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Introduction

Inventory modelling is one of the most developed fields of operations research. 
Most of the basic theoretical principles now considered to be “classical” came 
into being some thirty years ago (ignoring some early precursors) and more than 
two decades have passed since the publication of the fundamental general works. 
Papers on inventory studies still appear regularly in scientific journals, and new 
books are often published, some of which are of a very high standard. Publica
tions on inventory models could fill a small library.

Why one more book then? Of course because we feel (just like any other author 
would) that the results of our research can contribute to a better understanding 
of the inventory problem. We have used an approach which is certainly new—and 
the interest it has received, during presentations we have given for various inter
national audiences during the preparation of this book, has been encouraging.

When carrying out our research we have always had in mind a double objective: 
we wanted to obtain theoretical results and find ways to encourage practical 
application. We did not whish to go into a detailed analysis of the discrepancy 
between theory and practice; there are a great number of publications analysing 
this aspect. In this Introduction, we can only state that we hope that our work 
will be of interest to both academics and practicioners.

Our research has been oriented to existing inventory models. We have collected 
and studied 336 models from the literature, and our analysis and conclusions are 
based on this sample of models. We have restricted our interest to the most 
traditional types of models, and have not dealt with many related areas (such as 
water storage, manpower stocks, production planning, etc.). Of course, to draw 
borderlines is not easy and this cannot be considered strict.

The train of thought of the book is as follows:
Part One is analytical in character, while Part Two gives a description of the 

individual models. In the first, introductory, chapter, the background of inven
tory models and modelling is dealt with. The second chapter gives the analysis 
of item-level inventory systems; here we have confronted the connection between 
the real problems and the models. Even in the most complex system, the inventory 
problem is, after all, concerned with an actual item; therefore, the reference sys
tem of traditional operation research models is the item-level system. The sys
tems analysis provides at the same time the economic background for model 
analysis.

Chapter Three is an historical review of the development of inventory modelling. 
The purpose here is to outline the temporal progress of the modelling issues in 
order to acquaint the reader with the “environment” of the individual models
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and, simultaneously, with what further development may be reasonably expected. 
This chapter is mainly addressed to readers having a theoretical interest.

Chapter Four summarizes the logic and the methods of research we have used. 
This chapter is recommended for careful study by those readers who wish to 
obtain a thorough understanding of inventory models, but an understanding of 
the logic presented here is essential for any application of our inventory model 
system.

Chapter Five gives a comprehensive description of the statistics characterizing 
the model system. Through this the structure, and the characteristic features, of 
the inventory models will hopefully become clear. Besides that, it indicates the 
“blank areas” (problems for which the modelling has not yet been developed) 
of interest to the theoreticians, while the application experts will be able to deter
mine to what extent existing models can help solve their problems.

The second part of the book contains the description of the 336 inventory 
models we have considered, not only giving the background to the analyses but 
also providing experts with the opportunity to obtain very specific information.

In the descriptions, we have not emphasized the mathematical aspects of the 
models (this is given only with some basic models described in full) but our main 
purpose has been to demonstrate the assumptions on which the models are built.

We strongly advise not to consider the descriptions given as being sufficient 
for becoming fully acquainted with the models: reference to the original source 
(exact references are given) is recommended.

The classification we have applied to the sample models is one of the theoretical 
results of our research. Its basis is the economic, systems analytical and mathe
matical-statistical analyses, reported in the first part of this book.

This book is a somewhat modified version of the original edition published 
in 1983, in Hungarian. Even though many new results have been achieved from 
that time on in inventory research, and our views have also changed to some 
extent, (and also we continued the research, collected and studied about 300 
further models) we believe that the main contents and message of the book can 
still be of interest for those studying inventory systems.
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THE INVENTORY SYSTEM  
AND ITS MODELLING

Part O ne





I. Models and Modelling

1.1. The Concept of Model and the Modelling Process

“Model” is a category which applies in almost every field of science. A joint 
characteristic of the concept of model as applied in science generally is that it is 
taken to be an instrument of cognition and explained as a system relating the 
real system to the person studying it. Real systems are, in general, so complex 
that they cannot be directly observed and described. In addition, the limitations 
of the individual (e.g., the lack of capability, opportunity, or subjective interest), 
leads to further constraints on the cognitive process, making full knowledge 
impossible. As a consequence, models must be objectively used in the study of 
any scientific problem.

What is a model? From among the large number of definitions which exist 
let us take one, that of V. Stoff: "... the model is a qualitatively special category 
of scientific cognition which cannot entirely be deduced to other instruments and 
forms of recognition though it is closely interlinked with them. This property 
may most completely be expressed in the following definition: the model is a 
materially realized or theoretically created system which replaces (represents) the 
object of research in the process of recognition, and is in a specifically expressed 
relationship of similarity with the latter (isomorphic relation, analogy, physical 
similarity etc.), and as a consequence of this, the studying of the model and the 
operations carried out with it make possible the acquisition of information about 
the real object of research.” (V. Stoff 1973)

Thus, the model originally is a general methodical scientific concept which, in 
principle, can be applied in any domain of scientific cognition. Although, in many 
cases, it is not simply the recognition aspect but the possibility of intervention 
that is the main element in the relation between the model and reality: a very 
important role is attributed to models in designing and regulating the real phe
nomena.

The situation is similar to the inventory models examined by us: the above 
definition (with necessary specifications) is valid for this type of models as well.

As a matter of course, the model can only be used for studying the properties 
of a real system, or for designing and/or directing the operation of the said system, 
if it correctly reflects reality. Thus, the elaboration and application of models 
(in brief: the modelling process) has rather strict rules.

Modelling is a process which may be divided in stages in different ways. We 
accept the following main stages of the modelling process given by András 
Kocsondi (1976):

— recognising the necessity of modelling,
— theoretical preparation of modelling,

3



— creation (selection) of the model,
— analysis of the model,
— transmission of knowledge from the model to reality,
— verification and checking of the new knowledge,
— implementing the results in practice or inserting the new knowledge into 

scientific theory.

No detailed analysis of these stages will be given here. Nevertheless, it is advis
able—with reference to the forthcoming analysis of the inventory system—to 
survey briefly how models, which appropriately conform with the real system, 
can be created.

As mentioned before, real systems are usually so complex that it is normally 
impossible to identify their basic elements and to take into account all the para
meters determining their state—in most cases, this would not even be reasonable. 
It would be impossible because the basic elements and parameters constitute a 
very large numerical set in general, and it would not be reasonable because from 
the point of view of modelling, a considerable number of the elements of this set 
play a negligible role. That is why we can disregard some of the individual ele
ments of the real system (abstraction), while other elements will be considered in 
aggregation. This leads to a new “abstract” system called the model of the original 
system. The most significant property of this new system (the model) is that its 
variables respond to the changes in the controlling or influencing parameters in 
the same way as the real system would react. This property is called isofunction
ality, and the plotting itself leading to the model is called homomorphic trans
formation. Homomorphic transformation is operation constant but several 
operandi may give the same picture, i.e., the transformation is unambiguous in 
one direction only. In other words: the model will be created from the real system 
but, even knowing the model, due to the abstraction and aggregation mentioned 
previously the original system cannot be recognized unambiguously.

Real system Economic model Mathematical model

Homomorphic transformation

Isomorphic transformation

Fig. 1. Modelling as transformation
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In the case of economic systems, the abstract system created in this way is 
considered to be the economic model of the original system. If we want to de
scribe or solve any economic problem by means of mathematical modelling, we 
have to go further: the economic model must be “translated” into a mathematical 
language, i.e., the elements of our abstract system (economic model) are to be 
brought into mutual and unambiguous correspondence with the elements of a 
new system: the mathematical model. This type of plotting is called isomorphic: 
with knowing one of the systems and the compilation code, the other system can 
be deemed known, too.

The transformations referred to are indicated in Fig. 1 by a simplified scheme. 
For simplification, only the elements are shown, without their interrelations; the 
logic of plotting may be followed also in this way. The step of abstraction is in
dicated by crossing out the irrelevant “elements”, and aggregation is indicated 
by circling elements.

1.2. Classification of the Models

The basis for the classification of models can be very different; any significant 
properties may serve as a starting point. Only some aspects of classification—the 
most important ones from our point of view—will be discussed here.

A trivial mode of classification has already been mentioned implicitly: classi
fication by the object to be modelled. According to this, our interest is the mod
elling of inventory problems.

Differentiation between two major families of models, the “material” and the 
“ideal” “intellectual” ones, can be considered as generally accepted. As stated 
by A. Kocsondi (1976), “the most characteristic feature of the material models 
is reflected in the fact that they objectively exist and act in accordance with the 
rules of the external world. Their elements are the various objects and phenomena 
of organic and inorganic nature, as well as the material-objective products of 
human activity. The speciality of the ideal models lies in that they only exist in 
the mind of the recognizing person (subjectum) consisting of elementary depic
tions and symbols, and they function only in consequence of speculative opera
tions which the subjectum carries out in the course of constructing and modifying 
them”.

Both described groups of models can be analysed further (both Kocsondi 
and Stoff do that in their cited works), however, it should be sufficient here to 
know that economic models are members of the larger family of ideal models 
(with the exception of several experiments where economic phenomena have 
been demonstrated by material models, e.g., equilibrium problems by the prin
ciple of pipelines and reservoirs). Thus, inventory models are also ideal models.

Two further classification aspects are based on principles also widely used in 
the literature. Here we will describe these aspects according to Miller and Starr 
who have given a very detailed analysis (Miller and Starr 1969).

According to the first aspect normative and descriptive models can be distin
guished. Descriptive models describe facts and experiences without evaluating 
the system. They normally answer the question: “what if...”. These models may
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be excellent tools for the learning and recognition process, especially if we manage 
to avoid unintentionally introducing normative elements among them (e.g., in 
compliance with individual expectations and hypotheses of the designer or user 
of the model) because such elements may be the source of considerable deforma
tions. The construction of descriptive models must precede the construction and 
application of normative models for both logical and practical reasons: it would 
hardly be correct to speak about “what should be” before we know “what is”.

The construction of normative models involves certain norms (standards) or 
rules. These models describe “what should be”, and they, of necessity, contain 
evaluation criteria for selecting from the elements of the set of decision alterna
tives. Normative models also contain methods and means for the selection of 
the decision alternatives themselves.

According to this grouping, inventory models of operations research are 
mostly normative models, with the exception of a few descriptive models.

A final classification aspect is to distinguish between qualitative and quantitative 
models. In the general consciousness, the “model” is often identical with the 
concept of quantitative models, although, as seen in the general description of 
models, even considerations of reality take shape as qualitative modelling; and 
nor does the normative approach necessarily require a quantitative form—which 
means that numerical definition of the outputs is not absolutely indispensable. 
The statement “ the operation of the system will improve, if...” may be an accept
able normative description. “Will improve” is not a numerical requirement, but 
useful information. In many cases, the quantitative observation or description 
is impossible as a matter of course, whereas qualitative results can be written 
in a quasi-quantitative form (e.g., with ranking).

According to this latter classification aspect, inventory models are mostly 
quantitative models.

1.3. Decision Models

Let us focus our attention to the family of models most important to us: the 
decision models. In general, several different types of models are considered to 
be “decision models”. According to the terminology we use here, these are nor
mative and quantitative models entering the decision process where the analysis 
and evaluation of decision alternatives takes place. We test the various alternatives 
on the operation of the system and choose the version which, according to the 
model, leads the most efficiently to the realization of the objective of the model.

It is an extremely important, though trivial, fact that decision models can only 
provide guidance but not actually make the decisions. That is the responsibility 
of the management.

According to the most common considerations, decision models comprise 
four fundamental parts:

— the decision variables,
— the system of assumptions,
— the objective function, and
— the methods applied for evaluation.
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The decision variables contain decision parameters, the value of which is to be 
determined by means of the model taking into account the interest (decision cri
teria) of the decision maker. In this way, the closest correlation exists between 
the questions to be answered by the model and the decision variables.

As a matter of course, each economic decision is influenced by only a subset 
of all the possible variables. The situation often encountered is that the system 
described by the model has some variables which will not be taken into considera
tion in the set of the decision variables, though their actual value affects the 
operation of the system. These variables will be put in the system of assumptions 
either with a fixed value or, if their value changes as a result of modifications of 
the decision variables, they will be regarded as state variables of the system.

In addition to specifying the problem, another basic function of the decision 
variables is that their character and contents determine the structure of the model 
as a whole. The most important classification aspects of the decision models can 
be fixed simply on the basis of the character of these decision variables: for 
example, if the decision variables are time-dependent, the model is dynamic, 
otherwise it is a static model; whereas stochastic models will result if the variables 
have a random character, otherwise the model will be deterministic.

The other major part of the models is the system o f assumptions which is essen
tially the set of the relations postulated in the set of the variables. This is the 
part which decisively sets a limit for the scope of validity of the model. Obviously, 
in different systems of assumptions we get a different “optimal” value of the same 
decision variables; or the adaptability of the model to different real situations 
as well as the mode and the possibility of answering the questions put through 
the decision variables are determined just by the system of assumptions. The 
homomorphic feature mentioned, as well as the examination of the modelling 
process, is ensured essentially by means of the system of assumptions. It is clear, 
in this context, that the structure of the system of assumptions plays a decisive 
role from the viewpoint of the complexity of the model: the consideration of 
more assumptions increases the accuracy of the model but, at the same time, 
restricts its general validity.

The system of assumptions can be divided into two different parts. The first 
are the assumptions quantitatively given in the model (e.g., various capacity 
limitations); the other are the assumptions qualitatively given in the model (a 
great part of which could be described by mathematical formulations, too, as, 
for example, the assumption referring to the constant character of specific quanti
ties, or the linearity of interrelations).

The objective function is a function of the decision variables, some extreme 
value of which expresses the desirable status of the system under consideration 
from the viewpoint of the decision maker. In general, the purpose of the decision 
models is to identify the values of the decision variables which maximize the 
effectiveness of the system. What should be the measure of efficiency? This 
depends basically always on the interest of the decision maker. Its actual form 
should, of course, bear a close relationship to the remaining parts of the model. 
(For example, when stochastic variables are present among the decision variables, 
an expected value should be chosen as the efficiency measure; in the case of 
deterministic decision variables, this measure itself may be deterministic as well.)

The fourth part of the decision models consists of those methods applied for
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evaluation of the model, which analyse the effect of the possible values of de
cision variables on the objective function in the system of assumptions of the 
model.

In this way, the mathematical aspects are logically determined by other charac
teristics of the model—at least as far as the main features are concerned. It must 
be emphasized that, although every algorithm satisfying the assumptions and 
other criteria, which leads to the optimal solution, is involved in the concept 
of the evaluation methods, and this concept is not limited to, for example, some 
given computer program or analytical method, those solutions which cannot 
really be computed are not suitable for a decision model. Therefore, for such 
models we must not be satisfied with the theorem verifying the existence of the 
solution, or by an iterative procedure which cannot be accomplished by existing 
computer techniques. The best result during the optimization process is if a pro
cedure can be found which leads, in the set of solutions, to the determination of 
the optimal parameters. This is not always possible. In other cases, it is possible, 
though not economical. Finally, and most importantly, the decision maker himself 
does not necessarily strive to seek the optimum solution in many cases: procedures 
which lead to a mathematical suboptimum can, nevertheless, be quite appropriate 
taking into account the economic considerations of the decision maker.

1.4. Fields of Inventory Modelling:
Models on Macroeconomic, Company and Item-Level

Speaking of inventory modelling, we have to distinguish between the modelling 
of three levels of inventory systems having a hierarchic relationship with each 
other:
— models on a national economic (macro-) level,
— models on a company (micro-) level and
— models on an item (submicro-) level.

The reference system of macroeconomic models on the national economy level 
is the economy as a whole. Of course, it does not mean that these models com
prise the total economy but according to what has previously been said on 
modelling and its rules, the real reference system here is the national economy.

These models constitute an integral part of macroeconomic theory. They can 
be grouped in different ways. The most characteristic feature is maybe that most 
of these models have no normative or optimizing character, but, rather, a de
scriptive character investigating the mechanisms of operation in the economy. 
The aggregate inventory in the economy is the result of autonomous company 
decisions, thus macro-level optimizing models can rarely be realistic. The situation 
is different in some socialist countries where, due to the planning directives and 
the centrally-planned distribution of items, stockpiling is a macroeconomic 
category and, therefore, an optimal inventory volume can be spoken of at a 
macro-level as well (it is a quite diiferent question, of course, how one can find 
the instruments which are needed to realize these optimums).

Microeconomic inventory mostly belong to the family of behavioural models
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of the companies and are in close connection with the macro-models. A sum
mary of the classical approach is given in the famous book of Holt, Modig
liani, Muth and Simon (1960) in which the authors give decision rules for pro
duction, labour force and inventory accumulation, postulating quadratic cost 
functions and profit-maximizing companies. An essential element of these models 
is the assumption of profit maximization although one can find some different 
models, oriented, for example, in particular towards the magnitude of inventory 
investments or containing alternative criteria as well.

Microeconomic models mostly deal with the aggregate inventory of a company, 
based on the economically reasonable fact that the principal question for manage
ment is, how much from the total capital should be devoted to holding inventories? 
It is obvious that the inventory of each individual item “optimal” is in vain if 
the total of these inventories is so big that its realization is not feasible, because 
it is in conflict with other, maybe similarly “optimal” requirements originating 
from other partial functions of company operation.

These models usually treat the company as a homogeneous system, paying 
attention to external effects only, and having no regard to the structure of the 
inventories, except in some cases when input, work-in-process and output inven
tories are distinguished.

Obviously, this approach is rather biased, which does not question its justifica
tion, but attention needs to be paid to a multidimensional approach. The final 
purpose of inventory holding is satisfying demand, and demands always emerge 
at a given specific location and time for a given product. Thus, the other side of 
the coin is that though the aggregated inventory stock of the company may be 
as sufficient as possible in relation to other major parameters of the company, 
it is impossible to conduct a successful inventory management and, in this way, 
to obtain the desired profit, when the structure of inventories is not sufficient,
i.e., when the volume of inventories of the individual items are not appropriate. 
This gives the reason for item-level modelling which will be discussed in detail 
in the following chapter.

One has to see clearly that the inventory models of the three system levels 
discussed above logically correspond to each other. If the national economy is 
defined as a system of material flows and inventories (Chikán 1980b), the taxono
mic structure of the system can be determined in two fundamental dimensions: 
either the companies (the domain of microeconomic models) or the items (the 
domain of item-level models) may be treated as elements of the system. Obviously, 
modelling objectives will decide which dimension we should rely on in macro
modelling: Should we start from any of the two approaches, in the course of 
disaggregating we arrive at the question of the connection between the two di
mensions in any case.

These two main sections of the possible breakdowns starting from the macro
level will meet in the item-level system of a given company. This system belongs 
to the classical areas of operation research investigations; from among the above- 
described three levels this, from the economic viewpoint, submicro level (i.e., 
item-level) has up to now been the most intensive subject of research work. We 
have devoted this book to this system and its modelling.
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II. The Subject of Operations Research Modelling 
The Item-Level Inventory System

In this chapter we analyse the item-level inventory system. The conceptional 
and methodological apparatus of systems theory have been applied to the analysis; 
we have relied particularly on the works of Churchman (1968), Hajnal (1976), 
Nemény (1973), Pawelzig (1974) and Sadowsky (1976). In the course of the 
in merito exposition, we have used our earlier works (Chikán 1973, 1977) to a 
considerable extent.

The system to be examined can be defined as follows: the item-level inventory 
system is a system for satisfying the demands for a given item, wherein the source 
of the output process generated by the demand is a certain stock of the given item, 
the replenishment of which is provided by the input process regulated through 
ordering.

We do not go into the detailed interpretation of this definition now; the analysis 
of the system given below is intended to provide the explanation. To avoid 
misunderstanding, we add only that the expression “item” is used here in a quite 
general sense, independent of its degree of processing; thus semi-products, 
machine parts, tools, finished products, etc., are all included.

We relate our system to the usual system classifications. According to the well- 
known classification of Bertalanffy (1951), the item-level inventory system is an 
open system; it belongs to the third of nine system levels (control mechanisms 
or cybernetic systems) while with regard to the dual-aspect classification of 
Stafford Beer (1959), it may belong to the complex stochastic systems.

As a starting point of the analysis of the system, we use the thesis of Churchman 
(1968) that the following “must be kept in mind when thinking about the meaning 
of the system:
1. the total system objectives and, more specifically, the performance measures 

of the whole system;
2. the system’s environment: the fixed constraints;
3. the resources of the system;
4. the components of the system: their activities, goals and measures of perfor

mance;
5. the management of the system.”

We do not agree in every respect with Churchman in the actual explanation 
of the factors listed, and particularly not in his detailed exposition not cited here. 
Nevertheless, the five basic aspects (objective—environment—resource—struc
ture—management) have already proved to be a very useful principle for systematic 
ordering in the course of our other analyses. Thus, we will use this logical system 
further on as a starting point for the item-level inventory management system,
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with the difference that as a consequence of the properties of the system, to be 
detailed later, we change the sequence of the single aspects. Furthermore, we 
discuss points 4 and 5 together.

It also should be mentioned that there arise substantial differences in connection 
with most of the investigation motives of the system, depending on the particular 
type of elements of the inventory (the subject of the item-level inventory system, 
e.g., raw materials, finished products, merchandise, etc.). In the exposition, we 
try to present a general view but with reference to the special features of the 
item deriving from its character, where this is inevitably necessary.

П.1. The Objective of the System

Our basic point is that no entirely autonomous objective can be set for the 
item-level inventory system. Its objective can only be deduced from the objective 
of the systems on a higher hierarchical level. This initial theorem comes from 
the fact that the item-level inventory system, due to its economic gist, is a material 
system, the motivations and goals of which cannot be explained by themselves; 
only such objectives can be spoken of which may be deduced from an external 
organization being in possession of some self-reliant motivations.

Where can this objective be deduced from? The item-level system is located 
at the lowest level of the hierarchical structure. In this structure, the higher system 
level having the greatest effect on the objective is the enterprise. Namely, if we 
distinguish the levels of national economy—enterprise—inventory subsystem— 
item-level inventory system according to the general subdivision usual in the 
hierarchical structure, then from among these the enterprise is the very level 
which possesses—through its separated means and, in connection with this, 
through its own interest and motivations—independent objectives which can be 
further divided. We do not enter into details here. In a previous work (Chikán 
1980a) it has been specified how the overall objective of the company implies 
the partial objectives of stockholding. We will survey only the most important 
aspects here.

We have already stated as a definition that the goal of stockholding is to satisfy 
demand for the items stored. This necessity emerges from the fact that it is neither 
physically possible nor economically reasonable to produce every single item, 
when and where the demand for them arises. For this reason we have to hold 
inventories, i.e., to withdraw provisionally resources from the reproduction 
process. The word “provisionally” has to be stressed here for—according to the 
intention of the person or organization responsible for the decision of holding 
inventories—the items held on inventories, i.e., kept inactive, will sooner or 
later become active participants of the reproduction process.

The objective after all is manifested in covering demand in general, but more 
exactly it has to be interpreted as the economical covering of demands. As in 
every economic problem, a comparison of costs and benefits will decide what 
is to be considered as an economical satisfying of demands. Instead of a detailed 
exposition we refer again to the relevant literature (Nagy 1975b, Chikán, Fábri
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and Nagy 1978), but, in advance, it is clear that both satisfying and non-satisfying 
of demand implies some costs and benefits as well. Thus, the measure of value 
of the economical (or optimal) satisfaction of demands according to Churchman 
is the magnitude of costs (i.e., the minimization of costs is the optimum criterion).

II.2. The Resources of the System

As for the resources of the system, “these are inside the system. They are the 
means that the system uses to do its job.” (Churchman 1968, p. 37)

The resources for the item-level inventory system are the inventory itself: the 
stock of items held as inventory both in a physical sense as actual items which 
can be used for satisfying demand and in an economic sense as a means of making 
profit.

In order to highlight the role of inventories as resources perhaps it is sufficient 
to refer to the fact that for a smooth production (and distribution) not only items 
(materials, spare parts, finished products, etc.) are needed, but also the presence 
of their inventories, since inventories are indispensable for smoothing out discon
tinuities of the production (distribution) process in time and space, due to objective 
and subjective reasons alike. And if this is true, then inventories as conditions 
of the production process can be defined as production factors, i.e., resources.

To the explanation that the inventory is a resource pertains the theorem that 
the item on stock has a value in an economic sense because a demand exists for 
it. The demand mobilizes the inventory as a resource which has been inactive for 
a certain time and so it becomes the promoter of the whole system. (This state
ment exactly corresponds to the explanation given above from another point of 
view, namely, that the objective of holding inventories is to satisfy the emerging 
demands for the item.)

As a consequence of what has been said above, the analysis of the properties 
of the item on stock is of primary importance when examining the resources of the 
given item-level inventory system. The question has to be put here: in which 
phase of the production process is the inventory a resource (i.e., in the usual 
terminology, what is the type of the inventory: raw material, semifinished goods, 
spare parts, etc.)? Numerous additional characteristics of the system depend 
on this fact (e.g., whether the end of the input or that of the output—maybe 
neither of them or both—falls outside the given enterprise, i.e., outside the sphere 
of control of the enterprise).

Investigations related to the value, as well as the stability of value, the storage 
and management possibilities, storability, the manageability and other properties 
of the item in connection with stockpiling, constitute a part of resource analysis.

Another aspect has to be mentioned, too: it is obvious that the time-level 
system would not be able to operate without human activity “pumping life” into 
it. Nevertheless, in our conception, this human activity belongs to a higher hierar
chical system level, i.e., to the enterprise level inventory management system, 
thus, it is not subject to our investigations here (we will return to it when discussing 
environment).
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П.З. The Environment of the System

We begin the discussion of environment-related problems with the statement 
that the item-level inventory system is an open system in a systems theory sense. 
This means that the exchange of materials, energy and information with the en
vironment belongs to its essential features. The relationship between the system 
and its environment will be examined on this basis.

The first stage in the investigation is the most exact description of the system 
and its environment. By all means, this is not a trivial step for most of the systems, 
neither with the item-level inventory system. We refer to the definition of this 
system and give a description in this sense.

The environment is—says Churchman (1968)—that which falls outside the 
sphere of control of the system, but has a partial influence on how the system 
operates.

According to Pawelzig (1974, p. 52), the investigation of the relationship be
tween a system and its environment may start from two fundamental viewpoints. 
One of them is that “the environment of the system will be subdivided on the 
basis of those factors and groups of factors, of which the relations to the system 
constitute the subject of the investigation, whereas in the other approach “we 
may discuss the environment based on the so-called system-hierarchic considera
tions, too”, i.e., we can identify subsystems which are parts and elements of the 
system investigated. Both approaches are justified and both have their limitations. 
Since these two methods of investigation may, in our opinion, successfully comple
ment each other, let us look over the item-level system of stockholding from 
both aspects, combining the two approaches.

We shall begin with the second approach, for this one is simpler and we have 
already dealt with it, and particularly because our method of investigation will 
be just to survey the characteristics of the connection of the item-level inventory 
system to the individual systems at the higher hierarchical levels.

Regarding the hierarchical structure, the closer environment of the item-level 
inventory system is the inventory management system of the enterprise comprising 
all the functions as well as the partial units for executing them, which are in 
direct connection with stockholding (e.g., material management, spare parts 
management and the handling of other kinds of inventories). In addition to the 
enterprise inventory system, all the systems which involve this as a subsystem 
constitute at the same time the environment. Of these, two levels are important 
to us: the whole of the enterprise and the national economy as a system. (An 
essential remark has to be made here: we did not mention, among the elements 
of the item-level inventory system, the decision maker himself, who directs the 
system. In this way, we maintained the property of the system that the human 
factor does not have a direct role in it, only in its effects, i.e., as an element of the 
environment. In our interpretation, the decision maker is a part of the enterprise’s 
inventory system.)

It is also worthwhile mentioning that these further system levels are themselves 
diversely structured, but we do not deal with this structured character here. 
Accordingly, when speaking of the relations to the enterprise, we do not discuss 
through which functional unit (production, research and development, sales,
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etc.) these relations actually appear. Furthermore, we do not address the question 
of which other enterprises or authorities play a role in some material or informa
tion relation within the national economy.

We consider two of the, logically emerging, three groups of relevant factors: 
material, energy, and information exchange. The pr rblem of energy exchange is 
neglected in this chapter, since this is an inessential question as far as the whole 
of our investigation is concerned.

When discussing the material and information aspects, we rely on the system 
structuring aspects of J. Kornai, according to which economic systems can be 
divided into two spheres: the control and the real sphere (Kornai 1971, p. 61—64). 
According to Kornai’s approach, information processes occur in the control 
sphere, whereas material processes occur in the real sphere. The significance of 
this interpretation may be confirmed by more detailed considerations.

The relation between the item-level inventory system and the environment may 
be investigated by symbolically completing the following table:

\  System level

\  Е " Е г Г “  T h e  w h o le
sys,em »'*"»■«->"» eeonom,

o f  re la tio n s  \

Information relation 
(affecting
the control sphere)

Material relation 
(affecting 
the real sphere)

The environmental effects influence every component of the inventory system 
(they even determine the total system in many cases). As a matter of course, even 
a detailed analysis is unable to provide a complete picture; that is why the actual 
operation of a seemingly similar inventory system will be different under various 
economic, political, cultural conditions. This is discussed in many textbooks, 
and so we shall not consider this in detail here.

П. 4.  The Structure of  the Sys t em

What we have explained so far regarding the aspects of system analysis according 
to Churchman—“the components, activities, objectives and performance measures 
of the system”—may be described, in short, as the structure of the system. From 
the viewpoint of the main purpose of our investigations (modelling) this is perhaps 
the most important part of the analysis.

In order to investigate the system structure, a selection must be made of those 
aspects which form the basis of our analysis, since a given system can be structured 
in many different ways. In revealing the structure of the item-level inventory
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system, we will follows the train of thought of A. Hajnal (1976), who considers 
three structures which can be examined in a hierarchical manner:
— taxonomic structure,
— static relations structure and
— dynamic relations structure.

It is worth noting that, as a matter of course, this is not the only possible approach 
to structure analysis. The system described by V. Nemény (1973), for example, 
can be applied successfully as well; particularly in the case of more sophisticated 
systems than the one being investigated here. Nemény gives five aspects for 
structure analysis: objectional, criterial, functional, hierarchical and decisional 
structures. It is clear that these two systems of analysis do not contradict each 
other but, rather, complement each other.

П.4.1. The Taxonomic Structure

Obviously more than one taxonomic structure can be outlined for a given 
system. We have chosen a structuring based on an activity (functional) basis, 
because this seems to be the most convenient for our purposes. It should be 
pointed out that structuring should be considered from as many aspects as possible 
for a complete investigation of the structure of the system, especially when treating 
more compound systems—but in the case of our simple system the complexity 
of the functional investigation is sufficient.

The exploration of the taxonomic structure calls for the determination of the 
elements of the system and their classification. Nemény (1973, p. 53), Pawelzig 
(1974, p. 47) and Churchman point out that the elements are the carriers of the 
internal functions of the system, i.e., we can attain the determination of the 
elements of the system by breaking down the given principal function of the 
system into perhaps multilevel hierarchical partial functions. Following this 
logical approach, we give the taxonomic structure of the item-level inventory 
system as follows.

1. The first step is—as mentioned before—that the system should be divided 
into a control and a real sphere. The task of the control sphere is the reception, 
processing and forwarding of the information coming from the external world 
(the environment) and from the real sphere itself.

Since we do not treat the decision maker as an element of the item-level system, 
it is possible to identify, as part of the control sphere of the system, the manage
ment of the system, thus it is reasonable to discuss Churchman’s examination 
steps 4 and 5 together. We will return to this problem when explaining the control 
sphere in detail. The task of the real sphere is the implementation of the stocking 
activity as a material process: withdrawal from the inventory, given demand, and 
replenishing the inventory upon receiving fresh supplies.

2. The control and the real sphere can both be divided into further elements. 
In the control sphere, the relevant functions (reviewing of inventory—operating 
of the inventory control mechanism—ordering) appear in compliance with the 
control system’s elements (measuring—comparison—intervention), whereas in
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Fig. 2. Taxonomic structure

the real sphere the inflow (input)—carrying of inventory (storage)—outflow 
(output) and related activities take place.

3. Each of the listed elements can be divided further into partial activities. 
Consider: how many operations, which can further be hierarchically divided, 
have to be accomplished in order to realize any of the above elements of activity? 
Thus, an appropriate means of recording inventories is necessary for an inventory 
review, as well establishing suitable means of handling and relaying information. 
Fulfilment of the storing function is covered extensively in the literature. Further 
subidivisions would, however, not serve the main purpose of our investigations 
and, therefore, the taxonomic structure most suitable for our requirements is 
shown in Fig. 2.

II.4.2. The Static Relations Structure

The static and the dynamic relations structures express the relations existing 
between the components of the system. By elucidating the static relations structure 
(the possible relations between the elements of the system), the various states of 
the system can be demonstrated, whereas the dynamic relations structure shows 
the changes of these states, i.e., the operation of the system. While in the taxonomic 
structure, hierarchy can be explained by the expression “it comprises” (for instance, 
the control sphere “comprises” the review of inventories). The relation structure 
describes hierarchy by causal relations: the cause of an effect is of a higher level 
than the affected element. Thus, the static relations structure of the item-level 
inventory system can be indicated by describing the connections between the 
elements listed in the taxonomic structure as well as the states of the system
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Item-level inventory system

Fig. 3. Static relations structure

resulting from these states, whereas, the dynamic relations structure expresses, 
how (by what kinds of motions of the relations) the system proceeds from one 
state to another. The static relations structure is described in its simplest form 
by Fig. 3.

The static relations structure can be simply explained in the following way.
Logically, the first step in establishing the connections between the elements 

is the appearance of a demand. Demand comes from outside the item-level system, 
similarly to the objectives posed in expectations of the item-level system. This is 
followed by ordering, which influences the input process. The other factor influ
encing the input process is the source of supply (placed also outside the system). 
All these are control relations. The next step occurs in the real sphere: a shipment 
is received which, of course, may not necessarily be identical with the order, and 
increases the volume of inventories. Outflow takes place from this stock which 
may not be identical with the demand. At this stage, we return again to the control 
sphere insofar as information concerning the meeting of demands is relayed 
again to the element controlling the inventory, where it meets the new demand 
which has arisen in the meantime as well as the information concerning modi
fications of the objectives and starts the described process again.

The process described above is a logical system of relations connecting the 
elements. Though this description refers to a process, it is still of a static character 
because it does not show how these processes take place but only indicates their 
direction. If, in addition, the state characteristics of the system is given, then the 
possible actual state of the system can be defined which—due to the present 
static approach—is characteristic of the system at a given moment.

The actual appearance of the state characteristics in the various systems can 
be very different. Major characteristics generally appearing are the following:
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— inventory status (inventory at a given time or average inventory during a 
given period);

— the level of supply (ratio between planned and actual inventories);
— intensity of demand (demand in unit time, actual demand, or in the case of 

random process, expected demand);
— intensity of input (similar to that of demand);
— the service level (ratio between actually occurring, and satisfied, demand);
— the level of input supply (relation between ordered, and received, quantity).

These characteristics develop according to the actual realization of the con
nections indicated in the static relations structure at a given date (period) and 
jointly describe the state of the system. Other secondary characteristics can be 
deduced from these (e.g., relating to excess or to shortage).

We should point out that these characteristics—though they may be used for 
estimating the effectiveness of the system’s operation—are not efficiency indices. 
It was stated in the discussion of the objective of the system that the objectives are 
derived from outside the system. Accordingly, the estimation of efficiency occurs 
outside the system as well. As explained previously, cost assessment for the fun
damental processes of the system—which have been described here by the state 
characteristics—can be carried out by means of specific cost factors determined 
from outside, and applied ex ante for choosing the operational parameters of the 
system (i.e., for establishing the general objectives), and ex post for evaluating 
the efficiency of the system.

П.4.З. The Dynamic Relations Structure

For an analysis of the dynamic relations structure, let us survey the inter
relations of the processes taking place in the system.

The demand mobilizing the system arises from outside, and, as an environ
mental effect, influences directly the regulation sphere and within this the regulat
ing element which we call the inventory mechanism. Information related to the 
objectives of the system, which—as seen before—will be conveyed towards the 
item-level subsystem immediately by a part of the environment which is called 
“the inventory management subsystem of the enterprise”, have the same direction. 
Here, it must be mentioned that “demand” can arise from not only outside the 
item-level system, but also outside the inventory subsystem, and even outside 
the enterprise: in order to realize the objectives of the enterprise, demand for the 
products belonging to its profile must be satisfied. This “external” demand is 
for the finished product and leads to an “internal” demand for all the components 
of the inventory (raw materials, secondary materials, spares, etc.). This internal 
demand will be conveyed by the inventory subsystem to the item-level system. 
Consequently, the characteristics of the demand significantly depend on the type 
of inventory (raw material, finished product, etc.).

Stemming from the above, there appear five demand categories (in correlation 
with each other) in the item-level inventory system:
— the abstract demand which will be generated from outside the company and
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means the demand which may be induced for the given item in principle in the 
operation sphere of the enterprise;

— the demand recognized by the enterprise which, due to reasons arising from 
the enterprise itself, e.g., lack of market knowledge, and/or to external reasons, 
e.g., customer information deviates from actual demand, may differ from the 
abstract demand. This demand category comes from the enterprise level (i.e., 
from outside the inventory system), too ;

— the demand considered satisfactory—this is the volume of demand which the 
enterprise wants to meet in a given period and for which the enterprise is 
prepared to satisfy (and which corresponds with its own aims and capabilities, 
e.g., resource limitations). The determination of the volume of this demand 
begins at the enterprise level and is ultimately concretized within the inventory 
subsystem, and, as will be seen, is a factor affecting the management and 
operation of the item-level subsystem;

— the demand actually arising which, in contrast to the demand categories 
listed above, can be recognized only ex post, after decisions which concern 
the item-level inventory system have been made, and which may, depending 
on the sense, differ from the various categories discussed above;

— the actual demand satisfied, which, in contrast to the above described concepts 
of demand, is a phenomenon of the real sphere: this is the quantity of items 
which has been despatched from the store in a given period.

The correct interpretation and treatment of the categories given above is funda
mental to understanding and analyzing inventory control processes and, as such, 
is the starting point of an analysis of the dynamic relation structure.

The operation of the system begins so that the information concerning the 
demand (which is to be satisfied) comes into a control element known as “in
ventory management”, where it meets the inventory mechanisms and norms which 
express the “expectations” of the item-level system and which derive directly 
from the inventory subsystem, and this mobilizes the system.

How do the elements and relations, as encompassed by the static relations 
structure, correlate, i.e., how can the dynamic relation structure be defined?

Our starting point is that the item-level inventory system is a control system 
in the classical sense, i.e., the management of the system proceeds on the basis of 
information derived from the system itself, by negative feedback. If we deal with 
inventory control as a control problem, in addition to the economic, systems- 
theoretical and operations-research considerations: we will also be involved in 
control theory or cybernetics.

In order to discuss the control of the system, some well-defined conditions 
concerning the factors and processes of the system must be met:
— the system must possess a controlled variable, the value of which is to be 

kept at a planned level (such as the target value of an objective function);
— certain perturbations must exist, which change the value of the controlled 

variable from its target value;
— the actual value of the controlled variable must be directly or indirectly com

parable with the target value;
— there has to be a manipulated variable inside the system which changes ac
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cording to the influence of the decision maker, the changes of which have a 
determinable effect on the value of the controlled variable.

These conditions are completely fulfilled by the item-level inventory system as 
we have defined it. In addition to the above concepts, we have to explain the con
cept of the regulating variable in the control sphere, the task of which is to establish 
the value of the controlled variable to be maintained by the control process 
depending on the intention of the decision maker, whose position is outside the 
system according to the definition given. We add here that the control sphere, 
as defined above, is capable of making only routine decisions.

As long as the norms (i.e., the parameters of the inventory mechanisms to be 
defined shortly) in the regulating variable of the control sphere, based on the 
conditions dictated by the decision maker, are unchanged, the control system 
can be “left alone”, since it is able to operate as expected by the decision maker. 
As soon as the decision maker realizes (from outside the system) that the conditions 
have been changed, he modifies the norms (new values are introduced into the 
control sphere through the regulating variable), and the system is ready to operate 
again. (The inventory system operates like this in reality, too. The decision maker, 
e.g., a material manager, endeavours to form an inventory volume in accordance 
with the inventory norms i.e., he orders “automatically” as long as the norm is 
valid.)

The first step in determining the control sphere of the inventory system is the 
identification of the variables:
Controlled variable —
— the volume of inventory which the decision maker shall keep according to his 

intentions as indicated by the regulating variable;
Disturbance —
— this covers all the effects which divert the level of inventory from the norm. 

Its most important element is the actually-arising demand, but the vagaries 
of procurement (e.g., the length of time between ordering and delivery) also 
belong here, along with any external disturbing effect (e.g., the incidental 
diminishing of stocks, natural disaster, theft, etc.);

Manipulated variable —
— the order placed by the decision maker;
Regulating variable —
— the intentions of the decision maker reflecting the factors of the system as 

well as their changes, which appear after all in the parameters of the inventory 
mechanisms and in their changes, respectively. In addition to other, less 
important factors, the demand to be satisfied is also a part of this variable.

Without going into details, it is useful to comment here on the control theoretical 
explanation of the inventory system:
— It is a property and not the essential of the inventory system defined by us 

that it is a control system. Depending on the intentions of the decision maker, 
other types of regulation could also be applied, but, in our opinion, control, 
in the above sense, is the proper instrument being in compliance with a wide 
range of properties of a system.

— It is obvious from comparing the above control-theoretical concept with the

20



general description given in the Introduction that the material processes and 
information flows of the system progress in opposite directions when con
sidering the important elements of the system.

A question of primary importance when analyzing the dynamic relations 
structure concerns the form in which control actually takes place. Since the 
specific control steps are: measurement, comparison and intervention, we must 
examine to which factors of the inventory system these steps are linked and how.

a) In defining the term “measurement” (which takes place in the “inventory 
review” element of the taxonomic structure), of fundamental significance in the 
inventory system is the statement of control theory according to which the required 
value of the controlled variable can be maintained so that some other unambigu
ously related variable will be measured instead. Consistent with this, we may 
state that control in the inventory system can be carried out directly, based 
either on a measurement of demand or its satisfaction. We will return to this 
matter later on.

b) Comparison (which may pertain to “inventory management”) occurs by 
means of the parameters given by the regulating variable. Since we defined the 
item-level inventory system as a control system, where the decision maker wants 
to compensate for any disturbing effects on the basis of information originating 
from the system itself, and ordering takes the place of the manipulated variable, 
the specifics of the control process in accepted terminology means the “ordering 
rule”, or the “mechanism” of inventory contol. This is determined by answering 
the following two questions: (1) when, and (2) how much should the decision 
maker order? In inventory theory (according to practical inventory management) 
two basic types of answers can be given to each of these questions. As to the 
time of ordering:

— orders can be made at fixed intervals (in what follows this is denoted by t) ;
— the decision concerning inventory replenishment is made when the level of 

inventory has decreased below a certain minimal value (the order point, s).

Two possibilities arise concerning the volume of the order:
— the volume (amount) to be ordered is fixed (the order quantity, q);
— the volume shall be so determined that after delivery the inventory reaches 

a fixed maximal level (the order level, S).

In this sense, inventory control mechanisms are possible combinations of the 
above answers. In principle, therefore, we may speak of inventory management 
mechanisms (/, q) (/, S)  (s, q) and (,v, S)  denoted by the controlled parameters. 
For more details of this classification of inventory control systems, see Naddor 
(1966).

Figure 4 demonstrates thematerial processes in the given inventory control 
mechanisms. We use the following basic assumptions:

— replenishment time can be neglected,
— the review of the inventory is undertaken periodically, the magnitude of 

demand (and its probability distribution function) is given for the reviewing 
period (t),
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Fig. 4. Inventory control mechanism
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— at the delivery of shipments, the demand backlogged from the previous period 
will immediately be satisfied (this is the case of “back ordered demands”),

— demand arises continuously and uniformly in the reviewing period,
— the process of delivery is deterministic.
(We note that these assumptions imply the simplest possible case and serve only 
for demonstration. This simplification can be allowed, as the application of a 
more complex system of assumptions is logically the same but would make more 
difficult the demonstration of the basic ideas. Concerning an interpretation of the 
conditions, see the study of J. Berács (1973).)

In the case of the assumptions above, the operation of the individual mecha
nisms is shown in Fig. 4. In the case of stochastic processes, the figures can be 
regarded as a realization for each of these processes. It is important to note here 
that of the control mechanisms which are actually possible, the mechanism (t, q) 
has been excluded because it is only suitable for control under very special (pri
marily deterministic) conditions, and in these cases it can be considered as a spe
cial case of any other mechanism. (Nevertheless, for the sake of simplicity it is 
often reasonable to describe a problem with the mechanism (/, q), but in these cases 
the equivalence to one of the other mechanisms is fairly obvious.)) Each of the 
remaining three possibilities (/, S)  (s , q) (í , S ) are connected—in the sense of 
the internal logics of the control system—to some inventory level. It is to be 
pointed out that there is an important difference of content between the param
eters t and q as well as a and S  concerning the answers to be given to the “basic 
questions” : the former answer the questions directly, whereas the latter provide 
the answer by involving some of the inventory levels and taking into consideration 
the actual processes occurring in the system. This latter circumstance enables 
controlling the system.

c) Intervention takes place through ordering the purpose of which is to replenish 
the inventory, when the decision maker is able—by involving the regulating 
variable—to introduce his own objectives and expectations into the system, as 
aspects. In the case of deterministic replenishment, this intervention is free of 
disturbances; in a system with a stochastic input process, some of these elements 
are to be treated as components of the disturbing effects.

In the control process of the item-level inventory system, the (objectively) con
tinuous time will be made discontinuous by the decisions of the decision maker 
concerning ordering. A consequence of this is that considerations of quantity—as 
seen before—are more important aspects of the demand process than the aspect 
of time. The latter can be estimated from the replenishment process and not 
from the demand process even if the specific date of placing orders always depends 
on the actual situation regarding demands. On the other hand, in the case of the 
input process, the aspect of time becomes apparent: the fundamental parameter 
of the control process is the reviewing period—the basic unit of the order decision. 
This is the time interval between successive reviews of the state of the system. 
In the case of a continuous review this interval is zero, otherwise it has a positive, 
usually previously-fixed value.

Upon investigating the state of the system, the decision maker can decide 
whether intervention, i.e., ordering, is required or not. The ordering period is 
the time between two decisions (i.e., two orders) for replenishing the inventory.
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The features of this depend on the inventory mechanism of the given system. 
If the answer to the question “when?” is t (interval), then the ordering period is 
a constant and coincides with the review period. But if the date of ordering cor
responds to some minimal level of inventory (л), then the ordering period is a 
variable (in the case of a periodic inventory review, it still remains an integer 
multiple of the review period).

Another essential time interval must be defined for the analysis of the input 
process. This is the period of replenishment, i.e., the interval between ordering 
and arrival. (The corresponding period in the demand process is the time for the 
demand to be satisfied; nevertheless, this does not have the same importance as 
the replenishment period as far as the input process is concerned: its value is 
non-zero usually because of administrative and technical reasons only, i.e., if a 
stock of the required item is available, delivery follows ordering immediately. 
If there is a difference between the date a particular demand arises and when this 
is satisfied, this is due to the intention of the decision maker without disturbing 
effects in merito on the given item-level system. This is not true, of course, for 
the customer as the source of the demand: this may exert a very negative effect 
on him but the demand of the customer is the input problem of another item-level 
system, and thus we have returned to the problem of replenishment.)

If the replenishment interval is positive (and this is the usual situation in prac
tice), the decision maker has to take into account two inventory levels: (1) the 
stock actually available in the store, and (2) the quantity of items already ordered 
but not yet received. How this alters the operation of the inventory system is 
shown in Fig. 5 which demonstrates a simple case of the (t, S)  mechanism with 
lead-time. In this figure, an example can be seen where the lead-time (L) is 4/3- 
times more than the ordering period (/), i.e., if, for instance, the order is placed 
four months after placing the order. Thus, the “inventory on the books” (S) 
comprises three lots in each period fi:

— the actual stock in hand (the part below the continuous line in Fig. 5);
— the ordering placed in the preceding period ti_1, which will be received 

after the first third of the reference period (/f) ;
— the order qt placed at the beginning of period which will be received in the 

period /J+1. This quantity qt has to be determined so that the total amount 
of the three components listed should be just S'.

If the length of the replenishment period is fixed, it does not disturb the operation 
of the system, but if this varies randomly (i.e., by causes independent of the decision 
maker, by factors not known to him), the operation of the whole system is essen
tially influenced, since we cannot estimate the actual effect of the ordering, i.e., 
what the manipulated variable of the system will display.

In our previous analyses and those which fo lows, it is most important to verify 
that the defined inventory mechanisms are really in compliance with the control 
process to be realized in the inventory system outlined, i.e., knowing the initial 
state of the system, and the actual values of the decision variables, the system is 
able to control the processes taking place in it. Namely, in this case it is true that 
the parameters of the inventory mechanism responsible for the control will lead 
to the optimal operation of according to the objectives of the decision maker.
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We have already emphasized several times that from both economic and tech
nical point of views the “driving force” of the system is the demand. It is there
fore self-evident that demand must play a significant role in the control process, 
too.

In the course of analyzing the regulation process of the inventory system we 
have pointed out (for basic cases see Chikán (1973), for certain modified condi
tions see Berács (1973)) that control can be performed with the inventory mecha
nisms defined earlier, so that with a given initial stock and decision parameters, 
the measured magnitude of demand alone determined the ordering, i.e., demand 
really plays a decisive role in the operation of the system.

The selection of the operation mechanism for the inventory system is for the 
decision maker to determine, and is based on the specific way he wants to achieve 
his objectives.

The inventory mechanisms have been defined by different parameters. On the 
basis of what has been described so far, we can see that the regulating variable 
manifests itself in these parameters. These regulating variables are called “norms”. 
These norms indicate either, directly, some inventory level (j  and S ), or variables 
which have only an indirect connection with the size of the inventory but yet 
have a fundamental influence (t and q).

We do not consider inventory norming. For the purpose what follows, however, 
it should be noted that the goal of inventory optimization models is simply to 
determine the optimal value of these parameters and norms, or those derived 
from them.
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III. A Historical Review of Inventory Modelling

The aim of this chapter is to present an historical overview of inventory mod
elling as a classical field of operations research. The large number of inventory 
models and the hundreds of papers considering many different versions of these 
models make it difficult to give an exhaustive historical review. The results achieved 
in inventory modelling will not be summarized here in strict chronological order; 
rather, typical groups of models and methodologies which characterize sub
sequent research periods will be emphasized. Through the development of mod
elling and solution techniques, the historical review of the most important theoret
ical and practical results in inventory control will be briefly summarized in this 
chapter. The more detailed description of a large number of inventory models 
is the subject of the second part of the book.

Even though we have tried to cover a substantial part of the literature, there 
are certainly many missing references, for which we apologize.

Ш .1. The Economic Order Quantity Model and Its 
Generalized Versions

The first classical mode of inventory control is the economic order quantity 
model (EOQ model) which was first published in the book of F. Harris (1915). 
A known demand of constant rate must be satisfied. No shortage is allowed and 
there is a fixed leadtime of deliveries. A fixed ordering cost and an inventory 
holding cost proportional to the amount and time of carrying inventories is 
considered in this model. The economic order quantity (EOQ) is the order amount 
which minimizes the total holding and ordering costs.

The formula which expresses the value of the EOQ is often referred to as the 
Wilson formula, since it was derived by R. H. Wilson in 1934. In the German 
literature, it is often called the Andler formula after the book of K. Andler 
published in 1929, but this model is described also in the books of B. Margansky 
(1933) and K. Steffanic-Allmayer (1927).

The assumptions of the EOQ model are very rigorous and they are rarely ful
filled in practice. In contrast, the Wilson formula is still the model most cited 
and used for an approximate solution even in the computer packages of inventory 
control. What is the secret of the EOQ model? One advantage is that on the 
basis of few data the calculations involved are simple. In addition, the simplicity 
of the model makes it easily understandable and applicable for people not well 
trained in mathematics and operations research. However, the most important

26



reason why it is still so often used is its insensitivity to the input parameters. The 
order amount given by the Wilson formula does not result in a considerable 
increase in cost as compared with the optimal cost in the case of an inaccurate 
but not very bad estimation of the input parameters.

Many authors have worked on generalizations of the EOQ model. A summary 
of the early results was given by Whitin (1957). Through the formulation of the 
different assumptions different model-variants have been constructed and solved. 
Here, we summarize the deterministic versions of the generalized EOQ models, 
for which all the parameters are assumed to be known. Research into stochastic 
inventory models can also be considered as generalizations of the above models 
for those cases where some of the parameters can only be statistically estimated. 
If these parameters are considered as random quantities for which we have 
statistical observations or hypotheses, then a better solution can be achieved. 
Research into stochastic models started later than that into deterministic ones, 
but, subsequently, both fields developed side by side. The development of stochastic 
models can be connected with other goups of models which will be treated later.

Many different model variants deal with the case when shortage is permitted. 
The first contributions were published by Churchman, Ackoff and Arnoff (1957), 
and by Sasieni, Yaspan and Friedman (1959). A group of these models assumes 
that in the case of a shortage the customer is waiting for the delivery of the next 
order, at which time his demand will be fulfilled. This is the so-called backorders 
case, while, in the other case, the customer is not prepared to wait if there is a 
shortage; this is the so-called lost sales case.

In the backorders case, three different cost factors may occur when there is a 
shortage. The shortage cost may depend on the quantity or time, or shortage, 
or both, or it may be a fixed cost. All these cases may happen in practice. The 
equivalent models and their solutions were first detailed in the books of Hadley 
and Whitin (1963) and Naddor (1966). The lost-sales case is considered in these 
books, too. Here, the shortage cost also includes the loss of profit resulting from 
the lost sales. The appropriate mathematical models enable the optimal order 
Quantity and reorder level to be determined.

A lot of different versions of constraints and bounds have been built into the 
EOQ model. From the practical point of view the most important ones are the 
storage capacity constraint, the investment (budget) constraint and the limited 
total number of the annual orders. In all of these cases, the constrained optimum 
can be found using the Lagrange multiplier method. A detailed description of 
these models has been given in the books of Hadley and Whitin (1963), Naddor 
(1966), Popp (1968), and Klemm and Mikut (1972).

The EOQ model has also been generalised for different versions of the delivery 
process. In the original EOQ model, an immediate delivery was assumed, which 
can be easily extended to the case of constant leadtime. Only the reorder level 
must be transformed, it must be equal to the demand during the leadtime. In the 
case of continuous delivery, both the order quantity and reorder level have other 
optimum values, but they can also be easily expressed explicitly. These models 
are detailed along with others in the book of Hadley and Whitin (1963).

The time-dependent demand is first considered by Naddor (1966). The power- 
demand pattern is defined where a parameter characterizes the way in which
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quantities are taken out of inventory. Here the total demand for a given period 
does not change but during the period there are changes in the demand intensity.

Linearly increasing (or decreasing) demand was first considered also by Naddor 
(1966), but he could give only an approximate solution for the optimal ordering 
policy. The exact optimum was derived by Ryshikow (1969). The quantity of 
demand was expressed by Barbosa and Friedman (1979) as a power function of 
time and a general solution method was given for this case.

Different approximate solution methods have been derived for when the demand 
cannot be expressed as a simple function of time. These methods are based on the 
following two specific aspects of the EOQ model, which are, however, not always 
valid for a general demand process:

(1) The minimum point of the average annual cost coincides with the minimum 
point of the average cost concerning a unit of item.

(2) The average annual cost of ordering and that of inventory holding are 
equal.

The least-unit-cost model based on (1) and the cost equilibrium model based 
on (2) give in general not the optimal solution, but an approximation which is 
usually suitable for practical use. Both methods result in very simple algorithmic 
solutions in the computer packages of inventory control.

The optimal ordering policy can be derived by the method of dynamic programm
ing in the case when demand changes from period to period in a known way. 
The first dynamic-type lot-size model was published by Wagner and Whitin (1958). 
The general dynamic programming method was specified for the inventory prob
lem in the sense that the number of candidate solutions for the optimum could 
be decreased drastically. This results in an economic computing time. Further 
improvements of this method are due to Hadley and Within (1963) and Popp
(1968) . Here, a positive leadtime is also allowed when this is an integer multiple 
of the length of the period.

The requirement that no shortage is allowed was first considered by Zangwill 
(1966). This model was formulated as a production planning model in which 
the production lot-sizes are equivalent to the amounts ordered in the usual in
ventory control model formulation. In the similar production planning model of 
Popp (1968) the production capacity is bounded, and this can only be increased 
by surplus cost resulting from overtime. Taking this cost into consideration, the 
optimal production plan was derived using an improved dynamic programming 
algorithm.

An investment and production planning model was published by Ryshikow
(1969) in which the total cost of inventory holding, investment, production and 
un-utilized capacity was minimized. The optimal solution was given in the form 
of equations based on dynamic programming.

Changes in prices and costs result in structure changes in the cost function. In 
addition to the fixed ordering cost, the purchasing cost may also influence the 
optimal ordering cost. The purchasing price may depend on the purchase quantity 
in different ways. In the most common case, discounts are offered for the purchase 
of large quantities. The discount may apply to every unit purchased or only to the 
incremental quantity. Both cases have been discussed in detail by Hadley and 
Whitin (1963), but there are earlier results in this field published, among others, 
by Churchman, Ackoff and Arnoff (1957) and Sasiani, Yaspan and Friedman
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t
(1959). The purchasing price is assumed by Naddor (1966) to be a continuous 
function of the amount ordered. Price changes in time were also considered first 
by Naddor (1966). For a known price increase at a given, or probable, time Naddor 
gave the conditions which underline the increase of the lot-size. The holding cost 
may also be a nonlinear function of the time, or of the quantity carried: this also 
is discussed by Naddor (1966).

The time discounting of costs usually influences the optimal decision. A produc
tion-inventory system is considered by Schussel (1968) in which the unit set-up 
cost is a monotonously decreasing function of the lot-size. The classical EOQ 
model for the case of time-discounted costs was first solved by Hadley (1974).

Research into multi-item deterministic models started at the beginning of the 
sixties. The first multi-item version of the EOQ model considered the case for 
which joint ordering of items brings cost saving in ordering cost. The optimal 
joint interval of ordering and the optimal amounts of ordering for each item were 
expressed in simple explicit formulas by Naddor (1966).

The optimal cycle-length of lot releases in production was derived by Bomber- 
ger (1966) using the technique of dynamic programming.

Another connection between items of an inventory may be the joint constraints. 
The most common being the inventory capacity constraint and the financial 
(investment) constraint. These may also figure together. The solution can be easily 
derived in these cases on the basis of the Lagrange multiplier method as has been 
done, for example, by Naddor (1966), and Klemm and Mikut (1972).

A production-inventory system, under constrained resources, has been consider
ed by Kleindorfer and Newson (1975). A production plan was developed which 
minimized the sum of the setup, production, and holding, costs. In the generalized 
version of this model manpower and overtime-management has also been included.

The inventory policy of substituting items is a rather difficult problem. An al
gebraic solution was derived by Wolfson (1965) for such a problem. For a given 
product there is a demand for different sizes. Only some specific sizes are produced, 
the demand for other sizes is satisfied by the next larger size, thus reducing the 
surplus amount. The optimal stocking policy minimizes the total losses, including 
those resulting by the cuts.

III.2. Single-Period Stochastic Models

Research into stochastic inventory models started in the forties with the so-called 
“Christmas tree model” or “newspaperboy problem”. The first summary was 
published by Morse and Kimbel (1951). The models referred to above deal with 
the classical problem, when a merchant orders a quantity of a seasonal item for 
which no further ordering possibility exists. The demand for the item is not known 
at the time of ordering, and is a random amount. The surplus stock at the end of 
the season cannot be sold. The purchasing cost is smaller than the selling price. 
The optimal order quantity is that for which the expected value of the total profit 
is maximal.

In the generalised form of the above model given by Hadley and Whitin (1963) 
the surplus stock at the end of the season can be sold at a decreased price. It was 
also extended to multi-items with joint capacity of investment constraint.
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Some model versions have been described in the book of Buchan and Koenigs- 
berg (1963) for the stocking of spare parts with a single ordering possibility. The 
sum of the expected holding and shortage costs is minimized.

A systematic review of the single-period stochastic models has been given by 
Hochstädter (1969). The case of the fixed and the non-fixed ordering cost is examin
ed separately for immediate delivery. The backorders case and the lost sales case 
are distinguished for single period models with leadtime. The method of solution 
is given for all the above models.

Optimal ordering for two consecutive periods has been investigated dy Naddor 
(1966), and three periods have been considered by Whitin (1973). These are straight
forward generalizations of the single period model. They have, however, more 
complex solutions based on dynamic programming methods.

Ш.З. Stochastic Order-Level Systems 

IU.3.1. The (s, S) Inventory Models

The models described in this section are based on the (s, S ) inventory policy 
which was defined in Section II. 4. 3. The first exact formulation of such an opti
mization problem was given in the book of Arrow, Harris and Marschak (1951). 
This model is the precise mathematical formulation of an inventory policy which 
has been applied in practice. Two critical inventory levels are to be fixed, s means 
the reorder point and S  the order level (rS S 1). The inventory level is reviewed 
periodically (there is also a continuous-review version which will be described in 
the next section). As the inventory level decreases under the reorder levels, an 
order is given which increases this level up to the order level S. In general, the 
task is to determine the values of s and S  which minimize the total expected cost 
of the system. Another interesting question is under which circumstances does 
this policy guarantee the overall optimal inventory policy, i.e., the optimal among 
all possible periodic review policies. The search for efficient solution algorithms 
and for the proof of overall optimality of the (s, S ) policy proceeded in parallel 
fashion between 1958 and 1968. In the seventies, algorithmic questions came more 
into consideration.

The optimality o f the (.v, S) policy was first analysed in the papers of Dvoretzky, 
Kiefer and Wolfowitz (1952, 1953). Dynamic programming aspects were studied 
by Bellman. Glicksberg and Gross (1955). Bellman (1957) was first to give a 
sufficient condition for the overall optimality of the (j , S) inventory policy. 
Arrow, Karlin and Scarf (1958) compared different ordering policies and proved 
the optimality of the (s , S) policy under rather strong conditions. The first general 
result concerning its optimality was published by Scarf (1959). The proof is valid 
for an arbitrary demand distribution, convex cost function and finite time horizon. 
The definition of A-convexity was introduced here, and further general results are 
based on this concept. In the context, amongst others, the papers of Zabel (1962) 
and Iglehart (1963), should be mentioned. The proof was extended to the case of 
an infinite time horizon. For the optimal parameter values, new bounds were 
given leading to more effective solution procedures. The optimality (s, S)  policy 
was proved for stationary demand distribution by Iglehart, also, This result was

30



published in the book edited by Scarf, Gilford and Shelly (1963). Veinott (1966) 
made further relaxations concerning the optimality conditions and, for a unimod- 
ular cost function, proved the optimality of the (s, S ) policy, even for a non- 
stationary demand distribution. For the probability density function of the demand 
distribution, a sufficient condition was given by Limberg (1968) in the form of a 
differential equation. Further results in this field are summarized in the book 
of Hochstädter (1969).

The theory of Markovian decision processes and the renewal theory have been 
applied to prove further specific results. Demand depending on the stock level 
was considered by Tijms (1972) who gave the optimality proof, also for an undis
counted cost function, and derived conditions for the unicity of the optimal solu
tion. Optimality criteria were given by Tur (1972) under an inventory capacity 
constraint and by Wijngaard (1973) under an order quantity constraint.

For an exact solution of the optimal (5 , S) policy problem, even nowadays 
we have no generally effective numerical method; however, many publications 
are concerned with this question.

In the paper of Arrow, Harris and Marschak (1951) mentioned in connection 
with the first exact formulation of the (s, S ) model, a method of solution for the 
optimal decision parameter was derived, too. This method is, however, not 
effective. It involves the numerical solution of a functional equation which con
tains the cost function and is built up on the basis of Bellman’s dynamic optimality 
principle.

The value iteration method of dynamic programming was first applied to the 
solution of the above-mentioned functional equation. This is a successive itera
tion process derived by Bellman, Glicksberg and Gross (1955). The decision itera
tion method of dynamic programming was sketched already in the book of Bell
man (1957) and a detailed description has been given by Howard (1960). This 
method may usefully he applied to the value iteration concerning the theoretical 
speed of convergence and the stopping criteria. However, the investigations of 
Beckman and Hochstädter (1968) showed that, in practice, value iteration is still 
more effective, since this needs considerably less computing time for each iteration 
step, than that required for decision iteration.

The above two general methods of dynamic programming have proved to be 
unefficient in practice. Methods based on specific aspects of the inventory control 
model are efficient.

The dynamic programming algorithm can be considerably simplified in the 
case of some special demand distributions. Of the large number of such investiga
tions, the results of Naddor (1966) and Ryshikow (1969) merit mentioning, due 
to their effectiveness.

The steady-state probabilities of the inventory positions were determined by 
Wagner (1962) using the theory of Markov processes, and by Greenberg (1964) 
using a Laplace transformation, generalizing the result of Arrow, Karlin and 
Scarf (1958) (which was valid for exponentially distributed demand). Knowing 
the steady-state probabilities, the expected cost function can be expressed and 
minimized by a numerical procedure. The main difficulty is that the cost function 
is usually not convex, therefore it may have many local minima.

The most powerful of the exact solution methods is the Wagner—Veinott 
algorithm (1965), Here the upper and lower bounds are first calculated for the
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optimal values of s and S, then in the range of the possible optimality domain the 
cost function is calculated for each possible (discretized) pair of (j , S). Often 
a rather narrow range can be determined for the optimality domain, in which case 
the method is effective.

The practical importance of the (j, S) policy and its overall optimality (as 
compared with other policies under fairly general conditions) underline the ne
cessity of effective numerical procedures. The demand of practical applications is 
for quick algorithms to be constructed which do not necessarily serve the exact 
optimum but ensure a good approximation with little computation. Investigations 
proceeded side-by-side in two different fields.

The first approach is to simplify the algorithm, while the other is to simplify 
the model. In the first case, the model is considered in its original form and the 
simplified algorithm, requiring few calculation steps, serves as an acceptable 
approximation of the optimal solution. In the second case, the simplified model is 
solved exactly and this solution is considered as the approximate solution of the 
original model.

The approximate solution of the (s, S) model is of great practical importance. 
The first such method is the Roberts approximation (1962) which is still being 
applied today. It is based on an asymptotic theorem of the renewal theory which 
is used for approximating the optimal average length of the order cycle. If the 
value of D = S -  s is a large number when related to s, it approximately equals 
the value of the F.OQ, calculated by the Wilson formula, in which the mean demand 
rate is taken to be the demand rate parameter. The value of s can be easily deter
mined using the density function of the demand distribution. If this value of s is 
not much smaller than the value of D calculated by the Wilson formula, then a 
correction factor suggested by Wilson must be applied.

The exact optimum calculated by the dynamic programming algorithm has been 
compared with the approximate value given by the Roberts approximation. Such 
investigations were published by Wagner, O’Hagan, and Lundh (1965) and by 
Beckman and Hochstädter (1968). In both papers, new correction formulas are 
suggested.

Upper and lower bounds for the optimal values of s and S  were first given by 
Iglehart (1963) then by Veinott and Wagner (1965). These bounds can also be 
used as approximate solutions for the optimal parameter values. The calculations 
are very simple in the case of special demand distributions, such as a normal 
distribution. For the approximation, only heuristic error estimations are achieved.

The original form of the Roberts approximation is valid for continuous demand 
distributions. It was extended to discrete distributions by Girlich (1973). Here, 
the optimal value of j  is determined by iteration. Tijms (1972) derived a simple 
iteration procedure also for the optimal value of S, for which convergence was 
proved under general conditions.

The method of stochastic approximation is used for the determination of the 
optimal parameters in the paper of Griessbach (1975). Although, it can be applied 
under general conditions, it is often numerically inefficient. Methods have been 
described which increase the speed of convergence based on the results of stochastic 
dynamic programming. The papers of Bartmann (1975) and Van Numen (1976) 
should be mentioned here.
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III.3.2. The (t, S) and (s, q) Policies as Simplified Versions 
of the (s, S) Policy

Fixing the length of the order period yields a simplified version of the (j , S ) 
policy since at each review an order is placed, independently of the inventory 
level. The fixed length of the order period is denoted by tp, where the subscript 
p  means “prescribed”. Hence, here we have only one variable to consider. This 
is the amount of order (q) in the case of (tp, q) policy or the order level (S)  in the 
case of (tp, S)  policy. Both policies approximate the (x, S ) policy when the fixed 
order cost is low relative to the inventory holding cost.

The (tp, S)  policy is often referred to as “order up to level S ” since the in
ventory level is increased by an order to the level S  at the beginning of each order 
period. Methods of solution for the optimal value of S  have been given by many 
authors under different assumptions. Buchan and Koenigsberg (1963), Hadley 
and Whitin (1963) have considered the case of constant and random lead-time, 
the backorders and the lost sales case, and have derived simple formulas for 
different types of demand distributions. Naddor (1966) introduced the so-called 
“inventory bank system” which is a generalized version of the (tp, S)  policy, 
since the value of the order level may change from period to period depending 
on the changes in demand in the previous periods. Time-dependence during the 
order period is taken into account in the model of Prékopa (1972). A further 
generalisation is given there, in which the delivery of an order is assumed to 
arrive not in a single lot, but delivery may occur in random lots at random times 
during the order period. This kind of delivery process is called the “interval-type 
delivery process”. Gerencsér (1972) compared the optimal costs for different unit 
cost factors and carried out a sensitivity analysis for the (tp, S ) model.

The dynamic lot size model was investigated by Hadley and Whitin (1963) 
for the case of stochastic demand. The optimal value of the orders was derived, 
which may be different in different order periods. Both backorders and lost sales 
cases are considered. The lead-time may also change from one period to another, 
it may also be random variable, but orders placed earlier must be delivered 
earlier. The model can be solved using dynamic programming methods. Ryshikow 
(1969) considered the case of urgent ordering, with immediate delivery and extra 
charge. Control theoretical results are applied by Bessler and Zehna (1967) to 
the determination of optimal ordering quantities. The deviation of the expected 
inventory level, from the ideal level prescribed, is minimized. The demand distri
butions of different periods may be different. The leadtime is supposed to be an 
integer multiple of the value tp. The results of stochastic programming were 
applied by Prékopa (1973) to give the optimal amounts of order for multiple 
periods. The joint distribution of demand in subsequent periods is considered, 
thus the stochastic interdependences in the demand process are taken into account, 
in contrast to the usual models which assume independent demands in the different 
periods. The solution of the stochastic programming model is reduced to a con
vex programming problem, for which many numerical procedures are available.

The length of the order period may be also subject to control. This case is 
detailed in the books of Hadley and Whitin (1963), and Naddor (1966). The 
cost function under stochastic demand and random leadtime was derived by 
Hadley and Whitin (1963). For this model, a simple approximate solution was
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achieved by Naddor (1966) for the case of a deterministic leadtime. The case of 
stochastic leadtime was solved by Agin (1966) in the form of a minimax procedure.

Hadley and Whitin (1963) also investigated the more general type of model 
(/, .V, S), where the order period t, the reorder point s, and the order level S, 
are all subject to control. The cost function was formulated for an arbitrary 
demand distribution, but no efficient algorithm was suggested. Many local minima 
may exist, thus the usual numerical optimization procedures do not guarantee 
a global optimum. This is also valid for the algorithm of Teicholz and Lundh, 
which has been derived directly for the optimization of the above cost function, 
and yields a local optimum usually more quickly than the above general methods. 
For the case of Poisson, or normal, distributed demand, special algorithms have 
been derived by Hadley and Whitin (1963). The length of the periods are assumed 
to form a Markov process in the model of Denardo (1968). The inventory capac
ity is bounded and delivery occurs immediately after ordering. For this case, 
a solution procedure based on a fixpoint method is derived which serves the 
optimal value of all the three parameters under control.

The prescription of the reorder point was considered first by Naddor (1966). 
The maximal demand of an inventory review period is assumed to be a known 
final value. No shortage is allowed, thus the reorder level is fixed in advance by 
this constraint. The optimal value of the order amount may be easily expressed.

In the inventory system described by Ryshikow (1969) a fixed amount q is 
ordered in each period. This is the only variable subject to control. The demand 
is random. If the inventory level decreases below a certain level, then an urgent 
order has to be placed since no shortage is permitted. By an increase in the in
ventory level the capacity bound of the inventory may be exceeded. The surplus 
stock can be sold only at a loss. This complex system is described with the help 
of a Markov process.

In many practical inventory systems, the amount which may be ordered is 
determined by some external conditions, e.g., package size. In the model of 
Naddor (1966) the optimal reorder point is given. When the inventory falls below 
the reorder point s, an integer multiple of the package size is ordered. This integer 
is determined in such a way that the order has to increase the inventory level 
above the order level S  which is also determined by the optimization of the cost 
function.

The total cost of n subsequent periods is minimized by Wijngaard (1973) under 
a restricted order amount. The dynamic programming method applied yields a 
single optimal reorder point for each period under rather general conditions. 
The optimal order amount coincides with the upper bound.

The optimal policy for slow moving items is the so-called (5 —1, S)  ordering 
rule, where the inventory level coincides usually with the optimal order level S. 
In this kind of model a discrete demand distribution is usually supposed. The 
customers arrive according to a Poisson distribution in the model of Freeney 
and Sherbrooke (1966). The amounts demanded have a discrete distribution. 
An algorithmic solution for the optimal S  is derived for a geometric probability 
distribution. By the assumption of Croston (1974), a normally distributed amount 
is demanded on average every p  periods. In this case, the optimal order level is 
expressed in a simple explicit form. For a demand characterized by a Poisson 
process an explicit solution was derived in the paper of Smith (1977).
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In the model of Higa, Feyerhorn and Machado (1975) the customer waiting 
time is random. The expectation of the waiting time must be below a specified 
level: this is the prescribed customer service level. The leadtime is random and 
has an exponential distribution. The same model was considered by Sherbrooke 
(1968) assuming a constant leadtime, and by Das (1977) assuming a constant 
waiting time and the case of lost sales. In both cases, geometric Poisson-distri
buted demands were assumed, as in the above-mentioned model of Feeney and 
Sherbrooke (1966).

1П.З.З. Generalizations of the (s, S ) Policy

Order policies depending on the time o f decision are based on dynamic models. 
Seasonal demand fluctuations which can be described by a discrete Markov 
process have been considered by Riis (1965). Kao (1975) formulated an order 
policy where the order amount depends not only on the actual inventory level 
but also on the date of occurrence of the last demand. The function of the model 
is described by a Markovian renewal process, and for the optimal ordering policy 
a linear programming procedure or another iterative scheme is derived.

In another direction of the development of generalized models, production 
and investments are directly included together with the inventories. Some charac
teristic models of this type will be mentioned here.

A production-inventory system has been considered by Suddenth (1965), where 
stochastic demand occurs at the end of each period in one lot. Unsatisfied demand 
awaits production. The total cost of production, inventory holding and shortage 
is minimized in the optimal production schedule, which is determined by an ite
rative procedure in a more simple way than the dynamic programming solution 
requires.

The production capacity may be increased according to the model of Rao
(1976). The demand may change from period to period but is supposed to be 
known in advance. It can be satisfied by production or from inventory. The 
optimal production plan and the amount of capacity increase (if this is necessary) 
is to be determined, and, for this, a dynamic programming procedure is suggested.

A model of production for stock has been published by Liberatore (1977). 
Known amounts are demanded at specific, though irregular, times. There are 
specific demands which must be satisfied individually. The problem is to determine 
the optimal setup times which minimize production and inventory costs. Cost 
savings can be achieved by satisfying various demand lots toghether. The time 
of producing a given lot is random. The optimal strategy can be derived using 
a dynamic programming method.

The urgent ordering possibility was first investigated in a single-period model 
by Barankin (1961) under the restriction that the amount of urgent ordering is 
fixed. For a bounded amount and for n periods a generalized form of this model 
was derived by Daniel (1963). The inventory holding cost function is linear. Op
timal ordering is characterized by two critical levels changing from period to 
period. Taking these values into account, the order amounts for the normal and 
for the urgent ordering may be expressed as a function of the actual inventory 
level. The order cost is assumed to be proportional to the amount of orders with
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a higher unit cost of urgent ordering. No constant ordering cost is considered. 
A backorders case is assumed. This model was generalized for a convex inven
tory holding cost and the lost sales case by Neuts (1964).

A constant ordering cost has also been considered by Fukuda (1961) as well as 
the normal and urgent ordering cost factors. The cost-optimal ordering strategy 
is given by a critical value together with two critical numbers (s„, S„) depending 
on the period. The critical value is the reorder point of the urgent ordering. For 
normal ordering, the (s, S) policy is implemented with the parameter values 
V  S„. Urgent ordering is satisfied immediately, while normal ordering suffers 
a period of delay. The case of two different urgent orderings with different lead- 
times and costs has been examined, too. Some special models with different urgent- 
ordering strategies have been described in the paper of Bulinskaya (1964). The 
papers of Kaminsky (1966), Allen and d’Esopo (1968) also contain useful results.

III.4. Models with Continuous Review

For an arbitrary demand distribution, the case of continuous review (and or
dering possibility) was first examined using the method of dynamic programming. 
If, in the periodic (s, S ) model, described previously, the length of the review 
period t tends to zero, then, in the limit, the continuous review case is obtained. 
The results concerning the (s, S ) policy obtained by dynamic programming 
were adapted first by Beckman (1961) for continuous review in this way. The 
optimality question of continuous review policies can be similarly treated.

Most of the methods of solution derived for (s, S ) models can be adapted for 
continuous review models; however, models which take into account the pecular- 
ities of continuous reviewing are more efficient in practice. (Methods based on 
dynamic programming techniques are usually not fast enough.)

The assumption of a stationary demand distribution has been generally used. 
The first approximate solution under this assumption was given by Galliher, 
Morse and Simond (1959).

The first systematic survey of continuous review models appears in the book of 
Hadley and Whitin (1963). For the optimal lot-size and reorder level, only an 
approximate solution is given there for the case of an arbitrary demand distri
bution. The shortage is not taken into account by a calculation of the expected 
annual stock level based on the supposition that the amount of shortage is negligi
ble relative to the amount of stock. Herron (1967) and Ryshikow (1969) made 
also the assumption that the duration of shortage is so small that the mean stock 
level can be well approximated without the need to take into account stockout 
situations. A fast numerical and graphical solution has been given by Herron 
(1967) and an iterative method is given by Ryshikow (1969) for the approxima
tion of the optimal solution. For the convexity of the cost function, sufficient 
conditions have been derived by Gerencsér (1972) which also ensure that the local 
optimum is global at the same time. The stability of the solution was also examined.

The optimal inventory policy was approximated by Wagner (1969) who con
sidered a fixed leadtime. A similar iterative procedure was given by Das (1975) 
together with an examination of stability. Cowdery (1976) considered the case
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where units are demanded, and he derived the optimal policy as the solution of 
a system of equations with two variables.

Demands occurring at random times have also been the subject of a number of 
investigations. In the model of Sivazlian (1974) units are demanded according 
to a renewal process. There is no leadtime. The optimal value of the reorder level 
can be determined analytically. In the deterministic case, this coincides with the 
solution of the discrete lot-size model. In the paper of Snyder (1974), the amount 
demanded may also be random with an arbitrary distribution. After every demand 
occasion, the stock level is reviewed. The leadtime is supposed to be negligible 
and no shortage is permitted. This result was later generalized also for positive 
leadtime (Snyder, 1975). In the first case, the optimal ordering policy was deter
mined using the theory of Markovian renewal processes, while, in the second 
case, the solution method is based on dynamic programming.

The consideration of a specified demand distribution is characteristic in con
tinuous review model investigations. The reason for this is that solutions derived 
for an arbitrary demand distribution are either too sophisticated, or do not 
guarantee optimality (and even, no estimation exists for the deviation from the 
optimum). These problems may also frequently appear by using specific demand 
distributions.

Some specific demand distributions were considered by Hadley and Whitir 
(1963). The leadtime demand was described by a Poisson process. It is a good 
model for when units are demanded at random times. The optimal solution can 
be calculated only under simplifying assumptions for the backorders and lost- 
sales cases.

Gamma distributed demand and partial backorders are considered in the model 
of Bürgin (1970). The loss of profit due to lost sales is also included in the cost 
function. The optimal policy can be calculated by an iterative process. A similar 
solution was given by Ryshikow (1972). Beside the normal- and Poisson-distri
buted demand, the special case was also investigated by Gebhardt (1973) for when 
the demand arriving at random times a geometric distribution, while the time 
between consecutive demands is exponentially distributed. In the paper of Snyder 
(1974), the amount of demands is characterized by an exponential distribution 
and the interarrival times of demands may have an arbitrary distribution. In the 
paper of Lavratshenko (1973) the amount of demands may be arbitrarily distribu
ted, while the interarrival times of demands have exponential distribution. The 
cost belonging to the annual inventory level is minimized instead of the expected 
annual cost, as is usual. The optimal parameters are the solutions of cubic equa
tions.

The leadtime demand was approximated by a normal distribution by Psoinos 
(1974) and the method of Hadley and Whitin (1963) was extended. Nomograms 
and tables were presented which increase the efficiency of the procedure. The 
Weibull distribution has been shown to characterize the leadtime demand in 
many practical cases. For the estimation of the parameters and for the optimiza
tion of the reorder level, some simple procedures have also been derived. In this 
model, the probability or expectation of shortage may also be constrained.

Queuing theory may also be applied for the construction of different solution 
procedures. The following equivalent of a queuing model is described by Buchan 
and Koenigsberg (1963): the service corresponds to the ordering and the customers
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represent the demand. A service channel is busy, if an order has been placed. 
The beginning of a service is equivalent to the placement of an order, while the 
conclusion of a service is equivalent to the delivery of an order. The number of 
channels M  is the ordering amount which is to be optimized. In accordance 
with the simplest queuing model, the demands arrive one by one and the lead- 
time has an exponential distribution. The cost function can be derived from the 
stationary solution of the state equations. The optimum can be easily calculated.

In another model of Buchan and Koenigsberg (1963), the stock level is the 
equivalent of the queue length waiting for service. This can be controlled by 
changing the input (order) rate. Optimization can be carried out also using the 
stationary solution of the state equations.

An all-embracing application of queuing theory for many different inventory 
models is described in the book of Ryshikow (1969). Here the following equiva
lence is applied: the possible maximal stock is the total number of the service 
channels, the actual stock is the number of the free channels, the shortage is the 
length of the queue. In some of the models, the amount of shortage is constrained, 
while, in others, no shortage is allowed. The different usual input and service 
processes of queuing theory are adapted for inventory models. In most of these 
cases, only the state probabilities are derived. The expected costs can then be 
expressed (based on the state probabilities) and minimized using some general 
numerical procedure of function minimization. For some models, iterative proce
dures are given. The difficulties of the numerical computation stem from the 
fact that often several local minima may exist, among which the global minimum 
is to be selected (while most optimization algorithms find only local optima).

