs!

Budapest, 1962. április 10.

Műtermi kiállítására szóló meghívóját örömmel vettem kézhez, de - sajnos -
abban az időben nem voltam Pesten, külföldön léptem fel és így megtisztelő
meghívásának nem tehettem eleget.
Abban a reményben, hogy alkalmam lesz az utóbbi időben készült műveit lát­
nom, maradok művészetének és önnek

tisztelő híve
Keres Emil

261.

(Üzenet az albérlőnek)

Budapest, 1962. április 11.

Furcsa teremtmény az ember. Ha kell, számolni sem tud. 76,- Ft-nak nem
30,- Ft a 70%. Igaz, ön 23 napot nem töltött lakásában - de gondoskodott ar­
ról, hogy másik két személy pótolja Önt távollétében.

187

Furcsa teremtmény az ember! Nem mindig buta, csak néha azért korlátolt. A
70%-ot pótolja ki, s csak azt mondom: furcsa teremtmény az ember!

262.
B. B.

(Levélfogalmazvány az Újkori Történeti Múzeum igazgatójához)

[Budapest, i]962. V. 18.

Tisztelt Igazgató elvtárs!

Ismerve az Ön által vezetett intézet érdeklődési körét, úgy gondolom, helye­
sen teszem, ha felhívom a figyelmét két - tulajdonomban levő munkámra.
Áchim András-emlékmű terve az egyik, melyet 1924-ben készítettem és 1925-
ben egy a Mentor-beli kiállításon mutattam be.
A m ásik az E gységfron t c. p lakettem . 1 9 3 0 -ban készült.
A m ennyiben érdek li Ö n ö k et a nevezett ké t m unkám , kérem , keressenek fel mű-
term em ben.
Jövetelük időpontját előzőleg egy lapon közöljék velem.

1962. V. 18. postára téve.

263.

(Levélfogalmazvány Csehszlovákiába)

Kedves Dömötör Teréz!

Azért fordulok Önhöz levelemmel, hogy a kossuthi mártír-emlékműről ittjárta-
kor tudomásomra hozott értesüléseit levél útján újra kikérjem. Nagyon kérem,
írjon le pontosan mindent, amit ebben az ügyben tud.
Lehetséges ugyanis, hogy rövidesen személyesen is felkeresem a szóban for­
gó emlékművet.

1962. V. 18. postára téve.

(A művész értesítése)

Kállai Gyula elvtársnak
Budapest

264.

Budapest, 1962. augusztus 23.

Kedves Gyula!

Az elmúlt tél folyamán ígéretet tettem Neked, hogy készítek számodra egy kis­
plasztikát. Erre mostanában került sor: elkészítettem részedre egy Bartók-bronz
kisplasztikát, melyet szeretnék Neked személyesen átadni. Kérlek, közöld ve­
lem, hogy mikor és hol adhatnám ezt át Neked.
Válaszod várva, vagyok

elvtársi üdvözlettel

1 88

(A bronzöntő levele)
2 6 5 .

Igen tisztelt Művész Űr!
Elnézést kérek a zavarásért, valószínűleg el tetszett felejtkezni rólam, ti. a kis
Bartók-fejekért még 450 Ft járandósága van a Művész úrnak. Nagyon meg­
kérem, szíveskedjék postafordultával elintézni.
Még egyszer elnézést kérek.
B[uda]pest, 1963. aug. 26. maradtam teljes tisztelettel

Baumgartner József

(Ügyvédi jegyzőkönyv)
266.

Tény vázlat

Felvéve az 1. sz. ÜMK-ban 1963. október hó 8. napján, Bp. V. kér. Kecskeméti
u. 13. II. em. dr. Krámer István ügyvéd által.
Megjelenik Bokros Birman Dezső nyugdíjas szobrászművész és előadja a kö­
vetkezőket :
Ismeretlen tettes ellen feljelentést tettem a XIII. kér. Teve u. 6. rendőrségen,
mert egy nagyértékű szobromat ellopták a lakásomból.
Gyanakodom az albérlőmre, baráti körére, ill. a feljelentésben is szereplő ta­
nítványomra.
Albérlőm egy ízben már lopott tőlem plasztelint, ezzel az üggyel már fordul­
tam a rendőrséghez. Akkor ő a plasztelint vissza is adta.
Kérem, hogy nézzenek utána a rendőrségen: hogyan áll ez az ügy, és az eset­
leges lépéseket megtenni szíveskedjenek.

Ügyfél tudomásul veszi, hogy a munkadíj a későbbiekben, az eljárások meny-
nyiségétől függően, ill. a tevékenység minősége megállapítása után lesz meg­
állapítva.
Kéri ügyintézőül kijelölni dr. Krámer István ügyvédet.
Tudomásul veszi, hogy 10 Ft illetékbélyeget a meghatalmazásra le kell róni.

Kmf.

267.

(Megállapodás a Napbanéző című szoborra vonatkozólag)

Megállapodás

Mely köttetett egyrészről Bokros Birman Dezső szobrászművész, másrészről
Laczkovich Alice között.
Bokros Birman Dezső szobr. m. Napbanéző c. szobra 2.20-as méretben való
elkészítéséért, a szobor gipszben való átadásáért Laczkovich Alice 14 000, azaz
Tizennégyezer Ft-ot kap fent nevezett Bokros Birman Dezső szobr. m.-től. A
fizetés három részletben történik. Az első részlet, 5000, azaz Ötezer Ft a meg-

189

álla'podás aláírásakor, a második részlet, 4000, azaz Négyezer Ft az agyag­
szobor elkészülésekor, a harmadik részlet, 5000, azaz Ötezer Ft a szobor gipsz­
ben való átadásakor történik.

В [uda]p[est,] 1964. szept. 23.

268.

(Levél a Magyar Nemzeti Galériától)

Kedves Mester!
Engedd meg, hogy hetvenötödik születésnapodon a Magyar Nemzeti Galé­
ria dolgozói nevében sok szeretettel köszöntselek.
A többi magyar művészettörténészhez hasonlóan a Galériában működők is
meghatott tisztelettel gondolnak Rád ma, amikor Benned egyszemélyben üdvö­
zölhetik az élő hagyományt és az eleven alkotó géniuszt, s mint fiatalabb kor­
társak köszönhetik meg Neked munkásságod szép eredményeit, képzőművésze­
tünk maradandó termésének gyöngyszemeit.
Azt kívánjuk valamennyien, hogy jó egészségben folytasd áldásos tevékenysé­
gedet, további remekművekkel gyarapítsd hazánk kulturális kincstárát.

Budapest, 1964. november 19. Baráti üdvözlettel híved
dr. Pogány Ö. Gábor

főigazgató

269.
(Levél a Hazafias Népfront
XIII. kér. Bizottságától)

Kedves Mester!
Budapest, 1965. jan. 15.

Örömmel vettük értesítését, hogy szívesen látja kerületi Népfront Bizottsá­
gunk Kisiparos Akcióbizottságának látogatását az Ön műtermében.
A meghívásnak eleget téve, 1965. január 23-án, szombaton du. 4 órakor láto­
gatjuk meg Önt.

Hazafias üdvözlettel:
Garami Győzőné

titkár

270.
(Részlet egy újságcikkből)

Magyar Nemzet
kedd, 1965. január 26.

Bokros Birman Dezső Kossuth-díjas szobrászművész, a Magyar Népköztár­
saság érdemes művésze, életének 75. évében villamosszerencsétlenség következ­
tében meghalt. Az elhunyt művészt a Magyar Képzőművészek Szövetsége és
a Magyar Népköztársaság Képzőművészeti Alapja saját halottjának tekinti.
Temetéséről később történik intézkedés.

I Q о

JEGYZETEK A LEVELEZÉSHEZ

1 A z M T A M ű v é sz e ttö r té n e ti K u ta tó C so p o rtján a k A d a t tá r á b a n : M ű v é sz e ttö r té n e ti D o k u ­
m en tác ió s K ö z p o n t (a to v á b b ia k b a n : M D K) C - I -1 8 /5 7 8 . N y o m ta to tt ű r lap o n k iá ll í to tt
an y ak ö n y v i k iv o n a t. S zám a: 32/1964. F e lü l g é p írá ss a l: „S zem élyazonosság i ig azo lv án y cél­
já ra i lle té k m e n te s .” - A z i t t kö z lés re k e rü lő k ü lö n b ö ző d o k u m en tu m o k b an a m űvész n ev é t
nem egy fo rm án ír tá k . E zen nem v á lto z ta ttu n k . A lev e lezésb en e lő fo rd u ló n ev ek közü l
n éh án y a t csak m on o g ram m al je lö lü n k , an é lk ü l, hogy e rre e s e ten k én t k ü lö n fe lh ív n á n k a
figyelm e t.

2 M D K -C -1 - 1 8 /4 9 8 . „M o d e rn Ip a rm ű v észe t D o m b o rm ű V á lla la t” s tb . fe lírású n y o m ta to tt
lap o n k iá ll í to tt , O km ánybélyeggel e llá to tt b izony ítvány .

3 M D K - C - I - 1 8 /5 6 7 . A z „O rszág o s M a g y .-K ir . Ip a rm ű v észe ti I s k o la ” okm ánybélyeggel e l­
lá to t t h iv a ta lo s b izo n y ítv án y a .

4 M D K —С—I —18/59. „ B u d a p e s t S zék esfő v á ro s T a n á c sa ” n y o m ta to tt fe lírá sú h iv a ta lo s p ap ír .
5 M D K - C - I —1 8 /6 3 .1 -2 . C ím zés a b o r íté k o n : B okros B irm an D ezső szob rászm űvész ú r, B u d a ­

pest, X IV ., A jtó s i D ü re r so r 13. F e la d ó : M á rto n Ö d ö n , B u d a p est, II. B im bó ú t 5.
6 M D K - C - I - 1 8 /5 7 0 . A S véd V ö rö sk e re sz t m ag y aro rszág i fő m eg b ízo ttjá n ak v é d ő le v e le . A

la p a lján B okros fe lrag a sz to tt fén y k ép e ; három körpeosét.
7 M D K - C - I - 1 8 /5 7 7 . S ten c ileze tt ű r la p , n y o m ta to tt fejléccel. Ü g y ira tszám : 221.785.1945. X X.

ü .0 .786 /6 . L en t b a lr a : „ A k ia d v á n y h ite léü l S zabó s. h ív . ig azg a tó ” .
8 M D K —C - I - 1 8 /6 9 .1 - 2 . A „M u n k ás K u ltú rszö v e tség O rszág o s K ö z p o n tja , B u d a p e s t” fe l­

írá sú n y o m ta to tt le v é lp a p íro n ír t levél.
9 M D K —C - I —18/72. A „M ag y a r K o m m u n ista P á r t K ö zp o n ti V eze tő ség e P ro p a g a n d a O s z tá ly ”

fe lírá s ú n y o m ta to tt lev é lp ap íro n ír t lev é l. A lá írá s , k ö rp ecsé t.
10 M D K - C - I - 18/73. G é p e lt levé l m á so d p é ld án y a , p o n to sa b b cím zés és a lá írá s né lk ü l. (A

h á tla p o n ce ru záv a l, B okros írá sá v a l: „ R Á D IÓ F E L O L V A S Á S R Ó L Í R N I ” .)
A lev é l szö v eg éb ő l k id e rü l, hog y B okros te s tv é re a c ím zett.

и M D K - C - I - 18/7 5 .1 -2 . „ D r . G eg esi K iss P á l egyetem i ny. r. ta n á r ” fe lírású n y o m ta to tt
le v é lp a p íro n gép p e l so k szo ro s íto tt lev é l. C ím zés a b o ríté k o n .

