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Preface

The progress in any branch of science may perhaps be best demonstrated if a 
body of knowledge that was earlier rather complicated to analyze can now be 
treated in a much simpler way. This work aims at illustrating this principle in a 
special field: it endeavours to summarize the problems of shell buckling in an 
easily understandable manner, in a way that can be put to immediate practical use.

Chapters 1 to 4, 6, Sections 5.1, 5.2, 8.2, 8.3 and 10.1 were written by the first 
author; Chapters 7, 9, Sections 5.3, 5.4, 8.1, 8.4 and 10.2 by the second. 
Nevertheless, they assume common responsibility for the whole book. We note 
that the contents of Chapters 8 and 9 are rather complex, so that we have 
edited them by considering each Section as a separate unit.

The Hungarian and the German editions (both published in 1973) have 
been significantly expanded. Sections 4.3, 5.3, 5.4, 9.5, 9.7, 10.1 and 10.2 are 
new, and the other sections and chapters have been brought up to date.

The authors are indebted to Professor Dr. I. Korányi, who first suggested the 
work, to all the authors and publishers who have given permission for the reproduc
tion of the figures listed on pp. 277, to the publishers for making the English edition 
available, and to Mr. G. R. Thompson who revised the translation.

Finally, they would like to pay tribute to Dr. I. Menyhárd, who taught them 
how scientific thoroughness and practical usefulness can be reconciled. If this 
has been achieved in this book, it is mainly due to him.

Dr. L. Kollár 
Dr. E. Dulácska





1. Introduction

1.1. Setting of Objectives

The structural engineer prefers general methods of calculation by which static 
and stability analyses of the structure can be made, preferably with a limited 
amount of computational work. Although for bar structures such static 
methods are available, stability problems, being described by differential equa
tions subject to boundary conditions, or by eigenvalue problems of matrices have 
to be solved separately in every case. There are, however, reference books 
containing a great variety of ready solutions facilitating the design of structures.

The stability problems of shells are, in fact, much more complicated than those 
of bar structures; hence, general computational methods may be even less expected. 
Although the literature presents solutions for a great variety of special problems, 
these are difficult to survey for the designer, if only for lack of time. In addition, 
the individual papers mostly emphasize the special features of the particular prob
lem dealt with, omitting an overall view of the phenomenon.

The construction of high-speed computers has made it possible to develop 
programmes by which complicated shell buckling phenomena can be followed very 
accurately. However, not every design engineer has access to these programmes, 
moreover, there is very often not enough time and money to perform such 
comprehensive computations. It is therefore desirable to provide the designers 
with more simple, easy-to-survey and easy-to-use methods. We have tried to 
comply with this demand in the present book, utilizing, of course, the results of 
intricate calculations performed by many authors.

We set ourselves two objects when writing this book. On the one hand, we 
wanted to give a clear picture of the physical phenomena of shell buckling. On 
the other, we tried to collect the main results from the rather voluminous literature 
and present them in a form ready for practical use.

In the survey we neither wanted to process the literature completely, nor to 
report on the theory in detail, but rather to make known and describe clearly all 
phenomena and kinds of problems involved. We present the results in the form
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of formulas and diagrams in order to facilitate practical application. Ample ref
erence is made to the literature where the detailed analyses of special problems 
can be found. In many cases approximate methods are given, especially when they 
are more illuminating and simpler than the exact ones, but we always try to define 
the limits of their validity.

Because of their complexity, we show the details of analysis of the elastic 
stability theory only for some characteristic cases, while we only report on the 
results of the others.

The following works included in the References deal with shell buckling prob
lems in a comprehensive way:

[1.1] gives an overall view of shell-buckling problems;
[1.2] summarizes the theoretical results of the buckling of cylindrical and 

spherical shells;
[1.3] and [1.3a] report on investigations concerning post-buckling behaviour 

with special emphasis on shells, based mainly on Koiter’s theory;
[1.4] and [1.4a] review several hundred papers concerning shell-buckling;
[1.5] presents a comprehensive collection of the results of various stability 

problems;
[1.6] gives an excellent introduction to nonlinear instability theory, also dis

playing the necessary mathematical methods;
[1.7] treats the general principles and theory of elastic stability systematically, 

with special emphasis on post-buckling behaviour;
[1.8] presents a concise survey on principles and results in the field of plate 

and shell buckling.

1.2. Survey of Shell-Buckling Phenomena

As in the stability theory of centrally compressed bars, we can look for the 
critical value of load intensity at which, besides the original, unbuckled state, 
another “neighbouring” shape, infinitely close to the first one, also becomes 
possible (“bifurcation”). In this investigation only the first powers of the (infi
nitely small) displacements, and/or of their derivatives, are taken into account, 
while their second powers, being smaller by one order of magnitude, are neg
lected. This will be called linear theory in what follows.

The critical load (P^n) determined in this way is, however, in many cases 
much greater than those given by experiments. Hence, we have to consider 
deflections of finite magnitude, occurring after buckling, resulting in the nonlinear
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theory, which includes “large deformations” . This is characterized by also taking 
into account the second (or sometimes even higher) powers of displacements, 
which determine the buckling shape (“geometrical nonlinearity”). According 
to the basic papers of Koiter [2.24], [2.25], this nonlinear stability theory can be 
set up in such a way that the buckling shape(s) are expanded into power series of 
displacements, measured from the unbuckled state, and from this series as many 
terms are taken as the computing possibilities allow. In the simplest case we 
consider the squares of the greatest displacement component w, perpendicular 
to the shell surface, while only the first powers of the other two displacement 
components, tangential to the shell surface, are taken into account. The latter 
are much smaller than w, having the same order of magnitude as w2. By so doing, 
we can describe the behaviour of the buckled shell up to displacements several 
times the shell thickness. Investigations show that most structures behave accord
ing to one of the diagrams plotted in Figs 1.1 (a)—(e) (see e.g., in [1.6] or [1.7]). 
In the Figures the load P  is plotted against the buckling displacement w. Curves of

-------  Behaviour of the geometrically
perfect shell

------- Behaviour of the
imperfect shell

wJiWg Amplitudes of the 
initial imperfection

Fig. 1.1. Characteristic cases of post-buckling load bearing behaviour plotted against 
the buckling deformation
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type Fig. 1.1 (a) show that after reaching the critical load, the equilibrium of the 
centrally compressed structure becomes indifferent, i.e. its load bearing capacity 
remains constant. Initial imperfections increase the deformations, but the curves 
will have no peak points, approaching the horizontal line of the centrally com
pressed structure asymptotically. Thus, the excentrically compressed structures of 
this type have no “critical” load. This kind of diagram is obtained rather seldom 
with shells; however, it describes fairly accurately the behaviour of many bar 
structures. For shells the other types of diagrams are much more characteristic.