III.5. Reliability Constraints and Reliability-Type 
Models

HI.5.1. Cost Optimization under Reliability Constraint

As early as 1953, Ziermann proposed a model for the inventory control of 
spare-parts, where the annual cost of inventory holding and ordering is minimized 
under a reliability constraint. The shortage cost is not explicitly contained in the 
cost function, it is replaced by the probabilistic shortage constraint: Either the 
probability, or the expectation, of the shortage must be below a prescribed limit. 
Here, the demand for the spare-parts is described by a Poisson process. Similar 
methods have been derived by Brown (1967) for a normally distributed demand. 
The reliability of the continuous supply, the so-called service level, can be charac
terized in different ways: besides the probability of continuous supply one can 
take the expected value of the demand immediately satisfied from stock over the 
total demand. The latter can be approximated by the ratio: average demand 
satisfied immediately from stock to the average total demand in a given period. 
The reorder point belonging to a prescribed service level can often be expressed 
with simple formulas which have been tabulated for different values of the relevant 
parameters. The use of such tables has also found application in practice in the 
case when the demand in a given period is not a normally distributed random
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amount. In this case, the solution is considered to be an approximation of the 
optimal decision. Most computer packages for inventory control also use this 
simple approximation for specifying the reorder level.

For multi-item models, the same idea has been extended by Herron (1967). 
The sum of the joint inventory holding and ordering cost is to be minimized under 
a common, or several separated, reliability constraint(s) concerning the items. 
In the model given by Mann (1973), the difference between the amount ordered 
and that delivered is assumed to have a normal distribution. The expected value 
of the shortage is constrained in the work of Beesack (1967). The first review of 
reliability-type constraints appears in the book of Klemm and Mikut (1972). 
They are denoted by Greek letters, following the notation of Rényi and Ziermann
(1960) and are classified in the following groups:
a : the probability that the demand in a given period is satisfied, 
ß : the expectation of the ratio: the satisfied demand in a given period to the 

total demand in that period, which is often approximated by the ratio of 
ß: the average demand satisfied in a given period to the total demand in that 

period,
y: the expectation that the demand satisfied will exceed the average demand 

over the total demand: a reliability measure which was first introduced by 
Rényi and Ziermann (1960).

Klemm and Mikut (1972) investigated the following problem: which form and 
value of the shortage cost results in a reliability constraint giving a cost-optimal 
solution. (This means that a given reliability constraint corresponds to a shortage 
cost factor for which the ordering strategy calculated on the basis of the relia
bility constraint ensures the minimal total cost.) The practical importance of this 
is that the necessary service level (reliability constraint) can usually be more 
easily estimated in practice than the value of the cost factor. The above investi
gations were carried out for the order-level system, i.e., the (tp, S ) policy by 
Klemm and Mikut (1972). They found out that if the shortage cost does not 
depend on the time and amount of stockout, only a fixed shortage cost appears 
at each period when shortage occurred, then a reliability constraint of type a 
has to be applied. The shortage cost proportional to the amount of stockout 
corresponds to the ß service level. The order level which minimizes the inventory 
holding cost under a reliability constraint is determined by the Lagrange multi
plier method. These results have been generalized in the paper of Klemm (1973) 
for the (í , S ) inventory policy and continuous review models.

Under a probability constraint on the shortage and geometrically distributed 
demand, the reorder level and lot-size which minimizes the expected cost of 
inventory holding and ordering was determined by Girlich (1973). An iterative 
procedure is derived in the paper of Das (1975) for an arbitrary demand distri
bution and random leadtime.

In the model of Cowdery (1976), units are demanded. The expected inventory 
holding and storage cost is minimized by constraining the expected value of 
the shortage, and the solution is given in the form of a system of equations. 
Units are demanded at random times according to a Poisson process in the mo
del described by Magson (1979). This was devised to describe a spare-parts 
inventory problem, where the leadtime had a gamma distribution. The reor-
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der level is fixed by a prescribed probability of shortage, while the amount of 
order is determined by cost optimization.

The delivery of an order often occurs not at one time, but, rather, is realized in 
parts. This practical situation is analyzed in the so-called reliability-type models 
(described in the next section), where usually no direct cost optimization exists. 
There are, however, some multi-item versions where cost minimization is carried 
out under a reliability constraint. The capital invested in initial stocks of different 
items has been minimized by Prékopa (1973) under the constraint that the proba
bility of shortage may not exceed a prescribed limit for any of the items. The 
optimal amount of the initial stock for the different items is determined by reducing 
the original stochastic programming model to a convex programming problem. 
The model for the delivery of an order is the so-called randomly-scheduled delivery 
process in which deliveries occur at random times during a given period in random 
amounts. This will be described in detail in the next section. Studying the same 
delivery process, Gerencsér (1973) investigated the conditions which allow the 
decrease of the order level calculated on the basis of an estimation of the shortage 
cost. The decreased order level has to ensure a prescribed service level.

A multi-item inventory model has been given by Prékopa (1973) in which the 
capital invested in the initial stock is minimized under reliability constraints. 
The probability of the shortage occurrence and the conditional expectation of 
the shortage (under the condition that a shortage occurs) is constrained. The 
second constraint is especially important in the case when the shortage cost de
pends on the amount of shortage. An algorithmic solution is described in the 
paper of Prékopa and Kelle (1976). This is based on a nonlinear programming 
algorithm where the reliability measure is estimated by a simulation technique. 
In another form of the model, the cost depending on the expected amount of 
shortage is also included in the cost function.

IU.5.2. Reliability-Type Models

An explicit cost function is not considered in the reliability-type inventory 
models, where the objective is to determine the minimal stock level which ensures 
continuous supply with a prescribed probability (service level). The advantage 
of such models is that the cost factors need not be determined, and that the random 
character of the delivery process can be more carefully analyzed.

The first reliability-type inventory model was given by Prékopa (1963) and 
Ziermann (1963). It was developed for the solution of the following practical 
problem: in an order period T, a commodity is consumed with a known constant 
demand rate c. The order for this total amount is delivered by the supplier in the 
order period denoted by (O, T). The delivery occurs not on one occasion, but at 
random times in the period (O, T) in n parts. In the first version of this random 
delivery model, the following assumptions were made:

The delivery, scheduled uniformly in time, is disturbed by random factors. 
The deliveries are assumed to occur at any time during the period (О, T) with 
the same probability. Thus, the elements of an ordered sample, taken from the 
uniform probability distribution in (О, T), are considered as a realization of the
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delivery times. The amounts delivered during the period are assumed to be the 
same at each time of delivery.

The consumer arranges to have an initial stock M  as its safety stock for each 
period to protect the consumption process against random fluctuations in deli
very. The problem can be posed as follows: how to determine the minimal level 
of the safety stock which ensures a continuous supply during the entire period 
on a prescribed service level, which is usually a probability denoted by (1— e) 
(e is a positive number close to zero in practice, e.g. e =  0.01—0.2). If the rate 
of the shortage and the inventory holding cost factors are known, the probability 
(1—e) can be determined: the corresponding value of the service level results in 
a cost optimal stock level, as described by Klemm and Mikut (1972). In practice, 
however, the appropriate choice of the prescribed service level is much easier to 
decide than to estimate the shortage cost factor. This experience is utilized by the 
development of reliability-type models.

The optimal level of the initial stock M  is the solution of the so-called reliability 
equation which can be solved by numerical methods for nonlinear equations or 
using tabulated values. Often an approximate solution is given in a simple explicit 
form which is sufficiently close to the exact solution for sufficiently large values of 
n (the number of deliveries).

The first generalized version of the above random delivery process was given 
by Prékopa (1963), in which the amounts delivered are also random. Ther~ is a 
minimal amount <5>0 which definitely arrives when a delivery occurs. The 
remaining amount is randomly subdivided among the lots delivered by л —1 
random points, which are uniformly distributed on the respective intense repre
senting the randomly delivered part of the ordered amount. This is the so-called 
randomly-scheduled delivery process for which the asymptotically optimal value 
of the initial stock level M  has been described in a simple explicit form.

The exact optimum for the above model was given by László (1970) in the 
special case when 5=0, as the solution of a nonlinear equation. It can be applied 
when no information is available about the expected minimal lot-size of delivery. 
The case when the total demand of the order period is different from the total 
delivery has also been investigated: the general exact solution for these questions 
was given by Kelle (1980). An analogous multiperiod reliability-type inventory 
model was investigated by Pintér (1975), where an asymptotically optimal estimate 
of the initial stock is given for the case when the number of the deliveries and/or 
demand occurrences follows a joint descrete (possibly unknown) probability 
distribution.

The delivery of an order often happens in one lot after a random leadtime. 
If the distribution of the leadtime demand is known, then the safety stock belonging 
to the prescribed service level can be easily expressed. The formulas are especially 
in the case of a normal distribution very simple. They are also often applied in 
practice in the case of other distributions as approximate solutions. Among the 
first of such results were those of Brown (1967), Gerson and Brown (1970).

The number of deliveries may be so numerous that it is possible to consider 
this as a continuous process. In the model of Németh (1971), the Wiener process 
is applied to the approximation of the delivery process. The mean rate of demand 
and delivery is assumed to be equal. This has been generalized for different mean 
rates and for random demand or delivery rates by Kelle (1980). The minimal

41



safety stock level belonging to a prescribed probability level of continuous supply 
is the solution of a nonlinear equation.

Forecasting and stock control methods have been given by Croston (1972) 
for intermittent demands. The length of the review period is fixed. In most of 
the periods there is no demand. An order is placed if a demand occurred in a 
given period. The order is delivered at the beginning of the next period. The order 
level must ensure a prescribed service level which is measured by the probability 
of the continuous supply. The specifics of the intermittent demand occurrence 
are taken into account in the forecasting of the expected demand.

Demand has often trend and seasonal influences. Mann (1973) has proposed, 
for this, a second-order exponential smoothing technique. The amount of ordering 
is the sum of the demand predicted for the next period and the safety stock which 
is determined under reliability criteria based on the estimated error of the fore
casting. The demands in the different periods are assumed by Yaspan (1972) to 
be correlated normally distributed amounts with different parameters. By trans
forming the reliability criteria of a continuous supply a multi-dimensional corre
lated normal distribution function is obtained which can be tabulated in the 
two-dimensional case. In more than two dimensions, a simulation technique must 
be applied. In the model of Bürgin (1975), the amount demanded in unit time 
has a gamma distribution. Two different types of reliability constraint are consid
ered: an iterative procedure is derived when the probability of the continuous 
supply is prescribed, while if the expectation of the shortage is co n ta in ed  then 
the optimal value of the order level is determined by the gamma function values 
which are tabulated. In both of these cases, a simple explicit expression is given 
for the approximation of the optimal order level.

The first model where the delivery may be a random process which is not 
necessarily homogeneous in time was given by Prékopa (1973). The deliveries in 
a given order period may be cumulated at any part-period in a random way. 
Thus the stochastic-type informations available at the time of ordering can be 
used to construct a realistic estimation of the delivery process. This results in a 
better planning of the necessary initial stock level which ensures a prescribed 
service level. Computationally, it means the solution of a nonlinear equation, 
where the probability of the continuous supply is calculated on the basis of the 
above model using simulation techniques. The relevant algorithm has been given 
in detail in the paper of Prékopa and Kelle (1976).

1П.6. Multi-Item Inventory Models

The joint constraints symbolize as a rule, the connection among different 
items which makes it sensible to consider a joint inventory policy for a group of 
items. The total value of the orders placed at the end of a given period is limited 
in the model of Rényi and Ziermann (1961). Under this capital constraint, the 
sum of inventory holding and shortage costs is to be minimized for the N  different 
items. The demands of the different items are independent, normally distribute 
amounts. The vector of the optimal order quantities is constructed by means of 
the Lagrange multiplier method.

Two different constraints are considered by Gerson and Brown (1963). In one
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of the models, the total value of the safety stock is limited and the loss of profit 
is minimized under this constraint. In two other models, the loss of profit or the 
sum of the ordering and shortage costs is minimized under some limit on the 
value of the average joint inventories for N  items. In all of these cases, the La
grange multiplier method has been applied. As well as the capital constraint, the 
rate of delivery is also limited by Buchan and Koenigsberg (1963).

The expected value of the maximal joint inventory level is constrained in the 
multi-item model of Ryshikow (1969). The objective function is the sum of the 
expected inventory holding and shortage costs. The total inventory holding cost 
for a group of items is minimized under a constrained probability of shortage in 
an other model of Ryshikow (1969). In the papers of Prékopa (1973), Prékopa 
and Kelle (1976), the reliability constraint may be formulated as the conditional 
expectation of shortage. These models consider the random delivery process 
previously described.

The joint inventory capacity is bounded in the model of Page and Paul (1976). 
The demand is known and the order is placed jointly for all the items. The length 
of the order period to be determined is that which minimizes the total ordering 
and inventory holding cost while the maximal joint inventory level is below the 
capacity limit. A generalization of the above model has been given by Zoller
(1977). A constant leadtime and a fixed order amount was considered; thus the 
length of the order periods may be different. A solution is given only for some 
special cases.

The joint ordering policies for a group of items usually result in a lower total 
cost, than that resulting from an individual policy for each independently formu
lated item. The cost reduction may be a consequence of the annual ordering cost 
decrease due to joint ordering, or a consideration of the demand dependence 
may result in a saving in inventory holding and/or in shortage costs.

The independent ordering policies of a group of items was first integrated in 
a joint ordering policy by Balintfy (1964). The (j , c, S ) policy, therein introduced, 
controls the ordering in the following way: if the inventory level of any of the 
items decreases to its own reorder point s, an order is placed for this item and 
for all the other items with an inventory level below the so-called can-order point 
c which is higher than the reorder point s for each item. The order level S  is also 
fixed item by item. For those items with an inventory level above c, no order is 
placed. The number of resulting orders is generally less which results in an ordering 
cost decrease but implies higher inventory levels. Optimal joint ordering usually 
ensures a lower total cost than independent ordering policies. Silver (1965) de
termined—for a Poisson distributed demand and two items—those conditions 
which make it possible to reduce the total cost by introducing an (s, c, S ) policy. 
Ignall (1969) showed, however, that the (s, c, S ) policy is not always the best 
joint ordering strategy even for two items. In some cases, the optimal order amount 
can be specified only by considering the inventory level of the other item. For 
these cases, the optimal policy can be constructed, for example, on the basis of 
Markovian renewal theory.

The dynamic programming technique was applied to determine the optimal 
ordering of two items by Iglehart (1965). A recursive relation was derived which 
can be handled only in special cases and which is numerically very inefficient. 
This result was widely generalized by Veinott (1965) also using dynamic program-
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ming. N  different items are considered which may be related to each other. The 
demands for the items in a given period are described by a random vector. The 
demands for different periods are assumed to be independent and they may have 
different distributions. Only an ordering cost proportional to the amount of 
ordering is considered, no fixed ordering cost exists. If some assumptions con
cerning the cost function are valid, it is sufficient to deal with the cost of a single 
period. In this case, the optimal ordering policy is characterized by the s and S  
parameters for each item and a stocking rate for all of the items. If the inventory 
level of all items is below the reorder point, an order up to level S  is placed. If, 
for one of the items, the inventory level is greater than s then the minimal amounts 
have to be ordered for each item which ensure an optimal stocking rate. Ignall 
and Veinott (1969) reduced the multi-period dynamic model to a single period 
problem under more general conditions taking the inventory capacity constraint 
also into account and proved the optimality of the above joint ordering strategy. 
For the case of two items and backorders, Wright (1968) derived an optimal 
ordering policy with normal and urgent ordering possibilities. The numerical 
solution of the dynamic programming model is very difficult. Evans (1967) in
vestigated the two items model in the lost sales case. The optimal ordering policy 
has a complicated structure. A vector of order, two scalar functions and a vector 
function divide the plane of the inventory level vectors and in each domain a 
different ordering rule is determined. In another paper of Evans (1969), a multi
item production-inventory model was described. The optimality of a generalized 
(s, S)  policy is proved in the backorders case for production costs with quantity- 
proportional and fixed factors. In the lost sales case, this statement is valid only 
for a production cost factor proportional to the amount produced.

The fixed ordering cost which does not depend on the ordered amount, usually 
causes difficulties in the construction of joint ordering strategies. This is eliminated 
under quite general assumptions by the so-called (er, S) policy defined in the 
papers of Johnson (1967, 1968). This is a multi-dimensional generalization of the 
(.V, S) policy where the order level S  is replaced by an TV-dimensional vector of 
the order levels, and the reorder point s is replaced by a subset a of the TV-dimen
sional space. If the vector of the inventory levels is contained in the set <r, an 
order has to be placed which increases the inventory levels to the levels prescribed 
by the vector S. In the opposite case, no order is placed. The inventory model 
is reduced, in the discrete case, to a Markovian decision process and using the 
decision iteration method of dynamic programming the optimality of a (<r, S ) 
policy is proved. The numerical solution is not investigated. For the continuous 
case, the optimality of a (<r, S) policy has been proved by Kiienle (1977).

A simplified ordering strategy has been suggested by Ryshikow (1969) for TV 
items. If the inventory level of a single product decreases to a critical level, an 
order is placed for all of the items. The case of a joint shortage cost, paid according 
to the greatest shortage, is also investigated. For the optimal parameters of the 
simplified ordering strategy a simple algorithm is derived: the iterative solution 
of a system of equations yields a good estimation. In another paper of Ryshikow 
(1972) an iterative solution is given for the (v, c, S )  policy by means of a con
tinuous review approach. The stoachastic interdependence of the demands for 
two items is considered by Hochstädter (1973) and a nonlinear programming 
method is proposed for the calculation of the optimal order quantities.
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Ш .7. Multi-Echelon Models

A joint ordering policy of serially linked echelons was first formulated by 
Clark (1958), and later by Clark and Scarf (1960). In the chain of echelons the 
item gets into the subsequent store by a prescribed rule and the demand is satisfied 
at the end of the chain. The optimal joint stocking policy was derived only for 
two subsequent echelons for the case when no fix ordering cost was considered. 
Under this supposition the cost functions can be separated for the two echelons, 
introducing a penalty function which replaces the costs concerning the other 
echelon. For other cases, only an approximate solution method has been sug
gested.

The internal storage o f a production line has been modelled by Schussel (1968), 
where successive production levels are connected to each other by the introduc
tion of internal stores. An iterative procedure is derived for the determination 
of the optimal lot sizes at each level, resulting in a minimal total cost of setups, 
production, stock holding and capital investment for all of the internal stores. 
Here, the joint optimum is approximated step by step starting from the optimum 
of the individual levels.

A chain of three echelons is described by Ryshikow (1969), where the products 
of the different production levels are stored. The demand for the finished product 
in a period is a random amount having a known distribution. If a shortage occurs 
at any level of the production, then it has a shortage cost consequence, where 
the cost factor depends on the production level. At a higher level of finishing an 
increased cost factor appears. For the determination of the optimal stocking 
policy a complicated algorithm is suggested.

The ordering policy of two serially linked echelons is connected with demand 
forecasting in the paper of Iglehart and Morey (1971). The optimal stocking 
policy of the first echelon is of the (s, S)-type, while the second echelon has a 
complicated ordering strategy characterized by the levels s„ and S n changing from 
period to period and the ordering is dependent also on the predicted demand 
for the next period. The parameters of the optimal ordering policy can be cal
culated by a recursive procedure.

The joint inventory policy of parallel stores has been investigated by Allen 
(1958). A central depot supplies parallel echelons, where customer demand is 
satisfied. The connection between parallel stores was also considered by Hadley 
and Whitin in their paper published in the book edited by Scarf, Gilford and 
Shelly (1963). A redistribution of inventories is possible between parallel echelons 
through fast or normal transportation. These redistributions make it possible to 
reduce the joint inventory level which satisfies the random demands appearing 
at the stores. The paper of Gross published in the same book considers stock 
distribution between parallel echelons controlled by a central depot. Here, a 
single period model is constructed. A multi-period, dynamic stock-distribution 
model has been given by Bessler and Veinott (1966). This is an adaptation of the 
multi-item model of Veinott (1965), where the same type of items in different 
echelons are considered as different items of a single store.

The multi-echelon model of Sherbrooke (1968) has been constructed for the 
stocking of reparable spare parts. The faulty parts can be repaired with a certain
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probability in the local depot, otherwise they have to be transported into the 
central depot for repairing. The (S'—1, S)  inventory policy provides an optimum 
for expensive spare parts, i.e., a one-by-one repairing scheme is optimal.

Stochastic connections between the demands of two parallel stores have been 
taken into account by Iglehart and Lalchandani (1967) in the construction of an 
optimal inventory policy. The joint inventory level of the two locations is limited. 
A recursive solution method is given for the calculation of the optimal policy. 
Only the purchasing cost factor, which is proportional to the quantity, is con
sidered as the ordering cost. The fixed ordering cost has been also included in the 
model of Hochstädter (1970). The redistribution of stock among the parallel 
stores is not possible in the above models. The cost function can be separately 
considered by introducing a penalty function as was done by Clark and Scarf 
(1960) for serially linked echelons. This procedure yields, in general, only an 
approximation of the optimal solution.

In the book of Ryshikow (1969) models are also presented for parallel stores. 
N  inventory locations have the same stocking conditions (demand distribution 
and cost factors). For the minimization of the shortage, distribution and redistri
bution costs, a complicated algorithm is derived which involves the solution of 
a transportation problem, too.

The model of a combined multi-echelon system of stores has been given by 
Chikán and Meszéna (1973). Both parallel and serial stocking locations are in
volved. The optimization of the system is based on a bottom-up technique. In 
the lowest level, where the random demands of customers appear, an (s, nq) 
policy is applied. The central supplier has a fixed ordering cycle and an order- 
level policy is realized. In connection with the cost factors, the measures of risk 
and reliability are also investigated.

The joint analysis of multi-item and multi-echelon inventory systems has a lot 
of difficulties, especially in the numerical evaluation of the optimal policy. In 
the book of Ryshikow (1969), such a complex system is investigated considering 
stochastic demand. The model consists of two problems: the supply problem 
based on cost minimization, and the stock distribution depending on the inven
tory level of the stores.

IIL8. Simulation Models

Inventory control was one of the first areas of application of simulation tech
niques. Inventory management problems are often connected with time-depend
ent and random processes which can be described by simulation methods in a 
very natural and straightforward way. The mathematical difficulties arising from 
the analytical solution of even a simplified model underline the importance of the 
simulation models which enable us to describe a very complex, sophisticated 
inventory control system.

The first report on a simulation-type inventory control application was given 
by Robinson (1957). The interdependence of a central oil depot and some external 
depots was analysed by a simulation. The characteristics of the central depot 
have to be specified for which the reliability of the whole system is guaranteed
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on a certain prescribed level. The simulation program enables the joint of a 
number of stochastic influences.

A similar multi-echelon system simulation study was presented by Berman
(1961). The initial stock of the parallel echelons is known. Until the next central 
delivery, they can deliver to each other if a shortage occurs somewhere (this is 
called redistribution). The central order strategy and the redistribution strategy 
is determined by simulation. A complex multi-item system was solved by Dzielinski 
and Manne (1961) by using a similar approach.

For research into complex systems, special program languages, the so-called 
simulation languages, have been developed. The most important of these are 
DYNAMO (1959), SIMSCRIPT (1962), GPSS (1965) and SIMULA (1967). 
These program languages provide a suitable and convenient means for the in
ventory control of complex systems of items and stocks even when considering 
the stochastic dependence among the different elements of the system. They can 
be applied to research into an integrated system of production, maintenance, 
scheduling, marketing and inventory control. A book reviewing simulation 
methods applied to the above-indicated systems of business and economics has 
been published by Meier, Newel and Pazer (1969).

Even for relatively simple inventory control models, simulation techniques can 
be useful. As an example, one can mention investigations concerning the optimal 
parameters of the well-known (s , S ) inventory policy; see, for example, Geisler 
(1964), Valisalo, Sivazlian and Maillot (1972). This has also been a trend in research 
during the last 10 years.

In many papers, an ever-increasing number of complex systems are analyzed, 
applying simulation methods. This is another area of research which has received 
emphasis in the last few years, examples of which are, amongst others, the papers 
by Bankaiev, Kostina and Jarovicki (1974).

П1.9. Directions and Results of Recent Years

Ш.9.1. Methodological Directions

The development of inventory control methods—in connection with the general 
development of the mathematical economic and computer methods—has resulted 
in many important new results. Here, only a small fraction of these new results is 
summarized in order to illustrate the most important methodological directions 
of theoretical results, modelling and solution methods investigated in the last 
few years.

Methods o f mathematical analysis play an important role in the study of multi
item models. A simplified strategy of joint ordering with periods of equal length 
was optimized by Silver (1976) by means of simple analytical methods. This 
procedure was simplified by Goyal (1980) and by Goyal and Belton (1980). The 
fast procedures enable, for practical applications, the determination of the optimal 
joint policy for many items together. In the case of a demand having a linear 
trend, optimal ordering was described by Donaldson (1977) using elementary 
means. This result was generalized by Henery (1979) for an arbitrary increasing
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demand. The unique solution is given in a simple form, when the time-dependence 
of the demand can be described by a logarithmically concave function.

Combinatorial methods may increase the speed of the algorithmic solution of 
known inventory models. A fast algorithm was published by Baker, Dixon, 
Magazine and Silver (1978) for the dynamic lot-size model under time-dependent 
capacity constraints. A similar problem was solved in the papers of Richter (1976), 
(1980) by means of the branch and bound technique of discrete programming, 
taking into account production and inventory capacity constraints.

Control theory serves a means of describing inventory problems in a very 
natural way. The methods of solution of inventory control problems based on 
modern control theory were first summarized in the book of Bensoussan, Hurst, 
and Naslund (1974). Optimal linear decision strategies for production-inventory 
systems were described by Pervoswansky (1975). A control theoretical model of 
a moving-band production with inventory was given by Pervoswansky and 
Holmach (1978). The solution is based on linear programming. The characteristics 
of a multi-item inventory model system have been determined by Popplevel and 
Bonney (1977) using control theoretical results. Schneeweiss (1977) investigated 
optimal stock control under different (especially quadratic) cost criteria. A multi
item model with stochastic delivery and demand was formulated by Pintér (1977) 
as a control problem with a stochastic objective function. The solution is deter
mined by simulation. The optimal structure of a deterministic multi-item produc
tion-inventory system was analyzed by Rempala (1981) using the control theory 
methods.

The new results of stochastic dynamic programming have been applied to increase 
the speed of convergence of the value- and decision-iteration method of Bartmann 
(1975) and Van Nunen (1976). Optimization considering only linear decision 
strategies was investigated by Inderfurth (1977), and results in a considerable 
saving in the amount of computation. The optimality of the multi-item inventory 
strategies was investigated by Kalin (1976). New methods were derived for the 
determination of the optimal parameter of the (<r, S)  policy by Miethe (1978) 
and for the (.?, c, S ) policy by Peterson and Silver (1979). A simplified version 
of the second method was developed by Silver and Massard (1981) for an algo
rithm executable also on pocket calculators. Theoretical questions concerning the 
multi-S type generalized multi-item inventory policy were investigated by Bylka 
(1980) by means of stochastic dynamic programming.

The development of queuing theory has also had an effect on research into 
inventory models. For multi-item models, the stochastic dependence of demands 
was considered and the state probabilities were derived by Girlich (1977) whilst 
the Erlang-type demand distribution was investigated by Miethe (1978): both 
results were based on an analogy with certain queuing models. By means of the 
theory of stochastic point processes, the validity of the classical economic order 
quantity model has been extended for a certain type of stochastic demands.

Reliability-type inventory models play an important role from the point of view 
of applications. Safety stock planning methods based on these models have been 
considerably developed. Kleijnen (1976) argued that the standard method used 
in inventory control program packages is not suitable for periodic review. It is 
based on a continuous-review model and, even with the corrections which are 
usually applied, is far from the optimal safety stock of periodic review. The exact
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optimum of the safety stock has been derived by Bürgin and Norman (1976) for 
a gamma distributed demand, and by Schneider (1978) for an arbitrary demand 
distribution. In another paper of Schneider (1981), simple methods are given 
which provide a good approximation of the optimum.

Investigations concerning random delivery processes, which cause difficulties 
in the practical planning of safety stocks, have continued. The joint probability 
of the continuous supply of n different items is prescribed. Under this reliability 
constraint, safety stock levels are determined which ensure a minimal of total 
capital invested. A simplified method for random delivery was derived by Kelle 
(1977) based on the Lagrange multiplier method. The maximization of the relia
bility of a continuous supply is completed in another paper of Kelle (1978) under 
a budget constraint. The case of stochastically interdependent demands is also 
considered by Kelle (1979). The random delivery process model of Prékopa (1973) 
is generalized for arbitrary distributed random lots of deliveries: in the paper of 
Kelle (1980) both demand and delivery processes may be random.

Mathematical statistical methods have been applied to demand forecasting. 
The adaptive forecast method was improved by Günther (1976) and Girlich
(1977) . The results of statistical decision theory were applied to derive the type 
of optimal decision strategy and to approximated this optimal strategy as was 
given by Waldmann (1976) and Dietsch (1977). Markovian decision theory was 
used by Küenle (1977) and semi-Markovian decisions were applied by Miethe
(1978) to derive optimal decision policies.

Simulation methods are applied for the solution of inventory problems in two 
main ways. For the numerical solution of stochastic models, the Monte-Carlo 
technique can be used to calculate multi-dimensional probabilities, see, e.g., 
Prékopa and Kelle (1967): in most cases, however, the complete inventory 
system is investigated by simulation. In the theory of stochastic automata, the 
stochastic search procedures are new theoretical results for the description and 
optimization of complex production-inventory systems. The papers of Matthes 
and Müller (1977), Martin (1980) and Müller (1981) may be mentioned as exam
ples. Considerable effort has been made for the control of time-dependent demands 
e.g., by Ritchie (1981) using simulations technique.

Ш .9.2. Applications

Applications have developed in two main directions: models developed for 
specific practical problems, and new general program packages for production 
and inventory control. Relatively few results have been given for real-life applica
tions. On the basis of these papers, we will present a summary of the most im
portant fields of application.

The inventory control of deteriorating items has been investigated since the 
beginning of the seventies. Among the latest results published, the papers of 
Nahmias (1975), Fries (1975) and Nahmias (1981) should be mentioned. Their 
practical importance is that simple, fast procedures are given which provide a 
good approximation of the optimal policy under more general assumptions than 
earlier, similar, procedures. As practical uses of these new methods, examples 
have been described for food, photo material, medicine, etc., stocking. A special
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field of application is the so-called “blood bank” system detailed, for example, 
by Jennings (1973). An inventory model applied for hospital pharmacy has been 
given by Pegels (1981).

The characteristic of spare-parts stocking is the time-dependent demand. In
creasing, stabilized, and decreasing, demand occurs depending on the age of the 
machines. An inventory policy was constructed by Ritchie (1981) which considers 
this fact. A simple fast computer method was developed and applied which 
provides an approximately optimal policy. A complex country-wide spare-parts 
supply system control was developed by Sarjusz and Wolski (1980) which operates 
on the basis of short-range forecasting, normative and economic regulators. 
A multi-echelon spare-parts inventory system was modelled by Hollier and 
Vrat (1976) in which stocking and repairing of the parts are to be controlled.

Production-smoothing models determine the amount of stocking for strongly 
fluctuating demand in such a way that the summed cost of inventory holding 
and the cost due to the fluctuation of the production level (overtimes, excess of 
manpower, unutilized capacity, etc.) should be minimal. A description of these 
models was given by Eilon (1977), an application in building industry was described 
by Papathanassiou (1981), and an experimental application in six branches of 
industry has been surveyed by Ghali (1981).

The investigation of production and inventory systems has been developed in 
many directions. The two main fields of research which can be clearly distinguished 
are the deterministic field of materials requirement planning (MRP) and the 
stochastic field of multi-stage models. In the production and inventory planning 
of complex, multi-level, hierarchical production systems, the new idea of MRP 
has been very successful. This technique was introduced by Orlicky (1975). Re
views about the results of its applications in production control were given by 
Baker (1977), and Blackburn and Millen (1981), among others. The internal 
storage model of a production line given by Kelle (1978) considers the stochastic 
factors and correlations of the demands and production equipments. A reliability- 
type inventory model applied in commerce has been described by Moritz (1978). 
A review was given by Kelle (1980) on the application of reliability-type models 
in industrial, commercial and supply enterprises. The control-theoretical in
vestigations concerning a planning system for internal storage planning in a pro
duction line was described in the papers of Tapiero (1977), Stohr (1979), O’Grady 
and Bonney (1981).
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IV. Processing of the Models— 
Principles and Methods

In the course of the research work on which this book is based, we have sought 
to achieve results applicable both in theory and in practice, by processing the very 
ample professional literature as well as by surveying the largest and most charac
teristic section of existing inventory models. Accordingly, it was necessary to 
choose a processing method which facilitated this dual goal: theory and practice 
alike.

In appraising the models, we have started from the basic principles explained 
in the preceding chapters. Thus, in categorizing the inventory models as decision 
models, we have taken into consideration the four spheres of these models de
scribed in Section 1.2.3, whereas, the “properties” of the models have been in
vestigated on the basis of the analysis of the item-level inventory system.

In this book we have considered 336 models. It is our hope that this “sample” 
appropriately represents the models available in the literature dealing with in
ventories, which, according to our estimations, comprise in total at least three 
times this number. The English, German, Russian and Hungarian literature has 
been examined, including the many notable books and most of the international 
journals in this field. Forty percent of the models originate from 11 books, 50% 
from 12 journals and the remaining 10% from other publications. As for the 
chronological origin of the models: 7 models were published before 1960, 66 
between 1961 and 1965, 113 between 1966 and 1970, 99 between 1971 and 1975, 
and 51 after 1976. The bibliography of the models considered are given in Ap
pendix I.

We adopted two approaches for processing and analyzing the models. On the 
one hand, we prepared a 1—3 page concise description of each model—the 
slightly modified (mostly abbreviated) versions of these descriptions constitute 
the second part of this book. On the other hand, we prepared a coded version of 
each model based on a previously elaborated uniform code system consisting of 
45 elements (this is practically the coded model of the original model), where 
the single code values represented the main features of the model. In the following, 
we review these two processing approaches. It is necessary to detail the code 
system and its application, even if this may seem to be a bit dry for some readers, 
since this formed the basis for analysis and evaluations as well as for the classi
fication of the models, which we consider to be one of the main results of the 
book. Moreover, this may form the basis of practical applications.

SI



IV.1. The Model Descriptions

The description of the models considered has been prepared partly as a remin
der and as a reference. It was possible to record a great deal of information in 
this way, which could not be captured by the coded version due to the character 
of the models. Our other, similarly important goal has been to represent models 
in a form which is easy to understand for managers, who might want to implement 
a given model and wants to know under what circumstances a certain model can 
be used. After reading the brief description, the user should be able to decide 
whether the model fits precisely enough to the actual inventory system he wishes 
to model.

It is not necessary that the original model be completely reconstructed from 
the description, since it can be traced back to the bibliography. We do not touch 
upon the derivation of the mathematical models, neither will verification of the 
propositions be found in these descriptions. Nevertheless, we must refer to the 
route of solution and to the existence of the exact optimum or approximate solu
tion, for the way in which the decision parameters are determined is a matter of 
importance.

Each description contains—in a consistent way for each model—the denomina
tion, the assumptions system, the objective function, the solution algorithm and 
bibliographic reference (summarized in alphabetical order in this book).

The denomination of the model stresses the most important traits of the model, 
only. The description of the model’s assumptions system makes up the major 
part of the summary. The features of the model are detailed according to the 
characteristics of item(s), store(s), replenishment (input), demand (output) and 
constraints.

Knowing the assumptions of the mathematical model makes possible to decide 
whether to accept or reject a given model for a particular practical application.

According to the approach for analyzing the item-level inventory system given 
in Chapter II, we describe the components of the system, the connections among 
the components, the environment and the resources of the system by means of 
the assumption system.

The presentation of the objective function is also essential in a user-oriented 
description since the objective function contains those variables which decisively 
determine the performance of the inventory system and can thus be directly 
influenced by the user (decision maker).

Should the objective function be either to determine the minimum cost or the 
maximum profit, or to meet a reliability requirement, in all cases the desired 
behaviour of the inventory system is expressed in it, irrespective of the mathe
matical approach involved.

On the basis of our system approach, the objective function measures the 
efficiency of the system.

For the expert, the solution of a given inventory problem means determining 
the best values of the decision variables (which he can influence), under the 
existing circumstances, for achieving the set objectives as closely as possible. In 
other words, the solution algorithm is focused on the determination of the optimal 
values of the decision parameters which satisfy the given constraints. In numerous
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cases, either there is no unambiguous solution or the optimum values of the deci
sion variables cannot be expressed by a closed, analytically tractable mathematical 
formula. Neverheless, this information is useful in practice also, since it often 
turns out that from among the set of the possible values of the decision variables 
some are definitely better than the others, or they reasonably approximate the 
optimal solution. Determining the values of the decision variables (by the solution 
algorithm) the behaviour of the system may be affected so that it will tend towards 
the desired condition.

The bibliographic Reference gives the original source of the model. In this 
way, full particulars of the deductions, verifications, etc., not provided in our 
description can be easily checked. The model descriptions are sufficient to enable 
an idea of the models and to select the likely suitable models for application. 
A practical application requires, in any case, a comprehensive knowledge of the 
original model.

The second part of this book has been prepared on the basis of the original 
model descriptions. (The description of some important models have been given 
more completely, whereas others have been significantly abbreviated.) The group
ing, according to which the model descriptions are given, as well as our basic 
knowledge concerning the models, is supported by the computer outputs of the 
coded model versions which are based on the code system described in the follow
ing section.

1У.2. The Code System

IV.2.1. Aspects for Developing the Code System

In devising the code system we had to keep in mind the fact that the unified 
code system was to be suitable to identify—“describe”—several hundred models. 
This meant that we had to proceed very carefully in elaborating the system so 
that the coding system was flexible enough for evaluating models with very 
different approaches and containing very different assumptions, on the basis of 
consistent principles. For this reason, we studied a great number of inventory 
models systematically prior to compiling our code system in order to obtain an 
impression of the possibilities, circumstances and traits. We also carried out 
numerous trials.

As the developing of the code system we had to take into account which different 
aspects could be discussed in one model. As an example to illustrate this: an 
important question concerning every inventory management model is how many 
items can it handle. It is quite obvious that two sharply distinguishable cases are: 
one, or several, items making up the inventory. In compiling our code system we 
considered this question to be the most important, but we also insured that the 
specific, or the parametrically set, number of items should also be included in 
the code system. In other cases, however, the logical separation of “possible 
cases” was not so evident at all.

Thus, the possible versions of the model’s characterizing criteria (assumptions, 
conditions), constituted one group of factors which required attention. The other 
group were the characterizing criteria themselves. As for a given criterion, certain
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versions of the criterion were also to be taken into account. In the same way, 
inserting some criteria in the code system was also obviously necessary. One 
soon realizes that, for example, the deterministic or random character of the 
demand and replenishment process, the number of items and stores, the objective 
of the model, the cost factors, etc., are all indispensable criteria characterizing 
a model, and, as such, are of primary importance (with a few exceptions only).

Nevertheless, the situation is different in many cases. There are a lot of criteria 
which exist or become important only with regard to a small part of the models. 
As far as developing the code system was concerned, the objective was to find 
a proper proportion: on the one hand, for the majority of the models, criteria of 
minor importance about which, therefore, only rather loose information, or just 
nothing, could be put into the code system, were neglected.

We also had to take care not to miss important criteria, maybe not in every 
model, but in a considerable fraction of them. In such cases, the coding system 
would not be able to “accept” a non-negligible part of the models.

IV.2.2. The Structure of the Code System

It became more and more apparent in the course of our research that the im
portance of the information to be transferred from the original model into the 
coded version is rather varying. Based on theoretical considerations and practical 
experiences we have distinguished ten criteria which describe the most essential 
features of any inventory management model. These are the following:
— number of the items stored in the system,
—■ number of stores in the system,
— character of the replenishment (the inflow or input) process,
— character of the demand (the outflow or output) process,
— mode of treating the temporal changes (dynamics) in the system,
— objectives of the system,
— operational mechanism of the system (depending mainly on the ordering rule)
— mode of inventory reviewing,
— mode of treating the shortages of items on stock,
— handling of leadtime.

The codes representing these criteria are brought together in the so-called “main 
codes” and have been treated separately from all the other codes both as to their 
form and contents. It has been our intention, because of the primary importance 
of the criteria involved, to accord the role of primary model identification, model 
characterization and model grouping to the main codes. At the same time, the 
main codes and the other codes are closely related in that the criteria succinctly 
expressed by the main codes are described in more detail in the other codes.
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1У.З. Detailed Description of the Code System

1У.3.1. Formal Characteristics of the Code Card

The coded version of the inventory management model is the completed code 
card. All the information required to ensure that the coded version conforms 
unambiguously to the original model has to be present on the code card. A typical 
code card is shown in Fig. 6.
In the upper left-hand corner of the code card appears an identity number (serial 
number). Each serial number identified one model. To the right of the identity 
number are 10 squares for the main codes.

The major part of the code card is reserved for the ten horizontal code rows. 
The initial letters in each row indicate the contents which provides—as mentioned 
before—the particulars of information delivered by the ten main codes (MCI— 
MC10).

The meaning of the letters given in the left-hand column is:
I =  item 
S =  store
R =  replenishment (input)
D =  demand (output)
DY =  dynamics 
OF =  objective function 
DV =  decision variables 
SM =  system and mathematics 
SO =  shortages and orders 
C =  costs

At the bottom of the code card there is room for bibliographical references. 
The code card has three “side-fields” for
— remarks,
— mathematical predictions, and
— the optimal solution.
These fields are separated not only formally but their contents differ from most of 
the positions in the code card, as well, since—as with the information in the 
rows “bibliography” and “objective function” (OF)—, the information here 
cannot be transferred to a computer, or, at least, only after considerable process
ing. We will describe the side-fields later.

IV.3.2. General Code Values

Prior to giving a comprehensive description of the individual codes, we have to 
mention three code values of general meaning.

It has been necessary in developing the code system to distinguish three cases 
(though, they sometimes merge into one another in the practice). One such case 
is when a model gives a “response” (criterion value) to a certain “inquiry” (crite
rion) which cannot be found among the set possible responses. This is the so-
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Fig. 6. Sample code card
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called “other” case. To denote this we have always used a code values 9, reserved 
for this purpose. In each case of this sort, a comment has been given on the essen
tials of the “other” case.

The situation is somewhat different with the “not treated” case to which we 
have allocated code value 7. In these cases, the author of the model does not treat 
a given aspect in his model, neither according to our method, nor in another way. 
Nevertheless, in numerous cases, even if the author does mention certain features, 
these can be concluded from other characteristics of the model. In these cases, 
we used common sense to answer the question in the code square.

The third case is when a certain criterion does not make sense in a given model. 
For example, if the model has one store only, then the question: “what type of 
connection exists between the stores?” has no sense. Code value —1 has been 
given to these cases.

After these preliminary comments we may now consider the detailed descrip
tion of the code system.

IV.3.3. The Main Codes

Number o f  items stored in the system (MCI)
From the point of view of the structure of the model one of the basic questions 

is whether one or several items are treated. Only this distinction has been made in 
the main code, and we did not ask the following question here: how much is the 
“several” ? (There is more specified information concerning this in the code row 
of items (I).)
The codes:

1 : one item stored 
8 : several items stored

Number o f stores in the system (MC2)
The idea is very similar to that of the previous one.

The codes:
1 : one store in the system 
8 : several stores in the system

Character o f the inflow ( input) process (MC3)
By the character of the inflow (replenishment) process we identify whether 

there are probabilistic (random) elements in it or whether every feature of the 
inflow is known (deterministic).

(The features or elements of the inflow process are: time of inflow, intensity 
of inflow, its discrete or continuous character, duration, quantity of the item 
coming in, etc.) If all these criteria of the input process are known with certainty, 
we speak of a deterministic inflow; if any uncertainty exists concerning any of the 
essential features (e.g., if we know only the respective probability distribution), 
it is considered to be a stochastic inflow.
The codes:

0 : input is deterministic
1 : input is stochastic
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Character o f the outflow (output) process (MC4)
With appropriate modification according to the sense, all the statements of the 

previous paragraph are valid for the outflow (output) process, too. Since we 
suppose—as is implicitly accepted in inventory theory—that the decision maker’s 
specific intention is to satisfy all demands if there is sufficient inventory on hand, 
the deterministic or stochastic character of demand determines the character of 
the outflow—which makes it possible to consider the outflow instead of demand 
in that respect. This is favourable for the symmetrical treatment of input and 
output.
The codes:

0 : output is deterministic
1 : output is stochastic

Way o f treating time in the system (MC5)
This criterion characterizes whether a model is static or dynamic. In studying 

the models and evaluating them by using the code system, it was, in many cases, 
this character of the models which was the most difficult to judge. The main 
reason for this was that in the literature there are no generally accepted relevant 
definitions and, thus, the authors of the various models have described their 
models static or dynamic according to different criteria.

We have considered as being dynamic those models for which the objective 
function (valid for the whole planning period) depends, in its general form, at 
any given time, on the values of the same objective function taken at some other 
time. Thus the actual form of the objective function may be determined on the 
basis of the interrelations between the various substitute values of the objective 
function. This criterion has proved to be acceptable in practice, although, several 
marginal cases have occurred.
The codes:

0 : the model is static
1 : the model is dynamic

The objective o f the system (MC6)
The general goal of operating an inventory management system is always the 

satisfaction of demand for a stored item. However, the operation of the system 
can be developed in different ways, and it depends on the concrete objective to 
be achieved by operating the system as to which way will be chosen from among 
the existing possibilities. Most of the models have the objective that the inventory 
management system is to be operated in the most economical way possible under 
the existing conditions, i.e., the operation cost shall be minimal, or the positive 
income balance (incomes minus expenditures) deriving from the operation of the 
system (covering the demands for the stored item) shall be maximal. These types 
of models are called optimization models.

Another group of models does not want to, or is unable to, take into account 
the operation costs. Usually, in these models the objectives are directly related to 
satisfying demands. The typical goal of these models is that the system shall be 
able to satisfy the demands for a stored item at any time at a given probability 
(reliability) level. These models are the so-called reliability models.
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Some models can be found, for which no other objective for specifying the 
mode of operation exists beyond the general goal of satisfying demands. These 
are called descriptive models. The descriptive models often represent inventory 
systems by instruments of control theory, describing the reaction, and its mecha
nism, of the system to the impulses of the “external world”.

These three types of models have been distinguished in our code system.
The codes:

1 : optimization model
2 : reliability model
3 : descriptive model

Operation mechanism o f the system (ordering rule) (MC7)
The operation mechanism of the system is decisively influenced by the decisions 

concerning the inflow of the inventory items into the store; that is, by the ordering 
rules regulating the inflow (input) process. These are the parameters that the 
decision maker (the operator of the system) can utilize—completing the environ
mental effects (conditions) which exist independently from his intentions—to 
influence the operation of the system.

As indicated in the previous chapters, the four basic types of operation mecha
nism of inventory systems are—with the usual symbols: (t, q), (t, S), (j , q) 
and (j , S ).

In numerous models, versions of these basic types are used where any of the 
parameters (decision variables) have been previously fixed, i.e., they are not the 
subject of optimization.

The prior fixing of parameters takes place either in order to achieve a desired 
objective or is justified by some external constraints. The fixed parameter is in
dicated by the index p. Our code system distinguishes between the above basic 
mechanisms (ordering rules) and the versions of these which come into existence 
by fixing certain parameters. The mechanisms occurring very rarely—e.g., the 
mechanisms (s, qp), (t, q), (t, qp) and (s, Sp)—have been attached to the appro
priate “basic mechanisms” so as not to diverge from the usual quantitative barri
ers of code values.

(The original mechanisms arise from the model descriptions in these cases, too.) 
The codes:

0 : (t, S ) mechanism
1 : (tp, S ) mechanism
2 : (s, q) or (s, qp) mechanisms
3 : (sp, q) mechanism
4 : (t, q), (/„, q) or (/, qp) mechanisms
5 : (s,S)  or (j , Sp) mechanisms
6 : (sp, S) mechanism
8 : (/, Sp) mechanism

Mode o f reviewing inventory (MC8)
In order to follow the operation of the system, and to ensure a proper basis for 

ordering decisions with information, the recording, checking, “reviewing”, of 
the inventories is of course indispensable in most of the cases. Inventory mod
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els distinguish two basic modes of inventory reviewing: the continuous and the 
periodic one.

In the case of certain special models there is no inventory reviewing. For those 
models describing processes of a deterministic character only, we qualify inventory 
reviewing as “meaningless”. If we suppose we know with full certainty the states 
of the system in advance, then reviewing the inventory has no point.
The codes:

0 : no inventory reviewing
1 : periodic review
2 : continuous review

Mode o f treating shortages (MC9)
In general, the models treat the shortage of a stored item in three essential 

ways. One possibility is that shortage is not allowed. Several models assume that 
though shortage may occur, the demand for the item in short supply will be 
covered later when the item is available. This situation is called “backlogged 
demand”.

In numerous cases, however, there is no point in considering the size of short
ages, since a demand for an out-of-stock item is “turned away” from the system, 
and is “ lost” to the system. In this case, items of only such quantity are to flow 
in—if other conditions remain unchanged—as the quantity needing to be pro
cured without a shortage, when the inventory level falls to zero.
The codes:

0 : shortage not allowed
1 : shortage allowed, demand backlogged
2 : shortage allowed, demand for the missing quantity is lost (lost sales) 

Character o f leadtime (MC10)
In practice, there is always a certain interval of time between the placing of an 

order and receiving the ordered quantity—this is called replenishment leadtime.
Models disregarding this leadtime may do so for two reasons. The first is that, 

if this time is very short compared with the other time intervals considered (e.g., 
to the time interval between two subsequent orders), then its effect is negligible. 
In the second case, it can be shown that for a considerable number of cases the 
replenishment leadtime, known in advance, does not change the structure of the 
model or the decision parameters.

The definition of the leadtime is not unambiguous. Another concept is also 
realistic—and many authors insist on this—namely, leadtime is defined as the 
interval between placing an order and initiating delivery. Despite this, we interpret 
the leadtime to equal the time between the placing of an order and the total 
delivery of the ordered quantity. These two intervals do not always coincide 
because supply often takes place either by several partial deliveries, or continu
ously. (A good example of continuous delivery is supply through a pipeline.) 
This means that, according to our code system, the leadtime is zero only if the 
total ordered quantity arrives immediately in one lot. Supplies occurring in more 
than one lot, or continuously, have been separated and denoted a separate code; 
in this way, all the cases in the following refer to one lot supply.
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Besides a zero leadtime, the most simple case is the constant leadtime. In this 
case, a known period of time passes between the placing of an order and receiving 
the ordered lot, and this will not change in the course of operating the system.

For some models, the length of the leadtime is known in advance, but will 
change in the course of the operation of the system. This case is called determinis
tic variable leadtime.

Much more important is when the leadtime is a random variable. In this case, 
we only know some probabilities concerning the arrival of the ordered quantity. 
The codes:

0 : no leadtime
1 : constant leadtime
2 : deterministic variable leadtime
3 : probability variable leadtime
4 : fulfilment in more than one lot, or continuously
This completes the description of the main codes. In the following, we review 

the other codes. These extend the information presented in the main codes, and 
are listed according to code card rows.

IV.3.4. The Items Code Row

Number o f items (II)
Whereas, in the main codes, the question which is addressed is whether one or 

several items are stored in the system, the information here concerns the number 
of sorts of items. Some multi-item models define concretely (numerically) how 
many items are stored (a good example is the two-item inventory model), however, 
in most cases, the number of items is indicated in general terms (e.g., the number 
of items stored is N).
The code:

an autocode (i.e., the specific number of items or the number of items given in
general terms)

Connection between the items (12)
Of course, this aspect is meaningful only in the case of multi-item models. 

We have identified the following cases in our code system. The first is that though 
there may be several items in the model they bear no essential relation to each 
other. The next possibility is that the items have a substitute character, i.e., one 
sort of item may substitute partly or entirely another one. If the items complement 
each other, this means that one item is suitable (able to cover demands) together 
with another item only (complementary items). A further form of connection 
between items is when a given model applies some joint condition, restriction, 
or constraint relating to several items (e.g., the quantity of a given item, which 
may be ordered depends on the ordered volume of other items, since the quantity 
to be procured simultaneously from all items is limited).
The codes:

0 : no connection between the items
1 : substitute items
2 : complementary items
3 : joint constraint for various items
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Type o f inventory (13)
By “type of inventory” we refer to the role of the inventory in the production 

process. The following types of inventories have been distinguished: raw materials, 
work-in-progress (or semifinished goods), finished goods, spare parts.

As a matter of course, an appropriate code is used when the model does not 
specify the type of inventory.
The codes:

0 : type of inventory is not specified
1 : stock of raw materials
2 : work-in-progress inventory of semifinished goods
3 : finished products inventory
4 : stock of spare parts

Changes in the value o f the item stocked (14)
By depreciation, we mean, here, decrease in the use value, i.e., the fact that an 

item will be less suitable to satisfy demands, or maybe entirely unsuitable, after 
a certain period of stocking.

In inventory theory, models treating items which can be used to satisfy demands 
only within a given limitation are usually called models with perishable items. 
An increase in value (appreciation) may occur, if, for example, the item can be 
sold at a higher price after a certain time due to market conditions, or if the physical 
properties of the items, as well as its ability to meet demands, improve in the 
course of storing.
The codes:

0 : no change of value
1 : depreciation
2 : appreciation

Measurability o f items (15)
By measurability of an item we mean the ways it can be measured or counted, 

depending on its physical character. A discrete measurability exists if the units 
of the item can be counted. The measuring of the items is called continuous if 
the quantity of the item expressed by a given unit can take any real number value, 
within a given interval.

It must be stressed that measurability is explained here exclusively according 
to the physical properties of the item in the model, and not on the basis of the 
set of possible values of the model’s decision variables (see DV2 below).
The codes:

1 : the item is continuously measurable
2 : the item can be measured in discrete units

IV.3.5. The Code Row of Stores

Number o f stores in the models (SI)
Similarly as for items, the actual number of stores in the models, which has 

been qualified in the main code as one or several stores, is considered by the
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detailed codes only. The number of stores may be indicated by a specific value, 
or in general form (e.g. “iV”).
The code:

autocode (i.e., the specific or general number of stores)
Connection between the stores (S2)

This aspect is appropriate only in the case of multi-store models. Three possible 
cases are distinguished in our code system. In the first case, the stores have no 
connection in merito with each other. In the second case, the stores are connected 
linearly. This means that there is no hierarchical relation among the stores in 
the sense of having a “central” store. The characteristic flow of items is when 
the items proceed from one store to another. The third case is when there are 
several parallel stores linked to a central store. The central store is the warehouse 
that allocates the inventory items ordered and stored by itself; according to some 
principles, among the parallel (e.g., regional) stores in compliance with their 
orders. Each of these regional stores may have an independent inventory man
agement.
The codes:

0 : no connection between the stores
1 : linear connection between the stores
2 : parallel stores connected to a central store (warehouse)

Storing capacity (S3)
In practice, the space at disposal for storing items is always limited. Never

theless, this constraint is often hardly of impotance because—due to other con
ditions and circumstances—the quantity of items actually stored is far less than 
the capacity of the storage facilities. This is reflected by the fact that there is no 
storing capacity constraint in a considerable fraction of the inventory models.

On the other hand, with numerous models—just as in many practical cases— 
the size of the store may become a “bottleneck”. In such cases, store capacity 
limitation is an integral part of the model.

For the sake of completeness, in our code system we have taken into account 
also the case—though it has less practical importance—when a lower (minimum) 
limit is set for the items to be stored (this may be an aspect for the economical 
utilization of the storing capacity).
The codes:

0 : unlimited storing capacity
1 : minimum limit
2 : maximum limit

IV.3.6. The Row of Input Codes

The input and output processes are the actual realizations of replenishment 
and satisfying demand respectively—two processes which have a basic influence 
on the operation of an inventory system.

In addition to their primary importance, input and output processes may be 
the most difficult to consider from the point of view of the code system. There
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exist many types of processes with significant differences between them. Input 
and output have a great number of characteristic parameters; from among these 
only the most important ones can be coded.

The input and output code rows have quite the same structure, since—as 
mentioned in the discussion of the item-level system—the separation of these 
“two” processes is a matter of viewpoint only: a process denoted “output” from 
the point of view of one of the item-level systems is an “input” from the aspect 
of another system; this situation always exists in practice. This is why only the 
row of inputs will be discussed in full. The codes refer to the date(s) of inflow 
and outflow, to their temporal distribution, to the quantity following in or out 
simultaneously, as well as to the temporal distribution of the quantity of stocks 
flowing in and out.

Character o f inflow (input) replenishment process (Rl)
The code is identical with the third main code.

The codes:
0 : input is deterministic
1 : input is stochastic

Reception (arrival) dates o f the ordered quantities (delivery dates) (R2)
Concerning the reception date(s) of the amounts of items inflowing due to a 

given order, we have to distinguish first of all whether delivery takes place in one 
or several (at most: countably infinite) time moments or whether the supply is 
continuous. In the case of continuous supply, our code system distinguishes be
tween supplies with uniform and non-uniform rates.

Should delivery take place in one single lot (i.e. the ordered quantity arrives in 
one delivery), our code system distinguishes between the two most frequent 
cases: the complete ordered quantity arrives at the beginning of the reorder 
period, or it arrives at the end of the reorder period. The case—of no great prac
tical importance—when the whole quantity arrives as a single consignment on a 
known date between the beginning and the end of the reorder period—i.e., after a 
deterministic leadtime has passed—has been ascribed as a delivery at the beginning 
of the reorder period.

If the shipment of the lot ordered by a single order takes place on several 
(countable) dates definitely known in advance, this case has been coded as “deliv
ery (reception) in definite time intervals”. Two codes have been reserved for 
such cases, if reception takes place on one or several dates but we do not know 
these date(s) exactly in advance.
The codes:

0 : delivery is continuous and uniform
1 : delivery is continuous, but not uniform
2 : delivery takes place in definite intervals (on several dates known in advance)
3 : the whole lot arrives at the beginning of the reorder period or delivery

takes place in one lot after a deterministic leadtime
4 : the whole lot arrives at the end of the reorder period
5 : delivery occurs in one lot at a random time moment
6 : delivery occurs in several lots at random time moments
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Probability distribution o f delivery dates (R31, R32)
As a matter of course, this code makes sense only if the dates of inflow are 

uncertain (i.e., if R 2=5 or 6). Our code system forks with the third input code 
into two sub-codes. The first of these sub-codes makes clear whether the proba
bility distribution of the arrival date(s) are specified by the model or not. The 
second sub-code shows—assuming a specification—to which, from among the 
practically important types of distributions, the model applies. Thus, this R32 
code can be explained only (i.e., its value is not —1), if R31 =1.
The codes:

Specification o f the probability distribution o f the shipment dates (R31)
1 : probability distribution is fixed
2 : probability distribution is optional
Type o f  the specified probability distribution (R32)
1 : uniform distribution
2 : normal distribution
3 : exponential distribution
4 : gamma distribution
5 : Poisson distribution
6 : binomial distribution

Quantity o f items arriving at one time (R4)
In the case of continuous delivery, the definition of quantities arriving at one 

time has no meaning, because the expression “at one time” presumes one or more 
discrete date(s) of delivery. One of the most important practical cases is if ship
ment takes piacé in one single lot.

The greater fraction of the models in which delivery takes place at several 
random times postulate that on these random dates one unit of the item is received.

Some of the models do not directly determine the quantity arriving at one time, 
but they establish the volume of the items received into the store up to a certain 
date (series of dates). Our code system labels this case: “treating of cumulated 
quantity received”. Finally, we have distinguished the case when the quantity 
arriving at one time is neither a unit of the item (at a random time) nor the entire 
lot.
The codes:

1: total ordered quantity arrives in one lot
2: the model treats the cumulated quantity received
3: a unit of the item arrives at random moments
4: a discrete given quantity but not the complete lot arrives at one time

Probability distribution o f the quantities delivered during the reorder period 
(R51, R52)

In our code system, we consider the total quantity of items being delivered to 
fill one order with optional scheduling as a basis. (This, in general, means delivery 
within one reorder period.) This code is reasonable if this quantity sum has a 
random character. (If the ordered lot arrives on several dates in different random 
quantities, but its total sum equals the ordered quantity within a reorder period, 
then we consider this case—in a slightly simplified way—as being deterministic.)
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Coding is identical with what has been demonstrated with the probability 
distribution of the reception dates.
The codes:

Specifications o f probability distributions o f the quantities received during 
reorder period (R51)
1: probability distribution is fixed 
2: probability distribution is optional 
Type o f  probability distribution specified (R52)
1: uniform distribution 
2: normal distribution 
3: exponential distribution 
4: gamma distribution 
5: Poisson distribution 
6: binomial distribution

IV.3.7. The Row of Demand (Output) Codes

Most of the considerations described in connection with the row of input 
codes are valid for the row of output codes with some obvious modifications 
(e.g., instead of inflow, outflow is to be considered, and instead of delivery, we 
consider demand, etc.). Therefore it is not necessary to repeat the aforesaid, 
however the codes themselves are given for the sake of completeness.

Character o f outflow (output) process (Dl)
The codes:

0: output is deterministic 
1: output is stochastic

Dates o f Demand Occurrence (D2)
The codes:

0: demand is continuous and uniform 
1: demand is continuous but not uniform
2: demand arises in deterministic intervals (several times during the reorder 

period with known dates)
3: total demand occurs at the beginning of the reorder period 
4: total demand occurs at the end of the reorder period 
5: demand emerges within the reorder period in one lot in a random moment 
6: demand emerges within the reorder period in more batches in several random 

moments

Probability distribution o f the dates when demands arise (D31, D32)
The codes:

Specification o f the probability distribution o f dates when demands emerge (D31) 
1: probability distribution is fixed 
2: probability distribution is optional

66



Type o f  specified probability distribution (D32)
1: uniform distribution 
2: normal distribution 
3: exponential distribution 
4: gamma distribution 
5: Poisson distribution 
6: binomial distribution

Volume o f demand arising at one time (D4)
The codes:

1: demand emerges in one lot within the reorder period 
2: the model treats the cumulated quantity of demands 
3: unit demand arises at random times
4: a given, discrete volume of demand, but not the total demand of the reorder 

period
Probability distribution o f the volume o f total demand arising during the reorder 
period (D51, D52)
The codes:

Specification o f probability distribution o f the volume o f demands emerging 
during reorder period (D51)
1: probability distribution is fixed 
2: probability distribution is optional
Type o f the specified probability distribution (D52)
1: uniform distribution 
2: normal distribution 
3: exponential distribution 
4: gamma distribution 
5: Poisson distribution 
6: binomial distribution

IV.3.8. The Code Row of Dynamics

Periodicity o f decisions made in the model (DY 1)

This code reveals essentially whether the modelled system operates during only 
one period or several periods related to each other. There are one-period models 
when only one decision is made for ordering at the beginning of the period, and 
at the end of the period the functioning of the model finishes.

Those models, in which the subsequent reorder periods functionally depend 
on each other, are called multi-period models.

In the multi-period models, in general, it is not a single decision which is made, 
but a sequence of decisions. Normally, there exists an (optimal) ordering rule 
valid for all periods but the concrete decision concerning the actual ordering—in 
accordance with this rule—generally has to be made for each reorder period 
separately,
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The codes:
0 : single decision
1 : sequential decisions

Mode o f treating temporal changes in the system (DY2) 
The code is identical with main code 5.

The codes:
0 : the model is static
1 : the model is dynamic

IV.3.9. The Code Row of the Objective Function

The objective o f the system (OF1)
The code is identical with main code 6.

The codes:
1 : optimization model
2 : reliability model
3 : descriptive model
After the code character the objective function itself (or the state equation) 

has been given on the code card.

IY.3.10. The Code Row of Decision Variables

List o f decision variables (DV1)
The decision variables are the parameters, the values of which will be determined 

by the decision maker in order to control the operation of the system. In fact, 
the decision variables usually represent the parameters (t, s, q, S ) by which the 
various ordering rules can be defined—see main code 7.

Nevertheless, the actual decision variables of a model (of a certain policy)—due 
to various reasons—do not always correspond exactly to the theoretical decision 
variables identifying this ordering rule. Therefore, it is necessary to specify the 
decision variables actually occurring in the model in addition to the theoretical 
decision variables described by the main code. This code serves this very purpose. 
(Where necessary, we have taken into account the theoretical and the actual 
decision variables in the remarks.)
The code:

autocode (list of symbols of the decision variables actually present in the 
models)

Character o f tlie set o f values o f decision variables (DV2)
By the character of the set of values of the decision variables we mean whether 

the variables are—in a mathematical sense—discrete or continuous. We emphasize 
again the difference between this code and item code 5. In the latter case, the 
description discrete or continuous character refers to the physical properties of 
the item, while here it refers to the mathematical properties of the decision
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variables. (The two aspects, of course, are frequently not independent of each 
other.)

We have identified three possible cases in our code system. According to this, 
the codes are the following:

0 : all decision variables are continuous
1 : all decision variables are discrete
2 : both continuous and discrete decision variables are present

Decision variables with a prefixed value (DV3)
As indicated in the discussion of the main code 7, some decision variables may 

exist, with certain types of policies, which are fixed at a definite level in advance 
(prior to optimization).

The code here indicates if any fixed (prescribed) decision variable exists, taking 
into account the type of policy of the given model.
The codes:

0 : no prescribed decision variable
1 : there is (are) prescribed decision variable(s)
A remark has been made following the code character stating which is (are) 

the prescribed decision variable(s).

IV.3.11. Systems and Mathematics Code Row

In this code row rather different issues have been handled; namely, some gen
eral characteristics of the inventory system modelled and some computational 
and mathematical aspects.

Reviewing inventory records (SMI)
The code is identical with main code 8.

The codes:
0 : no inventory review
1 : periodic review
2 : continuous review

Relation o f the inventory system to systems o f  higher level (SM2)
In reality, any inventory system is always a sub-system of some hierarchically 

higher management system. This is the reason for introducing this code.
The codes:

0 : the system is not explicitly connected to any higher level system
1 : the system is connected to some company management system
2 : the system is connected to some sectorial management system
3 : the system is connected to the national economic management system
We used a character other than 0 only if the connection was handled explicitly 

in the model.

Special constraints o f the model (SM3)
In some of the models there are special preconditions: constraints of an eco

nomic character restricting the potential “scope of operation” of the model.
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The special constraints of an economic character have been separated from the 
so-called mathematical preconditions. These will be treated later on in Section 
IV.3.14.
The codes:

0 : no special economic constraint
1 : volume of demand is constrained (maximized)
2 : replenishment (continuous shipment) rate is limited
3 : the possible smallest ordering lot-size is prescribed
4 : the possible largest ordering lot-size is prescribed
5 : the average inventory level is limited
6 : there is a budget constraint on the maximum inventory
7 : the permissible maximal volume of shortage is prescribed
8 : the maximal length of shortage is constrained 
More than one code can be used if necessary.

Computerized version o f the model (SM4)
This code shows whether, in the bibliographical source of the model computer 

programs, there appear detailed flow charts, solution algorithm or other cal
culation techniques. If we merely refer to such techniques, no numerical realisation 
was given, i.e., we have taken into account the numerical realizations only if they 
can be utilized directly on the base of the source.
The codes:

0 : no calculation technique is given
1 : computational technique is specifical

The mathematical apparatus predominantly used in the model (SM5)
In the greatest number of the models studied, various methods related to 

different branches of mathematics are simultaneously present; however, one 
predominant technique can almost always be selected from among these methods. 
The characteristic mathematical apparatus is the most complex and sophisticated 
one comprising simpler methods applied in the model.
The codes:

1 : calculus
2 : probability theory
3 : game theory
4 : heuristic methods
5 : linear programming
6 : dynamic programming
7 : stochastic programming
8 : computer simulation

IV.3.12. Code Row of Shortages and Orders

Mode o f treating shortages (SOI)
This code is identical with the main code 9.

The codes:
0 : shortage is not allowed
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1 : shortage is allowed, demand backlogged
2 : shortage is allowed, demand for the missing quantity is lost (lost sales)

Prescription o f the reorder period (S02)
This code value addresses the question whether the length of period between 

two successive orderings is prescribed in the model, or whether its determination 
is one of the tasks of the model.
The codes:

0 : length of reorder period is not prescribed
1 : length of reorder period is prescribed

Length o f reorder periods (S03)
This code indicates whether the reorder periods are necessarily equal or not, 

as given in the particulars of the policy used in the model.
The codes:

0 : length of reorder periods is not necessarily equal
1 : length of reorder periods is equal

IV.3.13. The Code Row of Costs

List o f unit cost factors (Cl)
As is well known, the usual cost factors of inventory models are: the inventory 

carrying (holding) costs, the shortage costs and the ordering costs. Their notation
is: Ci, c2, c3, respectively.

As a matter of course, a given model may, in addition, consider many other 
costs; and it often happens, too, that from among the three basic cost factors 
one or more factors are omitted. In the course of coding, the most important 
cases have been given separate code values, the remaining ones have been given 
the category “other”.

The present code gives the list of the cost factors (unit costs) actually occurring 
in the model. Besides the usual cost factors, c0 denotes the “other” types of costs.
The codes (the costs handled in the model):

1 : cx, c3, c3
2 • c2
3 : Ci, c3
4 : c2, c3
5 . Ci 9 c3, c3, c0
6 . Ci, c3, c0

Dimensions o f unit cost factors (C2)
All three basic unit cost factors have a typical, “usual” dimension postulated 

by most of the models. These typical cost dimensions are the following:
— holding cost: $/unit time/unit quantity
— shortage cost: $/unit time/unit quantity (this means that the backlogged de

mand has been considered as the “usual” case)
— the ordering cost (c3) refers to one ordering.
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In many models, of course, the actual cost factors corresponding to the costs 
Cj, c2, c3 have dimensions different from the “usual” dimensions. This code shows 
whether the cost dimensions are typical or not. If not, it is classified as “other 
case”.
The codes:

0 : the dimensions of the costs are “usual”
9 : other dimensions occur

C h arac ter  o f  unit co s ts  (C3)
In some of the models, not only constant unit costs are postulated but the 

actual cost factors are (not alway linear) functions of inventory level or time, etc. 
In such cases, we consider the unit costs to be varying.
The codes (the name of varying costs):

0 : none
1 : Ci
2 : c2
3 : c3
4 ' C l ,  C'2
5 : c2, c3

6 : c i f  c3
8 : Ci, c2, c3

C hanging o f  the pu rch ase p r ic e  o f  item s on s to c k  (C4)
Some models investigate the functioning of the inventory system under the 

condition that the purchase price of the item depends on the system’s operation 
(e.g., on the quantity ordered or the time of ordering).

These models are grouped according to whether the changing purchasing 
price plays a role in the operation of the system, or not.
The codes:

0 : purchase price is independent of the decision
1 : purchase price depends on the decision

1У.3.14. The Side Fields of the Code Card

The side fields of the code card provide additional information on the models. 
Nevertheless, only one part of this information can be processed by a computer 
since the content and character can only be coded to a limited extent, or, in fact, 
not at all. However, we have considered it desirable that all the essential features 
of the models should appear on the code card, the more so since our objective 
from the very beginning—besides the computerized processing of the code cards 
—has been their direct, “personal” utilization.

M a th em a tica l p recon d ition s  (MP)
In contradiction to the third code of the “System and mathematics” (SM) 

code row which indicates economic constraints and conditions, the mathematical 
preconditions provide the distinct possibility to categorize a model as well as to 
solve it by means of mathematical procedures.
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All important mathematical preconditions are relevant, but, here, we record 
only whether there are mathematical preconditions or not.
The codes:

0 : no mathematical preconditions
1 : mathematical preconditions exist

Optimal solution (OPT)
The efficiency of the operation of an inventory system can be influenced by the 

actual value of the parameters, or decision variables, which the decision maker 
must determine. Thus, in general, the objective of the system may be fixed depend
ing on the determination of the optimal values of the parameters. These values 
may be considered as the (optimal) solution of the model.

In this code field, the optimal solution or the mode of solution have to be 
described if this exists (or can be given), provided this is indicated by the model. 
The form of the optimal solution may differ significantly depending on the model.

The optimal solutions or the mode of solution actually indicated are coded 
according to their main types.
The codes:

0 : no optimal solution is given
1 : the optimal solution is given by a closed (analytical) formula
2 : a relation is given providing a basis for an iterative approach
3 : a simulation algorithm is given for the optimal solution
4 : an approximate solution is given
5 : any other calculation process is given for the optimal solution 

Remarks
The remarks given are intended to improve the accuracy, ensuring complexity, 

explanation and identification of information of code values in the code card. 
A great variety of types of remarks may exist. Four examples are listed below:
a) Should a given model possess a general decisive property of importance for 

evaluating the model, but which is not involved in any of the codes, this must 
be covered in a remark.

b) If  the code value, chosen for describing a certain characteristic, is essentially 
exact but requires supplementary information, then a supplementary remark 
is needed.

c) The identification of symbols used to describe the objective function, or the 
decision parameters, etc., must be given in the remarks.

d) If a particular code has the value 9 (i.e., if it is considered “other”), this must 
always be explained in a remark.

There is a two-way formal relation between the code squares and the remarks. 
Every code square to which some remark is attached has to be marked in its 
upper right-hand corner, and, vice versa, each remark has to be identified by a 
latter and figure indicating to which code it belongs. (With the exception of the 
remarks which do not directly belong to any of the codes: these have to be num
bered.)

The information given in the remarks is not coded.
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IV A  Evaluation of the Code System, 
Experiences Obtained in Applying It

In general, the code system has fulfilled our expectations. It has proven to be 
suitable for a concise, and relatively precise description of inventory models and 
for the display of their most important features, thus providing a good basis for 
the study of the various models, for revealing similarities and differences, for 
demonstrating relations between the characteristics of models, and for enabling 
systematic considerations.

The basic construction of the code system (enabling a connection between the 
main codes and those providing further details) has proven to be good. The main 
codes have verified our assumption that the most fundamental features of the 
models could have been revealed by them. The main codes have also proven to 
be very suitable for the purpose of computer processing: their conciseness and 
characterizing power have considerably simplified the detection of relations and 
classification.

After these general and rather positive remarks we shall discuss the drawbacks 
and weak points, rather than the qualities and strong points, of the code system. 
This is a reasonable thing to do as far as future research work is concerned, but, 
here it is important to draw the attention of the reader to the constraints of 
application. According to our ex post judgement, some of the drawbacks could 
have been avoided by an even more comprehensive, more careful, prior analysis, 
or by a more prolonged trial processing, but many of the drawbacks are Un
avoidable.

These can be classified in six groups:

1. Criteria, or criterion, values carrying important information are missing from 
the code system (e.g., with the code relating to the purchase price it would 
have been reasonable to separate the time-dependent price changes from the 
changes depending on the order quantity).

2. Criteria, or criterion, values conveying unnecessary information, have been 
taken up in the code system (e.g., the code relating to the type of inventory).

3. The definition of the possible versions of a criterion (code) is not exact, correct 
or sufficiently complete (e.g., with the code of the optimal solution the de
finitions “iteration approach”, “approximate solution” and “any calculation 
process” have not been distinguished unambiguously).

4. The desired correlation does not exist between some criteria of the code system 
(e.g., in the case of, for example, “measurability of items” and “set of values 
of decision variables”).

5. Certain definitions, and categories, have not been properly identified (e.g., in 
the case of “dynamics”).

6. Due to the reasons given above and also independently of them, contradictions 
emerged during the application of the code system (e.g., as a result of not 
applying the general code values (9, 7, — 1) precisely enough).

Only the most general weaknesses having the most significant consequences will 
be discussed in detail.
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One weakness of our code system of general validity is that we have not managed 
to separate unambiguously the different operation periods in the models, i.e., the 
planning period, reorder period and reviewing period. An explanation for this is 
that the different models discuss the operation periods in different ways; moreover, 
their treatment is not always clear within a given model.

An exact definition and distinction between the periods with regard to the 
operation of the system is particularly important because the various elements of 
the model may refer to different periods. It is not at all indifferent, for example, 
what unit time the parameters describing the demand refer to: is planning, 
ordering or reviewing period the very period of time at the beginning of 
which the demand arises, or—when demand is continuous—in which peri
od does the rate of demand remain unchanged; from among the three periods 
which does its probability distribution refer to? According to our experience, 
the separation of the reorder and the reviewing periods may be especially difficult. 
Sometimes models do not provide the required information, and, in other cases, 
the explanations given are unsatisfactory.

A problem related to that above is that the code system does not clarify how 
long the modelled inventory system is operated during an infinite or any finite 
period.

The most unfavourable aspect of the code system is that we have not been 
able to code the input and output processes as precisely as desired—or we have 
only been able to do this by means of additional remarks. Some of the problems 
have already been pointed out: namely, the difficulty of referring to the time of 
input and output processes. Numerous other—more or less severe—inaccuracies 
or unfortunate choices could be mentioned in addition, insofar as the coding of 
the input and output processes provide examples for almost all of the six types of 
errors listed above.

We do not find sufficient the relation between the codes describing the time 
and quantity of replenishment (delivery) and the occurrence of demand (i.e., code 
pairs R2 and R4 as well as D2 and D4). Sometimes the two codes together are 
redundant, while in some cases they are not able to elucidate certain problems 
even together.

Due to the imprecise definition of the reference period, the code system does 
not clarify unambiguously in which reorder period(s) the items come in upon 
a given order. More simply: the connection between orders and deliveries is not 
exactly defined. This is due, to a great extent, to the fact that the explanation and 
coding of the lead-time is not accurate, detailed and precise enough. The problems 
are more serious since the lead-time—being among the main codes—has com
pletely been separated from the input process. The coding of the input row would 
be much more precise if a more detailed characterization of the leadtime would 
be organically linked to it.

While we consider it to be a failure of coding the input process that the deliveries 
during a given reorder period have not been clearly connected to the order(s) 
generating them; in the output process we have not taken into consideration that 
the demand cannot be linked to some single act, as the placing of an order in the 
case of replenishment. Therefore, it is always relative whether demand emerges 
as one batch if the system operates for a long time—during several reorder periods 
or over an infinite period of time. Accordingly, judgement is questionable with
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some models as to whether demand emerges in one or more batches. (In practical 
terms, the question is: which successive demand occurrences can be qualified 
as part of the same demand emerging in several batches.)

Finally, we have to point out again that—in spite of the drawbacks indicated— 
our code system operates satisfactorily; its acceptable accuracy, comprehensiveness 
and applicability have been verified by the successful computerized processing 
which has been carried out on the basis of the coded model versions.

IV.5. The Coded Form of Inventory Models, 
Applications of the Coded Models

Based on the code classifications described, all 336 models have been coded. 
In this way, every model is available in two forms after processing: as a complete 
code card and as a model description. Cross-referencing from one to the other 
has been solved so that both have the identification number of the model, and, 
in addition, the ten main codes are indicated in the model description, and the 
denomination of the model can be read in the code card. Both forms exactly 
refer to the source of the model, too. The preparation of the coded form of a 
model necessarily entails a loss of information, even with the remarks inscribed 
on the code cards. The description of an inventory model and its coded version 
contain different information. The qualitative information of the original model 
has first been condensed, then transformed into quantitative information; and 
because so many kinds of inventory models may exist, accordingly, their descrip
tion may differ very much, too. On the other hand, since there is a finite number 
of possible code values in our code system, information loss is inevitable in both 
echelons. The question emerges, whether we may gain anything if so how much 
with this way of handling the information. By processing the code cards we have 
the opportunity to obtain a series of models summarizing the lengthy original 
model descriptions and emphasizing the elements necessary to the adaptation. 
The coded versions are easy to treat for both further theoretical investigations 
and use in practice; moreover, neither of them can be realized without the coded 
model forms.

Let us review what we can gain by using the coded models. The two major 
factors which encourage coding have been the need to systemize the models and 
give the possibility of selection for practical utilization. In any case, it is easier 
to select a set of models, suitable for a given purpose, from among the models 
summarized in the code cards, than to make a selecting from among the original 
models, since by looking at the code card it is immediately obvious whether the 
model corresponds to some given condition or not (e.g., identifying models having 
a stochastic input and output). Nevertheless, in the case of more complicated 
conditions of selection (e.g., selection of multi-location, demand restricted models 
treating backlogged demand in the case of shortage) surveying all 336 code 
cards as well as their selection is by no means so simple, and neither is the simul
taneous handling of all codes of all models solved. This has justified feeding the
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code card data into a computer as well as the investigation of the data bank by 
computer programs for the purpose of inquiry and analysis.

A computer data bank has been established having sequential construction 
and consisting of 336 records; each record referring to one model. The records 
contain the identification number of the model and the series of the code values 
of the model by characters as well as a code referring to the relevant literature. 
(The bibliographical reference code is a series of characters made up of the initial 
letter of the author’s name, an identification number of his works, the initial 
letter of the original language of the source of the model, a code referring to a 
book or periodical, as well as the last two figures of the year of issue.) The iden
tification number in the data basis is identical with that indicated in the code 
card and the description. The records consist of 60 characters. From these 60 
characters, 57 contain valuable information for the time being (4 characters serve 
for identification, 45 are code values, 8 are references to the literature), the re
maining characters have been left over for extension and serve for certain techni
cal purposes to the inquiry program.

The computer data bank carries even less information than the set of code 
cards: neither the form of the objective function nor the qualitative information 
are present in the records. This data bank could not have been established with
out filling in the code cards, and this form of demonstration and preservation of 
the models provides an extremely broad opportunity both to deepen our knowl
edge of the models and to promote their adaptation.

The recognition of models and inventory modelling have been advanced by 
this form of model in such a way that we can become acquainted with the features 
of the models by the computer programs for inquiry and analysis. The analytical 
programs determine the frequency, the relative frequency and the conditional 
relative frequency of a code value of the models according to their characteristic 
features. The relation between two codes can be analyzed by means of contingency 
tables. The data basis enables analysis by multi-variable statistical methods, the 
grouping of models and the characterizing of individual groups, too.

The adaptation of the models is supported by the computer data bank so that 
the computer selects a model, defined by the user, from the data bank, or seeks 
those models “similar” to a given model. The question of practical use will be 
discussed in detail in Section IV.5.2.

IV.5.1. Utilization of the Inventory Model.
Data Bank to the Analysis of Models

As a first step, a computer inquiry program has been established for identifying 
models having given features. This program is essentially identical to a model 
selecting system. The program is capable of selecting model(s) from the data 
bank by a given code value or set of code values. The input parameters of the 
program contain the code values of one or several features of the searched model(s). 
The program examines which models possess the given code combination and 
writes their identification numbers or, upon special command, the coded models 
themselves. The inquiry program makes it more efficient, quick and accurate to
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treat simultaneously several criterion (code) values as well as to select the cor
responding models than could be achieved by handling the code cards. For the 
time being, 10 model features/conditions can be treated at the same time (ob
viously, the program can be extended and made suitable for building in more 
conditions). For example, by calling the multi-item, single location models of 
stochastic input and output we search the models corresponding to the condition

МС1=8ЛМ С2=1ЛМ СЗ =  1ЛМС4 = 1.