11 M D K - C - I - 18/5 30. C e ru záv a l ír t lev é lfo g a lm azv án y .
I) M D K - C —I - 18/76. A M ag y ar N e m z e ti M úzeum rég i (1945 e lő tti) n y o m ta to tt lev é lp a p ír já n

íro tt le v é l.
14 M D K - C - I - 1 8 /7 7 .1 - 2 . „M ag y ar V a llá s - és K ö zo k ta tá sü g y i M in isz té riu m ” d o m b o ríto tt fe l­

írású le v é lp a p íro n íro tt h iv a ta lo s levé l. Ü g y ira tszám a b o r íté k o n : 131 .880 /1946 .V II.
í j M D K - C - I - 1 8 /7 9 . G é p e lt e lszám o láste rv eze t. E g y k o rá b b i (1946. n o v em b er 28 .), M D K -

C —I —18/78. lt.sz .-on sz e re p lő lap h o z k é p e s t m ó d o s íto tt, fe lem elt végösszegű elszám olás.
16 M D K - C - I - 1 8 /8 0 . D r . G egesi K iss P á l egyetem i ny. r. ta n á r n y o m ta to tt lev é lp a p ír já n

g ép p e l so k szo ro síto tt lev é l.
i i M D K - C - I - 1 8 /8 1 .1 - 2 . A „M ag y ar T á jek o z ta tá sü g y i M in isz té riu m , B e lfö ld i O sz tá ly ” fe l­

írá sú b o r íté k b a n 'h iv a ta lo san k ü ld ö t t levé l.
18 M D K - C - I —1 8 /8 2 .1 -2 . A „M ag y ar V a llá s - és K ö zo k ta tá sü g y i M in isz té r iu m ” d o m b o ríto tt

fe lírá sú , c ím eres lev é lp a p ír já n ír t, g ép p e l so k szo ro síto tt levé l. Ü g y ira tszám : 27.799/1947.
V II.ü .o . C ím zés a lev é l a l já n és a b o ríté k o n . B a lra le n t : „ A k ia d v á n y h i t e l é ü l
I ro d a v e z e tő ” .

/9 M D K - C - I - 1 8 /8 3 . G é p p e l í r t lev é l m á so d p é ld án y a . K ö ze leb b i cím zés n é lk ü l. A h á tla p o n
tö b b , c e ru záv a l ír t fe ljegyzés.

20 M D K - C - I - 1 8 /8 4 .1 -2 . G é p p e l so k szo ro síto tt m eg h ív ó a „F é sz e k ” M ű v észek K lu b ja nyom ­
ta to t t b o ríté k já b an .

ii M D K - C - I - 1 8 /8 5 .1 - 2 . D r . G eg esi K iss P á l egyetem i ny. r . ta n á r n y o m ta to tt le v é lp ap ír ján
íro tt levél.

22 M D K - C - I - 1 8 /8 6 . P o sta i lev e lező lap . F e la d ó : B án B éla , Bp. V ,, B ajcsy-Z silioszky ú t 50.
B án B éla (1 9 0 9 -1 9 7 2) festőm űvész.

23 M D K - C - I - 1 8 /9 3 . D r . G egesi K iss P á l egyetem i ny. r. ta n á r n y o m ta to tt le v é lp a p ír já n íro tt
lev é l.

24 M D K —C —I—18/87. D r . G egesi K iss P á l egyetem i ny. r. ta n á r n y o m ta to tt le v é lp a p ír já n írt
lev é l.

2; G e ra É v a tu la jd o n a . „M ag y ar K o m m u n ista P á r t K ö zp o n ti V eze tő ség e É rte lm iség i O sz tá ly ,
B u d a p e s t” fe lírású n y o m ta to tt lev é lp ap íro n .

26 M D K - C - I - 1 8 /8 8 .1 - 2 . A „48-as L án ch íd B izo ttság ” n y o m ta to tt m eg h ív ó ja , e re d e ti a lá ­
írással.

27 M D K - C - I - 18 /9 1 .1 -2 . A „M ag y a r V a llá s - és K ö zo k ta tá sü g y i M in isz té r iu m " sten c ile ze tt
n y o m ta tv án y a , e re d e ti a lá írá ssa l. S zám a: 84 .977 /1947 /V II.

28 M D K - C - I - 18/92 .1—2. D r . G eg esi K iss P á l egyetem i ny. r. ta n á r n y o m ta to tt lev é lp a p ír já n
ír t levél.

29 M D K - C - I - 1 8 /9 4 . A „F ö ld m u n k áso k és K isb ir to k o so k O rszág o s S zö v etség e” n y o m ta to tt
lev é lp a p ír já n ír t levé l. A lá írá s , k ö rp ec sé t.

30 M D K - C - I - 1 8 /9 5 . „M ag y ar T á jék o z ta tá sü g y i M in isz te r” fe lírá sú nyom tato tt; lev é lp ap íro n
ír t levél.

)i M D K - C - I - . 18 /98 .1 -2 . „ B u d a p e s t S zékesfőváros P o lg á rm e ste re” fe lírá sú , n y o m ta to tt le v é l­
p ap íro n k ü ld ö t t é r tesítés . Ü g y ira tszám : 2 2 2 .9 4 9 /1 9 4 7 -X I.ü .o . B a lra le n t : „ A k iad m án y h i­
te lé ü l B p. 1947. jú l. 25. B eniczky S án d o r s. hiv . ig azg a tó ” .

32 M D K - C - I - 18/97. A „M ag y ar V a llá s - és K ö zo k ta tá sü g y i M in isz té r iu m ” h iv a ta lo s é r te s í­
té se . Ü g y ira tszám : 8 7 .369/1947.V II. E lő a d ó : d r. B orecky L ász ló m in. t i tk á r . B a lra le n t:
„ A k iad m án y h ite léü l Szilágyi ro v a tv e z e tő ” .

33 M D K - C - I - 1 8 /9 9 .1 -2 . „M ag y a r K öz lek ed ésü g y i M in isz té riu m S a jtó szo lg á la tá n ak V eze tő je”
fe lírású n y o m ta to tt lev é lp a p íro n . A bo ríték o n ce ru záv a l k é sz ü lt v á z la to k a p lak e tth ez .

34 M D K - C - I - 18/96. G ép p e l so k szo ro síto tt lev é l.
35 M D K - C - I - 1 8 /1 0 0 .1 - 2 . „B u d a p e s t S zékesfőváros K é p tá r a ” fe lírású n y o m ta to tt b o ríté k b an

k ü ld ö t t levé l. C ím zése: B okros B ierm an n D ezső szob rászm űvész ú rn ak , B u d a p es t, V I.,
E ö tv ö s u. 58.

36 M D K - C - I - 1 8 /1 0 1 . „M ag y ar K o m m u n ista P á r t K ö zp o n ti V eze tő ség é É rte lm iség i O sz tá ly ,
B u d a p e s t” fe lírású n y o m ta to tt lev é lp a p íro n ír t levé l.

37 M D K - C - I - 1 8 /1 0 2 . A „M ag y ar V a llá s - és K ö zo k ta tá sü g y i M in isz té riu m M ű v észe ti Ü gy­
o sz tá ly a” fe lírású n y o m ta to tt lev é lp ap íro n .

38 M D K -C -I -1 1 8 /1 0 3 . „M ag y ar K o m m u n ista P á r t K ö zp o n ti V eze tő ség e É rte lm iség i O sztály ,
B u d a p e s t” fe lírású n y o m ta to tt lev é lp ap íro n ir t lev é l. A lá írá s , k ö rp ecsé t.

39 M D K - C - I - 1 8 /1 0 4 . G é p e lt lev é l, a lá írá ssa l.
40 M D K - C - I - 1 8 /108. G é p e lt lev é l. C ím zés: T . B okros B ierm an n D ezső ú rn ak , szobrász-

m űvész , B u d a p est, V ., K a to n a J . u. 28. sz.
41 M D K - C - I - 1 8 /1 1 0 . G é p p e l í r t m eg á llap o d ás .
42 M D K - C - I - 1 8 / i ' i i . A lá írá s n é lk ü li á tv é te li e lism erv én y .
43 M D K - C - I - 1 8 /1 13. „M ag y ar K o m m u n ista P á r t K ö zp o n ti V eze tő ség e É rte lm iség i O sz tá ly ,

B u d a p e s t” 'felírású n y o m ta to tt le v é lp a p ír . A lá írá s , k ö rp eo sé t. A m eg szó lítá s fe le t t : „B o k ro s-
B ierm an e lv tá rsn ak , B u d a p es t” .

44 M D K - C - I - 1 8 /1 18. T á b o ri p o sta i lev e lező lap . F e la d ó : Szegi P á l, B p. I I . , B rany iszkó ú t 11/c.
Szegi P á l (1902—1958) m űvészeti író , 1949-1953 k ö z ö tt a S zab ad M ű v észe t cím ű fo ly ó ­
ir a t fő szerkesztő je .

45 M D K - C - I - 1 8 /1 15. G ép írá so s lev é l.
S za la tn a i R ezső író , m ű fo rd ító , iro d a lo m k ritik u s .

46 M D K - C - I - 1 8 /1 1 7 .1 - 2 . „M ag y a r K o m m u n is ta Párt K ö zp o n ti V eze tő ség e É rte lm iség i O sz ­
tá ly , B u d a p e s t” fe lírá sú n y o m ta to tt lev é lp ap íro n ír t lev é l. Aláírás, k ö rp ecsé t. M egszó lítás
h e ly e tt: „B o k ro s-B irm an n e lv tá rs , B u d a p es t” .

47 M D K - C - I —18/119. P o sta i lev e lező lap . C e ru záv a l í r t szöveg és cím zés. F e la d ó n é lk ü l, de
az „ U b u l” a lá írá s K á lla i E rn ő re u ta l. A po stab é ly eg ző k e l te : 1948. I I . 6.
K á lla i E rn ő (1 8 9 0 -1 9 5 4) m ű v észe ti író , k r itik u s .

48 M D K - C - I - 1 8/121. A z E x p ressio n s e lnevezésű gen fi g a lé r ia eb b en a lev é lb en rö g z íti B okros
m ű v e in ek a g a lé r iá b a n tö r té n ő k iá llítá s i fe lté te le it .
A lev é l fo rd ítá s a :
„U ram ,
M ű v e i 1948. fe b ru á r 2 3 -m áro iu s 4. k ö z ö tt g a lé r iá n k b a n ren d ezen d ő k iá llítá sá n a k fe lté te le it
a z a lá b b ia k b a n rö g z ítjü k :
1. 3 0 0 ,- fr (három száz fran k) , am elybő l 1 5 0 ,- f r-o t (százö tven fran k o t) m eg k ap tu n k és
1 5 0 ,- fr (százö tv en frank) ré szü n k re tö r té n ő b e fize té se leg k éső b b 1948. fe b ru á r 25-ig ;
2. k ö z lem én y t fogunk m eg je len te tn i a T rib u n e d e G e n év e -b en és a Jo u rn a l de G en év e -b en ,
és 300 m eg h ív ó t p o stán k ü ld ü n k sz é t;

I 92

3- a k iá llítá s 1948. f e b ru á r z j - á n 11 ó ra k o r n y íl ik ; a ren d ezés k ö ltsé g e i ö n ö k e t «érhetik .
F o g a d ja u ram , m eg b ecsü lésü n k k ife je z é sé t.”