Figure 1.1 (b) shows the increasing load bearing capacity in the post-buckling 
range. In the case of central compression there is a definite critical load at which 
bifurcation occurs, but with eccentric compression this becomes “blurred” : the 
buckling deformation of the structure gradually increases with the increasing load. 
Consequently, this type of structure is insensitive to imperfections. Hitherto well- 
known examples are plates. These behave symmetrically with respect to +vv 
and — w displacements (“symmetric behaviour”). The physical conditions nec
essary for increasing the load bearing capacity are dealt with in Section 6.1. 
Other examples are — for certain geometric proportions — ring-compressed and 
twisted cylindrical shells (Sections 2.3 and 2.6), as well as most shells with negative 
Gaussian curvature (Chapter 5).

Structures described by Figs 1.1 (c), (d), (e) are characterized by the fact that 
after reaching a certain critical load intensity their load bearing capacity decreases. 
The shell of Fig. 1.1 (c) behaves identically with respect to +vv and —w displace
ments: it is “symmetric” with respect to the buckling deformation. If disturbances 
are present, either as geometrical imperfections of shape or as initial bending 
deformations (indicated as “ imperfections” in the Figures), then the maximum 
load bearing capacity of the structure at which the shell snaps through, P “pper, 
lies lower than that of the perfect shell (Pj!rn). Thus, this P “pper becomes the critical 
load, markedly dependent on the amplitude w0 of the initial imperfection. Hence, 
these structures are very sensitive to initial imperfections and can by no means be 
designed on the basis of Pj.1". The hydrostatically compressed cylinder behaves 
this way (see Section 2.3).

The structures of Fig. 1.1 (d) behaves “asymmetrically” with respect to +w 
and —vv. Practically, however, only the falling (right-hand side) branch of the 
diagram is important: if the imperfection of the structure has a sign corresponding 
to this branch, it behaves in a similar way to that of Fig. 1.1 (c), except that 
the drop in the load bearing capacity is more sudden. The physical explanation 
of the asymmetric behaviour is that the structure “stiffens” during buckling defor
mation in one direction, while in the other it “unstiffens” . The axially compressed 
cylindrical panel behaves in this way (see p. 305 in [2.57]) provided that it buckles 
in both the axial and ring directions in one half wave (Fig. 1.2); if it buckles
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outwards, its curvature increases, causing stiffening; if inwards, it unstiffens. The 
shell-arches discussed in Chapter 6 also behave differently under bending in their 
planes in opposite directions, but the centrally compressed arch — since its two 
halves are bent in opposite directions — behaves “symmetrically” with respect 
to the buckling deformation.

w  ♦ ♦ WP* ♦ u _±i

ComDressed shape

Snapped-through Antisymmetric
position (inextensional) buckling

Fig. 1.2. Example of the Fig. 1.3. Antisymmetric buckling, bifurcating from
structure with “asymmetric” the symmetric deflection o f the flat arch

post-critical behaviour

Figure 1.1 (e) shows a “composite” kind of behaviour: the shell deforms accord
ing to the shape of a certain initial imperfection (e.g., according to one of the 
dashed lines of Fig. 1.1 (c)) but before reaching the “snapping load intensity” 
P “rpper, corresponding to the peak of this curve, another buckling shape bifurcates 
from this deformation, causing failure of the shell. The bifurcation point of this 
latter buckling shape lies so low only if the shell has previously deformed in 
another shape. An undeformed shell would exhibit a higher branching point into 
this latter shape.

This branching of bifurcating phenomenon may also start from the dashed lines 
of Fig. 1.1 (a), and the bifurcating deformation itself can have — besides a falling 
(asymmetric) character — a symmetric shape as well, as shown in Figs. 1.1 (b) 
or 1.1 (c). This kind of behaviour is illustrated by the uniformly loaded flat arch 
(Fig. 1.3). It is well known [2.51] that such a flat arch may buckle in two ways: 
after being sufficiently compressed it can snap downwards in a symmetric shape 
(according to one of the dashed lines of Fig. 1.1 (c)), or it can buckle (by bifurca
tion) in an antisymmetric shape with inextensional deformation. Now it may 
happen that the arch is compressed symmetrically due to the load, not to such an
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extent that snapping occurs, but sufficiently to allow the increased compressive 
force to cause antisymmetric buckling. (This bifurcation itself may correspond 
to Fig. 1.1 (a), (b) or (c), i.e., it is “symmetric” with respect to +w  and —tv). 
The load intensity causing this type of buckling will obviously be smaller than that 
causing antisymmetric buckling of the undeformed, i.e. incompressible, arch.

It also follows from what has been said in connection with Fig. 1.1 (e) that for 
shells -  in contrast to bars and plates -  it is not always an initial imperfection 
similar to the buckling shape that is most detrimental, but perhaps some other, 
quite different from the “bifurcating” shape. As will be shown, the axially com
pressed cylinder (Section 2.1), for example, may behave in this way.