The program examines in the records for which models is the character combina
tion 8111 present at characters 5—8, then the identification numbers and the 
codes of these models can be displayed. In this way, anyone who knows the code 
values to which the characteristics of a model are transformed—i.e., knows the 
coding command—may call up the models of interest. By displaying the identi
fication numbers and code values of the models of a given character we will see 
how many such models we have and what are the features of these types of models.

For the investigation of the complete set of models, statistical evaluation 
tables can be prepared from the data bank by computer programs which enable 
a comprehensive analysis of the model system.

The element [aiy] of the frequency matrix shows how many times (from among 
the 336 models) the ith code takes the /th possible value of the code. The relative 
frequency matrix shows the relative frequencies of code values (J) by codes (/). 
The conditional frequency and the conditional relative frequency matrices show 
the sub-set of the 336 models according to some given aspects (specified by the 
condition), the frequencies and the distribution of code values by codes, respec
tively.

By using the contingency tables, the relation between two features of models 
can be analyzed. The rows of the table will be determined by the possible values 
of a given code, and their columns by the possible values of another code; the 
elements of the table indicate how many models fall to the given pair of code 
values. Also the contingency tables may be worked out either for all 336 models 
or for a subset of models created according to certain conditions. Based on the 
contingency tables, by calculating the ■£- values the closeness of the relation 
between two codes can also be measured.

In analyzing the models by means of the frequency and the contingency tables, 
we have sought the characteristic features of economic and mathematical modell
ing of inventories. Our statements have been based on the sample of 336 models. 
In our opinion, this sample is sufficient to consider the major part of our state
ments—at least regarding tendency—to be valid for a wider circle of inventory 
models as well.

These issues will be discussed in detail in Chapter V.

IV.5.2. Adaptation of the Inventory Model Data Bank

An important constraint to the practical use of the mathematical models is that 
managers and mathematicians do not understand one another to a desirable 
extent. To overcome this difficulty—as an intermediate solution—the coded and 
computerized form of the models can be applied in the following way.
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Naturally, the practical manager is able to explain verbally the specific features 
of his inventory system. He knows the characteristics of the items, the storing 
method and, in the case of more than one items and stores, their interrelations. 
He may characterize the demand and procurement traits of the items. He knows 
the costing methods in the company environment. He sees clearly the limiting 
factors such as storage and financial constraints. He knows which factors can be 
influenced by him and what effects exert influence on the stocking of the item in 
question (e.g.,howthe date and volume of orders affect the satisfaction of de
mands). He also knows what the goal of stockholding is in compliance with the 
company’s objective, and how to appraise inventory management. In so far as 
the inventory manager is capable of drawing up these factors, this may be un
derstood as an economic inventory system, and we seek the inventory model 
which provides a solution to this system.

The inventory parameters given by the inventory manager (having been sum
marized, for example, in a properly prepared questionaire) will be transformed 
into our code values and compared with our set of models. Then we select that 
model from our computer data bank which corresponds most to the problem. 
For the selection it is not necessary to determine all the codes we use, only the 
ones occurring in the real system. The inquiry program described above may be 
used for selection. Thus we choose a model, every code of which corresponds to 
the series of codes pertaining to the concrete inventory problem.

Should such a model not be at our disposal, there may be one not too far 
removed from our problem and this one may help to find the required solution. 
We may examine, model by model, “how remote they are” from the requested 
model. The model sought is characterized by к  code values, k ^A 5  (k is a func
tion of the completeness of the description that is of the real problem). The 
distance between the stored models and the requested model can be defined in 
two ways: (1) how many code values of the stored models are identical with, or 
different from, those of the requested model; (2) by treating the models as points 
of a fc-dimension linear space we examine which point (model) is the neatest to 
the model type sought. Method (2) requires that the calculation of distance be 
performed from the stock of code values arranged according to complexity; the 
proper transformation of the code system and the computer data bank have been 
accomplished in the course of applying multivariable statistical methods. Select
ing those models from the computer data bank which are near enough to the 
models sought, we will know the identification numbers of the models, and 
possibly an index, in respect of the similarity of the models sought and the se
lected ones.

By tracing back the original model from the bibliographical reference, it is 
possible to examine whether the selected models are indeed suitable to provide a 
solution to the given problem; how much the condition system of the models 
deviates from that of the model sought; whether the model can be modified so 
that it might be applied to the actual problem.

It is not sure that from amongst those selected one model will really be used 
which is “the nearest” to the model sought because it may happen that a model 
less “close” is more suitable for the solution of our problem.

The selection of the models requires the cooperation of managers and the 
operations researcher. The manager does not need to have a profound knowledge
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of the terminology of mathematical models but he has to know his own inventory 
system and to be able to describe it. On the basis of the series of codes attached 
to the description and the computer data bank, models suitable for application 
can be selected. Neither does the operations researcher need to create a new 
model from the elements of the inventory models he knows in order to solve the 
actual problem; he can obtain a more comprehensive knowledge of the models 
selected from the set of models. The utilization of the stock of models ensures 
conditions for the quick and efficient application for both managers and the 
operations researcher.

One of the essential preconditions for the implementation of the models is to 
find the very model(s) that actually help to solve the given problem.

Another important factor of implementation concerns how the quantification 
of the model elements takes place. Also in this phase, efficient application is 
imaginable only with the active participation of management. A decisive question 
is whether a computerized data processing system is available which facilitates 
the quantification of the model parameters, or whether the data are to be collected 
from manual records.

The possibility of combining the stock of models with the inventory data pro
cessing system is a question leading too far away from our original subject. But 
it should be emphasized that on the basis of our knowledge of the recent trends 
in the development of computerized inventory management systems, we believe 
that an appropriate subset of the existing inventory models can be efficiently 
used in these systems.
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У. Statistical Analysis of the Model Sample

V .l. Distribution of the Models with Respect to Their 
Studied Features

The simplest, most obvious, way of statistically analysing the features of the 
336 collected models—as a first step—is the investigation of the distribution of 
models according to their individual properties. A survey of the various codes 
establishes how the models are distributed among the possible criterion values. 
In this way, a very simple yet meaningful characterization of the set of models 
may be achieved. In the following, we give a detailed review of the distribution 
of models according to various criterion values.

In the course of the discussion, the individual criteria are grouped according 
to their logical connections (mostly connected to one of the main codes).

V .l.l .  Characteristics of the Items on Stock

More than four fifths (82%) of the models are single item models. In studying 
the connections between the sorts of items for the remaining 18% (i.e., the multi
item models) we have found that both complementary and supplementary relations 
are very rare between the items: their share is 1% each. A relatively frequent 
condition connecting the items is some joint constraints—this occurs in 7% of 
cases. For another 7% of the models there is no real connection between the 
items, in spite of the fact that several items are handled in the model.

The type of stocked items is specified in 10% of the models only (which means 
that 90% of the models can be, in principle, adapted to any type of inventories). 
We have not found any models specifying raw material inventories. 2% of the 
models treat in-process inventories, 4% treat finished goods, and 3% of the models 
assume spare parts inventories.

In the major part of the models (94%) the value of the stocked item does not 
change during storage. We have not found any model dealing with an increase 
in the item’s value; every model which assumes a change in the value of items 
has treated a value decrease. (These are mainly the models of the so-called peri
shable goods.)

V .l.2. Characteristics of the Locations

93% of the models are single-location models. In the remaining 7% of multi
store models, locations are linked—parallel with each other—to a central ware
house, There are only very few examples of a linear connection between stores.
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In 94% of the models, the storing capacity is not limited. For the remainder, the 
storing capacity is maximized.

We point out here that the models—contrary to our expectations and with 
1 or 2 exceptions—do not investigate the connections of the inventory system 
to higher system levels.

V.1.3. Characteristics of Input and Output Processes

According to the input and output character, it is conspicuous that the distri
bution of the models is inversely polarized: the great majority of the models 
treat a deterministic input (79%) and stochastic output (71%).

It is typical in the case of an input process—characteristic of two-thirds of the 
models—that the full ordered quantity arrives at the beginning of the ordering 
period or after a deterministic leadtime. Apart from this case, only the one- or 
several-lot shipments on one or more random dates contribute a remarkable 
percentage (9% each) in the set of models. The stochastic input models contribute 
up to 50% each of specified or non-specified probability distribution of reception 
dates. (Among the specified distributions, uniform and exponential distributions 
are the most typical.)

Contrary to the input process, the continuous arising of demands is charac
teristic of the output processes and, at the same time, such models are more 
diversified as to the types of processes. In the greater part of the models (52%) 
demand is continuous: from among these models 37% postulate a uniform rate, 
and 15% a non-uniform rate, of demand.

Much less significant is the demand arising in one lot at the beginning of the 
period (with 16% of the models) compared with the similar types of deliveries 
with the input process. With the output processes, only those models postulating 
multi-item demands arising on several random dates contribute a considerable 
fraction (18%), that of models assuming demands on one random date is not 
important.

With 40% of the models, the time distribution of output is stochastic as well. 
With two-thirds of these models, the probability distribution of dates when 
demands arise is not specified. (For specified probability distributions, Poisson 
and exponential distribution are the most typical.)

It is very characteristic to the input process that the complete ordered quantity 
is delivered in one lot (this is the situation with 84% of the models). Continuous 
shipment occurs in 6 % of the models and a cumulative treatment of input in only 
5%. With just 7% of the models, input is stochastic as far as quantity, too.

The type of the output process relating to the volume of simultanous demands 
is also more diversified than that of the input process.

With almost one half of the models (47%) demand arises continuously. 
Roughly every fourth model shows demand in one lot (the share is 27%). Unit 
demand on random dates occurs in 11%, and cumulative treatment of demands 
in 9%, of the models.

In two-thirds of the models, the output is stochastic also with respect to quan
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tity. With the great majority of these models (about three-quarters) the proba
bility distribution of the volume of demands is optional, and non-specified. (In 
the case of specified distributions, a normal distribution occurs slightly more 
frequently than some other types of distributions.)

V.1.4. Time Treatment in the Models

More than three-quarters of the models (77%) are static, i.e., the share of 
dynamic models is 23%. In 18% of the models there is one decision, in the majority 
(82%) the system is controlled by a sequence of decisions.

V.1.5. Objectives of the System

In the majority of the models (87 %) the objective is optimizing. The share of 
the reliability models (7%) slightly exceeds that of the descriptive ones (5%).

V.1.6. Operation Policy (Ordering Rule) of the System

From all the possibilities, four types of policies have proved to be frequent in 
inventory models: one of these can be found in nearly four-fifths of the models.

The relatively most frequent ordering mechanism (s, q) occurs in more than 
a quarter of the models. (We refer here to the fact that also (s, qp) has been coded 
along with (j , q) i.e., both are included—although the percentage of the former 
is rather low.) With a share of more than 20%, second is the (tp, S)  mechanism 
followed by the three (t, q) mechanisms (dominant is (tp, q)) as well as by the 
mechanism (.v, S)  ((v, S p) occurs rarely). The rest of the policies are represented 
in our sample by a smaller percentage only; from among these the share of (t, S)  
and that of (xp, q) with 5% each are worth mentioning.

Whereas the above data refer to the “theoretical” decision variables determining 
the policies of the models, by investigating the actual decision variables of the 
models it can be established that there is no decision variable having a prescribed 
value (with index p) in about 60% of the models, while in 40% there is. The major 
part of the models (60%) presume continuous decision variables; the share of 
models treating only discrete variables is slightly higher than 30%, and relatively 
few models (about 6%) have both continuous and discrete variables.

There is a close connection between the ordering rule and the prescribed or 
non-prescribed, equal or non-equal, character of the ordering periods. Namely, 
it is obvious that—apart from some incidental, very special models—the length 
of the ordering period is treated at least in the models postulating tp variable 
(it may be the case with other models too), and that the length of ordering periods 
is necessarily equal at least in the models treating t and tp variables. As verified 
by the data, in 33 % of the models the length of the ordering period is considered 
(the share of (tp, S ) policies is 21 % within this). The length of the ordering periosd 
is necessarily uniform in more than half (51%) of the models (from these the 
percentage of (tp, S)  is 21%, that of (/, q) and {tp, q) is 16%, and that of (t, S ) 
is 5%).
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V.1.7. Review of Inventory

The review of inventory is in compliance with the character of the input-output 
processes as well as with the ordering rule of the model. According to the numer
ical data, in roughly one-third of the models (34%) there is no inventory review. 
From these, 26% are deterministic models (both by input and output), where 
reviewing inventory serves no purpose; in the remaining 8% there is no inventory 
review, in spite of the stochastic character of the model.

Substantially more frequent is the periodical, rather than the continuous, in
ventory review: the former occurs in 44% and the latter in 21% of the models. 
The explanation for the higher percentage of periodical inventory control is that 
continuous review of the inventory makes no sense where input and output 
both occur at fixed intervals and/or orders are placed at fixed (/) intervals ac
cording to the ordering rule of the model.

V.1.8. Mode of Treating Shortages

In nearly a quarter (24%) of the models, shortage must not occur. The most 
general method of treating shortages—applied in 55% of the models—is the 
assumption of backlogged demand. Relatively rare is the case of lost sales: it 
occurs in 14% of the models. (Relatively high is the percentage of models which 
do not treat the problem of shortages: their share is 7%.)

V.1.9. Types and Characteristics of Costs

From among the six specified combinations of costs the most frequent—with 
a share of 25%—is the combination comprising (cl5 c2, c3) costs alike (i.e., in
ventory holding, shortage and ordering costs). A further 7% is the ratio of those 
models where other cost factors are present besides the above three. In 14% of 
the models the combination of costs is (cl5 c3) and in 7% it is (clt c3, ce); i.e., 
these are models without shortage costs. (Obviously, a considerable part of these 
models are identical with those where shortage must not occur.) For 9% of the 
models the cost combination (cx, c2) is characteristic (no ordering cost). In a 
quarter of the models, the set of costs differs from the six specified cost combina
tions. About one tenth of the models do not treat costs (these models are mainly 
reliability models).

As for the dimensions of the inventory unit costs, the figures show that the 
minority of models treat exclusively the dimensions we judged typical. (Inventory 
carrying and shortage costs are quantity- and time-related, while the ordering 
cost is a fixed amount for each order.) 35% of the models apply these cost dimen
sions. 55% treat, in addition, costs different from this. One tenth of the models 
do not treat the problem of cost dimensions (obviously, they are the same which 
do not treat the costs themselves, either). Specific costs are, for the great majority 
(70%) of the models, constant. In 10% of the models the problem of a constant 
or varying character of specific costs cannot be discussed in the absence of cost 
treatment. In the rest of the models (20%) some of the unit costs are not constant.
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In the majority of cases (87%) no connection dealt with in the model existed 
between decision and purchasing price; in only 3% of the models was assumed a 
decision dependent on purchasing price. In 10% of the models the question was 
not relevant.

V.1.10. Economic Constraints in the Models

In nearly four-fifths of the models there is no special economic precondition 
or constraint. The remainder of the models is distributed according to the concrete 
types of constraints specified by us. (10% of the models employ economic con
straints differing from those not specified by us.) From among the relatively 
frequent types of constraints the restriction on maximal inventories from a capital 
aspect has to be picked out (4%) along with the prescription of the largest per
missible shortage (3%). The other types of constraints are represented in 1—2% 
of the models.

V .l . l l .  Mathematical Characteristics of the Models

Probability theory dominates in most models (51%). The second mathematical 
method most frequently applied is calculus with 26% (this is characteristic mainly 
of the deterministic models). Besides these, only dynamic programming has a 
considerable share: 11%. Game theory, linear programming, stochastic program
ming and other methods do not amount to more than 1—3%. In the majority of 
the models there is no special condition prescribed for the sake of easier mathemat
ical treatment.

In 30% of the models some calculation method is given for the optimal solution. 
In a further 28%, the optimal solution can be written as a concrete, closed for
mula. In 8% of the models, the solution may be approached by iteration, and in 
4% other approximate solutions can be given. For 3% of the models there is no 
optimal solution whereas in 2% of the cases simulation is the proposed method 
of investigation. In about one-fifth of the cases an optimal solution may be de
fined (reached or accessible), though not in the frame of our specification.

In only a negligible minority of the models (about 3%) one can find—in the 
bibliographical source treated—a detailed flow diagram or computer program 
translating the solution algorithm or any other important calculation method 
into a computer code.

V.2. Characterization of the Model System Based on 
Contingency Tables and Relative Frequency Matrices

This analysis is very important from the aspect of recognizing the structure and 
characteristics of our model system. The^ontingency tables show the connection 
between two criteria (codes') in the models. Analyzing them shows how one of the 
concrete values of a criterion affects the values of another investigated criteria,
i.e., which properties of the models attract or repel one another, which of them 
occur always together and which preclude the other.
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For example, we show a simple (two dimensional) but important contingency 
table for the connections between the criteria MC3 and MC4 which demonstrate 
the deterministic or stochastic character of input and output processes. (See 
Table 1)

Table 1

Contingency matrix of the input and output processes

Input (MC3) Determin- Not
Output (MC4) \  istic Stochastic treated Total

\  0 1 7

Deterministic 0 84 13 —  97
Stochastic 1 182 54 2 238
Not treated 7 — —  1 1

T o t a l :  2 6 6  6 7  3  3 3 6

As shown in the table, occurring most frequently is the deterministic input- 
output connection, and stochastic input “attracts” stochastic output (in only 
68% of the models operating with a deterministic input is the output stochastic, 
whereas in the case of a stochastic input the percentage of stochastic output is 
81 %), etc.

On the basis of a contingency table, the connection between two criteria can 
always be studied. Should we intend to reveal the complete system of connections 
by this method, then contingency tables should be available for every possible 
pair of criteria. Based on previous considerations we pointed out 18 criteria 
(the 10 principal codes as well as codes 12, 14, 02, 04 , SM3, SM5, S02 and Cl) 
and prepared contingency tables for each pair of them. In this way we were

able to analyze  ̂ *'e'’ ^  contingency tables.
Similar information, as presented in the contingency tables, is contained in 

the relative frequency matrices. These matrices show under any given condition 
the distribution of the models according to the given condition (thus, for example, 
the characteristics of models operating with a deterministic input can be evaluated 
by the prescription of condition MC3 =  0). By comparing these conditional criteria 
with each other as well as with the criteria distributions characteristic to the 
whole of the model system, further valuable information can be gained.

The conditional relative frequency matrix has been elaborated for the same 
criteria as the contingency tables, based on the same 18 variables.

In this way, we managed to characterize comprehensively the connections 
inside the criterion system and, at the same time, the set of models. It turned out 
in the course of systemizing the information that our statements could be summa
rized in the most characteristic way if we applied the following grouping:
— statements related to the complexity of processes represented in the inventory 

models (in our interpretation, the complexity of processes is qualified mainly 
by the static or dynamic treatment of time, by the number of items, and that 
of the locations);

— statements related to the decision maker’s actions expressed in the inventory
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models (this is expressed mainly in the objectives and ordering rule of the 
system);

— statements related to the input and output processes represented in the in
ventory models (including reviewing inventory treatment of shortages as well 
as the statements in connection with the leadtime).

V.2.1. Complexity of Processes Represented in the Models

It is a general tendency that the models which describe complex processes— 
postulating several items, several locations and being dynamic—belong insofar 
as many other aspects are concerned to the relatively simple mcdels. Should we 
choose complex, sophisticated conditions, only more simple versions can be 
elaborated for the remaining criteria.

The following general properties — indicating relatively simple me des of 
treatment—are characteristic to the multi-item and/or multi-location ar.d/or 
dynamic models alike:
— either they do not treat the input process at all (like some multi-item mcdels) 

or they assume the simplest, i.e., one-lot delivery (taking place usually at the 
beginning of the ordering period);

— in conformity with the aforesaid there is no leadtime in them;
— the interval between two subsequent orders (ordering period) is determined 

for the system externally (i.e., the optimalization of the order peried is pre
cluded from the system).

It is characteristic to all three types of complex models mentioned above, that 
they treat other costs, too, than the three “typical” cost factors. With the multi
item multi-location models these other costs are connected with the ordering cost 
in general, and they obviously arise because special expenditures may arise in 
the case of more than one items and locations as well. With the dynamic models— 
besides the relatively frequently occurring other costs—it is also conspicuous 
that non-varying specific costs exist very rarely compared with the usual cases. 
It can be assumed that in the majority of the dynamic models specific costs are 
time-dependent.

The above general characteristics are valid for the multi-item, multi-location 
and the dynamic models alike. Two from these three types—multi-item and 
multi-location models—possess especially similar properties. In addition to what 
has been listed above, they have the following common characteristics:

— as a tendency, the models are deterministic (both input and output processes 
are completely known in advance);

— there is no review of inventory, in consequence of the deterministic character 
(inventory reviewing is unnecessary in deterministic models, since the volume 
of inventory is known—or can be calculated—at any time in advance); the 
simpler version, namely: periodic review occurs in some cases;

— relatively frequent is the “prohibition” of shortages due also to the deter
ministic character: namely, in most cases, shortages can only be prevented 
when both input and output processes are known in advance;
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— the models in question apply usually the simpler operation policies like the 
{tp, S),  (i„, q) and (t, q) ordering rules.

Among the above three types the multi-item models are the simplest. In addition 
to all features mentioned previously, their static character is very strong. They 
are the more simple, since they have more restrictions, or constraints, than the 
average. (Among these restrictions very typical is the capital constraint on ma
ximal inventory.)

All statements listed above are valid for the multi-location models as well, 
nevertheless, they are somewhat more “complicated” which is manifested in the 
fact that—compared with the multi-item models—they are mostly of dynamic 
character and there are associated less constraints than the average. (Among 
the multi-location models, multi-item models occur more often than the average.)

As already said, many multi-item models do not treat the input (replenishment) 
process. It is an interesting contrast that the multi-location models often do not 
discuss the output process.

The situation with the dynamic models is different. In many aspects also these 
are simple—as shown in the first list, they discuss simple input processes, there 
is no leadtime and the ordering period is fixed—but, on the other hand, they are 
more sophisticated than the average regarding other aspects. The obvious reason 
for this is that the dynamic construction and approach of the models have sense 
and contents only if the modelled system, and the processes, are complex to a 
certain extent. This is the explanation for the phenomena—contrary to the features 
of the multi-item multi-location models—that in the dynamic models:
— the output is more frequently stochastic than on the average;
— due to the stochastic character, an inventory review is employed and usually 

in the simpler version: the periodical review;
— due also to the stochastic character, shortages are in general allowed;
— the more complex operation policies, (namely the ordering rule (j , S))  are 

characteristic;
— they treat both input and output processes, and one-lot input and output at 

the beinning (or end) of the period are typical.
Further characteristic features of the dynamic models are that stochastic input 
can hardly be found among them, and that reliability and descriptive models 
are almost entirely missing. (It is worth mentioning that with the multi-item 
multi-location models, also reliability and descriptive models occur with an 
average frequency.)

Although our statements do not “have a very firm basis”—due to the rather 
small number of models in question—it still has to be noted that deterministic 
leadtime of varying length occurs only in dynamic models. Discrete quantities 
are characteristic also in the dynamic models. The assumed reason for this is 
that dynamic programming gives preference to discrete variables. The length of 
the ordering period is fixed, the inventory review is periodic, input and output 
are performed in one lot (i.e., both time and quantity are discrete), and usually 
the decision variables themselves are discrete, too.

Dynamic programming as a mathematical method is very characteristic of 
the dynamic models: mathematical preconditions and concrete formulae for 
solution are less frequent here, than on the average.
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V.2.2. The Decision Maker’s Attitude

Under the title “decision maker’s attitude” we summarize the knowledge 
gained about the objectives and operation policy of the inventory system. As for 
the objective of the inventory models, we distinguish optimization, reliability 
and descriptive models. Their distribution in our sample of models is very dis
proportionate as can be expected: the greater number of models are optimiza
tion models, fewer are reliability models, and only a very few descriptive models 
can be found among them.

We give first a brief review on the easily identifiable, small group: the descrip
tive models. These models—according to our experience—are more sophisticated 
than the average as far as some of their features are concerned but their remaining 
properties are simpler. It is characteristic that they often postulate several loca
tions and several items, and they employ the ( j, q) and (s, S ) ordering rules. 
At the same time, descriptive models are usually deterministic: both input and 
output processes are known in advance. An interesting characteristic of them is 
that, more often than average, they apply mathematical simulation as methodical 
tools. The great majority of these models do not treat cost factors.

Reliability models have rather characteristic features. A considerable part of 
them (about 60%) employ the (tp, S)  ordering rule and, in this way, they transfer 
their characteristic features partly to the model family (tp, S ), as well. The traits 
of the reliability models may be summarized as follows:
— due to the essentials of the model, they do not treat in general the behavior 

of the system in the case of shortages but give only reliability conditions to 
limit shortages;

— originating from the essentials of the model, too, they usually do not deal 
with cost factors but their proportions are implicitly expressed in the proba
bility level of the reliability condition;

— the models are static;
— they discuss stochastic input processes;
— replenishment does not take place in one lot in most cases; the cumulative 

handling of the delivered quantities along with the deliveries in several lots 
on random dates are very characteristic, the time distribution of deliveries is 
determined more often than on the average: a mainly uniform distribution is 
assumed;

— characteristic are the continuous and uniform output as well as the random 
demands arising in several lots. They often handle cumulative demand, the 
probability distribution of demand is frequently specified—it is usually a 
normal distribution;

— decision variables are in general continuous;
— because of the dominant (tp, S)  mechanism these models often have fixed 

variables;
— periodical inventory review is characteristic.

The characteristic features of the total of the optimization models—just because 
they make up the great majority of the models—do not deviate significantly from 
the traits of the complete 336 element set of models. Therefore, the optimization
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models will be divided into groups according to the operation policy (ordering 
rule) of the models and the properties of these subgroups will be compared.

There is a fairly conspicuous correlation between the ordering rule and the 
grade of complexity of the models. There are types of ordering rules which can 
be found in models of explicitly “simpler” condition systems, and there are order
ing rules used mainly in essentially “more complex” models. The policies pertain
ing to the simpler models are (/, q), (tp, q) and (sp, q), while the ordering rules 
(s, q), (s, S ), (s, S„) and (sp, S)  are applied in complex models.

The important features—as tendencies—of the “simpler” and “more complex” 
models are compared in Table 2.

Table 2

Main characteristics of “simple” and “ complex” models

Simpler models (/, q) (tp , q) (sp, q)

1. Both input and ouptut are deterministic.
2. Due to the deterministic character, inventory review has no sense.
3. Usually there is no shortage allowed or if there is a shortage with models (f, q), (tp , q), 

then lost sales are more frequent than on the average.
4. Order periods—except (sp, q) models—are uniform.
5. It is also characteristic of the (sp, q) models that there is no leadtime, demand is continuous; 

decision variables are continuous, too.

More complex models (s, q) (s, S) (s, Sp) (sp, S)

1. Stochastic output is typical.
2. Usually there is inventory review and it is continuous with (s, q) and (sp, S) models, other

wise it is periodical.
3. Shortages may occur: general is the backlogged demand (it is true however, that the pre

scriptions for sp are often aimed at excluding shortages, therefore, no shortages occur with 
these models).

4. Order periods are not prescribed and not uniform.
5. Leadtime is characteristic to the (s, q) models and in many cases it is random (stochastic 

input).
Demands at random are usual.
One-lot delivery is characteristic to the (s, S) mechanism.
Continuous demand is rare; the number of dynamic models is relatively high.

In characterizing the reliability models we already indicated that these models 
influence to a great extent the characteristics of the whole set of (tp, S ) type 
models—the majority of the reliability models contain the (tp, S)  ordering rule— 
though a considerable percentage of the (tp, S)  models do not belong to the 
reliability models. For this reason, in the traits of models with (tp, S)  policy a 
certain duality can be observed. It may be explained also as an effect of the 
reliability models that it is characteristic of the (tp, S ) models that
— deliveries in several lots and cumulated treatment of the delivered quantities 

dominate;
— they apply various constraints.

At the same time, further features of the (t, q) and (tp, S)  models will separate 
themselves from the traits of reliability models (maybe they are even in con
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tradiction to the latter group). An example for this is that in these models one-lot 
delivery often occurs. Also the continuity of demand is characteristic, but it 
does not contradict the properties of the reliability models.

Decision variables of mixed value set characterize the (/, S)  models, while 
(ip, S ) models are characterized by continuous decision variables. Finally, it can 
be considered as a simple consequence of the ordering rule employed that in
ventory review is periodic—continuous inventory review would make no sense if 
orders are to be placed at intervals with length t anyway—and that ordering 
periods are uniform.

V.2.3. Input and Output Processes

In analyzing the two processes which decisively influence the features of the 
inventory system, first we investigate the role of uncertainty, afterwards we will 
analyze the time and volume dependent characteristics of the in- and output.

As for the treatment of uncertainty, the great majority of models in the model 
sample have—as expected—a stochastic output but the models of stochastic 
input are in a minority. Though there are models postulating stochastic input 
and deterministic output simultaneously, the tendency is that models discussing 
stochastic input treat stochastic output more frequently than the average. (The 
most frequent combination is deterministic input and stochastic output (54%) 
followed by the models with deterministic input and output (25%), then that of 
stochastic input and output (16%) and finally by the combination stochastic input 
and deterministic output (4%).)

It is rather a simplification and not quite exact to say that it is one step forward 
from the models of deterministic input-output towards the more sophisticated 
case of stochastic output, and it is another step if we postulate, along with stochas
tic output, stochastic input as well.

Apart from the few models of stochastic input and deterministic output it can 
be stated that what makes the model stochastic is the stochastic output. In this 
way, it is not surprising that the stochastic or deterministic character of the 
output divides very explicitly the features of the models in many respects. Simi
larly, as was done with the ordering rule of the inventory system, the essential 
features of models of a deterministic output and those of a stochastic output are 
compared in Table 3. It may be seen that the properties listed with the simpler 
ordering rules and deterministic output, and those listed under complicated 
ordering rules and stochastic output are often the same, indicating that the 
classification according to the complexity of the operation policy and the character 
of output leads to the separation of similar groups of models.

The greater part of the models having a deterministic output have a deter
ministic input too, and deterministic models are, in many respects, simpler than 
stochastic ones. This is reflected in the upper part of Table 3. For the deter
ministic models as stated previously, inventory review has no sense; shortages 
can be prevented, thus usually no shortage cost (c2) is to be treated. In the simple 
(deterministic) input, the process leadtime usually has no role. The output process 
is also very simple: continuous and even. Onto all these simple conditions simple 
ordering rules can be built up.
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Main characteristics of models with deterministic and stochastic output

Table 3

Deterministic output

1. Ordering rules (t, q) (tp, q) and (sp, q) are characteristic.
2. Due to the deterministic character, there is no inventory review.
3. Usually shortage is not allowed.
4. The length of order period is not prescribed in general but often uniform.
5. Usually there is no leadtime but replenishment in several lots or continuous input are 

characteristic.
6. Replenishments are more often continuous than the average, cumulated treatment often

occurs.
7. Demand is in general continuous and even.
8. The typical cost combinations (ct, c3), (cx, c2, c„).

At (/, <?)-type models c0 cost occurs in general.
9. Mathematical preconditions are rarely given, and optimal solutions are frequently given by 

closed formulae.

Stochastic output

1. Ordering rules (s, q) (s, qp) (s, S ) and (tp , S) are typical.
2. Inventory review is usually periodical.
3. Shortages may occur in general.
4. Length o f order periods is often prescribed, if not, they are not uniform.
5. Leadtime exists more often than the average.
6. In general the complete ordered quantity arrives in one lot.
7. Demand arises on one or more random dates; or in one lot at the beginning of the period 

(typical is the cumulated treatment of demands).
8. Characteristic cost combinations are: (c,, cs, cs) and (ct , c2, c3, c„);

(To the (tp, S) models also (cx, c2) is very characteristic).
9. Mathematical preconditions are often set, concrete formulae for solution are rarely given.

The situation is usually just the reverse with the models having a stochastic 
output. Due to the uncertainty of the output process (maybe that of input too), 
inventory reviewing is necessary, and the occurrence of shortages cannot be 
excluded in general, therefore, among the operation costs also shortage cost has 
to be taken into account. The more sophisticated, stochastic output process is 
characterized in addition by the fact that—in contradiction to the simple con
tinuous and uniform character of the deterministic output—demands arising 
on random dates or at the beginning of the period with random quantities become 
frequent here. We are not able to verify this but assume that the generally pre
scribed length of ordering periods as well as the assumption of delivery in one- 
lot are necessary simplifications to the otherwise sophisticated conditions. More 
complicated ordering rules pertain to the above complicated condition system, 
too.

Besides what has been discussed above, worth mentioning is the tendency 
that the share of dynamic models grows to a certain extent with stochastic output. 
At the same time, the output character does not affect the distribution of models 
according to their objectives and neither are the number of constraints influenced.

We obtain features similar to those listed in connection with the models having 
a deterministic output, if we investigate the groups of models with no inventory 
review, those excluding shortages as well as the models without leadtime. Should
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we deal with any o f the listed types o f  models, we will find properties similar to 
those o f  models having deterministic output. O f course this is not surprising since 
we have found among the special properties o f  the deterministic models the non
existence o f inventory review, the exclusion o f shortages and the lack o f leadtime. 
All these criterion values are closely connected with each other: they all refer to 
the groups o f  simple, deterministic models.

The closest to the traits of stochastic output models (with deterministic 
input in general) are the properties of the models of periodic inventory review. 
A smaller part of the models of periodic inventory review are reliability models 
(but the reliability models treat periodic inventory review as a rule). It originates 
probably from the features of reliability models, too, that among the models 
treating periodic inventory review the number of models treating no shortage 
and cumulated inputs is relatively large. Since the majority of the models of 
periodic inventory review are not reliability models, their further characteristics 
deviate from the properties of the latter, and several of their features are similar 
to those of the stochastic output models. The following features of the models 
treating periodic inventory review are worth mentioning:
— dynamic models are relatively frequent;
— (tp, S ) and (s, S)  operation policies are relatively frequent;
— prescribed and uniform ordering periods are relatively frequent;
—  delivery in one lot is relatively rare;
—  demand arising in one lot is relatively frequent;
— characteristic cost combination is (cls c2, c3).

As seen, the features of the models of periodic inventory review—apart from the 
third one in the above list—coincide with the properties of the stochastic output 
models. As for the treatment of shortages, the models postulating controlled 
shortages coincide the most with the stochastic output models (disregarding the 
reliability models and those without inventory review).

There are several among the stochastic output models—particularly the types 
(t, q), (tp, q) and (tp, S )—in which there is no inventory review. (Since we speak 
of models of stochastic output, inventory review could be explained, however, 
the model does not accomplish that.) In these models shortages are allowed, the 
demand for a missing item often becomes lost to the system. (This latter fact is 
a consequence of the lack of inventory review.) In addition, one-lot delivery is 
typical along with the missing, or not treated, leadtime, the set ordering period, 
single decision and the lack of cost factor c3. Presumably because of the lost 
sales, costs of deviating dimensions often emerge. It has to be remarked that 
the—relatively small—group of models postulating lost demands may be attached 
most reasonably to the “stochastic models without the inventory review category 
described above.

If we compare the characteristics of stochastic output models with the different 
groups based on various types of leadtime—the model family of constant lead- 
time may be the most similar. Their common traits are:
— deterministic input,
— stochastic output,
—  (/, s), (s , q), (s, S ) operation policies,

93



— shortages allowed,
— multiple-lot demand.

Proceeding to the analysis of the input processes, we state first of all that the 
characteristic features of the deterministic input models do not deviate very much 
from the features of the complete set of models, this being a simple consequence 
of the fact that the dominating percentage of models have a deterministic input. 
The models are made stochastic in most of the cases by the uncertainty of the 
delivery times; much less is the case of random quantities.

By a rough classification, the stochastic input models can be divided into two 
large groups: (tp, S)  type reliability models and (j , q), (s, qp) type optimization 
models (the share of the former is 27%, that of the latter is 48%). Although the 
criteria of the reliability models have already been listed, for the sake of comparison 
we consider now the features of the stochastic input reliability and optimization 
models with those of the whole set of stochastic input models. (See Table 4 where 
the row is empty, the respective group of models does not have that characteristic 
feature.)

It turns out immediately from the table that the stochastic input models—espe
cially as conclusions of the process descriptions of complicated input and out
put—are more complex and intricate than the typical, “usual” models. It can 
easily be traced back how the characteristics of the complete set of stochastic 
input models take shape as a result of the—partly similar and partly quite differ
ent—properties of the two main groups: reliability and optimization models. 
The main differences between the traits of these two main groups may be sum
marized as follows:
— Reliability models—resulting from their character—do not treat shortages 

and cost factors. According to the sense, this situation is the reverse with the 
optimization models.

— Reliability models postulate the simplest (tP, S)  policy; a straight consequence 
of this is that ordering periods are fixed and equal, and that only periodic 
inventory review is required. Optimization models often employ the more 
intricate (j, q) policy with non-prescribed ordering periods of different length; 
continuous review of the inventory may become necessary.

— Reliability models treat cumulative input and output and have continuous 
decision variables. On the other hand, in optimization models only discrete 
decision variables are typical.

On the basis of the aforegoing, we may take the risk of stating that, within 
the set of the stochastic input models, reliability models are relatively simpler 
while optimization models are relatively more sophisticated. This is supported 
by the fact that among the reliability models the dynamic treatment of the time- 
dependent processes is entirely negligible.

On the other hand, the group of the optimization models of stochastic input 
can well be approached with the selection of models having continuous inventory 
review and random leadtime. These three properties are in relatively close con
nection, and identify a rather complicated group of models.

In the aforesaid, we have dealt only with the deterministic or stochastic character 
of input and output processes. Additional knowledge completing and confirming
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Main characteristics of models with stochastic inpat

Table 4

Stochastic input models

1. (tp, S ) and 0 , q) policy.
2. Usually static models.
3. Shortage may occur but also non-treated shortage is frequent.
4. Constraint referring to shortage volume is frequent (economic constraint is also in general 

more frequent).
5. Inventory reviewing is in general continuous.
6. Random leadtime is typical.
7. Delivery at one or more random times (the time distribution o f deliveries is typically 

uniform or exponential).
8. More complex than average output process (more frequent random time demands; 

continuous or non-uniform demands).
9. The cumulated treatment o f input and output is typical.

10.  —
11. —
12. Costs are frequently not treated.

Stochastic input reliability models

1. (I„,S) policy.
2. Static models.
3. Non-treated shortage.
4. Reliability conditions to limit the occurrence of shortages.
5. Inventory survey is usually periodic.
6 . —
7. Delivery does not occur in one lot in general (but in several random time moments); 

usually uniform distribution.
8. Multiple-lot random demand; continuous demand with uniform intensity.
9. The cumulated treatment of input and output is typical.

10. Order periods are prescribed and uniform.
11. Usually continuous decision variables.
12. No cost factors.

Stochastic output optimization models

1. (j, q) policy.
2 . —

3. Backlogged demand.
4. Shortage maximization; frequent mathematical preconditions; rare concrete formulae 

for solution.
5. Inventory observation is, in general, continuous.
6. Random leadtime.
7. Random time deliveries (rather one than more random time moments; usually exponen

tial time distribution).
8. Demand occurrence in several random moments.
9. —

10. Order periods are not prefixed and not uniform.
11. Usually discrete decision variables.
12. “Other” costs and non-treated costs are typical.

our statements can be obtained by analyzing the models for input and output 
delivery dates as well as for the quantities arriving and leaving the store. In the 
final section of our assessment we will do that.
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Considering the input process it is typical—and valid for two-thirds of the 
models—that delivery takes place in one lot at the beginning of the ordering 
period (including shipments arriving after a deterministic leadtime). It is evident 
that the features of the members of this extended model family do not significantly 
deviate from the traits of the complete set of models. (Maybe, only so much has 
to be added that continuous inventory review occurs somewhat more frequently 
than on the average.)

Based on a small group consisting of about 20 models, interesting conclusions 
can be drawn for the continuous input models. It is true, as a tendency, that 
demand arises continuously in models of continuous input. Moreover, if the 
rate of inputs is even, so is demand, too; if not, nor is demand. Surprisingly, 
the even or uneven rate of input (and output, respectively) closely relates to the 
deterministic or stochastic character of input and output. An even rate can be 
found in models of deterministic input and output, whereas an uneven rate occurs 
in the models of stochastic input and output. As a consequence, the ordering 
period is not prescribed in general with the former types (deterministic models); 
but it is with the latter (stochastic models). (We have already referred to this 
feature when discussing output characters.)

Those models postulating one shipment (reception) on a random date corre
spond very well to the—usually (s, q) type—optimization models of stochastic 
input. The characteristic features of these models could be listed point by point, 
too, (stochastic output, controlled shortage, continuous inventory review, etc.). 
We point out here only the tiny difference that whereas the (s, q) mechanism can 
unambiguously be referred to as a characteristic feature of stochastic input/opti- 
mization models; with the random delivery models also (j , S ) can be picked 
out, besides (s, q). Apart from this, both model categories can be characterized 
by the same properties.

Among the models assuming deliveries on several random dates, the—usually 
( / p ,  S)  type—stochastic input reliability models are also available (their share is 
about 40%). It is obvious that a considerable percentage of this group originates 
from among the stochastic input optimization models.

The following properties derive from this dual character:
— the models are of (tp, S ) and (s, q) type (50% each);
— the models are usually static;
— inventory review is always accomplished;
— demand arises at several random time moments;
— the volumes of demand are often cumulative;
— closed formulae are rarely used, much more often computing procedures are 

given.
As is seen, if models discussing one random time delivery are in conformity 

with the stochastic input optimization models, then the models treating several 
random shipments reflect the properties of all the stochastic input models, simply 
because they unite the—partly very different—features of the reliability and 
optimization models of stochastic input in a similar way.

It is also interesting that the characteristics of models treating accumulated 
delivered quantities entirely coincide with the characteristics of the reliability
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models as for their essentials. (Nevertheless, the cumulative treatment of input 
is not the exclusive trait of reliability models.)

The most typical realization of output is when demands arise continuously 
and uniformly (more than one-third of the models belong to this category). These 
types of models do not form a characteristic group in the total set of models. 
We list some of their features below without presuming a clear-cut separation of 
these models. Characteristic are
— the relatively frequent presence of several items;
— static character;
— continuous decision variables;
— equal ordering periods and
— the existence of mathematical preconditions.

A group separating itself a little more clearly—and having about 50 members— 
is the model family postulating continuous, unevenly distributed demands. 
Characteristic here are the (j , q) and (s, qp) policies occurring more frequently, 
while (s, S ) and (j , S p) mechanisms are hardly encountered compared with the 
average. A further typical feature is that — in accordance with what we have 
said about input processes—the input process is usually also continuous and have 
uniform intensity. As described in the case of the input process, when input and 
output do not have uniform intensity, input and output will generally be a sto
chastic process.

Recalling the similar properties indicated for the stochastic input models— 
namely, that demand is continuous and does not have uniform intensity—and, 
furthermore, the fact that the (s, q) mechanism is characteristic of the group in 
question, although it cannot be stated quite definitely, we may assume that a con
siderable part of the models with a continuous demand that does not have uniform 
intensity come from among the (s, q) type, stochastic input optimization models. 
Neither do the models postulating a one-lot input at the beginning of the or
dering period, (counting about 50 models too), constitute a characteristic cate
gory. Only the relatively frequent occurrence of the (s, S)  policy, the relative 
scarce (s, q) policy as well as the higher than average share of the fixed leadtime 
may be cited as characteristics. Apart from this, the characteristic relations of the 
complete set of models are reflected in this model family as well.

A few (16) models only postulate demands arising in one lot at the end of the 
ordering period. This group—it seems—is in close connection with the category 
of the dynamic models, namely, their characteristic features are in almost all 
details the same as the traits listed with the dynamic models. Accordingly, the 
share of models of
— (s, S ) policy,
— lack of leadtime,
— single decision and
— treating additional costs
is high.

The interrelation between the two groups of models can, of course, be found 
out more directly from the fact that the share of dynamic models is high among 
the models discussing one-lot demands at the end of the ordering period.
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According to evidence, the set of models which treat demands arising at one 
random date is a group of mixed composition and hard to identify (a small group 
consisting of less than twenty models). They have no really characteristic proper
ties, only so much can be mentioned that the share of those models is relatively 
high in which:
— (/, q) and (j , S)  mechanisms,
— the lack of inventory review,
— no leadtime,
— single decision and
— the solution by concrete formulae

are characteristic.
Nearly 60 models belong to the group postulating demands at several random 

times. A considerable number of these come from the (s, q) type stochastic input 
(and output) optimization models, but in addition also a certain percentage of 
the stochastic input reliability models can be found among them. The character
istic features of the group refer also to this construction:
— stochastic input,
— (s, q), ordering rule,
— continuous inventory review,
— non-treated shortages and lost sales,
— random leadtime.

У.З. Analysis of the Model System with Multi-Variable 
Statistical Methods

V.3.1. Summary of the Methods Applied

To undertake the comprehensive investigation of the structure of our model 
system, multi-variable statistical methods have been applied. These methods 
enable taking into account simultaneously the variables characteristic to the 
models (codes, and code values, respectively) and to analyze their combined 
effects. The primary objective of the analysis has been to contribute to the foun
dation of a model classification. The issues of these investigations are summarized 
in this chapter, assuming that the reader is familiar with the applied methods, the 
results to be achieved by using them as well as their constraints.

For the successful adaptation of multi-variable statistical methods, an approach 
based on the parallel or subsequent application of versatile complex methods is 
indispensable. We have been led by the following concept.

As a first step we repeatedly and carefully examined the contents and meaning 
of our variables. For the purpose of multi-variate investigations, 37 parameters 
have finally been selected. The code values of each category of these parameters 
have originally been equivalent to measurements on a nominal scale. However, 
as the internal nature of the inventory models as well as their complex or simple 
features have been known, the originally nominal categories are suitable for
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classifying them according to their complexity. By transforming the code values 
according to this sequence an ordinally arranged (quasi-ordinal) scale has been 
gained. These transformations have been carried out for every characteristic 
feature, and in this way our data system has become considerably easier to treat 
and suitable to draw more stable conclusions.

We have divided the obtained ordinal scales into two parts (dichotomized) 
on the basis of practical and professional considerations. Thus, the information 
carried has become much more concise and, at the same time, the parallel per
formance of trials has become possible, supported by this divalent variable 
system, too.

Let us take an example: the main code MC10 in Table 5—the categories in 
the table are ordered according to their complexity. For our codes of different 
types, also including dichotomization, we have prepared frequency distributions 
in order to check the traits of both our model system and our decisions applied 
to dichotomization.

T a b l e  5

An example of the code transformation
Leadtime code MC 10

Categories ° riejnal Transformed Dicho,omization
codes code values

Leadtime has no sense in the model — 1 1
Non-treated 7 2 1 .
N o leadtime 0 3 J
Constant leadtime 1 4

Leadtime is deterministically known
but altering 2  5

Leadtime is a random variable 3 6
Delivery in several lots or replenish- ~

ment rate is uniform 4 1 7
Other 9 8

Ordinal complexity 
scale

Within the framework of multi-variate studies we applied factor analysis and 
cluster analysis. In order to avoid misunderstandings it should be noted that from 
factor analysis the factor weights have been observed only and no metric con
clusions have been drawn. On the basis of the factor analysis exclusively, further 
experimental hypotheses have been put forward, to be checked by examinations 
of a different nature, and to the selection of the variable combinations serving 
as a base for systematization. In this way, the problems emerging around the 
preconditions of this methodology did not severely jeopardize our work. The 
investigations carried out are summarized in Scheme 1.

The multi-variate statistical study has been concluded by specifiyng the grouping 
criteria and the systematization of the set of models. The “state space” spanned 
by the model criteria, the distribution of models inside this, the evaluation of the 
empty sections of space as well as the analysis of the properties of cluster- 
centroids (typical models) belong to future research tasks.
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1 0 0

Scheine 1
Multi-variable analysis of inventory models

/  \
I. Ordinally arranged II. Dichotomized

codes for each variables
variable

In the following Block I is detailed (every test has been repeated with Block II)
I

336 models 
37 variables

/  \
Factor analysis Cluster analysis

Step 1 
336 models 
37 variables 

\
Cluster analysis runs to gain experience and 

to establish the number of clusters with 
non-hierarchic techniques

' V
Cluster analysis Step 2 with various variable combinations

/  /  ! \  \  
a. 10 variables b. 12 variables c. 23 variables d. 24 variables e. 28 variables 

( 1 0  main codes) ( 1 2  factors in (selected by (without asymp- (using variables) 
correspondence subjective totic frequency of primary im- 
with 1 variable evaluation) distributions) portacne in the 

each) I factor)

*
After summing up the experience gained
/  \

f. 7 variables g. 11 variables
(using the determinant variables (extended by several features

of the previous investigations) o f the 7 variable combination)

The a, b, c, d, e, / ,  g  blocks run with 5 various non-hierarchic cluster techniques, by creating 
8  clusters on the basis o f the trials. In other words, the number of analyzed runs in this phase: 
(7 variable combinations) л: (5 techniques) x  (2 code systems) =  70 (ordinal, dichotomous) 
Complementary control tests in the versions /  and g:

*

f. 336 models g. 336 models
7 variables 11 variables

_______________I___________  ____________ !______________

t I t + +
Test with Test applying Test with Test with Test applying
hierarchic non-Euclidean non-hierarchic hierarchic Euclidean
technique distance technique technique distance

(dendogram by treating (dendogram
preparation) 8-9-10-11 clusters preparation)



Table 6

Evaluation of factor analyses

Factors
Fi F s F3 F4 Fj F , F , Fs F , F l 0 Fn F ,a

Variables

MC3 — I
R2____________ ■ ■ ________________________________________________________________

м о ю  H B
MC4 ~ Ш Щ
D51_________________ ЩЩЩ_________________ ~________________________________________
MC8__________ Щ Ш Ш Ш __________________________________________________________
MC9________________________________________________________________________________
C2________________________■ ■ _____________________________________________________

■ ■
MC6______________________Щ Щ  - - - _____________________________________________

SM31 ~ —
SM32___________________________Щ Ш _______________________________________________

_  m
S02________________________________________ Ш Ш ___________________________________

MC2  ' И |
S2________________________________________________Ш ЯЛ_____________________________
D2___________________________________ ___________ _____ R H _______________________

MACO Ü H
DY1 В Ц
MC5 ЯШШ
s m s  я н

DV3_______________________________________________________________ Д Д ЁЕЁ=Ё

DV2 Я И

Variable o f major importance in the factor

Variable o f minor importance 

Negligible share in this case

8 Chikán
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Table 7
Relation between factors and main codes

F a c e s  C e d i n g  „ a i .  codes

Ft MC3 (or MC 10) 14
F2 MC4 (or MC8 ) 10
F3 MC6  8
F4 SM31 (or SM32) 6
Fs MCI 6
Fe MC7 5
F, MC2 5
Fs D2 (or D4) 4
FB MACO 4
F 10 MC5 3
F „  DV3 3
F 12 DV2 3

71

V.3.2. Concluding Remarks on the Factor Analysis Study

The results displayed in most cases only very weak connections between our 
variables. There were only a few exemptions where strong interdependences had 
direct reasons.

The result of comparing the runs carried out in the two basic coding versions 
has been the following:

With ordinal codes With di"hotomi'zation

Number o f factors
(based on eigenvalues) 1 2  1 2

Information contents (%)
represented by the factors 71 69

From among the 37 variables, 28 can be found in the 12 factors—as seen in 
Table 6—essentially without overlappings. The remaining 9 variables are present 
in several factors, but with less emphasis. The relationship between the main 
codes and the factors is interesting to observe. From the 12 factors, 7 correspond 
to one main code each (from the first 7 factors 6). Thus the information contents 
represented by the main codes is 51% (in the case of ordinal coding).

The computations with dichotomized variables comprised 36 variables (one 
variable showing extreme asymmetry has been left out of the trial). The essentials 
of the calculations supported the previous investigation.

To demonstrate the relations between the factors and the main codes based 
on the runs with ordinally arranged codes, Table 7 has been complied.
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V.3.3. The Results of Cluster Analysis

Scheme 1 shows the echelon of cluster analytical investigations:
1. Trial calculations for preparing the non-hierarchic program runs, in order 

to set a limit to the number of clusters.
2. Cluster analysis of the complete material.
3. Trial examination of the primary variable combinations.
4. Applying the new variable combinations formed on the basis of partial results 

for grouping.
5. Examination of the variable combinations fixed as resultants in their hierarchy, 

by applying a non-Euclidean distance concept.

The steps described have comprised nearly 100 cluster analytical investigations 
based on professional considerations and we have striven to determine our 
conclusions methodically step by step.
(We indicated at the beginning of this chapter that parallel calculations have 
been carried out applying 5 techniques and two coding versions.)

Table 8 shows clearly the comparison of the essential variables combinations 
in the series of calculations.

The goal of our previous considerations has been the selection of the most 
promising combination of variables and—based on this—to create a basis for 
classification. Our sequence of trials has verified the most expressively that column 
of Table 8 which contains 7 variables. The number of variables could not be 
reduced further, since the properties in the combinations have behaved charac
teristically in several cases and displayed a decisive character in the formation 
of groups.

The increase of the number of variables disturbed the state space, because a 
considerable part of the variables did not possess fundamental decisive endow
ments from the viewpoint of grouping or classification and, therefore, taking 
them into account would result only in confusion among the groups. It was 
precisely the elimination of these confusing effects which yielded the most work 
in the course of our endeavours.

The results obtained by the various versions of cluster analysis constituted 
the starting point for the classification which is the basis of our model descriptions 
in the second part of this book. As a matter of course, the automatic classification 
obtained has in many cases been supervised. In this way, the final classification 
has been built up on the common base of intuitive knowledge concerning the 
models, and other previously described analyses as well as the cluster analysis.
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Comparison of cluster calculation results

Table 8

7 10 11 12 23 24 28
variables variables variables variables variables variables variables

No. friable's extended corre- without selected
resultant . ,■ based on asym- on the
combina- mam resu'tant sP°ndl"S subjective metric basis

tion codes C0™blna- t ie evaluation distribu- o f factor
____________________________________ tlon 12factors______________ tions analysis

__1. MCI___________________ X__________________ X________ X_________X________ X
2. MC2__________________ X___________________X________ X___________________X
3. MC3_________X________ X________ X________ X________ X_________X________ X
4. MC4_________X________ X________ X________ X________ X_________X________ X
5. MC5__________________ X__________________ X________ X_________X________ X
6 . MC6__________________ X__________________ X________ X_________X________ X
7. MC7_________X________ X________ X________ X________ X_________X________ X
8 . MC8__________________ X________ X___________________X________ X________ X
9. MC9__________________ X_____________________________X________ X______________

10. MC10_________________X________ X___________________X________ X _
11. 12 X X X X
12. 14
13. 15___________________________ ‘__________________________________ X______________
14. S2________________________________________________________________________X
15. S3_____________________________________________________________________________
16. R2___________________________________________________ X________ X________ X
17. R 3 1 _______________________________________________________X________ X _

___________________________________________________X________________________
_I9^ _R51____________________________________________________________________________
_201 _D2__________ X__________________ X________ X________ X___________________X
_21^_D31___________________________________________________________ X______________

22. D 4 ________X__________________ X__________________ X__________________ X
23. D51______________________________X_____________________________X________ X
24. DY1_________________________________________________ X__________________ X _
25. DV2 X X X
26. DV3 X X X
27. SM31 X
28. SM32 X X X
29. SM33______________________________________X________ X__________________ X
30. SM5______________________________________________________________________X
31. SQ2__________________________________________________ X________ X________ X
32. SQ3__________________________________________________ X________ X________ X
33. Cl__________ X___________________X__________________ X________ X________ X
34. C2_______________________________X__________________ X________ X________ X _
35. C3_____________________________________________________________ X________ X

_361 _C4______________________________________________ ______________ X______________
37. MACO____________________________________ X________ X__________________ X _
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Part Two

CLASSIFICATION AND DESCRIPTION  
OF THE MODELS





Introduction

To create a well established classification system of the inventory models was 
one of the most important objectives of our research. In the second part of the 
book we first give our classification system then compare it with other classifi
cations in the literature—and, after this introductory chapter we give a summary 
of all 336 models, in the order of our classification system.

Classification of the Models

The basis for creating this classification system has been provided by the analyt
ical examination of the individual models and statistical analyses (first of all 
the multivariable statistical approaches). Thus our classification system has been 
derived from the analysis of our 336 element model sample—but we certainly 
hope that it can be used more generally (this expectation is supported by the 
comparison of our system with others, as we shall show.)

The first step in creating our classification was the use of results of the cluster 
analysis. As a result of the many clusteranalysis computations we found that 
the following seven characteristics of the models play the most important role in 
forming the various groups of models:

— the number of products,
— the number of locations,
— the character of input,
— the character of output,
— dynamics (the handling of time),
— the ordering rule (mechanism),
— the objective of the model.

We have found that these characteristics (which in fact, are described by the 
first seven main codes) can be used for a hierarchical classification, with a careful 
selection of the order of applying these codes. This way we have created the 
seven-level hierarchical classification scheme shown in Figure 7(a). At the bottom 
of this system there can be found the twelve “main groups” which seem to have 
different basic characteristics. It can be seen that we did not apply all possible 
combinations of the seven codes mentioned above, since some of these combina
tions were either irrelevant or meaningless. This way this classification is not 
strictly hierarchical—but, on the other hand we get a meaningful group at the 
end of each branch.
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Fig. 7/a. Classification of inventory models
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Fig. 7/b. Complete classification of inventory models

( .... " i i -
Optimizing 

Single location
H ------------------- ------------------------------------  ' --- - 11

Single item 

Static
__I___________________ ;______________________________  Dynamic

Deterministic input I 1
________________________I____________ Stochastic input
I I  I

Deterministic Jemand Stochastic demand__________ I__

Order pointis) Order time(f) V,q) (i,S) Is, q) Is, 5) Stochostic Order Order Multi- Multi- Reliability
I__________________j-----------------------------------------------J-----------1 I------------L---------1-----------1 demand point(s) tim^(f) location models

(reordering (i,S)Ordering With Without No shortage Lost | 1 | I ' Г 1 ~ ~ 1
rule rule delivery delivery allowed demand (s, <?) Is, S) Batch Inventory Production

I leadtime leadtime j I ordering constraints inventory
------------- Ц ---------- L------  Bocklogged | I I

Uniform Multi- One demond Stochastic Deterministic , J ------------- . {--------4  ,----------- ,
intensity period period |----------- ----------- ^  input input | Deterministic Scheduling Single- Mutti-
of demand J ------------ ----------  Varioble Without |--------- “----- ^  models item item

Non uniform ■ I . n , ,  ' j  leadtime delivery with Without H---------1
intensity Constrained Backlogged leodtime leadtim e leodtime Stochostic Assortment o rd e r Order
of demcmd shortage demand Constant le ad ,'me ,eod" me models optimizing °Г * Г  ° í ? „

Lost delivery P“ ™ [|m e ir|
Г  I I demand lead time i---------------4 -------------- j 1 •_____ I

Perishable Changing « J  » ' r. \
inventories d e rrJ d  ------- T-------- ------ ,-------------- , -------------- 1 Budget S to rage  Cons omed О е ^ е г у

Chanama u  No shortage Lo'st Backlogged Ordlr O rder constraint Т О У  shortage -
inrreo^Inn ^ne. j  allowed demand demand level (-5) quantity (7)increasing period period . 1 Delivery in
unit price ----------- ‘— I I I severa l lots

H ---------------------1 Й “ "9 Without Queueing Traditional f— ---------Л
Shortage is No shortage ^  y delivery models approach Multi- Single
possible allowed teodtime j-------- *-■....... -| Tern item

i  ̂ 1 I I dfnuir?.* , Stochastic Deterministic n , t ~  rvL or
Lost Backlogged Leftovers Leftovers leadtime , , s ' t 5 ,s ) demond demand DOint(s) time (ftdemand demond cannot be sold con be sold teodtime ^ ^  point W time if)

I I 1 : I Varying Unvarying DelivJru in Deiiveru in
Special inventory Changing Non uniform intensity Continuous Periodic distribution probability ~ . , , s
holding costs unit price of demond review review distribution several tois on i

Inventory motets



In the subsequent analysis, we have created subgroups of these main groups. 
The further decomposition has not been made by a unified approach to all main 
groups but rather by considering the special characteristics of the individual 
main groups. These subgroups do not have such a sound basis as the main groups 
—they have been created by intuition as well as by using the results of the previous 
analyses. We show the complete classification scheme on Figure 7(b), and give 
the subgroups also at the introduction of the description of all the twelve main 
groups.

Comparison with Other Classifications

It was an obvious idea to compare our classification system with others from 
the literature.

Our classification system worked quite well when applied to our sample of 
models—with two exceptions we could group all the 336 models in an appropriate 
class. The distribution of models in the twelve main classes is almost uniform. 
Considering that our sample is a rather random one, this shows that the system 
is workable. It was, however, obviously a good test of not only the classification 
system, but our whole approach to handling the models, to make a comparison 
with other approaches.

Let us emphasize at the beginning that we did not aim to evaluate the different 
classification systems on a basis of saying “this one is better or worse than the 
other one”. This would be an oversimplified approach; the problem is much more 
complicated than to be handled in such a one-dimensional way as “ranking” the 
various classification systems. Any of them can be useful and important from 
some point of view which might not even be considered in another system.

We have considered several classification systems in the literature, and tried 
to apply our code system to the aspects used by the authors. In some cases (like 
Handley—Whitin 1963, Veinott 1968, Ryshikow 1969, Tersine 1976, Hollier— 
Vrat 1978) we had to reject the idea of comparison for various reasons, but we 
found six systems which could be included in the analysis: Naddor 1966, Hoch
städter 1969, Klemm—Mikut 1972, Aggarwal 1974, Nahmias 1978 and Silver 
1981. (As a seventh system, we had ours: for comparison we used the seventh 
hierarchical level shown in Figure 7—where we have the twelve main groups.) 
The classification systems of the other authors are given in Figures 8— 13.

Of course, the logic behind these classifications is quite different, but one of 
the most interesting aspects of the analysis is just that: if we use the same charac
terizing (code) system and give a different emphasis to the various characteristics, 
how will that affect the classification? Does that lead to a very different classifica
tion or are there stronger ties between the “similar” models and how they stay 
together? Questions like these confronted us when we started the analysis.

It was relatively easy to apply our code system to describe the various classifi
cation systems since the main classifying aspects are rather similar; the difference 
is greater in the combination than in the definition of the basic characteristics. 
Nevertheless, there were cases when we had to use intuition to identify some 
aspects. In other cases we had to interpret the intention of the authors. We cer
tainly hope that we have not failed any of the classification systems. Anyway,
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we must emphasize that the interpretation given here does not necessarily reflect 
that of the authors, for which we apologize and take the responsibility.

We have used our code-system to describe the classification of the authors, 
and applied all classifications to the 336 member sample of models. The analysis 
given below is based on a series of computer runs from elementary statistical 
evaluation to discriminant-analysis. When evaluating the results of our analysis 
it must be considered that the comparison has been made on the basis of our 
system of aspects and our sample of models. Therefore, we must be very cautious 
in judging the various classification systems—though it is promising, from the 
point of view of the value of the results, that it can be shown rather well that the 
system of aspects considered by the various authors corresponds well to our 
system of aspects. Of course, there can be differences in the interpretation of the 
various aspects, i.e., it is quite possible that we mean something else under a 
particular aspect than another author—this fact leads to the “same code—differ
ent consideration” type of error.

The various classification systems are very different, a priori, from at least 
three points of view:

— Do they attempt to give a systematic classification (Aggarwal, Naddor, 
Hochstädter, Klemm—Mikut), or to establish the most important groups 
based on a priori knowledge (Nahmias, Silver)?

Fig. 8 . Naddor’s classification system
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Naddor (1966)
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Aggarwal (1974)
Inventory
systems

__________________  I _______________
i i

Static Dynamic

Single-item Multi-item Deterministic Stochastic

Single- Multi-loca- Single- Multi-loca- S a n d  7 ет а °п 7
location* * tion/echelon location* tion/echelon distribution distribution

Single-item Multi-item Multi-item
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* We have slightly changed here the original figure, according to the logic of the whole classification.
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Fig. 10. Klemm—Mikut’s classification system

Fig. 11. Hochstädter’s classification system

113

Klemm— Mikut (1972)
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Nahmias (1978)
I. The EOQ model and extensions

II. Continuous review models with random demand
III. The dynamic lot-size periodic review model with concave/convex costs
IV. Single period models with stochastic demand
V. Multiperiod stochastic models with/without set up cost and zero/non zero leadtime

VI. Multiple products
VII. Multiple echelons

VIII. Obsolescence, decay and perishability

Fig. 12. Nahmias’s classification system

Silver (1981)

1. Single item with deterministic, stationary conditions
2. Multi-item deterministic, stationary situation under budget, space, replenishment or 

work load constraints
3. Single item with deterministic but time-varying parameters
4. Single item with stationary, probabilistic demand with known distribution
5. Multi-item probabilistic stationary situation under a budget or space constraint
6. Single item, single period situation
7. Multi-item, single period situation with a budget constraint
8. Coordinated control of items under deterministic, stationary demand
9. Coordinated control o f items under probabilistic stationary demand and discount oppor

tunities
10. Single perishable item with stationary probabilistic demand
11. Multi-echelon, stationary situations

Fig. 13. Silver’s classification system

— How many aspects are considered in the classification? Of course, a systematic 
classification can only consider a smaller number of aspects, (since a great 
number of aspects would lead to an exponentially growing number of groups). 
As it can be seen in Table 9, Nahmias and Silver handle many more aspects 
than any other groupings.

— What aspects are considered? It can also be seen in Table 9 that in the classi
fications a great variety of aspects appear (19 out of the 45 we had originally 
considered), subsets of which are handled by the various authors. Here we 
have to add that some of the authors considered only a subset of the models: 
e.g. Naddor deals only with single item, single location, static models; Hoch
städter considers only deterministic input-stochastic output models. We found 
it interesting that our analysis explicitly shows that if we apply the classi
fications with or without these “filters” the results are much the same.

As for the number of models within the different groups of the various classifi
cations (see Table 10) one can see that the more “mechanical” classifications 
(Aggarwal, Hochstädter, Klemm—Mikut and Naddor) excluded fewer models 
of the 336 element sample. This can be explained by the fact that these classifi
cations are based on a much smaller number of aspects than the system of Nahmias 
and Silver (See Table 9.) The models considered are distributed among the 
groups most uniformly in Naddor and Nahmias, and there is an extreme case 
in Aggarwal’s classification. There are a fairly large number of empty, or almost 
empty groups. If our 336 model sample represents the whole set of inventory
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Table 9
Aspects of classification considered by the various authors

. 3

" f e l
Aspects 78 •- I  Ie s t  i о -a

S> 2 ”§ § •§ jo £во а о Д! a a J£
<  so S3 M Z Z 55

Single vs several items X X  0 0 О X X
Single vs several locations X X  0 0 О X X
Deterministic vs stochastic
input — X 0 X X X X

Deterministic vs stochastic
output X X  0 X X X X

Static vs dynamic X X X X 0 X X
Cost optimizing vs

reliability —  X —  —  0 — —
Ordering rule —  X —  — X X —
Periodic vs continuous

review —  —  — X —  X —
Handling of shortage —  —  X —  —  X —
Handling of leadtime —  —  X X X X —
One vs several periods —  —  —  —  —  X X
Time pattern o f demand — —  —  —  X —  —
Probability distribution of

demand X — X —  — —  X
Budget, capacity or other

constraint — —  —  —  —  — X
Perishability —  —  —  — — X —
Arrangement of locations —  —  —  — — —  X
Mathematical tools used — —  —  — —  X —
Types of costs considered — —  — —  X —  —
Cost dimensions —  —  —  —  —  —  X

Number of aspects explicitly
considered 5 7 4 5 6 1 2  10

0  implicitly fixed 
X used in classification 
—  not considered

models then these empty groups can be considered blank spots, i.e., inventory 
situations which are not handled by models.

If we take a look at Table 11, interesting results can be discovered from the 
point of view of the stability of various groups of inventory models. The Table 
shows that from all models considered in the various classifications how many 
have been put into our 12 classes. It can be seen that groups I, II and XI are very 
stable, while with some exceptions groups IV, V, VI and X can be also considered 
stable. Groups III, VIII and IX show a rather mixed picture, while groups VII 
and XII are unstable (the latter has practically dissolved).
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Number of models in the groups of the various classifications

Table 10

. 3г: ^
w < L ) >

__ ±1 I
CÖ ^  «л

* S 1  6 О I
S) 2 ’S I  ^  I  g
ÖŰ еЗ О  ^ 5  ев ев * 3
< я  К ^  Z Z й

I 190 26 80 84 59 34 46
II 12 16 55 78 16 10 4

III 51 14 39 3 31 0 9
IV 4 29 8 47 20 25 0
V 5 24 21 2 12 17 7

VI 1 28 26 26 24 56 4
VII 1 38 11 33 36 22 2

VIII О 39 7 3 17 12 9
IX 21 25 2 0
X 1 51 6

XI 0 21 16
XII 0 23

XIII 15
XIV 2
XV 1

XVI 1

305 334 247 278 215 176 103

Note: There is no connection between the characteristics o f the groups having the same 
number in the different classifications. (There is a slight tendency to proceed to more com
plicated models moving off from group I in all classifications.)

The results show that there is a rather unanimous approach to the classification 
of the simple deterministic models and to the multi-location models. Authors are 
largely in agreement in classifying the deterministic input—stochastic output 
models (except those with a (t, q) ordering rule—which is quite understandable 
since this ordering rule can be applied in a stochastic system under very special 
circumstances only). There are big differences in handling the models with stochas
tic input.

We have analysed the two-dimensional cross-relations tables of all two element 
combination of classifications. We have used several methods to analyze the 
connections and found the results summarized in Table 12.

The centroids of the various groups of models have been represented in the 
space of discriminant functions; for an example, see Figures 14 and 15. In most 
cases both the discriminant functions and the map of the centroids can be explained 
rather well, which is an indication of the meaningfulness of a given particular 
classification system. Naturally, the groups should have been represented in a 
multi-dimensional space: the figures are not for proof, but for illustration only.

On the basis of the discriminant functions we considered the automatic classi
fications. We could interpret a “predicted group membership”, which means
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Number of models considered by different classifications and included in our groups

Table 11

3
V- Э~ <L> >

Cd •-< 12 «5> "j :i5 c bí S
c  g  2  I  о  acd 5  -С с  T3 c  J*и 2 я S 73 л У00 5  о  .Sä м сз Л

<  га Д  t4 Z  Z  55

I 26 26 26 26 24 22 26
II 16 16 16 16 16 14 16

III 14 14 8 3 — 10 5
IV 29 29 28 26 29 4 1
V 24 24 22 24 24 15 3

VI 28 28 27 25 25 3 —
VII 37 38 2 34 —  4 —

VIII 26 39 32 36 25 17 3
IX 15 25 22 24 16 9 6
X 49 51 42 36 39 51 18

XI 19 21 19 19 14 21 16
XII 22 23 3 9 3 6 9

305 334 247 278 215 176 103

Table 12

Cross connections between the various classifications

. 3
75 „ £-  «5 2_  «> —со 4M 72 и> 50 Й t- <3£ а и S о "яI I 1 J i 1 !< ffl К « Z Z, Й

Aggarwal X 0 — — — 0 0
Barancsi et al. 2 X +  +  — +  —
Hochstädter 3 3 x  0 0 — 0
Klemm—Mikut 4 2 4 x  0 0 0
Naddor 5 2 4 2 X
Nahmias 2 1 4 3 4 X 0
Silver 1 1 3 3 3 1 X

As another aspect of the analysis, in the upper triangle we have put a 0 sign at the places 
where the columm classification in terms of its strength of explanation value in forming the 
common groups dominates the row classification. The sign +  shows the opposite case, while 
in case of a — no significant connection o f that type could be discovered.
Strength of connection (lower triangle of the table):
1 — very close; 2 — close; 3 — medium close; 4 — loose; 5 — very loose.
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Fig. 14. Centroids of the groups of the classification of Barancsi et al. represented in the space of
the first two discriminant functions

f ,: dominated by the number of items, f2: dominated by the number of locations.

the member of models classified automatically to the various groups. The “proba
bility of hitting” (i.e., the ratio of the models put to the same group by the auto
matic classification such as by the original classification (see Table 10) was very 
high (above 85%) in the case of our system and that of Nahmias and Silver, 
medium (between 30 and 50%) in the case of Hochstädter, Klemm—Mikut and 
Naddor, and low in case of Aggarwal). This result shows two things:
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Fig. 15. Centroids of the groups of the classification of Naddor represented in the space of the
first two discriminant functions

fi: dominated by the ordering rule, f2: no dominating aspect, cost factors with major weights.

— the consistency between our grouping and the others,
— the stability of the system of the various authors,

The results are not surprising. In the case of Nahmias and Silver, many models 
have been excluded when we fitted their system to the others, so the remaining 
models form rather stable groups, while as a consequence of the character ot 
Aggarwal’s system far too large a number of models have been put into a few 
groups (mainly to the first one) so they are necessarily regrouped when other 
aspects have been considered as well. The system of Naddor, Hochstädter and 
Klemm—Mikut could handle a fairly large number of models, but the classi
fications of the remaining models could not correspond to the automatic regroup
ing dominated by our aspects.

These results show the significance of the difference between the various aspects 
used.
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Conclusions of the Comparison

The different classification systems show fairly different characteristics when 
applied to our sample of models. The various features of classifications and 
differences among them can be explained and some interesting conclusions can 
be drawn. We have seen that the logically strict hierarchical classifications create 
too many statistically unstable groups with few elements in several groups, while 
those classifications which consider only the a priori known “relevant” groups, 
though this creates stable classes, leave out a great many existing models. So one 
can arrive at the conclusion that the two approaches need to be combined.

Basically all authors agree on the most important aspects—the first few hier
archical levels can be created considering these aspects at the different groups. 
Then a variety of sets of aspects can be used to form the subgroups, considering 
the specific characteristics of each particular main groups. As we mentioned 
before, we have applied this procedure in creating our classification system.

On the Description of Models

In the following we give the description of the 336 models analysed by us. In 
publishing these descriptions we wanted to give an idea to the reader: what are 
the basic characteristics of the individual models, what are the assumptions, 
objective functions and methods used. For accomplishing this goal we necessarily 
had to give descriptions very different in exhaustiveness. We have advanced one 
or two “basic” models from each main group, which we think represent the 
main characteristics of the whole group, and give a detailed description of these 
models, while the further models in the same groups will be described only to 
show the essence of the model.

We warn the reader against using these descriptions either for theoretical 
analysis or for practical purposes. Our objective here was only to gi\e basic in
formation through publishing these abstracts—which can be the basis for further 
study of the original publications, the exact reference to which can be found in 
Appendices I and II.

Before turning to the descriptions we still have to make three practical remarks:
— It would have been nice to use a unified system of notions but we found it 

absolutely impossible. In such an extensive model system the various authors 
give such different meanings to otherwise “similar” parameters that “unifying” 
would have been more misleading than useful. So we had to give the meaning 
of all notations in the individual descriptions.

— There are some special models which cannot be classified unanimously into 
the groups or subgroups used. We did not put them into a general “other” 
groups, but—referring to their specialities—gave their description in the 
“closest” group.

— We used the following general notations when giving the dimensions of the 
unit costs:
[ $ ]: value in money term,
[Q]: quantity 
[T]: time.
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I. Deterministic Input and Demand, (5, q) Policy

This is the classical family of inventory control models, based on one of the 
most simple system of assumptions therefore it is probably the most elaborated 
group of models. Two subgroups can be distinguished. No shortage is allowed 
in one of the subgroups, here the parameter s is fixed on the level j= 0  (i.e. 
replenishments are made whenever the inventory has run out). In the other sub
group shortage is allowed, thus the parameter j  is a decision variable of the model. 
Further classification of the first subgroup can be given on the basis of the spe
cific assumptions of the models, which may differ from those of the basic model 
concerning the inventory carrying cost, the purchasing cost and the type of 
demand. A special model with uniform replenishing rate belongs also to this 
group of models. The second subgroup can be divided into two parts on the 
basis of the shortage reaction, whether there is a backorder or a lost sales case. 
Three special models, two descriptive type and one based on control theory appear 
in the group of models with backordering.
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deterministic delivery 
deterministic demand 

(s, q) policy
________________ I____________________
I I

no shortage allowed shortage allowed
(*,=0) 0)

I_____________   I_______
I I I  I I

carrying purchasing demand is backorders lost sales
cost cost not uniform case case

changes changes

1 and 2. The classical economic order quantity model
Main codes:

1 1 0 0 0 1 3 - 1 0 0

Assumptions:

There is a deterministic, continuous and uniform demand with a constant rate 
r. The whole amount ordered arrives at one occasion with zero lead-time. The



order rule is as follows: replenishments are made whenever the inventory 
reaches the prescribed zero reorder level (лр=0). The replenishment size is 
constant, thus it is the lot size q which is the decision parameter of the system. 
If the lead-time is a known constant L, the reorder level must be chosen for sp=Lr. 

The above order rule has the consequences that:
— no shortage is allowed, thus only the carrying cost factor cx and the replenish

ment cost factor c3 has to be considered,
— the order periods have the same length t —q/r.

The model considers one item and one inventory location, it has a static charac
ter.

The assumptions of both models are the same, the difference is only in the 
derivation of the objective function. Here we follow the logic of model 2.

Objective:
The number of the replenishment orders is l/t= r/q  in a time unit. The in

ventory level fluctuates in the interval (0, q). The mean level of the inventory is 
q/2, because of the constant demand rate. The objective function of the system 
is the total of the carrying and replenishing costs in a time unit:

which has to be minimalized with respect to q.

Solution:
For the optimal value of q, — 0 provides a necessary condition. TheClLf

equation

has the unique solution

which, in fact, gives the minimum of the objective function, since the second 
dC2(0)derivative — ^ — = 2 c3r/q3 has a positive value for q—qa (which gives a suf

ficient condition for optimality).
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1.1. Lot-Size Models with No Shortage

1.1.1. Lot-Size Models under Specific Inventory Holding Costs

3. Lot-size system for perishable items 
Main codes:

1 1 0 0 0 1 3  - 1 0 0



Perishable goods are considered, thus the total inventory carrying cost is not 
a linear function but is supposed to be proportional to the nth power of the time 
of storage. The total carrying cost can be expressed in the form K = a -c1-q - tn, 
where n is a constant (n > l)  and a = l /n + l .  The cost factors (cx and c3) have 
the following dimensions:

Assumptions:

4. The “expensive storage” system

Main codes:
1 1 0 0 0 1 3  - 1 0 0

Assumptions:
In this version of the classical lot-size system (1) the total carrying cost is 

not a linear function but is supposed to be proportional to the mth power of the 
quantity stored: К=ас&т1 where m is constant (m >  1) and a= l/(m  +  l). 
The dimensions of the cost factors are

Objective:
The cost function is

Solution:
Applying differentiation as before, the optimal lot size is
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Objective:
The cost function is:

which has to be minimized according to the lot size q. 

Solution:
The necessary condition

which in fact gives the minimum value of the cost function.



5. Carrying cost is a non-linear function of both the inventory and the stocking 
time

Main codes:
1 1 0 0 0 1 3 - 1  0 0

Assumptions:
In this version of the lot-size system, the carrying cost is not linear but is pro

portional to a constant power both of the amount of inventory and the time of 
storing. The total carrying cost is expressed in the form K —acxqmt", where 
m, n and a are constants, (m +n —1)=0. The special case и=1 is the model 
for perishable goods (Model 3X), while the case m = 1 is the model for expensive 
storage (Model 4^, which have been described previously. The dimensions of the 
cost factors are

[Cl] =  ( 6 П Г Г  [Сз] =  [$]’ t ™ - 1’ " - 1)
Objective:

The cost function can be expressed in the form

6. Optimal lot size in the case of discounted costs

Main codes:
1 1 0 0 0 1 3  - 1 0 0

Assumptions:
The lot size q (which is a production order) arrives from the production sector 

at a constant rate in the time interval (0, tj). It is stored during the interval (b, t2) 
and it is consumed in the interval (t2, f3).

Objective:
The cost of ordering is given by the sum of the set-up cost of a production lot 

(which is effective in the time interval (0, b)) and the production cost. The latter 
is a monotonously decreasing function of the lot size. The inventory carrying 
cost consists of two parts: the actual inventory holding and the capital cost which 
appear during the time interval [0, t3] with different intensities. The costs are 
discounted according to their effect as a function of time with a discount rate 
1/(1+ r ) ‘ at the time t (r> 0  is a given policy parameter). The sum of the above 
four discounted costs gives the objective function, as a function of the lot size q. 
The discounting is performed in an exact and in an approximate way. Different, 
rather complicated cost functions can be formulated.
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Solution:
The optimal value of the lot size results by differentiation



This cannot be achieved in an explicit analytical form. Therefore numerical 
methods are suggested for the minimization of the objective functions, but they 
are not detailed by the author.

Solution:

1.1.2. Lot-Size Models with Cost/Price Changes

7. Lot-size model with purchase price changes

Main codes:
1 1 0 0 0 1 3  - 1 0 0

Assumptions:
There is a constant demand rate r. A purchase order is given when the stock 

level decreases to the reorder level sp—0. The unit cost of an item depends on 
the quantity q purchased. For lot-sizes q in the range F ; to Yl+1, the price is bt 
for all units. The prices bx,b 2, ..., bn will, in general, be decreasing. Thus there is a 
quantity discount applied to every unit purchased. Without loss of generality, 
Fx= 0  and F„+1= °° can be assumed.

Objective:
The cost function is defined in a piecewise way,
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for i= l ,2 ,  Here f  denotes the carrying charge (in percentage) and c3
the fixed purchase order cost which is independent of the lot size.

Solution:
The algorithm is based on the following scheme:

1. Calculate < / „ = ■ If qn^ Y n_1, then qn is the optimal value of q.
2. If q„<Yn- 1, then calculate q„~1.

If then compare the value of E„^1(qn^ 1) with E„-1(Y„-1) and
the point belonging to the smaller value yields the optimal value of q.

3. If then calculate q„-2. If #„_2=TB_3, then the minimum of
En-Áq„-d> fn -affi-ä) and E„_l (Yn_1) yields the optimal value of q.

4. In the case of í/„_2<F„_3 the value of g„_3 will be calculated. If #„_3S i^ _ 3, 
then the q, for which the minimal value among En- 3(qn- 3), En- 3(Yn- 3), 
E„-2(Yn- 2) and En_1(Y„_1) is attained, yields the optimum.

The calculation proceeds the same way until the minimum is reached. Obviously, 
the outlined procedure consists of at most n steps.

8. Lot-size system with quantity discounts
Main codes:

1 1 0 0 0 1 3  - 1 0 0



Assumptions:
The optimal lot size is influenced by the fact that the purchasing price b(q) 

depends on the lot size of the reorders. The holding cost per unit is a certain 
fraction of the purchase cost c^=fb(q). The unit cost of replenishment consists 
of a fixed cost and of the purchase price: c3=e3+qb{q). There is a constant 
demand rate r and no shortage is permitted.