49 M D K - C - I - 18 /123 .i - A A „M a g y a r V a llá s - és K ö zo k ta tá sü g y i M in isz té riu m K ü lfö ld i
K u ltu rá lis K a p c s o la to k ” stb . fe lírá sú n y o m ta to tt le v é lp a p íro n í ro tt le v é l. C ím zés a b o r í té ­
k o n : „M . D é s iré B ö k ro s-B irm ao , P en sio n E lisa , 12 ru e d e C h a n te p o u le t. G e n e v e . S u isse .”

j o M D K - C —1 -1 8 /9 .2 . B okros ce ru záv a l' í r t szö v eg e .
J г M D K —C - I - 1 8 /9 .1 - 4 . G é p írá so s sz ö v e g ; a h á to ld a lo n id e g e n k éz írá s .
52 M D K - C - I - 118/9.3-4. G é p írá so s szöveg . F e n t B o k ro s ír á s á v a l : „ P á n n a l á to lv a s ta tn i és

m ag y a r n y e lv re á t te n n i .”
53 M D K - C - I - 1 8 /5 1 7 .1 -2 . A z „U n io n In te rn a tio n a le d e R a d io d if fu s io n ” n y o m ta to tt b o r í té k ­

já b a n k ü ld ö t t lev é l. P o stab é ly eg ző n é lk ü l. C ím zése : „ M o n s ie u r B o k ro s-B irm an , P ension
E lis a , C h a n te p o u le t, E . V .”
A lev é l fo rd ítá s a :
„ K e d v e s B o k ro s-B irm an Ú r,
Ö rü lö k , hogy a Jo u rn a l d e G e n év e -b en m a reggel m e g je len t a c ikk (b izo n y ára lá tn i
fo g ja). N ag y o n e lé g e d e tt vag y o k , ho g y R h e in w a ld n a k te tsz ik az A d y -b ü sz t.
A fo tó k a t a d ja á t K r is tó ffy n a k az I l lu s tré ré szé re , v ag y a d ja le n á lam egyik n ap , ha
e r re já r. R em é lem , hogy a d o lo g n ak ez a ré sze m en n i fog . H a tu d o k , hí>1 n ap fe lu g ro k
m ag áh o z a p en z ió b a . T e g n a p nag y o n el v o lta m fo g la lv a , egy k a to n a i v iz sg á la t m ia tt, én
szegény b a k a !
B ocsásson m eg e ls ie te tt so ra im ért és fo g a d ja sz ívélyes ü d v ö z le te m e t

G ilb e r t T ro ll ie t
H a nem v ag y o k o tth o n , o t t le h e t hag y n i a b o r íté k o t az a jtó m e lő tt (a b e lső n é l) , ha a
lev é lszek ré n y tú l kicsi len n e .
V iszem m a jd K o m ló s u rn á k a H u b a y n a k szóló le v e le t. E g y v a g y k é t fén y k ép rő l is fogok
beszé ln i a P ré sen ce ré szé re (le R e v u e) .”

54 M D K - C - I - 1 8 /5 1 2 .1 - 2 . F ra n c iá u l ír t lev é l m ag y ar fo rd ítá s a . G é p e l t sz ö v eg ; ja v ítá so k
tin tá v a l.

J5 M D K - C - I - 1 8 /1 2 6 .1 - 2 . A „M a g y a r V a llá s - és K ö zo k ta tá sü g y i M in isz té r iu m ” d o m b o ríto tt
fe lírá sú le v é lp a p ír já n , B okros B irm an D ezső n ek P á r iz sb a k ü ld ö t t lev é l. Ü g y ira tszám :
2 4 5 .1 18/1948.X . E lő a d ó : D r . B o ro n k ay A n ta l m in isz te r i t i tk á r . C ím zés a lev é l a l já n és
a b o rító k o n .

56 M D K - C - I - 1 8 /1 2 8 .1 -2 . B okros k éz írá so s lev é lfo g a lm azv án y a .
J 7 M D K - C - I - 1 8 /1 2 9 .1 - 2 . A „M a g y a r V a llá s - és K ö zo k ta tá sü g y i M in isz té riu m K ü lfö ld i K u l­

tu rá lis K a p c s o la to k ” stb . fe lírá sú le v é lp a p ír já n í ro tt lev é l. C ím zés a b o r íté k o n : „M . D és iré
B okros B irm ann c/o M . E tie n n e L e lk es , In s ti tu t H o n g ro is , 18 ru e P ie rre C u rie , P aris
5е. F ra n c e .”

58 M D K - C —I —18/927. „ ifj. F isd h er T ib o r te rv e z ő és ta n á c s a d ó é p íté s z ” fe lírású n y o m ta to tt
le v é lp a p íro n íro tt lev é l. A szö v eg rész in d ig ó v a l készü lt. A cím zés e r e d e ti g é p e lé s ű : B okros
B irm an n D ezső ú rn ak , szob rászm űvész , B u d a p est, V ., K a to n a Jó z se f u. 28.

59 M D K - C - I - 1 8 /1 3 0 .1 - 2 . S im a le v é lp a p íro n , író g ép p e l ír t lev é l.
5 0 M D K - C - I - 1 8 /8 9 . B okros kézze l ír t lev é lfo g a lm azv án y a a P á riz s i M a g y a r In té z e t igaz­

g a tó jáh o z , L e lkes Is tv á n h o z . A t in ta h e ly e n k é n t e lm o só d o tt. A k ih a g y o tt szó : „ p ro p á n g a ”
- p ro p a g a n d a ?

61 M D K - C - I - 1 8 /5 2 3 . N é m e t A la d á r n y o m ta to tt le v é lp a p ír já n kézze l ír t (nem B okros k éz ­
írá sa) m e g á lla p o d á s , a m ű v ész a lá írá sá v a l.

61 M D K - C - I - 1 8 /1 3 4 . G é p p e l ír t, ce ru záv a l ja v íto tt lap .
63 M D K - C - I - 1 8 /1 3 5 . G é p p e l ír t lev é l m á so d p é ld án y a .
64 M D K - C - I - 1 8 /1 3 6 . P o sta i le v e lező lap .
6j M D K - C - I - 1 8 /1 3 7 .1 - 2 . „M a g y a r M ű v é sze t” stb . fe lírá sú n y o m ta to tt le v é lp a p íro n ír t

le v é l.
66 M D K - C - I - 1 8 /1 3 8 . G é p írá so s lev é l m áso d p é ld án y a . A c ím ze tt: Szenes Á rp á d , P á riz sb an

élő m ag y a r szárm azású festőm űvész .
67 M D K - C - I - 1 8 /1 3 9 .1 - 2 . „ A V a llá s - és K ö zo k ta tá sü g y i M in isz te r tő l” fe lírá sú n y o m ta to tt

le v é lp a p íro n és b o rító k b a n k ü ld ö tt é rte s íté s . B a lra le n t : B okros B ie rm an n D ezső ú rn ak ,
szob rászm űvész , B u d a p e s t, K a to n a Jó z se f u . 28.

68 M D K - C - I - 1 8 /1 4 0 . „ In s t i tu t H o n g ro is” stb . fe lírású n y o m ta to tt lev é lp a p íro n P á riz sb ó l
k ü ld ö t t le v é l. S zám a: 1435/1948.

69 M D K - C - I - 1 8 /1 4 2 . G é p p e l í r t le v é l m á so d p é ld án y a .
70 M D K - C - I - 1 8 /1 4 5 . G é p p e l í r t lev é l m á so d p é ld án y a .

4
195

M D K - C - I - ' i 8 /146. „ In s ti tu t H o n g ro is” stb . fe lírá sú , P á riz sb ó l k ü ld ö t t lev é l. S zám a:
1665/1948.

72 M D K - C - I - 1 8 /1 4 7 .1 - 2 . „S á ro sp a tak i S zab ad m ű v e lő d és i A k a d é m ia ” fe lírá sú n y o m ta to tt
le v é lp a p íro n ír t lev é l.

73 M D K - C - I - 1 8 /1 5 0 .1 -2 . „ In s ti tu t H o n g ro is” stb . fe lírású n y o m ta to tt le v é lp a p íro n ír t levél.
74 M D K - C - I - .1 8 /1 5 3 .1 -2 . „ B u d a p e s ti É p íté s i H iv a ta l” stb . fe lírású n y o m ta to tt lev é lp ap íro n

ír t lev é l. B a lra f e n t: B akus (sic!) B irm an D ezső szob rászm űvész ú rn ak , B u d a p est, K a to n a
Jó z se f u tca 28. II. 11.

7} M D K - C - I - 1 8 /1 5 5 .1 -2 . Szegi P á l kézze l ír t leve le .
76 M D K - C —I—1 8 /1 56.1—2. G ép írá so s k ö rlev é l. C ím zés a b o ríté k o n .
77 M D K - C - I - 1 8 / 1 59 .1 -2 . A z „ In s ti tu t H o n g ro is” n y o m ta to tt le v é lp a p ír já n íro tt levé l.
78 M D K - C - I - 1 8 /1 6 5 . A V a llá s - és K ö z o k ta tá sü g y i M in isz té riu m é rte s íté se . Ü g y ira tszám :

220 .859 /1 9 4 8 .V II. B a lra l e n t : „ A 'k iad v án y h ite léü l D o m a S án d o r iro d a v e z e tő h .”
79 M D K - C - I - 1 8 /5 0 6 . A lev é l fe lső jo b b s a rk á b a n : T a lló s P . Is tv á n , M a g y a ró v á r, V á ro s ­

k a p u té r 5.
So M D K - C - I - 1 8 /1 76. T a lló s P . Is tv á n p o sta i le v e le z ő la p ja . F e la d ó fe ltü n te té se né lk ü l.
Sí G e ra É v a tu la jd o n a . A „ M a g y a r K ép ző m ű v észek S z a b a d s z e rv e z e te ” n y o m ta to tt le v é l­

p a p ír já n . A lá írá s asak író g é p p e l; kö rp ecsé t.
S2 M D K - C - I - 18/499. A z 1949. év i tá v i r a t szö v eg é t b e tű sz e rin t k ö zö ljü k .
83 G e ra É v a tu la jd o n a . G é p p e l í r t lev é l m á so d p é ld án y a .
84 M D K - C — I—18/1181. A „ F É S Z E K M ű v észek K lu b ja e ln ö k e ” n y o m ta to tt fe lírá sú le v é lp a ­

p íro n í r t g é p e lt m eg h ív ó . A m egszó lítás fe le t t : B o k ro s-B ie rm an n szo b rászm ű v ész ú rn ak ,
B u d ap est.

85 M D K - C - I - 1 8 /1 8 2 . „ A m ag y ar k ö z tá rsa ság i e ln ö k t i tk á ra ” n y o m ta to tt fe lírá sú lev é lp ap íro n
ír t é r tesítés . B a lra le n t : B okros B ie rm an n D ezső ú rn a k , B u d a p est.

86 G e ra É v a tu la jd o n a . A „M ag y a r D o lg o zó k P á r t ja K ö z p o n ti V eze tő ség e , F ő t i tk á rs á g ” fe l­
írá sú n y o m ta to tt lev é lp ap íro n . S zám a : F M /2 3 4 7 . M eg szó lítás h e ly e tt : B okros B irm an D e ­
zső e lv tá rsn ak , B u d a p es t, V ., K a to n a Jó z se f u. 28. I I . 12.

81 M D K - C - I - i '8 /1 '8 3 . A „M ag y a r M ű v észe ti T a n á c s” n y o m ta to tt le v é lp a p ír já n ír t levé l.
S zám a : 334/1949. K ép ző - és ip a rm ű v észe ti szak tan ácso k . E lő a d ó : D r . Z o m b o ri M ik lós.
B a lra le n t : „ A k ia d v á n y h i te lé ü l: 1949. áp rilis 1. [o lv a sh a ta tla n a lá ír á s] .”

88 M D K - C - I - 1 8 /1 8 4 .1 - 2 . A „M ag y a r M ű v észe ti T a n á c s” n y o m ta to tt le v é lp a p ír já n ír t levé l.
C ím zés a b o ríté k o n .

89 M D K - C - I - 1 8 /1 8 5 .1 - 2 . A „M ag y a r M ű v észe ti T a n á c s” n y o m ta to tt le v é lp a p ír já n í r t levé l.
A b o r íté k o n a cím zés a la t t : „ T á v o llé té b e n t i tk á ra á lta l is f e lb o n ta n d ó !”

90 M D K - C - I - 1 8 /1 8 6 . A V a llá s - és K ö zo k ta tá sü g y i M in isz té riu m en g ed é ly e . S zám a: 267 .799/
i 949.X .

91 M D K - C - I - 1 8 /1 8 7 . C e ru záv a l ír t lev é l.
92 M D K - C - I - 1 8 /1 9 2 .1 - 2 . A V a llá s - és K ö z o k ta tá sü g y i M in isz té riu m lev e le . C ím zés a b o r í­

ték o n és a lev é l v é g é n : B okros B ierm an n Jó z se f (sic!) ú rn ak , B u d a p est. B a lra le n t:
,,A k iad m án y h ite léü l G ry lk a Já n o s iro d a v e z e tő .”