Finally, we have to mention a more complex kind of behaviour which comes 
about if several buckling modes are associated with the same (linear) critical load 
(multimode or compound buckling). Within the frame of the linear theory, these 
buckling modes are orthogonal to each other, i.e. they do not combine, but due 
to the nonlinear relations governing post-buckling deformations, no longer 
infinitely small, they couple (interact), resulting in a sharp drop in post-buckling 
load bearing capacity, even more detrimental than that exhibited by the structures, 
represented by Fig. 1.1 (d), with “asymmetric” behaviour. This drop comes about 
even if the individual buckling modes have a constant or ascending post-buckling 
character. The axially compressed cylinder and the radially compressed sphere 
exhibit compound buckling, but the composite shell structures of Chapter 8 may 
also show this kind of behaviour, if the critical load of the “local” buckling coin
cides with that of the “overall” buckling.

Compound buckling may also be associated with imperfections or pre-buckling 
deformations similar to or different from the buckling modes, resulting in a 
deformation path as shown in Fig. 1.1 (e).

The diagrams of Fig. 1.1 can be plotted — instead of against the buckling 
displacement w — as a function of the “average” displacement /  parallel to the 
direction of the load. Since /  is in the first approximation proportional to w2 
(see e.g. in [2.51]), the shapes of the curves change to some extent and will corre
spond to Fig. 1.4. Figure 1.4 (a) needs no explanation. The curves of Fig. 1.4 (b) 
may have different “kinks” (abrupt changes in slope), i.e. they may continue be
yond Ph” with different slopes. Figure 1.4. (c) may correspond to both Figs 1.1 (c) 
and 1.1 (d), with different initial tangents to the descending section of the curves 
at P['rn (cf. Fig. 8.2.3 (a)). We have also drawn the ascending section of this 
diagram, because it has been computed for several cases. Finally, Fig. 1.4 (d) 
corresponds to Fig. 1.1 (e).

For the practical design of shell structures with decreasing post-buckling load 
bearing capacity (Figs 1.1. (c), (d), (e) or Figs. 1.4 (c), (d)) it is expedient to plot 
the critical force P “fper referred to P['rn against the ratio of imperfection-amplitude
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Behaviour of the ------- Behaviour of the
perfect shell imperfect shell

Fig. 1.4. Characteristic cases of post-buckling load bearing behaviour plotted 
against the displacement in the direction of the load

2 Buckling of Shells

Fig. 1.5. The critical load causing snapping plotted against 
the initial imperfection amplitude
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vv'o to wall-thickness t. Thus, we obtain a curve similar to Fig. 1.5 starting with a 
very steep (or vertical) tangent, that exhibits the great imperfection sensitivity of 
these structures.

Some shells buckle under the action of certain kinds of loads in several small 
local buckles. Their critical loads practically do not depend on the edge conditions, 
provided that the edge supports are not weaker than the shell itself. In other 
cases, however, the buckles extend over the whole length (or width) of the shell. 
The influence of the edge conditions becomes preponderant in these cases.

1.3. Structure of the Book

In Chapters 2 to 6 we sum up the knowledge available on the phenomena out
lined in Section 1.2 as regards homogenous, isotropic (solid), and elastic shells.

Due to several uncertainties in shell buckling, experiments have here a primary 
importance. Thus, they will be reported on in some detail.

The stiffness of a shell can advantageously be increased by ribs. Moreover, the 
shell surface can be formed by bars of triangular network, omitting the skin 
(reticulated shells). Ribbed and reticulated shells are generally anisotropic, causing 
difficulties in the buckling computation and giving rise to some new phenomena. 
Thus, in Chapter 7 we shall report on the most important results of the stability 
theory of anisotropic shells. These allow the treatment of corrugated and sandwich 
shells, in addition to ribbed and reticulated ones (Chapter 8). Since sandwich 
shells exhibit a much greater deformation due to transverse shear than ordinary, 
solid shells, we shall deal with this effect on stability as well.

In Chapter 9 we shall investigate how the results of the elastic stability theory 
given hitherto are to be completed, or corrected, in order to make them utilizable 
for shells made of steel, reinforced concrete or other materials. These completions 
will also be made according to the dictates of simplicity and practical usefulness.

First of all, we will have to consider that the materials of shells are elastic at 
most only up to a certain limit; after this they become plastic (“physical non
linearity”). Due to the intricacy of shell-buckling problems, only a few attempts 
have been made to assess theoretically the effects of plastic behaviour. Hence, we 
will have to content ourselves with a simple approximate method that corrects 
the results of elastic stability theory by taking the effects of plastic behaviour of 
the material into account.

The creep of the materials also substantially reduces the critical load intensity 
of shells. Due to difficulties similar to those connected with plasticity, we take 
this into account only approximately.
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Cracks occurring in concrete diminish the stiffness of reinforced concrete shells 
considerably, as compared to the uncracked section, so they reduce the critical 
load intensity as well. We shall show how this unstiffening effect of cracks (together 
with the stiffening effect of the reinforcement) can be taken into account.

The experimental determination of the critical load will also be treated briefly.
Finally, all circumstances (post-buckling behaviour of the shell, etc.) determining 

a suitable magnitude for the safety factor will be examined in turn.
The procedure outlined in Chapters 2 to 9 will be elucidated by means of some 

numerical examples.

2*



2. Buckling of Cylindrical Shells

Here, we present the solutions for the following loading cases:

— axial compression (and the related case of bending);
— compression in the circumferential direction (due to lateral or hydrostatic 

pressure);
— torsion.

We also deal with the simultaneous action of several loads.

2.1. Axial Compression

According to experiments the axially compressed shell buckles in small, local 
waves. The end supports (edge conditions) generally influence buckling only if 
the cylinder is short. Basically two kinds of buckles can develop: axisymmetric 
(“ring”) ones or a reticulated (“chessboard”) pattern of inward and outward 
buckles (Fig. 2.1 (a)).

In some experiments buckles of the shape shown in Figs 2.1 (a), (b), (c) 
developed. This is partly due to the fact that testing machines mostly apply a given 
strain to the shell that can be met by the latter with buckling of its middle 
section alone. The other cause may be the stiffening effect of the edges. (In the 
case of gravity loading only this latter applies [2.41]).