Objective:
The total cost of the system is

Solution:
The method for minimizing C(q) depends on the explicit form of the function 

b(q). The author considers the example b(q)=b0 — b1q, where b ^ b ^ .  In this 
case, the optimal lot size q0 can be found by solving the equation

from which q0 can be obtained by successive iterations. In the case of discrete 
quantity discounts we have the previous model (Model 7).

9. Lot-size system with price increase
Main codes:

1 1 0 0 0 1 3  - 1 0 0
Assumptions:

A single price increase situation is considered. Purchases before time-moment 
T0 will cost d  per unit quantity, while purchases after Г0 will cost d+ k. A single 
ordering decision just before T0 will be optimized. There is a constant demand 
rate r and no leadtime. Shortage is not permitted. The unit holding cost is a 
fraction of the purchase price: c1=cJ. The ordering cost is c3.

Objective:
Let K ' designate the total cost during the period T0 to 7j when an amount/ /

q' > 0 is purchased at the cost d, then: K '—dq'+^r- dp ——|-c3. In the case of 
buying at the new price, the cost function is: 2

К  =  (d + k)q '+ -^-(d + k)p  ~  + ~ c3.

Compare the cost of not taking advantage of the price change with the purchase 
price, when an amount q' is ordered just before the price increase. The cost 
difference is
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The amount q'0 which maximizes this difference provides the solution.



Solution:
Can be given (applying differentiation) in explicit form,

which can be expressed by using the optimal lot size q'0 belonging to price (d+k) 
(See Model 1) in the following form:

10. Lot-size system with variable price change

Main codes:
1 1 0 0 0 1 3  - 1 0 0

Assumptions:
Are similar to the previous model (Model 9) except that the amount of the 

price change is random, with expected value к and probability density function 
/(*)•
Objective:

The expected gain, for a purchase of quantity q'>  0, just before the time of 
price change equals

where q0 is the optimal lot size based on an expected price change of £>0, i.e.

11. Lot-size with uniform replenishment rate
Main codes:

1 1 0 0 0 1 3  - 1 0 0
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Assumptions:
There is a demand with constant rate r. The replenishment order is given, 

when the stock level decreases to the reorder level .sp =  0. The replenishment 
starts immediately after having the order placed with a uniform rate p, where 
p>r.

Objective:
For a lot size q, the total cost of the system to he minimized is

where ci is the inventory carrying cost factor and c3 is the fixed order cost. 
Solution:

Can be given explicitly by

1.1.3. Lot-Size Models with Non-Uniform Demand Rate

12. Reorder-point lot-size system with increasing demand

Main codes:
1 1 0 0 0 1 3  - 1 0 0

Assumptions:
The system operates only during a prescribed period, which consists of H  time 

units. At this time, there exists a total demand of D units. The rate of demand 
r changes linearly with time T, i.e., r —aT. The optimal reorder point is given 
by =  0 so when the stock level decreases to 0, an order is given for amount q.
There is no leadtime. In consequence of increasing demand and uniform lot size 
the order period decreases in time.

Objective:
The total cost of the system

where m —D/q is the number of orders during period H, (m is a positive integer) 
and
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Solution:
For the optimal (integer) value m0 of m, the following constraints are valid

where

The optimal lot size is q0=D/m0.

13. Lot-size model with power demand pattern
Main codes:

1 1 0 0 0 1 3  - 1 0 0

Assumptions:
There is a constant lot size and the orders are given, when the stock reaches 

the reorder level sp=0. There is no leadtime and there are constant order periods. 
Demand is known to have a power pattern which is defined by

Q(T) = S - x j / y ,

where
Q (7j is the inventory level a time T,
S  is the initial stock (at time 7’=0),
X is the demand of the period with length t,
n is the power index characterizing the time dependence of the demand

fluctuations.

In the system there is a basic prescribed period V  during which there is a power 
demand pattern with index n. Let W  be the known demand during V. The order 
amount is q=mW  where m is assumed to be an positive integer.
Objective:

The total cost

is to be minimized, where q = W, 2W, 3W, ...

Solution:
For the optimal q0 (by the convexity of C(q)) a sufficient condition is C(q0) s  

S  min {C(q0—W ),C (q0+ W )}, which yields
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where r=WIV.



14. D eterm in istic  lo t-size  m odel— a g en era l root law

Main codes:
1 1 0 0 0 1 3 2 0 0

Assumptions:
There is a deterministic demand which is a power function of time in the form 

b(t)= ktr, where lc> 0 and r >  — 2. The full amount ordered is delivered im
mediately. No shortage is allowed, thus only the inventory holding cost cx and 
the cost of ordering c3 has to be considered. An order is given when the inventory 
state is sp = 0. A known finite time horizon T  is considered.

Objective:
The total cost equals

C(m, t) =  схУ (т, T)+ csm

where Y(m, T) is the total inventory during the time horizont T  and m is the 
number of orders in [0, T\.

Solution:
For the optimal m0 we have the inequalities

where

and

and

The time moment of the ith order tt may be calculated on the basis of the ine
qualities

where

and

The lot-size is equal to the demand occurring between two consecutive time ins- 
stants of orders.

130



15. Optimal lot-release size

Main codes:
1 1 0 0 0 1 3  - 1 0 0

Assumptions:
There is a uniform, deterministic input (production) in batch size q. After 

producing a batch, it will be stored, thereafter it will be consumed with a constant 
intensity r.
Objective:

The inventory holding cost consists of two parts: the storage cost and the cost 
of capital tied up in inventories. The setup cost corresponds to the ordering cost. 
There is still the production cost which is a monotonously decreasing function 
of the batch size (corresponding to the exponential “learning” curve). The sum 
of these four costs—as a function of the batch size—is the objective to be mi
nimized.

Solution:
The derivative of the objective function results in a sufficient condition for the 

optimum in the form of an equation which can be solved by numerical methods 
(e.g. by Newton—Raphson iteration).

1.2. Lot-Size Models When Shortage is Allowed

1.2.1. Backorder Case

16. Deterministic lot-size model with possible shortage, continuous case

Main codes:
1 1 0 0 0 1 2  - 1 1 0

Assumptions:
There is a continuous demand with known constant rate r and an immediate 

delivery. The time of ordering may be specified as a periodic order system with
the length of a period t —— , or, as an order-level system with the reorder levelr
s —S - q .  The order period and the lot size q are both constants. Demand is 
waiting when there is a shortage, then it will be first satisfied when an order arrives. 
The cost factors of inventory holding and shortage depend on time and quantity, 
and the cost of ordering is a constant value at each ordering. The variables S  
and q are continuous.

Objective:
The total cost per time unit
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is to be minimized.



By differentiation of the objective, using the necessary condition of optimality 
we obtain the explicit solution

Solution:

17. Deterministic lot-size model with shortage, discrete case
Main codes:

1 1 0 0 0 1 2  - 1 1 0

Assumptions:
They are basically the same as for the previous model (Model 16); the only 

difference is that the values of the decision variables (the order level S  and the 
lot size q) arediscrete, they may be only integer multiples of the unit и (for S), 
and positive integer multiples of the unit v (for q).

Objective:
The total cost per time unit
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has to be minimized for S = ...,  —2u, u, 0, 2u, ... and q=v, 2v, .... 
Solution:

The necessary condition for optimality is

C(S0, (7o) — C(S0± u , q0±v).

The selection of the (not necessarily unique) solution pair (S0, q0) can be 
based on a straightforward enumeration of all relevant pairs (S , q) (i.e. by sub
stituting them sequentially into the function C(S, qj).

18. A static inventory with perturbed demand
Main codes:

1 1 0 0 0 1 2 2 9 0
Assumptions:

There is a continuous demand with a constant rate r0. The model has a back
orders and a lost-sales version. In the case of a shortage the loss of goodwill is 
expressed not in the form of a cost, but by the decrease of the demand in the

form r=  Г° , where H  is the ratio of the shortage relative to the demand
(1  +  n l )

i is a constant characterizing the level of goodwill. The ordered amount is q, 
when the inventory exceeds the reorder level s. There is an immediate delivery 
and the minimal amount which can be ordered is L0. The income is proportional 
(with rate d) to the amount sold. The inventory carrying cost is linear (with cost 
factor c j .



The profit per time unit, as a function of the reorder, equals 
a) in backorder case

O bjective:

thus, the respective functional form has to be maximized.

Solution:
The profit function is analyzed under each of the following conditions for 

both the backorders and lost sales cases:
1. q L q ,
2. q —s= k, where к is the initial stock;

3. T0— -? ± - -= 0 ,  where ^o= ~  is the prescribed order interval.

The optimum may be given as a solution of the equation dp(s)/ds on the interval 
O S s^q , that means the solution of a cubic equation in all of the above cases.

19. Application of servomechanism theory for solving a production control 
problem

Main codes:
1 1 0 0 1 3 2 2 1 0

Assumptions:
The production of an item is continuously controlled, depending on its inven

tory level. Demand is met from stock, the shortage is backlogged. There is no 
delay in production, the amount ordered is immediately produced, and delivered 
to stock. The costs are only implicitly considered, in connection with the changes 
of the inventory level. The model may be described by the following three equa
tions:

0 o(O =  k m  t ) - e L{t)],

p(t) =  K2[s(t)], 

e(t) = 0 М - 0 М ,

where 0 o(t) is the optimal, 0 x(t) is the actual level of inventory, 0 L(t) denotes 
the demand, and p(t) the actual level of production, as a function of time t. 
Ki and K2 are operators of the state description and of the decision.

Objective:
Description of the system and of its stability.

10 Chikán
1 3 3

or
b) in lost sales case



Solution:
Based on the Laplace-transformation, the behaviour and stability of the oper

ators for state description and for decision are analyzed in the case of different 
demand patterns.

20. Servomechanism theory model for production with delay
Main codes:

1 1 0 0  1 3 2 2  1 1
Assumptions:

The production of an item is continuously controlled, depending on its inven
tory level and on the orders not fulfilled yet. The other difference in comparison 
with the previous model (Model 19) is that here a production delay is assumed 
which is given by a constant time interval t. Thus the equations for the model 
description change in the following manner:

00 (0 =  K A ii(t)-eL(t)],

K 0  = 4 (t-T ),

4(0 =  K2e(t)+K3eL(t), 

e(0 =  0 i(O -0o(O,

where the decision is determined by two opeiators K2 and K3 (corresponding to 
the decision rule). The other notations are similar to the previous model.

Objective:
Description of the system and its stability.

Solution:
Similarly to the previous model, the consequences of different demand patterns 

are analyzed (in terms of system behaviour and stability).

21 and 22. Order-level, lot-size system for uniform replenishing rate

Main codes:
1 1 0 0 0 1 2  - 1 1 0

Assumptions:
It is a generalized version of the lot-size model with uniform replenishing rate 

(Model 11), since shortage is allowed here. There is a continuous demand with 
a constant rate r. The amount ordered is delivered also with a constant rate p 
which must be no smaller than r. An order is given when the inventory decreases 
to reorder level s. The order interval and the lot-size is constant. When shortage 
occurs, there is a backorder. Unsatisfied demands are met when the ordered 
goods are received.
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Objective:
The total cost per unit time is

which has to be minimized.

Solution:
By diiferentitation of the objective function, using the necessary condition of 

optimality, the explicit solution can be given in the form

1.2.2. Shortage with Lost Sales

23 and 24. Reorder-level, lot-size systems with lost sales

Main codes:
1 1 0 0 0 1 2  - 1 2 0

Assumptions:
There is a continuous demand with a constant rate r. An order is given, when 

the inventory decreases to the reorder level s. There is an immediate delivery. 
The order interval and the lot-size are both constants. If demand is not satisfied 
(due to a shortage), then there is no backorder, the demand is lost for the supplier. 
The unit costs (c\ for inventory carrying, c2 for shortage and c3 for ordering) 
have the usual dimensions.

Objective:
The total cost per unit time is

C(S, q) =  c i f + c 2 (q-~ ~ )r +c3j  ( 0 ^ S s ?),

which has to be minimized.
Solution:

Setting k= S/q  and applying a standard differentiation process, the optimum 
is expressed in the form
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where



and

25. T h e  m a r g in a l  re tu rn  ra te  o f  c a p i ta l  in ve s te d  in  in ven to r ie s

Main codes:
1 1 0 0 0 1 2  - 1 0 0

Assumptions:
The assumptions of the model are the same as for the classical ECQ (or EBQ) 

model, but in this case we are to maximize the rate of return on our batch stock 
investment. The concept of a marginal rate of return is roughly that we ignore 
all investment decisions other than those on the batch stock of the item in ques
tion. The symbols in the model are the following:
Rm =  marginal rate of return or (profit/year) value of batch stock; 
p = profit per piece;
S = the cost of placing an order;
D =  the demand per year in pieces; 
c =  the cost per piece.

Objective:
The marginal rate of return is to be maximized:

Solution:
The optimal batch size (or lot-size) can be expressed in an explicit form by 

differen tation of Rm:

Assumptions:
There is a continuous demand with a constant rate A. The inventory holding 

cost is 1C per unit quantity and unit time, where C is the purchasing cost and 
0 < /<  1 is a constant. The cost of replenishment is c3 for each replenishment 
action. The total cost of inventory for a prescribed time horizon can be calculated 
on two different ways:
1. discounted costs are considered with a discount factor i,
2. without discounting the future costs.

26. Influence o f  d isco u n tin g  on  th e  o p t im a l  lo t-s iz e

Main codes:
1 1 0 0 0 3 2  - 1 0 1
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The difference between the optimal lot-size for discounted and undiscounted 
cost functions has to be evaluated. Their respective values are:

Objective:

and

Solution:
For different values of the cost factors сг and c2 the optimal lot-size are tabulated 

for different discount factors i.
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II. Deterministic Input and Demand, Fixed 
Replenishment Period, (t , q)  and (t, S ) Policies

This group consists of the different variations of the optimal lot-size model, 
similarly to group I. Considering the fact that the different inventory policies 
(ordering rules) for such simple deterministic models can be transformed into 
each other, there is no important difference among the operation of models in 
these two groups. The differences are rather in the special assumptions of the 
models.

The two main subgroups are distinguished by the characters of their ordering 
policy, so we have (i, q) and (t, S ) policy models. Inside the first main subgroup 
further classifications may be formed. In the first sub-subgroup, the models 
make a special assumption concerning demand, in the second on purchase price, 
and in the third group there are the models for the control of perishables that 
can be stored only for limited time. A model on equipment stocking policy has 
been classified into this group too.

In the family of (/; S) policy models two subgroups maybe clearly distinguished: 
in the first subgroup a constant demand rate, while in the second a variable 
demand rate is assumed.
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deterministic input and demand 
fixed replenishment period

_________________ I___________________1 I
(/, q) policy (f, S ) policy

I
I I I  I I

variable variable perishable constant variable
demand purchasing items demand demand

rate cost rate rate

П.1.  Deterministic Input and Demand, (t , S ) Policy

I I .l . l .  Constant Demand Rate

27. Order-level system with backlogging 

Main codes:
1 1 0 0 0 1 1  - 1 1 0



Assumptions:
The basic model of order-level systems has the following properties:

— The demand is deterministic at a constant rate of r quantity units per unit 
time.

— The replenishment period is a prescribed constant tp.
— The replenishment size raises the inventory at the beginning of each period 

to order level S. Demand is backlogged. The optimal order level has to be 
determined.

— The replenishment rate is infinite, i.e. each order is delivered in one lot.
— The lead time is zero, however, for the case of positive lead time all the deci

sions may be easily transformed.
— The unit carrying and shortage cost are given constants denoted by Cj and c2 

respectively, the replenishment costs usually need not be considered since 
there are prescribed replenishment periods and one order takes place in each 
period.

From these assumptions we can conclude that the number of replenishments per
unit time will be I3 = l/tp, a constant, while the lot-size qp = rtp is also a pre
fixed constant.
The average amount of inventory equals

The average shortage is given by

Objective:
The total cost of the system equals

when 0 ^ S S q p: it is easy to see that the latter relations are valid for the optimal 
value of S.

Solution:
The necessary condition for optimality can be expressed as
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/>
this yields S0—qB------— . S0 is in fact the minimizer of the cost function, since

Ci +  C2
the second derivative of the cost function in the point S = S 0 is positive, which



is a sufficient optimality condition. The minimum total cost belonging to S0 is

28. Order level system with lost sales
Main codes:

1 1 0 0 0 1 1 - 1 2  0

Assumptions:
There are the same assumptions as for the previous model (Model 27), except 

for the following:
If demand cannot be immediately satisfied due to a shortage, then there are 

no backorders, i.e. the demand is lost for the supplier. At the end of the order 
period the amount of shortage is qp — S.

The shortage cost is proportional only to the amount (and not the time) of 
shortage and is a linear function with unit cost factor c2.

Objective:
The total cost of the system equals

which has to be minimized.

Solution:
The optimal order level S0 lies in the range 0 s S ^ q p. Differentiating the 

objective function we obtain

This holds only in the case if rcJciSqp, i.e. if c2S c itp. Otherwise the optimal 
solution is equal to qp.

29. Order level system with continuous replenishment
Main codes:

1 1 0 0 0 1 0 0 1 0

Assumptions:
There is a continuous demand with a known rate r. The amount ordered period

ically is delivered also continuously with a rate X (where 2 > r) , until the whole 
amount is received in a period. The fixed order cost c3 can be interpreted also as 
the setup cost of a production lot. The inventory carrying cost factor c\ and the 
shortage cost factor c2 have the usual dimensions, they are proportional to time 
and amount. The order level S  and the length of the ordering period T  is to be 
determined.
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Objective:
The total expected annual cost

is to be minimized.

Solution:
Differentiating the objective function by T  and S, the optimal parameters 

can be expressed as the solution of a system of two equations.

II.1.2. Variable Demand Rate

30. Order level for constant replenishment periods and linearly increasing 
rate

Main codes:
1 1 0 0 0 1 0  - 1 0 0

Assumptions:
The system operates only during a prefixed period, the duration of which is 

H  time units. During this period there is a total demand of D units. The rate of 
demand r changes linearly with time T, i.e., r=a- T. The constant a > 0 can 
be determined from the relation

Hence r=2DT/H2. The replenishment period t is constant and has an optimal 
value t=H/m  with some integer m, which is the number of replenishment 
orders. The model works with a (t, Si) ordering rule, it means: the order 
levels change from order to order in consequence of the increasing demand rate. 
No shortage is allowed.

Objective:
The sum of inventory holding and replenishment order cost is

Solution:
For the optimal integer value m0 of m we have the C(m0+ l)^ C (m 0) and 

C(m0 —l)^ C (m 0) conditions. We can get the optimal solution from the next
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F(mo~ 1) — C~ ~ — — F(m0), 
cz

where F(m )~ m {m + \)
( '  (m + l)h (m )—m - h ( m + l) '

The value of m0 gives t0—— . S i0 are determined on these values.
m0

31. Order level for variable replenishment period and linearly increasing 
demand rate

Main codes:
1 1 0 0 0 1 0  - 1 0 0

Assumptions:
The only significant difference, in comparison with the assumptions of the 

previous model (Model 30), is that this model works on the basis of a (rf, S () 
policy. Thus both the replenishment periods tt and the order levels S t depend on 
the number of replenishments m and on the order points Th (Tm= H ). The length 
of replenishment periods form a monotonically decreasing sequence, while the 
order levels are still monotonically increasing in consequence of the increasing 
demand rate. The total demand D in a period with length H  has to be satisfied 
without shortage.
Objective:

The total cost of the system

C(m, Td =  Д  ( T t - n . 1)Ti- 1] + ^ -

has to be minimized.

Solution:
An approximate solution is given. The optimal number of replenishments m0 

is approximated by the solution of the previous model (fixed length of replenish
ment periods), then the optimal timing of replenishment orders is approximated 
by

Ti0 =  Y  H(i/m0 + Yi/m0).

The order levels are given by

Si = D {T?-T?_1)IH2 for / = 1 , 2 ,  ..., m0.

32. Order level for deterministically varying discrete demand
Main codes:

1 1 0 0 0 1 1  - 1 1 0
Assumptions:

formula:
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Each planning period H  is divided into N  scheduling periods with fixed length 
tp. The demand x t occurs at the beginning of each scheduling period i. The x-s 
may vary for different periods but they are known quantities.

N

A constant and prefixed lot-size qp= 2! XJN  corresponding to the average
i=1

demand is ordered which is delivered at the beginning of each scheduling period. 
First the possible backorders will be fulfilled.

The only variable subject to control is the inventory level S  at the beginning 
of each planning period H. The unit holding cost is c\ and the unit shortage 
cost is c2. They have the usual dimensions.

Objective:
The cost of the system

is to be minimized, where Rt (i— 1, 2, ..., N) denotes the nondecreasing sequence 
formed by ordering the numbers

Solution:
The minimization of C (S) leads to the following result: if for an integer m„ 

the inequality

holds, then S0 = Rm0, and further, if Nc2/(c1 + c2) = m0, then any Rmô S 0^  
S  Rmo+1 is a solution for the optimal order level.

33. Order level system with power demand pattern

Main codes:
1 1 0 0 0 1 1  - 1 1 0

Assumptions:
All the assumptions concerning the order level system with backlogging (Model 

27) are unchanged. The only difference is that the demand has not a uniform 
rate, but it has a power demand pattern. It means that for an order level S  and 
total demand qp during a replenishment period with length tp the amount in 
inventory at time T  can be expressed in the form

Q (T ) =  S - q J W P,

where the exponent n may have any real number value. This is the demand pattern 
index by which the time-dependence of the demand can be characterized.
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for the value 0^ S ^ q p: this interval has to contain the optimal S.
Solution:

By the usual minimization technique (by differentiating the objective function) 
the optimal order level can be expressed as

and the optimal cost is

П.2. Deterministic Replenishment and Demand,
( t ,  q ) Policy

II.2.1. Models for Deterministic, Variable Demand

34. Deterministic (/, q) policy model with variable intensity of demand
Main codes:

1 1 0 0 0 1 4  - 1 0 0
Assumptions:

In the period [О, H] there is a continuously changing demand intensity which 
can be described by a known function f ( t )  of time; f i t )  is assumed to be a 
logarithmically concave function (i.e. In f  (t) is concave). The initial and the 
closing stock is 0. An order for the supply of goods has a fixed cost c3, the unit 
holding cost is assumed to be cx = 1. The number of orders n and the times 
of orders T, (i—1, ...,n ) are to be optimized.
Objective:

The total cost in [0 , H ] is
T

C(n, Tj) = nc3+ " £  T  ( t - T j f ( t ) d t ,
i=o

which has to be minimized.

Solution:
A general recursive solution method is proposed by the author for the optimal 

ordering times Tt, but it is not detailed. The optimality of the stationary points 
is ensured by the logconcave property of / ( / ) .  The optimal ordered amounts 
are given by

4i =  / = 1 , 2 , . . . , « .
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O bjective:
The total cost is



Assumptions:
This is a generalized version of the previous model (Model 34), in the following

sense:
— The variable demand can be described by any continuous nonnegative func

tion. (The logconcavity assumption is omitted.)
— Three cost components are considered. The unit purchase price is c0, the 

fixed cost of an order is c3, the unit cost of inventory holding is cx. Shortage 
is not allowed.

Objective:
The sum of the above three cost components equals

Assumptions:
The model is similar to the previous ones. The significant difference is that 

the demand has a linear trend in the time period [О, Н]. Thus, it is a special case 
of the previous model with f(t)= a+ bt.

Objective:
The sum of the purchase, ordering and inventory holding costs is

145

35. A generalized deterministic model with varying demand

Main codes:
1 1 0 0 0 1 4  - 1 0 0

which has to be minimized.

Solution:
A general recursive solution method, similar to the solution of the previous 

model, can be formulated. In this general case, however, the optimality of the 
stationary points cannot be ensured.

36. Deterministic model with linear trend in demand

Main codes:
1 1 0 0 0 1  4 - 1  0 0

which has to be minimized.

Solution:
The general solution method of the previous models has been specified for the 

linear case. An analytic way of solution using the first-order optimality condition 
based on the derivative of the cost function is proposed. Different tables containing



function values for the numerical computations are included which make the 
solution method more effective. The unique optimality of the solution is ensured. 
The application of the method is illustrated by some numerical examples.

37. Deterministic model with time proportional demand
Main codes:

1 1 0 0 0 1 4  - 1 0 0
Assumptions:

These are similar to those of the previous models, the demand increases in 
time according to a fixed rate (a>0), i.e. at time t the demand is at. An order is 
placed when the inventory level decreases to 0. The unit holding cost is t\ , the 
fixed ordering cost is c3. The number m of replenishment orders and the times 
Tt ( /=  1 ,..., m) (Tm= T) of the orders have to be chosen to ensure cost minimum.
Objective:

The total cost of the time period (0, T) is c\Y(m)+c3m, where the total in
ventory for fixed m equals

38. Deterministic model with variable demand and no fixed ordering cost
Main codes:

1 1 0 0 0 1 4  - 1 0 0

Assumptions:
Similar to the previous models, but the usual fixed ordering cost is omitted. 

The optimal time sequence (7=1,..., и) of ordering and the optimal ordered 
quantities y(t,) have to be determined. The demand at time t is f{ t)  which is a 
known positive function. The initial stock is 0.
Objective:

The total cost on the time-interval [/„, T] is
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and

Solution:
For fixed values of m, the optimal sequence of Tt (i =  l ,  ..., rri) is calculated: 

all these subproblems have a unique solution for every m. This will be substituted 
for Y(m), which is a decreasing convex function of m. Thus for the optimal 
value of m we have the relations



where

furthermore, the inventory at time t,- is given by

Solution:
The dynamic programming algorithm is inefficient here, because of the great 

computational effort required. For the analytical method if is assumed that the 
order equals the demand for each period:

This simplifies the determination of the optimal order times th as in this case 
the function

39. A production-inventory model with variable demand

Main codes:
1 1 0 0 1 1 9  - 1 0  - 1

Assumptions:
The production-inventory system is controlled on the time interval [0, T\, 

during which there is a continuous demand D (t) which depends on the actual 
price p{t) and other time-dependent parameters a(i) and b(t) in the way Z)(t) =  
= a(f) — b(t)p(t). Here a(t) and b(t) are known functions. A decision has to 
be made about the price p(t) and about the quantity q(t) of production for each 
time moment t£[0, Т]. The production cost of q(t) is f[q{t)} which is assumed 
to be a strictly convex, nonnegative, increasing function. The inventory holding 
cost for a unit of quantity during a time unit is c ,. No shortage is allowed. The 
inventory amount at time t is

/(0  =  q (t)-[a (t)-b (t)p (t)]
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It is proved that this is equivalent to the minimization of the function

which is an easy task.



which has to be minimized by the appropriate choice of the functions p(t)  and
9(0-
Solution:

The results of control theory are applied to derive the solution. First the La- 
grange-function is determined, then the optimality conditions are achieved which 
give a method for determining the optimal functions of p(t)  and q(t). Different 
possible cases are considered separately. Formulas are derived for p(t) and q(t), 
and references to known solutions algorithms are given. Some examples are also 
included for the illustration of the methods. The optimal solution is proved to be 
unique.

40. Inventory model with deterministically changing demand pattern 
and backordering

Main codes:
1 1 0 0 1 1 9 1 1 0

Assumptions:
There are T  time intervals with fixed length in which different amounts d, of 

demands occur ( f= l ,  2, ..., T). During each period there may be an unsatisfied 
demand which can be satisfied at a later date, however, by the end of the last 
period all demands must be satisfied. The amount of inventory delivered in 
period i and used up in period j  is denoted by ci}.

The amount ordered (q) may only be an integer multiple of the package size, 
i.e., it is a discrete variable. The unit inventory holding cost is h, and the unit 
shortage cost is g,, which cost factors may be different for different periods t. 
The cost is calculated at the end of each period and depends only on the amount 
of stock or shortage at the end of that period. The unit purchasing cost is c,, 
the fixed ordering cost is A.

Objective:
The total cost for a time period [0 , Hk] is

C[N(Hk), n j  =  G[Ij.(k)\N(Hk), nk] + AŐ(nk) + cknkq,

where means the stock level in the period J*(k) and N(Hk) is the set of 
deliveries in [0, Hk]. The number of batches ordered in period к is nk. If 
nk—0, then 0(nk) —0, while for nk> 0 <5(nk) =  1.

Solution:
A dynamic programming algorithm is given.
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Objective:
The total profit during the time [0, T ] is given by the function
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41. Price and inventory model for profit maximization
Main codes:

1 1 0 0 0 1 9  - 1 0 0

Assumptions:
The demand changes from period to period as a function of time and of the 

unit selling price p. Suppose that Q,(p)=a.,+ßtq(p), is the demand in period
t ( / = 1 , 2 , N), where /?,=-0 and No shortage is permitted. s(t,p ')
denotes the period in which an order was given under price p' in order to satisfy 
the demand of period t. In period t the unit purchasing cost is ct, the fixed or
dering cost is Kt, the inventory holding cost depends on the stock level at the 
end of the period t and has a unit cost h,.

Objective:
The ordering times and the constant selling price are to be determined so as 

to attain a maximal total profit. The income in period / is R,(p)=p ■ Q,(p). 
The total cost of N  periods is

and the total profit is

Solution:
A complicated procedure is given for calculating the optimal ordering times 

and selling price. The finiteness of the proposed method of solution is proved.

II.2.2. Stocking Policy in the Case of Price Increase

42. Optimal lot-size policy by increasing purchase price

Main codes:
1 1 0 0 0 1 4 0 0 0

Assumptions:
The conditions of the classical lot-size model are modified in such a way that 

the purchasing price b will be increased by a given amount к after a previous 
announcement. A constant demand rate r and a fixed ordering cost c3 is considered. 
The cost of inventory holding is proportional to the purchasing price with a unit 
factor / .  Thus the optimal lot-size before price increase is q* = \  2rc3lfb  and 
after price increase q* = y2rcjf(b  + k). Two cases are analysed, the new price 
may be valid (a) immediately after the announcement, (b) after a time delay ta. 
Two feasible strategies are compared. In the first one, there is no extra order at



the price increase. In the second one, an extra amount

ql =  q*(l+k/b) + k r / fb - r tr

is ordered before the price increase, where the last term denotes the stock level 
at the moment of price increase. The order is delivered instantaneously, and no 
shortage is allowed.

The costs of the above two strategies are compared. The benefit of purchasing 
an extra amount before a price increase is expressed as a quadratic function of 

• Glatb(q1)= K la(q1) —Klb(q1).

Solution:
The second ordering strategy is optimal if, for the inventory level rtr at the 

time of price increase, the inequality

holds. Otherwise, the first strategy is optimal. The results are generalized for 
case (b) too. Here also an explicit expression is derived when it is optimal to order 
an additional amount before price increase. In both cases, the inventory is raised 
to the same order level

Assumptions:
The model is based on the inventory problem of the central blood-bank system 

of a large hospital. The value of the blood can be characterised by a decreasing 
step function of storage time. There are M  different age groups. The unit value 
of the blood belonging to group j  is Vj in the case that it has been stored no longer 
than pj days but at least p j_x days, where p„=1. For the group j  there exists 
a demand Dtj in period i (/=1, 2, ..., rí) which is known in advance. It can be 
fulfilled with blood from the group k s j .  The unit price is Vj, regardless of the 
value of k. The inventory level of group j  in period i is denoted by I tj and the 
initial stock is I0j. The cumulative value of the inventory until period i is denoted 
by Rt and

Objective:

II.2.3. Inventory Decision for Perishable Goods

43. An optimal policy for blood-bank systems

Main codes:
1 1 0 0 0 1 9  - 1 9 7
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that has to be maximized over the total time horizon i =  l, 2, M.

Solution:
Two different policies are examined. For the FIFO (first in first out) policy, 

the demands are satisfied always with the material of the oldest group on stock 
which is still appropriate, while with the LIFO (last in first out) policy demands 
are satisfied by the youngest appropriate group. The following results are derived:
— independent of the specific values of Vj the FIFO policy is optimal, if the 

demand in the case of shortage is backordered,
— the unsatisfied demand of the time periods, and the lost demand (in the case 

for where there is no backorder), can also be minimized by the FIFO policy,
— the amount of demand satisfied with the best (youngest) bload group is mi

nimized by the FIFO policy, thus one can optimally keep the age of the 
blood stock.

44. Economic packaging frequency for perishable, jointly replenished items

Main codes:
1 1 0 0 0 1 4  - 1 2 0

Assumptions:
The time between the subsequent ordering moments is determined by the model. 

The goods can be ordered in containers of m different capacities. The ordering 
cost Sj and the inventory holding cost hj depend on the type of the container 
used at delivery. The demand Dj and the profit Pj of unit selling depend also on 
the volume of the container. The goods can be stored only for a limited time. 
The product can be used in a time horizon L, afterwards it is completely useless. 
The type of the container, Kj, and the order frequency T (T> L) which maximize 
the profit are determined by the model. Kj is the ratio between the frequency 
of set-ups for the product and the frequency of packaging set-ups for the item.
Objective:

The profit maximum is achieved by minimizing the total annual cost, Zj(T , Kj) 
being the net value for particular values of T  and K j.
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The shortage in period i in group j  is S i3. This demand is normally backlogged, 
however, the lost sales case is also examined. The lot-sizes of deliveries are known.

Objective:
The total amount of inventory has a potential capability in satisfying demand. 

It can be expressed for period / in the following form :



Solution:
An iteration procedure is proposed with the starting solution

is the amount of perished goods in the period [0, /J,

is the average inventory on hand,

is the average shortage.

Solution:
For the optimal value of tL we have
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The procedure will be stopped in the case where KJ(Tr)= KJ(Tr^ 1) holds (approx
imately). The fast convergence of the procedure is assured.

45. Order level for perishable goods
Main codes:

1 1 0 0 0 1 1  - 1 1 0

Assumptions:
There is a continuous demand with a constant rate r. The portion в of the 

goods on inventory perishes per unit time. The length of the order peried T  is 
fixed. The order level is S  which is the initial stock of the periods, since there 
is no lead-time. During period [0, ix] there is stock on hand and in [fx, T] there 
is a shortage which is backordered and is satisfied at the beginning of the next 
period.

Objective:
The sum of the value of the perished goods, inventory holding costs and shortage 

costs will be minimized by the optimal choice of tx:

K(tj) =  y d  (ti)+ ci Ii( ti)+ ci I»(.t»)y 

where C means the unit purchasing cost,



where

Using the optimal value of tu  the optimal order level is

S =  ^ [ ( l - 0 ) - ‘* - l] .

46. Deterministic inventory and equipment replacement model

Main codes: 

Assumptions:
1 1 0 0 1 1 9  - 1 0 0

The operation and maintenance costs of a given piece of equipment increase 
as a function of working hours, thus after a certain time it is economic to sub
stitute it with new equipment held on inventory. During the interval [0, T ] there 
are n purchasing orders for the equipment, which are characterized by the time 
moments q and amounts x t ( /=  1, 2, ..., n) of the orders. The cumulative amount

Í

ordered and received by time t{ is given by X (i)=  2  xj- The time intervals
j =i

between two consecutive replacements of the equipment are denoted by r l5 r2, 
..., TX(n). The purchase price of v equipments at time tt is c (v ,tt). F(y , s , r )  
denotes the additional costs incurred on the interval [л, л-+г]. It represents the 
cost of holding y =  0 , 1,2, ... equipments in inventory during [j , j+ r ] , the cost 
of operating an equipment installed at time s during [j, j+ r ] ,  the cost of replacing 
the previously operating equipment at time s, the cost of maintenance and repair 
during [j , j+ r ]  and the salvage value (as a negative cost) at time s+r.

Objective:
The feasible policies are denoted: W={w\w=(n, t, x, r)}. The total cost for 

a policy W  is

Solution:
In the general case when the cost factors are time-deperdent, the existence 

conditions of an optimal decision for W  are shown. An algorithmic solution is 
given only for the case when the cost factors are fixed over the whole interval
[o, n
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III. Deterministic Replenishment, Stochastic 
Demand, (t , q) Policy
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In this group of models single- and multi-period models can be distinguished. 
The former ones deal with a single decision and the subgroups can be specified 
on the basis that the stock on hand at the end of the period may or may not be 
sold in the future. The multi-period models have also two subgroups: one for the 
models of perishable goods, and the other for the goods which may be stored 
without the loss of their value.

Deterministic replenishment, stochastic demand,
(i, q) policy

1 i
single-period multi-period

models models
1 I

I I  I .1surplus may surplus may unchanged perishable
be sold not be value goods

sold

47. Single-period model with time-proportional costs

Main codes:
1 1 0 1 0 4 9 0 2 0

Assumptions:
An order for the amount h is given before the beginning of the considered time 

period. At the beginning of the period with length T  an initial stock h exists. 
The demand is random and follows the Poisson distribution with mean demand 
rate A. The expected value of demand is p (p=kT).  The following notations are 
introduced

p(a; b) =  and P(a; b) =  J > ( i ;  b)

Then at any time moment t the stock level is

2  (h—x)p(x; It) — h-kt-\-ktP{h\ kt)—hP(h+l\  At),
x=0
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since for arbitrary /i> 0  we have

2  (r - j ) p ( j ; ц) = r —p+ pP(r; [i)-rP (r+  l;n ).
J= о

At time moment t the shortage equals

2  (x —h)p(x; /U) =  XtP(h; j t ) —hP(h + l; h ) ,
x=h

since for the Poisson distribution the following equations are valid:

2  (j~ r )p ( j I  fi) =  l*P(r; p )+ (p -r )P (r + l;  p)
]  =  r

and
p P (r;p )-rP (r+  l;p )  =  p P ( r - l ;p ) - r P ( r ; p ) .

The unit inventory carrying cost is IC, where C is the unit purchase cost. The 
time-dependent shortage cost is denoted by n and the amount-dependent shortage 
cost is denoted by щ . The unit selling price is S. The stock remained at the end 
of the period can be sold on a unit price L.

The expected annual carrying cost is

ICD(h) =  lC T \h --^ -+ ^ -P { h - , X t)-hP (h+  l ;Ar)+ P (h+ 2; AT)}.

The time dependent shortage cost is TtB(h), where
T

B {h)=  I  [XtP(h\ fo)—hP(h + l; h )d t]  —
0

=  ^ - P { h \  X T)~hTP (h+ 1; XT)+ h(h2+ 1} P (h+ 2; PT).

The total expected annual cost can be expressed as

C(h) = ( S - L ) p - ( C - L ) h - ( S + n 0- L )  2  (x -h )p (x ;  XT) +
x = h

+ / С г ( / г - ^ ] + ( / С +Ä) • B(h).

Objective:
The objective is to maximize the expected profit:

G(h) = ( S - L ) p - ( C - L - I C T ) h —^ I C j T 2-

—p j^S—Z,+7r0 —у  (Ä +  /C)J P(h; AT)+ 

+ h [ S -L + n 0-T (A + IC )]P (h + l; X T ) + ^ ^ - h ( h + l ) P ( h + 2 ;  XT).



is still positive.

Ш .1. Single-Period Models 

III.l.l. Models for the Case When Surplus Stock Can Be Sold

48. The “Christmas-tree” problem

Main codes:
1 1 0 1 0 1 4 0 2 0

Assumptions:
There is one single possibility of ordering. The price per unit purchase is C, 

the price per unit sale is S. When demand arises, if there is no stock on hand, it 
causes not only a loss of profit, but a shortage cost is also to be paid. The unit 
shortage cost is c2 per unit quantity. If at the end of the selling period there re
mains stock on hand (surplus stock), then it can be sold for the unit price L, 
which is smaller than the unit purchase price (L< S). The demand is not known 
at the time of ordering, it is a random vaiiable. The probability of demand x  
is p (x), the mean (expected demand) value is denoted by p. 1 he order amount is 
an integer.

Objective:
The expected total profit for an order amount h is

G(h) =  ( S - L ) - ( C - L ) h - ( S + c t - L )  Z ( x - h ) p ( x ) ,
x  — h

which has to be maximized.

Solution:
The optimal value of h is the largest integer for which
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Solution:
The optimal order amount is the largest positive integer h for which

49. Single-period model with changing demand rate

Main codes:
1 1 0 1 0 4 9 0 2 0



Assumptions:
There is only one order for a single amount h. There is a stochastic demand 

with a time-varying mean demand rate. The cumulated demand until time t has 
a Poisson distribution with mean value D(t). The length of the selling period 
T  is prefixed. It is subdivided into m sub-periods, all of which have constant 
demand rates, maybe with different constant Я; for different periods [г,_х, tj\ 
/= 1 ,2, where /o=0 and tm—T. The inventory holding cost and a part
of the shortage cost is only time-dependent, it does not depend on the amount 
of inventory or shortage. The respective cost factors are denoted by c\ and c2. 
There exists another type of shortage cost which depends on the amount of 
shortage and has a unit cost factor c4. The price per unit sale is S. The stock 
remaining at the end of the period can be sold for a unit price L, which is smaller 
than the price per unit purchase C. The expected value of demand is denoted by p.

Objective:
The expected total profit in the case of an initial stock h is

G(h) = ( S - L ) p - ( C - L - ClT ) h - C-± Z W - t U ) -
i=l

- p ( S - L + Ci)P(h; Я Г )+ /1 (5 -Т + с4)Р (й +  1; T)+

+ (ca +  cj) 2  [R (h’ h, Я, ) -R ( h , Я*)],
i =  l

where

R(h, t,X) =  k t) -h tP (h + l;  Я0+ P (h+ 2; It)

(P(h\ kt) was defined above; see Model 47.)
Solution:

The optimal value of h can be calculated by applying the necessary condition 
of the optimality. Considering the complex form of this equation, the authors 
recommend the use of tables in practice.

50. S in g le -p e r io d  m o d e l w ith  v a r ia b le  d e m a n d  a n d  ra n d o m  len g th  o f  p e r io d

Main codes:
1 1 0 1 0 4 9 0 2 0

Assumptions:
This model is a generalized version of the previous model in the sense that the 

length of the selling period is not known at the time of ordering. The length of 
the period is 7} with a probability Wj (J= 1 ,..., ri).

Objective:
The expectation of the total profit in this case can be expressed by using the 

objective G(h) of the previous model. We substitute 7} for T  and ku for Я; p}
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for p. If this revised form is denoted by G(h, Tj), then the objective of the gene
ralized model is

m
G(h) = 2  WjG(h, Tj) j  = 1, 2 ,..., m. 

j =i
Solution:

The method of solution is again similar to that of the previous model, with a 
minor increase in complexity. (Therefore the use of a computer is recommended 
for calculating the optimal decision.)

51. Single-period model with time-dependent costs and random length 
of period

Main codes:
1 1 0 1 0 1 9 0 2 0

Assumptions:
This model is a generalized version of Model 48. Here the inventory holding 

cost is proportional to the length of time during which a unit remains in inventory, 
and a stockout cost which is proportional to the length of time between the mo
ment when the demand occurs and the end of the time period. The cost per unit 
time of keeping the item in stock will be denoted by 1C, where C is the pur
chasing cost of the item, and A will be the cost per unit time of a stockout. Inclu
ding these costs it is necessary to introduce a distribution for the demand from 
the beginning of the period up to any moment t of the period. The demand is 
supposed to follow a Poisson distribution over any time period. The mean rate 
of demand r is constant over time. The length of the period may be a random 
variable. It has the value 7} with probability Wj. Any units remaining at the end of 
the period can be sold at a unit price L (L<C).

Objective:
If h units are ordered for a period with length 7}, then the expected total profit 

is:

158

where p j—rTj, S  is the selling price per unit and n0 is the fixed stockout cost per
ba “

unit shortage. p(a ,b )= — e~b and P{a, b)= 2 P(h b) is by definition. The
ci\ ic=a

expected total profit is



Solution:
The largest h for which AG(h) is positive, will be optimal, where

AG(h) = 2  Tj),
;=i

and

A G ( h ,T j ) = - ( C - L - I C T j) + [ s - L  + n0+ [ ~ T ^ ^  + IC)^X  

X P(h, rTj) -  у  (ft +  IC)p(h, rTj).

For numerical solution a straightforward tabulation of the above expression is 
suggested.

52. S p a r e -p a r ts  o rd e r in g  p o l ic y ,  w hen su rp lu s  s to c k s  ca n  be  so ld

Main codes:
1 1 0 1 0 1 4 0 1 7

Assumptions:
The spare part considered plays an important role in production, as its shortage 

may involve a great loss. There is only a single decision on the amount у  ordered 
which will be on stock at the beginning of the production period. The demand 
occurs when a part breaks down, i.e., it is a random variable. The demand for

Y
quantity r has the probability Pr, where r is an integer. Р(гШу)= 2  The

r = 0
purchasing cost is C per quantity unit and the shortage cost is U per quantity 
unit. The ( y —r) stock remaining at the end of the production period can be sold 
for a unit price V, (F <  U).

Objective:
The total cost which is to be minimized over the production period equals
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since



which has to be maximized.

Solution:
In this simple case, у  can be easily calculated, applying the analytical optimality 

conditions. The solution method is illustrated with an example, where the density 
function has the following type: f (x )= a —bx.

III.1.2. Models for the Case When Surplus Stock Cannot Be Sold

54. S p a r e -p a r ts  o rd e r in g , w hen su rp lu s  s to c k  ca n n o t be s o ld

Main codes:
1 1 0 1 0 1 4 0 1 7

Assumptions:
This model considers spare parts, which are important from the point of con

tinuous production. The demand is stochastic and has a value r  with probability 
Pr. Both the C purchasing cost and the U shortage cost depend on the quantity 
of stock and shortage at the end of the production period. The only difference 
to Model 52 is that there is no possibility to sell out the surplus stock at the end 
of the production period.
Objective:

The expected total cost of the production period for any given order у  is equal 
to
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53. S in g le  p e r io d  m o d e l w ith  con tin u ou s d is tr ib u tio n  o f  d e m a n d

Main codes:
1 1 0 1 0 1 4 0 1 7

Assumptions:
This is the continuous version of the previous model. Here the demand of the 

production period is random and has a continuous distribution with a probability 
density function f(x ) . The profit of sale per unit item is G. The maximum amount 
of any single order is N.

Objective:
The expected total income minus the costs are expressed by



161

where

Solution:
The optimal order amount y0 is defined by the inequalities

55. A m o d e l f o r  ite m s  w ith  a sh o r t s e llin g  p e r io d

Main codes:
1 1 0 1 0 1 4 0 7 7

Assumptions:
There is a single order possibility for the item considered. The amount S' or

dered for the short selling period is on hand at the beginning of the period. The 
profit after selling a unit is G. If it cannot be sold, then the unit loss is U. The 
demand of the period is random: p(S )  is the probability of the event that the 
demand exceeds S.

Objective:
The expected total profit of the period

£ (S ) =  G p (S ) - t / [ l -p ( S ) ]
has to be minimized.

Solution:
U

The optimal S is the maximal value for which the inequality p(S )> ~ -— 77- 
holds. G + U

III.2. Multi-Period Models

III.2.1. Models with Unchanged Price

56. A m u lti-p e r io d  m o d e l w ith  ra n d o m  d e m a n d  a n d  f ix e d  le a d tim e

Main codes:
1 1 0 1 0 1 4 0 1 1

Assumptions:
There is a periodic order with a fixed length T  of each time-period; the periods 

have a random demand with density function f{x). The ordered amount will be 
delivered after a fixed number к of periods. Let q, be the order which has been 
given (k —i) periods earlier and thus it will be delivered in period i. The initial



stock of the first period is z. The inventory holding cost is sT, the shortage cost is 
pT, both are the function of the amount on hand or the shortage at the end of 
each period. The ordering cost of qk quantity is c(qk).

Objective:
The minimum of the expected total cost with a discounting factor a can be 

expressed in the form

L* (z, qlt q2, ..., qk-i)  =  L$(z) + min [c(qk)+a. f  L * (z -x , qx, ..., qk) f(x )d x \ ,
k~ о

where

Solution:
The optimal order at period n is

supposing that c(u) = c-n  and Y„ is the unique solution of the equation

where Li is the first differential function of L.

57. M u lti-p e r io d  m o d e l w ith  u rg e n t o rd e r in g  in  th e  case  o f  sh o r ta g e

Main codes:
1 1 0 1 0 1 4 0 0 1

Assumptions:
We have the same assumptions as for the pervious model, the only difference 

is that in the case of a shortage an urgent ordering is placed for the amount of the 
shortage. This will be delivered immediately, but with extra costs which will be 
considered.

Objective:
The minimum of the total discounted costs is

where the notations are the same as in the previous model.
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Solution:
Only an approximate solution is given for the case, when the lead-time is one 

period:
M t - Z )  if ! < f  

?W  =  i  0 if z s t .

where for the ß constant (0< /?< l) holds.

58. Multi-period model with random demand

Main codes:
1 1 0 1 0 1 4 1 2 1

Assumptions:
Demands occur at equidistant time points. At time t there is a demand Z, 

( t= 1, 2, ..., T), which is random and may have one of the possible values 
Zi, z2, zp. For the demands Z t, which are not independent, we assume 
that they depend on the past demands indirectly only through the previous 
demand. Thus they form a Markov chain, and the conditional probability 
P{ZtJrl—Zj\Zt= z^= rij is independent of the time parameter t. The inventory 
level of the considered item at time moment t is characterized by a vector s(t) = 
=(si(t), ..., sm(tj) where s jt)  is the number of those items which are on stock 
already through i time periods, s j t )  is the initial stock at time t period. An item 
remains in stock from period i until period к with a probability qjk, but qim> 0. 
The input amount is f ( t )  at period t and

J / 0 + 1) for k  = 0,
&+i í+  for k =  1,2,

Objective:
The expected weighted squared error between the supply and demand is to be 

minimized. Let Wj (J= 1 ,..., n) be positive weights, their sum equals to 1. Thus 
the objective is

n m  — 1

E ‘[ s ( t ) , f ( t + \ )] =  2  ri jw j [ z j —d j i f ( t + l ) — 2  4ikdiksk( t ) ]2.
j = i  f c = i

Here the coefficients dik denote the fraction of the stock which at demand level 
/ can be used to service for the length of к periods. (In the original paper the 
type of stock has been specified for manpower considering the qualification.)

Solution:
Using the principle of dynamic optimality a functional equation is derived for 

the optimal solution. This yields a convex quadratic function of j  a n d /fo r  each 
j .  When it is differentiated with respect to /  a linear equation results and the 
unique minimizer /  can be expressed as a linear function of s. The parameters 
of this linear function depend on i and T  in such a way that it can be specified 
by an nX (m + l) matrix.
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The general question of convergence is difficult to answer; in special cases, 
however, it has been proved. Some numerical examples are included for the 
illustration of the solution procedure.

59. A model with normal and emergency ordering possibilities

Main codes:
1 1 0 1 1 1 4 2 1 9

Assumptions:
There is a periodic ordering possibility. At the beginning of each period two 

different orders may be placed:
— an urgent order with immediate delivery, which depends on the initial stock 

x t of the ith period and has an upper bound mn: 0^m „_;+1(x;)^w „. The 
urgent ordering cost per unit is c„.

— a normal order z„_i+1> 0 which is delivered at the end of the period. The 
normal ordering cost per unit is c (c<c0).

The demands of the periods are independent, nonnegative random amounts 
£, with the same q> probability distribution, which is known.

Objective:
The discounted average of the total cost for n periods is to be minimized by 

the appropriate orders of each periods. Beside the above-mentioned costs of 
ordering and shortage, the costs of inventory holding and those of capital in
vestment are considered.

f n(x) denotes the expected total discounted loss of the и-period model:
o o

/„(*) =  inf [ / (1)(*; m, z )+ a  /  /„ ^(x+ m + z-Q cp ir i)  dn], 
z~ о

where f w (x; m, z) is the one-period expected loss if the initial stock level is x, 
an emergency order of size m and a regular order of size z are issued.

Solution:
The convexity of the objective function is proved and some special properties 

of the optimal ordering policy are shown which enhance the efficiency of the 
numerical optimization procedure.

60. A stochastic production-inventory system

Main codes:
1 1 0 1 1 1 9 1 1 0

Assumptions:
There is a demand for an item produced and stored in и subsequent time peri

ods. The demand of each period is stochastic. The cumulated demand of the first 
i periods Qi has a densitiy function f(Q i). In period i an amount z; is produced 
which is not larger than the given production capacity c. The cumulated produc
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tion of the first i periods is denoted by yf while the initial stock is x. The produc
tion, inventory holding and shortage costs are functions depending on the amount 
of production, inventory level or shortage of the respective periods: these func
tions are denoted by r(x), q(x) and p(x). The demand in case of shortage is 
backordered.
Objective:

The total discounted cost of n periods (with a discount factor 5) equals

The values of the cumulative production y t are to be determined, which minimize 
the above cost function.

Solution:
The solution is given for linear cost functions q(x)—ux and p (x )—vx using 

the necessary optimality condition. As a result, the optimal (ylt ...,y„) is the 
solution of the system of the following equations:

In the special case, when the production cost is also a linear function with cost 
factor к per unit, these equations can be written as
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61. J o in t o p t im iz a tio n  o f  m u lti-p e r io d  o rd e rs

Main codes:
1 1 0 1 0 1 4 1 7 0

Assumptions:
There is a stochastic demand during N  considered time periods. The demands 

in different periods are not independent of each other, there is a stochastic depend
ence among them. The assumption is that the joint (TV-dimensional) density 
function of the demands is logarithmically concave, i.e., the logarithm of the 
density function is a concave function. This assumption is valid for some prac
tically important density functions, e.g., for normal or uniform distribution. The 
amount of the order placed for the period i is denoted by zf. The total cost of 
ordering (or producing) and inventory holding can be expressed as a function 
g(z1, ..., zN), which is convex by assumption. The unit cost of shortage at period 
i is qt. In the case of shortage the demand is backordered.

Objective:
For an initial stock z0 the expected total cost is

where f j x )  denotes the density function of the cumulated demand of the first 
i periods.

Solution:
The problem of finding the optimal order amounts is reduced to the solution 

of a convex programming problem, for which known numerical methods are 
available.

1П.2.2. Perishable Items

62. A m o d e l f o r  p e r ish a b le  item s w ith  v a r ia b le  d e m a n d  d is tr ib u tio n

Main codes:
1 1 0 1 0 1 4 1 1 0

Assumptions:
The demands in different periods are independent random amounts D { with 

a probability density function f t (i = 1 , 2 , ...) which may be also different but 
known functions. The length of the periods is given. At the beginning of each 
period—after reviewing the inventory—an order is placed. After immediate 
delivery the demand of the period will be satisfied. The items can be stored only 
for m periods during which time there is no loss of value but after the nth period 
they must be rejected with a cost в per unit. The purchase price, the inventory 
holding cost and the shortage cost are all proportional to the amount and have 
respective unit cost factors c, h and r. There is backorder in the case of shortage.
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The initial stock of each period is characterized by the vector x = (x m_j, хг) 
where x; is the amount of items which can be stored in i subsequent periods. 
The demand is always satisfied by the oldest items on stock. The order amount 
y = x m is the decision variable.

Objective:
The expected total cost of the nth period is

where Gm,n(i, x), as a function of the demands in the next m periods, expresses
m—1

the expected number of rejected items and x=  2  x i-
i= l

Solution:
The existence of a unique optimal solution y„(x) is proved, when for /> 0  the 

relation holds and r> c > 0  is valid. Here y„(x) is the optimal quantity
to be ordered if x is the inventory on hand and n periods remain in the horizon. 
It is the solution of the equation

where the left-hand side is continuously dilferentiable. The optimal ordering
m—1

policy is the following: if 2  x t—x > then order y„(x) else do not order. Here
>=x

x is the unique positive solution of the equation

C(1 — a)+ /iF (x)—r[l — F(x)] =  0.

where

{y —(t—x)+ if demand is backordered,
[y—(i—x)+]+ if demand is lost,

and F(x) is the probability distribution function of the demand of a period, 
a is discount factor (0 < a < l) ,  Cn(x) is the minimum expected discounted cost 
if x is on hand and n periods remain.

63. A m o d e l o f  p e r is h a b le  ite m s  w ith  u n ifo rm  d e m a n d  d is tr ib u tio n

Main codes:
1 1 0 1 1 1 9 1 1 0
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The vector s expresses the initial stock state of the next period, the /th component 
of which means the amount of items which can be stored in subsequent i periods. 
This is a function of the initial stock state x, the order у  and the demand t of the 
actual period. C0(x)—cx, since the surplus stock at the end of the time horizon 
can be sold.

Solution:
The existence of a unique optimal solution is proved under certain circum

stances, similarly to the previous model.
64. Model for perishable items in case of urgent ordering possibility

Main codes:
1 1 0 1 1 1 9 1 2 0

Assumptions:
The demand is random and in each period has the same probability density 

function / .  The order is placed at the beginning of the period. In the case of a 
shortage an urgent order has to be given to meet the excess demand. It is delivered 
immediately, but with an extra cost p(z). The items can be stored only for m 
periods during which time there is no loss of value but after the mth period they 
must be rejected with the cost v(z). The normal unit cost of purchasing is c, 
where c<p'(z) and c z + v (z )s0. The inventory holding cost h(z) is a function 
of the rest of the stock at the end of the period. The profit per unit after satisfying 
a demand unit is r. The future costs are discounted by a factor a. The demand 
is always satisfied by the oldest items on stock.
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the function Gm n expresses the expected number of items which have to be 
rejected. For a stock state x, the minimal discounted cost (with discount factor 
a) in the case when n orders are still left can be expressed using the idea of dynamic 
programming in the form C„(x) =  infBn(x, y), where

This is a simplified version of the previous model. Here the demand in each 
period has the same distribution generated by the probability density function 
/ .  The other notations are the same as with the previous model.
Objective:

The expected total cost of a period is

Assumptions:



Solution:
The case when the functions L(y ) and V(z) are convex and differentiable will 

be discussed. For m=  1, i.e. if the surplus stock cannot be used in the next period, 
all the periods can be analysed independently, thus we have a single-period 
problem. The optimal amount of order in period r is xr, the unique solution of 
the equation c+ L ' (xr) + V '(xr) =0.

For ш ё 2  the periods cannot be treated separately, however, the stock state 
vectors w—(wj, w2, ..., wm_j)aO  form a Markov process. Using the idea of 
dynamic programming, the solution can be formulated in the form of a recursive 
system of equations. The component wt of vector w is the number of the items 
on stock which are stored since i periods. The stock state is considered at the 
beginning of the period when the perished items have been rejected, but the new 
order has not yet been received.

65. O p tim a l  lo t- s iz e  m o d e l f o r  a s p e c ia l  in ve n to ry  p r o b le m  o f  p ro d u c tio n  
com pon en ts

Main codes:
1 1 0 1 0 1 4 7 0 0

Assumptions:
The model is based on a special inventory control problem. The enterprise 

considered produces on order, since many different types of components are built 
into the products. Thus when the demand for a type of component is known (n), 
an order x ^ n  placed. After receiving the items ordered, a quality test will be 
made for each piece. The number of pieces failing the test is denoted by j.

If j S x —n, then the demand of production can be satisfied, and x —n —j  
pieces are surplus, they are sold for a salvage price v which is smaller than the 
purchasing price, if j > x —n, then an urgent order with a fixed cost К  is requested. 
Because of this order we have the same decision problem, since the new delivery 
has defective pieces again. The probability that a delivery of x pieces of the item 
contains j  defective pieces is px(j). The demand of the production must be at 
last satisfied with n good pieces, thus not only one urgent order may be necessary.

Objective:
The optimal policy ensures the total satisfaction of demands with minimum 

total costs. The cost components are the following:
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The expected cost of rejecting the items perished in m subsequent periods is

For an initial stock у  (after delivery) the expected cost of inventory holding 
and urgent ordering of a period is

Objective:



— The expected purchase-cost considering the defective pieces is

for и=1, 2, 3, .... The optimal decision for the given n is the value of x  which 
gives the minimum of C(n).

Solution:
The solution method is illustrated in the paper by a numerical example for the 

case when the probability of false pieces has a binomial probability distribution 
with a given parameter 0 < p < l

1 7 0

— The urgent ordering in the case of j ^ x —n has the fixed cost К  and the 
purchasing price of the urgent ordering. Besides, the loss of selling the unneces
sary pieces from the urgent order of volume n — x —j  or the cost of a repeated 
urgent order must be considered again. Thus the expected total cost can be 
determined in a successive way, applying the idea of dynamic programming:

— The expected income from selling the unnecessary pieces in case of j ^ x  — n is



IV. Deterministic Replenishment, Stochastic 
Demand, (t , S )  Policy

The model in this family assume periodic ordering for identical time periods 
of length t. An order should be placed in such a way that the amount in inventory 
be brought to a level of S  quantity units. Two subgroups in the family may be 
distinguished. In the first one, the order is received immediately; in the second 
one, there is a positive leadtime which is the interval between placing an order 
and its addition to inventory. In this group we consider only the models with 
known leadtime, the random case will be treated in the groups VII and XII.

The models without leadtime are classified on the basis of the considered 
time-horizon. Single and multi-period models are distinguished. The models with 
leadtime are classified on the basis of their behaviour with respect to shortage. 
There are models in which the demand in the case of shortage is backordered 
and is satisfied at the next delivery. In another case, if the demand occurs when 
there is no stock on hand, then it will not wait until the next delivery, but will 
be lost for the system: this is the lost sales case. In the third group, there are the 
models which have constraints on the volume or time shortage.

Deterministic replenishment, stochastic demand 
(t, S  policy)

__________________ I__________________
I I

without leadtime with leadtime
I I

I I • Г  I I
single-period multi-period backorders lost sales shortage

models models case case constraint

IV .l. Models without Leadtime
IV. 1.1. Multi-Period Models

66. The (t, S) policy for random demand
Main codes:

1 1 0 1 0 1 0 1 1 0

Assumptions:
The inventory level is increased by an order to S  in each time period (t). There 

is an immediate order arrival at the beginning of the periods and backorders in
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the case of shortage which will be first satisfied when an ordered quantity arrives. 
Both the inventory holding cost and the shortage cost are proportional to the 
time and amount of inventory or shortage. The unit cost factors are Cj and ca. 
There is a fixed order cost c3 per each order.

The demand is random, during a time unit it has the probability density func
tion f ( x ,  1). The demands of the different time units are independent by assump
tion, thus the total demand of t subsequent time units f{ x , t) can be calculated 
by convolution, i.e.,
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where f ( x —y , t — 1) can be expressed the same way using f ( x —y , t —2 ) etc. 
For example, in the case of exponentially distributed demand with f ( x ,  l ) = e ~ x, 
the convolution can be explicitly given in the form of

Therefore Sa(t) can be calculated for different values of t. The optimal pair /*, 
S„(t*) minimizes the cost function C(t, S). For the calculation of this pair no

which has a similar form for discrete demands except that the integrations are 
replaced by the respective sums and the density function f (x ,  t ) by the probability 
P(x, t). The cost function has to be minimized by the optimal choice of t and S.

Solution:
For any fixed value t*, the optimal S0(t*) is the solution of the following 

equation:

In the case of discrete distribution when the demand of a time unit is у  with 
probability P(y, 1) for y min= y= ym:il then the total demand of t periods is x  
b y m ,n ^ x ^ ty mix) with probability

which can be successively calculated for t= 2, 3, etc. 

Objective:
The expected total cost for given t and S  is



algorithmic solution is given, only simple trials with different values of t are 
proposed. In the case of discrete demand distribution, the optimal value of 
S0(l*) for a given t* is determined by the inequalities

where

(ы is the amount of demand and * and S  are constrained to discrete units: they 
can be equal to 0 , u, 2u, etc.)

67. Optimal ordering period for fixed order level
Main codes:

1 1 0 1 0 1 8 1 0 0
Assumptions:

Suppose that the demand is a random variable, while the maximal amount o) 
the possible demand during a period t is known: xmax(t)= rtA(i), where A it
is a given function of t and r is the average demand rate. No shortage is allow 
ed. This implies to fix the order level S„ for an order period t, as S p(t) =

The inventory holding cost is proportional to the amount and time of stocking 
and has the unit cost factor cx. The cost of an order is c3.
Objective:

The total cost for a given t is

which has to be minimized.
Solution:

The explicit solution is given for two special functions A (t). For A(t) = k

we have r0 =)^2 c3/[c1r(2 A: — 1)], while for A (t) = 1 + y  io = / 2 c3/(rc1) is the

optimal length of the order periods. In the first case the ratio of the maximum 
demand to the average demand during any period t is assumed to be a constant k. 
In the second case this ratio depends on t.

6 8 . Optimal order level for fixed ordering frequency
Main codes:

1 1 0 1 0 1 1 1 1 0
Assumptions:

The probability density function of the random demand x  during the prefixed 
order period tp is denoted by f ix ) . This demand is assumed to occur following
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a uniform pattern, i.e. the inventory level of a period decreases linearly. The 
inventory holding cost and the shortage cost depends on the amount and time 
of stocking and shortage. The unit cost factors are and c2. Because of the 
fixed ordering frequency, the ordering cost does not influence the optimal order 
level. In the case of shortage the demand is backordered.

Objective:
The expected total inventory holding and shortage cost for a period is equal to

which generally cannot be solved in explicit form; however, numerical methods 
are available for its solution. In the special case, when the demand follows the 
distribution f (x)  = x e -xlblb2 (with properly chosen b >0), the explicit solution 
is S0=b In [(Ci+CsI/cJ. In the case of a discrete demand distribution the 
following inequalities determine the optimal S0:

where

and P(x) is the probability of a demand x  and и is the minimal demand (expressed 
in the given unit).

69. The order-level system with instantaneous demands

Main codes:
1 1 0 1 0 1 1 1 1 0

Assumptions:
The probability density function of the random demand x  during the prefixed 

order period t„ is f (x).  The demand occurs at the beginning of each period after 
the receipt of the order which has been placed for the supply of the period. Thus, 
first the stock is filled up to the order level S  and in the next moment it is decreased
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Solution:
To find the optimal level S0, we have to differentiate C(S)  with respect to S  

and set the derivative equal to zero. This leads to the equation



to S  — x  by satisfying the actual demand. If the demand of a period is greater 
than S, there is a shortage; the demand is backlogged and satisfied in the next 
period. The inventory holding cost and the shortage cost are proportional to the 
amount of stock or shortage. The costs per unit are сг and c2, respectively.

Objective:
The sum of expected cost of the inventory holding and shortage is 

Solution:

By differentiating C(S) 
solution of the equation

with respect to S  and setting it equal to zero, the

gives the optimal order level S0. In the case of a discrete demand distribution, 
the optimality criteria are

with

where P(x) is the probability of a demand x, and и is the demand unit,

70. Order level with power demand pattern

Main codes:
1 1 0 1 0 1 0 1 1 0

Assumptions:

There is a given order period with length tp. At the beginning of each period 
the inventory level is S. The total demand x  of a period is a random variable 
and has a known probability density f(x )  in each period. Demand occurs during 
a period with a so-called power demand pattern which means that the inventory 
at the time T  is

Q(T) =  S - x y f T f t

where n is the demand-pattern index. In the special case и=1 we have the linear 
(or uniform) decrease of inventory and for n= °° we have the case of instanta
neous demand, which cases are handled in the previous models. The other assump
tions are the same as in these models (66—69).
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O bjective:
The total expected cost of inventory holding and shortage is

which has to be minimized for S.

Solution:
By differentiating C (S), analogously to the previous models, the optimal 

value can be expressed as the solution of the equation

For discrete demand distribution when the demand л: has a probability P(x), 
the optimality criteria are

where

and и is the demand unit.

71. C e n tr a l iz e d  in ve n to ry  c o n tro l sy s te m

Main codes:
1 1 0 1 0 1 1 1 1 0

Assumptions:
A central supplier controls a store according to a (tp, S )  inventory policy. 

Both the inventory holding and shortage costs are proportional to the (possibly 
negative) inventory level S0 at the end of the period. The unit cost factors 
are denoted by C , and Cs , respectively. The purchasing unit price is C„. No 
fixed ordering cost is considered. The demand of a period is a random variable 
with the probability density function f(y ).

Objective:
The expected total cost of a period is
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The derivative of the cost function is zero at the optimal value. This nonlinear 
equation can be solved generally by numerical methods. No specific solution 
method is given in the paper.

Solution:

72. M in im a x  o rd e r in g  p o l ic y  f o r  f in i te  tim e -h o r izo n

Main codes:
1 1 0 1 0 1 1 1 1 0

Assumptions:
An order y=(5„(.x) is placed at the beginning of each time period (all periods 

have the same length tp). x  is the initial level of stock at the beginning of periods. 
n periods are considered, this is the time-horizon of optimization. The demand 
of a period is a random variable: it has an expected value p and variance o* 
which are known, but the distribution is not known. The purchase price per 
unit is c. No fixed ordering cost is considered. The unit holding cost is h and the 
unit shortage cost is p. Future costs are discounted by a factor a. n„(ő1, ő2, ..., <5„) 
is the ordering policy, S„(x)=y is the ordering rule for the nth period.

Objective:
The ordering policy minimizes the maximum expected discounted cost over 

the n periods. The maximum is examined over all the probability distributions 
which have the expected value p and variance a 2.

where 

and

Solution:
It is proved that a limiting base stock policy characterizes the infinite model. 

The author shows some conditions under which a myopic minimax ordering 
policy exists for nonstationary distributions.

73. M in im a x  o rd e r in g  p o lic y  f o r  in fin ite  tim e -h o r izo n

Main codes:
1 1 0 1 0 1 1 1 1 0

Assumptions:
This is a version of the previous model. In this model the infinite time-horizon 

is considered (i.e., n—°°, using the notations of the previous model).
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The expected total cost is maximized for all possible demand distributions F, 
which have an expected value p and variance o2 (the family of these distribution 
functions is denoted by Г+(р, ст)). The optimal order level is the value y0, which 
minimizes the maximal cost, where the maximum is taken on the distribution 
class Г+ (m, b) (for any particular y). Thus the objective function is a minimax 
problem which can be formulated using the idea of dynamic programming.

It is supposed that the cost functions of the л-period time-horizon C„(y) are 
monotonously and uniformly convergent as n tends to infinity. For this asymp
totic cost function C(y) the following equation is valid:

O bjective:

and

Solution:
The C(x) is convex and the sequence у* contains convergent subsequences. 

Any limit point у  of the sequence {y*} minimizes G(y). The optimal ordering 
policy for the infinite horizon problem is a stationary policy n(ö*, 5*, ...) that is 
characterized by a single critical number y. In this case it is to order up to у 
whenever the inventory level x  is less than у  and not to order otherwise: <5*= 
=  max(y —X, 0 ), where у  is the smallest minimizing solution of c(l — a)y + 
+P(ß~y)+(P+h)T1y.

74. Order-level system for spare parts 

Main codes:
1 1 0 1 0 1 1 1 1 0

Assumptions:
For a working process, к pieces of a component part are necessary. During the 

work they may break down and have to be replaced by spare parts. The demand 
for the spare parts is random with a known probability distribution. The stock 
is increased in each period (of identical length) to the order level S. If the number 
of perfect parts is less than k, then a shortage cost appears which is proportional 
to the amount of shortage and has a unit cost p. If the number of perfect parts is 
greater than k> then there is an inventory holding cost h, which is proportional 
to the excess stock.
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C(S) =  £{c£»(S) +  h[S-Z)(5)-Ä:] + +p[Ä:-5+Z)(S)]+},

where E  denotes the expected value operator, (y) + =  max {0, y} and D (S) is 
the expected demand of a period.

Solution:
In general the optimal order level S  can be calculated from the inequalities 

which result for the first difference of the objective function from the necessary 
condition of the optimality. For special cases, when the demand of a period has 
a binomial or normal distribution, explicit solutions are derived.

75. Production smoothing by safety stock

Main codes:
1 1 0 1 0 1 1 1 1 0

Assumptions:
In the time period (k — 1, k) an amount uk is produced. The demand rk of this 

period is random and follows a normal distribution. The demand of the different 
periods are independent random amounts. The inventory level of period к is 
Ik= Ik_1 + uk_1- r k. The optimal amounts of production have to be determined. 
The changes in the production go with costs: p is the cost factor for an increase 
per unit and q is the factor for a decrease of production per unit from a period 
to the next one. Both the inventory holding and the shortage cost are propor
tional to the amount of stock and of shortage, having unit cost factors h and v, 
respectively. Since rk has a normal distribution for all k, we can suppose that 
the random amounts Ik and uk have also normal distributions; their parame
ters are denoted by (p,, S,) and (pu, 5U).

Objective:
The average expected cost of a period is

Objective:

The expected total cost of a period is
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where P(u)=pu + +qu~ and L(I)= hI + + vI with v + =  max {y, 0} and
У~ = -  min {у , 0}.
Solution:

The optimal decision uk depends on the deviation of the actual inventory level 
lk from the safety stock pj. This safety stock p, will be held fixed during the 
entire production smoothing process. The optimal pj is calculated by an ordinary 
static optimization procedure which is the first step of the solution. The second



one is the linear dynamic optimization problem which has an explicit solution. 
For the optimal solution we have

where 

and

76. A m o d e l f o r  d isc re te  d em a n d , o cc u rr in g  a t  ra n d o m  tim e s  in  ra n d o m  
a m ou n ts

Main codes:
1 1 0 1 1 1 9 1 2 0

Assumptions:
The ti time between the £th and (£ +  l)-th discrete demands is random, and 

has a p T( . )  probability distribution function with mean t  and maximum value 
M. The amount of <̂ -th demand d( is a random integer value with known discrete 
probability distribution, which is denoted by p D{ .). The maximal possible 
demand В is also given. The order is placed depending on the actual stock level 
after a demand occurrence and on the time interval since the occurrence of the 
previous demand. There is an immediate order receipt and in the case of shortage 
the sales are lost. The capacity of the store is N  units. The cost factors: h the 
holding cost per unit of stock per unit time, n the penalty cost per unit of lost 
sales, К  the fix ordering cost, c the purchasing cost.

The problem can be formulated by a Markovian renewal process where the 
different states are the possible values of the stock level. The 6 policy can be 
characterized by a (y, v, P) vector, where у is the expected single transition cost, 
V the mean single state duration, P  is the matrix of transition probabilities.
Objective:

The order level S  is fixed and the time between the orders may change. The 
objective is to minimize the expected total cost for a unit per time. The explicit 
cost expression is not given in the paper.

Solution:
For fixed S, the time until the next order is optimized. The solution is a vector 

of 5 —1 dimensions. Its components give the optimal time until the next order 
for different stock levels 1 to 5 —1. After this step the value of 5  is optimized. 
The solution method can be based on linear programming or on some other 
iterative procedure.

77. P ro d u c tio n  p la n n in g  f o r  s to c h a s tic  d e m a n d  p ro cess

Main codes:
1 1 0 1 1 1 9 0 1  - 1
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The production of an item is considered on the finite time interval [О, Т]. 
The optimal production rate r(t) is to be determined as a continuous function 
of time. The demand is described by a continuous stochastic process. The net 
inventory level at time t—which may also be negative in case of shortage—is 
denoted by I(t). There is a backorder for shortages. The production cost F(r(tj) 
and the sum of inventory holding and shortage costs A (/(f)) is considered.
Objective:

The expected total cost for the time-interval [О, T] has to be minimized by 
selecting an appropriate production rate function r(t):

{ W ) ] + A [/(')]}*}
0

where E  denotes the expected value operator.
Solution:

The method is based on the stochastic variation principle and control theory. 
The stochastic problem is first reduced to an equivalent deterministic problem 
for which an algorithmic solution is given. The existence of a unique solution 
r(t) is also proved.

IV.1.2. Single-Period Models

78. Order-level model, surplus can be sold

Main codes:
1 1 0 1 0 1 1 0 1 0

Assumptions:
The total demand in the period [О, T] considered is a random amount x  with 

a known probability density function f(x ) . The inventory is filled up by order 
to the level S  at the beginning of the period. Before filling up there is an initial 
stock z. Both the inventory holding and shortage costs depend on the amount 
of stock or shortage at the end of the period. The respective costs per unit are 
S T and PT. The purchase price per unit is c. No fixed order cost is considered. 
The surplus stock at time T  can be sold for the price per unit r(r<c).
Objective:

The total expected cost of the period [О, T] is

S  oo

L T(S) =  /  [Sr (S -x ) - /- (S -x ) ] /(x )d x +  f  PT(x —S)f(x ) d x+ c(S— z),
0 s

which has to be minimized.

Assumptions:
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Solution:
The existence of an optimal solution is proved under different assumptions.

79. Nonlinear cost model, surplus can be sold
Main codes:

1 1 0 1 0 1 1 1 1 0

Assumptions:
During a given period tp the total demand is a random amount x  with proba

bility density function f(x ) . The initial stock level is h. After the receipt of the 
amount q ordered the inventory level becomes S —q+h. The inventory holding 
cost Cc and the income Cr from the sale of the surplus stock are both functions 
of the stock level at the end of the period. The purchase price per unit and the 
cost of sale per unit during the period are c and z. The unit shortage cost is denoted 
by b.
Objective:

The total expected cost of the period is
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which has to be minimized for S.
Solution:

Differentiating the cost function with respect to S  and setting it equal to 0, 
the optimal order level 5  can be determined by solving the equation

80. Stochastic single-period model without leadtime
Main codes:

1 1 0 1 0 1 1 0 2 0

Assumptions:
An interval with given length T  is investigated during which time a random 

demand £ occurs. The initial stock is x. The decision variable is the amount to 
be ordered z which is on hand at the beginning of the time interval. The inventory 
holding and shortage costs are proportional to the net inventory at the end of 
the time interval: they are expressed by a function L  of the maximal inventory 
level. The unit of purchasing price is denoted by c. No fixed ordering cost is 
considered.
Objective:

The expected total cost of the period is to be minimized, i.e., we have to find 
the solution of the problem:



In general, for an arbitrary known continuous demand distribution function, 
the necessary condition for optimality can be expressed by differentiating the 
objective function. It leads usually to the solution of the nonlinear equation 
c + L '(x ) = 0  by some numerical method.

The amount to be ordered is determined by

{X —  X  if X  «= X  

0 if X  ^  X ,

where x is the order level.
For a discrete demand distribution an algorithmic solution is derived (by use 

of the first differences) and illustrated on Poisson distributed demand.

81. A minimax ordering policy for a single period
Main codes:

1 1 0 1 0 1 1 1 1 0

Assumptions:
A fixed time interval is considered during which a random demand occurs. 

The expected value p and the variance <r of the demand is known, but its F dis
tribution function is unknown. The purchase price and the unit inventory holding 
and shortage costs are denoted by c, h and p, respectively. All these costs are 
linear and proportional to the amount ordered, or obtained at the end of the 
period as stock or shortage. The inventory is filled up to the level S  at the begin
ning of the period according to an order. The stock left over at the end of the 
period can be salvaged with a return of у times the initial purchase cost c (y< l).

Objective:
For any fixed value of S, the total discounted cost of the time-period (with 

discount factor a) is:

Solution:

G(S) =  max[c(l - •ccy)S+L(S, F )+ c • ix -y ■ p]
F

where L  is the expected holding and shortage costs incurred during the period. 
The objective function can be written as follows:

where

(The cost G(S) is maximal for all possible demand distributions F which have 
expected value p and variance o2.)
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The cost in the case of the most unfavourable demand distribution is expressed 
by G(S), which has to be minimized for S. The optimal solution of this minimax 
optimization procedure is

Solution:

where

82. The “newsboy problem”

Main codes:
1 1 0 1 0 1 1 1 2 0

Assumptions:
The demand of the period considered is an integer random variable, which has 

the value x with probability P(x) and may have values between xmin and xmai. 
The purchasing price per unit is b and the selling price per unit is d (d>b). The 
surplus stock at the end of the period can be sold only for a unit price a (a<b). 
The demand is lost in the case of shortage.
Objective:

In the case of an initial stock level S, the total expected profit of the period is
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which has to be maximized.

Solution:
Differentiating C(S)  with respect to S, we obtain that the optimal value of the 

initial stock S  is the integer for which the following inequalities hold:

where



IV.2. ( t ,  S ) Models with Fixed Leadtime

IV.2.1. Demand Is Backordered

83. Order level for random demand with uniform rate

Main codes:
1 1 0 1 0 1 1 1 1 1

Assumptions:
The length tp of the order periods is prefixed. The demand of each order period 

is a random amount x  which has the known probability density function f(x ). 
The leadtime between ordering and receipt is a fixed time interval with length L. 
The demand of the leadtime is v which has the probability density h(v). At the 
beginning of each order period an order is placed for the amount S —y, where 
S  is the order level and у  is the actual inventory level which may also be negative 
(in the case, when shortage has been backordered). Having received the order 
after the leadtime L , first the backorder is satisfied, if there is any. Both the in
ventory holding cost and the shortage cost are proportional to time and amount 
of stock level or shortage and have the costs per unit cx and c2.

In this version of the model the demand is assumed to occur with a uniform 
rate, i.e. the inventory level of the period decreases linearly.

The purchase price and ordering cost do not influence the optimal order level
S. The total expected cost of the inventory holding and shortage is for continuous 
values of x, v and S :

If the demand is measured in discrete units, then the integrals are replaced by 
the respective sums and the probability density by the discrete probability dis
tribution.

By differentiating the cost function and setting it equal to zero, we obtain the 
following equation from which the optimal order level (S0) can be determined:

Objective:

Solution:
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In the discrete case (when x, r and S  may have values 0, u, 2u, ...) the solution 
is given by the inequalities

where

84. Order level for instantaneous random demand

Main codes:
1 1 0 1 0 1 1 1 1 1

Assumptions:
This is a modified version of the previous model. All the notations are the 

same. The only difference is that the total amount of the demand of one period 
occurs instantaneously at the beginning of each period, once in each period.

Objective:
In the case when x, v and S  are continuous, the expected cost of inventory 

holding and shortage is

186

In the case of discrete demand the integrals and density functions have to be 
replaced by the respective sums and discrete distributions.

Solution:
By differentiation of CCS! we obtain that the ontimal order level is the solution 

of the equation

In the discrete case the solution is given by 

where
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where r is the mean rate of demand per unit of time. Hence, the value of t0 which 
minimizes C0(t) has to be found. No general explicit solution can be obtained, 
however. In order to solve the problem we ha\ e to apply some numerical technique.

In the case of a discrete demand distribution the solution can be found similarly 
as in the previous models (83—84).

8 6 . The inventory-bank system

Main codes:
1 1 0 1 0 1 1 1 1 1

Assumptions:
The ordering period has a fixed length tp. The amount of demand is supposed 

to be a discrete random variable, i.e., during this period demand S  occurs with

The corresponding minimum cost can then be shown to be

Solution:
For any given t, the corresponding optimal order level Sn(t) can be found from 

the equation

where

85. The probabilistic scheduling-period order-level system with leadtime

Main codes:
1 1 0 1 0 1 0 1 1 1

Assumptions:
The scheduling period is the time between two consecutive orders: it is also 

subject to control in this model together with the order level. Let f ( x ,  t) be the 
probability density function of demand x during a scheduling period with length 
t. Let h{v) be the probability density of demand v during the lead time L. Beside 
the cost of inventory holding c1 and the cost of shortage c2 the ordering cost has 
to be considered which is a fixed amount c3 for each order.