93 M D K - C - I - 1 8 /1 9 3 . A z É p íté s - és K ö zm u n k aü g y i M in isz té riu m (a „K ö zm u n k aü g y i” k iü tv e)
n y o m ta to tt le v é lp a p ír já n íro tt le v é l. S zám a: 10068/1949 .e ln ./b . K a rp e c s é t, a lá írá s .

94 M D K - C - I - 1 8 /1 9 6 .1 -2 . F ü s t M ilán k éz írá so s lev e le .
95 M D K - C - I - 1 8 /1 9 7 . A „M ag asé p íté s i T e rv ez ő In téze t L a k ó é p ü le tte rv e z ő I ro d a ” n y o m ta to tt

le v é lp a p ír já n íro tt lev é l. S zám a : I I I /1 6 0 8 /1 9 4 9 .K F /O K .
96 M D K - C - I - 1 8 /5 2 4 . ö s s z e h a jto g a to tt kockás fü z e tla p ra c e ru záv a l ír t lev é lfo g a lm azv án y .
97 M D K - C - I - 1 8 /1 9 8 . L u ig i C icu tti k éz írásos lev e le R ó m ábó l.

98 M D K - C - I - 1 8 /1 4 9 . 1 -2 . A S zab ad Száj c. sza tirik u s h e ti la p n y o m ta to tt le v é lp a p ír já n ír t
levé l.

99 M D K - C - I - 1 8 /2 0 0 . G ép írá so s lev é l.
100 M D K - C - I - 1 8 /2 0 1 . G ép írá so s lev é l.
101 M D K - C - I - i 8 /206 . A „ M ű v észe ti S zövetségek H á z a ” n y o m ta to tt le v é lp a p ír já n íro tt levé l.

K Ő rpecsét, a lá írá s . M egszó lítás h e ly e t t : B okros B ie rm an n D ezső ú rn a k , Bp.
юг M D K - C - I - 1 8 /2 0 9 . G é p írá so s lev é l m áso d p é ld án y a .
/0 3 M D K - C - I - 1 8 /2 1 2 . G é p e lt lev é l m á so d p é ld án y a . H á to ld a lá n ce ru záv a l 'készü lt, o d a v e te tt

v á z la to k a S z tá lin -szo b o rh o z . S zö v eg ek : „ Ö rö k h á la és hűség a fe lsz a b a d ító S zov je tun ió ,
a d icső S zov je t H ad se re g , n ép ü n k b a rá tja és ta n ító ja , a nag y S z tá lin i r á n t!" „B ek ü ld és
m ájus 15” s tb .

104 M D K - C - I - 1 8 /2 1 1 . P o s ta i le v e lező lap . C ím zés: B okros B. R ezső (sic!) szo b rász , K a to n a
Jó z se f u. 8. F e la d ó : V ed re s , K iss J . a l tá b . 55. A p o sta b é ly eg ző k e l te : 50. 1. 23.

194

ios MDK-G»I-i8/zi6. „ B u d a p e s t F ő v á ro s p o lg á rm e s te re " szövegű g é p e lt fe jlé c a la t t a lev é l
ügyszáffla: 3855 /59 /2 /1950 . XI. T á rg y : „ E lő le g k iu ta lá sa S z tá lin g en era lissz im u sz sz o b rán a k
e lk ész íté sé re m eg h ív o tt és z á r t p á ly áza to n ré sz tv ev ő szo b rászm ű v észék r é sz é re ." B a lra
le n t : „ A k iad m án y h ite lé ü l : B u d a p est, 1950. m árc iu s 28. A P o lg á rm e s te r i XI. Ü gyosztály .
L a jto s G yö rg y iro d a v e z e tő ” .

106 M D K - C - I - 1 8 /2 1 9 . „B u d a p e s t F ő v á ro s P o lg á rm e s te re , K ö zp o n ti L a k á sh iv a ta l” h iv a ta lo s
é r te s íté se n y o m ta to tt ű r lap o n . Ik ta tó sz á m : a d 3276 /B /311 . A lá írá s író g ép p e l, s. k. je lzésse l,
iro d a v e z e tő sz ignó ja , pecsé t.

loy M D K - C - I - 1 8 220. A N ép m ű v e lé s i M in isz té riu m h iv a ta lo s m eg b ízása . E lő a d ó : H ó ib a
T iv a d a r . Ik ta tó sz á m : 1 7 1 1 -B -1 0 . A lá írá s író g ép p e l, s. k. je lzésse l. I ro d a v e z e tő a lá írá sa
(L e n h a rd) , pecsét.

10S M D K - C - I - 1 8 /2 2 3 . A B u d a p e s t-K ő b á n y a i K ö z é p ítő V á l la la t lev e le . Je lz é s : M űsz. o. 427.
szám . S zén ás i/K B n é . A lá írá s : G e llé r t. C égbélyegző . C ím zés: B okros N (sic!) szo b rászm ű ­
vész e lv tá rsn ak , B u d a p est, L eh e l t é r 2. „ D ” épü le t.

log M D K - C - I - 18/224. O rszág o s N y u g d íjin téze t h iv a ta lo s é r te s íté se . J e lz é se : D r . S zabó /gye.
II/4 .341.Ó 13/1950.

110 M D K - C - I - 18 /2 2 7 .1 -2 . A M ű v észe ti A lk o tá so k N . V . lev e le . C ím zés és u tó ira t k iv é te lé ­
v e l g ép e lésse l so k szo ro síto tt lev é l. Je lz é s : K M . Ü g y in téző : D r . F eh é r . A lá írá s to lla l. A z
u tó ira tb a n k éz írásos k ie g é s z íté s : „B artio s é lm unkás p o r tré c .”

in M D K - C - I - 1 8 /2 2 5. G é p írá so s lev é l m áso d p é ld án y a . C ím zett nem szerep e l.
112 M D K - C - I - 18/5 34. R ed ő F e ren ch ez , a N é p m ű v e lé s i M in isz té r iu m K ép ző m ű v észe ti O sz­

tá ly a a k k o r i v eze tő jéh ez í r t le v é lte rv e z e t ja v íto tt m á so d p é ld án y a ,
r í j M D K - C - I - 1 8 /2 2 8 . G ép írá so s lev é l. Je lz é s : D o lg o zó k N y ilv á n ta r tá sa . N J /S z S .1 6 0 /1 9 5 1.

Ügyintéző: Nagy János. Aláírás tollal és géppel. Cégbélyegző.
114 M D K - C - I - 18/2 2 6 л - 2 . K ézze l í ro tt lev é l, k éz írá ssa l c ím ze tt b o r íté k b a n .
/ / } M D K - C - I - 1 8 /2 3 0 . G é p írá so s szöveg m á so d p é ld án y a .
116 M D K - C - I - 1 8 /2 5 3 .1 - 2 . F ö ld a la tt i V asú t B e ru h ázási V á l la la t fe jléces p a p ír já n ír t fe lszó lí­

tá s . Ü g y ira tszám : 3525/1951. Ü g y in téző : d r. H o rv á th /S z n é . A lá írá s to l la l és g é p p e l; cég­
bélyegző . K ézze l c ím zett b o rító k , h á tu l g é p írá s s a l: „ A N é p m ű v e lé s i m in isz té riu m a K ö z ­
lek ed és - és P o staü g y i m in isz té r iu m n á l e szközö lje k i, hogy B okros B irm an n t m en tsék fel
a v isszafize tés a ló l .”

117 G e ra É v a tu la jd o n a . G é p írá so s szöveg ce ru záv a l ja v íto tt m áso d p é ld án y a .
115 M D K - C - I - 1 8 /2 5 5 .1 -2 . „ N é p m ű v e lé s i M in isz te r” fe lírá sé , n y o m ta to tt fe jléces p ap íro n ír t

lev é l. S zám a: 2533/1951. O lv a s h a ta tla n a lá írá s , köirbélyegző.
ug G e ra É v a tu la jd o n a . Id eg en k éz írású lev é lfo g a lm azv án y .
120 G e ra É v a tu la jd o n a . A „M ag y a r D o lg o zó k P á r t ja K ö zp o n ti V eze tő ség e” n y o m ta to tt le ­

v é lp a p ír já n . S zám a : K /K /5 8 3 6 9 /9 5 1.
121 M D K - C - I - 18/2 32. G é p p e l í r t le v é l m áso d p é ld án y a .
122 M D K - C - I - 18/2 3 3 .1 -2 . H iv a ta lo s lev é l. J e lz é s : 5 2 /4 4 7 7 /H n é /N n é . A lá ír á s : o lv a s h a ta tla n .
12) M D K - C - I - 18 /234. M a g y a r M ű v é sz e ttö r té n e ti M u n k a k ö zö sség lev e le . Ü g y ira tszám :

56/1952. A lá írá s , pecsé t.
124 M D K - C - I - 1 8 /2 3 5 . A M ag y ar N é p k ö z tá rs a sá g K ép ző m ű v észe ti A la p ja lev e le . H iv . sz ám :

8 7 7 1 0 -2 -7 9 . E lő a d ó : B a k o r/B L n é . A lá írá s g ép p e l, a la t ta : m b . B o k o r V ilm os. P ecsét.
12$ M D K - C - I - 1 8 /2 3 6 .1 - 2 . A N é p m ű v e lé s i M in isz té riu m n y o m ta to tt fe jléoes p a p ír já n ír t lev é l.

A lá írá s tollal és géppel. Pecsét.
126 M D K - C - I - 1 8 /2 3 7 . G ép írá so s , k ézze l tö b b he lyen ja v íto tt , k ieg é sz íte tt fo g a lm azv án y . -

A m en o p h is k irá ly e m líte tt p o r tré ja a M ű v é sze ti L ex ik o n I. k ö te te szerin t je len leg a
S taa tlich e M useen zu B erlin tu la jd o n á b a n van .

Í2 7 M D K - C - I - 18/2 38. G é p írá so s lev é l m á so d p é ld án y a .
128 M D K - C - I - 1 8 /2 3 9 . A M ű v észe ti D o lg o zó k S zak sze rv eze te n y o m ta to tt fe jléces p a p ír já n ír t

lev é l. A lá írá s to lla l és g ép p e l. B é ly eg ző : M ag y ar M ű v é sze ti D o lg o zó k S zak sze rv eze te k é p ­
zőm ű v észe ti és ip a rm ű v észe ti fele lős.

121) M D K - C - I - 1 8 /2 5 6 . E rő m ű B e ru h ázási V á lla la t fe jléces p a p ír já n ír t le v é l. Ü g y ira tszám :
1 3 .1 0 0 /I /In /G G /S z n é . Ü g y in téző : G e la .

i}0 M D K - C - I - i 8 /240 . A m ű v ész g ép íráso s lev e lén ek m á so d p é ld án y a .
i)i G e ra É v a tu la jd o n a . G ép írá so s szö v eg ; k ieg ész íté sek id eg en k éz írá ssa l.
1)2 G e ra É v a tu la jd o n a . G é p p e l ír t le v é l m áso d p é ld án y a . t
i)) M D K - C - I - 1 8 /2 5 7 .1 - 2 . A „M ag y a r D o lg o zó k P á r t ja K ö z p o n ti V eze tő ség e A g itác ió s és

P ro p a g a n d a O s z tá ly a ” fe jléces p a p ír já n ír t lev é l. Ü g y in té z ő : T I/M n é .
i)4 M D K - C - I - 18/241. P o s ta i lev e lező lap .

И*
195

735 M D K - C - I - 1 8 /2 4 2 . P o sta i lev e lező lap . F e la d ó ; B ú k o r B éla T ib o r . X II.. F o h ász lépcső T4.
A po stab é ly eg ző k e lte : 1952. V III . 19.
B úkor B é la B okros tan ítv án y a és szem élyi ti tk á ra , ak irő l a m űvész a jó l ism ert portré-
fe je t m in táz ta .