For developing the critical load according to the linear theory we present here a 
simplified analysis based on [2.12], making use of the experimental result that, in 
the case of a reticulated buckling pattern, one buckle extends over a small area 
only, inside which the shell can be regarded as shallow.
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(с)
Fig. 2.1. Buckling patterns of the axially compressed cylindrical shell
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The equilibrium and compatibility equations of shallow shells run in cartesian 
co-ordinates x, у  as lollows [2.17], [2.17a], [2.35], [2.56]:

Here,

and

BAAw— LPF — p, 

A A F + T ( l - v 2)LPw = 0.

p_,p_
dx2 d f

d2z 3~ „ ()2Z d2 d 2z d'1
2 rtó)>' <fcc0y+  <9x2 f)y2

the Laplace and Pucher differential operators, respectively;

(2.1a)

(2.1b)

(2.2a)

(2.2b)

z(x, у ) 
w

F

B =

T - -

E
t
V
P

Et3
12(1-V 2)

Et
1 —  V2

— equation of the shell surface;
— displacement perpendicular to the shell surface (buckling 

deformation);
-— stress function;

— bending stiffness of the shell;

— tensile stiffness of the shell;

— Young’s modulus;
— shell thickness;
— Poisson’s ratio;
— load perpendicular to the shell surface.

The second derivatives of the stress function give the specific membrane forces:

A2F
Ay2

d2F
Ax2

A2F
AxAy

=  П-,

= —nr

(2.3a)

(2.3b)

(2.3c)

When setting up Eqs (2.1a, b), from the expressions of the strains only the linear 
terms of displacements were taken into account. Hence, Eqs (2.1a, b) are linear 
and the critical load to be obtained from them will be that of the linear theory.
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Equations (2.1a, b) are of general validity. Therefore* they may contain the load 
and internal forces of the pre-buckling state, being in equilibrium, and, furthermore, 
the infinitesimally small increments of internal forces arising during buckling, 
together with the also infinitesimally small load increments p, perpendicular to 
the shell surface, resulting from the pre-buckling internal forces of finite magnitude 
multiplied by the changes in curvatures during buckling. In the following we omit 
from Eqs (2.1a, b) the pre-buckling load and internal forces (being in equilibrium), 
and retain only those parts of the load and the internal forces that arise during 
buckling.

We eliminate F from Eqs (2.1a, b). For this purpose the first equation will be 
multiplied by AA, the second one by LP, and they will be added:

BA*w + T ( \ - \ 2)L 2Pw =  A2p. (2.4)

In the case of a cylindrical shell (Fig. 2.2):

d2z 32z 
дх2 dxdy

and (supposing the positive z axis to be pointing inwards):

d2z 1 
dy2 ~  R ’

so that
_  1 d2 

Lp R dx2' (2.5a)

In the case of buckling due to axial compression, the load p, perpendicular to 
the shell surface, is given by the pre-buckling internal force nx multiplied by the

Fig. 2.2. The axially compressed cylinder
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change in curvature during buckling:

P = "x
Fw
№

(2.5b)

Substituting these expressions into Eq. (2.4) results in the following homoge
neous differential equation for w:

(2.6)

This equation represents a so-called “eigenvalue-problem” : those values of 
nx have to be determined which allow a nonzero (“nontrivial”) solution for w. 
Assuming for w a reticulated (“chessboard”) buckling pattern:

n . ЛW — W] Sin — X sin — у
l  X l у

(2.7)

— where lx and ly denote the half buckling wavelengths — and substituting (2.7) 
into (2.6), we arrive, after simplifying with w, at the following expression for the 
critical axial force (omitting the negative sign):

(2.8)

In this, the half buckling lengths in the directions x and у are still unknown. 
Assuming their ratio provisionally as constant, let us minimize nx with respect 
Io the expression

as follows:
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Arranging we obtain:

b ~ + 7f) _  11 /  y ( i —V2)
J_  n2 ] BR2
/ 2lx

( 2 . 10)

Substituting (2.10) into Eq. (2.8) furnishes the minimum value of the critical 
axial force:

Et2
n,in =  2cr £

ß T ( l - v 2)

R1 j/3 (1 — v2)R
(2. 11)

This yields for v=0.3 the value:

i.e. the critical stress:

Et2
-  0.606 —  , (2 . 12)

(2.13)

It can be seen that the ratio of the two half buckling wavelengths has disappeared 
from the result. Though restriction (2.10) remains valid for the magnitude of the 
buckle, the critical stress is independent of the shape of the buckle. This can be 
demonstrated physically — with the aid of the energy method — by considering 
that, e.g., in the case of a square buckle (lx—ly), the strain energy of the bending is 
great, but that of the circumferential tension is small, while for ly-*°° (axisymmet- 
ric buckle) the strain energy of the circumferential forces predominates with si
multaneous decrease of that of the bending.

Since several buckling modes are associated with the same linear critical load, 
we have to deal with the phenomenon called “compound buckling” (see Section 
1.2). The consequences of this phenomenon will be treated later.

The derivation of the linear (also called “classical”) critical load shown above 
is not of general validity. On the one hand, the shallowness of the shell surface 
was assumed; on the other, the buckling pattern was restricted to that described 
by Eq. (2.7). Nevertheless, we also obtain the same critical stress if, instead of 
Eq. (2.7), we assume a reticulated buckling pattern rotated by 45°, even if we 
assume an axisymmetric buckling shape. In this latter case a definite expression 
for the buckling length in the axial direction is obtained:

lx = - ------ -------)/Rt  w 1.72 i R t  (2.14)
]/Í2( l—V2)

(for v =  0.3).

„ l m  _  < c r  _  E t

t ] / 3 ( T ^ / í ‘
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It should be noted, however, that only the isotropic shell under pure axial 
compression exhibits this peculiarity, namely, that its linear critical load is inde
pendent of the buckling shape, or, to put it in another way, that several buckling 
modes are associated with the same linear critical load. Buckling with reticulated 
and axisymmetric patterns differs already in post-buckling behaviour. Moreover, 
orthotropy of the shell or circumferential tension (due to internal pressure) 
acting simultaneously with axial compression causes the linear critical loads per
taining to different buckling patterns to differ from each other (Section 2.5).