Objective:
The expected total cost for a given value of t and S  is



probability P(S). In an ordering period the demand rate is assumed to be constant. 
The ordering rule of the inventory bank system is the following. At the beginning 
of each ordering period the average demand of the previous M  periods S is cal
culated. The so-called inventory-bank level is N  ■ S, where N  is an integer. If 
the actual inventory level is less than the inventory bank level then the difference 
is ordered. If there is a leadtime, the ordered, but so far not received, amount 
has to be added to the actual physical stock (i.e., this inventory level has to be 
considered). In the case of a shortage, demand is backordered and will be satisfied 
at the next receipt. The order cost is a fixed value c3. The inventory holding and 
shortage have the cost factors cx and c2 per unit quantity and time.

Objective:
For the values of the decision variables N  and M , the expected total cost can 

be approximated for a large value of M  in the case of zero lead-time by
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where и means the unit amount.
For arbitrary M  and N, the exact cost expression for the zero leadtime case is

where G(Q, M, N) is the probability distribution of the initial stock level Q, 
which has the maximal possible value Qma%\ finally, B(Q, S) = 1 if an order is 
placed, while B(Q, S ) = 0 if no order is placed.

Solution:
The cost function is very complicated, direct optimization procedures cannot 

be applied. The author indicates two different ways for optimization: the first 
applies Markov chains, the second relies on simulation techniques. Some con
cepts, concerning the computer realization of the latter method are also described.

87. (t, S) policy shortage cost proportional to the amount of shortage

Main codes:
1 1 0 1 0 1 0 0 1 1



A (t, S) policy with stochastic demand is considered. The demand is backordered 
in the case of shortage. The sum of the inventory reviewing and ordering costs 
at each order is a fixed amount L. The shortage cost is proportional to the amount 
of shortage, while the inventory holding cost is proportional both to the time 
and amount of inventory on hand. The respective unit cost factors are denoted 
by n and 1C, where C  is the unit cost of purchasing. The average demand rate is 
r. The leadtime is random with known distribution. The leadtimes of the different 
orders are assumed to be independent, and the deliveries are assumed to occur 
in the same sequence as the orders were given.

Objective:
The expected total annual cost is

Assumptions:

189

where p is the expected demand during the leadtime and E(S, t) is the expected 
annual shortage.

Solution:
For a given value of t, the optimal S  can be derived by differentiating the 

objective function with respect to S  and setting it equal to zero. If the value of 
t is also a subject of optimization, then the partial derivatives have to be equal 
to zero: the corresponding system of two equations can be solved numerically 
e.g. by the Newton-method.

8 8 . (/, X ,  nQ) policy with Poisson demand 
Main codes:

1 1 0 1 0 1 0 0 1  1
Assumptions:

The inventory reviewing period is of length t. At each review the following 
policy is applied: if the inventory level is above the reorder level s, then no order 
is given. If the inventory level is below s, then an order for an amount nQ is 
given where n is the smallest positive integer for which n Q ^s. The demand 
occurs in discrete amounts (one by one) and for any time interval the total demand 
has Poisson distribution with mean demand rate r. The inventory reviewing cost 
is J  at each review, the fixed order cost is A. There are two types of shortage 
costs: one is proportional to the amount and the other is proportional to the 
time of shortage. The unit cost factors are denoted by л  and ft. The inventory

rei
holding cost has the usual dimension j - :_J ■ and the unit cost factor is denoted
IC. \.Q]\T\

Objective:
The expected total annual cost (as a function of Q, s, t) is



where E(Q ,s, t) is the expected annual amount of shortage, B{Q,s, t) is the 
expected annual time of shortage and Par is the probability of ordering in a 
given period.

Solution:
A numerical procedure is proposed for the minimization of the objective, 

however, this method may yield some local minimum which is higher than the 
global minimum of the objective function. (A similar case is obtained, if the 
Poisson distribution is approximated by a normal distribution.)

89. (t , s, S ) policy with stochastic demand 
Main codes:

1 1 0 1 0 1 0 0 1 1

Assumptions:
In a period with length t the total demand is a discrete random amount x  with 

probability p(x, t). For n subsequent periods the total demand can be expressed 
using the n-fold convolution of the probability distribution denoted by p {n){x, t). 
F(x, t) is the complementary cumulative of p(x; t). The demand of the different 
periods is assumed to be independent. At each review the following policy is 
applied: if the inventory level x is below the reorder level s, then the amount 
S'—X is ordered. There is a constant leadtime. The review cost is J, the fixed order 
cost is A. The sum of the inventory holding and shortage costs for a period is a 
function of the initial stock r+ j  and the review period t, and is denoted by 
H (r+ j■ t).

Objective:
The expected total annual cost (as a function of the parameters S, s, t) equals

Solution:
The explicit cost function is derived for the case when the demand is generated 

by a Poisson-process and also for the continuous case; a sophisticated numerical 
solution method is also suggested.

90. Order-level system with stochastic process demand

Main codes:
1 1 0 1 0 1 1 1 1 1

Assumptions:
The demand of an interval with length .v has the probability distribution G(x, s). 

Thus the demand is generated by a stochastic process which is homogeneous in 
time. The mean demand rate is r. The demands of disjunct time intervals are
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assumed to be independent, thus the stochastic process of the demand has in
dependent increments (it is a stationary process). The order periods have fixed 
length t, the leadtime L  is also constant. The inventory holding, shortage and 
order costs have the usual dimensions and respective unit costs cl 5 c2 and c8.

Objective:
The expected total annual cost, as a function of the order level S, can be expres

sed in the following form :

where

If the inventory holding and shortage costs are linear with unit cost factors cx 
and c2, then
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Solution:
The optimal order level is the solution of the equation G (S)= cJ(c1 + c2) 

Its solution is studied in the case, when the demand is a Wiener process, i.e.

(X  —  TS \-— — , where Ф denotes the standard normal distribution function 
a i s  )

hence the optimal S0 can be determined by the numerical solution of a nonlineai 
equation.

91. Stochastic periodic model with leadtime

Main codes:
1 1 0 1 0 1 1 1 1 1

Assumptions:
There is a fixed order period with length t. The order of period i is deliverec 

in period i+ L , thus the leadtime is Lt. The purchasing unit cost is c, the fixec 
ordering cost is c3 at each order. The inventory carrying cost and the shortag* 
cost are both functions denoted by h and p. The demand is random and it i; 
backordered in the case of shortage.

Objective 

where



where F(x) is the demand distribution and F(L) (x) denotes the L-fold con
volution.

Solution:
For convex cost functions h(y) and p(y), the total cost is a convex function, 

too. In the case of continuous demand the single solution can be calculated from 
the derivative of the objective function. In the case of linear inventory holding 
and shortage costs, the optimal order level S0 is the solution of the equation

IV.2.2. Lost Sales Case

92. Stochastic order period and order level model

Main codes:
1 1 0 1 0 1 0 0 2 1

Assumptions:
A (t, S) policy is considered with stochastic demand. The probability density 

function of the demand during an order period is denoted by h(x\ t). The expected 
mean demand rate is r. The inventory review cost is J  at each review (it can be 
considered as a fixed order cost). The unit purchasing price is C, the unit inven
tory holding cost is 1C. The shortage cost is proportional to the amount of shortage 
and has a cost factor n.

Objective:
The expected annual total cost is

where p is the expected demand during the leadtime.

Solution:
°° 1C • tThe optimal order level S  is the solution of the equation [ h(x; t)d x = ---- ——j  n+lC • t

for fixed t. To determine the optimal t value the simultaneous solution of the
above equation and the equation---- ^ ---- = 0  is suggested. For this, for example,

Newton’s method can be applied. The solution technique is illustrated by an 
example.

93. Stochastic model with a one period leadtime

Main codes:
1 1 0 1 0 1 1 1 2 1
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There is a fixed order period with length t. The leadtime is equal to the length 
of the order period, thus there is a one-period delay in the system. The demand 
is random and in each period has the same probability distribution. In the case 
of shortage the demand is lost for the supplier. The purchasing unit price is c, 
the fixed ordering cost is cs at each order. The inventory carrying cost and the 
shortage cost are supposed to be functions denoted, by h and p, respectively.

Objective:
The expected total cost is

rl z >  0
C(x) = -c x + m in { c 3 <5(y-x)-fcy+L(y,x)}, <5(z) =  -L n

y s x  Ш Z =  U

where L(y, x )—h(y, x )+ p (y ,x ) , which, for linear inventory holding and shor
tage cost with cost factors h and p, can be written as

Assum ptions:

where x t and лг2 denote the demand of the first and second period. Both random 
quantities have the same distribution function F(x).

Solution:
No general solution method is given for the minimization of the above cost 

function.

IV.2.3. Models with Shortage Constraints

94. Scheduling period model with leadtime and no shortage

Main codes:
1 1 0 1 0 1 8 1 0 1

Assumptions:
The demand x  is random and has the probability density function f ( x ,  t) 

during any time period with length t. The mean demand rate is r, and there is a 
maximal rate of demand x max. The probability density of the demand during the 
leadtime with length L  is h(v). At each time period t an order is given. The length 
of the order period has to be optimized. The order level S p= (L + t)x ma, is 
prescribed, since no shortage is allowed. The fixed ordering cost is c3. The unit 
inventory holding cost is cx.
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where 

Solution:
The derivative of the objective function has to be set equal to zero. This equation 

serves to determine the optimal value of t. In general no explicit solution can be 
given, but for special cases of A(t) explicit solutions are derived. For example,

A(t) = k :  t0 =  Í2c3/[ci r ( 2 k - l ) ] ,
and for

A(t) = l+ b /t: t0 = У2cs/(rc1).

95. Order level, when the probability of the shortage is constrained

Main codes:
1 1 0 1 0 1 1 1 1 1

Assumptions:
There is a fixed order period with length t. The leadtime L  is also constant. 

The demand of the period with length t+ L  has the probability distribution 
function F(x\t+ L) and the probability density function f(x \t + L). The proba
bility of the shortage is constrained, the continuous supply has to be ensured 
with some probability 1 — a (which is supposed to be near 1). This is the required 
service reliability level.

Objective:
The expected stock on hand at the end of a period is
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Objective:
The expected total annual cost is

in the case of an order level S. Thus the inventory holding cost is htB(S\t+ L) 
which has to be minimized under the mentioned probabilistic constraint.
Solution:

The Lagrange-function of the above constrained optimization problem is

H(S, G) =  A t5 (S |/+ L )+ G [l-F (S |i+ L )+ ( l-a )]

with the Lagrange-multiplier G. By minimization the optimal order level S  can 
be expressed: 5 '= F _1(a |L + i), where F - 1  denotes the inverse function of F.
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96. O r d e r  le ve l when th e  e x p e c te d  va lu e  o f  sh o r ta g e  is  c o n s tra in e d

Main codes:
1 1 0 1 0 1 1 1 1 1

Assumptions:
The random demand during the prefixed order period t plus leadtime L  is de

scribed by the distribution function F(x\t + L). The density function is denoted 
by f (x \t  + L). The mean demand rate is r. The expected value of the shortage 
at the end of the order periods is constrained. It has to be smaller than or equal 
to the prescribed service level ß.

Objective:
The expected value of shortage at the end of an arbitrary period equals

s
D (S \t+ L )=  f  (x -S ) f ( x \ t+ L ) d x .

о

The expected inventory holding cost htB (S\t+ L) is minimized under the shortage 
constraint D (S\t + L )s ß .

The expected value of inventory at the end of an arbitrary period is expressed 
in the form

s
B (S \r+ L )=  /  (S -x ) f(x \t+ L )d x .  

о
Solution:

The Lagrange-function of the above constrained optimization problem is

H(S, G) = htB(S\t+L) + G[D(S\t+L)—( l —ß)tr],

where G is the Lagrange-multiplier. By minimization of H (S, G), the optimal 
order level can be expressed as

S= D ~1[(l-ß )tr \t+ L ]

where D - 1  denotes the inverse function of D.

97. O r d e r  le ve l w ith  p e r io d ic a l  w ith d ra w a ls

Main codes:
1 1 0 1 0 1 0 1 7 1

Assumptions:
The demand consists of a deterministic and a random part. A quantity P  is 

demanded at each p unit of time. At every unit of time there is a random demand 
with known distribution and with mean demand rate d. Thus the expected total 
demand of a time unit is k=Pjp-\-d. The length of the order period is t units 
of time, which is a function of p. Two cases are considered: (a) t= k -p ;  (b) 
t=p/k, where к  is a positive integer.



The leadtime is L. The distribution function of the demand during the time 
t+ L  is F(x). The order can be revoked before delivery with a unit cost К  pro
portional to the amount revoked. The order level S  means the sum of the stock 
on hand and on order minus the withdrawals. The fixed order cost is c3, the 
inventory carrying cost is Cj.

Objective:
The total expected cost for a time unit is

C(S) = S L  + £ L .( 2 S - p - d L ) + ~ b ( S ) ,

where b(S) is the expected amount of withdrawals and n= d(L + t).

Solution:
No exact solution method is given, only an approximation using heuristic 

arguments is proposed.
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V. Deterministic Replenishment, Stochastic 
Demand, (s, q) Policy

This group consists of the so-called reorder point models. When the stock 
level decreases to or below the level of the reorder point (s) an order with gi\en 
lot-size (q) is placed. The further classification of these models is based on the 
behaviour of the demand in case of shortage and on the stock review system:

Deterministic replenishment, stochastic demand,
0 , q) policy

________________________I________________________
I I I I

Backorders Lost sales Shortage not Special shortage
case case allowed policy
J____
I I

No lead- Constant
time leadtime

_ _ J _______
I I

Periodic Conti-
review nuous

review

V .l. Backordered Demand

V .l.l .  Models with No Leadtime

98. S to c h a s tic  re o rd er  p o in t  lo t- s iz e  sy s te m  

M ain  codes:
1 1 0 1 0 1 2 1 1 0

A ssum ptions:

There is prescribed reviewing period with length wp. During this time the 
demand x  is a random amount with a probability density function f ( x ) in each 
reviewing period, where the demand intensity x  is assumed to be constant. At

14 Chikán
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each review an order is given, if the stock level is not above the reorder point s. 
The order amount is an integer multiple of a constant lot-size, i.e., it equals nq, 
where n is the smallest integer for which the actual stock level minus backorders 
plus nq is greater than s. The amount ordered is delivered instantly and first the 
possible backordered demands are fulfilled.

Under general circumstances, the initial stock of the review periods have a 
uniform distribution in the interval [j, j +^]. The fixed order cost is c3. The in
ventory carrying cost and the shortage cost is proportional to the time and amount 
of stock level or shortage. The unit cost factors are denoted by cx and c2.

Objective:
a) If the demand x and the control variables s and q are continuous, then the 

expected total annual cost is

where

where

with

and P(x) is the probability of demand x during a review period.
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b) For discrete variables with unit и



a) For any given q, the optimal jg can be determined by partial differentiation, 
as the solution of the equation dC(s, q)/ds—0. Similarly, for given s the optimal 
ql can be fixed. The overall optimal pair i 0, q0 is the solution of a system of two 
non-linear equations which can be evaluated using iterative numerical solution 
techniques.

b) For the discrete case, the equations are to be replaced by a system which 
consists of two pairs of inequalities which can be solved also by some iterative 
numerical method.

99. S to c h a s tic  re o rd e r -p o in t sy s te m

Main codes:
1 1 0 1 0 1 2 1 1 0

Solution:

Assumptions:
They are basically similar to those of the previous model. The only difference 

is that the lot-size qp is prescribed. Thus the order cost does not influence the 
optimal value of the reorder point.

O bjec tive :

With the notations used in the previous model, the expected annual total 
cost (without ordering costs) can be expressed as follows, 

a) In the continuous case we have
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where

b) In the discrete case with unit и we have

Solution:
a) The optimal s0 is the solution of the equation

b) In the discrete case, the inequalities



give the necessary and sufficient condition for the optimality of with the notation

V.1.2. Models with Constant Leadtime 

V.l.2.1. Periodic liven tor у Review Models

100. S to ch a s tic  re o rd er-p o in t lo t-s iz e  sy s te m  w ith  le a d tim e

Main codes:
1 1 0 1 0 1 2 1 1 1

Assumptions:
This model is a generalized version of the reorder-point lot-size system (Model 

98). The difference is that a leadtime L is assumed between placing and receiving 
an order. The notation z is replacing s, meaning the sum of inventory on hand 
and on order at the beginning of the review period.

Objective:
a) In the continuous case we have

where the notations are the same as used in connection with Models 98 and 99, 
except the influence of the leadtime changes the earlier meaning of m(y) to

fix)
where d(w)= j  - ax and e(v) is the probability density function of the

demand v during the leadtime. Its expected value is denoted by v. 
b) In the discrete case we can write
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where we apply the notations of Models 98 and 99, except that R(y) should be 
replaced in the expression of N(y) by D(y), which is defined by

R ( y )=  2  D {y—v)E(v)c-0

where E(v) is the probability of demand v during the leadtime and v(k) — 
k J— 2 2  The expected value of v is denoted by v.

j = 0 x = 0

Solution:
The same principles should be applied as in the case of model 98 and 99.

101. S to c h a s tic  re o rd e r -p o in t sy s te m  w ith  le a d tim e

Main codes:
1 1 0 1 0 1 2 1 1 1

Assumptions:
We have the same assumptions as in the previous model, the only difference 

is that the lot-size qp is a prefixed value. Thus it is a special case of the prev ious 
model.
Objective:

Both in the continuous and discrete case the objective function is the same as 
in the previous model, but it has only the variable s to control, the value of q 
is replaced by qp. The order cost does not influence the optimal value of s, thus 
it may be omitted.

Solution:
In the continuous case, the optimal i 0 is the solution of the equation

g(z0- u )  ~ S ? ( z 0),
i C  2

g(z) =  W(z- ± q^ ~ W(z) With W {S) =  2 2  R(y)
qp j = о y = o

where

and R(y) defined in connection with the previous model.
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where T(Q)= J J m(y)dy dz with m(y) = I  e ? -  dxe(v)dv. In the

0 0  0 y - v  X
discrete case, the optimal j 0 is defined by the inequalities



V. 1.2.2. Models with Continuous Reviewing

1 0 2 . (j , q) policy with constant leadtime

Main codes:
1 1 0 1 0 1 2 2 1 1

Assumptions:
The mean value of the shortage is assumed to be small, when related to the 

lot-size q, moreover, the time interval in which no stock is on hand is considerably 
smaller than the average intervals between the deliveries. The assumptions are 
satisfied if we have a relatively high shortage cost factor c2 relative to the in
ventory holding cost factor ct . The leadtime L  is constant: during this time there 
is a random demand x with probability density function f(x ) . The mean demand 
rate is denoted by r. The fixed order cost is c3.
Objective:

The total expected annual cost is

and

which can be solved by an iterative procedure starting with the initial trial

Яо =]/2rc3/c1.

103. (s, q) system with normal demand distribution
Main codes:

1 1 0 1 0 1 2 2 1 1

Assumptions:
The demand of the constant lead-time / has a normal distribution with mean 

D and standard deviation a. The usual cost factors Ch, Cs and C0 are considered 
for inventory holding, shortage an fixed order cost.

2 0 2

Solution:
The optimal value of the reorder-point j  and lot-size q have to satisfy the 

following system of equations:



Objective:
For given reorder point z and lot-size Q, the expected total annual cost i s '

where cp denotes the probability function of the standard normal distribution 
and ad represents the standard deviation of demand per unit time.

Solution:
From the necessary conditions of the optimum

we obtain a linear function for dC/dz for any fixed z. This can be represented on a 
nomogram from which the optimal value of z can be read for the given a, b. 
The optimal Q can be determined on a similar way or by solving the equation 
dCT/dQ—0 substituting the optimal z0 for z. Beside the graphical solution, an 
iterative numerical procedure is also presented.

104. The cost of changing the continuous review policy to periodic one

Main codes:
1 1 0 1 0 1 2 2 1 1

Assumptions:
The demand of a unit time has a normal distribution with parameters D 

and o. The leadtime has a constant length /. The shortage cost depends only on 
the amount of shortage, while the inventory holding cost depends also on the 
stocking time. The order cost consists of a part, dependent on the amount ordered, 
and of a constant part.

Objective:
The model compares two inventory policies: the (s, q) policy with continuous 

review and the (t, S)  policy with periodic review. The expected total cost per 
unit time for a periodic review system is:

2 0 3

the solution cannot be expressed in an explicit form. Applying the parametrization



Dc0 + ̂  + ̂ c 2Q+c2( r - Dl) + ^  J  (X —r)f(X , Г) dX,

where
c0 =  cost of item per unit;

=  replenishment cost;
c2 =  cost of inventory holding per unit per unit time; 
c3 =  unit shortage cost;
D = mean demand per unit time; 
a'1 =  variance of demand per unit time;

f ( X ,  t) =  probability distribution of the demand X  in time /;
/ =  leadtime;
T — review period;
z =  gross inventory (i.e., actual inventory plus balance on order);
Q = lot-size;
r =  reorder level.

Solution:
The aim of the analysis is to evaluate the surplus cost in inventory carrying, 

shortage and order by changing the continuous review to periodic one. This is 
compared to the surplus cost of the administration of continuous reviewing in 
order to select the more economic policy.

105. (s, q) policy with general leadtime demand distribution

Main codes:
1 1 0 1 0 1 2 2 1 1

Assumptions:
The demand during the leadtime т is a random amount with the probability 

density function f (x ,  x). The mean demand rate is X.

Objective:
The total expected cost for unit time

K(r,Q ) =  А л  +  / с ( !  +  г - / | ) ( / С + р ) - М

has to be minimized, where p —X-x and the cost factors IC, p, A of the inventory 
holding, shortage and ordering have the usual dimensions; furthermore,

ß (0  = f  f  ( y - x ) f ( x ,  t) dy dx.
r X

Solution:
A nonlinear system of equations have to be solved which results from the 

first-order condition of optimality, (the partial derivatives of the cost function 
are equal to zero at the minimum point which is proved to be an interior point). 
No specified method of solution is detailed in the paper.

The cost function of the corresponding lot size reorder level system is:

2 0 4
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106. Stochastic reorder-point lot-size model, with Poisson demand

Main codes:
1 1 0 1 0 1 2 2 1 1

Assumptions:
An ( q) policy is investigated (here the reorder point is denoted by r, the 

lot-size by Q), where shortage is backordered and the demand of the leadtime 
is generated by a Poisson process: units are demanded at random moments with 
exponentially distributed inter-arrival times. All the variables are discrete. The 
average demand rate is A. Two different shortage cost factors are considered: 
A is proportional to the time, while n is proportional to the amount of shortage. 
The inventory holding cost factor is IC and the constant cost of order is denoted 
by A.

Objective:
The total expected cost for unit time,

K(Q, r) A + I c [ ^ -  + r - p \  + 7tE(Q, r) + (A + IQ B (Q , r)

has to be minimized, where the expected number of backorders for a time unit 
is E(Q, r) and the expected number of backorders at a random instant is B(Q, r). 
Both E (Q ,r) and B(Q ,r) are expressed by means of the Poisson distribution 
function in a rather complicated form. The parameter p denotes the expected 
demand during the lead-time.
Solution:

Under the assumption that p< r+ Q , a simple iterative procedure can be 
derived. For the general case a complicated computer program has been developed 
which yields a local optimum which may be different from the globally optimal 
solution of the problem.

107. Stochastic reorder-point and lot-size model with normally distributed 
leadtime demand

Main codes:
1 1 0 1 0 1 2 2 1 1

Assumptions:
The assumptions are the same as in the previous model; the only difference is 

that the leadtime demand is approximated by normal distribution.

Objective:
It differs from the previous one only in the expression of E(Q, r) and B(Q, r) 

(as a result of using the normal distribution).
Solution:

It is suggested by an iterative process.



108. Minimization of the cost induced by the average inventory level
Main codes:

1 1 0 1 0 1 2 2 1 1
Assumptions:

The demands occur according to a Poisson process with parameter X, while 
the amount of a demand is also random with expected value p, The leadtime 
г is constant. t(J) means the time moment when y'-th order is placed.
Objective:

It is not the total expected cost which is considered (as is usually the case), 
but the average inventory level is calculated and the cost belonging to this level 
is minimized. The average level of inventory is

where

where R = r — pXt ; H=pXT; cx, c2 and c3 are the inventory holding, shortage 
and ordering cost factors.

Solution:
If the partial derivatives of the objective are set to zero, then it leads to a cubic 

equation with respect to the optimal order amount Q*. Having determined Q* 
the optimal reorder point r* can be obtained by substitution.

109. (s, q) policy with gamma distributed demand

Main codes:
1 1 0 1 0 1 2 2 1 1

Assumptions:
The ordered amount q is delivered with a leadtime r. The average inventory 

level can be approximated by the expression q ß + y —Xz, where у  is the reorder 
level and X is the mean demand rate. The leadtime demand follows gamma 
distribution with parameters к  and p. The expected shortage equals

П (у )=  I  ( x - y ) f ( x )  dx
У

where f{x )  denotes the density function of the respective gamma distribution.
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The average level cost of period [0, T] is



Objective:
The inventory holding and ordering cost factors are j  and g. The shortage 

cost may be constant or may depend on the time and amount of shortage. The 
shortage cost factor is denoted by d. The expected total cost,

with the starting points y0= x  and 
gamma function.)

(Г (к) denotes the incomplete

110. Continuous review (s, q) policy with discrete demand

Main codes:
1 1 0 1 0 1 2 2 1 1

Assumptions:
The demand occurs in stochastic, discrete amounts. There is a constant lead- 

time L. During this time some demand qL occurs with probability PL(qL). The 
leadtime demand is supposed to be less than the amount of order q, thus only 
a single order has to be placed at any moment. For an order placed, a constant 
ordering cost к  and a purchasing cost with unit cost factor c is considered. The 
shortage cost is proportional to the amount of shortage (controlled right before 
the delivery of the next order), with a unit cost factor n. The inventory holding 
cost factor h has the usual dimension ($/amount/time).
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where

is to be minimized.
Solution:

Applying the first-order optimality criterion, the following system of equations 
have to be solved in an iterative way:

If the shortage cost does not depend on the amount of shortage, then



Objective:
The expected total cost per time unit equals

where M  means the expected time between two subsequent orders, M L is the 
expected leadtime demand, s is the reorder point and Q represents the lot-size.

Solution:
The optimal reorder point s and lot-size Q can be determined by a numerical 

procedure based on the first order optimality condition. For the case when the 
random demand is approximated by normal distribution, a simplified procedure 
is derived and illustrated in the paper.

111. The se rv ice  le ve l o f  an  (s, q) p o l ic y

Main codes:
1 1 0 1 0 3 2 2 1 1

Assumptions:
This is a special model for the description of a system. For a fixed lot-size q  

and reorder point s, the probability of the event that a demand at an arbitrary 
time moment can be satisfied without shortage is determined. A Poisson-type 
demand process and constant leadtime L is considered. The shortage is backor
dered.

Objective:
The service level is the above probability which is expressed for (s. a) oolicv 

in the form

2 0 8

r  and Q represent the reorder point and reorder quantity respectively, and <p(x\L) 
is the probability distribution function of the leadtime demand.

Solution:
The service level Px is shown to coincide with the following ratio:

expected directly satisfied demand 

expected total demand in a delivery cycle

considered for an order period. The probability of the event “no shortage occurs 
in a period” is also determined in the paper.



where the probability density and distribution function of the leadtime demand 
are denoted, respectively, by h(x) and //(x), and p is the expected leadtime demand.

Solution:
The optimal value of the lot-size q and reorder point r are the solution of a 

pair of nonlinear equations, which can be obtained, calculating the partial deriva
tives of the objective function.

113. Stochastic lot-size, reorder-point model with Poisson demand

Main codes:
1 1 0 1 0 1 2 2 2 1

Assumptions:
An (s, q) policy is analyzed here, supposing that the demand is generated by 

a Poisson process: some discrete amounts are demanded at random moments. 
The number of units demanded at a time interval follows a Poisson distribution. 
Thus the model can be described by a Markov process, which has a steady state. 
The mean demand rate is Я, at shortage the demand is lost. At every time only 
a single order may be outstanding. The same cost factors are considered as in 
the previous model.
Objective:

The expected total cost per time unit equals
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V.2. Models with Lost Sales and Shortage
112. Lot-size, reorder-point model with general stochastic demand

Main codes:
1 1 0 1 0 1 2 2 2 0

Assumptions:
A continuous, stochastic demand is considered with a mean demand rate X. 

The usual cost factors 1C and A are taken for inventory holding and ordering 
cost. The shortage cost is proportional to the amount of shortage and has unit 
cost 7Г. At every time only a single order may be outstanding. The time interval, 
when shortage occurs, is assumed to be negligable related to the time without 
shortage.

Objective:
The expected total cost per time unit equals



where f  is the expected time of a period when the system is out of stock, p is the 
expected demand of the constant leadtime L. The probability of demand r during 
the leadtime is denoted by P(r;Xт) which means the Poisson distribution with 
parameter At.

Solution:
The solution method is given only for the special case, when the value of f  

-is neglected. In many practical cases this serves as a good approximation for the 
optimal parameters of the general case.

114. A heuristic model for perishable goods

Main codes:
1 1 0 1 0 1 2 2 2 1

Assumptions:
The considered item is perishable at an exponential rate. This means that if the 

inventory level at time t is equal to I(t) then in и units of time the number of 
good pieces decreases to

I(t+ u) = I(t)e~6u,

where в is the rate of perishing. The mean demand rate is fixed at A units per unit 
time. The total demand during any leadtime is a random variable with continuous 
distribution function F ( . ) and density / ( . ). The expected inventory level at 
time t + u considering the perishability and demand can be expressed in the form of

I(t+ u ) =  c - e“(/(O+A/0)-A/0.

Orders are placed according to the (s, q) policy. Beside the cost factors of the 
previous model h, p  and к a purchasing cost of the perished items with price c 
has to be taken into account. A constant leadtime x exists.

Objective:
The expected total cost per time unit is equal to

where w = s(l+ 0z/2)+ p  and T  is the expected value of the length of
a period between two consecutive orders.

The function F(x) is the complementary cumulative of the leadtime demand.
Solution:

A heuristic approach was applied and evaluated by computer simulation.
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У.З. Models in Which No Shortage Is Allowed

115. Stochastic lot-size system with constrained demand in a review period

Main codes:
1 1 0 1 0 1 3 1 0 0

Assumptions:
A stochastic demand is considered which has a density function f ( x ) for the 

demand of an inventory review period with a fixed length wp. The maximal demand 
of this period is xmax, a known value. The demand rate is constant during a 
review period. No shortage is allowed, thus the reorder point is prescribed: 
sp= xmax- The order amount is the smallest integer multiple of q, for which the 
increased inventory level becomes larger, than sp. An immediate delivery is 
assumed. The initial stock level of the review periods is uniformly distributed 
on the interval [.yp; sp+q]. The inventory holding and shortage cost factors have 
the usual dimensions

Discrete and continuous versions of the model are described.

Objective:
a) For continuous q and x, the expected total cost equals

where

where

and P(z), z = 0, u, 2u, ..., xmax, is the probability distribution of demand. 

Solution:
a) For the continuous case, the derivative of the objective function has to be 

equal to 0 at the optimum point. This is a necessary but not sufficient condition; 
more than one solution may exist which must be compared with each other to 
select the optimal one. The case <7 = 0  is to be considered separately. The solution 
is illustrated by examples.
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b) For discrete q and x  (with possible values 0, u, 2u, we have



2 1 2

b) For the discrete case, the following necessary conditions have to be fulfilled 
by the optimal q0:

R(q0- u )  ~ ~  = R(q0),
C1 Wp

where

R(q) = — —  q = 0,u,2u,...
2  xP(x)

x = 0

The solutions have to be compared with each other in order to select the global 
optimizer.

116. Constrained demand during review period and leadtime

Main codes:
1 1 0 1 0 1 3 1 0 1

Assumptions:
This model is an extension of the previous one. Constant leadtime L  is assumed 

during which the maximal amount of the delivery is a known constant vmax. 
No shortage is allowed, thus the reorder point is prescribed by s„—xmax+vmax. 
All the other assumptions are the same as in the previous model.

Objective:
a) For continuous values of v, q and for periodic review with length wp (> 0 ), 

the expected total cost equals to

C(q)  =  Ci 4 — c J ~ -  + c A x max+ v max- ~ v \  + Í A ,
L qwp v z ) wp

where x and v denote the mean demand during a review period and during the 
lead time, V(x) is defined by

V(x) =  /  J f ( z ) d z d y .
0 0

For continuous review (wp= 0) we have

C(q) = Ci [vmax+ y - ü j  +  C3^-.

b) For discrete values of q, x  and v: 0 ,u ,2 u ,..., in the case x max>u we can 
write

q u v(q -u ) ( x + u Л c,
C(q) = ci j ~  cs —^ ---- + c i |x max+i>max— 2— v) + ~w~'

where

v(x)  =  2  2  p (x )>
y = 0 1 = 0



while in the case xmax—u there holds

Solution:
The methods in all of the above cases are similar to the solution method of the 

previous model, only the cost expressions are somewhat more complicated.

117. Lot-size model for demands at random moments in random amounts
Main codes:

1 1 01  0 1 2 2 0 0
Assumptions:

The demand occurs in random amounts at random moments. Both the amounts 
and the interarrival times of demands may have an arbitrary distribution; the 
expectations are denoted by p and 2, respectively. At each demand the inventory 
is reviewed. When the demand cannot be satisfied from stock, an order is placed 
for an amount nQ, where n is the smallest integer which ensures the satisfaction 
of demand after the arrival of the ordering amount. The leadtime is supposed 
to be negligible. Shortage is not allowed and the reorder point is determined by 
sp=0. The inventory holding cost factor h and a fixed cost К  of an order are 
taken into account.
Objective:

The expected value of the sum of holding and ordering cost is:

C =  (Kp/XQ)+(hQ/2).
Solution:

Applying the theory of Markovian renewal processes, the optimality of the 
lot size

is proved.

15 C hikin
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V.4. Models with Special Shortage Policy

118. Stochastic model with perturbed demand

Main codes:
1 1 0 1 0 1 2 2 9 0

Assumptions:
This is an extended version of Model 97 since the demand rate X may also be 

a random variable. The expected value of demand is p. The demand process 
may be perturbed and changed from the expected one described by R (t) to

. ( q _ u—rwSI r
C(q) = Ci ^ max +  y - ”+ — 2 —~ j Cz~q'



R'(t) as a function of time. In the case of shortage we know that E (R (t)— 
—R'(t)) — cp(t — t0), where t0 is the time moment when shortage occurred and

CO

/  <p(t)dt=I.
0 This plays a role when r is determined, as in the cost function the demand is 
considered as being influenced by customers’ reactions.

Objective:
The following notations are used:

M  = order size 
L =  reorder level,
1 —a =  service level,
H  =  holding cost per item per period,
C  =  revenue coefficient per item,
N (t) =  Poisson demand process.
T* — time moment when the first stockout occurs.

The expected profit in the backorders case equals to

where Aj is the demand rate occurring in the ith cycle (its mean is p). In the lost 
sales case, this can be written as

C ( M - L )  p0 H ( M - L ) *
K l)  M  1+<х/ 2 M

Solution:
The optimal values of M  and L are determined similarly to the solution proce

dure outlined in connection with Model 97.
The special case, when H (t) can be described by a Poisson process is detailed. 

For nonnegative inventory levels, the process N*(t) is characterized by the 
binomial distribution with parameters (t fT*) and (M —L ). The expected inven
tory holding cost of period i can be expressed in the form

The solution is a specific version of the above procedure.

119. Model with the possibility of withdrawals
Main codes:

1 1 0 1 0 1 2 1 7 1
Assumptions:

The demand for the considered spare parts consists of two components: 
a) a random demand D occurs at every unit of time which has a probability 

density function f D(d) with mean 3 and standard deviation oD;
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b) a fixed demand P  occurs at every q units of time; thus the demand rate is 
r=P/o+U. The leadtime L is constant, during this interval the demand x  has 
the probability density function f x(x) with mean x  and standard deviation Sx 
which can be derived from the density function f D(d).

Beside the usual cost factors of inventory holding cL and the constant cost of 
ordering c3, a new cost factor is considered: if a unit of order is renounced because 
it is expected to be not necessary, then a cost Ks appears.

Objective:
The expected total cost for a time unit equals to

K(s, q) =  -y -+ < ä  ( - |  + $ -/*) + ~ B ( s ) ,

where ц is the expected leadtime demand and b(s) is the expected value of the 
renounced orders during a period which is expressed by means of the probability 
density function f D{d) in a rather complicated way.

Solution:
The optimal amount to be ordered is determined by differentiating the cost 

function; this equals

In the case when сг is much greater than Ks h(s*), this expression can be approxi
mated by the Wilson-formula:

For the optimal value of the reorder point s, no explicit formula can be given, 
therefore an iterative solution procedure is suggested in the paper.

15* 215



VI. Deterministic Delivery, Stochastic 
Demand, (s, S )  Policy

These models are based on the reorder-point order-level policy. In other words, 
an order is placed if the inventory level decreases to or under the reorder point 
s. The amount of order should increase the inventory level to its maximal level S.

The models of this group can be classified first by the type of shortage policy, 
then by the type of the leadtime. It is a strange fact that the type of inventory 
review does not play an important role in the classification. This is due to the 
small number of continuous review models, which are typical for (s, q) policy 
models. Three deterministic delivery and stochastic demand models of not (s, S) 
but other rather special policy, have also been connected to this group of models.

Deterministic delivery, stochastic demand
___________________ I_________________
I I .

(s, S) policy Special policies

1 i I
Backorder case Lost sales at No shortage 

at shortage shortage is allowed
J__________
I I I

Zero Constant Variable
leadtime leadtime leadtime

V I.l. Backorder Case at Shortage

V I.l.l. Models without Leadtime

120. Stochastic reorder-point order-level system

Main codes:
1 1 0 1 0 1 5 1 1 0

Assumptions:
A stochastic demand occurs during the fixed wp reviewing period. The proba

bility density function of the demand f (x )  is the same in each reviewing period.
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The demand intensity is the same in each reviewing period. At shortage the demand 
is backordered and is satisfied immediately after receiving the next order. The 
inventory holding and shortage costs are linear with unit cost factors cx and сг 
and dimension

Гс1- Гс1-  m
1 lJ 1 d  [Q] [T] •

The constant cost of an order is denoted by c3. The model considers a single item 
and a single location. It is a generalized version of the order-level system (Model 
143) and of the reorder point model (Model 129), since here both parameters 
(s and S) are subject to control. The control variables may be discrete or con
tinuous, depending on the type of demand.

Objective:
a) For continuous x, s and S  we can write

is the expected length of an order period for a given parameter k — S —s.
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and finally

where

The average shortage level can be expressed by

where the average stock level equals

with the notation



b) For the discrete case, with unit и and probability distribution of demand 
P(x), the expected total cost of the system is

where Q is the inventory level at the beginning of the reviewing period, further* 
more,

Solution:
a) For the continuous case no general solution method is given, it is derived

only for a special demand distribution. (Namely, when f ( x ) = -^ e ~ x,b (b > 0).)

For the general case the discretization of the demand distribution and decision 
variables is suggested.

b) In the discrete case, for given k = S —s, the corresponding optimal reorder 
point í j  can be found using the following inequalities which are necessary opti
mality conditions:

N(#>,
Ci +  C2

where
S + k

N(S)= 2  G(Q)H(Q)
Q = s + u
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Similar necessary conditions (which may not always be sufficient) exist also for 
k„—the optimal k, corresponding to some given reorder point s.

The following search procedure is suggested for finding a pair of locally optimal 
values of and S$. For any given reorder point st the corresponding locally 
optimal order level S i+1 can be derived. Similarly, for given order level S i+1, 
the corresponding locally optimal reorder point j i +1 can be computed using the 
above inequalities. The search stops when S i+1 = Si or st+1=st holds (approxi
mately).

121. (s, S) policy for exponentially distributed demand

Main codes:
1 1 0 1 0 1 5 1 1 0

Assumptions:
We consider an (j , S)  policy (0S s S S ) ,  where unsatisfied demand is back- 

logged, leadtime is negligible. The principal costs are as follows: storage cost 
(h), shortage cost (p) and ordering cost consisting of a fixed part (K) and a variable 
part (c). Demand is exponentially distributed: (p(£)=e~s.

Objective:

Solution:
Using the variables j  and s and employing the standard procedure

of calculus, we obtain as the unique solution to the equations дС/дЛ—O; 8C/ds= 0

These results are valid whenever j2Kh =p. In the case where \'2Kh exceeds 
p, sQ should be taken as zero and A0 remains the same. If the demand is <p(£)=

= — е ~ ^  with mean u, then 
h

1 2 2 . (.?, S ) policy optimization by the solution of an integral equation using 
simulation

Main codes:
1 1 0 1 0 1 5 1 1 0

Assumptions:
The demand of a period is a random amount with a probability density func

tion Ф(0- The leadtime is negligible. The inventory holding and shortage costs 
are proportional to the stock level or shortage level at the end of a period. The
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unit cost factors are denoted by h and p. The stock level at the beginning of the 
period following a decision is x  and Q—S —s.

Objective:
For given x, the expected cost of inventory holding and shortage is

X  oo

L(x) = h J (x —u) cp(u) du+p J (u—x)(p(u)du. 
о x

Solution:
For the optimal parameters we have the following relations:

Q
m(S, Q) = 0 and J m(S, x) dx = K,

о
where К  denotes the constant ordering cost and

X

m(S, x) = —L '(S+ x)+  J  m(S, x  — u)q>(u)du. 
о

For the solution of the above equations, a fast simulation technique was developed 
using a simulation system called CSMP.

123. Solution of the (s, S) model by the use o f the renewal function
Main codes:

1 1 0 1 0 1 5 1 1 0
Assumptions:

A periodic review (j , S ) policy is considered, where the demand of a period is 
random with distribution function F(x), density function f (x )  and expected 
value p. The sum of the inventory holding and shortage cost of a period is a 
function L{x) of the initial stock x. L is supposed to be a convex function. The 
ordering cost consists of a constant К  and of another sum which is proportional 
to the ordered quantity (unit purchasing price, c), and D = S —s.

Objective:
The expected total cost for a reviewing period is

where M{x) is the renewal function

and the superscript (n) denotes the и-fold convolution. The derivative of M{x) 
is denoted by m(x).
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At the optimum point the partial derivatives of the cost function are equal to 
zero. Hence, we have the following equation for the optimal values of s and S

D

L'(D + s)+  J  L '(D + s—x')m(x) dx =  0  
о

and
D

[1 + M (D )\-{L '(D + s)+  j  L '(D + s—x) m(x) dx + L(s) m(D)} -  
0

Solution:

124. A stationary solution of the Arrow—Harris—Marschak model

Main codes:
1 1 0 1 0 1 5 1 1 0

Assumptions:
The stochastic demand of the reviewing period with length wp is characterized 

in each period by the same density function f ix ) .  Demand is supposed to occur 
at the end of the periods in one lot. The inventory holding cost is proportional 
to the time and amount of stock on hand and has the unit cost factor c \. In each 
period, when shortage occurs, a fixed shortage cost c2 is taken into account. 
The constant ordering cost is c3.

Objective:
Applying the notation k = S —s, the expected total cost of an ordering period 

for j s O equals to
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for j s O we have

where B(v) is the expected total cost during that portion of the ordering period 
over which only shortages occur. It can be determined from the equation



The expected length of an order period is

thus the expected total cost of the system for time unit equals to

Solution:
Only a special demand distribution (exponential distribution with density

function /(x )= -i- e~x/b is calculated; the method is based on the solution of
differential equations, where the specific properties of the demand distribution 
are utilized. In the original version of the model, formulated by Arrow, Harris 
and Marschak, a dynamic programming solution approach was used.

125. (j , S) model with exponential demand distribution

Main codes:
1 1 0 1 0 1 5 1 1 0

Assumptions:
The demand occurs at the beginning of each reviewing period and has an 

exponential distribution with density function

Leadtime is zero. At shortage situations, the demand is backordered. The inven
tory holding, shortage and ordering cost factors have the usual dimensions

Objective:
C(s, S ) is derived from the objective function of Model 120, with simple sub

stitution.

Solution:
The system of equations obtained can be solved by a numerical procedure.

126. The improved Roberts-approximation

Main codes:
1 1 0 1 0 1 5 1 1 0
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The demand of a reviewing period has a discrete distribution, the probability 
of the demand q is p(q). The demand may occur in several lots. There is an im
mediate delivery of the orders which can be placed only at given review points. 
The inventory holding cost and the shortage cost is proportional to the quantity 
of net inventory at the end of the period with unit cost factors h and g. The con
stant ordering cost is K. The notation S —s= D  is used.

Objective:
The expected total cost per unit time equals

Assum ptions:

Solution:
An approximation of the optimal solution is given, which is an improved version 

of the Roberts approximation. The approximation of the optimal D can be expres
sed as

D* = \_\2mt K lh \,

where mx is the average demand of a period. The optimal value of the reorder 
point s can be calculated using an iterative procedure to determine the greatest 
value of j  which satisfies the inequality

with

where

127. (j , S) model with reliability constraint
Main codes:

1 1 0 1 0 1 5 1 1 0
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The demand of a reviewing period has geometric distribution, p (q )= (l—a)a4, 
where q—0 ,1 ,2 ,. . .  (0 < a <  1, a given constant). The demand may occur 
in several lots within a period. Orders can be placed at every review point, they are 
delivered instantly. The probability of shortage in a period is constrained by the 
reliability level Px. The cost factors h, g and К  are the same as in the previous 
model.

Objective:
The expected total cost per time unit,

т/с m1K + (l + m1)(S —w1)ft +  (D +  2S + l)/ti)/2  +  m f(g+ft)as _1 

L(S ' D) -  D + m1 + 1 ’

is to be minimized under the reliability constraint

P
‘ D + m ^ l ’

where D = S —s, furthermore, тг— a /(l—a) is the expected value of demand in 
a period.

Solution:
The optimal value of D is approximated by the integer part of

yimj^K/h.
The optimal S  can be calculated directly from the above-presented reliability 
equation.

128. (s, S) model with geometric demand distribution
Main codes:

1 1 0 1 0 1 5 1 1 0
Assumptions:

This model is similar to the previous one, but the demand with geometric 
distribution occurs at the beginning of each reviewing period. Its expected value
is p= ^  , as the density function is given by

m  = « = 0 , 1, 2 ,...) .
In the case of shortage, the demand is backordered. The cost factors are the same 
as in the previous model with the additional factor c, the unit price.

Objective:
The expected total cost is expressed as a function of the reorder point s and of 

D = S —s:
1 Г D2—D 1

ű(x|í , S) = cp+ yKp+(h+p)p2qs+hDs—h—  ------ \-hp(D+s—p - l ) j .

Assumptions:



The first differences of the objective function are taken with respect to s, while 
D is fixed. The optimal s is the smallest integer for which this difference is non
negative, i.e.:

pqs+1 h ___ pqs 
H+D ^  h+ p ~  p+D  '

Similarly, using the first differences with respect to D for the optimal D we have 
the relation

D (D + 1) =  2pK/h.

129. Stochastic reorder-point system

Main codes:
1 1 0 1 0 1 5 1 1 0

Assumptions:
This is a simplified version of Model 120. The order level is a prescribed value 

S —S p with Sp= s+ kp. In this way the cost of ordering for a unit of time is the 
same constant value. Thus only the inventory holding cost factor c\ and the 
shortage cost factor c2 has to be considered in the optimization problem.

Objective:
a) In the continuous case, the expected total cost is

K(s) =  c1J 1(s, kp)+ czJ 2(s, kp),

where Jx is the expected total inventory of a period and J2 is the expected total 
shortage of a period. They can be expressed in a similar form as it was done in 
Model 120. (The value of S is to be substituted by s+ k p in the mentioned ex
pressions.)

b) In the discrete case, the expected total cost can be also expressed similarly 
to that of Model 120 by substituting S —s+ k p.

Solution:
a) In the continuous case no general solution is given. For the special demand 

distribution f{ x )= -~  xe~x,b, (хёО) the optimal solution is derived.

b) In the discrete case the optimal reorder point s0 is the solution of the in
equality

N(s0 — u) S  - J -  ^  N(s0), 

where the notations of Model 120 are used.

130. Inventory policy for slowly moving items

1 1 0 1 0 1 6 1 1 0

Solution:

M ain codes:
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The length of the reviewing period is fixed. A single demand occurs on the 
average after every period of length p. The amount of demand is random with 
density function f(x ) . The case of a normal distribution is described in detail. 
The order placed at the end of a reviewing period is delivered instantly. An order 
is placed in each period when demand occurred. The inventory holding cost Lh 
is proportional to the amount of net inventory. When the demand cannot be 
met, a C„ shortage cost (cost of an emergency order) arises. The constant ordering 
cost is Cr, the cost of inventory reviewing is Cs.

Objective:
The order level R is to be determined which minimizes the expected total cost 

per demand:

Cd = RLhp+Csp+ C r+Cn f  f(x )  dx.
R

Solution:
The optimal R* value of R for normally distributed demand with parameters 

p and a can be expressed as

R* =  ^ + <7 ^ 2  In (C J \ ЪсоЫгр),

If C jy 2л oLhp< l there are no stationary values.

131. Inventory system with periodic and emergency ordering possibilities

Main codes:
1 1 0 1 0 1 6 1 1 0

Assumptions:
A (ip, q) ordering system is considered, where each period has a discrete demand 

with the same probability distribution. The normal order is placed at the end of 
each period of a fixed length tp. The order is delivered at the beginning of the 
reviewing period. The ordered amount (q) is to be optimalized. If the inventory 
level during the tp period decreases below a prescribed IMIN level, an emergency 
order is placed, according to an (sp, S ) policy, namely this order is determined 
by the order level IOL. On the other hand, when the inventory level after the 
delivery of the standard (periodic) order arises the inventory level over the capacity 
of the store IMAX, the excess inventory must be sold out with a loss. The emer
gency ordering has also an additional cost, while at the normal ordering a price 
reduction with rate a is given by the vendor. The unit purchasing price is denoted 
by RC, all the other costs are expressed as related to this price:

CE: unit cost of emergency ordering,
C O : unit selling off cost of excess stock,
C H : inventory holding cost of a unit in a period,
C S : shortage cost of a unit in a period,

where C H ^ C E ^ C S  and CH <CO <CS. In a period only a single emergency

Assumptions:

2 2 6



ordering is allowed, this gives a lower bound for IOL, as—by supposition—the 
maximal demand L  of a period is a known constant value:

IM IN + L + 1 ^  IOL IMAX.

Moreover, the size of a standing order q is assumed to be equal to or greater 
than the average demand during the scheduling period.
Objective:

The initial stock of the periods can be described by a Markov process which 
has a stationary distribution with probability Ф; for the state i. The transition 
cost from state i to state j  has the expected value Е(си)= еси . The expected 
total cost equals to

IM AX IM AX
C(<7, I O L ) =  2  2  ectjRC.

i= I M I N + l  j  =  IM IN + l

Solution:
The value of the cost function is calculated for all possible pairs of the discrete 

control parameters q and IOL. The theory of Markov processes is used to derive 
the stationary distribution Ф{. The purchasing price of the periodic and emer
gency ordering has to be added to the optimal value of the cost C(q, IOL) to 
obtain the optimal value of the total cost. It is shown that, with increasing lead- 
time, this mixed (tp, q) and (sp, S ) policy works more efficiently than the stochastic 
order-level policy with leadtime (Model 83).

132. The sample-size necessary for the simulation of an (j , S ) model
Main codes:

1 1 0 1 0 3 5 1 1 0
Assumptions:

A periodic review (s, S ) policy with zero leadtime is considered. The reviewing 
period has an exponentially distiibuted random demand with parameter A. The 
expected value, the empirical variance and the correlation of stock and shortage 
at the end of a period are estimated from a random sample generated by simulation 
method.
Objective:

The minimal sample-size for estimating the expected values of stock and 
shortage has to be determined which ensures that the difference of the estimated 
and the exact value will not exceed a prescribed bound with a probability of 
0.95. (Of course, both the bound and the chosen probability level may be changed, 
if desired.)

Solution:
The minimal sample-size, which satisfies the above criterion, was estimated 

using the inequality of Tschebycheff and the central limit theorem. The analysis 
was completed by simulation runs, which gave the expected value and standard 
deviation of the necessary sample size. These results are collected in tables for 
the different values of s i  and (S —s)l.
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133. Stochastic reorder-point order-level system with leadtime 
Main codes:

1 1 0 1 0 1 5 1 1 1

Assumptions:
The probability density function of the demand during the fixed reviewing 

period wp is k(r). The maximal possible demand is denoted by rmax. An (s, S) 
inventory policy is used with backorders in the case of shortage. The dimensions 
of the usual cost factors are given as follows:

[Cl] = [C2]=T ^ T : [Сз] = [$]-
Objective:

a) For continuous x, v, z and Z, we have
z Q'

C (z ,Z ) = c1 f  [ /  (Q '-r )k (r )d r]m (Q jd Q ' +
z - r m a «  0

+ c2 /  [ /  (r -Q ')k (r )d r \m (Q jd Q '+ c 3-£-,
z - r max Q wp

where Q' is the initial stock on hand of a reviewing period, a random amount 
with density function m (Q j and h=P(Q = S).

b) For discrete x, v, s and S  with possible values . . .—2u, —u ,0 ,u ,2 u ,... 
we can write

C(s, S) =  (cL+c2) и 1  B ( Q '- u ) M ( Q j-
Q'=s+u

with the notations used in Models 129 and 143.

Solution:

a) In the continuous case, | / ( x )  =  y r I/!lj  expression of the total cost is

explicitly given and minimized only for the exponential demand distribution.
b) In the discrete case, first the distribution M (Q j  is to be determined, then 

an iterative procedure (similar to the one described in connection with Model 120) 
can be applied.

134. Distribution of the inventory level, in case of an (j , S) policy 
Main codes:

1 1 0 1 0 3 5 1 1 1

V I.1 .2 . M od els with C onstant Leadtim e



The probability distribution function of the demand of a period is Ф(£). It 
has a continuous density function <p(£). The demands of the different periods 
are independent random variables. The lead-time has a length of Л. Thus the 
demand during the leadtime has the distribution Фи)(л:), where the superscript 
means the Я-fold convolution of Ф(х).
Objective:

The probability distribution function H(y) of the inventory level at the end 
of a period is to be determined. This enables the derivation of explicit expressions 
for the cost function of different models.

Solution:
Applying the usual notation for the renewal function

M{x) =  j > (» (x )
«=i

and its derivative mix'), the distribution function in question can be expressed as

Assumptions:
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135. Determination of the reliability level of an (.v, S) policy 
Main codes:

1 1 0 1 0 3 5 1 1 1
Assumptions:

The demand of the period with length T + L  has a discrete distribution 
F(k\T+L), where T  is the length of a reviewing period and L  is the lead-time.
Objective:

For given values of the decision parameters s and S, the reliability level (i.e., 
the probability that no shortage will occur in a period), is to be expressed.
Solution:

The above service level for D —S —s is equal to

applying the notations M , m of the previous model. With the optimal decision 
parameter S0— which results the minimal expected cost (having unit cost factors 
cx and c2 of inventory holding and shortage)—the next inequality holds:



136. N ecessary sam ple-size  o f  s im u la tion  in case o f  positive  lead tim e

Main codes:
1 1 0 1 0 3 5 1 1 1

Assumptions:
This is a generalized version of Model 132. A positive leadtime is considered 

which is an integer multiple of the length of the reviewing period.

Objective:
The minimal sample-size has to be determined which ensures that the deviation 

of the estimated and the exact value will not exceed a prescribed bound with 
a probability 0.95. (The value of the bound is changeable.)

Solution:
The expected value and standard deviation of the minimal sample-size, which 

satisfies the above criterion, is determined by simulation for different lengths of 
leadtime. The results are collected in tables for different parameter values.

137. Reliability level for different solutions of the (j , S) policy

Main codes:
1 1 0 1 0 9 5 1 1 1

Assumptions:
The random demand is forecasted at each inventory reviewing moment. The 

forecasting error in the ith period t;>z. has a normal distribution with zero expec
tation and oitL standard deviation. The decision parameters st and may change 
from period to period depending on the forecasted demand. A constant leadtime 
L  and backorders case is considered.

Objective:
The aim of the analysis is to compare the reliability levels pro\ ided by different 

decision parameters, which result from different (s, S) policy-based methods. 
Two different measures of the reliability level are considered:

P  expected satisfied demand in a period 
ß expected total demand in a period

Pa =  probability of no shortage in a period.

Solution:
The reorder point is equal to

i + Z.

s i  =  2  V j  +  k f f i , L ,  
j =i

where p} is the forecasted demand of period j  and Ь О  is a safety factor. Herce, 
S —Si+Di with a parameter Dt calculated by different methods. The Wilson 
formula, the dynamic programming algorithm of Wagner and Whitin and a
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heuristic method called the part-periods-method were used to determine dif
ferent levels of S t for which the values of the above reliability level indicators 
were compared by simulation.

138. Production-inventory control, as an application of the Wiener-filter 
theory

Main codes:
1 1 0 1 1 1 5 2 1 1

Assumptions:
A continuous, linear, stochastic production-inventory system is considered. 

The system can be described by the equations

(1) dl(t)/dt = v(t)—r(t)

(2) v(t) =  Gf {n}

(3) n(f) — —G (I)

where I(t)  is the inventory (state variable), n(t) is the amount of production 
(control variable), r(t) is the demand. Gf  is a linear operator characterizing the 
changes in the system (in the paper considered this is the production delay), 
G is also a linear operator of control. Both Gf  and G are independent of time.

The possible controls are restricted to the class of linear operators, thus

и ( 0 = -  /  G ( t- t ') I (O d t ',
— оо

where G(t) is a weight function of G. The demand is a stationary stochastic 
process with expectation 2?{r(0}=0 and autocorrelation function Rrr(x) = 
= F .(r(t)-r(t+ t)}.

Objective:
A quadratic cost function is applied:

Q = CnE  {n2}+ C jE  {1г)+ С пЕ  {w2},

where w{t) — Gh(n) and C „ ,C ,,C W are empirical weight factors of the costs. 
The first two terms express the deviation of the amount of production and of the 
inventory from certain prescribed values with their cost consequences. Gh is the 
differential operator. Thus w(t)=dn(t)/dt and the last term of Q expresses the 
cost due to the changes in production rate. The first term describes the overtimes 
and surplus costs, the second one the inventory holding cost.
Solution:

First the system equations are transformed by the Fourier-transformation, then 
the Wiener—Hopt decomposition principle is applied.
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Main codes:
1 1 0 1 0 1 5 1 1 2

Assumptions:
The demand for a spare part is periodic. At the beginning of the first period 

the initial stock equals Q. The demand dj satisfied in this period is also random. 
The demands of different periods are independent and identically distributed. 
At the end of each period when demand appeared, an order is placed for an 
amount equal to the demand, (independently of the fact whether the demand 
can be satisfied or a shortage occurred). The delivery leadtime has a length of 
M  periods. Whenever possible, demands are filled from current inventory, but 
no sooner than z periods after the order has been placed.

Objective:
Two different types of costs are considered. H  is the purchasing and inventory 

holding cost for a unit quantity and unit time, G(M) denotes the cost during the 
leadtime concerning transportation or repair of the spare parts. Hence, the total 
cost H Q +G (M ) has to be minimized.

Solution:
First the number of reorders is determined, then the effectivity measures of the 

system:
— expected number of reorders,
— expected time of shortage,
— probability of shortage

are calculated.
The solution is illustrated with a numerical example.

139. ( 5 —1, iS) inventory system  w ith  constant lead tim e

VI. 1.3. Models with Varying Leadtime

140. (5 —1, 5) system with state-dependent leadtime
Main codes:

1 1 0 1 0 1 5 2 1 3
Assumptions:

A continuous review (5 —1 ,5 ) inventory policy is considered. The demand 
has a Poisson distribution with parameter X. The leadtime is an exponentially 
distributed random period. It depends on the unsatisfied demand m, which 
remained after satisfying the previous demands, according to the formula 1 —e- **-"'* 
(p is a known function). The service rate m and thus also the leadtime distribution 
may change only at the moments of starting the service. The unsatisfied demand 
is backordered.

The following unit cost factors are considered:
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C, inventory holding cost with dimension [$]/[0]/[T],
CB shortage cost with dimension [S]/[Q]/[T] and 
Cv shortage cost with dimension [$]/[<2].

Objective:
The expected total cost,

C(S) = C, Z ( S - n ) p n+CB 2 ( n -S ) P n + C v X Z P n
n —0 n —S  n = S

is to be minimized, where pn denotes the probability of n unsatisfied demands at 
time t.

Solution:
The determination of the probabilities pn is equivalent to the determination of 

the steady-state probabilities of a queueing problem with Poisson input. Three 
different iterative procedures are suggested to find the optimal control parameter 
S. (Only a single local optimum exists for this model: this advantageous feature 
is utilized by each of the three methods.)

141. ( 5 —1, S) system with leadtime depending on the actual state

Main codes:
1 1 0 1 0 1 5 2 1 3

Assumptions:
This is a modified version of the previous model. Here the leadtime depends 

on the actual state of the system, (i.e., how many customers are left unsatisfied). 
The probability ’ tr* in an arbitrary small time-interval A t an order will be satisfied 
is p(n)At+o(At), ,, re n is the number of unsatisfied orders. The service rate 
may change continuously. This is equivalent to the case when the server continu
ously controls the system and changes the service rate depending on the actual 
queue length.

All the other assumptions are the same as in the previous model.
Objective:

It has a similar form as in Model 140.

Solution:
An iterative procedure is suggested which is based on the solution of differen

tial equations. Again, one can make profit of the fact that only a single local 
optimum exists which is then globally optimal.
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VI.2. Lost Sales at Shortage

142. Inventory model for an unknown demand distribution

Main codes:
1 1 0 1 0 1 5 1 2 0

Assumptions:
The total demand of a period is a discrete random variable. An amount i is de

manded with probability p;. This is an unknown distribution, estimated only 
from a sample of earlier periods. Kt denotes the number of the periods when the 
amount/'was demanded. The system is characterized by the vector K=(K0, ..., KN) 
and by the actual inventory level O s k s L .  This serves as the base for selecting 
the order level denoted by n. Both the demand of a period and the storage capacity 
are bounded from above by the constant N  and L, respectively.

Objective:
The inventory holding cost of m units in a periodis o,„ (m = 0,1, ..., L), the 

shortage cost of n units is л„ (n = l, 2 ,..., N). The cost of ordering l units is w, 
(7—0,1, ..., L) thus the total cost of a period can be estimated by

C(k\  =  wn- k+on+ 2  Tti-nPiK\i>n
using the estimation p\K) of the demand distribution p t (based on the sample K). 
Solution:

The optimal reorder point and order level are calculated by linear programming 
method based on a Markov decision process.

VI.3. Models Where Shortage Is Not Allowed

143. Stochastic order-level system with known maximal demand

Main codes: 

Assumptions:
1 1 0 1 0 1 6 1 0 0

The random demand of a reviewing period with fixed length wp has the proba
bility density function f ( x ) and mean x. The demand rate is constant during this 
period and the maximal amount of demand is a known constant xmai. There is 
an immediate delivery. No shortage is allowed, thus the reorder point is prescribed 
by sp= xmax or sp= x mm—u in a discrete case with unit u. The unit inventory 
holding cost is with dimension [$]/[ß]/[T]. The fixed ordering cost is denoted 
by c3.
Objective:

The initial stock 6  of a reviewing period is a random amount with density 
function g{Q). After receiving the order, the initial stock increases to S. The
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probability h= P  (Q = S ) is known. For continuous л: and S, the total expected 
cost for a unit time equals

For a discrete demand distribution P(x) .where x= 0 , u, 2u, ...

where the function A(y) is defined recursively by the equations

Solution:
For the continuous case, g(Q) cannot be explicitly given in a closed form. The 

discretization of the demand distribution is suggested, and illustrated in an 
example. For discrete demand distribution the cost function can be calculated 
for fixed S. The necessary (but not sufficient) conditions of optimality are

where

which may have several solutions: all these solutions have to be compared to 
find the global optimum.

144. (j , S) model with arbitrary inter-arrival time of demands

Main codes:
1 1 0 1 0 1 5 2 0 0

Assumptions:
Units are demanded at random moments. The inter-arrival time between two 

consecutive demands is random with an arbitrary density function <p(x). Thus 
the moments when demands arise form a renewal process. A continuous inven
tory reviewing is applied. At the inventory level s, an order is placed for an amount 
Q = S —s which is delivered instantly. The inventory level at a random time t
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is H (t) which is known to have a uniform distribution on (j +1, ...,s+ Q )  as t 
tends to infinity. No shortage is allowed. The purchasing price per unit of item 
is c, the constant ordering cost is K. The inventory holding cost has the usual 
cost factor h with dimension [$]/[Q]/[T]-

Objective:
The expected long-term cost per unit time equals

F(s,Q) = ^ - + c - D  + h [ s + ^ ] ,

where Б  denotes the expected demand per unit time.

Solution:
For the optimal decision parameters we have s*—0 and

Ö * ( 6 * - l ) s ^ - s ö * ( S 4 1 ) .

145. Order level system for demands at random moments in random amounts

Main codes:
1 1 0 1 0 1 6 2 0 0

Assumptions:
The time between two consecutive demands is random with expected value A. 

The amount of demand is also random, it has an exponential distribution with 
parameter p. At each demand the inventory level is reviewed. If the total demand 
cannot be satisfied, then an order is placed and received immediately. The order
ed amount is determined in such a way that after satisfying all of the demands, 
an inventory level Q has to be remained.

Objective:
The sum of ordering and inventory holding costs for a unit time has the expected 

value

with the usual inventory holding and ordering cost factors h and K.

Solution:
The optimal Q* can be expressed as
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У1.4. Models with Specific Inventory Control

146. Cost reduction by the introduction of continuous reviewing

Main codes:
1 1 0 1 0 1 9 9 1 1

Assumptions:
The demand during a time interval [0, t] is described by a Wiener process, i.e., 

the cumulative demand of a period [0, t] has a normal distribution with para
meters {m t,o ft) .  A fixed leadtime L  is considered. Two different inventory 
policies are possible, the periodic review system with (tp, S) policy and the con
tinuous review system with (.?, q) policy.

Objective:
The cost functions of the (tp, S ) and (s, q) policies are compared. The difference 

of the costs (related to the optimal parameters of both policies) is estimated.

Solution:
The cost saving by changing the periodic review policy (tp, S ) to the continuous 

review policy (j , q), considering the sum of inventory holding and shortage cost 
for a unit of time, can be expressed as

where the usual inventory holding and shortage cost factor cx and c2 are used. 
The expected number of orders is the same in the models. For the optimal para
meters q = tp/m.

147. Optimal spare parts replacing policy

Main codes:
1 1 0 1 0 1 9 0 0 0

Assumptions:
A single spare part is at disposal to satisfy the demand for replacing the similar 

n components of a system. The failure rate of the components and of the spare 
part is known. The whole system works during a time period of length T. The 
working components may not be changed among each other, they can be only 
replaced from stock by spare parts.

Objective:
The expected loss, caused by the failure when the components were not replaced 

immediately, is minimized. The shortage cost of component i per unit time is 
and — fß.

L  =  [M(x)+N(TJ+im - F ( x ) y + \
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where

F( . ) =  the distribution function of failure;
/ ( . )  =  the density function of failure;
T,- =  the time between the failure and the replacement of component i.

Solution:
First, the optimal replacing policy is derived for the two-component case. If 

it is possible, at failure, first the more expensive component is to be replaced. At 
the failure of the cheaper component, it is economic to wait a certain time before 
replacement. When, during this time, the more expensive component does not 
fail, the cheaper component is to be replaced. For exponential failure rates and, 
under certain circumstances, also for concave failure rates the optimal replacement 
policy for n components is characterized by a series of times i*(x) (i=  1,2, ..., n); 
z*(x) means the time when the component i is to be replaced, if it failed at time 
X, and before time z*(x) no component, more expensive than /, failed.

148. Inventory policy under imperfect asset information

Main codes:
1 1 7 1 0 1 9 7 2 7

Assumptions:
The demand of the subsequent periods £l5 £2, ... are independent, identically 

distributed random variables: their expectation and the standard deviation is 
denoted by m and v. The real level of inventory, and that described in books, 
often do not coincide, due to the failures in recording. The failure is a random 
amount ••• (by supposition, at the end of the subsequent periods): these
are also supposed to be independent and identically distributed, with mean 
value 0 and standard deviation a. The demand and failure in the same period 
may depend on each other.

The probability of shortage may not exceed a certain level a. A safety stock is 
held in inventory in accordance with the given service level. It has a unit holding 
cost h per unit amount and unit time. At each occasion, the supervision of the 
records and the inventory level has the cost K.
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Two different policies are considered.
If the supervision periods have the same length n, the sum of the inventory 

holding cost of the safety stock and the cost of supervision for a unit of time 
equals

Objective:

where В (rí) denotes the amount of safety stock.
If the supervision periods have different lengths depending on the time, when 

the demand after the previous supervision exceeds the amount t, then the cost 
function is equal to

and B(t) = m 1/2B(t).

Solution:
The cost function is to be minimized under the constraint on the probability 

of shortage. By approximating the probability distribution by a normal distri
bution (with the given expected values and standard deviations) an explicit 
solution is derived. Namely, n* and t* are the integer part of the following expres
sions :

where

and
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VII. Models with Stochastic Delivery 
and Stochastic Demand

In this group of models, both the delivery and demand are considered as 
random variables. The delivery is usually characterized by the uncertainty of 
leadtime and the demand is characterized by the uncertainty of the demanded 
quantity. Two main subgroups are distinguished depending on whether the 
control parameter of an ordering is the lot size (q) or the order level (5). The 
lot size models are often based on the results of queuing theory. This is especially 
characteristic for the case when both delivery and demand have a random charac
ter. The group of models with order level are subdivided according to the para
meter controlling the frequency of ordering, which may be the order period (t) 
or the reorder point (л). The specific feature of this last subgroup is that, in many 
models, an order is immediately placed after every demand.

Models of stochastic delivery and deterministic demand are rather rare: in 
our sample we have only two such models (158 and 159). Therefore we did not 
form a separate group for these models but we discuss them in this group.

Stochastic delivery, stochastic demand
________ I________
I I

Lot-size (q) models Order-level (S) models
1 I

I I I . ITraditional Queuing Order period Reorder point
inventory models (t, S) models (s, S ) models

models

VILI. Lot-Size Models with Stochastic 
Delivery and Demand

УП.1.1. Models of Traditional Inventory Theory Approach

149. (s, Q) model with random leadtime

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
Shortage is permitted. Inventory reviewing is continuous, and the leadtime is 

a random variable. The demand during the leadtime L  is a discretized random
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quantity r with probability p(q) and expectation M L. The demand process is 
stationary, with a mean demand rate M. Demand occurs at random moments. 
The shortage cost depends on the amount of shortage with unit cost factor n. 
The expected value of shortage is denoted by / l5 while its second moment is 
denoted by / 2. The inventory holding cost is proportional to the time and quantity 
and has the unit cost factor ft. The constant ordering cost is K.

Objective:
The method of operators is used to derive the expected total cost for unit time. 

The exact form is rather complicated, a simplified approximate form is given:

Solution:
Setting the partial derivatives of C(s, Q) to zero, one can obtain that

while the value j0 satisfies the equation

150. A continuous reorder-point, lot-size model
Main codes:

1 1 1 1 0 1 2 2 1 3
Assumptions:

The demand of a time period with length t has the probability density function 
f{x , t). The leadtime is also random with density function g(t). Only one order 
may be outstanding at any time. Shortage is backordered, the shortage cost is 
proportional to the amount of shortage with unit cost factor it. The constant 
ordering cost is A, the inventory holding cost factor is 1C with dimension 
[$]/[Q]/[T]. The reorder point r and lot-size q are positive.
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151. Reorder-point, order quantity model with stochastic leadtime

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
The expected total demand of a planning period is A. The leadtime is a random 

variable with mean M  and variance V. The leadtime demand L  has the density 
function (p(L) with mean pL and variance o \= M o 2+Vfi2, where p and tr are 
the mean and standard deviation of demand per unit time. The unit cost of in
ventory holding H  and the unit cost of shortage n have the dimensions

2 4 2
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The sensitivity of the solution is also analyzed with respect to M, V  and ojp.

152. Reorder-point, order quantity policy with reliability constraint 
and random leadtime

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
Discrete amounts are demanded at random instants, with a mean demand 

rate A. The inventory is reviewed continuously and if the sum of the inventory on 
hand plus on order minus the backordered quantity level is equal to j , the quan
tity q is ordered. The leadtime is also a random variable with mean rL. The short
age is backordered. The expected value of shortage for a unit time may not exceed 
a prescribed value M.

Objective:
The cost of inventory holding with unit factor h and the ordering cost A are

Г$1 r$i
considered. Their dimensions are: and respectively. The expected
total cost for a unit time

R(s,q) = ^ - + h [ s + ^ i + l r L)

is minimized under a reliability constraint for the expected value of shortage:

E(s, q) M,
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Objective:
The expected total cost (for reorder point R and order quantity Q) of the whole 

planning period is

where

is the expected value of the shortage in an ordering period.

Solution:
The optimum values of R and Q satisfy the pair of simultaneous equations:



meaning that the expected quantity of shortage must not exceed a predetermined 
level.
Solution:

A general solution is not given by the author. A solution algorithm is given for 
the case when the interarrival time between two consecutive demands follows 
an exponential distribution, the random amount of demands has a geometric 
distribution and the leadtime is normally distributed.

153. Graphical and numerical estimation of the optimal (s , q) policy
Main codes:

1 1 1 1 0 1 2 2 1 3
Assumptions:

The demand during the random leadtime is approximated by a normal distri
bution with mean A and forecast error a. (It is the standard deviation between 
the actual and expected demand during the leadtime.) A is the annual number 
of units demanded and Q is the order quantity. The time of shortage is supposed 
to be relatively small, compared to the time without shortage, thus the average 
level of the physical stock can be well approximated by the sum of the safety 
stock and half of the lot-size. The unit inventory holding cost is 1C, the constant 
ordering cost is A. Two different types of shortage costs are considered alterna
tively :
1. A fixed cost у of shortage occurrence, independent of time and amount of 

shortage.
2. A shortage cost depending on the amount of shortage with unit cost factor n. 

Objective:
For the two different types of the shortage costs we can write respectively

1)

2)

swhere t = —, Ф and <p denote the probability distribution function and the
(T

probability density function of the standard normal distribution. C is the unit 
value of the item.

Solution:
The optimal t is the solution of the respective equations

1)

2)
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depending on the type of shortage cost. Furthermore,

is the amount of order according to the Wilson formula. For the approximate 
solution of the above equations a fast iterative procedure is given. Nomograms 
are also presented for the practitioner.

154. Reorder-point lot size policy with partial backordering

Main codes:
1 1 1 1 0 1 2 2 2 3

Assumptions:
At the occurrence of a shortage amount z, a part of the demand which was not 

satisfied is lost. The amount of lost sales is expressed by the function
h(z) =  p z —aze~bz

where p is the mean demand rate, a and b are constant parameters. The amount 
z —h(z) is backordered, and is satisfied after receiving the next order. The amount 
of demands in a unit time is random with a probability density function f(x ). 
The leadtime is also random.
Objective:

The loss of a unit of demand means a loss of profit p. The expected total cost 
including the profit loss is approximated by the cost function

G(R, Q) =  + jQ c IT + IT c ( R - L p )+ 1 ^ - ,

where E  denotes the expected value of lost demands, I  and U are the usual cost 
factors of inventory holding and ordering, the stock value of the item is c, the 
loss of profit from a “lost sale” is p, and R and Q are the decision variables.

Solution:
The expected value of lost demands is expressed by the convolutions of the 

distribution function. For gamma distributed demands, an explicit formula is 
derived which can be calculated by means of the tables of the ^-distribution. 
An interative procedure is presented for determining the optimal value of R. 
Then the optimal value of Q can be calculated by substitution of the optimal R 
(into the first order optimality condition).

155. Inventory system for repairable items with random leadtime
Main codes:

1 1 1 1 0 1 2 2 1 3
Assumptions:

The item stored may break down. This failure can be either reparable or not. In 
the former case, it will be repaired in a random time. In the case of non-repairable
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failure, the item leaves the system. This is the output of the system which makes 
it necessary to place orders for new items. The decision maker knows the amount 
of items on stock, on repair and on order not yet delivered. The inventory is 
continuously reviewed; if it has decreased to, or below, the level r, an order is 
placed for an amount of nQ units, where n is the largest integer for which the 
inventory level does not increase above r+Q.

The occurrences of the two failure types (reparable and non-reparable failures) 
are generated by independent stochastic processes. In the paper, Poisson processes 
are considered.

Objective:
The expected total cost for a unit of time is

K(r, Q) = ^ - A + H 1CD{r, Q) + H2C/.rT+nE(r, Q) + n'B(r, Q), 

where the following notations are used:
Xn,k T: expected number of non-reparable and reparable failures for a unit of

time,
A : constant ordering cost,
C : unit purchasing cost.
HjO: inventory holding cost per unit quantity and unit time,
HjO: repairing cost per unit quantity and unit time,
T : expected repairing time for an item,
л : constant shortage cost by occurrence of shortage,
E(r, Q): expected number of shortage occurrences per unit time, 
n' : shortage cost per unit quantity and unit time,
B(r, Q): the expected shortage per unit time,
D(r, Q): the expected inventory per unit time.

Solution:
The expected shortage and inventory are derived as a function of r and Q, 

thus the cost function values can be calculated for all possible pairs of r and Q 
to select the optimal ones. No specific search procedure is suggested.

156. D e te rm in a tio n  o f  th e  c o s t-o p tim a l se rv ice  le ve l

Main codes:
1 1 1 1 0 1 4 1 1 3

Assumptions:
The length of the order period is fixed. The demand of a period is random: 

it follows a normal distribution with standard deviation ob. The mean value of 
the random leadtime is к (not necessarily integer) periods. There may be a dif
ference between the amount of order placed and received. This difference is a 
random variable with a normal distribution of zero mean and standard deviation 
oT. (Note that the expected values of the normal distributions involved do not 
play a role in the value of the optimal safety factor to be determined.)
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The safety stock factor is to be determined which corresponds to a minimal 
cost solution, when the usual unit cost factors c, and сг of inventory holding and 
shortage are considered. At safety stock uok, the expected total cost can be ex
pressed, as a function of the safety factor u, by

Objective:

where <p (л) denotes the standard normal density function and

ak =  \'k{al+af).
Solution:

The solution n„ of the equation

ф(«о) = ~ r a k c2

yields the cost-optimal value of the safety factor. Thus the optimal safety stock 
is expressed by

K0 =  u J k ( o t + o f ) .

157. ( j , q) m o d e l w ith  P o isso n  d e m a n d  a n d  e x p o n e n tia l  le a d tim e

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:

The demand is generated by a Poisson process with a mean demand rate p. 
There is a continuous reviewing of the inventory level: at the moment of reaching 
s, an order of amount q is placed. The leadtime has an exponential distribution 
with a mean value 1/Я. The demand during the leadtime is proved to follow a 
negative binomial distribution.

Objective:

With the usual cost factors, the expected total cost per unit of time can be 
written as

Solution:

An iterative procedure is suggested for solving the system of equations for the 
partial derivatives of the cost function (applying the first-order necessary optimality 
conditions). The approximate solution—which may serve as the starting point
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of the iteration—is the pair of values

158. Reorder-point lot-size model with random leadtime and deterministic 
demand

Main codes:
1 1 1 0 0  1 2 2  1 3

Assumptions:
There is a deterministic continuous demand process with known constant 

rate я:. The leadtime is random with a known probability distribution function 
G(r) on the interval [0, y], and its mean value equals M. There is a continuous 
inventory reviewing, and shortage is backordered. Inventory holding, short
age and ordering costs are considered with the usual dimensions and unit cost 
factors Ci, сг and c3.

Objective:
The expected total cost for a unit of time,

K(s, q) = cl -+ s-M x^  +  Cl2q*  /  ( r x - s )2 dG(r)+c3^

has to be minimized.

Solution:
The usual differentiation of the cost function yields

4o = /  { r x -s 0fd G {r) + ~ - x \
L Cl V* 1

where s0 is the solution of a rather complicated equation taking the next simpler 
form when supposing q0 = yx:

У

[ci/(ci+c2)]yx =  f  (r x - s 0)dG(r).
V х
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159. A special lot-size model

Main codes:
1 1 1 0 0 1  4 7 0 0

Assumptions:
For the production of a given piece of equipment, special, expensive, compo

nents are necessary. The demand n is known, it is determined by the production 
plan. The delivery process of the components is also deterministic in time and 
amount. The only random factor is that a part of the components delivered may 
be defective. The number of faulty products becomes known only after quality 
control of a received lot. If the number of acceptable components is not sufficient, 
a new order has to be placed with an extra cost K. If there are surplus components, 
then they are transported back to the vendor to sell for a unit price v (which is 
smaller than the unit purchasing price c). A single period is considered, the 
surplus components cannot be used later.

Objective:
The expected total cost of the whole period by an order of n components is

X  x  — n

f (n ) =  m in ie[x— Z j p x( j ) \~ v  2  (x - n - j ) p x(j)+xsn 1 j=0 4 J= 0

+  É  [K + f(n—x  +j)]px(j)}> for « =  1,2......
J = x - n + l

where pM(j)  denotes the probability that, among x units, j  are defective. 

Solution:
The optimal n can be selected by a straightforward substitution of the x £ n  

values into the formula for / ( « ) . In the case of binomially distributed px(jj 
values, the calculations are illustrated with a numerical example.

160. Model with random leadtime and with a constrained number of periods 
with shortage

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
The expected demand of the whole planning period is A. The demand of a 

time unit has an expected value p and a standard deviation a. The leadtime 
is random with mean M  and standard deviation V. The demand during the lead- 
time has an expected value p L=M p  and variance o2L= M o2+Vp2. The inverse 
of the probability distribution function of the standardized random variable 
(L —p L)/crL is denoted by G(x). The expected number of periods with shortage 
may not exceed an upper bound N.
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The shortage cost is replaced by the reliability constraint E (Y )^ N ,  where Y  
is the random number of periods with shortage. The expected total cost of in
ventory holding and ordering (with unit cost factors H  and K), equals

O bjective:

Solution:
The optimal order amount Q is the solution of the equation

Having determined the optimal Q (by iteration), the reorder point R can be 
computed from the reliability constraint. The sensitivity of the solution is analysed 
(varying the parameters M , V and cr/p).

161. ( s ,  q) m o d e l f o r  sp a re -p a r ts

Main codes: 

A ssum ptions:
1 1 1 1 0 1 2 2 1 3

Spare-parts are demanded one-by-one in random instants according to a 
Poisson process. The orders are placed by a reorder point-lot size policy with 
integer decision variables. The leadtime is random with distribution function 
F(x). The average time between two consecutive orderings is u. The amount of 
shortage is restricted, the reliability constraint may concern either the probability 
of shortage or the conditional expectation of the shortage under the condition 
that a shortage occurs in a given period.