1) 6 G e ra É v a tu la jd o n a . G ép p e l ír t le v é lte rv e z e t; rá írá so k ce ru záv a l, p l . : . „ ú jra m eg íra tn i és
e lk ü ld e n i” .

i)7 G e ra É v a tu la jd o n a . G ép p e l ír t tlevél m áso d p é ld án y a .
1)8 M D K —C - I -1 8 /2 4 3 . G ép íráso s lev é l m áso d p é ld án y a . H á to ld a lá n ce ru záv a l ír t feljegyzések .
i) g M D K - C —I—18/575.8. O rv o si jav a s la t. H osszú b é ly eg ző : „K ú tv ö lg y i ú ti Á lla tn i K ó rh á z és

R e n d e lő in téz e t Ideg g y ó g y ásza ti O sz tá ly a , B u d a p est, X II., K ú tv ö lg y i ú t 4 .” H áro m szö g le tű
bé ly eg ző : „ B u d a p e s t F őv . T an ácsa R e n d e lő in téz e te . X II/2 . Id e g .”

140 M D K - C - I - 1 8 /2 4 4 .1 - 2 . F ü s t M ilán kézze l ir t leve le .
141 M D K - C - I - 1 8 /2 4 ; . G ép p e l ír t la p ; a szöveg a la t t ce ruzával Irt feljegyzések .
142 M D K - C - 1- 18/247. G ép írá so s lev é l m áso d p é ld án y a .
14) M D K - C - I - i 8 /2 4 8 .1 -2 . A V L llam osm űvek K ö zp o n ti Jo g i C so p o rtján a k fe lszó lítá sa . Ü gy­

ira tszám : 1532/53. A lá írá s g ép p e l, fe le tte to lla l. T o lla l ír t k ieg é sz íté s : „m e r t a b izo ttság
a p á ly á z a tá t nem fo g a d ta e l.”

144 M D K - C —I—18/248.2. G ép p e l ír t fe lszó lítá s . A lá írá s . A .hátlapon a m űvész ce ru záv a l ír t
so ra i: „ A fe lszó lítás v é te le u tán i n ap o n e lm o n d ta m az ü g y v éd em n ek é sz re v é te le im e t! e rre
H . a z t m o n d ta - ja , ez m ás, te h á t ez t nem is lelhet p e r ú tján e lin tézn i. E z t a z ügyet
k iveszem a p e res ügyekbő l - ezt nem leh e t a z a lp e res á lta l e lő a d o tta k alapiján p e re ln i -
áp rilis ó ta nem is v o lt ró la szó .”

745 M D K - C - I - 1 8 /2 5 0 . A m ű v ész k ézze l ír t lev e le (fo g a lm azv á n y a?).
146 M D K - C - I - i 8 /251. G ép p e l ír t lev é l (fo g a lm azv án y ?).
147 M D K - C - I - 1 8 /2 5 2 .1 - 2 . A „M ag y a r D o lg o zó k P á r tja K ö z p o n ti V eze tő ség e” n y o m ta to tt

fejlóces p a p ír ján ír t levé l. A lá írá s to lla l. A b o ríté k cím zése u a ., fe lü l g é p p e l: „M ag y ar
D o lg o zó k P á r t ja O rszágos K ö z p o n tja .”

148 M D K - C - I - 1 8 /2 5 9 .1 -2 . F ü st M ilán leve le .
14g M D K - C - I - 18/260. A Szerzői Jo g v é d ő H iv a ta lh o z in téze tt g ép írásos lev é l m áso d p é ld án y a .
i)o M D K - C - I - 1 8 /2 6 1 . A F ő v á ro si E m lék m ű F elü g y e lő ség író g ép p e l so k szo ro síto tt fe lszó lí­

tása . A z ö sszeh a jto tt la p kü lső o ld a lá n cím zés: B okros B irm ann S. (sic!) szob rászm űvész
k a rtácsn ak , B u d a p est, X III ., É lm u n k ás té r 2/d .

i)i M D K - C - I - 1 8 /2 6 2 .1 . G ép p e l ír t lev é l m áso d p é ld án y a .
1)2 M D K -C - I - 1 8 /2 6 2 .2 . G é p p e l i t t e red e ti levé l.
i)) M D K - C — I —18/263. P o sta i lev e lező lap o n ce ru záv a l ír t lev é l. C ím zés: B okros B irm an

D ezső . K o ssu th -d íja s szobrászm űvész. B a la to n fü re d , S z ívkó rház . F e la d ó n ev e és cím e. A
po stab é ly eg ző k e l te : 1953. V III . 20.

1)4 M D K - C - I - 1 8 /2 6 4 . H iv a ta lo s végzés, k itö ltö tt ű r lap o n . S zám a: 8 0 9 - I-9 8 /1 9 5 5 . E lő a d ó :
Szilágyi. H iv a tk . sz ám : 1 4 1 9 -M -1 4 . B a lra le n t : „ A k iad m án y h i te lé ü l: B p. 1953. aug . 28.
K ocsi Im re iro d a v e z e tő ” .
A V ég h a tá ro z a t sz ö v eg é t 'k ihagyásokkal k ö zö ljü k .

755 M D K -C -I - 1 8 /2 6 Ó . G é p e lt lev é l m áso d p é ld án y a , a lá írá ssa l. A h á tlap o n tö b b , c e ru záv a l i t t
feljegyzés.

i)6 M D K - C - I - 1 8 /2 6 7 .1 - 2 . G é p e l t lev é l m áso d p é ld án y a .
i)7 M D K - C - I - 1 8 /3 7 6 . M árffy Ö d ö n (1 8 7 8 -1 9 5 9) festőm űvész k éz írásos lev e le .
1)8 Gera Éva tulajdona. Gépírásos levél másodpéldánya.
; 39 M D K - C - I - 1 8 /2 6 8 .1 - Z . A „M ag y a r K ép ző m ű v észek és Ip a rm ű v észek S zö v etség e” n yom ­

ta to t t fe jléces p a p ír já n ír t le v é l. Ik ta tó sz á m : 2055/1953.
160 M D K - C - I - 1 8 /3 :2 . G ép írá so s lev é l m á so d p é ld án y a .
j ó i M D K - C - I - 1 8 /2 6 9 . G é p e k lev é l m áso d p é ld án y a .
162 M D K - C - I - 1 8 /2 7 1 . G é p e k lev é lte rv e z e t.
16) M D K - C - I - 1 8 /2 7 0 . G é p e lt le v é l m áso d p é ld án y a .
764 M D K - C - I - 1 8 /2 7 3 .
1 6) M D K - C - I - I 8 / 2 7 4 . I - 2 . F ü s t M ilán lev e le . C ím zés a k o o k ás fü z e tla p b ó l rag a sz to tt b o r í­

ték o n .
1 6 6 M D K - C - I - 1 8 /2 7 5 . A M ű v észe ti D o lg o zó k S zak szerv eze te K ép ző m ű v ész és Ip a rm ű v ész

T a g o z a tá n a k lev e le , m e ly e t m in d en v a ló sz ín ű ség szerin t B okros k é ré sé n ek tám o g a tá sá ra
a m ű v észn ek a d ta k á t. B élyegző, a lá írá s .

167 M D K - C - I - 1 8 /2 7 6 .1 - 2 . G é o e lt levé l vagy le v é lte rv e z e t m áso d p é ld án y a , a lá írá s nélkü l.
168 M D K - C - I - i 8 /277 . A B u d a p esti 16. sz. Ü g y v éd i M u n k ak ö zö sség n y o m ta to tt fe jléces p a ­

p ír já n ír t lev é l. Ü gyszám : 2897. Ü g y in téző : Cs. D .

1 9 6

lóg M D K - C - I - 1 8 /2 7 8 . A N ép m ű v e lé s i M in isz té riu m n y o m ta to tt fe jléces p a p ír já n í r t levé l.
Ik t. s z . : 1 4 1 8 -B -2 0 . E lő a d ó : C seh M ik lós . A lá írá s í ró g é p p e l; pecsé t. B a lra le n t : „ A k i­
ad v á n y h i te lé ü l : B ab o tay iro d a v e z e tő .”

/7 0 M D K - C - I - i 8/279. A B u d ap esti 16. sz. Ü g y v éd i M u n k ak ö zö sség n y o m ta to tt fe jléces p a ­
p írján ír t lev é l. Ü g y szám : 2897. Ü g y in téző : Cs. D .

171 M D K - C - I - 18/2 8 0 .1 -2 . A S zab ad N é p sz e rk e sz tő ség én ek n y o m ta to tt fe jléces p a p ír já n ir t
levé l.

172 M D K - C - I - 1 8 /2 8 1 .1 - 2 . A M ag y ar F o to n y o m ta to tt fe jléces p a p ír já n ír t lev é l. J e l : V A .
Ü g y in téző : B usztin . C égbélyegző , a lá írá s .

173 M D K - C - I - 1 8 /2 8 2 . P o rta i lev e lező lap o n ce ru záv a l ír t lev é l. F e la d ó n ev e és cím e.
174 M D K - C - I - 1 8 /2 8 ;. Ö sszeh a jto tt p a p ír la p o n , to lla l i t t lev é l.

D uck a Á kos k ö ltő D u tk a M á ria (Ba'by) m ű v é sz e ttö rté n é sz éd esap ja .
/7 } M D K - C - I - i 8 /2 8 4 .1 -2 .
176 M D K - C - I - i8 / } 7 5 a . A „ B u d a p e s ti X III . k é r . T an ács V é g re h a jtó B izo ttság án ak S zo c iá lp o li­

t ik a i C so p o rtja ” á lta l k iad o tt, g é p e lt fe jléces v é g h a tá ro z a t. Ü g y ira tszám : 831 / B - 5 0 6 /1954.
E lő a d ó : E p erje ssy E . B a lra le n t : „ A k iad m án y h ite lé ü l: [o lv a sh a ta tla n a lá írá s] , B u d a p est,
1954. 'szept. 8 .”

177 M D K —C - I -1 8 /2 8 5 . L evél a B u d a p esti 16. sz. Ü g y v éd i M u n k ak ö zö sség n y o m ta to tt f e jlé ­
ces p a p ír já n . Ü g y szám : 2897. Ü g y in té z ő : Cs. D .

178 G e ra É v a tu la jd o n a . A N ép m ű v e lé s i M in isz té riu m n y o m ta to tt lev é lp a p ír já n í r t lev é l.
Ik ta tó sz á m : 8 7 7 1 3 -3 -3 5 /1 9 5 4 . E lő a d ó : F a lu d i G yörgy . B a lra le n t : „ A k iad m án y h ite lé ü l:
[o lv a sh a ta tla n a lá írá s] , iro d a v e z e tő .”

/7 9 G e ra É v a tu la jd o n a . G é p p e l í r t lev é l m á so d p é ld án y a .
1S0 M D K - C - I - 1 8 /2 8 6 .2 . A H e re n d i P o rc e lán g y ár lev e le . J e l : G O /D n é . Ü g y in téző : G e isse

O ttó . C égbélyegző . K é t o lv a s h a ta tla n a lá írá s .
181 M D K - C - I - 1 8 /2 8 7 . A M ag y ar N é p k ö z tá rsa sá g K ép ző m ű v észe ti A la p ja lev e le . S zám a:

8628. E lő a d ó : Z ö ld n é .
182 M D K - C - I - 1 8 /2 8 9 . G é p p e l ír t le v é l m á so d p é ld án y a .
18 i M D K - C - I - 1 8 /2 9 0 . G é p e lt lev é l m áso d p é ld án y a .
184 M D K - C - I - 1 8 /2 9 1 . A X IV . k e rü le ti T an ács V é g re h a jtó B izo ttság a á lta l k iá l l í to t t h iv a ta lo s

írás. B élyegző, a lá írá s .
J Í5 M D K - C - I - 1 8 /2 9 2 . V é rte s G yö rg y g ép íráso s lev e le . A jo b b fe lső sa ro k b a n ce ru záv a l fe l­

írv a V é rte s G yörgy cím e.
V érte s G yö rg y sze rk e sz tő , ú jság író , az O rszággyű lési K ö n y v tá r n y u g a lm azo tt ig azg a tó ja .