The exact derivation of general validity is to be found in [2.6], [2.17], [2.17a], 
[2.43] or [2.51], giving the same result as Eq. (2.13).

However, the test results yielded only about 15-60% of this linear critical stress. 
In Figs 2.3 (a), (b), (c) we compiled the buckling stresses of the tests reported on 
in [2.9], [2.33], [2.53], [2.57]. (The results of Fig. 2.3 (d), which refer to “near
perfect” models fabricated by sophisticated methods, will be discussed later.)

This great discrepancy can be explained in several ways.
It can be shown that even the linear theory may give lower critical stresses if 

the boundary conditions are modified. Hoff and Soong [2.19] solved the buckling 
problem of the axially compressed cylinder for several boundary conditions and 
found that the critical stresses of cylinders with built-in edges are equal to or greater 
than (2.13), while the critical stresses of cylinders with hinged edges can be equal 
to or greater than Eq. (2.13) only if “hinged edges” mean a constraint preventing 
circumferential displacement v of the edge points. If we stipulate, instead of u =  0, 
that the edge shearing forces nxy should be equal to zero, the critical stress drops 
to half the value given by Eq. (2.13). The critical stress of a cylinder with free 
edges is 0.38 of Eq. (2.13), and in the case of very short cylinders it is even less.

The above results of Hoff and Soong were confirmed by the calculations of 
Thielemann and Esslinger [2.49]: if for the hinged edge we stipulate nxy= 0 and 
mx — 0 (no axial bending moment), the linear critical stress decreases to half the 
value of (2.13).

The linear critical load may also be diminished by pre-buckling deformations
[2.16], [2.46]. The method of taking these into account is called the “consistent 
theory”, because it applies the same boundary conditions to the pre-buckling 
deformations as to the buckling itself. This means physically that during the com
pression prior to buckling the shell expands radially (due to a nonzero Poisson’s 
ratio), and since the supports cannot follow this expansion, the originally straight 
generatrices of the cylinder become curved. Hence, this theory investigates, in 
fact, the .buckling of a deformed cylinder. Since in this method of calculation the 
pre-buckling deformations are not regarded as being infinitely small, these di
minish the critical stress even if they were oithogonal to the buckling shape 
(e.g. a cylinder that buckles in a reticulated pattern undergoes axisymmetric
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Fig. 2.3. Experimental results on axially compressed cylindrical shells.
(a), (b), (c) -  Models manufactured by usual methods, (d) -  “near-perfect” models to

2.1. A
xial C

om
pression



28 2. Cylindrical Shells

pre-buckling deformation). In this way 0.93 o'x*cr was obtained for cylinders with 
built-in edges.

Almroth [2.2] applied the consistent theory to boundary conditions prescribing 
nxy= 0 and found that in the case of built-in edges the requirement nxy—0 practically 
does not reduce the value 0.93o'xncr mentioned above, while for hinged edges 
with nxy=0 he also obtained 0.5o^”c,.

Fortunately, the boundary conditions prescribing nxy = 0 are not realistic. The 
“classical” hinged-edge support obviously prevents circumferential displacement 
V, corresponding to realistic support conditions. In fact, the boundary condition 
nxy= 0 or even the condition mx= 0 would be rather difficult to realize. Besides, as 
will be shown in the frame of the nonlinear theory, shells with the boundary condi
tion nxy= 0 are far less sensitive to initial imperfections than those with the usual 
requirement t> =  0 (see Fig. 2.9). Summing up, we may state that the reduction of 
o%cr by the boundary condition nxy =  0 does not have to be taken into account 
when designing a shell.

All that has been said so far refers to cylindrical shells of medium length.
For the sake of completeness it should be mentioned that very short shells 

buckle as wide flat plates of length L\ while very long cylindrical shells buckle 
like bars with circular tube-like cross sections.

All these three phenomena are represented by the diagram of Flügge [2.17], 
giving the critical axial stress ol™cr plotted against the geometric parameter

for long shells (Fig. 2.4), assuming hinged edges. The ascending branch of the 
first diagram represents the plate-like buckling, while the descending section of 
the second one the bar buckling (assuming hinged bar ends). The middle part 
of the two diagrams corresponds to the “local shell buckling” dealt with so far, 
see Eq. (2.13).

The most important step towards the explanation of the test results was the 
development of the nonlinear buckling theory. Its basic equations for geometrically 
perfect shells were set up by Donnell in 1934 [2.8]. The nonlinear theory differs 
from the linear one by also taking into account the second power terms of at 
least the displacement w perpendicular to the shell surface, which appear in the 
expressions of the strains. Hence, the hitherto linear formulas of the strains, ex-

/12(1 — V2) L
« i = ----------------- 7=* \R t

for short shells, and against the parameter

(2.15a)

(2.15b)
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Fig. 2.4. Exact diagram for the axial linear critical stress of the cylinder 
(a) -  Short shells, (b) -  long shells

pressed by the displacements (see. e.g. p. 286 in [2.6] or p. 201 in [2.17]), become 
enlarged by the following terms (cf. p. 303 in [2.6] or p. 338 in [2.51]):

* - • ? ( £ ) ’ • <2Лба)

< = т ( |Г  <2Л6Ь>

* - д а

If we develop the equilibrium (2.1a) and the compatibility equations (2.1b) 
from the expressions completed by these quadratic terms, and if we substitute 
the curvatures and twist of the deformed surface, instead of those of the unde
formed one, into the Pucher operator (2.2b) of the equilibrium equation, then — 
taking the relations (2.5a, b) into account — we obtain:

гу л л 1 d 2 F  d2w d2F ^ d 2w d2F d2w d 2F d2w „  .