Objective:
No explicit shortage cost is considered, it is replaced by the reliability constraint, 

which determines the value of the reorder point s. The optimal order amount 
q0 has to be determined in such a way that the expected total cost of inventory 
holding and ordering per unit of time

takes its minimum in q0. Here a is the constant cost of ordering, b is the unit 
purchasing price, cx is the unit cost factor of inventory holding and h is the average 
inventory per time unit.
Solution:

After determining s from the reliability constraint, then using this value, one 
can determine
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is the value of q which yields the minimum of f(q). The values of the parameters 
A, B, C and D are expressed in terms of the cost factors a, b, clt и and h. The 
optimal order amount is the integer part of [<7o+l]-

Vn.1.2. Inventory Models Based on Queuing Theory

The models of this group express the inventory control problem by means ol 
queuing theory. The following analogies are used: the maximal inventory on 
hand is considered as the total number of service channels, the actual physicaf 
stock as the number of free channels, the leadtime as the time of service, and the 
amount of shortage as the length of the queue.

162. Poisson demand, arbitrary leadtime system, grouped deliveries

Main codes: 

Assumptions:
1 1 1 1 0 1 2 3 1 3

Units are demanded at random instants generated by a Poisson process with a 
mean demand rate p. The leadtime is random with a probability density function 
f (x )  and mean t. The shortage is backordered. Three different shortage costs are 
considered:
— rejecting a demand with unit cost рг per unit demand,
— waiting of customers with unit cost p2 per unit demand and unit time,
— loss of demand with unit cost p3 per unit demand.

The maximal amount of shortage has an upper bound r. The constant ordering 
cost is g and the unit cost of inventory holding is s.

Objective:
The expected total cost is equal to

where Py is the probability of an inventory y; furthermore, у  denotes the reorder 
point and q is the lot size.
Solution:

Using the equivalence with the respective M(G)/r type queuing model, on the 
basis of queuing theory the following solution procedure is suggested:
— determine the transition probabilities,
— formulate the differential equations which characterize the system,
— determine the stationary solution by formulating the initial conditions and 

integration coefficients,
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— derive the state probabilities Py,
— determine the expected cost function,
— minimize the cost function.

163. Poisson demand, arbitrary leadtime system with lost sales

Main codes:
1 1 1 1 0 1 2 2 0 3

Assumptions:
This model is the lost sales case version of the previous model, thus the time- 

dependent shortage cost p2 is omitted; the other shortage cost factors pl and p3 
have the same meaning. A further assumption states that q>y. All previous 
notations and assumptions remain unchanged.

Objective:

where pü=Pi+Pz and A , is the probability of a leadtime demand z.

Solution:
The theory of queuing models is applied to derive the explicit cost function, 

then necessary conditions are given for the optimal values of the parameters y, q 
in the form of the inequalities

L (y + 1, q) — L(y, q) £  0,

L(y, q ) - L ( y - 1, q) S  0,

L(y, q+ 1)—L(y, q) S  0,

W ,  q)—L(y, q - l ) s 0 ,

164. Delivery based on inventory level

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
A reorder level—lot size policy is applied, where the reorder point is denoted 

by y. The ordered quantities q may be delivered in several lots with a random 
leadtime which has mean t. New transports are necessary, until the inventory 
reaches the level y  + q. Two types of ordering costs are considered: g is the 
fixed cost of an order and g„ is the unit price of transportation. The demand is 
generated by a Poisson process.
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Objective:
The expected total cost is equal to

with the same notations as used in the previous models (162, 163). The following 
additional symbols are used: Py is the probability of having an inventory у  when 
delivery occurs, and P' is the same probability when delivery does not occur.

Solution:
The steps of the method of solution are the same as described in connection 

with model 162.

165. Recurrent demand, exponential leadtime

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
The time between two consecutive occurrences of unit demand is a random 

variable with an arbitrary given density f(x ) . These random variables are in
dependent and have the same distribution with mean в. This type of demand is 
called recurrent demand (as the demands are generated by a recurrent stochastic 
process). The leadtime has an exponential distribution with parameter A. This 
model is opposite to the previous ones, in which the leadtime has an arbitrary 
distribution and the interarrival time is exponentially distributed. The maximal 
amount of shortage is constrained by the constant value r, as in the previous 
models.

Objective:
The expected total cost is equal to

where

with
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finally, B0 is the probability of the event that during the interarrival time of two 
consecutive demands no delivery occurs. (For other notations, see the previous 
models.)

Solution:
By using the results concerning the corresponding queuing model (GI/M/r)i 

the state probabilities Py of the inventory level are determined. For the optimal 
decision parameters, only in the case r= 0  and q<y<2q  are some conditions 
given.

166. R e cu rre n t d em a n d , d e l iv e ry  b a se d  on  in ve n to ry  le ve l

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
This model is a modified version of Model 164 in the sense that the leadtime 

has an exponential distribution and the demand is recurrent, as is defined in the 
previous model.

Objective:
With the notations of the previous models, we have
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Solution:
The state probabilities Py and Pj of the inventory level are determined using 

the results concerning the corresponding queuing model.

167. R e cu rre n t d e m a n d  a n d  lo s t sa le s

Main codes:
1 1 1 1 0 1 2 2 2 3

Assumptions:
The leadtime has an exponential distribution and the demand is given by a 

special recurrent process: the so-called Palme process. There is a continuous 
reviewing, and demand is lost at shortage. The reorder point у  is smaller than 
the amount q ordered by supposition.
Objective:

Using the notations of the previous models, we have



where B0 is the probability of the event that during the interarrival time of two 
consecutive demands no delivery occurs. Further on, the interarrival time has 
mean value 0 and standard deviation De.

Solution:
The state probabilities of the inventory level are derived using the results of 

the respective queuing model.

168. Erlang-type demand, leadtime with an arbitrary distribution
Main codes:

1 1 1 1 0 1 2 2 1 3
Assumptions:

Units are demanded and the time between two consecutive demands has a 
gamma distribution with parameters к  and A. This stochastic process is the so- 
called Erlang process. (The interarrival time of demands can be considered as 
the sum of к  independent, exponentially distributed random variables with the 
same parameter A, i.e., к consecutive exponential interarrival times are to be 
considered before a demand occurs.) The leadtime is random with an arbitrary 
distribution.

Objective:
Using the same notations as in previous models, the total expected cost, as a 

function of reorder point and lot-size, can be expressed by

where x is the expected value of the leadtime, 6 is the average interarrival time, 
Py i is the probability of an inventory level у in transport phase i, and, finally, 
р= к/в.

Solution:
Only the state probabilities of the inventory level are derived using the analogous 

model (EJG/r) of queuing theory.

169. Recurrent demand and leadtime with an Erlang distribution
Main codes:

1 1 1 1 0 1 2 2 0 3
Assumptions:

The main assumptions are the same as in the previous model, the difference 
being only that here the leadtime is described by a gamma distribution with
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Solution:
The state probabilities Py l are determined, using the solution of the respective 

queuing model (GI/EJr).

170. E r la n g  d is tr ib u te d  le a d tim e  a n d  d e l iv e ry  b a se d  on  th e  in ve n to ry  le v e l

Main codes:
1 1 1 1 0 1 2 2 0 3

Assumptions:
All the assumptions are similar to those of the previous model. The only change 

is that the delivery is based on the inventory level as described in Model 164.

Objective:
The explicit cost function is not given by the author because of its complexity. 

Solution:
The state probabilities are given on the basis of the results of the respective 

queuing model.

171. P o isso n  d e m a n d  a n d  e x p o n e n tia l  le a d tim e

Main codes:
1 1 1 1 0 1 2 2 2 3

Assumptions:
The demands occur in units, the random time interval between two consecutive 

demands has an exponential distribution with parameter p. It means that the 
demand is generated by a Poisson process. The leadtime has also an exponential 
distribution with parameter X. Such systems are called Poisson systems. There 
is a continuous reviewing, and it is supposed again that the lot-size q is greater 
than the reorder point y. Demand is lost at shortage.

2 5 6

parameters к  and X, while the demand is generated by a recurrent process de
scribed by Model 166. Again, the lot-size q is supposed to be larger than the 
reorder point y.

Objective:
The expected total cost, by using the notations of the previous models, can be 

expressed in the form



With the unit cost factors of inventory holding s, the fixed cost of an ordering 
g and the fixed cost of a shortage p0, the total expected cost is

O bjective:

Solution:
The partial derivatives of L{y, q) are equal to zero at the optimal point (y0, qj). 

The system of two equations which is obtained can be solved by an iterative 
method using the starting point

172. Poisson system with constrained shortage

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
Both the interarrival time and leadtime are exponentially distributed with 

parameters p0 and X, respectively. Shortage is back-ordered; the maximal amount 
of shortage is constrained by the constant value r. There are two additional 
assumptions: r<2q and q>y, where q denotes the lot-size and у  denotes the 
reorder point.

Objective:
With the notations of the previous models, the expected total cost of the system 

is

Solution:
The state probabilities of the inventory level are derived on the basis of the 

corresponding (M/M/r) queuing model.
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173. Poisson system without shortage constraint

Main codes:
1 1 1 1 0 1 2 2 1 3

Assumptions:
Both the interarrival time and leadtime are exponentially distributed with 

respective parameters p  and A, as in the previous model, but no shortage constraint 
is considered. By the continuous reviewing, when the inventory level decreases 
to the reorder point у  an order is placed for an amount q, where q >y  is assumed.

Objective:
With the notations of the previous models, we can write

00 я + 9 —1
L(y ,q ) = s(q+ y)+ p 2  УРу~* 2  УРу+

У=«+? У=0

+  £(A 2  Py+HPi - i )  +  [PoH -(P+s)(y +  qj\ 2  py
y = a  y = q + 9

Solution:
A differential equation system is derived for the determination of the state 

probabilities, based on the corresponding (M /M /°°) type queuing model.

174. The ZIP-system for reparable machines
Main codes:

1 1 1 1 0 1 2 2 1 3
Assumptions:

The so-called ZIP system is a reserve of machines or spare-parts. If a machine 
breaks down during the production process, it is immediately replaced from the 
ZIP reserve, and then the repair starts. The number of working machines is 
checked continuously, it is filled up by orders placed for a unit at a time (q= 1). 
The inventory holding cost must be considered according to the total number of 
machines (including both good and out-of-order ones) in the ZIP system. When 
no working machine is available to replace the faulty one in the production, 
then a shortage cost occurs which is proportional to the time of shortage. The 
random failures of the machines produce the demand for other machines taken 
from the ZIP inventory. The demand is generated by a Poisson process. Both 
leadtime and interarrival time of demands are assumed to be exponentially 
distributed.

Objective:
The total expected cost for a reorder point у  is

L(y) = s(y+q)+pPf+q. 1+gpPq. 1,
where Py is the probability of an inventory level y. s, p and g denote the usual 
cost factors of inventory holding, shortage and ordering (setup).

258



259

Solution:
The state probabilities of the system are determined.

175. Continuous demand—continuous delivery Poisson system

Main codes:
1 1 1 1 0 1 9 0 2  - 1

Assumptions:
The inventory system is considered similarly to a queuing system, where the 

order is delivered according to a Poisson process with a mean delivery rate p. 
The inventory is a queue waiting for “service”, i.e., for demand to remove it 
from inventory. The demand process is also described by a Poisson process with 
a mean demand rate X. The amount of inventory is the queue waiting for demand. 
The process can be controlled only through the intensity of the delivery. The 
inventory holding and shortage costs are considered with the unit cost factors 
and dimensions:

г  ю  г  = Ж
" Ш Т ]  ’ 2 Р Г

Objective:
The stationary solution of the state equations yields the following total ex

pected cost function:

а д  =  с и/ - Ж + с г(1 -р ) ,

X
where P = — and i is the interest rate of capital invested in the inventory. 

Solution:
The optimal P  can be explicitly expressed

p0 =  \ - }J c J J c z.

V n.2. Stochastic Demand, Stochastic Delivery,
Order Level Models

A part of the models of this group has periodic reviewing, where at each re
viewing an order is placed. The order level is S. The length of the reviewing 
period may be prescribed by external conditions, but it may be also a decision 
variable of the system. The delivery is random: either the leadtime is random or 
the delivery of an order is realized in several lots according to a random process.

A specific subgroup of (s, S ) models is the (S'—1, S) type models, where an 
order is placed whenever a demand for a unit of item has occurred. The inter- 
arrival time of demands is a random variable and the leadtime is also random. 
The task is to determine the optimal value of the single decision parameter S.



Vü.2.1. Order Period, Order Level (/, S) Type Models

176. Order level system with random delivery process of interval-type 

Main codes:
1 1 1 1 0 1 1 1 1 1

Assumptions:
The demand of the interval [0, j] is a random amount which has a probability 

density function G(x, s). The demand is supposed to form a stationary stochastic 
process with independent increments. The mean demand rate is m. The length 
of an order period T  is prescribed. The delivery of an order placed for an amount 
X is realized in several deliveries. The delivery is a random process described by 
the stochastic process rj, with the following properties:

*lz =  0, r]z+r = X,
M(r/S) =  (s— z)x, t  ^  s Ш z+ T ,

M(r]sr]t) —M(r\j)M(r\t) = <t2x 2(s — z)(z + T —t), z ^  s ^  t ^  т + T

where the value of c is defined by an empirical formula which involves the statisti
cal data (based on earlier observations). Thus, the delivery of an ordei placed 
at i= 0  randomly occurs on the interval (т, т +  Г). The usual cost factors of 
inventory holding, shortage and ordering (denoted by IC, p and A) are considered.

Objective:
The expected total cost for a time unit is expressed explicitly when the demand 

process is a Wiener process, i.e. a stationary stochastic process with independent 
increments and normal distributed demand

where Ф means the standard normal distribution function. In our case we have

H (S) =  y + (i c +P)[V(T, S) + {S—mz — mT)U(T, S)]+p(mz + m T~S), 

where

and

(As earlier, cp denotes the density function of the standard normal distribution.)
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A numerical function minimization procedure has to be applied to the cost 
function given above.

177. Comparison of the cost functions of (tp, S) models 

Main codes:
1 1 1 1 0 1 1 1 1 1

Assumptions:
The cumulated demand during the time period [?l5 r2] is denoted by a (tl512). 

This is a random amount which depends only on the length of the period. The 
cumulated delivery until time s is also a random amount denoted by tj(s). This 
is also a stationary process, which is independent of a(0,s). The cumulated 
decrease of the inventory level in time interval [0, .v] is £s= S  — (jj(t +  T )—t](s))~ 
— a(0,s )  with a distribution function Hs(x): here т is the leadtime and T  is the 
length of the order period. Let Hs(x) be the probability distribution of £s, then

1 X+T
H(x) = — /  Hs(x)ds, h(x) = H'(x).

T

The usual cost factors of inventory holding IC and shortage p are considered. 
Furthermore,

й -  P 
ß IC + p  '

Objective:
The expected total cost of an order period is equal to

K(S) = I C [ S -  J  xdH (x)\+ (IC + p) I  (x -S )d H (x ) . 
о s

The main purpose of the study is to compare the optimal costs for different 
stochastic processes and different cost parameters ß.

Solution:
For an arbitrary value of ß, the inequality K2(ß)SK i(ß) holds for the optimal 

values of the cost functions if A1(5í(j?))sA2(5í(j8)). If H(x) has a normal 
distribution, then the relation for the standard deviations of Нг(x) and
H2(x) is a sufficient condition of the above inequalities.

178. A min— max inventory model with random leadtime

Main codes:
1 1 1 1 0 1 1 1 1 3

Assumptions:
A (f, S) model is considered for stochastic demand and stochastic leadtime 

which are independent random variables. An order placed earlier may be deli-

Solution:



vered later than an order which was placed later, due to the randomness of lead- 
time. The length of the order period is N  units of time: N  is also a control variable 
of the system, together with the order level S. The probability that the stock 
deficit is less than or equal to x  given orders is denoted by (p(x; N). The usual 
unit cost factors of inventory holding, shortage and ordering are considered and 
denoted by Ch, Cp and Ck. There is an additional unit cost Cw, which is the 
warehousing cost.

Objective:
The expected total cost for a unit of time is

oo

C(N, S) =  C JN + (C h+ C J S + C p I  X dx(p(x; N ) -
0

oo

~(C h+Cp) I  m in(x ,S )d x<P(x- N ). 
о

Solution:
A special min-max solution procedure is suggested. Under fixed parameters 

of the demand and leadtime distributions, the parameters of the shortage proba
bility distribution are determined. Thereafter, the distribution is selected which 
has the same parameter values and maximizes the expected cost for a unit of time. 
In the last step, the cost function corresponding to the above distribution is 
minimized with respect to N  and S.

VII.2.2. Reorder-Point, Order Level (s, S ) Type Models

179. Poisson system with (S'—1, S) inventory policy

Main codes:
1 1 1 1 0 1 6 2 2 3

Assumptions:
Units are demanded at random instants according to a Poisson process with 

mean rate A. When a unit is sold, an order is placed for another unit. Thus the 
number of units on inventory plus those on order is a constant M  at each time 
moment. This is the order level which represents the maximal level of the service. 
If the inventory level is zero, the new demands are lost for the system, until the 
next arrival (delivery) of an order. The leadtime is random with an exponential 
distribution, with parameter p.

Objective:
The expected profit of the system is equal to

w o  -  i M - (c , +e) м д " а г и гД " - - -

where g signifies the profit after selling a unit of the item and C,=C„*i is the
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unit cost of inventory holding, (C„ and i are the same as in Model 175), further on,

180. (5 —1,5) inventory policy with arbitrary leadtime distribution

Main codes: 

Assumptions:
1 1 1 1 0 1 6 0 1 3

The demand is generated by a Poisson process with parameter A, as in the 
previous model. The random leadtime may have an arbitrary distribution: its 
expected value is denoted by t. The order policy is the same as in the previous 
model. The demand is lost for the supplier in the case of shortage. The inventory 
holding and the shortage costs for a unit of item are denoted by H  and L. No 
ordering cost is considered.

Objective:
The expected total cost for a given order level 5  is expressed by C (5) =  

= H [ 5 —(1 —р(5))Ат] +XLp(S), where p (S )  denotes the probability of the event 
that the leadtime demand is greater than 5.

Solution:
The order level

with
50 =  Ат+а /Ат

provides an acceptable approximation of the optimal order level.

181. (5 — 1, 5) policy with restricted back-ordering time 

Main codes:
1 1 1 1 0 1 6 2 9 3

Assumptions:
A Poisson system is considered: the demands are generated by a Poisson 

process, the leadtime is exponentially distributed. Their parameters are denoted 
by A and p, respectively. When a demand for a unit of item occurs, an order for 
another unit is immediately placed. In case of a shortage the demand is waiting
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a given time T. If during this time it is not satisfied, then the demand is lost to 
the supplier. Demands are satisfied according to the FIFO (first in—first out) 
service rule. When some demand is lost, the same amount of order is immediately 
revoked. The state of the system is described at time t by the function R(t) which 
means the number of items ordered, but yet undelivered.

Objective:
The expected total cost for a unit of time is equal to K (N )= C lH + CdD + Cltt,, 

where C„ and Cd denote the usual cost factors of imentory holding and shortage 
(both with dimension [$]/[6]/[F].). The cost of a lost sale is denoted by C 
H  denotes the expected number of items in the inventory and D is the expected 
value of demand waiting for service in the case of stockout. Both expectations 
are considered at a random time. The average number oflost sales per unit time 
is denoted by n,.
Solution:

Sufficient conditions are derived which make it possible to decide about the 
optimality of a parameter value N. Numerical examples are given.

182. (5 — 1, 5) p o lic y  f o r  d em a n d s g e n e r a te d  b y  a co m p o u n d  P o isso n  p ro c e ss

Main codes: 

Assumptions:
1 1 1 1 0 1 6 2 1 3

Random discrete amounts are demanded at random instants which are generated 
by a Poisson process with parameter q . The amount of demand j  has the proba
bility f j .  (The defined random demand process is a compound Poisson process.) 
The leadtime is also random with an arbitrary probability density function i\t{i) 
having an expected value T.

The service level is defined in three different ways for the backorders case:
1. R (S) is the probability that an item observed at a random point in time has 

no backorders.
2. F (5) is the expected number of demands per time period for an item that can 

be met immediately from stock on hand.
3. ß (5 )  is the expected number of units in routine resupply at a random point 

in time.
The service levels of types 2 and 3 are defined also for the lost sales case.

Objective:
The service level and the inventory level are weighted by the cost factors k x 

and k2, where the first one characterizes the profit and the second one the costs. 
The net profit is the difference

H(S) = k1G (S)—k 2cS,

which has to be maximized. Here G(S) represents an arbitrary performance 
measurement and may be one of the functions R, F or Q (for the lost sales case 
only F or Q) and c denotes the unit purchase price.
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Solution:

Algorithms are derived for the calculation of the service level R, F and Q 
(for arbitrary fixed parameter S ) in the special case, when f j  has a geometric 
distribution:

f j  =  ( i - e ) e - '-1 ( 0=? е <1) ,
and the demand is backordered.

FORTRAN programs and tables are included to help the numerical calcula
tions; optimization aspects are not studied.

183. A special model: capacity optimization in a storage system

Main codes:
1 1 1 1 0  1 - 1  - 1 7 - 1

Assumptions:
The system is analysed in a fixed time interval [0, Т]. The input and output 

processes are signed by X(t) and Y(t), respectively. They are stochastic processes 
with known probability distribution. Thus the inventory level Z(r) is also ran
dom. It can be expressed at time /+ 1  by

Z ( /+ 1) =  [min {Z{t)+ X (t),K }-Y{i)]+ ,

where X(t) and Y(t) are the delivery and the demand between t and t + 1, res
pectively, К  is the storage capacity and [x]+= max {0, x}. The expected value 
of Z (t)  is assumed to be independent of t, but this depends on the value of K.
Objective:

The purpose of the study is to determine the capacity К  of the store which 
ensures a maximal expected net profit. Let r(T, К ) be the profit of a unit inventory 
per unit time for capacity К  at time T. The interest rate is denoted by <5. Thus the 
present value of the total profit is

T
r0(T ,K )=  J  е - 6,гО )гО ,К )Л .

The present value of the total operating cost is
T

с0(т, к )  =  J  е - * г ( 1) с { и к ) Л 1.
о

The building cost of capacity К  is cf (K). Thus the present value of the net profit 

Po(T,K) =  r0( T ,K ) - c 0( T ,K ) - c f (K).

The objective function is the expected value of this expression.

Solution:
In the interesting cases in practice, the objective function has a single local 

optimum which can be calculated (e.g., from the partial derivatives of the objective 
function which are equal to zero at the minimum point). For exponential demand
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and delivery distributions, the expected value of Z(K ) is determined: here Z(K) 
denotes the expected value of Z{t) which is supposed to be dependent only on 
the capacity K.

184. Special model for distribution of leadtime demand based on empirical 
data

Main codes:
1 1 1 1 7 3 7 2 7 3

Assumptions:
The probability that during the leadtime m customers arrive is denoted by g(m). 

These customers require a total amount q with probability P(q\m). The empirical 
sets of observations d=[nr, n2, ..., nm] are available where 1 ̂ n S N  is the 
demand of the y'-th customer with probability f(nf).
Objective:

The purpose is to estimate the leadtime demand on the basis of the set of 
empirical data.

Solution:
The d  vectors are partitioned in such a way that in a group

1. the sums of demands are the same,
2. the occurrence of a group has a constant probability.
The probabilities of the groups are estimated on the basis of the observations 
and on this basis the empirical distribution of the leadtime demand is derived. 
A FORTRAN program is included which is applicable for the above estimation 
procedure. This model can be used in combination with other models which 
provide a decision principle, given the knowledge of the above distribution.
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VIII. Dynamic Reorder-Point Models

Dynamic models belonging to this family are those where the inventory policy 
is of (s, S)  or (i, q) type.

Given the essence of the policy, the conditions concerning delivery have been 
taken into account in forming the subgroups. In the models of the first subgroup 
the ordered lot will be delivered without leadtime. For these models—in complian
ce with Bellman’s dynamic optimization principle—a recursive relation can be 
formulated for the optimization of the cost function. The solution methods of 
the models, as a rule, differ from each other: besides the dynamic programming 
algorithm, the theory of Markov chains, and renewal theory or linear program
ming may be applied for their solution.

In the second subgroup, deliveries take place with a known leadtime. In some 
of the models, inventory review is periodic with a fixed length of the reviewing 
period. The ordered quantity arrives here after a leadtime of one or several 
periods. In the models of continuous inventory reviewing the ordered batch arrives 
also after a known leadtime. Due to the leadtime, joint consideration of several 
variables is necessary in the cost function: this makes optimization by means 
of dynamic programming very difficult and inefficient. Thus, finding ways for 
a quicker algorithmic solution is of special importance here; in some cases, an 
explicit solution is given for special demand distributions using an iterative 
procedure which quickly approaches the solution. In several models, the authors 
only verify the optimality of the ( j, S ) model (under various conditions), but 
they do not deal with the algorithmic solution.

Models of periodic inventory reviewing belong to the third subgroup, where the 
delivery of the ordered batch has a random character and the leadtime is a random 
variable. This fact makes the exact expression of the objective function of these 
systems especially complicated and causes difficulties in determining the optimal 
decision parameters. Thus, these models usually deal with the description of the 
system from a mathematical aspect, (i.e., with its stability and with the determina
tion of the type of optimal ordering policy), but they do not give a solution al
gorithm.

We present below a detailed description of Model 185, which represents well 
the properties of the dynamic models. This model is a member of the family
VIII.1.1.2.
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Assumptions:
The demand arising in each period for a certain item in a store is considered 

as a random variable. Demand for period i are denoted by Zh with a distribution 
function Fj(x). Demands in various periods are independent of each other and 
their distributions may be different.

An order can be placed at the beginning of each period, and the entire quantity 
will arrive immediately (this will be generalized later on, when the occurrence of 
leadtime will be allowed).

By inventory level the sum of the volume on hand and on order is meant. 
The level of inventory before ordering is xt. It will be raised up to level y, by 
placing the order.

In the general model, the following expression may be given for the inventory 
level of the next period:

, f a(yi-Z t)  if Ti SÉf ,
Xi^ - V i(y ,A l)~ \ b (^ - yi) if

where O^a, b S  1. This general equation may be specialized for several cases,
— if a = 1 and b = 1, then in the case of shortage the demand will wait (back

orders case);
— if a= 1 and h=0, then in the case of shortage the demand will be lost;
— if a= 0, the inventory left by the end of the period will be lost (e.g., perishable 

goods);
— if 0< b-= l, one part of the uncovered demand will wait, the other part will 

be lost;
— if 0 < a < l ,  only one part of the inventory left by the end of the period can 

be transferred to the next period, the other part (1 — a) cannot be used up in 
the next period.
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185. D y n a m i c  n  p e r i o d  m o d e l  w i t h  l e a d t i m e

Main codes:
1 1 0 1 1 1 5 1 1 1
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Based on the observed inventory level x h the volume of order to be placed is 
Z;= й(*г) -  x r The yt inventory level is the function of x t. The sequence of functions 
УАх д 0 =  1, 2, ...) defines the ordering policy.

Objective:
Three types of costs will occur. The ordering cost may alter in each period, 

it equals
£;(z) =  Ki3{z) + ciz,

where <5(0)=0 and ő(z)—1, if z > 0; is the fixed ordering cost and ct is the 
unit purchasing price in period i. The sum of inventory carrying and shortage 
costs is li(yh £;) in period i, and the expected value of /„ assuming that y t=y, is 
equal to

Li(y)= I  h(y, Q d F j Q .
0

The costs of period i can be weighted by a discount factor oq (O^oq^i), and 
the following symbol may be introduced:

i-i
ßi— П <*■] & е case ° f  * >  Ь  an d  ßi =  1.

j=i

If the initial inventory level is jc;, then the expected discounted total cost of the 
first n periods is equal to

C"(xi|y) =  E { 2  ßi[Kiö(yi- x i)+ci(yi- x i)+ liiyt, Zi)]~ß„+icn+1xn+1}
*' =  1

in the case of a given ordering policy F=(y1; ...,y„)- Here and in the follow
ing, E  denotes the expected value operator. This may be written also in the form

C"(*il30 =  £ { i  ßi [Ki s (У ; -  xt) + Ci у  i +  li (у i,  Zi)-  ŰC; C,+! Vi (yt, ii)]} -  C , * ! ,
i =  1

where the term cxx t can be neglected, because it is not influenced by the decision 
policy, but depends only on the initial inventory level. The optimal ordering 
policy is where the above cost function will take its minimum. The cost function 
may be written in the following simple form:

С Ч х г \ у )  =  2  ß i i K M y i - x d + G i i y i ) ) ,
i  =  l

with the following notation:

Gi{yl)  = ciyi+ Li{y j)-a ici^ 1 f  Vi(yi, £i) dFi(Zi).
0

If the quantity, ordered at the beginning of period /, arrives at the beginning of 
period L+i,  the objective function will be modified in a suitable manner.
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In the case of shortage, the demands occurring during the leadtime will be 
added to the unsatisfied demand:

u  — £ i + £ i + i +  • • • + £ i + L - i -

The distribution function of и is denoted by F i>i+t_i(u).
The expected value of the inventory holding and the shortage costs in period 

i+ L  in the case of yt= y  is

Ш  = E { l t ( y t , Zi+ L ) \ y i  =  y }  =

OO CO

=  J  /  h ( y , - u ,  {,+b) dFt+L(Zi+i ) d F iM L . M ,
о  0

depending on the demands of L  periods. Hence, in the cost function C"(xt\y): 
we can write

Gi(,yi) = ciy i + L i(yi)~a.ici+1 J  (y -Z d d F iiQ .
о

In the case of shortage the expression of the cost function for the case L > 0 
is known only for independent, identically distributed demands in each period. 
This will be described later in Model 199.
Solution:

The optimal ordering policy of an n period model is given by the vector of 
functions . . . ,y f,  ..., yl), which minimizes the objective function

C n(x 1\Y *) =  т т С " ( х 1|У).

The optimal quantity to be ordered in period j depends on the initial inventory 
x t, i.e. Y*=y?(xi). To determine the optimal ordering policy, Bellman’s dynamic 
programming principle can be applied; thus,

C‘(x) = min [ K M y i- x d + G ^ + o t tE lC ^ lM y , ,  Щ ]
yt-xi

for /= 1 ,2 ,..., n —1. This necessitates the solution of a functional equation 
system which implies very serious computational difficulties in the general case. 
Practical solutions are available for special cases, when the distribution of demands 
is identical in the different periods (the so-called stationary demand case). In the 
case of a discrete demand distribution the applicable general methods are based 
on two versions of dynamic programming: value iteration and decision iteration 
(in the case of continuous distribution discretization will be applied). These 
methods will be described below. There is a number of special methods which 
are more efficient, quicker and require less calculation than the general method. 
Those procedures which give approximations to the optimal solution are also 
very important in practice. All these will be described in connection with specialized 
models.



The value iteration method of dynamic programming may be started with the 
initial value C°(x)=0. Starting from this,

C*(x) =  min [K5(y—x)+ (j (;c)]

will be calculated for each possible value x. In the course of iteration step k, 

Ck(x) =  min \K S(y-x)+ G (y)+ aE {C k- 1{v(y, £)]}]

will be determined for all possible values x. The iteration is to be continued, 
until the increase of the cost function is nearly the same for each examined value 
of x. (Note that this condition does not specify a well-defined stopping criterion.)

The decision iteration method of dynamic programming is based upon the 
fact that an objective function value corresponds to each decision rule y= d(x) 
(ordering strategy) in the following form :

C(x) =  KŐ{d(x)-x]+G[d(x)]+<xE{C[v(d(x), £)]},

which means a linear equation system for C(x). On the other hand, a decision 
rule y= d(x ) can be given for each cost function, where

KŐ[d(x)-x]+G[d(x)]+KE{C[v(d(x), {)]} =

=  min {Kö(y—x)+ G (у)+ a£{C[v(у, £)]}.у^х
The decision iteration algorithm is built up on the basis of these two systems of 
equations. In the first phase, the proper cost function will be determined for the 
given ordering strategy y= d0(x)\ in the second phase, minimization takes 
place in accordance with the aforesaid. In this way, a new y= dx{x) ordering 
strategy will be obtained, and the next step of the procedure continues with this 
in the two successive phases. An optimal policy will be gained if two successive 
steps give the same ordering strategy for each possible value of variable x.

The convergence of both procedures is proved under rather general conditions. 
The numerical efficiency of these procedures depends on the number of possible 
values of the inventory states x; different methods are known to decrease this 
number, especially for special model structures. This will be discussed later in 
connection with the analysed models.

Several authors have dealt with the determination of the type of the optimal 
y= d(x) ordering strategy: this depends mainly on the value of the fixed ordering 
cost K.

In the case of K = 0, the ordering cost will be proportional to the ordered 
quantity. If the distribution of demands [f(x )j is the same in the different periods, 
then the optimal ordering strategy is of the (tp, S ) type with the convex one- 
period cost function L(y) generally occurring in practice and expressing the sum 
of the inventory carrying and shortage costs. An order has to be placed in each 
period. In the case of immediate reception of the ordered batch, it is easy to 
determine the value of the optimal ordering level. In the case of shortages, the 
equation

C ( l-a )+ L '(S )  =  0
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gives the optimal order level (case of unsatisfied demands), and in the case of 
lost sales the solution S  of the equation

C + L '(S ) — acF(S) =  0
is to be determined. The above equations may be written in the following simple 
form, with inventory holding сг and shortage cost factors c2, and with linear 
cost function:

F(S) =  ——— —— (in the case of unsatisfied demands) с3+ сг

Q  __ Q
F(S) = ----- ---------  (in the case of lost demands).

C3 T Cg űtc

If the ordered batch does not arrive immediately, the ordering strategy is also 
(/p, S), if the other assumptions are unchanged. The method of determination 
of the optimal 5  level will be discussed in connection with Models 185 and 199.

If the distribution of demands changes in each period, the optimal ordering 
policy is still (ip, S) with a different order level Sn in the different periods if 
K = 0 and L„(y) is convex.

If a fixed ordering cost arises (£> 0), then, generally speaking, the optimal 
ordering strategy is of the (j , S) type. A sufficient condition of its optimality is 
the convexity of the previously defined functions C,(y), which is valid in most 
important cases in practice. For the determination of the optimal parameters 
of the (s, S) models, several exact and approximate solution methods will be 
given later.

V in .l .  Dynamic (s , S ) Models

V III.l.l. Dynamic (s, S ) Models with Deterministic Delivery 

VIII.1.1.1. Delivery without Leadtime

186. Infinite horizon model with discounting

Main codes:
1 1 0 1 1 1 5 1 1 0

Assumptions:
Orders can be placed in each period. Let the initial inventory level be x, the 

order level y —d(x), and the demand in each period £, with distribution F(£,). 
The ordered quantity arrives immediately, demands arise also at the beginning 
of the period. The sum of inventory holding and shortage costs of one period is 
given by the function L(y) depending on the order level. The cost of placing the 
order is B (y —x) depending on the ordered quantity. The volumes of inventory 
and shortage are bounded.



The expected value of the total cost of n periods, discounted by the factor or, 
equals

C"(;c) =  m in{5(y-;c) +  Z.(y) +  a f  CH~ '(y -0 d F (£ ) .  
y- x 0

This expression serves to determine also the minimal costs. Thus, we seek the 
optimal y= d(x ) ordering strategy which yields the minimal costs in the case 
of л — =°.

Solution:
The authors prove that under the given conditions the (s, S )  strategy is optimal. 

Its determination is realized by using the decision iteration version of dynamic 
programming. (This means the iterative approximation of the optimal d(x) 
strategy.) The convergence of the procedure is proved. The decision iteration 
was described with Model 185.

187. Random demand, immediate delivery—the dynamic case

Main codes:
1 1 0 1 1 1 5 1 1 0

Objective:

Assumptions:
The demand of the time-interval Г is a random variable, the density function 

of which is f ( x ) . Some initial inventory z  is given at the beginning of the opera
tion of the system (it may be negative), and an order will be placed in the initial 
moment which will raise the stock to y. We assume that the ordered batch is 
received prior to the first demand, i.e., an inventory level у  is available by that 
time. If a superfluous inventory y —x > 0 remains by the end of the time interval 
T, the unit cost of this is denoted by sT. For the unsatisfied demands, a penalty 
p T is to be paid per unit. The inventory level will be reviewed in each period and 
an order will be placed according to the ( j , S) policy. The purchasing cost is 
denoted by c.

Objective:
The minimal cost for one period is

LnT(z) is the minimum of the L„T(S, z) function achieved with optimal S  (S  is 
the inventory established in the first period), and a is the discount factor.
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188. An inventory model based on Markov chains
Main codes:

1 1 0 1 1 1 5 1 0 0
Assumptions:

An item is measured in discrete units. There is one store, and the upper limit 
of its capacity is n units. There is no leadtime, the excess demand is lost but no 
shortage cost is calculated. Only ordering and storage costs are taken into con
sideration. The whole ordered quantity arrives at the beginning of the period. 
The volume of demands arising in the period is a random variable of a given 
distribution. The length of the periods is not prescribed, their sequence constitutes 
a Markov-process. The objective is the minimization of costs emerging during 
infinite time horizon.

Objective:
The optimization is formulated as a linear programming problem:

Subject to the constraints:
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The dual problem with the dual variables x * and x\ is the following:

subiect to the constraints
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where D i; L { and At are decision sets defined in different ways;
oo

q\j =  Pij f  e-*xdF\j{x)
0

(in the state i we pass by decision к  to state j ) , where: 
p kij-. transition probability; 
a: discount factor (0 < a < l) ;
Fiji the conditional, cumulative distribution function of the time of transition; 
c, a and b are cost factors.

Solution:
The author proves that the optimal solution is of (j , S)  type, and the optimal 

s is the fix point of the following operator A :

(Av)i = min R(i, k, v),
к  C M ,

where R(i, k, v) =  0* + 2  9y V/J 
j

v — л-component vector,
M t =  set of decisions.

Accordingly, the solution may be determined by some fix point searching algo
rithm.

189. Inventory model with transportation-efficient ordering

Main codes:
1 1 0 1 1 1 5 1 1 0

Assumptions:
Periodic inventory reviewing is applied. An order may be placed after each 

review (in each period) which arrives immediately. The demands of any two 
successive periods are pair-wise independent, and identically distributed, random 
variables.

The unsatisfied demands wait. Three types of costs will be considered: ordering, 
inventory holding and shortage costs. The sum of the latter two is characterized 
by a function L(y) depending on the inventory level. It is assumed that the order
ing cost of a unit z is the sum of a linear function cz and a jumping function J{z), 
where a jump takes place in the 0, n, ..., 2n points; К  is the size of the jump; 
с, M  and К  are known constants. Thus:

J(z) = К ■ [z\M] and C(z) = c z + K ■ [z\ М].
For example, the capacity of the transportation vehicle is M ; К  is the hiring 
(inventory) cost and c is the unit procurement cost. The ordering policy may be 
characterized by the vector T„, T„ , . . . ,  Тг: if the inventory level at the beginning 
of period falls in the interval [7]—M r, T i+ M —M r] ( r s l  integer), an order of 
M r is to be placed. No order is placed if the inventory level is higher than 7] 
(assume that 7 j=  "oo).
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/„(*) =  inf \c (y -x )+ J {y -x )+ L (y )+ a . I  fn-i(y-Z)<p(S)di*}

where: f n(x): the cost function of period n, 
у : inventory level after a delivery,
x: inventory level at the beginning of the period,
<p(0: density function of the probability distribution of demands, 
a : discount factor.

Solution:
The author verifies that the same T  is optimal in each period; T=  lim T„, 

where Г satisfies the following equation:
L(T  + M ) — L(T) =  (a — \){K+ Me).

190. Multi-class inventory model with inventory level function and optimal 
dynamic policy

Main codes:
1 1 0 1 1 1 5 1 1 0

Assumptions:
The model describes an inventory system, where two classes exist. The classifi

cation criterion: the “perfect” units belong to the first class, while the “worthless” 
units (perfect items may perish) get to the second class according to a stochastic 
process. The inventory reviewing is periodic, the ordered quantity is immediately 
at disposal. Only “perfect” items are ordered. The demand is (in each class and 
in each period) represented by the perished amount (getting into the lower class): 
it is a function of the initial stock in each class. The demand (deterioration of 
inventory) follows a binomial of uniform distribution; its value at the beginning 
of the inventory review period is denoted by D(y).
Costs:
— ordering cost c(Z), which is convex, increasing, c (0)=0;
— inventory holding cost h, which is convex, increasing;
— shortage cost p, which is convex, increasing.

Inventory holding and shortage costs are defined at several special time-moments 
of the inventory review period, their sum is denoted by the function Z.(y). A 
possible interpretation: for a working process a machines are needed. The ma
chines break down randomly. If more than a machines are perfect, inventory 
holding costs arise; if less than a machines can operate, shortage cost has to be 
taken into account.

Objective:
Cn(x) =  min {c{y-x)+ L {y)+ aE [C n- l (y -D (y ))§ ,  x S O ,  

where: C0(x) =  0; a discount factor, 0 < a <  1.

Objective:
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The optimal ordering policy may be characterized by the integer function 
y„(x) and by the integer x„; these are parameters of the (x, S)  ordering policy 
which alter in each period. If the inventory level x<x„, then it has to be re
plenished to y„(x); if x ^x „ , no order has to be placed. The solution can be ob
tained by dynamic programming.

The author describes two special cases; when
— the ordering cost is linear, c(x)=cx, c> 0 ;
— the stocks left by the end of the last period can be sold at a price ac.

191. Discrete inventory model with arbitrary time and quantity distribution 
of demands

Main codes:
1 1 0 1 1 1 5 1 2 0

Assumptions:
The volume of demand is a positive integer random variable with a known 

probability distribution. Demand occurrences are generated according to inde
pendent, identical probability distributions. The maximal value of a single demand 
is given. The intervals between two successive demands are finite, discrete, positive 
numbers generated according to known independent, identically distributed 
probability distributions. The maximal value of the time between two subsequent 
demands is given. (Demand emerges always—if at all—at the end of the inventory 
review period.)

Orders are always placed depending on the inventory level subsequent to the 
occurrence of the actual demand. The ordered batch arrives without leadtime. 
Unsatisfied demands are lost for the system. Storage capacity constraints are 
also to be taken into consideration.

Objective:
The expected cost for a time unit is to be minimized. The exact expression of 

the objective function is not presented.
Solution:

The operation of the model takes place according to a Markovian renewal 
process. If i units are available in the store, this is qualified as state /'. In this case, 
a number к will be selected as a decision from the set i , i+ 1 , ...»N. This means: 
k —i units are to be ordered. It can be proved by means of linear programming 
or iterative methods that an (.v, S)  policy is optimal.

192. Dynamic inventory model, unsatisfied demand is lost
Main codes:

1 1 0 1 1 1 5 1 2 0
Assumptions:

Unsatisfied demands are lost in each period. The ordered quantity arrives 
immediately. The demands arising in the periods are independent random variables

Solution:



with known continuous density functions. The ordering cost is linear: c(y)=cy, 
c>0, The inventory holding cost h (y) is a continuous, convex, increasing function.

The cost q(y) of unsatisfied demands у is a continuous, convex, increasing 
function. The discount factor is 0 < a < l .

The shortage cost of the model is p (y )= q (y )-a -c y , i.e., if shortage occurs, 
then the discounted value of the quantity ordered during the period has to be 
added to the usual shortage cost.
Objective:

The goal is the minimization of the total discounted costs for n subsequent 
periods.

Solution:
The author shows the connection between this model and Model 292, thus 

the results and the solution procedure to be presented in the latter model may be 
applied to the present model, too.

193. Optimal pricing and ordering decision with random demands

Main codes:
1 1 0 1 1 1 5 1 1 0

Assumptions:
The system operates during N  periods. Random demands arise in each period. 

The volume of demand depends on the price p  of the item, which is a decision 
variable in each period. In the period n, with price p , the assumed distribution 
function of demand is F„(d\p). We assume that F„ is a stochastically decreasing 
function of p, i.e., F„(d\p)^F„(d\p) for arbitrary d in the case of p>p- 

The sets of the feasible inventory levels x, and prices p are given. A decision 
has to be made in each period for the price and the ordering (production) quan
tity. In this way, the optimal solution for each period and each inventory level 
is a two component vector of price and order quantity.
Let
— Ln(x,p ) denote the loss in period n with inventory level x  and price p, the 

elements of which are: inventory holding cost, backordered shortage cost 
and profit;

— K ő(x—y)  denote the ordering cost (the cost of replenishing the inventory 
from у  to level x) where

(0, if x  = у  
S ( x -y ) =  , . .11, if x > y ;

— и =  1,2, ..., N  is the serial number of the periods, proceeding from the last 
one backwards.

Objective:
G„(y) is the expected minimal discounted cost if there are n periods left and

the actual inventory level is y.
G0—0
G„(y) =  min {K d (x -y )+ g n(x, p j) (x ^  y, p f  p).

2 7 8



gn{x,p) — the expected discounted cost with inventory level x  and price p  in 
period n, if the system operates optimally afterwards.

gn(x,p ) =  L n(x,  p)+ J  G ^ x - d j d F ^ d l p )
о

(a: discount factor).
Solution:

It is true for the majority of the examples examined by the author that the 
so-called (s, S, p) policy is optimal. According to this policy
1 . there is a function p„(x) giving the optimal price for every inventory level x  in 

a certain period;
2 . if x ^ s n, there is no order; price is taken for pn(x);
3. if order will be placed to an inventory level S„\ price is taken forpn(S„).

If the optimum for the (.?, S ,p)  policy has already been established (by dynamic 
programming), then it can be seen by verifying certain conditions, whether the 
(s , S, p) policy is optimal or not. If the few feasible prices p are very different 
from each other, then the (s, S ,p )  policy is probably not optimal, whereas in the 
opposite case it is. It is hard to give easily verifiable, exact optimality criteria 
in advance.

194. Optimal policy in the case o f inventory volume dependent demands and 
immediate delivery

Main codes:
1 1 0 1 1 1 5 1 1 0

Assumptions:
The assumptions are identical with those of Model 204, with the difference 

that there is no delay in delivery, and the demands depend on the stock at the 
beginning of the period.

Objective:
We seek an ordering policy which ensures the minimal expected discounted 

ordering cost for n periods while the probability of shortage should not exceed 
a prefixed bound.

Solution:
The authors express the shortage probability as a function of the sum of the 

inventory on hand and the ordered quantity, hence determining the ordering 
policy which ensures the lowest ordering cost for n subsequent periods.

195. Cost model of stochastic storing systems 
Main codes:

1 1 1 1 1 1 5 1 1 0
Assumptions:

The input of the stochastic storing systems examined is a non-decreasing 
stochastic process, and their output mechanism works in intervals, in the form
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of emptying operations, leaving in the system an inventory of level m (m is not 
always zero). Emptying points are the replenishment points of the system. Empty
ing takes place if the inventory level in the system exceeds the level q. The author 
attaches a duration measure to the input process expressing the expected value 
of time the input process spends in a given set. Most of the one-item (s, S )  in
ventory policies may be discussed as special cases of the stochastic storing system 
generalized by the author. In this way, the input process is in accordance with 
the demand arising in each time unit. There is no delivery delay (in the case of 
immediate emptying). The inventory level equals I(t) = —v(t), where v(t) is the 
net quantity in the system, s is equal to ( —m) and 5 equals ( — q).

Objective:
There is one fixed cost c in the system arising at emptying (ordering) and one 

time-proportional (inventory holding) cost g(x) arising when the quantity inside 
the system is x. The total cost during an interval (0, t) is to be minimized.
Solution:

The author seeks the optimal parameters according to the (s , S) policy, taking 
into account the regularities of the renewal processes.

196. (.V, S) model in the case of limited order quantities

Main codes:
1 1 0 1 1 1 5 1 1 0

Assumptions:
The maximum ordering volume is R. The ordering policy is based on a periodic 

inventory review. The distribution of demands during a period is characterized 
by the density function f{x). There is no leadtime. The ordering cost is propor
tional to the ordered quantity r; the usual fixed ordering cost is omitted. The 
total cost of inventory holding and shortage for one period is L(y), where у  is 
the initial inventory level of the period; L  is a convex function.

Objective:
The optimal discounted total cost for и periods can be expressed as

where Co=0, x  is the inventory level before ordering, a is the discounting factor. 
Solution:

The author proves that the optimal inventory policy satisfying the assumptions 
is of (s, S ) type, but he does not deal with the determination of the optimal 
values s and S. (The methods of dynamic programming may be applied for 
determining the optimal s and S  values.)
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197. On the optimality of the generalized (j , S) policies

Main codes:
1 1 0 1 1 1 5 1 1 0

Assumptions:
A single-item, stochastic, dynamic inventory model is investigated, where stocks 

are periodically reviewed. The ordering cost function is a concave, monotonously 
increasing function. There is no leadtime of replenishment. Shortage is back
ordered. Demands of the periods are independent random variables with iden
tical distribution (one-sided Pólya-distribution), the density function is denoted 
by f(y ). Costs arising after n periods are discounted by a discount factor a", 
0 < a <  1. In a given period, the holding and shortage costs are calculated based 
on the volume of inventory at the end of the period, their expected value is in
dicated by a function G(y), and the sum of the costs is denoted by a Pólya-type 
density function.
Objective:

The objective is the minimization of the expected total costs of the considered 
periods

K„ = inf {C (y—x)+G(y)+a.K„_! f(y)},
ymx

according to the principle of dynamic programming.
Solution:

The author shows that in the case of the above assumptions, a modified (s, S) 
policy is the optimal solution (i.e. an ordering policy function, satisfying the 
two assumptions below):

a) y(x) =  X ,  if .r s  x;

b) y(z) s  y(x) S S 5 j , if z <  X <  s.

198. Optimality of the generalized {s, S) policies in the case of a uniform 
demand distribution

Main codes:
1 1 0 1 1 1 5 1 1 0

Assumptions:
The assumptions are identical with those of the previous model; the only 

difference is that the demands in the periods follow a uniform distribution or 
the convolution of a finite number of uniform distributions.

Objective:
Identical with that of Model 197.

Solution:
The author shows the optimality of the modified (s , S') policy under these 

conditions, too.



VIII.1.1.2 Delivery with Leadtime

199. Dynamic n-period model with lost demands

Main codes:
1 1 0 1 1 1 5 1 2 1

Assumptions:
The volume £ of demands arising in each period is a random variable with a 

distribution function F(£). The volume of orders placed in the period i is zh this 
quantity will arrive after an Z.-period leadtime in one lot. The expected value of the 
sum of inventory holding and shortage costs in L  periods is G(x, zlt ..., zL_1; z), 
where x is the initial inventory level and z; is the volume of order placed in period 
i. The total cost of ordering and procurement is c3+cz.
Objective:

The expected discounted total cost of n periods are minimized:

Solution:
The optimal ordering quantities zh ...,z„ can be determined by dynamic 

programming; these values are shown to be in accordance with an (j , S) strategy. 
The values of s and S  are given by the method of dynamic programming.

200. Iterative solution of {s, S ) models

Main codes:
1 1 0 1 1 1 5 2 1 1

Assumptions:
The demand of a period is a discrete random variable, taking the value j  with 

probability (p(j). Inventory holding and shortage costs of one period are g(j), 
if j  is the level of inventory at the beginning of the period. The expected cost is
G(k)= j?  g (k —j)(pL(j), where L  is the leadtime; G(k)>c3 + G(S0) where

■t=DS0 is the modus and A: is a sufficiently large integer number, c3 is the ordering cost. 
Let r be the smallest integer value for which G (r)S c3+G (5,0).

Objective:

C(s, S )+ {G (S )+ Z °  G (S -k )m (k )+ K } /{ l+ M (S -y)},
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Solution:
The optimal values of j= lim  s„ and *S'=lim S„ (rS s„ ^ S n^ R )  can be de

termined by the following iteration method:

and S„ is the smallest integer for which G„(k)=L(k)+a„ £  f„_i (k —/ ) cp(/)
j=o

is minimal, while s„ is the smallest integer for which G„(s„) S K  + Gn(S„) holds. 
There are several assumptions to the series 0 ̂  a„ 1, the fulfilment of which 
ensures convergence.

201. Stochastic reorder-point, order-level system with inventory review 
depending on a random delivery

Main codes:
1 1 0 1 1 1 5 2 1 1

Assumptions:
Demands arise at random moments, and the time-intervals between two demand 

moments are independent random variables having an identical distribution. 
Furthermore, they are independent of the volume ordered. The demands are 
independent random variables with density function P(v). The inventory is 
reviewed at each demand: in this way, the length of the inventory review periods 
will be random. The orders are placed in such a way that the inventory position 
becomes у  (inventory on hand, plus on order, minus shortage). If the inventory 
level has been reduced to level x by the demand, then (y —x ) is to be ordered. 
The ordered quantity is constant, it is delivered with leadtime L. The possible 
shortages are eliminated first. The density function of the demand volume is 
P M  during the leadtime. The system operates during n inventory reviewing 
periods. The model may be brought into agreement with the model of discrete 
inventory review periods, where the length of the period is equal to the expected 
length of the time interval between two demands.

The costs:
— ordering cost: c30(z) + cz, where 

z: the ordered quantity, 
c3: the fixed ordering cost,

c: volume dependent ordering cost;
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— Ci". inventory holding cost per unit amount and average inventory review
period:

— c2: shortage cost per unit amount and average inventory review period. 

Objective:
We want to choose the inventory level у  according to the following functional 

relation:
CO

Cn(x) = m m \c3d ( y - x )  + c (y -x )+ G (y )+  f  C ^ i y - v )  -P(v)</v},

where C„ (x) is the expected total cost according to the principle of dynamic 
programming, if the inventory position is x  after the demand occurred and an 
optimal ordering policy is applied in the remaining n periods. (Sequence of the 
periods: n, (n — 1),..., 2, 1.) Finally,

у  CO

G(y) =  Ci f  (y ~ v L)PL(vL)dvL+ P  f  (yL-y ) P L(yL)dvL
О n

is the expected shortage cost and inventory holding cost during an inventory 
review period of average length.

Solution:
The solution is given by a discrete dynamic programming algorithm. It can be 

proved that if c3=0, then such an order level S' is optimal, for which
G '(S )—0. If с3=»0, и — во, then the (j , S) policy is optimal. (In this case, S is 
constant in time.)

202. Optimal inventory policies in the case of stochastic demands and linear 
ordering cost

Main codes:
1 1 0 1 1 1 5 1 1 1

Assumptions:
Unsatisfied demands are backordered in each period. Quantities ordered at 

the beginning of the i-th period will be delivered at the beginning of the (/+ JL)-th 
period, where L  (leadtime) is a known non-negative integer. The demands 
D 1, D i , ... arising in subsequent periods are independent, non-negative random 
variables with known continuous density functions <px,(p2, ... The ordering cost 
c(y) is linear; c(y)=cy, c>0. The inventory holding cost h(y) is a continuous, 
convex and increasing function of y. The shortage cost p(y) is also a convex, 
continuous, increasing function. The author applies a discount factor a for the 
subsequent periods (0 < a < l) . Furthermore, lim p'(y)>c<x~L is assumed.

y —oo



Objective:
The goal is to minimize the expected discounted costs emerging in the periods

1 , 2 , ... and to determine the relevant ordering policies, respectively.

C (z ,x j, xL_!; (pu (pt, ■••) =  G(z, <p!)+

+ 0CG(z + x ly <plf2) +  «L_1G (z+ x 1 +  . . .+ x L_,; (pltL) +

+ f(z+ x 1 + ...+ x L_i \ (px, (рг, ...),
where

Д х, <p,, (Pa, ...) =  min {c(y-x)+ a .LG(y, <р1г L + l)+
ymx

oo

+  <* /  / ( T - v ;  <pa,(/>35 •••)<Px(v)i/v};
0

у oo

G(y; </>) =  /  A(y-v)<p(v)i/v +  f  p(v-y)<p(v)dv.
О у

Solution:
The author shows that the optimal ordering follows an (s , S ) policy, where 

an order up to a “critical volume” is always placed. He does not deal with the 
determination of the optimal s and S  parameters; this may be accomplished 
by dynamic programming.

203. Model of continuous inventory review

Main codes:
1 1 0 1 1 1 5 2 1 1

Assumptions:
The model considers a constant leadtime L ; shortage is backordered. Z(v) 

denotes the discounted expected cost for the future, if the system follows an optimal 
policy and V is the initial inventory level. There is no shortage and inventory 
holding cost, until the first ordered batch has not arrived. The fixed cost of or
dering is c3. In addition to the quantity and time-dependent inventory and short
age costs, a shortage cost h depending only on quantity emerges as well. The 
demand process is stochastic (both as far as the interarrival times and its volume 
are concerned). A demand of volume j  will emerge with a probability p(j).

Objective:
The discounted expected inventory holding and shortage costs for intervals 

L and L+ t: can be expressed by
/(v) =  c1D(v) + hE(v) + c2B(v),

where:
D(v) = expected inventory in the period [L, L+ t]\
B(y) = expected volume of shortage in the period [L, L+ t]\
E(v) = the expression involving both duration and volume of shortages.
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Solution:
The functional to be considered equals

Z(v) = /(v )+ a  Д р ( у ) { т т  [cs6-\-cy+ Z (y+ y-j)]},

where a is the expected value of the discount factor.

_  P ) if ordering takes place 
~  \ l , if ordering does not take place 

c =  procurement cost of unit item, у  is the quantity ordered.
This functional differs from other previously presented dynamic programming 
problems, since y* is the function of v — /, too, and not only that of v.

The authors show the optimality of the (j , S') policy. An explicit solution is 
given for the case when a Poisson process generates demands, and unit demands 
arise. An explicit solution is given for the general case and for the model of a 
stabilized state and periodic inventory review. The case of lost demands is ana
lyzed, too.

204. Optimal policies corresponding to the shortage probability criterion 
for independent demands and arbitrary leadtime

Main codes:
1 1 0 1 1 1 5 1 1 1

Assumptions:
The inventory is reviewed periodically and a decision regarding ordering 

is made subsequently. The ordered batches arrive after a leadtime of length 
L. Demands emerging between two inventory reviewing points are stochastic. 
Unsatisfied demands are backordered. Demands arising in different periods 
are independent of each other and their distribution is not necessarily identical. 
The ordering cost is proportional to the quantity ordered.

Objective:
For an и-period inventory problem an ordering policy is sought which ensures 

for n periods the minimal expected discounted cost (with a constant discount 
factor) while the probability of shortage at the end of any period must not exceed 
a given value.

Solution:
First the authors determine the probability of shortage, then this probability 

will be expressed as a function of the inventory on hand and the quantity ordered. 
The ordering policy yielding minimal cost is determined on this basis.



205. Inventory m odel in the case o f  independent an d  unknown dem ands

Main codes:
1 1 0 1 1 1 5 1 1 1

Assumptions:
The inventory is periodically reviewed and a decision on ordering is made at 

the checkpoints. The ordered batches arrive with one period leadtime. The 
demand arising between two checkpoints has a binomial distribution with para
meters x  and p. X is the number of items at the beginning of the period, and p 
(0 < p < l)  is the unknown parameter of the binomial distribution. Unsatisfied 
demands are backordered. Demands arising in the different periods are independ
ent of each other. The ordering cost is proportional to the quantity ordered.

Objective:
It is identical with that of Models 194 and 204.

Solution:
A Bayesian procedure is developed for estimating the parameter p. By means 

of this estimation, the solution is reduced to the solution of Models 194 and 204.

206. Inventory model for forecasting and dependent demands

Main codes:
1 1 0 1 1 1 5 1 1 1

Assumptions:
The authors consider a single-item inventory model, in which demands arise 

in subsequent discrete periods and are not independent of each other. At deliveries, 
a constant leadtime L > 0  is supposed. The demand distribution is F„ in the nth 
period, the ordering cost is denoted by c„(y), and the inventory holding and 
shortage cost is denoted by Gn(y). The demand is forecasted for each period n by 
the estimation of the parameters of the distribution function F„.

Objective:
The authors consider the holding, shortage and ordering cost (the sum of their 

expected value) during the forecasting time horizon as an objective function:

A (x) = min {c „ (y -x )-G H(y)+ E [fn+1( y - F„)]},y^x

and the (s, S ) ordering strategy which minimizes f„(x).

Solution:
The solution of the problem may be accomplished by applying dynamic pro

gramming methods (either by decision or by value iteration). The authors illustrate 
the model by an example, where demand is represented by the failures of an 
operating system, while some of the failures can be repaired during time A (O^As
S I ) .
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207. Production control via inventory handling—an application of the Wiener 
filter theory

Main codes:
1 10 1 1 1 5  2 11

Assumptions:
The author describes a continuous, linear, stochastic production-inventory 

model, ip which there is one store and one item, and unsatisfied demands are 
backordered. The system may be described by the following equations:

1. - ^  =  v ( 0 - r (0 ,

2. v(t) =  Gf {n},
3. n ( r ) = - G { / } ,

where /(/) is the inventory (state variable), n(t) is the production volume (control 
variable), r(t) is the demand, Gf  is a time-independent linear operator partly 
characterizing the system (in the example shown by the author: the production 
delay), and G is a time-independent control operator. For example, the three 
equations can be summed as an

t
n(t) =  — f  G ( t - t l) 1(d) dt1

type linear control policy, where G(t) is the “weight function” of G.
It is assumed that the demand is a stationary stochastic process with an expected 

value E{r(tj) —0 and auto-correlation function Ягг=£{г(/)г(/+т)}.

Objective:
The author applies a quadratic cost function:

Q =  CnE{nt)+ C l E { l i}+Cv>E{w%

where the first two terms represent deviations (from given target values) of the 
production volume n(t) and the inventory I(t) as well as the cost consequences 
of these deviations.

In G„ denotes the differential operator, then w(t)=dn(t)/df, thus, the last 
term in Q denotes the costs caused by the speed of change in the production rate.

Solution:
The system equation will be transformed by the Fourier-transformation first, 

then the author applies the Wiener-Hopf procedure in the course of solution.
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208. Discrete dynamic ordering strategy

Main codes:
1 1 1 1 1 1 5 1 2 3

Assumptions:
The capacity of the store is Q. Periodic ordering is possible. The demand of the 

nth period has a distribution G(x). Unsatisfied demands are lost. The ordering 
strategy depends on the state of the inventory: there is either no ordering (d0) 
or an order is placed to level у (dy), y£[x, Q]. Denote by p  the probability of 
immediate delivery, 1— p is the probability that the delivery is delayed by one 
period. The cost r{x,d) is the sum of the rk (.v) inventory holding cost, r3(x) 
shortage and r2(x) ordering costs: all three are non-negative, bounded, monoto
nously non-decreasing functions of x, r3(0) =  0. Furthermore,

2  r»(x)g(x)

where g(x) is the density function of demands for a period.

Objective:
A strategy minimizing the supremum of the expected cost is sought:

1 n
cp(x, d) -= lim sup-— r-M őx 2  r (xk, dk),П-«» И+ l  * = 0

where S is the inventory control strategy, x  is the initial stock and the expected 
value operator is denoted by M* referring to the total costs of n periods. The 
strategy Ö* is optimal, if

<p(x, ö*) =  inf (p(x, <5).
R

Solution:
If

РГх(х)+р 2  r3( y - x ) g ( y ) - r 2(Q -x )
y = x

is a monotonously decreasing function of x, then the optimal strategy Ó* is of 
the (s, S )  type, where S= Q . The determination of x*=s is not described.

209. Brown’s dynamic inventory system

Main codes:
1 1 1 1 1 3 5 1 1 3

Assumptions:
This is a single-item control theoretical model described by stochastic differen

tial equations. The author defines—after Brown—the concept of “maximally 
reasonable demand during the leadtime”, consisting of the average demand arising

V U I.1 .2 . Random  D elivery
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during the leadtime plus the mean absolute deviation of demand (MAD) mul
tiplied by a safety factor k. In each ordering period, this value is calculated and 
is defined as “normal ordering”. The order to be placed is the difference be
tween this value and the available stock. In this way, the probability of shortage 
occurrence can be controlled by modifying the safety factor. Demand and lead- 
time are random variables.
Objective:

There is no objective function, since the aim of the model is the state analysis 
of the system.

Solution:
A solution of the stochastic difference equations which describe the system 

and an examination of the system are presented.

УП1.2. Dynamic (s , q ) Models

210. A model with constrained order capacity

Main codes:
1 1 0 1 1 1 2 1 1 0

Assumptions:
The differentiable density function of the demands of the inventory review 

period is denoted by <?(<!;)• Order quantities are constrained by a maximal volume 
R; this is chosen as the lot-size q according to the inventory policy. The objective 
is the determination of the reorder point. The sum of inventory holding and 
shortage costs is expressed by the function L(y), where у  is the inventory level 
after ordering; L{y) is a convex function. Ordering has a fixed cost К  and a 
volume-dependent cost r. There is no leadtime.

Objective:
The total cost of n periods is to be minimized:

C„(x )  =  m m \ K Ö { y - x ) + ( y - x ) r + L { y ) + a  f  C ^ i y + O  q>($) í/ ф  

C0(x) =  0,

where x  is the inventory before ordering (the reorder point, the optimal value of 
which is sought), a is the discount factor,

rO if z = 0, 
if z > 0 .

Solution:
By applying the results of dynamic programming it can be proved that there 

is an order point s, for which the total cost of n periods takes its minimum, even 
in the case of No method is given to determine the optimal level s.



211. O p tim a l inventory p o licy  for batch orderin g

Main codes:
1 1 0 1 1 1 2 1 1 1

Assumptions:
The model may operate during a finite or infinite number of periods. Demands 

in the single periods Dx, Z>2, ... are all independent, identically distributed random 
variables with distribution function cp{t). The inventory is reviewed at the begin
ning of the period, and if the inventory on stock and on order together do not 
reach a level k, then an order will be placed for such an integer multiple of a 
given unit Q (e.g. one truck load), that the inventory on hand plus on order will 
reach or exceed level k.

After X periods the total ordered batch will arrive at the beginning of the next 
period. Demand arises—by supposition in one lot—at the beginning of the 
periods. Possible shortages are backordered.
The costs:
— ordering cost: c • z for z units (the cost arises at delivery);
— inventory holding cost and shortages cost g(y, t ) : were у  is the inventory 

after delivery; and t is the demand of the period.
With this notation, we can write

L(y) = J  J  g(y-u,v)dq> x(u)d<p(v)
о 0

the expected inventory holding and shortage cost in the (/'+ Я) th period, if the 
inventory level in the /'-th period equals у, Фх is the Я-fold convolution of Ф, and

G(y) — (1 —a)cy-\-L(y), ( 0  <  a <  1 discount factor).

Assume that G(y)-*-<*>, if |y|-*-°° and —G(y) is unimodal. The decision maker 
will decide upon the ordering policy, i.e., the functions F = (T X, Т2, ...) on the 
basis of the vector # , of the “history” at the beginning of the /-th period (# , 
contains the inventory levels before and after the orders of previous periods, and 
the demands). If x t is the inventory level, then T;(# c) —x; will be ordered (of 
course, this is the integer multiple of Q). The model is dynamic.

Objective:
The expected discounted cost of the Я+ l ,  ...,X + n  periods (if лу is the in

ventory level at the beginning of the first period and Y is the ordering policy) 
can be written as

fn (* i\Y )=  2 « i-iE {G (y i)}-
i = i

The objective function in the finite case:

f n(Xl\Y*) =  mix/„(X, |T).
у
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In the case of an infinite number of periods:

f(x ,\Y )  =  lim f n(Xi\Y),
П-+00

R xAY*) =  m in / f c |f ) .
If a =  l, then:

a(Xl\Y) =  lim - f n(xAY)-, a^xJY*) =  m inaf^lF )
П -* о о  И  Y

Solution:
It can be proven that the (к , Q) policy is optimal for both finite and infinite 

horizons (the same к in each period). Selection of к : Let у be the minimum of 
G{y). In this case к is an arbitrary number, for which к Ш у ^к +Q  and G(k) = 
=G(k+Q). It is a fundamental optimality condition of the (к , Q) policy that 
Q is a fixed, natural (e.g. transportation) unit lot. It can be verified that for the 
non-stationary case (distribution of demands as well as the cost function may 
alter from period to period) the generalized (к , Q) policy is optimal (the value 
of к will alter in each period), if ki—k i~1^ a h where a,=sup {a\(Pi(a)=0}.

212. Control theory model for gamma distributed production leadtime

Main codes:
1 1 1 0 1 3 2 2 1 3

Assumptions:
The production of a single item is continuously controlled, depending on the 

inventory level and the order volumes. The known demand is satisfied continuously 
from a store, shortage is backordered. The production time follows a gamma 
probability distribution.

Costs are not dealt with in the model, (only for verbal considerations, in con
nection with the modification of production and inventory levels and their volume).

Objective:
The stability of the system is investigated. The speed of eliminating “perturba

tions” (which means satisfying demand) and the possible minimization of the 
relevant inventory holding and production costs are described as the objective.

Solution:
By means of a Laplace transformation, the author examines the development 

of the decision operators (in the case of different demand processes), the changes 
of the modifying transformation characteristic to the system, and the stability 
of the system.
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IX. Dynamic Ordering Time Models

The dynamic models belonging to this category are those in which the length 
of the order period is fixed. The subgroups below have been created according 
to the assumptions concerning the demands.

Models with a deterministic demand belong to the first subgroup. In this case, 
the volume of demand in each period is known (they may be different). An order 
is placed at the end of each period. The objective is to determine the optimal lot 
size to be ordered. Most models here are production-inventory models, namely, 
replenishment takes place by producing the appropriate amount. The ordering 
strategy, minimizing the total costs of a certain fixed number of periods, can be 
determined by means of dynamic programming. These models improve the 
efficiency of the traditional dynamic programming procedure by introducing 
various assumptions.

In the models belonging to the second subgroup, the demand of the period is 
not known at the time of placing an order; it is considered to be a random variable 
with an identical probability distribution in each period. An order is placed at 
the end of each period in order to replenish the inventory level up to a given 
order level. The objective is the determination of the optimal value of the order 
level, but—with some of the models—determination of order lot-size is a deci
sion factor as well. The expected value of the total costs for a given finite (or in
finite) horizon is to be minimized; these problems may be solved by a recursive 
relation based on dynamic programming theory.

In the models of the third subgroup, the demand is also considered to be a 
random variable with some distribution which may be different for different 
periods. The objective is the determination of the lot-size or the order level. 
The optimal value of this can generally be different in each period in accordance 
with the distribution of the demand in the different periods. The ordering policy, 
which minimizes the expected value of the total costs, is to be determined. For 
some of these models, only the type of the optimal ordering policy is determined, 
the specification of the optimal parameters may, in principle, be accomplished 
by applying dynamic programming. Nevertheless, this method requires so much 
calculation in practice that only a few periods can be taken into account simulta
neously. Thus, simplified algorithms applied under special conditions, as well as 
procedures yielding approximate solutions are of great importance here.
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IX. 1. Dynamic Reorder-Time Models with 
Deterministic Demand

213. Deterministic multiperiod production scheduling model with backlogging

Main codes:
1 1 0 0 1 1 4 - 1 1 0

Assumptions:
The vector of demands r=(rlt rt , ..., rn) for n subsequent periods is known. 

The length of a period is fixed, the volume of demands may alter in each period. 
If shortage occurs, the demand will wait through a periods. If a = 0  then we 
have the lost demand case; if a > n  there is a backorder case and, otherwise, 
demands remain through a periods. We seek the optimal production sizes for 
each period denoted by the vector z=^{qx,q t , Instead of production,
the model could be interpreted in terms of orders: in this case, the qh / = 1 , 2 , ..., n, 
quantities mean the lot-size of ordering per periods.

The stock at the end of the i-th period can be expressed in the form:

h  =  2 ( 8 h ~ r h) (i =  1, 2 , ..., n).

If the value of I  is negative, it indicates a waiting demand (we suppose that the 
initial stock is /0 =0). All demands are to be satisfied at most with a periods 
of leadtime, therefore we have

2  8h S  2  rh
h = l  h = l

or equivalently,

h  s  -  É  f„
h = i - x + 1

to be fulfilled in the case of each lS /S n ,  where rh= 0, if 0. The assump
tion for the final stock of the planning horizon is I„ = 0 .

294

Dynamic ordering time models
____________ I
I I

Deterministic Stochastic
demand demand

______ I_______
I I

Identical proba- Non-identical 
bility distributions probability 

by periods distributions by 
periods



20* 295

A P  (z) production (ordering) cost belongs to the production (ordering) vector 
z in the j-th period.

The costs of inventory holding and shortage in the z'-th period are expressed 
by the function:

Я,(2) = ЯД/((2)].
Assume that the function

F(Z)= i  [Р,.(2) + Я,.(2)]
i = 1

expressing the total costs is concave in the intervals (—°°, 0) and (0, °°). The 
special form of the above cost function is not given, it may be selected as appro
priate to the considered practical problem. Only the fulfilment of the above 
assumption must be ensured.
Solution:

A dynamic programming algorithm is applied which utilizes the special structure 
of the problem. The previously described constraints are linear, thus it is enough 
to deal only with the extremal points of the constraint set. This means that the 
following assumption can be given for the optimal production plan qt 1—1 , ..., n:

*l
4t — 2  rh>

where 0 = k0^ k 1̂ . . .^ k „ = n  are integer numbers.
Let F ,(k )  be the minimal cost, if the production plan is optimal from the z'-th 

to the и-th period, and the final stock of the i —1 -th period is

/« =  2  r„*=i+l

then, on the basis of the dynamic programming principle, the following recursive 
relation can be written:

_  Í P i* ( K ,k ) + H t ( k ) + F i+1(k )  if * £ / ,  
iW  ~  \n^}SNP * ^ + H * ^ + F i ^ ( j )  if k ^ i

where N=m ax {k, i - a ]  and max {0, z -1  - a } s l s n ,  furthermore,

H*(k) =Я,( Í  rh),
A « i+ 1

P * ( k , j )  =  Pi {  2  '/,)
* = * + 1

are the forms of the cost functions expressed according to the new variable.
The values of к  and j  are integers for which the above equations have to be 

valid. On this basis, the possible optimal solution is to be sought on a rather

Objective:
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limited set, increasing the efficiency of dynamic programming to a considerable 
extent.

According to the assumptions I„ = 0 for the final stock, we have

F„(k) = P„4k, n) + H*n(n),

by which the value of Fn_j(fc) can be determined on the basis for each feasible 
integer к (considering also the constraints). This is summed up in a table, for 
each k, then the same is done in the case of и—2 , и—3, etc., using the results of 
the previous step, and finally on the basis of the relation

F i(° )=  min nAPt4 0 ,j)+ H ÍU )+ F t (j%ngjgmax {1—a,0}

the optimal value of k 2, k3, ..., k„ may obtained from the above mentioned table 
by means of the optimal value of kk=j, progressing forward step-by-step. From 
this the optimal production (ordering) lot-size of the i'-th period is

< 7 i =  2  rh ( /  =  1 , 2 ,  . . . .  и ) ,

where k0= 0 .

214. Non-stationary deterministic demand

Main codes:
1 1 0 0 1 1 4 0 0 0

Assumptions:
The demand is given as successive values of the total volume of consumption 

in the subsequent intervals of length T. These values are denoted by xk 
(k = 1, 2, ..., ri). The model does not allow shortages, thus only two cost types 
exist: sk inventory holding and ck ordering cost, both costs are volume-dependent. 
An order qk is placed at the beginning of the £-th period. The ordered batch 
arrives immediately, without leadtime. The model is dynamic; this is ensured by 
taking into consideration the zk inventory left over at the end of the periods.
Objective:

L„T — 2  \Pk(4k~ Zk) + Sk(<lk~  -к*)]*=i
Solution:

Optimization takes place in accordance with Bellman’s optimum principle, by 
which the decisions made in each interval are optimal for the remaining time 
intervals, independent of earlier decisions and the initial state, if the given sequence 
of decisions is optimal as a whole.

The author gives a solution for the case, when ck(u) and sk(u) are increasing 
and equal to 0 for u=0. He gives a block scheme for the calculation of the cost 
function values LnT and the lot-sizes gk.
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215. Lot-size model with varying costs

Main codes:
1 1 0 0 1 1 4 - 1 0 2

Assumptions:
The model examines a finite number of periods. The demand rate is deter

ministic, shortage is not allowed. The unit procurement price (C) is constant, 
orders can be placed at n time moments. The leadtime is known, it may change 
in each period, but orders must not “cross” each other; i.e. an order placed at a 
later date will arrive later, too. The fixed cost of ordering Aj and the inventory 
holding cost factor IjC  may alter in each period. The order lots are to be 
determined by minimizing the summed ordering and inventory carrying costs, 
for the whole planning horizon.

Objective:

K =  Z lA jS i  + IjC y j+1],
j =i

where
f0  if ?y =  0 ,

J l l  if q} >  0 , 
and

У]+1 =  yj + d j - x j ,
y j : initial stock of the /-th period,
Xj -. demand of the j -th period.

Solution:
The solution can be found by the method of dynamic programming on the 

basis of the following function:

Z k( 0  =  min 2 1 (A jő j+ IjC yJ+1) к  =  1, ..., n
9t—9nj=i

where
Ук+i = i

for all possible values of the state variable £.
Since both the initial and the final stock are fixed, the solution can be computed 

in both directions, starting with к = 1 or k= n. The authors give some other 
assumptions which simplify the calculation and also include a table to aid cal
culations.

t
216. Capacity expansion with inventory

Main codes:
1 1 0 0 1 1 4 - 1 0 0

Assumptions:
T  successive periods are examined with a known demand r at the end of each 

period. The demands may be satisfied by production and from the inventory.



Production takes place at the beginning of each period. Production capacity 
can be increased but cannot be decreased; production itself must not decrease in 
any of the periods.

Objective:
The optimal production and capacity value are to be determined in each period 

in such a way that the discounted total costs of production Pt, inventory holding 
Hi, capacity increase Kt and unutilized capacity Ct should be maximized. The 
cost function is assumed to be monotonously non-decreasing, concave.

Solution:
It is a dynamic programming algorithm with two variables. The number of 

feasible decisions (possible values) can be decreased in different ways, which 
improves considerably the efficiency of the dynamic programming.

217. Elementary dynamic inventory model

Main codes:
1 1 0 0 1 1 4 - 1 0 0

Assumptions:
The demand D, for each period t is known at the beginning of the period. 

Replenishment of the inventory is ensured (inflow process) by the production 
X , .  The quantity of stock at the end of the i-th period is it. The cost of the f-th 
period depends on the production volume and the final stock. The variables are 
discrete, the final stock of the last period is 0. The cost functions in each period 
are non-linear. The cost function is given in the form Cn(x ,j) , where x  is the 
production and j  is the final stock in the period, when there are n time periods 
still ahead.

Objective:
F„(i) =  min {(x, i + x - d n)+F„+1(i+ x-d„)}, n =  1, 2 ,..., N.

where :
F„(i) is the optimal policy cost with an initial stock i and n further periods, 

dn is the demand of the period, when n periods still lie ahead.

Solution:
The problem may be solved by means of dynamic programming. The author 

illustrates the method with a numerical example. The calculation of the objective 
function follows the technique of progressing backwards in time. The author 
shows that the problem can be solved by a forward technique too.

218. Deterministic demand o f changing intensity

Main codes:
1 1 0 0 1  1 4 - 1 0 0

Assumptions:
A demand z arises continuously with a periodically different, but known in

tensity in each period. The ordered quantity arrives immediately. If the delivery
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date of the ordered batch is the beginning of the periods, then the order points 
and lot-sizes will be obtained by the usual dynamic programming algorithm. If 
an order can be placed at any time, then the results obtained by dynamic pro
gramming can be improved by considering non-integer values of the time units 
for which a purchase order may be given. The leadtime is zero and shortages are 
not allowed.

Objective:
Ordering and holding cost is considered. The objective is to determine an 

improvement of the dynamic programming solution which will maximize the net 
decrease in inventory while the number of orders remains unchanged. This can 
be achieved by considering non-integer multiples of the basic time period. For 
two orders, the decrease in inventory is

Z(x) =  djx(T1—x )—Dt x,

where 7j is the time period covered by the first order, dx is the rate of demand 
nearing the end of 7 j , D2 is the total amount procured in the second order, and 
the first order covers the demand during Tx- x .

Solution:
For two orders the optimal value of x  is expressed by

where /x is the time in periods for which the rate of demand is constant (d j. 
For more than two orders an iterative procedure is given based on the two- 
orders solution.

219. Deterministic lot-size model, the number of orders is limited

Main codes:
1 1 0 0 0 1 2 - 1 0 0

Assumptions:
The annual demand is given by the rates k, ( j= l ,  ...,n )  in n successive periods. 
A total of h orders can only be placed during the n periods. In the j- th year 

Qj lots are ordered, for these amounts the inequality

has to be fulfilled.
There is no ordering cost, the specific cost of inventory carrying is constant, 

and the cost factor for the average inventory is IjCj; ( J = l,. . . ,n )  $/volume. 
Whether the number of orders is integer or not is ignored. Shortage is not allowed.
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Objective:

Solution:
In this model, the constraint is always active, thus the following Lagrange 

function is to be minimized:

where 0 is the Lagrange multiplier.
The optimal Q's and »7 can be calculated from the derivatives of the function 

according to Qj and 17. Here r\*, the optimal value of >7, can be interpreted as the 
cost of placing an order.

220. Planning and forecast horizons for the dynamic lot-size model in the case 
of constant production costs

Main codes: 

Assumptions:
1 1 0 0 1 1 0 1 1 0

A single item is produced in period / in the amount x t. Production and satis
faction of demands take place in each period. Constant K t and variable с,- costs 
arise in the course of production. They may alter from period to period. The 
production cost has the form K filx f+ C ix t. The shortage cost is concave and 
non-increasing, and the inventory carrying cost is a concave and non-decreasing 
function of the stock on hand at the end of the /-th period. It is denoted by Щ(у1) 
and designates the holding cost if the end-of-period inventory y ^ 0 ,  and the 
shortage cost if 0 .

Objective:
The optimal production plan (x1? x 2, ..., *,) is achieved by minimization of 

the production holding costs during t production and demand covering periods. 
It requires the minimization of

with a known demand d and an initial stock y0.

Solution:
The problem may be considered as a concave programming problem, but, in 

this case, an optimal decision can be made in the first period only if demands 
and costs for the whole /-period horizon are known, which is an assumption 
valid often only for a short period.

Based on the information up to a /x(< /) period, the authors find conditions 
under which the optimal quantities produced in the 1 , 2 , ..., tx — 1 period also 
remain optimal for /j+y'-period problems, in the case of arbitrary /> 0 . If these
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conditions are fulfilled, then tl is called the forecast horizon and (t1 — 1) is called 
the planning horizon concerning any problem of (t, + j)-period length. The 
authors developed an algorithm for the calculation of the optimal policies.

221. Planning and forecast time horizons for the dynamic lot-size model 
in the case o f varying production costs

Main codes:
1 1 0 0 1 1 0 1 1 0

Assumptions:
The following differences are to be taken into account in comparison with the 

previous model:
1. the production cost is a function of x,, the quantity produced at the beginning 

of period i
Pt(Xi) =  Kid{x^+cixi, i =  1, 2,

2 . the inventory holding and shortage costs are linear
Wtly,) =  h,max (y„ 0 ) - b ,  min (y„ 0 ), 

where y, is the inventory on hand ( j j < 0  in case of shortage)

r0  if x  =  0

« H l  if

finally, hi and b, are unit inventory holding and shortage costs which may be 
different in each period.
Objective:

It is identical with the objective function of the preceding model, and has the 
form

t

min Z  Pt(x,)+Wi(yd with У1 = yi-i+ Xidi,*i ;=i
with a known demand d, and initial stock y0 ■

Solution:
This is based on the forward-proceeding algorithm, elaborated by the author, 

which can be applied in the case of both the previous model and this model, 
respectively.