186 M D K - C - I - 1 8 /2 9 3 .1 - 2 . V é rte s G y ö rg y g ép írásos lev e le . C ím zés a borítékom .
187 M D K - C - I - r 8 /2 9 4 .1 -2 . G ép írá so s lev é l. C ím zés a b o ríté k o n .
188 M D K - C - I - 1 8 /2 9 5 .1 - 2 . A S zépm űvésze ti M úzeum S zo b o ro sz tá ly á ró l íro tt lev é l. C ím zés a

b o ríté k o n . M egszó lítás h e ly e tt a l e v é le n : B o k ro s-B irm an D ezső szob rászm űvész .
18g M D K - C - I - 1 8 /2 7 2 .1 - 2 . G é p e lt ig azo lás fo g a lm azv án y a és a tis z tá z a t m á so d p é ld á n y a . A fo ­

g a lm azv án y ra c e ru záv a l fe lírv a : „ H é tfő H a n to s h o z ” .
igo M D K - C - I - i 8 /2 9 6 .1 -2 . G é p írá so s lev é l. C ím zés a b o ríték o n .
ígi M D K - C - I - 1 8 /2 9 7 . G é p p e l í r t és g ép p e l a lá ír t lev é l.
/9 2 M D K - C - I - i 8/299. G ép íráso s le v é l m áso d p é ld án y a .
/9 3 M D K - C - I - 1 8 /3 0 0 . A z O rszágos S zépm űvésze ti M úzeum á tv é te li e lism erv én y e . B élyegző,

a lá írá s .
Г94 M D K - C - I - 1 8 /3 0 2 . A z O rszág o s S zép m ű v észe ti M úzeum lev e le . Ü g y ira tsz á m : 8 6 3 - 0 3 -

2 2 }/9 5 5. B élyegző, a lá írá s .
igj M D K - C - I - 1 8 /3 0 3 . G é p e lt lev é l, a lá írv a .
igó M D K - C - I - 1 8 /3 0 4 . G é p e lt le v é lte rv e z e t, a lá írv a .
/9 7 M D K - C - I - 1 8 /3 0 5 . L ev é l „N ép m ű v e lé s i M in isz té riu m , M in isz te rh e ly e tte s” fe lírá sé nyom ­

ta to t t le v é lp ap íro n . A lá írá s , k ö rp ecsé t.
ig8 M D K - C - I - i 8 /3 0 7 .1 -2 . G é p e l t lev é l m á s o d - és h a rm a d p é ld á n y a , a lá írv a .
igg M D K - C - I - 1 8 /3 0 8 . A B u d a p esti 16. sz. Ü g y v éd i M u n k ak ö zö sség n y o m ta to tt le v é lp a p ír já n

ír t lev é l. Ü g y szám : 2897. Ü gy in téző nev e . - A lev é lb en k ö z ö lt ré sz le te s e lszám o lást k i­
h a g y tu k !

200 M D K - C - I - 1 8 /5 3 2 . G ép írá so s fe ljegyzés.
201 M D K - C - I - 1 8 /3 0 9 .1 -2 . A K ü lk e re sk e d e lm i M in isz té riu m n y o m ta to tt le v é lp a p ír já n ír t lev é l.

Ü g y ira tszám : V Z - 2 j7 i - i i9 5 5 .
202 M D K - C - I - 1 8 /3 1 0 . G ép írá so s lev é l m áso d p é ld án y a .
203 M D K - C - I - 1 8 /3 1 3 . G ép írá so s lev é l m á so d p é ld án y a . - A le v é lb e n k ö zö lt ré sz le te s e ls z á ­

m o lás t k ihagy tuk !

1 9 7

204 M D K —С —I—1 8 /3 15. Gépírásos levél másodpéldánya. 4
205 M D K —С —I— 18 / 3 16. A z O rszágos S zépm űvésze ti M úzeum n y o m ta to tt le v é lp ap ír ján í r t levél.

Ü g y ira tszám : 8 6 3 -0 3 -1 8 /9 5 6 . A lá írá s , k ö rp ecsé t.
206 M D K - C - I - u 8/317. A z O rszágos S zépm űvésze ti M úzeum lev e le . Ü g y ira tszám : 8 6 3 - 0 1 -

42 /956 . Ü g y in téző : L á z á r G y u lán é . B élyegző, a lá írá s .
207 G e ra É v a tu la jd o n a . G ép íráso s le v é l m áso d p é ld án y a .
208 M D K - C - I - 1 8 /3 1 8 . G ép írá so s lev é l m áso d p é ld án y a .
209 M D K - C - I - 18 /319. A z O rszágos S zépm űvésze ti M úzeum lev e le . Ü g y ira tszám : 8 6 3 - 1 3 -

9 /956 . B élyegző, a lá írá s .
210 M D K - C - I - 1 8 /3 2 0 . I - 2 . C ím zés a b o r íté k o n : B okros B irm an D ezső . K o ssu th -d íja s szob­

rászm űvész , S á ro sp a tak , R á 'kóczi-vár. F e la d ó : B. b . T . B p. É lm u n k ás té r 2/d .
211 M D K - C - I - 1 8 /3 2 2 .1 - 2 . C ím zés a b o r íté k o n : B okros B irm an D ezső . K o ssu th -d íja s szobrász-

m űvész, B u d a p est, Éknunfcás t é r 2 /d . U n g arn . F e la d ó n ev e és bécsi cím e.
212 M D K - C - I - 1 8 /3 2 5 . K ézze l í r t levé l.
21) M D K - C - I - 1 8 /3 2 6 .1 - 2 . G ép p e l ír t levé l. C ím zés a b o ríték o n .

214 M D K - C - I - 1 8 /3 3 2 . „ M ű v e lő d ésü g y i M in isz té riu m , M in isz te rh e ly e tte s” fe lírású n y o m ta to tt
lev é lp ap íro n k ü ld ö tt é r tesítés . S2ám a: 27 /1958 .M .h .t. A lá írá s , kö rpeosé t.

21) M D K -C - I - U 8 /3 3 3 . P o sta i lev e lező lap . A po stab é ly eg ző k e lte : 1958. jan . 24.
216 M D K —C —1 -1 8 /3 3 5 .1 —2. R om án G yö rg y festőm űvész kéz írásos le v e le . C ím zés és fe lad ó a

b o ríté k o n . A po stab é ly eg ző k e l te : 1958. febr. 28.
2 /7 M D K - C - I - 1 8 /3 3 8 . P o sta i lev e lező lap . C ím zés, fe lad ó az e lő lap o n . A po stab é ly eg ző k e l te :

1958. á p r . 25.
218 M D K - C - I - 18/340. G ép p e l ír t llevél m áso d p é ld án y a .
219 M D K - C - I - 1 8 /3 4 4 . K odkás fü ze tlap o n kézze l ír t levé lfo g a lm azv án y .
220 M D K - C - I - 1 8 /3 4 9 . G ép íráso s levé l.
221 M D K - C - I - 1 8 /3 5 0 . A S á ro sp a tak i R ákóczi M úzeum n y o m ta to tt levé l p a p ír ján íro tt levé l.
222 M D K - C - I - 1 8 /3 5 4 . P o sta i lev e lező lap .
223 M D K - C - I - 1 8 /3 5 5 . A z É le t és Iro d a lo m szerk e sz tő ség én ek n y o m ta to tt lev é lp a p ír já n íro tt

levé l.
224 M D K - C - I - 1 8 /3 5 7 .1 - 2 . N év jeg y nagyságú k a r to n o n ír t lev é l. C ím zés a b o ríté k o n . A p osta -

bélyegző k e lte : 959. jan . 12.
22) M D K - C - I - i 8 /363 . A M űv e lő d ésü g y i M in isz té riu m lev e lén ek a M ag y ar N é p k ö z tá rsa sá g

K ép ző m ű v észe ti A la p já n á l k é sz íte tt h ite le s m áso la ta . B a lra l e n t : „ A k ia d m á n y h ite lé ü l:
[o lv a sh a ta tlan a lá írá s] s . k ., i ro d a v e z e tő . A m á s o la t h ite le s : K ő szeg i” .

226 M D K - C - I - 1 8 /3 6 4 . K éz íráso s m eg h a ta lm azás (nem B okros k é z írá sa) .
227 M D K - C - I - I 8 / 5 0 0 . I - 2 . A zá ró je len té s h iv a ta li szám a a b o r íté k o n : 82221/59.
225 M D K - C - I - 1 8 /3 6 5 . A S zép iro d a lm i K ö n y v k iad ó n y o m ta to tt lev é lp a p ír já n ír t le v é l. A lev é l

je le : D M /B A . O lv a s h a ta tla n a lá írá s , cégbélyegző.
229 M D K - C - I - 18 /574. A „K ép ző m ű v észek , Ip a rm ű v észek és M ű v észe ti D o lg o zó k S zakszer­

v e z e te ” n y o m ta to tt lev é lp a p ír já n í r t le v é l. A lá írá s , k ö rp ecsé t.
230 M D K - C - I - 1 8 /3 6 8 . S ten c ileze tt ű r lap o n k ü ld ö t t h iv a ta lo s é rte síté s . S zám a : k jő 8 5 7 2 1 /1 9 5 8 -5 .

B a lra le n t : „ A k iad m án y h i te lé ü l: M o ln á r L ász ló n é iro d av eze tő , 136/B . K ö zjeg y ző á lta l
e lre n d e lt k ö z v e tle n le tiltá s m eg szü n te té se . K ia d m á n y .”

2)i M D K - C - I - 1 8 /3 7 3 .1 - 2 . G ép írá so s lev é l. C ím zés és fe lad ó a b o ríték o n .
2)2 M D K - C - I - 18/378. B okros Szenes Á rp ád h o z , a P á riz sb an élő m ag y ar szárm azású fe s tő ­

m űvészhez íro tt g ép írá so s le v e lé n e k m á so d p é ld án y a .
233 M D K - C - I - 1 8 /3 8 1 . A M ag y ar Ú jság író k O rszágos S zövetségébő l k ü ld ö t t lev é l.
234 M D K -C -I - H 8 /3 8 4 . G é p e lt le v é l m áso d p é ld án y a .
23j G e ra É v a tu la jd o n a . G ép írá so s le v é l, a lá írá ssa l.
236 M D K - C - I - 1 8 /5 36. Id eg en k éz á l ta l , to lla l ír,t lev é lte rv eze t.
237 M D K -C -I - .1 8 /3 8 5 . A M ag y ar S zocialista M u n k á sp á r t n y o m ta to tt lev é lp ap ír ján .
2)8 M D K - C - I - 1 8 /3 8 7 . A M űve lő d ésü g y i M in isz té riu m K ép ző m ű v észe ti O s z tá ly án ak é r te s í­

tése . Ü g y ira tszám : 7 2 .059 /1960 .IX .
239 M D K - C - I - 1 8 /3 8 9 . P o sta i lev e lező lap . F e la d ó : d r. B o k o r L ajo s, M ag y ar T á v ira ti I ro d a .
240 M D K - C - I - 1 8 /3 8 6 .1 - 2 . K e le ti A r th u r n év jeg y k a rto n o n í r t , kéz írá so s lev e le . A p o s ta b é ­

lyegző k e l te : i9 6 0 . I . 18.
241 M D K - C - I - 1 8 /3 9 0 . G é p e lt lev é l m áso d p é ld án y a .
242 M D K - C - I - 1 8 /3 9 1 .1 - 2 . Szenes Á rp á d P á riz sb an élő m ag y ar szárm azású festőm űvész kézze l

íro tt lev e le . (F e le ség e : M a ria H e le n a V ie ira d a S ilva p o rtu g á l szárm azású festőm űvésznő .)
A po stab é ly eg ző k e l te : i9 6 0 . I. 26.