W Ä í)x2 r)x2 r)>'2 +2 dxdy 0y2 &t2 “  "x &c2’ (2Л7а)

Г 1  ő 2 w  d2w d2w ( d2w
\  -  °- (217b)

These two equations ate identical with those of Donnel, that were developed 
from the more exact relations, i.e. not assuming the shallowness of the shell, but 
omitting those terms that were small in comparison to the others. Thus, in the
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Donnell equations frequently used in shell theory the same approximations are 
included as in those of shallow shells. Consequently, their validity is restricted 
by the requirement that the shell should be shallow inside one buckle.

Hence, the Donnell equations have two characteristics: first, they stipulate the 
shallowness of the shell surface; secondly, from the higher power terms of the 
displacement components they consider only those given by Eqs (2.16a, b, c). 
When mentioning the “Donnell-type” equations in the literature, the authors 
refer now to the first, now to the second, characteristic.

Due to the well-known difficulties of solving nonlinear differential equations, 
the energy method is generally preferred to the equilibrium one. By assuming a 
suitable (mostly trigonometric) function for the buckling deformation w and 
introducing it into (2.17b), the quadratic expressions can be transformed to linear 
ones by the help of the well-known trigonometric relations. Then F  and the internal 
forces (2.3a, b, c) can be computed. Thus, the expression of the total potential 
energy of the buckled shell might be written down, which, when minimized, 
replaces the equilibrium equation. The more terms we take from the series of w, 
with respect to whose coefficients the potential energy had to be minimized [2.6],
[2.51], the more exact results we obtain.

Kármán and Tsien [2.21] investigated the post-buckling behaviour of the 
geometrically perfect cylinder as described above, assuming a combined buckling 
shape with two free parameters, in 1941. It turned out that the buckling shape varies 
steadily during buckling. (This circumstance also necessitates the assumption of

Fig. 2.5. Post-buckling behaviour of the axially compressed perfect cylindrical shell
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a combined buckling shape with a possibly large number of free parameters.) 
They obtained the upper curve of Fig. 2.5, where the ratio of the displacement /  
of the load in its own direction to the displacement f cr pertaining to the critical 
load was used as abscissa. The shape of the curve indicates a great sensitivity to 
initial imperfections. This phenomenon will be discussed later.

Using the Donnell equations, Leggett-Jones [2.29], Michielsen [2.36], Kempner
[2.22], and Almroth [2.1] computed with more and more free parameters the curve 
which describes the post-buckling behaviour of the cylinder. The character of the 
curve did not change, but its lowest point, i.e. the value of cd.°wer, sank. This 
reduction, expressed in the percentage of the linear critical load (2.13), varies 
from 34% as computed by Kármán and Tsien to 10.8%, when the number of the 
free parameters is increased to 11 (Fig. 2.5, Curves A , B, C, D). According to all 
these computations, the whole curve, together with the ratio o'c°wer/0'c"5 is inde
pendent of t/R , i.e. of the geometric proportions of the shell.

Floff, Madsen and Mayers [2.18] took more free parameters (i.e. more terms of 
the Fourier series of the buckling displacement w) into account than previous 
investigators. They found that when increasing the number of terms considered 
to infinity, <Tl°wer tends to zero. At the same time, t/R must also tend to zero,

Fig. 2.6. The Yoshimura-pattern
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while the buckling shape takes the form of the so-called “Yoshimura-pattein” 
(Fig. 2.6).

The Yoshimura-pattern clearly demonstrates the propensity of the axially 
compressed shell to “snapping”. The Yoshimura-pattern is, in fact, an inextension- 
al “mapping” of the cylindrical surface: the individual plane triangles came 
about by straightening the corresponding parts of the cylindrical surface, but 
infinitely large bending deformations have to develop along the edges [2.18],
[2.33]. However, for geometric reasons, the cylindrical surface can reach the 
Yoshimura-pattern only through extensional deformation. This explains the pro
pensity to snapping: the final state represents a smaller resistance than the stage 
leading to it.

Because of the infinite bending deformations necessary along the edges, the 
Yoshimura-pattern can develop only if the shell has no bending rigidity, i.e. 
(bending stiffness being equal to t3, and tensile stiffness to t) if t-<-0 (or t/R~*0). 
In the case of a shell with finite wall thickness (t/R > 0) and, consequently, with 
finite bending stiffness, there will be no sharp “kink”, but a curvature with a small 
but finite radius along the edges. As a result, the triangles will also undergo 
some bending deformation, all these causing deviation from the Yoshimura- 
pattern. Accordingly, ff[°wcr will also be greater than zero. The experiments show, 
in fact, that the thinner the shell, the closer the buckling shape to the Yoshimura- 
pattern.

The Yoshimura-pattern is a limiting case of the “diamond” buckling shape 
(for i —0). The “diamond” pattern can be described in the first approximation 
by the expression

. 71 . 7Г . 2.71W =  Wi sin —— X sin -г— у  -(- w2 sin —j— X,
lx ly lX

so that it may be considered as the combination of an axisymmetric and a reticu
lated (chessboard) shape. It yields the same linear critical load (2.11) as the 
axisymmetric or reticulated shapes [2.44].

Hoff, Madsen and Mayers explain their result o,[c°™r->-0 by recalling that the 
method of Kármán and Tsien requires the minimization of the potential energy 
with respect to the circumferential wave number (n) too, resulting in 2, which 
is, for geometric reasons, obviously impossible. Another cause of <rlc°"®r-*-0 might 
be that the nonlinear computation based on the Donnell equations (2.17) can 
only describe exactly the buckling deformation of the infinitely thin cylinder. 
That is, the nonlinear terms appearing in Eqs (2.16a, b, c), comprising second 
powers of the vv-derivatives, describe with sufficient accuracy the strains only 
up to buckling deformations of limited magnitude. Therefore, they may be suffi
cient for the initial section of the curve, while they may no longer be sufficient
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up to the environment of the lowest point. However, the Yoshimura-pattern of 
the infinitely thin shell, being inextensional, can correctly be described by the 
Donnell equations. To describe greater buckling deformations of the shell with 
finite wall thickness, further terms of higher order should be taken into account. 
This would tremendously complicate the computational work, which is already 
intricate enough with the second power Donnell terms, because difficulties arise 
not only due to the nonlinear character, but also due to the steadily changing 
buckling shape. On the other hand, the Donnell equations are always accurate 
enough to determine <7ppper (Fig. 1.1 (c)) of the imperfect shell, which is necessary 
for the practical design. In fact, the cylinder undergoes much smaller deformations 
up to cr“pper than up to u'°rwer.