222. Planning horizons for a stochastic leadtime deterministic demand 
inventory model

Main codes:
1 1 1 0 1 1 9 - 1 1 3

Assumptions:
The known D, volume of demand arises at P  not necessarily equidistant 

moments f/2, ..., rj, , t]p). Each of the single demands is a “special demand”,
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therefore they can be satisfied only by a corresponding production order. This 
is important, because the orders arrive after a stochastic leadtime of length L 
(with density function g(L), Tmin̂ L s= L max). This way, goods may be received 
for a later order earlier than for an earlier one; nevertheless, earlier demands 
cannot be satisfied from these possible deliveries.
The costs:

с, inventory holding cost,
c2 shortage cost per one unit of item and unit time,
К  fixed production cost.

Shortage is backordered, demands wait.
It can be verified that the optimal policy is always the same, as if some suc

cessive demands are drawn together into certain groups, and a production process 
is carried out for these. Logically this grouping is the first task, but, as far as the 
calculations are concerned, it is the second task. The other task is to determine 
the starting points of the production process. (Actually this is the time of placing 
the order; the production period is the leadtime.)

Objective:
F(j) is the optimal expected cost if demand arises at j  different time moments. 

V(l, T, m) =  F(l) + K+EIC(T,

where EIC(T, l, m) is the expected inventory cost of the joint production for 
Di, Dm demands:

and

where for the optimal value T*(l, m) the following equation holds

(G denotes the distribution function of the leadtime).

Solution:
1. Determination of F (j) by dynamic programming.
2. T* can be determined by some numerical technique (e.g. by Newton-Raph- 

son iteration).
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IX.2. Dynamic Reorder-Point Models with 
Stochastic Demand

IX.2.1. Random Demands with Identical Distribution in Each Period

223. Stationary demand n-period model for lost sales case

Main codes:
1 1 0 1 1 1 1 1 2 0

Assumptions:
The quantities to be ordered are to be determined for n subsequent periods. 

The demand arising in each period is a random variable with a distribution 
function F(£) in all periods (i.e. the demand is stationary). The initial inventory 
level X  is to be increased up to a level y —x-Vz by an order z at the beginning of 
the period. There is no leadtime. Ordering cost is cz, the cost of inventory holding 
and shortage is L (x+ z ) with the assumption that this is a convex function. 
If a demand cannot be satisfied immediately, it is lost.

Objective:
The total expected cost discounted by a factor a for n periods is:

C*(x) =min {cz + L(x + z )-гaC"~l (()) f  dF(x) +
x + z

x + z

+  a f  C "-1( x + z - ^ )  dF(x)j,
0

where C" “ 1 means the cost for n — 1 periods.

Solution:
It can be shown that the optimal strategy is ordering up to an xn level in a 

period n. The order level alters in each period, and 5c1S x 8s ...s5 c ,I form a 
convergent sequence which tends to 5c. The author proves this by means of dynamic 
programming but does not give a numerical procedure to determine 5c„. The 
value of X can be obtained from the equation

c + L '(x )—<xcF(x) = 0.

224. Stationary demand model of n-periods for backordered demands

Main codes:
1 1 0 1 1 1 1 1 1 0

Assumptions:
All conditions of the previous Model 223 hold, except that shortage is back

ordered.
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Objective:
The total cost discounted by the factor a for n periods is minimized:

Cn(x) =  m in{cz+ L (x+ z)+ a J  Cn~l ( x + z —Z)dF(i>')^,
‘ ;=‘° о

where C " _ 1  denotes the minimal total cost for и—1 periods.
Solution:

The authors prove, by means of dynamic programming, that the optimal 
policy is again ordering up to the level x„ in the и-th period, where x1S x 2S ...S x „  
constitute a convergent sequence with limit point x. They do not give a numerical 
procedure to determine the order levels x„. The value of x  can be determined by 
the equation

C ( \-a ) + L ’(x) =  0,
where C =  lim C".tl-+ao

225. Random demands with varying distributions by periods

Main codes:
1 1 0 1 1 1 1 1 2 0

Assumptions:
An order can be placed in each period. The known density function of the 

demand of the i'-th period is <?((£)> and this may alter in each period. The ordered 
lots arrive immediately and demands also emerge in one batch at the beginning 
of the respective period. The inventory holding and shortage cost h(x) and p(x) 
are convex functions of the inventory level x, L(x, (pi) denotes the expected value 
of the sum of h{x) and p(x). It is supposed that h'(Ó)+p'(0) —ac<0, where the 
ordering cost factor is quantity-dependent. There is no fixed order cost. Discount
ing takes place by applying a discount factor 0  -= a <  1 .
Objective:

The minimum of the expected discounted total costs determined for a number 
of periods, according to the principle of dynamic programming, can be expressed 
by

C(x, (px, (pi, ...) =  min \cz+ L (x+ z, tpJ+ctCiO, срг, (p3,zg0 v
°° x + z

* /  (piCOdi + x f  c(x + z - £ ,  (p2, <p3, ..jvx i& d Z },
x + z  0

where x  is the inventory level, and z is the ordered quantity.

Solution:
It is shown by means of dynamic programming that the optimal strategy is 

ordering up to an 5, level with w = St altering from period to period. The value
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of this is given by the minimum of the convex function:

C(w, (p!,(p2, • • • )  =  cw+L(w, « p O + o c C f O ,  <p2, (p3, . . .)*
oo w

* /  4>i(Z)d£ + a /  C (w -Z , (p2, (p3, ...)(px^ )d ^ .
w 0

The author does not give a specified algorithm to determine this minimum.

226. Dynamic model, the parameter of demand distribution is unknown

Main codes:
1 1 0 1 1 1 1 1 1 0

Assumption:
The demand of each period follows a gamma distribution with density func

tion:

where a is a known constant; w> is an unknown parameter with density function 

f(w ) =  —v ~ ------(A and b are known constants). N  past periods were observed,
A

the demands in which were £x, £N. The parameter w is estimated on the
N

basis of the statistics s=  ^  <5i|AV. Demands arise at the beginning of each
1=1

period. There is no leadtime. The final stock is x, and the ordered quantity is y. 
The ordering cost c is quantity-dependent. There is no fixed ordering cost. The 
expected value of the inventory carrying and shortage cost in one period is L(y, N), 
which is a convex function of y.

Objective:
The minimum of the expected value of total cost, discounted by the factor a, 

can be written according to the dynamic programming principle in the following 
form:

СОф, N ) =  (j +A)c | - ^ j , i v j ,

where the following recursive formula is valid for C (x, N ):

C(x, AO =  min Ic (y -x )+ L (y , N ) + ct j  (l + t)(p(t, Ar)i//J .

Solution:
A recursive procedure based on the dynamic programming principle is given 

for the determination of the optimal cost function and the quantity to be ordered. 
It is proved that the optimal strategy is ordering up to a level S.
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227. P e r io d ic  in ve n to ry  review  m o d e l w ith  b a c k o rd e r in g

Main codes:
1 1 0 1 1 1 4 1 1 1

Assumptions:
The model investigates the steady state of a system, where the average rate 

of the demand process r  is stochastic, but its distribution function does not change 
in time. The system operates for an infinitely long time. Shortage is allowed, and 
backordered. Costs: inventory review cost J, ordering cost C3, unit price C 
(constant, independent of the quantity ordered), the inventory carrying charge is 
I, the shortage cost n + c2t. T  is the length of one period. The leadtime is constant. 
The demand is independent in each period, and the probability of x  units of 
demand in a period is p(x, T). The present values of the future costs are the same 
at each inventory review point, i.e., there is no cost discounting. The variables 
are discrete. The quantity ordered in each period is q.

№  + q, T ) =  ICDT^ + q t d)+ nE T^  + q ,T )+ cxBT^  + q ,T ),

with the notations:
ICDT: expected value of inventory holding cost, 

пЕт+с^Вт: expected value of shortage cost
from the delivery up to the end of the period, where both are proportional to 
quantity and time.
Solution:

The solution can be determined by applying dynamic programming:

Z « ,  T) =  min[J+ AÖ + C q+ fti + q, T )+ a  J  P(x, T)Z(Z  + q - x ,  T)],
4  2 « 0

where
j 0  if q = 0 ,

^ 11 if 9  >  0 .

Remark: a functional appears in the solution (it contains an unknown function). 
The authors denote Z(£, T) the basic functional for periodic inventory review 
models. In the case of continuous variables, an integral replaces the sum in 
Z(£, T), while the discrete distribution is replaced by a continuous density func
tion.

228. P e r io d ic  in ve n to ry  review  m o d e l w ith  lo s t sa le s  

Main codes:
1 1 0 1 1 1 4 1 2 1

Assumptions:
The decision for ordering is made at inventory reviewing at equal intervals. 

A finite planning horizon consisting of T  periods is considered. The ordered
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batch arrives after L  periods of leadtime. Demand for short quantity is lost. 
The following process is considered for each period / :
— a decision for ordering is made,
— delivery of the ordered batch arrives (order of the ( /-L )-th  period),
— the consumer’s demand arises; p,(x) denotes the probability that the demand 

of the /-th period is x (x&O integer variable),
The ordering cost is C,(q) (ordering of quantity q in the /-th period), inventory 

holding and shortage cost in the /-th period is Ht(k, x), where

(k,(k—x), if ( f - x ) s O
Ht{k, x) =  |  ,  , n / = 1 , 2 , ..., T.щ ( х - к ) ,  if (k —x) <  0

Objective:
The following recursive relation will be satisfied by the ordering strategy which 

minimizes the expected value of costs for the /-th period:

/,(./) =  min{c,{y-  / ) + L,(у)+ a Д / .+ Л у - * ) />,(*)},
where

/r+iO ') =  0  / =  1, 2 ,
У

Z  h,+>Xy-x)p,'t+x(x)+ 2 ъ + Л х - у ) р , . ,+Лх) if y ^ O ,
L,(y) =  xl°

2  n, + i ( x - y ) p t,t+i(x) if 0 ;tx=0

Here the following notations are used: j ,= j  is the inventory level before decision 
making and y t= y  is that of after decision making. Thus the ordered quantity 
qt=q is q,=y,—j t and p I it+ 1  is the probability that the total demand of the 
/, / + 1 , ..., t+ d  periods is x (i.e. x = x (+ . . .+ x f+l( will be fulfilled).
Solution:

The quantity q, to be ordered (an integer number) may be calculated by means 
of dynamic programming for every possible inventory level j  (integer) in the 
backward order t= T , T — 1, ..., 1.

229. Infinite horizon production-inventory model

Main codes:
1 1 0 1 1 1 4 0 1 0

Assumptions:
The demand for the item in the j'-th period is £>,. Demands in each period are 

independent, identically distributed, non-negative integer random variables with 
expectation p (0 </t-<°°).

The initial stock of the /'-th period is x,. the quantity to be produced is qt. 
Unsatisfied demands wait.



308

At the beginning of the /-th period Hi=(qn+1,y n, . . . ,y i+1,x„, . . . , x h Dn, ..., 
...,D i+1) describes the operation of the production-inventory system between 
the dates n and i (n</). The decision variable is y i= x i + qi.

The inventory holding and shortage cost of the /-th period is g (y h Di), the 
expected value of this is L(y)= Eg(y, D) and is assumed to be convex. The 
production cost per item is c, production smoothing costs p sO  in the case of 
increasing production, and ysO  if production decreases.
Objective:

The expected discounted production, smoothing and inventory holding cost: 

where

= and c = il=£l.2 2
Solution:

The model determines the optimal value of у  by dynamic programming. The 
state equation of the problem is:

f i x ,  q) =  min {i/l y - x —^l+ /;(* , y)},
y s x

where J,(x, y)= g(y) + «E { f - i ( y  —D, y —x)}. The optimal solution has the 
following form:

yAx) if -V <  y1(x ) -q ,
x +q if y i(x )~ q  S i <  y» (x)-q ,
У2(x) if y 2( x ) - q s x m y 2(x)
X if y2(x) <  x;

where

yj(x) = sup {y\J<2)(x, y) s  ( - 1  )Jd), x i R - J (2)(x, y) = J(x , y ) - J ( x ,  у - 1).

230. An application of a servo-mechanism to an inventory system with 
leadtime

Main codes:
1 1 0 1  1 3 4 1  1 1

Assumptions:
Ordering (demand) periods of equal length are defined where the t-th period 

lasts from (/—1) to t. Inventory is reviewed and order is placed at the end of 
each period. A quantity q, ordered at time t arrives in one batch after L  periods 
at the end of the (r+L)-th period. X, is the random demand of the /-th period. 
I, denotes the inventory level at the end of the /-th period that is in the store as 
surplus or shortage compared to a prescribed safety stock. Our objective is to 
keep I, as close as possible to the safety stock in time. Shortage is backordered.



The following relation is valid:

/ ( — Л—1 + Qt-L-i (t — 1, 2, 3 ,...).

It is assumed that X, is generated by a stochastic process where demands are 
mutually independent with the common variance a2 and given expectation func
tion m, ( /= 1 ,2 ,...) .

The set of the possible ordering policies is limited to the family of linear decision 
rules corresponding to the above assumptions. The lot to be ordered at time t is 
expressed by

q, =  Í A j X , . j +  i  B jit_j (/ =  1 ,2 ,3 ,...) ,
;=о j=о

where Aj, Bj are constants to be determined.

Objective:
To assure a minimal deviation from the prescribed safety stock, i.e., the control 

of the processes in such a way that the control variable (/,) deviates from the 
standard value (0) to the least possible extent. This can be done in the model by 
Selecting q, (i.e. Aj and B j , respectively).
Solution:

The Z  transformation known from control theory is applied. The forecasting 
of X, is also required for the ordering rule. It can be proved that exponential 
smoothing yields a prediction, corresponding to the assumptions, in the following 
form:

s„ =  ;r0

S, =  aXt+ ( l - a ) S ,_ i ( /= 1 ,2 ,3 , , . . ) ,
where a (0 < a <  1) is the smoothing coefficient.

It is assumed that the expected value of demand is constant in time, m,=a. 
In this case, S, is an a, estimation of a and

q, =  a{L+\)(Xt~a t-j)+X,.

231. Critical number ordering policies for perishable items
Main codes:

1 1 0 1 1 1 1 1 1 0
Assumptions:

The volume of demand is Dn in the и-th period (и =  1,2, ...). The £>„’s are 
independent, identically distributed, non-negative random variables, their dis
tribution function is continuous, strictly monotonously increasing, with con
tinuous density. Demands arise in one batch after delivery. At the beginning of 
every period an order raises the inventory up to the level S. Inventory is reviewed 
at the beginning of each period.

The item is perishable: it may be used up during m periods, afterwards it has 
to be sorted put at cost v. The age of every unit of item is registered in the in
ventory, and though the same utility is attached to them (independent of age),
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demands are satisfied according to the FIFO system (always from the oldest 
stock available). The new stock arrives always from a fresh source assumed to 
be inexhaustible, at unit procurement cost C. The order of events in a period is: 
ordering, arising of demand, decreasing of shelftime and sorting out. Shortage 
is backordered.
The costs:

h =  inventory holding cost;
p  =  shortage cost (h and p depends in each period on the volume of inventory

and shortage, respectively); 
é  — procurement cost per unit item;
V =  sorting out cost.

Objective:
This can be given in a closed form only in the case of m = 2, but the author 

does not even present this explicitly. The objective is to minimize the expected 
average cost for one period.
Solution:

The Markov-chain model of the complete outflow in one period (demand +  
+ sorting out), as a stochastic process, has a constant probability distribution; the 
expected cost may, in principle, be written as a function of this and the known 
distribution of D„. Nevertheless, this needs the solution of an integral equation 
which can be given only for the case m = 2. In this case, the optimal S* can be 
calculated. For the case of m = 3, the author calculated the objective function 
values as a function of S  for several discrete distributions, by successive approxi
mation.

232. H ig h -o rd e r  a p p ro x im a tio n s  f o r  o rd e r in g  in  th e  ca se  o f  p e r is h a b le  ite m s

Main codes:
1 1 0 1 1 1 1 1 1 0

Assumptions:
The duration of life of inventories in the system is n periods; after this time, 

stocks become obsolete. Demands emerging in subsequent periods are random 
variables independent of each other, with an identical distribution function F 
and density function / .  x = (x m_l5 xm_a, ..., xj) denotes the volume of inven
tories having a different span of life at the beginning of each period, where x }  is 
the available quantity which will be obsolete after j  periods. The decision variable 
(y) is the quantity of the ordered new item. FIFO policy is applied,i.e., always 
the oldest item is used up first. Shortage is backordered.

Objective:
Convex storage and shortage costs (L) are present in the model with order 

costs (c), proportional to the ordered quantity, and sorting out costs (v), propor
tional to the stock having become obsolete (г? arises at the end of the periods).

у «
cn(x) =  nun {cy+ L (x+ y)+ v f  Gm(u, x)du + a  /  с„_г(у, *, t)f{ t)d t} , 

y 0 0
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m—
X = 2  Xj,

7=1
and O s a s i  is the discount factor.
Solution:

The direct calculation of the optimal policy would mean the solution of a 
dynamic programming problem for an (m — l)-dimension state variable. If 2, 
then both the calculation of the optimal policy and its implementation are rather 
difficult. The author developed an heuristic estimation, which requires the solution 
of a problem of reduced dimension.

IX.2.2. Stochastic Demands of Different Distribution by Periods

233. D y n a m ic  m o d e l w ith  d em a n d s o f  d iffe ren t d is tr ib u tio n  a n d  a r b i t r a r y  
n u m b er o f  p e r io d s

Main codes:
1 1 0 1 1 1 4 1 1 1

Assumptions:
The demand of the /-th period is X t with a density function / , .  The final stock 

is z, the ordered quantity q is delivered in one batch after L  (integer number) 
periods of leadtime. Demands arise at the beginning of the period in one batch. 
The functions h(z) and p(z) give the inventory carrying and the shortage costs, 
the expected value o f their sum is L(q+z, f )  in the /-th period. Assume that the 
functions h{z) and p{z) are convex, and L '(0 , / () + c < 0 , where c means the 
procurement cost which is quantity-dependent. There is no fixed ordering cost.

Objective:
The minimal expected total cost, discounted by the factor a  for an arbitrary 

number of periods, may be obtained according to the dynamic programming 
principle, applying the following recursive formula:

C(z, 4ii 9a> •••» 9l- i » A> ft* •••) —
oo

=  Tbo {c9 + -l (z>/i) + 0£ /  C (z +  9 i —*, qt , ..., q L~ i ,  q , f ,  . . . )  f ^ x )  d x } .

The optimal qL=q order volume and the optimal final stock z at the end of the 
L-th period can be obtained from the above relation.
Solution:

The optimal size of the batch to be ordered may alter in each period. It can be 
determined by means of dynamic programming.
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234. D y n a m ic  lo t- s iz e  m o d e l w ith  a s to c h a s tic  d e m a n d  p ro c e ss  a n d  a  f ix e d  
t im e  h o rizo n

Main codes:
1 1 0 1 1 1 4 1 1 2

Assumptions:
We consider a finite number of periods. The demand is stochastic, and shortage 

is backordered. The leadtime Lj is constant, altering in each period but orders 
do not cross each other: batches ordered earlier will arrive earlier, too. The lot 
ordered even in the и-th period will arrive within the examined horizon. The 
initial stock of the first period is given. In an arbitrary interval 7} the demand 
has a Poisson distribution with parameter ).j. Cost factors in the y-th period: 
order placing cost is Aj\ the price of ordering qj quantity is CAqj), this function 
may be non-linear. The inventory holding cost of a unit is IjCj , where Cj is the 
average unit procurement cost, itj is the shortage cost proportional only to quan
tity, whereas ft, is the shortage cost proportional to quantity and time. The stock 
left over at the end of the horizon will be sold, V  is the sales price of one unit.
Objective:

K =  2 [ n P ( .d j1 * jT j ) ] [ 2 * j t j+ C j( q j ) \  +dj* 0 j — 0 ]=1

+  ^ у[-fj + 'T/— -^{Tj + L]+\ + -i-j)j +  ttjE(yj + qJt Tj + Lj+1, Lj) +

+ [(Tj+Lj+1—Lj)Aj + IjC j]B(yj + qj, Tj +L j+1, L j)—G(yK + qn)],

where y j+ i= y j+ q j-d j  is the initial stock in period j + 1 {dj is the expected 
volume of demand);

rO if qj = 0,
J l l  if q j^ -0 ;

E (yj+ q j, Tj+Lj+1, Lj) is the expected value of shortage in the y'-th period; 
G(y„ + q„) is the expected profit from selling one lot;
(Tj+Lj+1—Lj)В (y j+ q j , Tj + LJ+1, Lj) is the expected length of the shortage in 
the y-th period.

Solution: . ’ ■ \
The determination of qju(yj) is accomplished by the method of backward 

dynamic programming. The authors give the recursion formulae required for 
the calculation and analyze the possibilities of simplifying the procedure. Similar 
formulae can be given also for the case when the leadtime is random.
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235. D y n a m ic  lo t- s iz e  m o d e l w ith  a  s to c h a s tic  d e m a n d  p ro c ess  a n d  a v a r ia b le  
h o rizo n

M a in  codes:
1 1 0 1 1 1 4 1 1 2

A ssum ption :

The time horizon is a discrete random variable with a known discrete distribu
tion function Pii—l , m. The cumulated average demand as well as the dates 
when orders can be placed depend on the actual value of this variable. Other 
assumptions of the model are identical with those of the previous model depending 
on the length of the horizon.

O bjec tive:
m

min { 2 ” A W jO i+ ii)} ,
«i i=i

where y x is the initial stock, w & y ^ q f )  is the expected total cost, if q 1 units are 
ordered in the “first” period and an optimal policy is followed afterwards.

S olu tion :

The solution can be obtained by means of dynamic programming (in a similar 
manner to the previous model). A solution has to be provided for m different 
cases, where m  is the number of elements of the time horizon.

The authors also analyze the possibilities of forecasting the rate of future 
demands (by time series analysis, project analysis, economic forecast).

236. L o t-s iz e  sy s te m  in  th e  case  o f  a  p e r io d ic a l ly  v a r y in g  ra n d o m  d e m a n d  

M a in  codes:
1 1 0 1 1 1 4 1 2 0

A ssum ptions:

The system operates through an infinite time horizon. A seasonal demand of 
random size arises for the given item, consequently the changes of the inventory 
can be described by a periodic, but non-stationary Markov process of discrete 
time, the transition probabilities of which periodically alter in time.

The paper presents the model by a numerical example. Three types of inventory 
state are possible: there are 0, 1 or 2 items on hand. Demand arises at the begin
ning of each period of fixed length, but only after placing the order (if any) and 
after the delivery of the ordered batch; its volume may be 0, 1 or 2. Two periods 
make one cycle, the probability of demand for 0, 1,2 items is different in these 
two periods. Demands at shortage are lost. The decision variable is the quantity 
to be ordered at the beginning of the period, depending on the stock on hand as 
well as on the period. The total ordered batch arrives without leadtime. There
fore 0 ^ q s 2 —i,  where i  is the number of items on hand, and q  is the ordered 
quantity. (No more than two item units can be on hand in the store.)
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The cost factors also vary in the two periods of the cycle:
— rk is the unit profit in the fc-th period (k=l,2);
— cÁ4)-q  is the unit ordering cost in the fc-th period (consisting of the one 

part proportional to the ordered quantity and one constant part);
— h is the unit inventory carrying cost in one period;
— shortage cost;
— ß discount factor.

Objective:
The author does not give an explicit expression for the objective function, but 

seeks the ordering policy which results in a maximal expected profit.

Solution:
1. The author provides the transition probabilities plj(k) as a function of 

q, k, i , j ( i , j :  states).
2. The a}(k) direct profits are calculated on the basis of the cost factors.
3. Applying a decision iteration method, the optimal matrix A  is determined, 

which contains in the possible inventory states the ordered quantities in each 
period. As we have no knowledge of the optimal policy in advance, first the 
decision matrix is chosen maximizing the direct profit. Then the matrix is improved 
by carrying over the consequences of this on the “screen” of discounting until 
(nearly) the same matrix A is obtained in the last two steps.

237. Dynamic, stochastic order level system of two ordering periods

Main codes:
1 1 0 1 1 1 1 1 1 0

Assumptions:
The operation of the system extends through two ordering periods of prescribed 

length tp. Only two decisions have to be made: these concern the order level of 
the two periods. Stochastic demand arises in the first period with a density func
tion g(y) and, in the second period, with a density function f(x )  in one batch 
at the beginning of the respective ordering periods. The ordered quantity arrives 
without leadtime in one batch at the beginning of the ordering period, before 
demand arises. S '  is the order level of the first period, S  is that of the second 
period. If S ' > 5 , and does not go below S  after the emergence of y, then the 
initial inventory level in the second period will not be 5  but S ' — y. Also this 
possibility is taken into account during optimizing; thus S '  and S  influence each 
other mutually. Therefore, the model may be considered to be dynamic. The 
possible shortages are eliminated first. (The independence of f(x )  and g{y) is 
not explicitly specified among the assumptions.)

The model counts with inventory holding cost Cx and shortage cost Ct ; these 
are proportional to quantity and time. 1
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Objective:

C(S', S) =  C, /  (S '-y )g (y )d y + C t f  ( y -S ')g (y )d y +
0 s'

+  /  [Ci /  (S '-  У-* ) / (* )  ik + C 2 /  (л: -  5 '+ y)/(x)] #(y) d y +
О 0 S '—у

+ /  [Cl /  (S -x )/(x )< /x + C ä / °  (x - S ) / ( a:)í/x] g(y)d>’.
S '- S  о 0

Solution:
Elementary implicit conditions can be obtained for the minimum of the objec

tive function by differentiation of C (S ', S )  with respect to S '  and S. This system 
of equations may be solved by some numerical algorithm.

238. Dynamic lot-size system of three ordering periods

Main codes:
1 1 0 1 1 1 4 0 2  1.

Assumptions:
The operation of the system extends through three ordering periods of prescribed 

length tp. Only three decisions have to be made for the q", q' and q orderings 
of the three periods. The lots arrive after a constant leadtime L = ip; thus, orders 
have to be placed always by a period earlier (i.e. the first one at a time tp before 
the starting date of the system’s operation). Demands arise in discrete units, 
and are stochastic, with distributions R(z), Q(y), P(x) in the successive ordering 
periods. Demand emerges immediately after the delivery of the ordered quantity, 
at the beginning of the ordering period, in one batch. The above probability 
distributions are independent. The demand for shortage items is lost. An inventory 
holding cost exists in the third period only and is proportional to the number 
of the items left over.

The system is considered to be dynamic, since the values of q", q and q mutually 
influence each other at optimization, because the initial inventory level of the 
second and the third period do not depend only on the volume of the ordered 
batch but also on the beginning of the previous periods, as well as on the previous 
q values adjusted to them.

Objective:
The author does not give the cost function explicitly; the objective is the min

imization of the expected total cost.
Solution:

The author recommends dynamic programming to solve a concrete numeric 
problem, he does not give a general method of solution.
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X. Multi-Item Models

This group contains a relatively large number of different models. Three main 
classes of models can be distinguished. The first contains the models in which 
the different considered items are connected by some ordering constraint. In the 
second class are listed the models with some inventory constraint (capital, storage, 
shortage, etc.), while the third class contains the models which consider production 
and inventory together.

Multi-item models
__________ I_________
I I I

Models with Models with Production-
joint ordering inventory inventory

policy constraint models
1 1 I

I I  I I I I I
Deter- Stochas- Capital Storage Short- Sched- Pro-

ministic tic con- capacity age con- uling duction
straint con- straint models assort- 

straint ment
models

X .l. Multi-Item Models with a Joint Ordering Policy

The models of this class have the specific property that the different items con
sidered may be (or must be) jointly ordered and this fact influences the ordering 
cost. This class of models can be subdivided into groups of deterministic and 
stochastic models, where the stochastic nature of the models is due to the random 
fluctuation of demand (except one of the models). In the deterministic subgroup 
of models there are different specifications of the joint ordering cost that charac
terize the models. In the stochastic models, the main characteristic property is 
the ordering policy and the other one is the type of the joint ordering cost con
sidered. Both groups contain some special models.
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239. Multi-item lot-size system

Main codes:

8 1 0 0 0 1 3  - 1  0 0
Assumptions:

The system considers N  different items. The constant ordering cost is denoted 
by c3: it does not depend on the number of items ordered jointly nor on the 
amounts of order q{ ( /= 1 ,2, ...» N). Let r, denote the mean demand rate and cH 
the unit cost of inventory holding for the i-th item. If the length of the order 
period is th then # ;=г( tt must hold since no shortage is allowed.

If only the above type of ordering cost is considered, then the optimal length 
of the ordering periods is the same value t for all of the items. This t coincides 
with the minimum of ordering periods (say tk), calculated for the items separately 
from each other:

t = tk ^ U  ( / =  1,2, .... N).

Suppose indirectly that for the /-th  item / ,> / ;  this policy results in a mean in
ventory level / у .  If the length of the ordering period is decreased also for this 
item to tj = t, then the mean inventory level and, consequently, the inventory 
holding cost decreases. At the same time, no surplus cost appears at the ordering, 
since the ordering cost c3 is assumed to be independent of the number of items 
ordered jointly. (This argumentation shows that the orders are to be placed for 
each item at the same time.)

Objective:
The total cost of inventory holding and ordering of N  items for a unit of time 

is for a fixed t

c ( 0 = i - ^ + ^ .
i —1 t

Solution:
The derivative of the objective function is zero at the optimal value of t. The 

solution of the equation yields for the optimal length of the order period

_ л ! ~ ь Г‘0 -  —
' 2  cu ri

i  =  l

and for the optimal lot sizes qm=rtt0. In the case of N — 1, the formula is the 
same as in the classical EOQ-model (Model 1).

X . l . l .  M ulti-Item  D eterm inistic M od els with Jo in t Ordering
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240. L o t-s iz e  s y s te m , th e  o rd e r in g  co s t d ep en d s on  th e  n u m b er o f  jo in t ly  
o r d e r e d  item s

Main codes:
8 1 0 0 0 1 3  - 1  0 0

Assumptions:
This is a modified version of the previous model in the sense that the ordering 

cost equals с3 = с 31+ с 3 3-и, where и is the number of items ordered at the same 
time, while c31 and c32 are constant values. The unit cost of inventory holding 
for item i is denoted by cu . The unit cost factors have the dimensions

[Clil = Ш  [Cm] = [$]

[c ____________m ___________
1 3a [number of items ordered]

The minimal time t between two subsequent orderings may be prescribed or 
subject to decision. The length of the ordering period t j  for item j  is an integer 
multiple of t. This integer k j  means that the item j  is ordered at each A^-th 
ordering. Let r j  be the mean demand rate for the y-th item.

Objective:
The total cost for N  items for a time unit

t N l (  N 1 1
C(t, kj) = т  2 1 kj rjC ij+ T  c3i + c32 Z  ТГ

£  j  =  2 I V j ^ i  K j  t

has to be minimized.

S olu tion :

If t has a prescribed value, then k j  is considered as a continuous variable and 
the optimal value is calculated from the derivative of the objective function with 
respect to k j .  The integer value nearest to the continuous optimum is considered 
as the (approximate) discrete optimum.

If t is subject to control, then the optimal value of t and the minimal cost be
longing to it can easily be expressed as a function of k j  ( j =  1,2, ..., N ).  For 
fixed values of k j ,  the optimum results. If the values of k t are also to be optimized, 
then an iterative procedure is suggested based on the above two steps. (The initial 
values of the iteration are presented by the authors.)

241. O p tim a l  o rd e r in g  p e r io d s  f o r  jo in t  a n d  in d iv id u a l o rd e r in g  costs

Main codes:
8 1 0 0 0 1 4 - 1 0 1

Assumptions:
In the model, n different items are considered which may be ordered jointly 

or individually. There is a fixed ordering cost S. At each ordering of item j,
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an extra cost Sj appears. The annual number of orderings is N, for item j  it is 
Nj, where N /N j= kj is an integer. The demand rate is a known constant for 
each item. No shortage is allowed.

Objective:
The values of N  and k} (J— 1,2, ..., N) which minimize the total cost of 

inventory holding and ordering for a unit of time, are to be determined:

C (N ) = N (S+  i а д + 4 г  i bjD jkj
i - 1 |= i

Solution:
For given values of kj ( j —1 ,2 ,..., N), the optimal N  and lot-sizes q} are 

expressed, then an iterative procedure is derived for the calculation of the optimal 
values of kj starting from k j= 1 (7 = 1 ,2 , ..., N).

242. Optimal length of the ordering periods for N  items with partial 
deliveries

Main codes:
8 1 0 0 0 1 9 - 1 0 0

Assumptions:
The ordering cost is given in the form

gn =  п + уи )я ,
where n denotes the number of jointly ordered items, g and у are constant cost 
factors. The length of the ordering period for item / is denoted by k fT ) ,  where 
T  the minimal time interval between two orderings. No shortage is allowed. 
A constant known demand rate is assumed for each item. The carrying cost is 
ptSi, where st is the value of the i-th item and p, is the rate which determines the 
carrying costs.

Objective:
The total cost of inventory holding and ordering for a unit time as a function 

of T and k t(T) is expressed as follows:

Solution:
A numerical iteration is suggested.

243. Optimal rate of return for N  items
Main codes:

8 1 0 0 0 1 2 —1 0 0
Assumptions:

A deterministic demand rate r, is considered for N  items. The constant ordering 
cost c 3  is independent of the number of ordered items. The unit cost of inventory



holding for item i is cu . The lot-size qt is ordered at each time for item /. The 
value of profit (without taking the ordering cost into account) is denoted by P. 
The capital invested (without inventory holding cost) is denoted by C.

Objective:
The rate of return as the quotient of profit and capital invested is

and has to be maximized.

Solution:
The optimal lot size for item i is

where the optimal rate of return /*  is the solution of the equation

X.1.2. Stochastic Multi-Item Models with Joint Ordering

244. P e r io d ic  o rd e r -le v e l sy s te m  f o r  N  ite m s  w ith  ra n d o m  d e m a n d

Main codes:
8 1 0 1 0 1 1 0 1 0

Assumptions:
N  different items are considered with a periodic ordering policy; for each item 

we have the same prescribed length Г  of a period. The demand in a period is a 
random variable with a probability density function /Дх) for the i-th item. 
There is an immediate delivery, thus the initial stock of each period equals the 
reorder level S{. The purchasing price is c3i for the /-th item. No constant ordering 
cost is considered. The inventory holding cost is proportional to the inventory 
level Zj at the end of the period: the unit cost factor is denoted by clt. The shortage 
cost is proportional to the expected value of the maximal shortage with a unit 
cost factor c2i.
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N - -
L ( S i , S N) =  ^  [csjfSj —Z() +  clf J  (Sj—x) -f(x) dx\ +

i = i  0

+  maxwc„ f  ( x - S ,) f ( x ) d x .
si

Solution:
An iterative procedure based on the Newton method is suggested for the mini

mization of the objective function.
? Л . v*

245. P e r io d ic  o rd e r -le v e l s y s te m  w ith  q u a n ti ty -d e p e n d e n t co s ts

Main codes:
8 1 0 1 0 1 1 0 1 0

Assumptions:
The same assumptions are considered as in the previous model. The only 

difference is that the inventory holding and the shortage costs are proportional 
to the amount of the total inventory and total shortage of a period, respectively.

Objective:
The expected total cost of a period:

L(SX, .... SN) =  Í { c 3iSi+Cli[ f ,[ s l - j ) f ( x ) d x + £ -  j  ! /,(* )< /*]}  +

, i  7 (x-s,)* ^
+  2 ! ™ V 2‘ / .....7  ' ...f ( x ) d xsl

has to be minimized.

Solution:
A system of equations is derived for the optimal solution which can be solved 

by an iterative procedure.

246. P e r io d ic  o rd e r -le v e l s y s te m  w ith  sh o r ta g e  c o s t p r o p o r t io n a l  
to  th e  p r o b a b i l i ty  o f  sh o r ta g e

Main codes:
8 1 0 1 0 1 1 0 1 0

Assumptions:
There are the same assumptions as in Model 243. The only difference is that 

the inventory holding cost is proportional to the amount of the surplus stock 
at the end of the period and the shortage cost is proportional to the probability 
of shortage. ...

Objectives:

The expected total cost of a period is
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L(SU ...,S „ )=  2 [ M S , - z f)+ c „  /  (St- x) f ( x )  dx\ +  ш ю  ctl f  f ( x )d x .  

Solution:
The optimal order levels S t (i =  l ,  2 , N) are defined by a system of equations 

which can be solved using an iterative procedure.

247. A multi-item (t, S ) policy with random demand

Main codes:
8 1 0 1 0 1 0 0 1 0

Assumptions:
The same assumptions are used as in Model 243. The difference is that the 

length of the order period T  is also subject to control.

Objective:
Here the expected total cost per unit time has to be minimized, since the cost 

of a period depends on the decision variable T. The ordering cost can be expressed 
in the form g (1 +pN).

L (SU ..., SN, T) =  ± { g ( l + /1Ar)+ Д  [c3,(S(- z ,)+ c 1( f \ s , - x ) f , ( x ) d x ]  +

+  max>  j  (x - S , ) f ( x ) d x }
si

Solution:
The multivariety objective function can be minimized by, for example, the 

gradient method, where an approximate method is used for the calculation of the 
optimal T.

248. (s, q) policy with joint shortage cost 

Main codes:
8 1 0 1 0 1 2 1 1 1

Assumptions:
The ordering rule is the following: if the inventory level of an item decreases 

to its own reorder point sh then an order is placed for all the items. The average 
quantity of order is q ^ r ^ i T ,  where r, is the mean demand rate and k tT  is the 
average length of the order period for the i-th item. The demand during the lead- 
time is a random amount with a probability density function f t(x). The shortage 
cost is paid jointly, according to the largest amount of stockout during the order 
period. There is a periodic reviewing with the period length T. The unit cost of 
inventory holding is cu, the ordering cost of n items is c„=ca(l +y„) and the 
shortage cost factor is pTt, concerning the leadtime t(.

Objective:

The expected total cost of a period equals



L = 2  ri (ft 2  - r " + 4 +  2  cusi+
*■ j =  i  1 V j =  x К  f /  Í = 1

+  ̂ f ~  I  (S l~ x ) f l ( x ) d x ,
*1

where the subscripts of the items are chosen in such a way that the following 
relation holds:

oo oc

Pu  /  (s1- x ) f 1( x ) d x  -  max Л , /  ( s , - x ) f ( x ) d x .
*i *i

Solution:
An iterative procedure is suggested, by which for a fixed value of , the cost 

optimal T  is calculated using the derivative of the cost function subject to T. 
Similarly, for fixed T, the optimal is the solution of the equation

N CuPn /  A  (x)dx
2 ------- £ --------------- ^  /  A (x )d x  = 0.

Px, f  fi(x )d x
sf

If the values of si and T  are approximated with a prescribed accuracy (applying 
an iterative scheme for their determination), then the optimal values of s , (/=  
= 2 , 3, N ) are obtained solving the following system of equations:

J , _________ £u_________=  I

Px, /  ( * “ ) f ( x ) d x
st

P x J  -* ~ x S lY  A ( x )  d x  =  p zt f  (X ~x St)t f ( x )  d x  ( /  =  2 ,3 ....... 1V)
S, J,

249. ( s ,  q )  p o l ic y  w ith  in d ep en d en t sh o r ta g e  costs

Main codes:
8 1 0 1 0 1 2 1 1 1

Assumptions:
The same assumptions are valid as in the previous model. The only difference 

is that the shortage costs of the different items are independent of each other.

Objective:

The total expected cost for a unit of time is

323



324

Objective:
With the notations of the previous model we have

T  N r  (  N  i  \  N

i  =  r,Ciikt + -ji-[yi 2 V + 1  +  Z  Cu*t+
Z  i = i  1  V i*=i /Cj /  i*=i

“fT X L / (si~ x)fi(x) dx-
Solution:

A similar iterative procedure is suggested as for the previous model.

250. Optimization of ordering frequency and number of deliveries 
Main codes:

8 1 0 1 0 1 0 1 0 1
Assumptions:

A number of items are jointly ordered with an order period length T  which is 
subject to control. The delivery of an order occurs after a leadtime L in  N  lots. 
The value of N  may be different for different items and can be chosen for an 
arbitrary integer. The input of the order happens at equidistant time instants and 
the size of the lots delivered are also equal. At a single delivery a cost c4 is to be 
calculated. The unit cost of inventory holding is clf the constant cost of an or
dering is c3. The demand of a period is random. It is continuous with a mean 
demand rate r. The maximal rate of demand к  • r is known. No shortage is allowed.
Objective:

The expected total cost of inventory holding, ordering and delivery is 

C(T, N ) =  c1( k - l ) - r ( L + T ) + ^ + ^ - + c t ^ r .

Solution:
The optimal value of the length of the order period is equal to

Го '

For all items the reorder level is S0= kr(L+ T0) and the number of deliveries is 
the integer part of the expression

251. Multi-item model with joint ordering discounts
Main codes:

8 1 0 1 0 1 5 2 1 1
Assumptions:

The inventory of N  items is reviewed continuously. Each ordering has a fixed 
cost g0 which is independent of the number of ordered items. At the ordering of
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the i'-th item an additional cost g; has to be considered. Hence, if on one occasion, 
a larger number of different items are ordered, then the relative ordering cost is 
lower. A generalized (s, S ) inventory policy to the lower reorder point (min
imal level of inventory) than an order is placed for all the items which have 
z, inventory level below their upper reorder point y 2i {y\,i= y2,d- The order 
level is denoted by Yt. Thus the amount of order for item j  is

_ f Yj - Z j if Zj ^ Y 2J,
4j ~  lO if Zj ^ Y 2J.

Objective:
The cost function

L\ = C i[^+ y 2-r L ^ + ~ { g + n  (y2)]

is minimized for q and y 2: this yields the values of qf and y 2fi (/=  1, ..., N ). Here 
r is the mean demand rate and L is the leadtime; the unit cost of inventory holding 
is Ci, g ~ g i is the replenishment cost; the expected shortage cost is denoted by 
я(Уа)-

The optimal value of the vector yx with components ylti is determined by min
imizing the cost function

Lz = Ci \ ^ + y i - r I ^ + ^ [ G t +n(yj)],

where Gi=g0+gi. This minimization can be carried out independently for each 
item (/=  1, ..., N).

Solution:
An iterative algorithm is suggested for the minimization of Llt while the 

minimum of L2 is the solution of the equation

- £ ( Г - У р  -  n'(yt) ( Y - yi)+ G + «(yJ ,

which can be determined by numerical techniques.

252. Stochastic order-level system for two items

Main codes:
8 1 0 1 0 1 6 2 0 0

Assumptions:
Two items are considered which have the same properties with respect to 

demand and cost. The demand is generated by a Poisson process for both items 
with the same parameter A. The demand processes are independent for the two 
items. If for one of the items the inventory level decreases to 0, then an order is 
placed for both items: the order level is the same integer value S  for both items. 
There is an immediate delivery. The inventory reviewing is continuous. The 
following cost factors are considered
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с : purchasing cost of a unit of item, 
rc: inventory holding cost factor,
A : constant ordering cost of one item, 

mA: constant ordering cost of two items (1 ^ / и ^ 2 ).

Objective:
XmA er S  Л----—

The expected total cost for a unit of time g j= -----7Ac\------  has to be

minimized. ‘ “ U ) 2 ' “

Solution:
_ XmA

cr s + ~~s~The cost function can be approximated by gj~---------- ------, which can
1 ~ 7 = -

Y n s
easily be minimized. Further on the probability of a surplus stock к  before or
dering and its expected value is expressed; the expected length of an ordering 
period is also derived. Finally, the optimal two-item policy is compared to the 
independent ordering policy for the two items considered.

253. (j , S) policy for two items
Main codes:

8 1 0 1 0 1 5 1 1 0
Assumptions:

A periodic review system is considered. The demand for two items during a 
review period is described by the joint probability distribution function F(xlt x2). 
The demand of the different periods is independent of each other. The two items 
are jointly ordered with a constant ordering cost К 1ш2. There is an immediate 
delivery. The expected value of the inventory holding and shortage cost for a unit 
time is denoted by L(u, r).
Objective:

The expected total discounted cost (with D{= S i-s j)  equals
D,

L iS i, S2) + 2  2  L(S1 — u, S2 — r)m(u, r)+Kh2
__ ________________ u = 0  r = 0________________________________________

\+ M {D x,D 2)

where M(u, r) denotes the renewal function and m(u, r) is its derivative. 

Solution:
Recursive formulas are derived for the renewal function and its derivative 

and for L(u, r). The minimization of the objective function can be accomplished 
by some nonlinear optimization procedure. No specific solution procedure is 
suggested.
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254. Single-period model for two items

Main codes:
8 1 0 1 0 1 5 1 1 0

Assumptions:
If two items are jointly ordered, then the ordering cost is Klt2; if only one item 

is ordered, then the cost is either Kx or K2. The following inequalities hold:
max (Ku  K2) ш К 1ш2тв Kx+K2.

Only a single period is considered with a random demand which is characterized 
by the joint density function /(и , r). The unit purchasing prices are denoted by 
Cj and c2, the expected inventory holding and shortage cost L(yx, y2) is a function 
of the inventory level after ordering. There is an instantaneous delivery. The in
ventory levels before ordering are xx and x2.

Objective:
The expected total cost of the period considered equals

С (У и У ь ) =  K ( y x- x x, y i - x 2) - c , x 1- c 2x 2+ C ( y 1, Ja) 

with the notation
G ( y u  y 2) =  c1y 1+ c 2y 2+ L ( y x, y 2).

Solution:
The domain of the possible inventory levels (xls x 2) is subdivided into four 

subdomains defined by 5 equations. (This is a generalization of the reorder-point 
system.) If (xlt x 2)dB0, then no order is placed in Bx or B2 only for one of the 
items, while in ВХш2 an order is placed for both items.

255. Dynamic multi-item model

Main codes:
8 1 0 1 1 1 1 1 1 0

Assumptions:
There are n different items which have m classes of demands, and m is not 

necessarily equal to n. It is characterized in period i by the random vector Z),= 
= (.0гд , ..., DUm) which has the m-dimensional joint distribution function Ф,(Д). 
The demands in different periods are independent, and may have different dis
tribution functions. The vector of inventory levels before ordering is denoted by 
x t and after ordering by y x (i= 1,2, ...). The leadtime is zero, the vector of order 
levels is denoted by Y,.

Objective:
The expected total discounted cost for 1,2, ..., N  periods (with discount factors 

ßi) can be expressed as
N

fA * i\y ) =  E { 2  ß ilC iiy i-xJ+ g fy i, Di)] -ß N+1cN + 1xN+1},
i=* 1
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where c, denotes the unit cost of purchasing. The function gt expresses the expected 
cost of inventory holding and of shortage (this function is not specified). It is 
assumed that any stock left over after N  periods can be discarded with a return
° f  CW+1 - 
Solution:

The dynamic multi-period problem is reduced to the solution of single-period 
problems: y t = min G,(y) is the optimal value in period i, where

Gi(y) = f  Wi{y,t)dd>i{t)
D,

with the single-period total cost Wjy, t).

256. Dynamic multi-item model with leadtime
Main codes:

8 1 0 1 1 1 1 1 1 1
Assumptions:

This model is a generalized version of the previous model in the sense that the 
leadtime may be positive. It is deterministic and has the same length L  for all 
items. The demand is separate for all the items, i.e., n= m  with the notation of 
the previous model.

Objective:
The expected total cost of the periods L + l , L + N  is

N  N  +  L

fjv(-*il^) =  2  ßiEGi(yi) — [c1x l —ßN+1cN+l 2  E(Dj)\,
i = l  i = N  +  L

where
Gi(y) = f  m(y,t)<№„L(t).

D,+L

No constant ordering cost is considered, the vector of purchasing prices in period 
i is denoted by c. The expected total cost of inventory holding, shortage and 
purchasing is expressed in period / by the function W,(y, t) (that is not specified).

Solution:
The components of the cost function part in brackets are independent of the 

vector of order levels Y. Based on this fact, the minimization can be reduced by 
suitable substitutions to the solution of the zero leadtime problem described by 
the previous model.

257. Multi-item model based on stochastic control
Main codes:

8 1 0 1 1  1 4 1 2 4
Assumptions:

The demand process for n different items is described in a period [0, T] by the 
stochastic differential equation dß(t)= p (t)d t+ S(t)db(t), where p(t) represents
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the deterministic part and b{t) is the joint normal distribution with covariance 
matrix ő(t). The delivery is characterized by a deterministic scalar-vector function 
v(t). For a given initial stock vector x, the decision variables are the time SXt, 
and amount AXtl of the orders. The inventory level at time t is denoted by yx(t). 
This results in an inventory holding or shortage cost f ( y x(t), t), which may 
depend also on time t. The cost of ordering (or producing) k(t, A) may also 
depend on the time and amount.
Objective:

The order policy Vx , denotes the system of time and amount of orders 
(3 iit, A\ <t, 3Ji(, Агх>1, ...). The expected total cost in the interval [0, T] belonging 
to this policy is

Л К .,) =  E { 2  exp[ — < r) +

T

+ J e x p (-x s ) f(y X',(s),s)ds},
о

where a is the discount factor.

Solution:
The dynamic programming principle of Bellman is used to reduce the deter

mination of the optimal policy to the solution of a system of differential equations. 
The numerical solution can be performed by the method of finite differences.

X.2. Madels with Inventory Constraint

The common property of the models in this group is that they all have some 
constraints concerning the inventory. The most common is that the capital in
vested in the inventories is bounded, thus the different items are connected by a 
joint capital constraint. The solution of these types of models can be derived 
usually by the Lagrange-multiplier method. The various models differ from each 
other by the deterministic or random nature of demand or delivery, by the dif
ferent assumptions concerning ordering possibilities and by the different types 
of cost factors considered. Some specific models are listed here which contain 
investigations concerning the joint inventory level.

Another subgroup of models deals with the storage capacity constraint. The 
structure of these models is very similar to the models with capital constraint. 
In two of the models, the probability of shortage is constrained under stochastic 
demand or stochastic delivery conditions.
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X.2.1. Models with Capital Constraint

258. Deterministic lot-size model with constrained capital invested in an order 
amount

Main codes:
8 1 0 0 0 1 2  - 1 0 0

Assumptions:
There is a deterministic demand with rate r} for item j  ( j — 1 , n). The con

stant ordering cost is Aj. The unit cost of inventory holding is lfCi  with dimension 
[$]/[amount]. No shortage is allowed. The purchasing price is Cj. The capital 
invested at one occasion of ordering is bounded by the capital D :

Z C j q j ^ D .
J = i

Objective:
The total cost of ordering and inventory holding,

K (qi, . . . , q n) =  2 [ 3 -A j + IjCj & ]

has to be minimized under the capital constraint.

Solution:
The unconstrained minimum of the cost function can be calculated by setting 

the partial derivatives equal to zero. If it satisfies the capacity constraint (i.e. 
the constraint is not active), then the optimum has been achieved. In the opposite 
case the constraint is satisfied in the form of an equation for the optimal solution, 
thus the Lagrange multiplier method can be applied. The optimal solution is the 
unconstrained minimum of the function (with the Lagrange multiplier 0):

J =  í \ ^ A j  + I j c M  + e [ Z C ]q j-D } ,
j = 1 c  q J J =1

which can be calculated by setting its partial derivatives equal to zero and solving 
the resulting system of equations.

259. Lot-size model with capital constraint and restricted number of annual 
orders

Main codes:
8 1 0 0 0 1 2  - 1 0 0

Assumptions:
Similar to the previous model: here the capital invested in the order quantities 

is bounded and, besides this constraint, the number of annual orders is also 
restricted:

П r  ■
2  —  ^ h .

J =i  9 j
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The number of orders need not be an integer for a unit of time. Because of the 
second restriction, no explicit ordering cost has to be considered.

Objective:
» q.

The inventory holding cost, K — Z  ^jCj-Ц-, has to be minimized under the 
above two constraints. ^

Solution:
The Lagrange function (with Lagrange multipliers в and 9)

É  I jCj^-  + e ( É ^ - h U H É C j q j - D )
j = i  t  V j = i  q j  )  y = i

has to be minimized. This can be calculated from the partial derivatives of J  with 
respect to qj, в and 9; the numerical optimization, e.g., by the Newton method is 
efficient.

260. Multi-item model with capital constraint and distributed orders

Main codes:
8 1 0 0 0 1 4 1 0 0

Assumptions:
A deterministic multi-item lot-size model is considered, where the total value 

of the stock on hand may not be larger than the capital constraint X. The maximal 
value of stocks can be estimated by

IT = k Z  4]Cnjij=i

where Cnj is the unit purchasing price and qs is the lot size ordered for item j. 
The constant к  (O ^fc^l) expresses the distribution of orders. If all the items are 
ordered together, then k = 1. In the case of different ordering times for different 
items, the mean capital invested in stocks is approximately half of the maximal 
capital invested, thus k ^  1/2. The model is similar to Model 259, except with 
respect to the estimation of the parameter k.

Sj denotes the demand of the y'-th item. Cnj is the purchasing price and Coj is 
the ordering cost of the y'-th item. / is the inventory carrying cost factor (%).
Objective:

The inventory holding and ordering cost is minimized under the above capital 
constraint.

£ r =  ■ )+ *(* -£  J ,  c  ),
i = 1 V 4 j  L '  i = l

where z is the Lagrange multiplier.
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Solutions:
By using the Lagrange multiplier method, the optimal lot size is

- J — 2Coj rj —
9j I  C „ j(i-2kz)

261, Continuous delivery and capital constraint

Main codes:
8 1 0 0 0 1 4  - 1 0 0

Assumptions:
A capital limit X  is considered similarly as in the previous model. The main 

difference is that the delivery is continuous with a known finite rate Päj for item 
j  at day d. The order period has the same fixed length of N  days for all items. 
The mean demand rate is rJt the demand of a day is s dJ.
Objective:

The optimal solution given the capital constraint is determined from the La
grange function

£)]•
with the notations of the previous model.

Solution:

] [  2 r j C nj [ \ - ^ L ) { i - 2 k Z )  
jy* _  / j=i v r g  >_________

2Á Coj
and qj=rj/N*.

262. Order level for multi-item system with capital constraint

Main codes:
8 1 0 1 0 1 1 1 2 7

Assumptions:
N  different items are considered which are demanded in each period in a random 

amount according to a joint normal distribution with independent components: 
the means and deviations are M k and Dk (k = l , ..., N ). The capital used for 
filling up the inventories is limited. The upper limit is E. The unit purchase price 
is ck. The order level is expressed in the form of M k+ ).kDk, where the optimal 
value of the safety factor Xk has to be found. The unit cost of inventory holding 
and shortage are denoted by ak and bk for the A>th item.
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Objective:
The expected total cost of inventory holding and shortage in a period,

K = 2  Dk \ak f  (1 -<P(u))du+bk f k <P(u)du]
*=i xt

is to be minimized under the capital constraint

2  ck(Mk+ jkDk — rk) S  E,
*=i

where rk denotes the initial stock of item к and Ф is the standard normal dis
tribution function.

Solution:
The constrained minimization problem is solved by the Lagrange multiplier

method. We obtain that Лк=Ф~11——^ - 1 ,  where p is the solution of the 
equation Ы  + М

Í  c*DkФ" 1 ( ^ = ^ 1  =  E -  2  ck(Mk- r k) 

and Ф- 1  denotes the inverse of Ф.

263. Distribution of a restricted amount of capital for safety stocks o f several 
items

Main codes:
8 1 0 1 0 1 4 0 1 0

Assumptions:
The total value of safety stock for n items has an upper bound. The mean 

demand rate of item j  is rj. The deviation from the mean rate is a random variable 
with density function p/(t) and standard deviation Sj. The length of the order 
cycle is the same for all items, с —rjq j. The amount of safety stock is k,Sj, 
where kj is to be determined by the model.

Objective:
The expected value of the total loss of profit has to be minimized:

C(kx, . . . ,k n) =  2  öj vj —  J  (t - k j ) p j ( t ) d t , 
i=i 4j kj

where Vj is the value of the items.
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The objective function is minimized under the safety stock restriction. The 
optimal values of kj are determined by the Lagrange multiplier method as the 
solution of the equation.

cA0 = /  P ( t ) d t ,  
kj

where A„ is the optimal value of the Lagrange multiplier.

264. Distribution of safety stock at (s ,q ) policy
Main codes:

8 1 0 1 0 1 2 2 1 0
Assumptions:

The same assumptions are valid as in the previous model. The only difference 
is that the length of the order period is not prescribed, thus an (s, q) policy is 
applied instead of a (tp, q) policy.

Objective:
The expected value of the profit lost (due to shortage) has to be minimized 

under the constraint that the total value of safety stock for n items is limited from 
above.

Solution:
The solution procedure based on the Lagrange multiplier method is similar 

to that of the previous model.

265. Cost-optimal distributions of a limited value of safety stock

Main codes:
8 1 0 1 0 1 2 2 1 0

Assumptions:
This is a version of the previous models, where the purchasing cost is taken 

also into consideration for an (.y, q) policy.

Objective:
The expected total cost of ordering and shortage is minimized for the n items:

C(kj,  qj) =  2  cj -—■+ 2  v i  f  (t~kj )p( t )dt
7 = 1 4 j  j =1 4 j  k'

under a constraint on the total value of the average stock on hand. (The notations 
of previous models are used.)

Solution:
Applying the Lagrange multiplier method, for each./ a system of two equations 

is derived for the optimal values of kj and q}.

Solution:
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266. M in im iz a tio n  o f  th e  va lu e  o f  s a fe ty  s to ck s  u n der a p r e s c r ib e d  serv ice  
le ve l

Main codes:
8 1 1 0 0 1 1 1 1 4

Assumptions:
There is a continuous demand in the order period [0, T ] with a known constant 

rate c for item i ( i= l ,  k). The delivery of an order for any of the items is
described in the following way. The order is delivered in n equal lots. The minimal

. . . Ttime between two consecutive deliveries is a known constant y, —. The
n

moments of deliveries are random points of the interval [0, T] according to the 
following model. The interval (0, T —ny) is subdivided by n independent random 
points which are uniformly distributed on this interval. Let м1<м2< ...< м и be 
a realization of these random points, then the corresponding realization of the 
y'-th delivery moment is tj= jy + Uj. The safety stock at the beginning of the 
period is denoted by M t for the г'-th item. Continuous supply is provided if 
C it^bfty+ M i holds for all 0 S /ё Г ,  where b f i)  denotes the cumulative amount 
delivered until time t according to the above model of delivery process.

Objective:
к

The capital 2  dtMi invested in safety stock has to be minimized under a
prescribed service level, which is expressed by the probability of the continuous 
supply:

к

min 2  d iM i
i  =  1

П  P (  SUP { c ,t -b t( t ) } ^ M , ) ^ p .
i =  l  B s i s r

Solution:
The probability of the continuous supply is approximated by a simple expres

sion, which enables the calculation of the optimal safety stock.

267. M u lti- i te m  r e l ia b i l i ty - ty p e  m o d e l f o r  in h om ogen eou s d e live r ie s  

M a in  codes:
8 1 1 0 0 1 1 1 7 4

Assumptions:
There is a continuous demand with a known constant rate ct for i — 1, ..., к 

different items. The length of the order period T  is fixed in advance. The delivery 
of an order for an item is described in the following way. The order is delivered 
in n lots at random instants of the order period [0, T\. There is a minimal time 

T
interval y < — between two consecutive deliveries. The interval [0, T —ny] is 

n
subdivided by n independent random points which are uniformly distributed on



3 3 6

this interval. These points are in increasing order: tx ■«/„. Thus, by 
the model the subsequent delivery times are y + t n , 2y + tJ2, ..., ny + tJn. By 
statistical methods, this model of a delivery process can be fitted to the observa
tions of earlier deliveries also in the case when no time-homogeneity is assumed. 
The amount of lots delivered can be modelled in a similar way. (That is to say, 
the total amount ordered can be arbitrarily subdivided among the delivery in
stants by random points, according to the statistical data of earlier observations. 
The delivery processes for the different items are supposed to be independent 
of each other.)

Objective:
к

The value of the safety stock dtMi is minimized under the reliability
i= 1

constraint that the probability of the continuous supply of the к  items considered 
has to be at least 1 — e.
Solution:

The cost minimization under a probabilistic constraint is reduced to the 
solution of a nonlinear programming problem, where the function values must 
be calculated by stochastic simulation. It is solved by the SUMT method for 
which the global convergence is proved.

268. The e s tim a tio n  o f  a g g r e g a te d  in ve n to ry  c h a ra c te r is tic s

Main codes:
8 1 0 1 0 3 2 2 1 0

Assumptions:
The order amount of M  items is determined by the Wilson formula, the reorder 

level is proportional to a fixed power of the mean demand. The demand is random 
and has lognormal distribution for each item.

Objective:
The purpose is to estimate the aggregated average level of the safety stock, 

cycle stock, order frequency and rate of return for M  items.

Solution:
The above aggregated inventory characteristics are expressed by the moments 

of the lognormal probability distribution, then they are represented as analytical 
functions of the expected value and mode. Thus the estimation of the aggregated 
.characteristics can be achieved on the base of a sample of demand or usage.

269. L o w er l im i t  f o r  th e  jo in t  in ven to ry  va lu e  o f  n item s

Main codes:
8 1 1 1 0 1 2 2 1 7

Assumptions:
Continuous random demand is considered for n items. The leadtime may also 

be a random variable. The demand during the leadtime is characterized by its
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density function f t(x) for item i. The value of the joint inventory level must 
exceed the minimum level T. Thus for the order levels R , , the inequality

i=i

has to be valid, where v, denotes the unit value of product /.
Objective:

The expected total cost of inventory holding, shortage and ordering with cost 
factors с,, ut and k t is expressed in the form

ÍÍ4-f-+ f  ( x t - R O M x d d x i .j=i I l  í  J  J 4i qt £  J

Solution:
The cost function is minimized under the inventory value constraints using the 

Lagrange multiplier technique.

X.2.2. Models with Storage Capacity Constraints

270. D e te rm in is tic  lo t-s iz e  m o d e l w ith  co n s tr a in e d  s to r a g e  c a p a c ity

Main codes:
8 1 0 0 0 1 2  - 1 0 0

Assumptions:
There is a deterministic demand with rate rj for item j ,  j = l , . . . , n .  The 

constant ordering cost is AJt the unit cost of inventory holding is IjCj . The 
inventory holding cost is proportional to the amount of inventory on hand. No 
shortage is allowed. A unit of item j  needs a storage place f j .  The storage 
capacity of the store is limited: this is expressed by the constraint

é / j i j - f
for order amounts qt .

Objective:
The cost of inventory holding and ordering is

j= i\q j  i )
Solution:

The cost function is minimized with respect to q} j = l , .... n under the storage 
capacity constraint applying the Lagrange method.



271. The optimal length of order period by limited storage capacity
Main codes:

8 1 0 0 0 1 4  - 1 0 0

Assumptions:
The assumptions are the same as in the previous model. Here, instead of the 

amount of orders, the optimal length of the order period has to be determined. 
All the items are ordered together.
Objective:

Similar to those of the previous models, only the decision variable has to be 
replaced; here we have t= q i!ri.

Solution:
Fon the optimal length of the joint ordering period we have

if this satisfies the storage capacity constraint; otherwise t is selected as the 
solution of the equation

272. Order level for N  items and limited storage capacity

Main codes:
8 1 0 0 0 1 1  - 1 1 0

Assumptions:
The same assumptions are valid as in the previous model, but a (tp, S ) policy 

is used.

Objective:
The cost of inventory holding and shortage with cost factors cu and csi is

where qt is the amount of order which increases the inventory level to

3 3 8
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The cost function is minimized under the storage capacity constraint by the 
Lagrange multiplier method.

273. O r d e r  le ve l f o r  ra n d o m  d e m a n d  a n d  l im ite d  s to r a g e  c a p a c ity

Main codes:
8 1 0 1 0 1 1 0 1 0

Assumptions:
A similar multi-item (tp , S )  policy is considered as in the previous model 

under limited storage capacity, but here the demand of a period is a random 
variable with a probability density function f Ut for item /.
Objective:

The expected inventory holding and shortage cost of a period can be expressed
as

L ( S X, ..., S N) =  2  cu f  ( S t - x ) f ut ( x ) d x + - f  ( x —S , ) f ' t ( x ) d x .  
i=1 о ‘ s,

Solution:
Based on the Lagrange multiplier method a system of equations is derived 

for the optimal order levels S t (i =  l, N).

274. C h a n g es in  th e  a g g re g a te  in ve n to ry  le ve l o f  a m u lti- ite m  lo t-s iz e  sy s te m

Main codes:
9 1 0 0 0 3 4  - 1 0 0

Assumptions:
The inventory policy of N  items is connected by the limited joint storage 

capacity. The demand has a known constant rate r t for each item. The length 
of the order period t; is fixed. No shortage is allowed. Any replenishment is the 
integer multiple of constant reorder volume q t. The reorder cycle x — q j d i  is a 
known constant.

Objective:
The aggregate inventory level at time t is expressed by

N  N  f  /  I T  _ z 1 N

s ( t ,  z u  z 2, z N) =  2  z i r i +  2  — -— - \ 4 i ~ t  2 r i .
j = i  í = l  L Tj J  i = i

where zf is the time of ordering for item / and [a] is the largest integer smaller 
than or equal to a. The purpose of the model is to smooth the changes in the 
aggregate inventory level that enables it to have a lower storage capacity.

Solution:



Only the case т,=т ( i= l , . . . ,N )  is considered, i.e., the same length of order 
for each item is supposed. A critical storage capacity c* is derived which enables 
a given ordering policy without overflow:

Solution:

with

275. A  s i n g l e - p e r i o d  m o d e l :  T h e  f l y a w a y - k i t  p r o b l e m

Main codes:
8 1 0 1 0 1 4 0 2 7

Assumptions:
A single period is considered with stochastic demand. The probability of 

demand x  for item i is p,(x), where x  is an integer. The initial stock of the period 
which is subject to control is denoted by h,. The items are connected by the joint 
storage capacity constraint

2 v , h , ^ V ,
i=i

where v, is the storage place necessary for a unit of the i-th item.

Objective:
The total shortage cost is minimized:

K(hlt .... hH) =  2  *i[ 2  (x -h ,)p ,(x )]
i = 1 x=h,

with unit shortage costs it,.

Solution:
If the values h, are large enough, then the discrete problem is approximated 

by a continuous one and is solved by the Lagrange multiplier method, which 
results in an iterative procedure for the optimal values of the initial stock. For 
small values of the initial stock (h,=0, 1 or 2) another iterative procedure is 
suggested based on a discrete enumeration technique.

340



X.2.3. Models with Shortage Constraint

276. Multi-item stochastic model with constrained probability of shortage 

Main codes:
8 1 0 1 0 1 1 0 7 0

Assumptions:
A period with length T  is considered. The item i is ordered periodically with 

the length of an order period k ,T  (0< k ,^ T ) .  The random demand of this 
period is characterized by the probability density function / iil(T(x). The order 
level of item i is denoted by S t. The leadtime is zero. The shortage cost factor is 
not known, therefore the probability that no shortage occurs (i.e. the probability 
of continuous supply for all of the N  items) is constrained by the service level Q :

П  f  f.k,.T(x)dx a  Q .
‘- i  о

Objective:
The inventory holding cost of the items

L =  ktT 2 cu f  (Si-x)f,_klTdx(x) 
i- i  f

has to be minimized under the above constraint.

Solution:
A system of equations is given for the optimal order levels based on the La

grange multiplier method.

277. Cost minimization under random deliveries and expected shortage 
constraint

Main codes:
8 1 1 0 0 1 1 1 1 4

Assumptions:
There is a continuous demand with a known constant rate for t different items. 

The length of the order period T  is fixed. The delivery of an order is described 
similarly to Model 266. The order is delivered in n lots. The delivery moments 
Xjlt x j t, X j n and the delivery lots З’и.Ум» —,Уь, may be random. Their 
modelling is based on choosing certain elements yx j„, and kk-<kt -<...

of a random sample according to the statistical data of earlier observa
tions. The delivery process need not be homogenous in time. The decision variables 
are the initial stocks M (J) for the t different items 0 = 1 ,  ..., t).

Objective:
The expected inventory holding and shortage cost

23 Cbikán 341



is minimized in a period under the constraint that the conditional expectation 
of the shortage may not exceed a prescribed level in the periods when shortage 
occurs:

F(eiJ) — AT|ep)— M (j) >  0) s  g\J) for /  =  1, л; j  =  1, t

where g p  is a function expressed by means of the random delivery moments 
x*t and delivery lots y$r The constants g\J) are prescribed bound.

Solution:
An optimal safety stock plan for the к different items is derived.
The cost minimization under the constrained expected shortage is reduced to 

the solution of a nonlinear programming problem, where the function values are 
to be calculated by some simulation technique. It is solved similarly to Model 
266, by the SUMT method for which the convergence is proved.

X.3. Production-Inventory Models

X.3.1. Scheduling Models

The models of this group deal with the joint investigation (usually with the joint 
optimization) of production and inventory. The two considered subgroups 
contain models for scheduling and models for production assortment. The former 
can be classified further according to the property that the inventory is located 
on the side of input or output.

278. The lot release times of a multi-item production system

Main codes:
8 1 0 0 0 1 4  - 1 0 1

Assumptions:
There is a constant demand with known rates r ; / '= 1 ,..., n for n items. The 

items are produced by the same machine (only one type of item) at one time in 
production lots. The intensity of production is p h the setup time by changing 
the production to item i is tt. The setup cost is sh the inventory holding cost is 
hi for the item i. The optimal cycle lengths 7] of the lot releases are to be deter
mined (Tj is the time between two consecutive lot releases for the same item). 
Tt is assumed to be an integer multiple of a basic cycle length T: Т\=к{Г, further
more, we have the constraint:

Objective:
The total cost per unit time is

342



Solution:
The dynamic programming principle is used. Accordingly, if the optimal plan 

is prepared for periods /= 1 , m —1 which use up a time t, then the minimal 
cost for the remaining periods i= m ,m + l, ...,n  is equal to

Fm( T - t, T) = min 2  /A b ,  T),
K i =  m

with the constraint

ы „ \ Pi T )  T
As T„+1(T —r, T)=0, thus starting with m =n  and with the discretization, 
г -A T , 2AT, ..., T, the backward iteration can be continued until m = l.

279. Deterministic production-inventory system for two items and a single 
machine

Main codes:
8 1 0 0 0 3 4 2 0 0

Assumptions:
A machine produces two types of items in time-sharing. The setup time from 

the production of one type of item to the other is S. The production rate is a 
known constant p  and the demand rate D is also known (D-^p/2). No shortage 
is allowed. The state of the system is described by the imentory levels (/,, l.Á) 
expressed in hours.

Objective:
No control action is investigated, the changes in the state of the system during 

a production-inventory cycle are described. The initial state of the system which 
ensures its stability is to be determined.

Solution:
The steps of the solution are illustrated graphically. The critical initial stcck 

of the system is
S

Xp -  1 - 2 D/p '

which provides stability. If then the subsequent production-inventory
cycles have a decreasing sequence of initial stocks which leads to shortage. If 
x > x p, then the sequence of initial stocks tends to infinity. Thus the production 
must be changed for the other item when the stock level is decreased to xp.

280. Stochastic production-inventory system for two items and a single 
machine

Main codes:
8 1 0 0 0 1  7 2 2 9

Assumptions:
The basic assumptions are the same as in the previous model, with the difference

t h a t  th*» i t m m i n t  п г л Н п р р Я i c  я  г я п Н л т  v a r i a b l e  u / i t b  я  n o r m a l  H i s t r i b u t i n n  I t  ic
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characterized by four parameters. These are the expected amount of production, 
the time of production, the standard deviation of production, and the expected 
production intensity factor. The last parameter takes into consideration extensive 
possibilities, such as overtime or increase of work forces. Shortage is permitted, 
but is lost in the system.

The concept of desired stock level is defined. If the closing stock of a production 
period exceeds this level, idle hours are included. There are possibilities also to 
increase the production intensity by external sources. The following cost factors 
are considered: setup cost, production and material cost of an item, inventory 
holding cost, shortage cost, and cost of including external sources (with fixed 
and variable cost factors). The aggregated characteristics of the system, the lot 
sizes, the utilization of production capacity, and the economic production costs 
are also considered.
Objective:

The expected total cost of production and inventory is expressed as a function 
of the control parameters (namely, as a function of lot-size and production inten
sity).

Solution:
The cost consequences of different changes in the parameter values are analyzed 

using the Markovian property of the state probabilities. The internal and external 
sources of increasing production intensity are also examined.

281. A production scheduling problem with batch processing

Main codes:
8 1 0 0 1 1 9 1 1 0

Assumptions:
N  different products are produced in parallel to M  similar facilities during 

H  periods.
x ik denotes the number of facilities used to produce product / in period k. 
I ik denotes the inventory of product i at the end of period к  and Bik is the back

orders of product i at the end of period k.
The cost factors: f ik is the inventory holding cost and Eik the backordering cost 

for product i at the end of period k, 
cik is the cost of producing product i in period k.
A production schedule is to be determined which minimizes the production, 

inventory holding and shortage cost for the production horizon.

N  H  N  H  N  H

m'n 2  2  Cik x ik + 2  2  fik hk +  2  2  ^ik Bik • i=l k=l i=l k = l i = l k—1
Solutions:

The scheduling problem is formulated as a mixed linear integer programming 
problem. It is transformed into a pure integer programming problem which can 
be solved by efficient standard algorithms of minimum-cost network flow problems.
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Main codes:
8 1 0 1 0 1 2 2 2 1

Assumptions:
For an equipment n different items are necessary in a production period. 

This demand is random with an expected value dt for a unit of time. The demand 
of the fixed leadtime is also random with expected value L t and density function 
fi(Xi) for item i (7=1, ..., n). The demand cumulated during a production 
period is satisfied at the beginning of the next period. Shortage may occur, and, 
in this case, the unsatisfied part of demand is lost. The items are independent.

If the inventory level decreases to the reorder point Pb then an order of amount 
<7; is placed. During a production period only one order may be placed. The 
cost factors are the following: the production cost of a unit of item i is ct, the 
inventory holding cost factor is r, the shortage cost factor is m. The constant 
ordering cost is S, the purchasing unit cost of the items is s. For N  items the total 
cost of ordering is A = S  +  Ns.
Objective:

The expected total cost for a unit of time

C = c(r L - L i+ -|-) + ̂  + ̂  J  (Xi- P d f ( x t) d x t 
v г  '  4i xtip t

has to be minimized.

Solution:
3CFrom -g—= 0  we obtain that the optimal amounts of order are

4i — + f  {xi- P d f { x l)dxi
1 x i ~ i P

3Cand from - ^ - = 0  it follows that fi is the solution of 

while P,= 0, if

f  A M
x , = P t  >

If the integral cannot be explicitly calculated, an iterative solution method is 
suggested.

282. M u lti-item  su p p ly  p rob lem  o f a produ ction  equ ipm en t by  f ix e d  orderin g
cost
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Main codes:
8 1 1 1 0 1 2 1 2 1

Assumptions:
It is a modified version of the previous model. The cost structure is different 

and the ordering process has also a more complicated form. Two different input 
processes are examined, in both cases the considered time interval [0, T\ consists 
of 1/Г number of scheduling periods.

1. The times of ordering are generated by a Poisson process with parameter

^ =  2  (dJq ()•i=i

In this case, the total cost of ordering for a unit of time can be expressed in the 
form A = j + ^ t l  — exp( —ЯГ)]ДГ, where 5 means the constant cost of an ordering 
and s is the unit purchasing price.

2. If the ordering actions of the n items are independent, then

A = s + - j ^ [ l - 2 ( l - T d J q i)],

Л
where /7 (1  — Tdjq ,) is the probability of no production jobs (idle time), what-

i — 1
ever is run in some given scheduling period.

Objective:
The same expression as in the previous model, except the value of A given 

above.

Solution:
Setting the partial derivatives of the objective function (with respect to Pt and 

qt) to zero, a system of 2n+ l nonlinear equations is to be solved. This may be 
rather difficult in general, therefore an iterative procedure is suggested which 
consists of the following steps:
1. Let A = S ;
2. Assuming a constant ordering cost calculate P, and qt according to the previous 

model;
3. Using these values of qt, A is determined; if it is sufficiently close to the previous 

value of A, then Pt and qt are accepted, otherwise Step 2 has to be repeated 
with the new value of A.

(The convergence of the procedure is proved in the paper.)

283. M u lti-item  inventory p ro b lem  o f a p rodu ction  equ ipm en t w ith  jo in t
orderin g  cost
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284. Economic packing frequency for jointly replenished items 
Main codes:

8 1 0 0 0  1 - 1  - 1  0 - 1
Assumptions:

There are m different items in the system. The annual demand for item j  is 
Qj. It has a constant, known demand rate. The whole demand is to be satisfied 
by N  production lots for each item. The lots are packed. Item 1, which is the 
most intensively demanded, is packed after each production lot, i.e., N  times per 
year. The other items are packed 7} times, where T j^N , Kj=N/Tj with an 
integer Kj. The value of N  and Kj ( j —2, ..., n) are subject to control. Each 
production lot has a fixed production cost S  and each packing a fixed package 
cost Si- The annual inventory holding cost of an item is denoted by h.
Objective:

The total annual cost

C(N, Kj) =  tv[s + s 1+ 2 ^ \  + ~  [Qi+ Z Q j Kj] 
has to be minimized.

Solution:
The method is based on the dynamic programming principle. The optimal 

cost of the m items, if the first item is packed N  times, is denoted by f m(N). N  
can be expressed by the package and inventory holding cost of the first item 
Pi(N) and by the optimal cost of the other m — 1 items f m_x(N) in the form

f m(N ) = т т [ Л ( Л 0 + / и-1(Ю]-
Here

Pl (N ) = S1N + í g -  

and

-  ш

where the K ps can be found separately (for fixed N ). For the calculation of the 
approximately optimal N, a numerical procedure is given.

X.3.2. Models for the Optimization of Production Assortment

285. Production assortment problem with nonlinear cost functions
Main codes:

8 1 0 0 0 1 4  - 1 0 0
Assumptions:

In the system n different quality or size of a product is demanded with constant 
rate dj (y = l ,  ..., и). All demands are to be satisfied. The demand for a given
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quality can be satisfied also by another quality or size which is superior. The 
initial stock is zero. The ordering and inventory holding cost for an order of 
amount Xj£0 from quality group / is

_  i^ + y f2s,h,x,
Ct(Xi) -  to,

where nt is the constant ordering cost, j, is the purchasing price and h( is the 
unit holding cost.

The cost of satisfying an amount y tJ of demand i with a superior quality j  is 
the replacement cost Сц/уц which may have four different structures involving 
additive and proportional, half additive and proportional, additive and fixed, 
half additive and fixed cost factors.

Objective:
The nonnegative values of xf and y tj are to be determined which minimize the 

total cost

2  ci(*«)+ 2  2  си(Уц)
i —1 i = l  j = l

under the constraints
j

2 y i j  =  d j  j = i , - , n  
1 =  1

n
2 y i j  =  x i 1

Solution:
In principle, the technique of dynamic programming which could be applied 

is not effective for practical calculations. If the cost function of replacement is 
additive and proportional, then the optimal policy is segmented. It means that 
the qualities can be subdivided in groups. In all of the groups, the best quality 
supplies all the demands of the group. Under weaker conditions the optimal 
policy is quasi-segmented. It means that the best quality supplies almost all of 
the demands of the group, only some qualities are in the group with self-supply. 
These specific policies can be more effectively calculated than is the general case.

286. P ro d u c tio n -in v en to ry  sy s te m  w ith  resou rce  c o n s tra in ts

Main codes:
8 1 0 0 1 1 4  - 1 0 0

Assumptions:
The system is considered during T  periods. In each period t, a deterministic 

demand du appears for N  different items. Demand must be satisfied by inventory 
and production within the period, no shortage is allowed. The production plan 
x it of N  items has to be determined under the constraint that each period t has 
finite resources Rk, from the fc-th type of resource. The number of resources is
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К. The inventory level I it at the end of period t from item i is expressed as I it= 
= Ii,t- i+ x it—dit ( i= l ,  N; t —l, ..., T). The setup cost of product-type 
i is denoted by st, and the production cost of a unit of item is vt.

Objective:
The total cost of T  periods is

i=1 (=1
with

fl if x it >  0
S< *H o if *„=0.

Solution:
The cost function has to be minimized under the constrained capacity of 

resources expressed in the form

2[*1к0(Хи)+г*кхи] S  Rkl k  = 1 , K\ t =  1, T,
i=l

where r\k is the capacity absorption for one set-up of product i on resource к 
and r*k is the per-unit capacity absorption of product i on resource k.

A lower bound for the optimal cost can be derived using linear programming. 
Other model-variants are also described, where the capacity constraint is not a 
constant but is also a decision variable. The capacity can be increased by over
times, new workers, etc., but these options also imply different cost factors and 
new constraints.

287. Assortment problem for size-combinations by deterministic demand

Main codes:
8 1 0 0 0 1 4 - 1 0 0

Assumptions:
In system К  different sizes of an item are demanded in a known quantity. 

In general it is not economic to produce and store all of the sizes. The demand 
for the missing sizes can be met from a larger size by cutting the surplus amount, 
where the loss of material has cost consequences.

If the number of stored sizes R is presribed, the optimal sizes can be determined, 
which provides for a minimal loss of cutting. By increasing R, these costs decrease; 
however, the cost of production and inventory holding increase.
Objective:

The minimal loss of material for a given R can be expressed by 

Ar+1(I, К ) =  min [Ax(l, J )+ A r(J, K)],
I  — лт1



where 1 is the smallest and J  is the largest of the sizes considered, and AX(I, J) 
expresses the minimal loss of material in the interval of sizes (/, J), if x  different 
sizes are stored.

Solution:
The expression of the minimal loss given above allows the reduction of com

putations to a moderate amount. Thus, by calculating the total costs for different 
values of R, the optimal policy can be chosen. The algorithm is illustrated by a 
numerical example.
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XI. Multi-Location Models

The multi-location models represent inventory systems where the items are 
stored at several locations which are interdependent by the applied inventory 
policy or by the costs. This group of models can be subdivided on the basis of the 
character of the connection among the locations; these subgroups can be further 
subdivided according to different aspects.

The models of the first subgroup assume the existence of a central storage 
location, from which inventories are distributed among the parallel locations of 
one or more lower level of the hierarchical system. The “outside”, real demand 
appears at the lowest level. These models are different from the point of view of 
the deterministic or random type of demand, or according to the static or dynamic 
description of the system, or according to the cost factors considered.