243 M D K - C - I - i 8 /395. G ép írá so s lev é l m áso d p é ld án y a .

1 9 8

244 M D K - C - I - i 8 / } 9 5 - G ép írá so s l e v é l m á so d p é ld án y a .
245 M D K - C - I - 18/493. A X III . k e rü le ti T an ács V é g re h a jtó B izo ttság a h iv a ta lo s p a p ír já n fo ­

g a lm azo tt h a tá ro z a t. Ü g y ira tszám : j i o / i / i p 6 o .s z a b .
246 M D K - C - I - i 8 /4 7 0 .1 -2 . G é p e lt le v é l. F e la d ó ja B alázs A n n a írónő .
247 M D K - C - I - 1 8 /3 9 4 .1 - 3 . B a lázs A n n a író n ő le v e le R o m án G y ö rg y fe stő m ű v észh ez . -

A le v é ln e k csak B okros B irm an ra v o n a tk o zó ré szé t k ö zö ljük .
248 M D K - C - I - 18/396. G ép íráso s lev é l m á so d p é ld án y a .
24g M D K - C - I - 1 8 /3 9 9 . P o sta i lev e lező lap o n a m ű v ész kézze l ír t so rai.
230 M D K - C - I - 1 8 /4 0 1 .1 -2 . G é p p e l ír t le v é lte rv e z e t első - és m á so d p é ld án y a .
z j r M D K - C - I - 1 8 /5 3 1 . C e ru záv a l, v a ló sz ín ű le g a n e v e z e tt á l ta l ír t ig azo lás te rv eze t.
252 M D K - C - I - 1 8 /4 0 3 .1 - 2 . „ In s ti tu t H o n g ro is” s tb . fe lírású n y o m ta to tt le v é lp a p íro n géppel

ír t levé l.
253 M D K - C - I - 1 8 /4 0 4 . G é p e lt le v é l m áso d p é ld án y a .
254 M D K - C - I - i 8/406. C e ru záv a l ír t lev é l.
2 } j M D K - C - I - 1 8 /5 3 3 . G é p p e l ír t lev é lte rv e z e t.
236 M D K - C - I - 1 8 /4 1 5. A M ag y ar T u d o m án y o s A k a d é m ia B a rtó k A rch ív u m án ak n y o m ta .o a

lev é lp ap ír ján .
257 M D K - C - I - 18/416. A M ű v e lő d ésü g y i M in isz té riu m K ép ző m ű v észe ti O s z tá ly á n a k lev e le .

Ü g y ira tszám : 72 .366 /1962 . E lő a d ó : K m e tty Já n o sn é . B a lra le n t : „ A k iad m án y h ite lé ü l:
[o lv a sh a ta tlan a lá írá s] , iro d a v e z e tő ” .

25 Í M D K - C - I - 18/417. A z O rszággyű lési K ö n y v tá r n y o m ta to tt le v é lp a p ír já n ír t lev é l. A „ p la ­
k á t ” szó ny ilv án e l í r á s ; B okros F ü g g e tlen M a g y a ro rsz ág é rt cím ű p la k e ttjé rő l v a n szó.

259 M D K - C - I - 1 8 /3 9 2 . A „ M a g y a r F o rra d a lm i M u n k á s-P a ra sz t K o rm án y E ln ö k h e ly e tte sén ek
T itk á rs á g a ” n y o m ta to tt le v é lp a p ír já n .

2Í0 M D K - C - I - 1 8 /4 1 8 . A Jó k a i S zínház n y o m ta to tt lev é lp a p ír já n .
261 M D K - C - I - i 8 /4 1 9 .1 -2 . G ép írá so s ü zen e t k é t p é ld á n y b a n , m in d k e ttő ce ru záv a l sz ignálva.
262 M D K - C - I - 1 8 /4 2 2 . B okros t i tk á rá n a k c e ru záv a l í r t lev é lfo g a lm azv án y a . C ím : G ere ly es

ig azg a tó e lv tá rs , Ú jk o ri T ö rté n e lm i M úzeum , Jó z se f n á d o r té r 2.
263 M D K - C - I - 18/423. B o k ro s ti tk á rá n a k ce ru záv a l ír t lev é lfo g a lm azv án y a . C ím : D ö m ö tö r

T e réz , S am arja (na A s to v e), C séhsz lovák ia .
264 M D K - C - I - 1 8 /4 2 6 . G é p p e l ír t le v é l m áso d p é ld án y a .
26j M D K - C - I - 1 8 /4 5 6 .1 - 2 . B a u m g a rtn e r Jó z se f b ro n zö n tő lev e le .
266 M D K - C - I - 1 8 /з 54. G é p e lt lap .
267 M D K - C - I - 18/447. Id eg en k éz írá ssa l (L aczk o v ich A lice) k é szü lt, B okros á lta l a lá ír t m eg­

á lla p o d á s .
265 M D K - C - I - 1 8 /4 5 3 . A M ag y ar N em ze ti G a lé r ia n y o m ta to tt le v é lp a p ír já n í r t le v é l. A lá írá s ,

k ö rp eo sé t.
269 M D K - C - I - 18 /463. 1 -2 . A H aza fia s N é p f ro n t X III . k é r . B izo ttság a n y o m ta to tt le v é lp a ­

p ír já n í r t levé l. A lá írá s , k ö rp ecsé t.

I 9 9

KÉPEK JEGYZÉKE

R ö v id íté s e k : J . = Je lezv e
J. a . = Je lzé s n é lk ü l

M N G = M a g y a r N e m z e ti G a lé r ia
tú l. = tu la jd o n a

A S Z Ö V E G K Ö Z Ö T T :

I. A m űvész ró z sad o m b i m ű te rm é b en , 1919
k ö rü l

11. E g y la p a J ó b -m a p p á b ó l, 1920
I I I . A m ű v ész 1937-ben
IV. A m ű v ész 1947-ben

V . A m ű v ész P á r iz sb a n , 1948-ban
VI. M ű v é szek k ö z ö tt a s á ro s p a ta k i a lk o tó ­

h á z b a n , 1949-ben
VII. A szo b rász és ö n p o r tré ja
Vili. A 75 év es m űvész

1. A lv ó leán y , 1916
M á rv án y , 113 cm
J . : B okros B irm an , 1916
M N G 5 8 .1 9 -N

2. T o rz ó , 1917
G ip sz
Ism ere tlen helyen

3. J ó n a p A n d o m é , 1915 k ö rü l
G ip sz , 33 cm
J. n.
J ó n a p A n d o rn é tú l.

4. Ü lő fiú a k t , 1919
B ronz , 30 cm
J . : B okros B irm an , 1919
D r . P o d o sk i Jó z se f tú l.

5. Ü lő n ő i to rzó , 1922
T e rra k o t ta , 25,5 cm
J . : B. B ., 922
F ra n k fu r t Jó z se f tú l.

6. G u g g o ló nő , 1921
20 om
J . : B . B., 1921
Szegi P á ln é tú l.

7. N é g y k é z lá b á lló , 1921
B ronz
Ism ere tlen he lyen

S. A k ro b a ta , 1921
Ism ere tlen helyen

9. H íd , 1921
G ip sz , 21 cr>
J . n.
R o s ta Já n o sn é tú l.

10. A n y a és lán y a , 1922
G ip sz , 93 cm
J . : B okros B irm an 922
B okros B irm ar. h ag y a ték a

1 / . L ász ló M ih á ly , 1923
B ronz , 36 cm
J. n.
K isce íli M úzeum tú l.

12. ö le lk e z ő k , 1923
B ronz, 30 cm
J . : B . B. 1923
B oros Is tv á n tú l.

13. ö n p o r t r é , 1923
G ip sz , 35 cm
J . : B okros B irm an 1923
K o v ács G y ö rg y tú l.

14. A d y E n d re , 1924
B ronz , 35,5 cm
J . : B o k ro s B irm an 924
M N G 5 6 .1 1 3 -N

í j . A ch im A n d rá s-em lék m ű te rv , 1924
G ip sz , 37 cm
J . : B. B. 1924
B okros B irm an h a g y a té k a

16. A d y -s írem lék te rv , 1927
G ip sz
Ism ere tien he lyen

/7 . A d y -fe j a s írem lék te rv h ez , 1927
B ronz , 17,5 ctn
J. n.
S zm etana E rn ő tú l.

15. B ro n z d o m b o rm ű az A d y -s írem lék
te rv h e z
].: B. B.
Ism ere tlen he ly en

/9 . G a lic zán é , 1926
G ip sz , 34 cm
J . : B okros B irm an 1926
B okros B irm an h ag y a ték a

20. K e le t i A r tú r , 1927
G ip sz , 48 cm
J . n.
Keleti Artúr h ag y a ték a

21-гг. K . F ü re d i R ó z a , 1927
B ro n z , 38,5 cm
J . : В. B. 1927
V a d a s L ász ló n é tú l.

201

2}-24- S zágelné , 1927
B ronz , 30 cm
J . : В. В. 1927
B o lg á r B é lá n é tu i.

25. Ú jv á r i P é te r , 1927
G ip sz , 37 cm
J. n.
M N G 5 9 .1 0 5 -N

26. K a la p o s ö n p o r tré , 1927
B ronz, 32 cm
J . : В. B. 1927
M N G 6 3 .5 5 - N

2 7 -2 # . F iú a k t, 1928
Ism ere tlen h e ly en

29. D o n Q u ijo te , 1929
B ronz, 32 cm
J . : B o k ro s B irm an
M N G 5 6 .6 7 -N

30. D o n Q u ijo te , 1929
B ronz, 117 cm
J . : B okros 1929
M N G 5 6 .1 3 5 -N

)i-)2. Don Quijote-fej (részlet)
33. B irm an Izsó n é , 1929

G ip sz , 29 cm
J. n.
B irm an Izsó tú l.

34. G eg esi K iss P á l, 1930
B ronz , 29 cm
J . : B okros 1930
M N G 6 6 .1 4 -N

3 j . Szőllősi E n d re , 1930
T e rra k o tta , 32 cm
J . : B okros B irm an
G á d o r Is tv á n tú l .

36. M asa ry k , 1930
G ip sz , 29 cm
J . : B okros 1950
H a u s w irth M a g d a tú l.

37. G á d o r Is tv á n n á , 1931
T e rra k o tta , 43 cm
J . : B okros 1931
G á d o r I s tv á n n á tú l.

)S. „ T e re m té s” , 1932
B ronz, 44 cm
J . : B o k ro s-B irm an 1932
M N G 6 6 .5 - N

39. S ohultheisz B ab a , 1932
B ronz , 24 cm
J . : В. B. 1932
S chu lthe isz M ik sa tú l.

40. F u tó k , 1933
B ronz, 2 0 X 2 1 cm
J . : B okros 1933'
B okros B irm an h a g y a té k a

41. S che iber H u g ó , 1933
B ronz , 31 cm
J . : B okros B irm an 1933
M N G 6 Ó .8 0 -N

42. M a d a m e Sans G é n é , 1934
B ronz, 33 cm
J . : B . B. 1934
M N G 5 9 .1 0 4 -N

43. K ö szö n tő , 1935
B ronz , 39,5 cm
J . n .
M N G 6 6 .4 - N

44. P á n Im rén é , 1935
G ip sz , 36 cm
J. n.
Bokros Birman hagyatéka

45. B író H e n r ik , 1936
B ronz , 38 cm
J . : B okros B irm an 1936
M N G 5 9 .1 0 2 -N

46. Ö n p o r tré , 1939
G ip sz , n X n cm
J . : B . B. 1939
F ra n k fu r t Jó z se f tú l.

4 7 - 4 Í . N a p b a n é z ő bán y ász (v á l to z a t) , 1941
B ronz , 37 cm
J . : B okros B irm an 1941
D r . G eg es i K iss P á l tú l.

4 9 -5 0 . Á lló n ő i a k t
G ip sz , 41 cm
D r. G egesi K iss P á l tú l.

52. É s v id d m ag ad d a l . . ., 1940
G ip sz , 16,5 cm
J . : B. B. 1940
B okros B irm an h ag y a ték a

52. Jó z se f A tt i la , 1942
B ronz , 16,5 cm
J . : B okros B irm an 1942
M N G 5 6 .1 4 0 -N

5 3 -5 4 . T é k o z ló fiú m eg té ré se , 1941
B ronz, 34 cm
J. n.
Z sid ó M úz. tű i.