The value of <r1(.°wer related to the geometrically perfect shell has theoretically 
little significance, because if the cylinder were really perfect, it would buckle at 
the upper stress value al‘" of the linear theory. On the other hand, if initial imper
fections are present, it does not buckle at ff'°wer either, but at a stress value tr“?per 
depending on the magnitude of the imperfection (Fig. 1.1 (c)).

However, a ‘°wer can practically be considered as a lower bound for the value of 
ûpper j | lat jSj thg curves of the imperfect shells osculate that of the perfect one, 

so that if their peak would lie lower than <xIc°wer, then, in fact, they have no peak, 
they rather have a steadily ascending character (Fig. 1.4 (c)), similar to the shells 
with increasing post-buckling load bearing capacity (Fig. 1.4 (b)).

We still have to deal with the postcritical behaviour of the axisymmetrically 
buckled cylindrical shell. This behaves according to Fig. 1.1 (a) [2.44], i.e. it has 
an (almost) constant load bearing capacity. That is, the phenomenon is identical 
with the buckling of bars on elastic foundation, where the bars are formed by the 
longitudinal fibres, supported elastically by the ring-directed ones [2.51]. This 
explains why the test cylinders always buckle with reticulated (or diamond) 
pattern (with decreasing load bearing capacity), and never in axisymmetric form.

Using more exact relations than Eqs (2.16), i.e. taking further nonlinear terms 
in the expressions for strains (and curvatures) into account, we can, of course, 
follow the buckling process more closely. By so doing, Mayers and Rehfield
[2.34] found that the postcritical behaviour slightly depends on the ratio R/t. 
Nevertheless, this dependence has hardly any practical relevance.

To make the practical design of cylindrical shells with adequate security against 
buckling possible, the value <r“pper, i.e. the actual critical stress pertaining to different 
amplitudes of initial imperfections, has to be determined.

Taking initial imperfections into account, the deformation curves and the criti
cal stresses of the cylindrical shells were first computed by Donnell and Wan
[2.9]. They took five free parameters in the expression of buckling deformation into 
account and assumed that the initial imperfection has the same shape as the current 3

3 Buckling of Shells
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buckling configuration. Since the latter varies during the buckling process, this 
assumption of similarity is theoretically wrong, although it could furnish just 
ff“rpper correctly, if it were true that an imperfection having the same shape as 
the buckling pattern is the most onerous one.

Donnell and Wan, using the method outlined above for the perfect cylinder, 
minimizing the potential energy and introducing some approximations, obtained 
curves similar to the dashed lines of Fig. 1.1 (c). Plotting their peak points against 
wj t  as abscissa, we obtain crppprer, i.e. the actual critical stress as a function of the 
amplitude w0 of the initial imperfection.

Donnell and Wan measured the initial imperfection by an “unevenness factor” 
U, instead of the ratio wjt .  Its definition is:

( 2 . 18)

Here lx and ly denote the half wavelengths of the initial imperfection,

tiR _  half circumference _  circumference 
ly half wavelength wavelength ’ ’ a

m = —  the ratio of both half wavelengths. (2.19b)
t-x

The value of m was assumed by Donnell and Wan, on the basis of experiments, 
to be 0.75, while for n they obtained a value 10% to 30% smaller than that given 
by the linear theory (2.10):

n _  /12 (1—у2) j / JL ^ Q . 8 7 | / (2.20)

m H-----m

Since their n depends not only on R/t but also on U, we substituted, for simplicity, 
the value (2.20) given by the linear theory for n into (2.18), yielding:

( 2.21)

Hence, we “converted” the curve of Donnell and Wan from U to wj t  in Fig. 
2.7 with the aid of the relation (2.21). Since the actual n of Donnell and Wan is 
smaller than that given by (2.20), the more exact value of wj t  would be greater 
than that given by (2.21). Hence, the curve of Fig. 2.7 would lie higher than plotted, 
but using the approximation described, we are on the safe side and to some 
extent compensate for the error caused by the small number of free parameters 
considered.

—  % 2 U - .t t

. TT / i 5/“-5 тт R2 wj í  = U y = U 15 2>2.n2t2 m rbn2t2
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Fig. 2.7. The axial stress causing snapping plotted 
against the initial imperfection amplitude

Voblykh [2.52] computed the critical stress in a similar way to Donnell and Wan, 
assuming a different (axisymmetric) initial imperfection, and with a different 
number of free parameters. His results lie quite close to those of Donnell and 
Wan (Fig. 2.7).

Madsen and Hoff [2.33] did not assume that the initial imperfection always 
has a shape similar to the buckling pattern. After comprehensive computations, 
taking more free parameters into account, they obtained the upper curve of Fig. 
2.7, which somewhat deviates from that of Donnell and Wan.

Each of these calculations gave a unique curve, which is independent of the 
geometric proportions (R/t) of the cylinder. The tendency of the test results 
shown in Figs 2.3 (a), (b), (c), according to which the actual buckling stress 
decreases with increasing R/t, can be accounted for by assuming that the initial 
imperfection amplitude w0 is proportional to the radius R of the cylinder and 
is independent of the wall thickness t (see also [2.41]). In other words, this means 
that on a more slender shell (with great R/t ratio) we may expect greater initial 
imperfections in comparison to the wall thickness, as with the common compressed 
bars, where an initial imperfection in some way proportional to the slenderness 
ratio is also assumed.