The models of the second subgroup investigate the problem of the distribution 
of a given total inventory among parallel storage locations with a minimal total 
cost. Here, the models are distinguished according to the type of the inventory 
distribution, which can be static or dynamic. The models of the third subgroup 
have the joint feature that there are serially linked storage locations with hierar
chical echelons. A typical example is the internal storage system of a production 
facility. These models can be subdivided according to the type of demand (de
terministic or random) and according to the number of periods investigated 
(single-period or dynamic, multi-period systems).

The multi-item, multi-location models belong to the fourth subgroup. These 
are rather special models: there are distribution-type models (where the items 
are connected by some joint constraint, e.g., concerning the orders or shortage) 
and models dealing with an internal storage system of a production. A simulation 
model of a warehouse system is also included in this description.
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In the following, two variations of a model are described in more detail as they 
reflect many typical characteristics of the multi-location inventory models.

XI. 1. Multi-Location Single-Item Models

X I.l.l. Several Parallel Locations 

XL1.1.1. Parallel Storage Locations with a Central Store

288. Central inventory control of parallel stores

Main codes:
1 8 0 1 0 1 1 1 1 0

Assumptions:
In this inventory system a single item is considered which is distributed by a 

central store among some parallel locations. Two different types of inventory 
policies are possible: 1) The various stores may have their independent ordering 
policies; 2) They centralize inventory decisions according to the joint optimum 
of the whole system. The second case has immediate advantages: by redistribution 
of the stocks among the parallel stores, shortage and surplus can be avoided. 
On the other hand, in the case of joint management the complicated control and 
inventory policy necessitates greater central administration. This type of model 
is described first for two parallel stores (Model 288), then it is generalized for 
n stores (Model 289).

For the two-store case the initial stock before ordering is I t. A single period is 
considered, which has a random demand S t at each store with probability density 
function fi(Si) for /= 1  and 2. The inventory holding or shortage cost is paid
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according to the amount of net inventory at the end of the period: the respective 
unit cost factors are denoted by r ; and vt.

The unit purchasing cost is yt, the order level is denoted by x t. Delivery takes 
place at the beginning of the order period at each store. During the order period 
there is a possibility of redistributing the stock among stores by direct trans
portation between the stores. The amount у  transported is taken to be positive 
if it is transported in direction 2 — 1, and negative in the opposite case. The unit 
cost of transporting between the parallel depots is d, independent of the direction, 
where d+ y i> y 2 and d+y2>yг.
Objective:

The expected total cost of the system can be written as

C{x1, x 2,y )  =  ?i (*! -  h ) + y2 (x2- I 2) + d\y\ +

+ гг J  У (хг+ у - S )  M S )  dS+ v, I  ( S - x 1- y ) f 1(S)dS+
0 x,+y

+r2 j  (x2- y - S ) f 2(S)dS+ v2 J  ( S - x 2+ y )f2(S)dS.
0 x ,- y

Solution:
Using the necessary optimality conditions

дС/дхг =  0 and дС/дх2 =  О, 
the following system is derived for the optimal x f  and x 2:

Xi+ y = x t  ( * !> / ,) ,

Xi + y  =  Ii + y  =? x t  (xx =  /j),
and

x 2- y  = x$ (x2 >  /2), 

x2 — y  =  I2—y  = x 2 (x 2 = I2).
Depending on the initial stock level vector (/x, / 2), four different cases have to 

be considered for the calculation of the optimal policy:

I. A'x >  Ix and x 2 >  I2,

II. xx >■ lx and x 2 =  I2,

III. Xi =  /, and x 2 >  I2,
IV. Xj =  l\ and x 2 — I2.

For example, in case /, we have that

x-i+y = x t  (x1 > / 1, y ^ 0 )  

x2- y  = x  t  (хг > / 2, у ё 0 )

thus y = 0, xt =Xi and x 2= x2\ this is valid only when h > x t  and I2>x%,
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since 71< x1= a:Í and / 2< x 2 =  xJ. This implies the following optimal policy: 
both stores should order the quantity x t—Jf and there is no redistribution. The 
other cases can be treated similarly.

The outlined model can be generalized easily for more than 2 parallel stores, 
but in these cases the above procedure is very inefficient. An iterative procedure 
is illustrated for two depots which can be extended for the multi-store case in a 
more efficient way (Model 289).

All the variables are nonnegative if we introduce the notations Zj=Xj —/ (, 
furthermore, y12 is the transport in direction 1 —2, and y21 in direction 2 —1. 
The natural assumptions 0^ y 12=Ii and 0 á y 2i á / j  are also introduced. The 
decision variables are collected in the set

H  =  {x!;x2;x 3; x4}
where

=  *1 
~  Z2

* 3  =  у  21 and

*4 =  Уи-
Let us define an iteration process in the following way. Assume that the values 

х((п,) have resulted after the ж-th step of iteration. Let Ut denote the upper bound 
for x h then U1=Ui = + °°\ U^—l^ and i/4= / 2. The (m +l)-st iteration cycle 
consists of the following steps:

1. The partial derivatives of the cost function dC/dxi are calculated (using the 
new notations);

2. A subset is defined by the inequalities

r  > 0  if xfm) >  0 and
OJi

- ^ > 0  if x \m)^ U t\OX}
3. The partial derivative with largest absolute value is chosen; let us denote 

this by dC/dxio;
4(a) If dC/dxio>0, the nx,0 is decrease duntil dC/dxio=0 or x,o =  0 is reached;

(b) If d C /d x^O , then x io is increased until dC/dxio= 0 or x io— Uio is reached;
(c) If the subset defined in (2) is empty, then the procedure is finished.

289. Parallel inventory locations with identical demands 

Main codes:
1 8 0 0 0 1 4  - 1 0 0

Assumptions:
The system of a central and M-subordinated parallel stores is considered. The 

demands against the parallel stores are identical with known deterministic inten-
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sity A. The central store places orders of amount Q at fixed ordering intervals 
with length T, and these orders are distributed in lots of amount q among the 
parallel stores. Q = kq and M = rk, where r is a positive integer. The fixed 
ordering cost is A at the central store and the distribution cost of a lot is “a” at 
each parallel store. The unit inventory holding cost is 1. The value of к is chosen 
in such a way that M  ■ A = k 2a is valid. No shortage is allowed.
Objective:

The total cost of inventory holding, ordering and distribution,

290. Parallel inventory locations with different demands

Main codes:
1 8 0 0 0 1 4 - 1 0 0

Assumptions:
This model is a generalized version of the previous one in the sense that demand 

at the different parallel stores may be different but has a constant rate Af for 
store The central order with ordering cycle T  is distributed among the parallel 
stores. The j-th store receives a delivery at each time interval with length N{T. 
where N t is an integer. The central ordering cost is A, the distribution cost is at 
for depot i. The unit cost of inventory holding is denoted by I. No shortage is 
allowed.
Objective:

The total cost is

Solution:
An iterative procedure is suggested with starting values iVí=  1. The iteration 

steps are the following:

3 5 5

is to be minimized.

Solution:
The optimal amount of central order and distribution lot sizes are

в - ]  ! Щ ±and , - J

The optimal length of the central ordering interval is



1.

2. Choose the largest integer N, that satisfies the inequality

2a,
Nt(Nt-  l ) s n a , i — 1, M

and apply it in (1) (this yields a new value Tx instead of T0, etc.). 
The convergence of the above procedure is proved.

291. Optimal ordering frequency for central parallel stores

Main codes:
1 8 0 0 0 1 4 - 1 0 0

Assumptions:
Similarly to the previous model, the demand of M  parallel stores is continuous 

and has the known rate A; for store i. The central store places orders periodically 
with the period length TN. The i-th store receives a delivery from the central 
store also periodically with a period length TNt, where N, and N/N, are integers 
( i= l ,  ..., M ). The ordering costs are A and a, for the parallel stores and A' for 
the central store. The unit cost of inventory holding is 7X at the central store and 
/ 2 at the parallel stores.

Objective:
The total inventory holding and shortage cost of the system,

has to be minimized.

Solution:
The optimal value is T=^2ajQ  with

and

The optimal values N  and N, (/=  1, ..., M ) are the largest integers which satisfy
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the following inequalities:

and

Main codes:
1 8 0 1 0 1 2 2 1 0

Assumptions:
The system consists of N  centrally coordinated stores which have independent 

demands generated by Poisson processes at each store with different parameters. 
A central (j , q) policy, a normal (slow) and a fast (instant) redistribution among 
the parallel stores is considered. At any fixed moment only one store may 
receive inventory by redistribution. The following costs are considered:
— inventory holding cost: c1 (q);
— shortage cost at the parallel stores with fixed and time-dependent factor: 

U j+nj-t;
— shortage cost when shortage appears in the whole system: тс+л-t;
— transportation costs per year which depend on the mode of transportation: J\
— cost of the central ordering with fixed ordering cost c3 and purchasing cost 

K(q) for a unit item.

Objective:
The purpose of the model is to determine

— the time and amount of central ordering,
— the distribution policy of the central inventory among the parallel stores,
— the fast redistribution policy among the parallel stores.
The expected total cost of the system equals

C(y, q) =  -^-c3+/+A A '(9 )+ c 1( i ) |- |- + j+ - ^ j  +  rt£(j, д Ж я + с Л д )]B(s, q),

where E(s, q) is the expected value of the shortage and B(s, q) is the expected 
value of the demand satisfied with delay.

Solution:
The method of dynamic programming is used to determine the optimal policy.
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Main codes:
1 8 0 1 1 3 5 2 1 1

Assumptions:
The inventory system of reparable spare parts is considered which consists of 

a central and of J  local stores. Demand for spare parts occurs at the local stores 
according to a Poisson process with parameter Xj at store j. The demand is 
instantly satisfied if it is possible, otherwise it is backordered and satisfied later 
according to a first-in-first-out rule. The failed items are examined in the local 
store and repaired if it is possible, with probability rj. The time of reparation is 
Rj at the local store. The failed item is repaired in the central store with proba
bility (1 — rj) Q, and (1 —rj){ 1 — (?) is the probability that it is not reparable. When 
a broken item has been exchanged for a good one at a local store, immediately an 
order is placed to the central store which is delivered with a leadtime tj, if there 
is no shortage in the central store. The time of reparation of a faulty item in the 
central store is R0. The leadtime of the delivery for the central store is t0 (R0S t 0). 
The local stores are controlled by an (Sy —1, Sj) policy and the central store by 
an (j , S) policy.

Objective:
No explicit cost function is derived. The purpose is to analyze the stationary 

properties of the system for given decision parameters.
Solution:

The stationary probability distribution of the inventory level, of the number 
of spare parts under reparation and of the amount of shortage is determined for 
the central and local stores; the application possibilities of these characteristics 
are also outlined.

293. A two-echelon inventory m odel fo r  low dem and item s

XI.1.1.2. Parallel Stores without a Central Store

294. Multi-echelon system with deterministic demand
Main codes:

1 8 0 0 0 1 7 - 1 0 0

Assumptions:
The model is constructed for the supply of a homogeneous item for a large 

region with a constant demand rate for each unit of territory. A multi-echelon 
inventory system is considered, where
— the stores of each echelon are uniformly distributed on the respective territory 

of the consumers;
— each store of an echelon serves a unique territory;
— the delivery between two locations is a linear function of the distance: g= a+ bd  

and is not discounted by the amount of delivery;
— the territory of service is a circle.

358



— a central warehouse which supplies the others within a territory sized S,
— n2 is the number of class two warehouses;
— nx • n2 is the number of class one warehouses.

The model investigates the following three possible ways of the senke organiza
tion:
— at each delivery the demand of a single store on a lower le\el is satisfied:
— the delivered amount is uniformly distributed among the stores of the lower 

level;
— the delivery is distributed among a group of stores according to seme com

bination of the previous two policies.

O bjec tive:

The total cost of the central store for a unit of time, with order inten al length 
T, is equal to

L (T ) = j e f + i ,

where
p is the demand per unit of territory, 
s  is the unit cost of inventory holding,
5  is the area of territory to be supplied.

Solution:
The optimal T  is calculated from the equation dL(T )dt=0. This is a function 

of the delivery costs g , which is influenced by the type of service organization. 
The influence of these factors on the total cost is analyzed for the above three 
cases.

The system consists of three types of warehouses:

295. D is tr ib u tio n  a n d  r e d is tr ib u tio n  f o r  n s to res  w ith  s to c h a s tic  d e m a n d  

M a in  codes:
1 8 0 1 0 1 2 2 1 0

A ssum ptions:

A system of n parallel stores is considered, where the demand of store j  is a 
random variable with probability density function The initial inventory
is distributed among the stores so that each store has an inventory Zj. Later 
on, there is a possibility for redistribution of the inventory among the stores. 
The amount q tj is transported from store i  to store j  with unit transportation 
cost Cij. The set of store indices which increase the stock at the redistribution is 
denoted by M ~, while the set of indices M + denotes the decrease of stocks.

O bjec tive:

The distribution of the inventory is to be determined in such a way that the 
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expected total cost of inventory redistribution and shortage

is minimal, where p { denotes the unit cost of shortage in store i.

Solution:
The algorithm is based on the solution of equations concerning the derivatives 

of the objective, while an inner transportation problem is also to be solved (con
cerning the redistribution for the determination of the sets M  ~ and M  +).

296. Inventory redistribution by simulation

Main codes:
1 8 0 1 1 1 4 1 1 1

Assumptions:
The initial stock of two parallel stores is denoted by S x and S 2 (the model can 

be generalized for an arbitrary number of stores). The time until the next central 
delivery is subdivided into t periods. At the beginning of each period a redistribu
tion is possible between the parallel stores. The demand is generated by a Poisson 
distribution at each store.

Objective:
If the amount R  is transported from store 2 to store 1, its cost for the f-th period 

is
C(R, t) =  CifiSi-f R, t)+C2(S2+R, t)+oit(lcR-}-K),

where kR + K  is the cost of transportation and administration, Cj and C2 are 
the shortage cost functions of the stores and a, is a discount factor depending on 
the period of the redistribution. The optimal R for each period t can be easily 
calculated for given a,. The purpose of the model is to determine the optimal 
value of a , .
Solution:

A simulation method has been developed for determining the optimal a, which 
provides a joint optimum of the individually determined optimal values R  of 
each period.
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297. S to c k  a llo c a tio n  m o d e l f o r  tw o  sto res  w ith  jo in t  d e m a n d

Main codes:
1 8 0 1 1 1 5 1 1 0

Assumptions:
A certain item is stored in two parallel locations. At equidistant points in time, 

random demands occur at each location, which are stochastically dependent and 
have a joint probability density function <p(£). For each period in which an order 
is placed, the vector of initial stocks is x, and the vector of inventory levels after 
ordering is y. The leadtime is zero. The joint inventory of the two stores is bounded 
by the capacity R, the occupation rate is r=(r1,r 2) per unit amount. Let c 
denote the unit cost of purchasing. The total inventory holding and shortage 
cost is described by the function L(y) which is supposed to be strictly convex, 
twice continuously differentiable and can be separated for the two stores.

Objective:
The expected discounted total cost of n periods is to be minimized. Using the 

principle of dynamic programming, this can be formulated by the following 
functional equation:

CH(x) = m in{c(y-x)+L(y)+oe /  C ^ y - Q t p i Q d l ; )
L %  M

C0(x) =  0,
where a is the discount factor.

Solution:
The optimal cost function can be derived recursively, then the critical vector xn 

can be calculated for all n which determines the optimal reorder point sn and order 
level S„ in each period. In the case of C1/r1= C Jr2, the critical vector x„ is identical 
for each n and can be calculated in a simpler way.

298. O p tim a l  p o l ic y  f o r  a  d y n a m ic  m u lti-ech e lo n  sy s te m

Main codes:
1 8 0 1 1 1 5 1 1 0

Assumptions:
The model considers an inventory system with n facilities, each of which carries 

stocks of a single commodity. The random demand for the item at facility j  in 
period i is DiJf and Ф; denotes its joint distribution. At the beginning of period i, 
Xi=(xij) denote the inventories on hand at the facilities. A negative x tJ means a 
backlogged demand.

An order can be placed at the beginning of each period, and delivery takes place 
immediately. The inventories on hand after order are denoted by У(=(уу). 
Thus y t—x t is the vector of order quantities placed in period i at each of the n 
facilities. y t must be chosen from a set Tj of и-dimensional vectors. Dt)
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is the supply policy, which specifies the amount of stock on hand after the demand 
occurs in period i.

The ordering cost in period / is c, and other costs (storage, shortage, redistri
bution cost) are included in the g, function.
Objective:

The expected total cost is to be minimized. The ordering, inventory holding, 
shortage and inventory redistribution costs are considered in the cost function:

Щ У . 0  =  cty+ gi(y, Ú-Ci+iSjy, t).
Solution:

The problem of determining the optimal policy is solved by a minimization of 
an «-dimensional problem. The optimal policy is to order up to the base stock 
level y( in period /. The authors make specific assumptions about F„ st, g t and 
characterize the properties of the model.

XI.1.2. Multi-Echelon Systems with Hierarchical Locations

299. C e n tr a l s to r e - lo c a l  s to re  s y s te m  w ith  d e te rm in is tic  d e m a n d

Main codes:
1 8 0 0 1 1 4 - 1 0 0

Assumptions:
The central store satisfies the order, for an amount Q on each occasion, of a 

local store, when the inventory level of the local store decreases to zero. The 
orders are delivered immediately. When the inventory level of either the central 
store or of the local store decreases to zero, central ordering can be initiated.

The inventory holding cost of the central store is h0 per unit time and unit of 
item, the local unit cost of inventory holding is h with the same dimension. The 
fixed cost of a central order is K0 and of a local order is K. No shortage is allowed.
Objective:

The cost of ordering and inventory holding of the two stores for a unit of 
time is

C(n,Q) = ------jjg----- + Q — — .

where D is the rate of demand at the local store and n is the number of local orders 
during a central ordering cycle.

Solution:
The optimal policy is determined by the parameters which satisfy
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300. Optimal lot-sizes for a production line

Main codes:
1 8 0 0 0 1 3 - 1 0 0

Assumptions:
The inventories in a production line are considered. The production is serial, 

the level i has the production lot sizes Qi=niQ1 (with an integer value of nt): 
This is the amount of order of the level (i — 1) which is produced at a constant 
rate. It is stored in the production line for a certain time, then it is used up for 
the production of the level (i— 1) in lot sizes Öí- i = « í- i6 x- The usage has also 
a constant rate. Between two series of production there is no usage. The produc
tion of the higher level provides for the supply of the lower level. The lot size of 
the final product is Qx.

At each level of the production the following costs are considered:

— the setup cost of a production lot (S');
— the production cost (P) ;
— the unit cost of inventory holding and of capital invested (cx).

The unit production cost is a monotonously decreasing exponential function of 
the lot-size. The inventory holding cost depends on the time of delivery and on 
the setup of a production lot.

Objective:
The total of the above costs in the production line equals

where 7]=— -, while ?1( is the time of delivery and tZji is the time of setup
A

of a production lot for the i-th level.

Solution:
The cost function cannot be minimized in a direct (analytical) way. An iterative 

procedure is suggested, starting with the optimal parameters of the individual 
stores; in this way, the joint optimum can be approximated with arbitrary ac
curacy.

363



301. C h a in  o f  eche lon s w ith  s to c h a s tic  d e m a n d

Main codes:
1 8 0 1 0 1  1 0 1 0

Assumptions:
The chain of echelons is a hierarchical sequence of storage locations where 

each subsequent store satisfies the demand of the previous store. Thus, each 
supplier is connected with a single customer. A three-echelon system of stores 
of a production process is considered. The first level is the finished-product store, 
the second one is an intermediate store and the third one is the raw material 
store. Only the demand of the finished product has to be considered, since the 
demand for lower-level inventories can be derived from this. A period with 
length T  is considered which has a random demand with a probability density 
function /(л ). In the case of a shortage at store i the unsatisfied demand is 
transferred to the subsequent level i-f 1. The inventory is measured in units of 
completed goods at each level. The unit cost factors of shortage p TA and the unit 
cost factors of inventory holding sT i depend on the level of inventory Yt: they 
increase together with the completion rate. Their dimension is [$]/[amount]/[time].

Objective:
For given order levels Yt ( /=  1 ,2,3) the total expected inventory holding and 

the shortage cost of the three levels is equal to
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Solution:
The optimal order levels can be calculated from the system of equations

dL/dY( = 0 / = 1 , 2 , 3 .
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302. Two-echelon model with demand forecasting

Main codes:
1 8 0 1 1 1 5 1 1 0

Assumptions:
Two stores are connected, the first echelon supplies the second one which 

supplies directly the demand of the customers. The estimation of the demand 
of the next period is r/. The conditional expectation of the demand (f) on con
ditioning the estimation t] is denoted by E q4, the expectation of the forecasting 
by En. The unit purchasing costs are denoted by c\ and e2. The expected cost of 
inventory holding and shortage of the first store is a convex function L(yj) of 
the order level yx; at the second store, L2(y2\rj) is also a convex function of y 2 
for any forecasting t], where y 2 means the order level of the second store.

Objective:
The cost optimum of n periods is denoted by /„(xj, x2) for an initial stock 

vector (xl5 x2), the same cost optimum by forecasting t] is denoted by g„(хг, x 2, tj). 
For these cost functions the following functional equations are valid (by applying 
a discount factor a ):

gn(xi,xs,ri) =  min {c2(y2- x2) + L2(y2\ t] ) -c tE ^ [ fn - i (x i -^  y2~ £)]},x1̂ yt^xl
fA x 1 , X 2)  =  min {c1(y1—x1)+ L 1(Y1)+E,l[g„(yJ, x 2, rj)]}.

У\—х 1
Solution:

The optimal cost functions f n and g„ can be separated under the conditions 
given above. The consequence of this fact is that the optimal ordering policy of 
the first store is of the (s, S) type and the optimal order amount for the second 
store can be determined as follows:

min {x„(rj)—x2, S„—x2} if Xj s„ and x2 S

min {x„(»j)-x2) x1- x 2} if х г >  s„ and x 2 ^

0 if x2 >  x„(rj).

The values of s„, Sn and xn(p) can be calculated from respective single-variable 
cost functions using a recursive relation.

XI.2. Multi-Item Multi-Location Models

303. Supply policy in a two-level multi-item multi-store system 

Main codes:
8 8 0 0 0 1 7  - 1 0 0

Assumptions:
A  central store and m local stores are considered. The stores of the lower level 

are connected with each other only through the central store. The number of



suppliers is n and each type of item can be ordered only from a single supplier. 
The model deals with the organization of supply which ensures a minimal replen
ishment and inventory holding cost. There are two different ways of organizing 
supply:
1. Each supplier delivers immediately to the store of the lower level (with cost Lj) :
2. The supply of the lower level takes place through the central store: in this 

case, the delivery cost from the central to the local stores is L3 and the cost of 
supplying the central store is L3.

The costs Lx, L2, L3 are expressed using the following notations:
M i: the set of items purchased from supplier i,
Q j: the set of items delivered to the local store j,
HrJ: demand for item r at store j ,  r£Qj,
gij-. cost of delivery from supplier i to store j ,
gt: cost of delivery from supplier i to the central store,
goi: cost of delivery from supplier i to store j ,
g0J: cost of delivery from the central store to store j,
cr: the unit cost of inventory holding for item r,
krJ: the rate of the item r ordered at store j  in a given period relative to the 

set of items Qj (0^krj^ l ) ,
y: the fixed cost factor of each delivery (independent of r, i and j).
kr: the rate of the item r ordered at the central store

The choice of the optimal supply system may be made directly by comparing 
the costs calculated using the above expressions.

304. Multi-item multi-location model with redistribution and random 
demands

Main codes:

Assumptions:
A multi-item model with parallel locations and a (t, q) inventory policy is 

considered. There are two main tasks: to solve first the system of cost-optimal 
supply at the beginning of each period, then—during the periods—to optimize 
the use of possible redistributions among the parallel stores depending on the

Objective:

Solution:

8 8 0 1 0 1 4 0 1 0
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realization of the random demands. If the shortage cost of each item is summarized, 
then the problem can be separated for the different items. The single-item Model 
294 can be used for all of the items, independently of each other.

If the shortage cost is calculated in each store on the basis of the largest shortage 
of items, then the redistribution has to be determined considering the inventory 
level of all the items. In this case, a “key-item” exists, which is in maximal shortage. 
It is most probably the item with a maximal shortage probability:

maxp, f  f 5ir(x)dx,

where pr is the mean of the shortage costs for all of the stores, Z 6<r is the total 
inventory of item r in the system, and Д ,  is the probability density function of 
the total demand for item r.

Objective:
No explicit cost function is formulated. The main goal is to give the optimal 

redistribution policy.

Solution:
The following three main steps are suggested:

a) to choose the “key-item”,
b) to derive the optimal redistribution according to the key-item using the algo

rithm of Model 294,
c) to give a redistribution for the other items: this has to ensure that the shortage 

cost of any item do not exceed the shortage cost of the key-item and the delivery 
costs are minimal.

305, Dynamic lot-size model for a multi-stage assembly system

Main codes:
8 8 0 0 1 1 4 - 1 0 0

Assumptions:
The considered multi-stage assembly system has the specific assumption that 

any of the stages of assembling may have more than one preceding stage, but it 
may have only a single stage of continuation. There are N  stages F„, and the 
finishing stage is denoted by FN.

T  periods of the system operation are considered. Each period has a known 
demand of finished product which may be different in different periods. A dynamic 
lot-size system is investigated. The production cost is supposed to be concave, 
the inventory holding cost is linear and the two cost components can be separated. 
The following notations are introduced:
qny. the amount produced in period t in stage n, 
y„it: the inventory of period t and stage n,

production cost of period t and stage n of amount q,

367



the unit cost of inventory holding in the stage n at the end of period t, 
r, : the demand for finished product in period t.
b(n): the set of indices of stages preceding stage n,
a(n): the index of stages following n.
The following inequalities are supposed to hold

C„,t(q) ss C ^ .^ q )  for n = 1, N, t = 2 , . . . ,T  and

tfM S  2  f fm,, for n =  1 , N, / =  1 ,..., T.
Objective:

The total production and inventory holding cost in the system is equal to

where

and

2  .,)+ н Я',у П',],
n = l t= 1

Уn ,t Уп, t — 1 4 n ,t  4a (n ),t

for n = 1 , N —l; i =  1, T  

УN,t = yN't- i  + qN,t - r , \  q„'t S  o, y„'t Ä 0

yn. 0 = 0
for t= l , . . . ,T ,

Solution:
The optimal solution can be determined by dynamic programming. The solution 

obtained has the following properties:

yn.t-iqn.t = 0; q„(n),t = 0 implies that =  0;

qnt >  0 implies that qaMt, > 0 ,  t =  1, T, n — l, N.

306. Experience concerning the forecasting and inventory control of a 
warehouse system

Main codes:
8 8 0 1 1 3 4 1 2 1

Assumptions:
In a warehouse-system an (s, q) policy is applied for inventory control. Forecast

ing is used to determine the new values of the reorder point and order quantity. 
The forecasting and control parameters are compared with the actual inventory 
levels for each item to correct the order levels for each item.
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Objective:
No explicit cost function is derived. The purpose of the simulation study is to 

provide an efficient control of the system.

Solution:
A simulation method has been developed. First, forecasting is made for the 

expected sales. The slow moving items are listed. In the case of frequent shortage, 
the decision parameters are corrected.

The paper describes the results of the practical application of the inventory 
control system: a simultaneous decrease of the inventory level and time of short
ages.
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XII. Reliability-Type Inventory Models

The joint characteristic of this family of models is that they focus on the relia
bility of the inventory system on the service level. Generally, they do not contain 
an explicit cost function to be minimized (or a utility function to be maximized) 
but the basic criterion of decision making is the fulfillment of some reliability 
(service level) constraint. The major part of the models consider random delivery 
processes, in which case the undisturbed satisfaction of demand is especially 
difficult and important.

For constructing subgroups, the criteria of classification are the number of 
items and the form of the inventory policy. In the models of the first subgroup, 
the inventory review is periodical and at each review point an order is placed. 
The amount of order is delivered after a known or random time interval (leadtime) 
in one lot. The demand during the leadtime is random and has a known distri
bution type (e.g. a normal or gamma distribution) with unknown parameters 
which are estimated (e.g. based on past demand characteristics). The decision 
variable (which is either the amount of order or the order level) is to be deter
mined by considering the random demand in such a way that the continuous supply 
is ensured on a given service level. The service level may be prescribed by the 
maximal permissible probability or expectation of shortage. The solution is 
usually simple: after estimating the parameters of the demand distribution, the 
inverse of this distribution has to be calculated for a given argument. (This may 
be realized by numerical methods or by tabulating the distribution function.)

The inventory review and ordering are periodical also in the second subgroup, 
but the delivery of a demand is realized not on one occasion but at multiple 
occasions which are not known in advance. The supplier undertakes to deliver 
the whole amount before the end of the period, but the times and amounts 
of the transports within this period are not specified in advance. The delivery 
process, which is considered as a random process at the time of ordering, has 
different patterns. The delivery may occur at random points with different distri
butions while the transported lots may be known, or also random amounts with 
different distributions. The purpose is to determine the initial inventory level in 
such a way that the known or random demand should be continuously satisfied 
with a prescribed probability. Depending on the pattern of delivery and demand, 
the solution can be calculated by a simple formula, by a numerical procedure, or 
by the use of simulation techniques. The inventory level at the end of a period 
(as the initial stock for the next period) has to ensure the prescribed service level. 
The appropriate level of this inventory can be attained by the order for the pre
vious period.

In the models of the third subgroup, continuous reviewing is considered, and
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orders may be placed at an arbitrary time. The instants of ordering are determined 
by the reorder point: it has to be fixed in such a way that the probability of 
shortage may not exceed a prescribed level during the leadtime. The demand of 
the leadtime is random with some known distribution (normal, gamma, Weibull 
distribution), where the parameters may have known or estimated values. These 
models usually do not deal with the optimization of the lot-size, its quantity is 
determined independently of the reorder point. The economic order quantity 
(Wilson formula) or its different generalized versions are usually applied in prac
tice. The methods for finding the reorder point are simple: similarly to the models 
of the second subgroup, they consist of the estimation of the parameters and of 
calculating the inverse of the distribution function.

The models of the fourth subgroup jointly determine the inventory level of 
several items considered. The purpose is to ensure an uninterrupted supply on 
the highest possible level under financial or storage capacity restrictions. The 
objective may be the maximization of the continuous supply probability (reliability 
maximization) or the minimization of the expected maximal shortage (decreasing 
the bottle-neck). Some models have the objective to minimize the capital invested 
in inventories by a prescribed minimal level of the probability of continuous 
supply. The determination of the exact joint optimum of the inventory levels 
usually leads to a rather difficult nonlinear programming problem, where the 
function values may be determined only by Monte-Carlo techniques. In practice, 
simple approximate formulas and approximate solution methods (based on 
Lagrange multipliers) are frequently derived.
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307. R e lia b ility -ty p e  m odel f o r  random  dem an d  a n d  delivery

Main codes:
1 1 1 1 0 2 1 1 7 4

Assumptions:
The inventory is replenished with a fixed ordering frequency. The length of 

the order period T  is prescribed. For the beginning of each period an initial stock 
is planned. It serves as the safety stock of the period for eliminating interruptions 
in demand satisfaction caused by random factors. Continuous supply is to be 
provided on a prescribed service level. (Service level is often measured by the 
probability of continuous supply.)

In the general model, both demand and delivery are random processes. This 
supposition is often necessary, since the information available at the time of 
decision making (ordering) is not sufficient for a deterministic description of any 
of the two processes. Consider the ordering period [0, T). The cumulated demand 
of the period [0, t] with t ^ T  is £(/), and the cumulated delivery of the same 
period is both being random amounts. The initial stock of the period is 
denoted by M. There is no shortage in the period investigated if the inequality

£(0 s  M+t](t)

is valid for each O ^ t^ T .  Due to the random nature of the processes, the fulfill
ment of the above conditions can be guaranteed usually only with a given proba
bility. This is the value of the service level 1— e, prescribed in practice in the 
range 0 .7 s l  —e s O.99, depending on the importance of continuous supply.

In the reliability-type models, different demand and delivery processes are 
considered. One of the most important cases is when the deliveries of an order 
occur at n random instants in the period [0, T\.

If, at the time of ordering, no a priori information is available about the dis
tribution of the time instants of deliveries, then they are assumed to occur at any 
moment of the period [0, T] with the same probability. Thus the elements of an 
ordered sample taken from the uniform probability distribution in [0, T] are 
considered as a realization of the delivery instants:

0=í /£< ...< !„* ==:r.

(As the events t*= tj (for some pair i , j  i ^ j )  are of zero probability, their 
possible occurrence is neglected here, and also in the sequel.)

The amounts delivered may have a random character, too. Suppose that the 
minimal amount <5, which arrives at a delivery with certainty, can be estimated. 
From the amount R  ordered the remaining part R —nd is randomly subdivided 
among the lots delivered by и- l  random points which are
uniformly distributed on the interval [0, R —и<5]. The respective amounts (de
fined by the random subintervals of [0, R —и<5]) are assigned to the delivery 
points and together with the fixed amount ő represent the amounts of deliveries.
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This model of a delivery process can be described by the function

where the factor X=nö/R is the ratio of the deterministic and the total amount 
of deliveries.

The demand process is constructed similarly. The total demand of the period 
[О, Г] occurs at m random points uniformly distributed in time. The minimal 
amount demand is denoted by y, and furthermore, ц=ту. The total amount of 
demand is known and is equal to the amount of order R. The demand R —my 
is randomly subdivided among the m instants of demand, according to a uniform 
distribution, similar to the delivery process.

The initial stock of a period can be influenced by the ordering for the previous 
period. Thus, the planning of the appropriate stock must be performed one 
period ahead. These types of models control according to the (tp, S ) policy, where 
the order level S  is determined as the sum of demand and the necessary closing 
stock of the following ordering period. The necessary closing stock is M,  which 
is the required initial stock of the subsequent period.

Objective:
The purpose of the reliability-type inventory model is to determine the minimal 

level of the initial stock M  which assures continuous supply of the ordering period 
on a prefixed probability level 1— e. It means the solution of the following 
constrained optimization problem:
Find the minimum of M  subject to

P(l&t) s  M + q(t), 0 S  t 3? T) S  1—«.

If the above probability is a strictly monotonous and continuous function of M, 
then the solution of this problem is equivalent to the solution of the following 
equation:

P(£(t) == M+r,(t), 0 s ( s T )  =  l - e .

The latter is referred to as the “reliability equation” and it is usually described in 
the equivalent form

P( sup {^(0—»1(0} — M ) = 1 —e.
O S fS T

Solution:
The exact solution of the reliability equation in the general case is a difficult 

task, but for practical applications it is often sufficient to derive an approximation 
of the optimal solution. For the processes i ( t )  and r\ (t) described above, the
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following approximation can be given:

P (  sup {£(0-4(0} s  M )  «O^t^T

f  2 M2 i f  mn 1
% - e x p { т + п + т ( \ —Х)2+ п ( \ —ц)г j ’

which results in an approximate solution of the reliability equation in the explicit 
form

i n  m ) 2 e

This approximation is valid for sufficiently large m, n (for m, л ё  10). The exact 
solution has not yet been derived.

ХП.1. Reliability-Type Inventory Models for a Single Item 

X IL l.l. Models with Fixed Ordering Period 

ХП.1.1.1. Delivery in a Single Lot

308. Prescribed relative service level
Main codes:

1 1 0 1 0 2 1 1 2 7

Assumptions:
The demand of a period is a random, normally distributed amount with an 

expected value M  and standard deviation D. The order level is determined by 
S=M+XD,  where Я denotes the safety factor to be optimized. By definition, 
the relative service level is y, if the ratio of the satisfied demand exceeding the 
average demand over the total demand has the expectation y. The value у is a 
prescribed constant.
Objective:

The value of the safety factor Я is determined as a function of the prescribed 
service level y, as the solution of the equation

у = Ф(Я)+—4=r f  — e~v,,idv,
Ц п  i  ®

where Ф denotes the standard normal probability distribution function.
Solution:

The values of у can be tabulated as a function of Я. Simple numerical procedure 
can also easily be derived for the solution of the reliability equation.



309. R e lia b ili ty  m odel fo r  the lost sa les case

Main codes:
1 1 0 1 1 2 4 1 2 1

Assumptions:
The length of the order period is prescribed. The leadtime has the length of n 

ordering periods. The demand xk of the k-th ordering period is a random amount 
with a normal distribution, and the expectation and standard deviation are 
denoted by m and 5. The demands of different periods are independent. At 
shortage, the demand is lost.

Objective:
The probability of a shortage occurrence can be expressed by и + 1 

linear inequalities which contain the partial sums of the random amounts xk 
(k= 0,1, ..., и). The reliability constraint is expressed in terms of the probability 
of continuous supply:

■P(x*+! +  ...+*„ — qk + qk+i +  ... +  qn) =  1 -е  к =  0, 1, ..., и, 
where q0 denotes the initial stock and qk is the amount to be ordered in peried к. 

Solution:
By the transformation of the reliability criteria, the determination of qk is 

reduced to a calculation of the \alues of an n 4- 1-dimensional standard, but cor
related, normal distribution function. The solution is defined by the inverse 
function which can be determined in two dimensions by using the tables of the 
function values. In higher dimensions, the Monte-Carlo methed can be applied.

310. Reliability model for a gamma distributed demand

Main codes:
1 1 0 1 0 2 1 1 7 1

Assumptions:
The demand per unit time has a gamma distribution with parameters к and 

px. The leadtime L is constant. The length of the order interval is prescribed. 
The leadtime demand has the density function

f (x )  — (акхк~1е~1а)/Г(к) with a =  k/p.

Г(к) denotes the complete gamma function defined as

Г(к) =  J  akxk~1e~clx dx.
0

Objective:
Two different reliability constraints are considered:

oo

1. the probability of shortage occurrence P -  J f(x)dx\
R
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Ls = /  ( x -R ) f( x )  dx.
R

Solution:
For the reliability constraint of type 1, the reorder level R is determined by an 

iterative process based on Newton-Raphson iteration. The initial value of the 
iteration can be selected by using the tables of the gamma distribution. If the 
value of the parameter к is greater than 50, an approximate formula can be applied 
(based on the approximation of a gamma distribution by normal distribution).

In the case of a reliability constraint of type 2, the order level can be determined 
using the tables of the incomplete gamma function. Approximating the demand 
by a normal distribution, an explicit formula is derived for the order level which 
approximates the required service level. The numerical approximation errors are 
tabulated.

2. the expected value of the amount short

311. Reliability model for slow-moving items

Main codes:
1 1 0 1 0 2 1 1 2 0

Assumptions:
The length of the reviewing period is prescribed. In the majority of the periods 

no demand occurs. The probability of demand in a period is 1 Ip, thus, on the aver
age, after every p periods a demand appears. The quantity of demand is also ran
dom, having a normal distribution with parameters p and a. At the end of each 
period, when demand occurs, an order is placed which is delivered at the 
beginning of the next period. At shortage, the demand is lost. L  is the unit cost 
of the item, 100 h is the percentage cost of stockholding per review interval, 
and C„ is the replenishment cost.

Objective:
The order level S  is to be determined in such a way that the probability of 

shortage does not exceed a prescribed bound, which depends on the cost factors.

* =  {2 log, [ C „ l^ o L h p ] y / \
Solution:

The demand of the next reviewing period is forecasted by a modified version 
of the exponential smoothing method which takes into account the specifics of 
slow moving items. The order level at the end of the f-th reviewing period is 
expressed in the form

R = p+ko.

The values of к for different probabilities of shortage occurrence are listed in 
a table.
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312. R e lia b ility  m odel fo r  tren d  a n d  season a lity  in dem and

Main codes:
1 1 1 1 0 2 1 1 1 3

Assumptions:
Demand is characterized by trend and seasonality. It is forecasted by a second- 

order exponential smoothing method. The absolute error of the forecasting is 
denoted by Ej and the seasonal indices by Sj. The forecasting error is assumed 
to have a normal distribution. The length of the ordering period is prescribed. 
The order is delivered with a leadtime of к periods, where к is not necessarily an 
integer. The amount delivered is not necessarily equal to the amount ordered: 
The absolute value of their difference in period j  is denoted by Fj.

Objective:
The probability of continuous supply is a prescribed value p. For an inven

tory holding cost factor сг and for a shortage cost factor c2, the value p = l —c jc 2 
is suggested as the required service level. The safety stock satisfying the reliability 
constraint is given in the form

Kj+n(p) =  1.25u(p) j / E j [ ' S t H k - n -  l)2^ +n+i] +(n+2)Fj\ 

Solution:
The value of the safety factor u(p) is determined by the equation Ф(и)=р, 

where Ф means the standard normal probability distribution function, while 
Ej, Fj and st are forecasted by exponential smoothing.

The order quantity is defined by

Q j + n  —  P j , k + K j + m

where PJ k is the expected demand of к periods, forecasted at the beginning of 
period j.

313. Internal storage in a production line

Main codes:
1 8 1 1 0 2 1 1 1 4

Assumptions:
The material supply of three production equipments, connected to each other, 

is investigated. The material arrives at the first equipment in fixed lot-sizes, but 
at random instants Ij. The number of deliveries of material is also fixed. The 
distribution of the random instants of delivery is approximated by a multi
dimensional normal distribution. The parameters (expectation, variances and 
covariances) are given by the production controller.

The first equipment supplies two parallel working equipments. The processing 
times (af, ftp 1, bj2>) of the different lots are also random amounts, approximated 
by multi-dimensional normal distribution. The lots after processing get to the 
joint store of the parallel working equipments, thus the input occurs at random
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times in fixed lot-sizes similarly to the first equipment. The demand appears also 
at random times estimated by the production control. The storage capacities are 
bounded.

Objective:
The initial (minimal) stock le\ el t; ( /= 0 , 1,2) is planned by the model in such 

a way that the material supply of the parallel working equipments is guaranteed 
on a prescribed probability level 1 —e:

(-i
P(m axi0-M Ui_,, Ik, + aUi ^  tj+  Z  biJ)< j  =  1.2) S  l - e,

S  —  l

where ut and k t are the indices of serial numbers, and A UÎ 1 is the end time of 
processing the lot i q - l  on the first equipment measured from time t0.

Solution:
The problem is formulated in a stochastic programming model which is proved 

to be a convex programming problem under the above assumptions. The values 
of the multi-dimensional normal distribution function can be determined by 
the Monte-Carlo method.

XII.1.1.2. Delivery in Several Lots

314. R a n d o m  d e l i v e r y  i n  i d e n t i c a l  l o t s

Main codes:
1 1 1 0 0 2 1 1 7 4

Assumptions:
There is a continuous demand with a known constant rate r. The delivery of 

an order occurs in n parts, and in identical lot-sizes. The delivery instants are 
random points of the order interval [0, T\. The deliveries are assumed to occur 
at any moment of the period [0, T) with the same probability. Thus the elements 
of an ordered sample taken from the uniform distribution in [0, T] can be con
sidered as the realization of the delivery instants: t1< t2< . . . ^ t n.

The amount ordered is equal to the total demand rT  of the order period. The 
cumulated amount of delivery in the period [0, T] is denoted by F„(t) for 0 ^ /S  T. 
According to the characteristics of the deliveries we have

which is basically equivalent to the empirical probability distribution function 
of the uniform distribution on [0, T\.
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Objective:
An initial stock M  has to be determined which serves as a safety stock for the 

subsequent period as protection against random disturbances in delivery. In 
other words, the minimal level of the safety stock M  is to be determined, which 
ensures a continuous supply during the whole period [0, J]  on a prescribed 
service level 1—e. For the optimal M, the probability of a continuous supply 
satisfies the equation

P{ sup {r t-F n{ t ) ) ^ M )  = 1 -8 .
o s t a r

The optimal amount of an order is S= M + rT , where M  is the solution of the 
above equation.

Solution:
For the exact solution, the equation

- T ( " ) ( — Г  К Г - -
is to be solved for y, then the optimal amount of the initial stock is M —rTy. 
An iterative procedure is suggested for the solution of the equation, starting

with y0=  j / 5 4 -
The approximately optimal M  can be expressed in explicit form

It is based on an asymptotic distribution, its error decreases with the increase of 
n. For л >10, the approximation is good enough for most practical applications.

315. Random delivery and random intensity of demand

Main codes:
1 1 1 1 0 2 1 1 7 4

Assumptions:
The order is delivered in n identical lots at random instants of the period [0, T\. 

The random delivery process has the same description as in the previous model. 
The demand is constant during the interval [0, T\, but the rate of demand is not 
known exactly. Thus the rate of the total demand and total delivery is a random 
variable denoted by a.

Objective:
The initial stock M  at time f= 0  has to be determined in such a way that the 

random demand is continuously satisfied with given probability 1 - e  during the 
interval [0, T] :

P{ sup {at—Fn(t)} s. M ) = 1—e.
Oiiar
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Solution:
The approximate value of the minimal necessary stock M  is the solution of 

the equation
] _ е - 2 п М Ш  + 1) £ ^ e 2nMx^ _  J _ g

with the notations of the previous model and with E  as a sign of expectation. 
If a has a normal distribution with an expectation m and standard deviation s, 
then the solution is expressed in an explicit form :

for s ^ l /Уп. Here, usually m = l ,  i.e., the expected amount of the total demand 
equals the total amount of order, which has been chosen to be a unit quantity.

316. Random delivery and demand in identical lots

Main codes:
1 1 1 1 0 2 1 1 7 4

Assumptions:
The order is delivered in n identical lots at random instants of the order period 

[0, T], similar to previous models. The total demand of this period is a known 
quantity rT. The demand is also assumed to occur in m identical lots at random

f t
times of the period [0, Г]. The amount of a demand is — . The pattern of the
random times of demands is similar to the model of delivery times: they are 
considered as the elements of an ordered sample of size m taken from the uniform 
distribution on [0, T], independently of the times of deliveries. The cumulative 
demand of period [0, T ] can be expressed by the empirical distribution function 
Gm(t) similar to Fm(t) described at the previous model (0i / s f ) .

Objective:
The initial stock M  provides a continuous supply during the period [0, T] 

with a prescribed probability 1 — e, if the following equation holds

P{ sup {Gm{t)-F m( t j ) ^ M ) =  1 -8 . 
o sisr

The order level is determined by S= M + rT .

Solution:
The exact distribution of the probability of continuous supply is not known for 

the above patterns of the demand and delivery process. The approximate solution 
of the above equation is derived from the asymptotic distribution in the form

The associated error of the formula decreases with an increase of n and m.
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317. Random delivery instants and uniformly distributed random delivery 
amounts

Main codes:
1 1 1 0 0 0 2 1 7 4

Assumptions:
A deterministic demand is considered with constant rate r. The order is delivered 

at n random times which are uniformly distributed in the order period [0, T], 
similar to the previous models. The amount delivered at the г-th instant is /.rtjn + ßi 
(г'=1, where the first component is the deterministic part of the delivery
with O ^A ^i. The random amount ßt is defined in the following way: the in
terval [0, (1 —A)rf] is subdivided by n - 1  independent, uniformly distributed 
random points to n parts, the lengths of these subintervals are ßx, ..., ß„.

Objective:
The minimal level of the initial stock M  is to be determined, which ensures a 

continuous supply during the interval [0, T] on a prescribed probability level 1 — e.

Solution:
The probability of continuous supply is equal to 1 — e at the optimal M. 

First, the equation

{ \ - y Y - y  i f c ( 3 ( V )  f k K - 1V - R ky - kx*-4 l - x r - k- 1dx = e

has to be solved for y, where

The optimal M  is defined by M = r  Гу and the order level by S = M  + rT. The 
solution of the above equation can be derived by an iterative process starting with

Й  =  1/ Ь й T ^ . j / T l n l .

An approximate solution for M  is given in the form

M = / T Y l + ( l - A ) 2j / ^ - l n i

based on the asymptotic distribution of the probability of continuous supply.
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318. R andom  delivery  instants a n d  en tire ly  random , un iform ly d is tr ib u ted
delivery  am ounts

Main codes:
1 1 1 0 0 2 1 1 7 4

Assumptions:
This model is a special version of the previous model, in the sense that the 

delivery amounts are entirely random. It means that at the time of ordering no 
estimation is available about the minimal amount delivered at a single occasion,
i.e.,it maybe arbitrarily small. With the notations of the previous model, A=0 
by this specification. All the other assumptions are the same as in the previous 
model.

Objective:
The minimal level of the initial stock is to be determined which ensures a con

tinuous supply with probability 1 — e.
Solution:

For this special case, a simpler, analytical solution is given. It is the root of 
the equation

which can be solved by an iteration method starting with the initial value

M  =  r T У 1 —̂ e (l-fy 0)> where y0 =  ] / —In — .f n e

This quantity is a good approximation for large values of n.

319. Random delivery instants and random delivery amounts with arbitrary 
distribution

Main codes:
1 1 1 0 0 2 1  1 74

Assumptions:
A deterministic demand is considered during the interval [0, T] with a constant 

rate r. The order placed for the replenishment of stocks for this interval is delivered 
at n random instants which are uniformly distributed in [0, Г], similarly to the 
previous models. The amount delivered at the /-th instant is a random variable 
with the same distribution for each / = 1 , .... n.
Objective:

The minimal level of the initial stock M  is to be determined which ensures 
continuous supply with a prescribed probability 1—e.
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Solution:
The minimal necessary stock is the solution of the equation

where hk(x) is the probability density function of the sum of the first к delivery 
amounts.

320. R a n d o m  d e live r ie s  n o t u n ifo rm ly  d is tr ib u te d  d u r in g  th e  o rd e r  in te r v a l

Main codes:
1 1 1 0 2 1 1 7 4

Assumptions:
A continuous demand with constant rate r is considered in the interval [0, 7]. 

The replenishment of this period is completed by a delivery process which is a 
generalized version of the random delivery described by Models 316 and 317. 
The delivery of an order is realized in n random parts at random instants. The 
minimal time between two consecutive deliveries is y. The interval [0, T —ny] 
is subdivided by L  random points which have a uniform distribution on this 
interval. The deliveries in the order period may be cumulated at any part-period 
in a random way. Let ...~zxl denote the ordered sample formed from
L  random points. Out of this ordered sample we select those which have sub
scripts according to the cumulation of the deliveries. The
choice of the indices L  and k t can be based on fitting them to the statistical data 
of earlier observations concerning the delivery instants. According to the model, 
the time points of deliveries are

x*h  and i y + x j ' - x j ' ^  for / =  2 ,3 ,.. . ,  n.

The minimal amount delivered at one occasion is denoted by S. The random 
part of the deliveries is subdivided among the delivery time points on a similar 
way. The interval [0, r T —nő] is subdivided by N  random points uniformly dis
tributed on this interval, the ordered sample is ...-^у^Ш гТ—пд.
Then the lots of deliveries are (5+>’£,, ö + y ^ —y ^ , ..., ő+ rT — where the 
integers l ^ k i ^ k ^ k ^ ^ N  are chosen according to the distribution of the 
random parts of deliveries (based on statistical data).

Objective:
The initial stock M  is to be determined which provides for the continuous 

supply during the period [0, T] with a prescribed probability level 1 —e.

Solution:
The reliability criteria can be formulated using an n-dimensional probability 

in the form
P(£, S  M + ( i - \ ) 6 - i y ,  i  =  1 , . . . ,  n) =  l - £ ,  

where ^ = x * h  and for /= 2 ,3 ....... n.
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The equation can be solved by an iterative procedure calculating the proba
bility of the continuous supply by a Monte-Carlo method.

321. Multi-period reliability model

Main codes:
1 1 1 1 0 2 1 1 1 4

Assumptions:
D subsequent time periods are considered with a fixed length Г  of a reviewing 

period. The delivery and demand processes are both random, i.e., the numbers 
of deliveries and demand occurrences follow some (possibly unknown) joint 
discrete probability distribution; further, for any fixed numbers m ,n  of deliv
eries and demands, they can be described similarly to that which was applied 
in Model 306.
Objective:

The initial stock M  of the first period is to be determined in such a way that 
continuous supply is ensured during D periods with a prescribed probability 
l - s B:

max [ sup { Ш - Ч Л Ш  S  M)  ё  1- ed,w O^t^T
where

P(Zd(0  =  Gm(t,p),t]d(t) = Fn(t, A)) = p mn 2Pmn = \, d =  1, ...,£>.
m,n

Solution:
An approximate solution is given by the formula

— In In —-------BD

---------- t 58— .a d

where the constants A D, ВD are estimated (on the basis of earlier observations) 
by graphical or numerical methods. This approximation is based on an asymptotic 
distribution, thus its error decreases with an increase in the number of demands 
and deliveries. (The approximation is acceptable in practice, if min {m, n} ё  10 
and 2.)

322. Reliability model for continuous random demand and delivery

Main codes:
1 1 1 1 0 2 1 1 7 3

Assumptions:
The random demand of the time interval [0, i] has the expected value rt and 

the standard deviation a ^ t  for O ^ t^ T ;  it is assumed to have a normal dis
tribution for O S t^ T  with the above parameter values and it has independent 
increments. This model of the demand process is the so-called homogeneous
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Wiener process. The delivery is also continuous and has, similarly, the pattern 
of a Wiener process rj, with parameters v and tr2- It means that both delivery and 
demand have a mean intensity rate which is disturbed by random influences 
having a normal distribution.

Objective:
The initial stock M  of the order period [0, T] has to be determined in such a 

way that a continuous supply is ensured for the whole period at a given probability 
level 1—e.

Solution:
The above reliability constraint is expressed by the relation 

P( sup { £ ,-4,} £  M )  =  1 -e ,

which is equivalent to the following equation (to be solved for M ):

Here a = ^o \+ o \  and Ф denotes the standard normal distribution function. 
The above equation can be solved by numerical methods. In the case, when 
demand and delivery have the same mean rates (r=v), then the solution is equal to

М =  /^ Г Ф -1( 1—i ) ,

where Ф-1 denotes the inverse of the distribution function Ф.

323. Reduction of the on-hand inventory at a given service level

Main codes:
1 1 1 1 0 2 1 1 1 1

Assumptions:
The quantity demanded in the time interval [0, t] is a random amount with 

probability density h{x). Orders are placed periodically with the fixed length T  
of a period. Orders placed at t= 0  arrive during the interval (т, т +  Г) in n 
random parts at n random instants. The model of this process is similar to the 
delivery process described in Model 306. The demand is a continuous random 
process assumed to have stationary and independent increments. The order level 
is denoted by S. The inventory holding cost factor is 1C, the shortage cost factor 
is p  and ß=p/(IC+p).

Objective:
The purpose is to investigate what changes in the parameters of the demand 

or delivery processes make possible the reduction of the on-hand inventory
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s
D (S ')=  J  (S - x ) h ( x ) d x  without increasing the expected shortage B ( S )  = 

о
CO

=  J (x - S ) h { x ) d x .
s

Solution:
The optimal S = S ( ß ) is determined from the equation

s
J  h(x)dx  =  ß.
0

A general condition is derived in the form of an inequality concerning the 
mixture of the demand and delivery distributions: h2(S2(ß))^hll(S1(ß)). If this 
inequality holds, the inventory reduction is possible for the new system with 
other parameters. For approximation by a normal or gamma distribution, the 
decrease of variance is a sufficient condition which can be fulfilled by changing 
different parameters of the demand or delivery.

XII.1.2. Reorder-Point Models

324. A p p r o x im a te  fo r m u la  f o r  th e  s a fe ty  fa c to r

Main codes:
1 1 7 1 0 2 2 2 7 7

Assumptions:
The demand during the leadtime is a random variable with an expected value 

X and standard deviation a. The leadtime may also be random. The order is 
placed at a single instant. Continuous reviewing is assumed. Ih e  amount of 
order is determined independent of the reorder point: it is not specified, so 
the economic order quantity may be selected.

Objective:
A reorder point must be specified which keeps the shortage probability under 

a prescribed value q. It is expressed in the form s= x+ ko ,  where к is the safety 
factor depending on p.

Solution:
If the value of x is much larger than c, then the leadtime demand can be approx

imated by a normal distribution. The required value of к is determined by the 
inverse of the standard normal distribution function. This inverse function is 
approximated by Tukey’s lambda distribution. It results in the following explicit 
expression for the approximation of the safety factor

к  =  5.0633 ([1 - p f ™ - p 0™] O s p ^ l .
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325. Reliability model with random leadtime and (s, q) policy 

Main codes:
1 1 1 1 0 2 2 2 1 3

Assumptions:
Unit amounts are demanded at random instants. The demand process is 

stationary with a mean rate M. The leadtime is also random. The demand dis
tribution during the leadtime is characterized by the probability density function 
p(x). The mean demand in leadtime is M L. The holding and ordering cost is 
denoted by h and K, respectively.

Objective:
The expected cost of inventory holding and ordering per unit time 

+ is minimized, where Q is the economic order quan

tity. No shortage cost is included. Instead, the reliability constraint I Jq=B  
is considered, where Ix means the expected value of shortage and В is a prescribed 
constant.

Solution:
The above constrained minimization problem is reduced to the solution of a 

system of two equations, for which different numerical procedures are available. 
No specific procedure is suggested.

326. (j , q) policy with shortage constraints applied for spare parts inventory 
Main codes:

1 1 0 1 0 2 2 1 1 1
Assumptions:

Spare parts are demanded in single units at random instants. The total demand 
during a reviewing period is approximated by a normal distribution with an 
expected value d  and standard deviation a. Orders may be placed at each reviewing 
time. The leadtime equals the length of L  reviewing periods. The demands of the 
different reviewing periods are independent random amounts.

The model was applied for the inventory control of spare parts of machines 
in a mine. The reviewing period has the length of a month. The maximal number 
of the annual orders is restricted to W.

Objective:
The safety stock is determined by the prescribed limit S  on the probability of

£ (D )+ M
the shortage: jg  P(D)=S,  where D is the demand in leadtime, E(D) is

D= 0
its expectation, P(D) is its probability and M  is its lower limit.

Solution:
The safety stock is expressed in the form K \ L * S + 0 . l d L ,  where the safety 

factor К  is determined by the shortage constraint. A table is constructed, based
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on the normal distribution, which contains the values of К  for different service 
levels of continuous supply. The reorder point s is determined as the sum of the 
safety stock and of the expected demand during leadtime:

s = K f L * S + \ . \ d L .

The order quantity is expressed by means of the ordering cost P and the maximal 
number of annual orders W  in the form q = cfd/P,  where c = \2dP/ÍV.

327. Determination of the reorder level under a shortage constraint

Main codes:
1 1 1 1 0 2 2 2  1 3

Assumptions:
Spare parts are demanded by units at random instants according to a Poisson 

process. The leadtime is also a random variable with a gamma distribution. Thus 
the leadtime demand has negative binomial distribution. The number of annual 
orders may not exceed the value W.

Objective:

The safety stock is to be determined in such a way which ensures a continuous 
supply with a prescribed probability. The amount of order is determined by the 
minimization of ordering cost under the constraint on the maximal number of 
annual orders.
Solution:

The leadtime demand is approximated by a normal distribution with an expected 
value dL and standard deviation d L + d 2r(L) where d means the average demand 
of an ordering period, L  is the expected length and r(L) is the standard deviation 
of the leadtime. The safety stock is expressed by K\f Ld+d2r(L), where the 
safety factor К  depends on the prescribed probability of continuous supply and 
can be expressed using the inverse of the standard normal distribution. The 
amount of order is equal to

l l d f d p
w

where p denotes the cost of an order.

328. Reorder point for a Weibull distributed leadtime demand

Main codes:
1 1 1 1 0 2 2 2  73

Assumptions:
At continuous reviewing, an order is placed at the reorder point s. The leadtime 

is a random variable: the case of a gamma and a normal distribution is considered. 
The demand for a time-interval with a fixed length L  is also a random variable 
which may have a Poisson, gamma or normal distribution.



The reorder point has to be determined which fulfills a reliability criterion. 
Two possible measures of reliability are investigated:

1. the probability of shortage is constrained,
2. the expected value of shortage is constrained.

Solution:
Under the above conditions, the total demand during the leadtime can be desc

ribed by a Weibull distribution with parameters b and c for which an estimation 
method is derived. The reorder point for the reliability constraint type 1 is expressed 
in the explicit form j= h [ - ln  (1 — p)]1/c, where p means the prescribed probability 
level. For the constraint type 2, the solution can be expressed using the tables 
of the incomplete gamma function. The order quantity is not considered by the 
model.

Objective:

329. Bayesian determination of the reorder point

Main codes: 

Assumptions:
1 1 7 7 0 2 2 2 2 9

The demand of the leadtime is a random variable with an unknown discrete 
distribution function with possible values 0,1, ..., N. Under continuous review
ing, the value of the reorder point j  has to be determined which fulfills a reliability 
criterion. This is one of the following possible measures of the service level:
1. the probability of shortage may not exceed a prescribed level,
2. a prescribed rate of demand has to be fulfilled without delay (demand is lost 

at shortage),
3. a prescribed rate of demand has to be fulfilled instantaneously, the other part 

of the demand is fulfilled with delay (backorders case).

Objective:
Case 1: The minimal integer j= ja of the reorder level is to be determined for 

which the probability of shortage is bounded by a

where a is the prescribed probability level and r \  is the number of leadtimes 
when the amount к has been demanded.

Case 2: The minimal integer j= jp  is to be found for which there holds

26 Chikán 3 8 9
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where the left-hand side expresses the expected demand lost due to shortage, 
q is the amount of the order and ß is the prescribed rate of satisfied demand. 

Case3: j= jy is the minimal integer for which we have

2  (k ~j)™k
----------- 3 ( 1  - y ) q ,

2  mii = 0
where у is the prescribed service level according to criterion 3.
Solution:

The algorithm is constructed on the basis of the Bayesian principle in the 
following steps for each of the above three types of service level:

1. The probability of a leadtime demand z = j  is denoted by pj. The a priori 
estimation is pj. The likelihood function P(E\p0, p l , pN)= kplr,pn1x...p”N has 
a multi-nomial distribution, where E  denotes the event that the leadtime demand 
is observed n times and, of these, w; times the demand for amount i was detected

( 2 4  =  «)•
» • = i

The corresponding a priori distribution is a multi-dimensional beta distribution 
of the p'jS ( /= 1 , ..., N) for which

P(z =  *) =  - £ k— ,
2  mi 
i = 0

where the values of m,- are the theoretical equivalents of the empirical values и;.
2. Knowing the values pj j = l , . . . , N  and using the above relation, the 

values of mk are determined unambiguously, if an arbitrary additional constraint 
is considered.

3. The required type of service level is chosen from the three possible alterna
tiv es.

4. The parameters are modified using the new observations according to the 
additive rule т "= т \+ ип where т\ is the a priori parameter and m" is the a 
posteriori parameter. After this, return to the step 3.

330. Stochastic (S, — 1, S) policy with a reliability constraint for waiting 
time

Main codes:
1 1 1 1 0 2 5 2 1 3

Assumptions:
The demand is random with discrete values. The time between two consecutive 

demand occurrences has an exponential distribution with the expected value
1

Щ - ф )



for a unit time. The amount demanded at a given occasion has a geometric dis

tribution with mean -— - :
l - t f '

P(K = k) = (0 <  ф <  1; к = 1 ,2 ,...) .

Thus the demand of a unit of time has a compound geometric Poisson distribution. 
There is a continuous reviewing. As a demand occurs, an order is placed which 
increases the inventory level to the order level S. The units ordered are delivered 
after an independent exponentially distributed leadtime with mean l/p. Thus the 
units, ordered at the same instant, arrive usually at different instants. The demand 
is waiting in the case of stockout. The waiting time W  is also a random variable.

Objective:
The order level S  is to be determined considering the constraint on the waiting 

time P (W S  w) ̂ a ,  where w and a are prescribed values.

Solution:
The steady-state probabilities of the waiting time are expressed by 

F(w) = P{W=§ w) =  2  p (N  = «) 2  p (k  =  k) p (w = w\N = n , К  = к),
л= 0  k = 1

where N  is the number of items ordered and so far not delivered. The random 
variables N  and К  are assumed to be independent. The explicit form of the proba
bility distribution F(w) is derived for Poisson demand and the compound geo
metric Poisson demand described above. The probabilities are calculated for 
some parameter combinations.

ХП.2. Multi-Item Reliability Models

331. Reliability model for the ordering and transporting frequency

Main codes:
8 1 0 1 0 2 0 1 0 1

Assumptions:
The order has to be placed simultaneously for all of the items considered. The 

length of order period T  is subject to control. The delivery of the order begins 
after a leadtime L  and is realized in N  identical parts at equidistant time points. 
The transportation cost of each item at each transport occasion is denoted by 
c4. The unit cost factor of inventory holding is c\. The fixed cost of an ordering 
is c3. There is a continuous, random demand with mean rate r.

Objective:
The expected cost of inventory holding, ordering and transportation for a unit 

of time is to be minimized under a reliability constraint according to which the 
probability of shortage may not exceed the prescribed limit s.

26* 391
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Solution:
First the constant X is to be determined, for which the probability of a demand 

rate larger than Xr is less than e. Flaving obtained this value, the optimal length 
of the order period is expressed in the form

T0= Г w j L + Í wiL+iW]/L + ... ,  where
C-j АГ

The optimal order level calculated item by item is

S0 = r(L + T0)+Xr УL + T0
and the optimal number of transportations of an order is the integer part of

332. Multi-item model with constrained conditional expectation of shortage

Main codes:
8 1 1 0 0 2 1 1 1 4

Assumptions:
К  different items are demanded continuously with constant rates in a given 

period [0, Т]. The order placed for refilling the stock of item i in this period is 
delivered in и,- parts. The time points of these deliveries are random points of the 
interval [0, T ]. The minimal time interval between two consecutive deliveries is 
denoted by уf. The interval (0, T — n.y,) is subdivided by п, —1 random points 
which are chosen as the appropriate elements of an ordered sample of independent, 
uniformly distributed random points on the interval [0, T — n(yj. The yielded 
subintervals represent the random parts in the interarrival times of deliveries 
similar to Model 319. The amount delivered at one occasion consists of a fixed 
part ői and a random part which is modelled similarly to Model 319.
Objective:

An initial stock M (,) is planned for each item to assure continuous supply. 
This needs an extra capital investment The initial stock of the Ä item
has to be determined. With the minimal possible amount of total capital invested 
in initial stock,

i - l

a prescribed service level of the joint continuous supply has to be ensured. The 
service level is measured by the probability of shortage and by the conditional 
expectation of shortage (under the condition that shortage occurs in the con
sidered period).
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The determination of the optimal level of the initial stocks under the above 
constraints means the solution of a stochastic programming problem. It is pro\ed 
to be convex programming problem which has been solved by the SUMT method 
with logarithmic penalty function. The probability and conditional expectation 
of the shortage occurrence were determined by Monte-Carlo techniques.

9

333. Simulation model for the maximization of reliability under capacity 
constraints

Main codes'
8 1 1 1 0 2 1 1 7 1

Assumptions:
The demand of item i is described in the period O ^ t ^ T  by a stochastic 

process t]\. The delivery during the same time interval [0, t] is also a random 
variable denoted by £,‘t. The distribution of the random variables are known. 
They are continunous and the logarithm of their joint density function is a concave 
function (e.g. multi-dimensional normal distribution). The total storage capacity 
is limited, but constraints may be prescribed also for the maximal inventory of 
a group of items.

Objective:
The amount of the initial stocks M t has to be determined under the capacity 

constraints of the store, and a way that the possible maximum of the service level 
should be reached. The service level is measured by the n dimensional joint proba
bility of the continuous supply expressed in the form

Р [ оМ т( М , + ^ - п ‘)шО,  i = l , . . . , n ] .
Solution:

The service level can be calculated for an arbitrarily given vector of initial 
stocks (Ml5 ..., M n) by simulation. The objective function is a convex function 
of the initial stocks, thus not having available gradients it can be minimized step 
by single variables until the change of the objective function decreases under step 
by a given value. The convergence of the procedure is proven.

334. Analytical model for the maximization of reliability under investment 
constraint

Main codes:
8 1 1 0 0 2 1 1 1 4

Assumptions:
A deterministic demand with constant rate r ; is considered in the time period 

[0, T] for item i ( /= 1 ,2 , ..., k) .The order placed for the refilling the stock of 
item / in this period is delivered in щ parts of identical amounts. The deliveries 
occur at random instants of period [0, Г]. The minimal time between two con-

Solution:
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secutive deliveries is y;. The time of the y'-th delivery is t j= j  • Xt+u*, where Uj 
denotes the y'-th element of the ordered random sample of size nt taken from the 
uniform distribution on [0, T —И;у,]. The capital invested in the initial stocks

к
of the items is 2  dtM it which amount is bounded from above.

j = 1
Objective:

The amount of the initial stocks is determined under the investment constraint. 
The purpose is to maximize the reliability of the system which is measured by the 
probability of the continuous supply during the interval [0, T]:

П  P( sup {nt-biO)} = M ;),
> = 1  O S t S T

where £>,(0 denotes the cumulative amount of delivery during the interval [0, T] 
according to the random delivery process defined above.

Solution:
The probability of the continuous supply is approximated by a simple analytical 

formula based on asymptotic distribution theory. The constrained optimization 
problem is reduced by the Lagrange multiplier method to the solution of a single 
equation with one variable. The other decision variables can be expressed by this 
value. This simple solution method provides an approximation of the optimum, 
sufficiently close for practical applications.

335. Multi-item model under two different shortage criteria

Main codes:
8 1 0 1 0 2 4 1 1 0

Assumptions:
A single period is considered in which a random demand appears for item к 

with a probability distribution Fk (/c =  l, 2, ..., и). The different items are de
manded independently of each other. The amount qk is purchased for unit price 
ck at the beginning of the period. The total invested capital is bounded:

21 ck Qk — C-
k=i

Objective:
The total capital invested is to be divided among purchases of the items in 

such a way that a shortage criteria is optimally met. A usual criterion is the 
expected value of the total shortage for all of the items:

n 00
min 2  i  [1 - F k(qk+y)]dy.

«к *=i0

Another criterion is also investigated. Here the purpose is to minimize the ex
pected shortage for the item which has the maximal shortages (it has the meaning



of elimination of the bottle-neck). The form of this objective function is

00 П
min f  [ 1 -  П  Fk(qk+y)\dy.

4* 0 *=1
Solution:

The optimality conditions can be described for the above two different criteria 
by the Lagrange multiplier method in the following forms:
For the first criteria

00

/  f i(Xi+y) dy+ T2Ci+r2§i =  0 /  =  1, 2, n 
0

and for the second criteria
о©

/  2  Fk(qK+y)fi(4i + y ) d y + r lc , + t M =  0 / =  1,2, .... и 
0 **«

with the Lagrange multipliers ть т1>г, t2jÍ i = 1, ..., n.

336. Continuous-review multi-item model with shortage criterion

Main codes:
8 1 0 1 0 2 2 2 1 3

Assumptions:
An {s, q) policy system is considered for N  items under continuous reviewing 

and random leadtime with an expected value xt. The leadtime demand is normally 
distributed with an expected value / ; and standard deviation <t; for item i. The 
unit cost factor of inventory holding is denoted by c2, the fixed cost of an ordering 
is c3. The reliability of the continuous supply can be constrained item by item 
or jointly. Two different measures of this reliability are considered:

1. The probability that no shortage occurs during an order interval

is constrained from below; 
or

2. The expected rate of shortage and amount of order
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^y.

is constrained from above, where tt denotes the quotient — , while Ф and (p
ti

denotes the probability distribution and probability density function of the 
standard normal distribution.

Objective:
The sum of the expected cost of inventory holding and ordering,

i = l  i = l  1 = 1 '.  /

is minimized under the reliability constraint of type 1 or 2. The optimal value 
of Si is determined by the reliability constraint.

Solution:
For both constraints the Lagrange multiplier method can be applied and a 

system of nonlinear equations is derived for the optimal values of st and qt which 
can be solved by iterative procedures. An approximate formula for finding the 
optimal solution is also derived.
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Appendix

I. Sources of Models

1. Naddor (1966)
2. Hadley—Whitin (1963)
3. Naddor (1966)
4. Naddor (1966)
5. Naddor (1966)
6. Schussel (1968)
7. Buchan—Koenigsberg (1967)
8. Naddor (1966)
9. Naddor (1966)

10. Naddor (1966)
11. Naddor (1966)
12. Naddor (1966)
13. Naddor (1966)
14. Barbosa—Friedman (1978)
15. Schussel (1968)
16. Naddor (1966)
17. Naddor (1966)
18. Schwartz (1970)
19. Simon (1952)
20. Simon (1952)
21. Naddor (1966)
22. Hadley—Whitin (1963)
23. Naddor (1966)
24. Hadley—Whitin (1963)
25. Tate (1964)
26. Hadley (1964)
27. Naddor (1966)
28. Naddor (1966)
29. Рыжиков (1969)
30. Naddor (1966)
31. Naddor (1966)
32. Naddor (1966)
33. Naddor (1966)
34. Henery (1979)
35. Donaldson (1977)
36. Donaldson (1977)
37. Resh—Friedman—Barbosa (1976)
38. Ледин—Ермаков (1978)
39. Peckelman (1974)
40. Elmaghraby—Bawle (1972)
41. Kunreuther—Schrange (1973)
42. Schussel (1978)
43. Pierskalla—Roach (1972)
44. Goyái (1977)
45. Dave (1979)
46. Falkner (1970)
47. Hadley—Whitin (1963)

48. Hadley—Whitin (1963)
49. Hadley—Whitin (1963)
50. Hadley—Whitin (1963)
51. Hadley—Whitin (1963)
52. Buchan—Koenigsberg (1967)
53. Buchan—Koenigsberg (1967)
54. Buchan—Koenigsberg (1967)
55. Buchan—Koenigsberg (1967)
56. Рыжиков (1969)
57. Рыжиков (1969)
58. Grinold (1967)
59. Daniel (1963)
60. Suddenth (1965)
61. Prékopa (1973)
62. Nahmias (1975)
63. Nahmias (1975)
64. Fries (1975)
65. Wagner (1968)
66. Naddor (1966)
67. Naddor (1966)
68. Naddor (1966)
69. Naddor (1966)
70. Naddor (1966)
71. Gross (1963)
72. Jagannathan (1978)
73. Jagannathan (1978)
74. Iglehart—Jaquette (1969)
75. Schneeweiss (1974)
76. Kao (1975)
77. Gonedes—Lieber (1974)
78. Рыжиков (1969)
79. Buchan—Koenigsberg (1963'
80. Hochstädter (1969)
81. Jagannathan (1978)
82. Naddor (1966)
83. Naddor (1966)
84. Naddor (1966)
85. Naddor (1966)
86. Naddor (1966)
87. Hadley—Whitin (1963)
88. Hadley—Whitin (1963)
89. Hadley—Whitin (1963)
90. Prékopa (1972)
91. Hochstädter (1969)
92. Hadley—Whitin (1963)
93. Hochstädter (1969)
94. Naddor (1966)
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95. Klemm—Mikut (1972)
96. Klemm—Mikut (1972)
97. Hausman—Thomas (1972)
98. Naddor (1966)
99. Naddor (1966)

100. Naddor (1966)
101. Naddor (1966)
102. Рыжиков (1969)
103. Psoinos (1976)
104. Donaldson (1974)
105. Gerencsér (1970)
106. Hadley-—Whitin (1963)
107. Hadley—Whitin (1963)
108. Лаврениенко (1972)
109. Рыжиков (1972)
ПО. Wagner (1968)
111. Klemm (1973)
112. Hadley—Whitin (1963)
113. Hadley—Whitin (1963)
114. Nahmias—Wang (1979)
115. Naddor (1966)
116. Naddor (1966)
117. Snyder (1974)
118. Schwartz (1970)
119. Hausman—Thomas (1972)
120. Naddor (1966)
121. Arrow—Karlin—Scarf (1958)
122. Valisalo—Sivazlian-—Mailott 

(1972)
123. Hochstädter (1969)
124. Naddor (1966)
125. Naddor (1966)
126. Girlich (1971)
127. Girlich (1971)
128. Hochstädter (1969)
129. Naddor (1966)
130. Croston (1974)
131. Rosenshine—Obee (1976)
132. Geisler (1964)
133. Naddor (1966)
134. Greenberg (1965)
135. Klemm (1973)
136. Geisler (1964)
137. Schneider (1978)
138. Schneeweiss (1971)
139. Rose (1972)
140. Gross—Harris (1971)
141. Gross—Harris (1971)
142. Wessels (1973)
143. Naddor (1966)
144. Sivazlian
145. Snyder (1974)
146. Gerencsér (1973)
147. Henin (1972)
148. Iglehart—Morey (1972)
149. Cawdery (1976)
150. Hadley—Whitin (1963)
151. Das (1975)
152. Gebhardt (1972)
153. Herron (1967)

154. Bürgin (1970)
155. Richards (1976)
156. Mann (1973)
157. Рыжиков (1969)
158. Kulcsár (1979)
159. Wagner (1968)
160. Das (1975)
161. Ziermann (1953)
162. Рыжиков (1969)
163. Рыжиков (1969)
164. Рыжиков (1969)
165. Рыжиков (1969)
166. Рыжиков (1969)
167. Рыжиков (1969)
168. Рыжиков (1969)
169. Рыжиков (1969)
170. Рыжиков (1969)
171. Рыжиков (1969)
172. Рыжиков (1969)
173. Рыжиков (1969)
174. Рыжиков (1969)
175. Buchan—Koenigsberg (1967)
176. Prékopa (1972)
177. Gerencsér (1972)
178. Agin (1966)
179. Buchan—Koenigsberg (1967)
180. Smith (1977)
181. Das (1977)
182. Feeney—Sherbrooke (1966)
183. Loo—Ghossal (1971)
184. Mumford (1977)
185. Hochstädter (1969)
186. Hochstädter (1969)
187. Рыжиков (1969)
188. Denardo (1968)
189. Iwaniec (1979)
190. Iglehart—Jaquette (1969)
191. Kao (1975)
192. Veinott (1963)
193. Thomas (1974)
194. Iglehardt—Jaquette (1969)
195. Stidham (1977)
196. Wijngaard (1973)
197. Porteus (1971)
198. Porteus (1972)
199. Hochstädter (1969)
200. Tijms (1974)
201. Snyder (1975)
202. Veinott (1963)
203. Hadley—Whitin (1963)
204. Iglehart—Jaquette (1969)
205. Iglehart—Jaquette (1969)
206. Brown—Corcoran—Lloyd (1971)
207. Schneeweiss (1971)
208. Tur (1972)
209. Howe (1974)
210. Wijngaard (1973)
211. Veinott (1965)
212. Simon (1952)
213. Zangwill (1966)
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214. Рыжиков (1969)
215. Hadley—Whitin (1963)
216. Rao (1976)
217. Wagner (1968)
218. Goyal (1977)
219. Hadley—Whitin (1963)
220. Blackburn—Kunreuther (1972)
221. Blackburn—Kunreuther (1972)
222. Liberatore (1977)
223. Hochstädter (1969)
224. Hochstädter (1969)
225. Karlin (1960)
226. Scarf(1960)
227. Hadley—Whitin (1963)
228. Wagner 1968)
229. Sobel (1971)
230. Bessler—Zehna (1967)
231. Cohen (1976)
232. Nahmias (1977)
233. Hochstädter (1969)
234. Hadley—Whitin (1963)
235. Hadley—Whitin (1963)
236. Riis (1965)
237. Naddor (1966)
238. Naddor (1966)
239. Naddor (1966)
240. Naddor (1966)
241. Goyal (1974)
242. Рыжиков (1969)
243. Tate (1964)
244. Рыжиков (1969)
245. Рыжиков (1969)
246. Рыжиков (1969)
246. Рыжиков (1969)
247. Рыжиков (1969)
248. Рыжиков (1969)
249. Рыжиков (1969)
250. Polyzos-—Xirokostas (1976)
251. Рыжиков (1972)
252. Silver (1965)
253. Hochstädter (1973)
254. Hochstädter (1973)
255. Veinott (1965)
256. Veinott (1965)
257. Dékány (1974)
258. Rényi—Ziermann (1963)
259. Hadley—Whitin (1963)
260 Hadley—Whitin 1963)
261. Buchan—Koenigsberg (1967)
262. Buchan—Koenigsberg (1967)
263. Gerson—Brown (1967)
264. Gerson—Brown (1967)
265. Gerson—Brown (1967)
266. Kelle (1977)
267. Prékopa (1973)
268. Wharton (1975)
269. Garman (1976)
270. Hadley—Whitin (1963)
271. Page—Paul (1976)
272. Naddor (1966)

273. Рыжиков (1969)
274. Zoller (1977)
275. Hadley—Whitin (1963)
276. Рыжиков (1969)
277. Prékopa—Kelle (1976)
278. Bomberger (1966)
279. Hodgson (1972)
280. Hodgson (1972)
281. Dorsey—Hodgson—Ratliff (1974)
282. Simmons (1972)
283. Simmons (1972)
284. Goyal (1973)
285. Pentico (1976)
286. Kleindorfer—Newson (1975)
287. Wolfson (1965)
288. Gross (1963)
289. Whitin (1973)
290. Whitin (1973)
291. Whitin (1973)
292. Hadley—Whitin (1963)
293. Simon (1971)
294. Рыжиков (1969)
295. Рыжиков (1969)
296. Berman (1961)
297. Iglehart—Lalchandani (1967)
298. Bessler—Veinott (1966)
299. Schwarz (1973)
300. Schussel (1968)
301. Рыжиков (1969)
302. Iglehart—Morey (1971)
303. Рыжиков (1969)
304. Рыжиков (1969)
305. Crowston—Wagner—Williams 

(1972)
306. Bishop (1974)
307. Prékopa (1963)
308. Rényi—Ziermann (1961)
309. Yaspan (1972)
310. Bürgin (1975)
311. Croston (1972)
312. Mann (1971)
313. Kelle (1978)
314. Ziermann (1963)
315. Kelle (1984)
316. Ziermann (1163)
317. Prékopa (1963)
318. László (1973)
319. Kelle (1984)
320. Prékopa (1913)
321. Pintér (1978)
322. Németh (1971)
323. Gerencsér (1971)
324. Silver (1977)
325. Cawdery (1976)
326. Magson (1979)
327. Magson (1979)
328. Tadikamalla (1978)
329. Silver (1965)
330. Feyerherm—Machado (1975)
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331. Polyzos—Xirokostas (1976)
332. Prékopa—Kelle (1976)
333. Pintér (1973)

334. Kelle (1977)
335. Miller (1971)
336. Herron (1967)
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Inventory models have always been in the focus of interest of operations management 
experts. This book provides a unique new overview of at least part of the huge literature on 
these models. It contains the classification, analysis and detailed description of 336 models, 
among them the majority of the classical ones. The main emphasis is not on the 
mathematical apparatus, but on the system of assumptions of the models, since the authors 
had in mind the possibility of using the models in decision support systems. Therefore this 
book does not make the careful studying of the original sources unnecessary. The analyses 
and classification of models applied in the book are unique and provide some new insights 
into the nature of the inventory problem.

The book should be of great interest to those working in inventory research, consultants, 
practical professionals who are interested in the background and decision aids of inventory 
management, and also students of OR/OM.


	Introduction
	Acknowledgements
	Part One. The Inventory System and Its Modelling
	Part Two. Classification and Description of the Models
	Appendix
	References
	Oldalszámok
	_1
	_2
	_3
	_4
	_5
	_6
	_7
	_8
	_9
	_10
	_11
	_12
	_13
	_14
	_15
	_16
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424