55. V ilá g p ro le tá r ja i eg y esü lje tek , 1941
T e rra k o t ta , 2 0 X 5 0 ont
J . n.
B okros B irm an h ag y a ték a

56. F ü g g e tlen M a g y a ro rsz ág é rt, 1942
T e rra k o tta , 24,5X5? cm
J . : B , B. 1942
M N G 65.2 2 - N

/7 . K u b ik o s , 1941
B ronz , 16 cm
J . : B okros B irm an
M N G 5 6 .1 4 1 -N

5 I . A sz fa lto zó , 1943
B ronz, 19,6 cm
J . : B o k ro s B irm an 1943
M N G 5 2 .8 5 5 -N

59. T o m i, 1942
B ronz , 25 cm
J . : B. B. 1942
M N G 5 7 .3 2 -N

202

6o. R o k k a n t k a to n a , 1944
B ronz, 27 cm
J . : B okros 1944
M N G 5 5 .8 6 2 -N

61-6). R u th és N o ém i, 1944
B ronz, 25 cm
J . : B. B. D .
Dr. Gegesi Kiss Pál túl.

64. G lü ck M a rian n e , 1945
G ip sz , 30 cm
J . : B. B . 1945
D r . G lü ak T ib o rn é tú l.

6j . D ó z sa G y ö rg y , 1946
G ip sz , 40 cm
J . n.
B okros B irm an h ag y a ték a

66. D u n a-v ö lg y i n é p é k k ó ru sa , 1946
B ronz, 23,5 cm
J . n.
M N G 57.33 - N

67. B ocskoros p a ra sz t, 1948
G ip sz , 67 cm
J . : B okros B irm an
B okros B irm an h ag y a ték a

68. K ucsm ás p a ra sz t, 1948
G ip sz , 69 cm
J . : B o k ro s B irm an
B okros B irm an h ag y a ték a

69. N ő te k n ő s b é k á v a l, 1947
B ronz , 25 cm
J. n.
D r . G eg esi K iss P á l tú l.

70 . G á s p á r E n d re , 1947
B ronz , 32 cm
J . : B. B. 1947
M N G 5 6 .1 3 8 -N

77. V asm u n k ás (v áz la t)
G ip sz , 2s cm
J. n.
B okros B irm an h ag y a ték a

72. V asm u n k ás , 1948
B ronz , 220 cm
F e lá l l í tv a : a S Z O T S zékház e lő tt

7 3 -7 4 . B ú k o r B é la , 1948
B ronz , 32 cm
J . : B okros B irm an
M N G 5 6 .1 3 4 -N

7 j - 7 6. T é g la h o rd ó , 1949
G ip sz , 48 cm
].: B. B. 1949
B okros B irm an h ag y a ték a

77. U lysses, 1949
B ronz , 20 cm
J . n.
M N G 6 9 .1 6 -N

78. S ógorom , 1946
B ronz , 1 8 X 1 6 cm
J . : B. B. 1946
B okros B irm an h ag y a ték a

79. M ed n y án szk y , 1955
B ronz , 36 cm
J . : Bokros Birman 1955
M N G 54.1948

80. H a lá sz fiú , 1955
B ronz , 24 cm
J . n.
B okros B irm an h ag y a ték a

81. ö n p o r t r é , 1955
G ip sz , 4 ; cm
J . : B okros B irm an 1955
M N G 57 .3 i - N

82. C ica , 1937
P la sz te lm , 8,5 cm
J . n.
B o k ro s B irm an h ag y a ték a

8}. M u n k ásfiú , 1957
G ip sz , 70 cm
J . n.
B o k ro s B irm an h ag y a ték a

84. V e tk ő ző nő , 1957
B ronz , 17 cm
J . n.
M N G 6 8 .3 9 -N

83. D ém o sz th en ész , 1957
G ip sz , 24 cm
J. n.
B okros B irm an h ag y a ték a

86. S zenes Z su zsa , 1959
T e rra k o t ta , 24 cm
J . : B okros 1959
E rd é ly e ié S zenes Z su zsa tú l.

87. B a rtó k B é la , i9 6 0
G ip sz , 16 cm
J. n.
B okros B irm an h ag y a ték a

88. Meditáló, i 960
G ip sz , 89 cm
J - : i9 6 0
B okros B irm an h ag y a ték a

89. S zp u tn y ik n éző k , 1962
G ip sz , 51,5 cm
J. n.
Bokros Birman hagyatéka

90. S zp u tn y ik n éző k (rész le t)
91. K o n ty o s n ő i fe j, 1962

G ip sz , 37 cm
J. n.
B okros B irm an h ag y a ték a

92. Á lló fé rfi, 1964
G ip sz , 84 cm
J . n.
B o k ro s B irm an h ag y a ték a

.

*

■ ■

KÉPEK

1. Alvó leány, 1916

2 0 7

2. Torzó, 1917

2 0 8

j . J ó n a p A n d o r n e , 1915 k ö r ü l

2 0 9

4• Ülő fiú akt, 1919

2 1 0

5- Ü lő női torzó, 1922

2 IX

6. Guggoló nő, 1921

212

~ Ncz y kézlábálló' 1921

2 *3

8. Akrobata, 1921

2 1 4

p. Híd, 1921

2 1 5

1 о. Anya és lánya, 1922

2 1 6

и . László Mihály, 1923

2 1 7

12. Ölelkezők, 1923

2 1 8

í j . Ö nportré, 1923

2 1 9

í j . Ady Endre, 1924

2 2 0

1 5 - Á c h im A n d r á s - e m lé k m ű te r v , 1924
16. A d y - s í r e m lé k t e r v , 19 2 7

2 221

íy. Ady-£ej a síremléktervhez, 1927

и
to
OJ 18. B r o n z d o m b o r m ű a z A d y - s í r c m lc k t e r v h e z

lg . Galiczáné, 1926

2 2 4

го. Keleti Artúr, 1927

2 2 5

21. К. Füredi Róza, 1927

226

22. К. Füredi Róza, 1927

2 2 7

2j. Szágelné, 1927

2 2 8

24. Szágelné, 1927

229

2j. Ú jvári Péter, 1927

2 3 0

гб. Kalapos önportré, 1927

231

27. Fiú akt, 1928

2 3 2

2 8 . Fiú akt, 1928

23З

2p. D on Q uijote, 1929

234

jo . D on Quijote, 1929

2 3 5

31. D on Quijote-fej (részlet)

2 3 6

32. D on Quijote-fej (részlet)

3 237

Birm an Izsóné, 1929

238

34- Gegesi Kiss Pál, 1930

239

3$. Szőllősi Endre, 1930

2 4 0

Зб. Masaryk, 1930

2 4 1

37- Gádor Istvánné, 1931

2 4 2

38. „Terem tés” , 1932

24З

39- Schultheisz Baba, 1932

2 4 4

4 о. Futók, 1933

41. Scheiber H ugó, 1933

2 4 6

42. Madame Sans Géné, 1934

247

43• Köszöntő, 1935

2 4 8

I

44. Pán Im réné, 1935

249

45• B író H enrik , 1936

25O

46. Ö nportré, 1939

2 5 1

47- Napbanéző bányász (változat), 1941

252

48. N tpban éző bányász (változat), 1941

4 25З

4 9 • Á l l ó n ő i a k t

254

SO. Á l l ó n ő i a k t

És vidd magaddal . . 1940

2 5 6

52. József Attila, 1942

257

5 j. Tékozló fiú megtérése, 1941

258

54- Tékozló fiú megtérése, 1941

259

2Ó
0

55. Világ proletárjai egyesüljetek, 1941

57- Kubikos, 1941

262

58. Aszfaltozó, 1943

2 6 3

j>p. Tom i, 1942

2 6 4

6o. R okkant katona, 1944

265

6i. R u th és N oém i, 1944

2 6 6

Ó2. R u th és N oém i, 1944

2 6 7

R uth és Noém i, 1944

268

(>4 - Glück Marianne, 1945

5
2 6 9

65. Dózsa György, 1946

270

66. D una-völgyi népek kórusa, 1946

2 7 1

67. Bocskoros paraszt, 1948

272

68. Kucsmás paraszt, 1948

27З

6g. N ő teknősbékával, 1947

274

I

yo. Gáspár Endre, 1947

2 7 5

71- V a s m u n k á s (v á z l a t)

2 7 6

72. Vasmunkás, 1948

2 7 7

73■ B úkor Béla, 1948

2 7 8

74- B úkor Béla, 1948

2 7 9

75- Téglahordó, 1949

2 8 0

j6 . Téglahordó, 1949

281

77- Ulysses, 1949

282

78. Sógorom , 1946

283

79- M ednyánszky, 1955

2 8 4

8o. Halászfiú, 1955

б 2 8 5

8i. Ö nportré, 1955

2 8 6

82. Cica, 1957

2 8 7

8 j. Munkásfiú, 1957

288

84■ Vetkőző nő, 1957

2 8 9

85. Dcmoszthenész, 1957

290

86. Szenes Zsuzsa, 1959

291

87- Bartók Béla, i960

2 9 2

8 8 . Meditáló, i960

293

г
t

89. Szputnyiknézők, 1962

294

g o . Szputnyiknézők (részlet)

295

p í. Kontyos női fej, 1962

296

92. Álló férfi, 1964

297

к
\

A kiadásért felelős az A kadém iai K iadó igazgatója

Felelős szerkesztő: D r. Szucsán M iklós M űszaki szerkesztő: Fülöp A nta 1

A b u rko ló - és kötésterv Kocsis T ib o r m unkája

Terjedelem : 18,25 A/5 ív + 8,05 ív m elléklet

A K 7 к 7477

A szedés készült: Z rín y i N y o m d a , Budapest (74.5079/9-2500)

A kadém iai N y o m d a , Budapest. Felelős vezető: Bernát G yörgy

P rin ted in H u ngary

к

<
I1

A z Akadémiai Kiadó sorozata:

MŰVÉSZETTÖRTÉNETI
FÜ Z E T E K

1. M o j z e r M i k l ó s

TORONY, KUPOLA, KOLONNÁD

78 oldal . Fűzve 21,— Ft

2 . G a l a v i c s G é z a

PROGRAM ÉS MŰALKOTÁS
A 1 8 . SZÁZAD VÉGÉN

71 oldal . Fűzve 18,— Ft

3 , Szabó Júlia
A MAGYAR AKTIVIZMUS
TÖ R TÉN ETE
83 oldal . Fűzve 22,— Ft

4. Gervers-Molnár Vera
A K Ö Z É PK O R I MAGYARORSZÁG
ROTUNDÁI

93 oldal . Fűzve 28,— Ft

5. Vayerné Zibolen Agnes
K ISFA LU D Y KÁROLY
A művészeti rom antika kezdetei
Magyarországon

72 oldal . Fűzve 20,— Ft

6 . Sz. Koroknay Éva

MAGYAR RENESZÁNSZ
KÖNYVKÖTÉSEK

125 oldal . Fűzve 34,— Ft

AKADÉM IAI KIA D Ó • BUDAPEST

Á r a : 62,— Ft

BOKROS
BIRMAN
DEZSŐ
ÖNÉLETRAJZA,

LEVELEZÉSE,
MÜVEI

AKADÉMIAI KIADÓ, B U D A P E S T

	Table of Contents
	Preface
	Foreword by Prof. A. Hajnal
	Chapter 1. Recursions in Binary Computer Arithmetic
	Chapter 2. General Recursive Functions
	Chapter 3. Recursive Word Functions
	Chapter 4. The Recursivity of Everything Computable
	Chapter 5. Sequential Program Translation
	Chapter 6. Recursivity of Flow Charts
	Chapter 7. Recursive Procedures and Algol 60
	Chapter 8. The Epi-language of Algol 60
	Chapter 9. Two-level Grammar in Algol 68
	Chapter 10. Does Recursivity Mean REstriction?
	Chapter 11. Recursivity of Lisp 1.5
	Chapter 12. Decision Tables
	Index
	Oldalszámok
	_1
	_2
	_3
	_4
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184