The methods of calculation outlined in the foregoing all have in common 
that they assume in advance — with a certain number of free parameters — the 
shape of the initial imperfection and make it probable only with comparative

3 *
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computations that the assumed imperfection shape indeed yields the lowest 
< r r value for a given wjt.

The general theory of Koiter [2.24], [2.25] outlined in Section 1.2 makes possible 
the investigation of the influence of the initial imperfections and buckling modes 
of any shape and the choice of the most onerous one(s) of them, assuming only 
that the deformations are small in comparison to the wall thickness. For the sake 
of a shorter treatment we describe here a simplified version of Koiter’s method 
applied to shell buckling, see [2.20] or [4.14]. The computation starts again from 
Donnell’s equations containing among the higher power displacement terms only 
the second powers of w (and w derivatives). The method essentially agrees with 
that described after Eqs (2.17a, b) up to the minimization of the potential energy. 
Then, from the equation system of the third degree, obtained by differentiating 
the fourth degree energy expression, terms containing the third powers of w/t 
will be omitted. The resulting equations of second degree become simple enough 
to make possible the direct investigation of the effect of the various initial imper
fections (axisymmetric, asymmetric, i.e. reticulated, and combined) and that of 
various buckling modes and their combinations. The buckling modes are eigen
functions of the linear buckling theory, meeting requirement (2.10) for the buckling 
wavelength ratio. Although they are orthogonal in the frame of the linear theory, 
they interact due to the nonlinear expressions and appear as combinations.

The general theory of Koiter yielded several important results. It became mani
fest that with shells it is not always the imperfection shape similar to the buckling 
mode that proves to be the most onerous. That is, in most cases, to a given w j t

Fig. 2.8. The axial stress causing snapping plotted 
against the initial imperfection amplitude
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the lowest <jpppci will be obtained in a similar manner to that shown in Fig. 1.1 (e): 
the shell begins to deform according to an initial imperfection having the shape 
of one of the eigenfunctions, but before reaching cr“rppcr pertaining to the peak 
point of the load-deflection curve, another (possibly compound) buckling mode 
bifurcates therefrom. This bifurcation point gives the lowest o-“pper value.

The general theory of Koiter is — due to the neglecting of higher powers of 
w/t — the less exact, the greater the buckling deformations are. However, it gives 
the initial tangent of the curve characterizing the post-buckling behaviour of 
the perfect shell exactly, since it belongs to w=0. It furnishes good results for small 
w0/t values, because in this case buckling deformations remain small when reach
ing C Per- To throw light on the accuracy of his method Koiter developed his 
“special theory” [2.26]. Its main point is that for certain special initial imperfections 
exact solutions can be found without neglecting the higher terms, contrary to 
the general theory. Thus, an upper bound for the exact solution can be established. 
In Fig. 2.8, we show the results of the general and the special theories of Koiter 
for the axially compressed cylinder. The special theory refers to the axisymmetric 
initial imperfection from which, according to Fig. 1.1 (e), the asymmetric buckling 
bifurcates. (For this latter he assumed v=0.272.)

It is worthwhile to note that at first sight the axisymmetric imperfection (together 
with the pertaining axisymmetric deformation) seems to be “harmless”, with — 
as said before — an approximately constant post-buckling load bearing capacity 
(Fig. 1.1 (a)). Nevertheless, it furnishes — to our present state of knowledge — the 
lowest critical load, according to our remark referring to Fig. 1.1 (e): the shell 
“jumps over” into another buckling mode.

Alim oth [2.2], using the general theory of Koiter and assuming an axisymmetric 
imperfection, determined the cr“pper-curve more exactly, and he obtained somewhat 
lower values (Fig. 2.8).

Figures 2.7 and 2.8 show that for the axially compressed cylinder different 
computations, assuming various shapes for the initial imperfection (axisymmetric, 
reticulated, or combined), furnished curves rather close to each other. Accordingly, 
from the practical point of view, this problem can be considered as solved. The 
amplitude of the initial imperfection should be assumed according to the erection 
accuracy to be expected (see Section 9.2). The value of <r“pprer determined in this 
way may be checked by Figs 2.3 (a), (b), (c).

The predominant role of imperfections is also verified by Fig. 2.3 (d), which 
shows some experimental results performed on “nearly perfect” cylindrical 
shells in recent years [2.45a]. These models were fabricated by special methods 
(electroforming, etc.) in order to avoid imperfections and residual stresses. The 
testing apparatus was also specially designed. The figure shows that, in fact, 
buckling stiesses very close to the linear classical value of <r!j"cr could be achieved.



38 2. Cylindrical Shells

Very short or very long shells are less pione to snapping, because — as has 
been said before — in these cases the phenomenon turns into plate or bar buckling 
showing no snapping but gradually increasing deformations due to eccentric 
compression. However, it can happen that an eccentrically loaded long cylinder 
begins to deform as a bar, and on the compressed side the compressive stress 
increased by bending causes local buckling of the shell (see Section 2.2). This 
branching and snapping is also described by Fig. 1.1 (e).

Narasimhan and Hoff [2.37] investigated the post-buckling behaviour of a 
cylinder with hinged edges assuming boundary condition nxy = 0 and taking 
initial imperfections into account. Starting from an imperfection shape sim
ilar to that of the buckling mode of the linear theory pertaining to these 
boundary conditions, they obtained the two curves of Fig. 2.9 for two different

Fig. 2.9. Decrease of the snapping stress o f cylinders with 
initial imperfection in the cases of 

“normal” and o f nx y= 0  boundary conditions

L/R  ratios. For comparison, we also plotted the curve of Madsen-Hoff pertain
ing to shells with “classical” boundary conditions (u =  0 instead of nxy = 0) 
valid for the local buckling of infinitely long shells. It can be seen that the curves 
of shells with boundary condition nxy = 0, starting from a lower critical stress 
value, intersect the curve of the shell with classical boundary conditions, start
ing from a higher сг“ррег. This also confirms the earlier statement that the reduc
tion of oxncr due to boundary condition nxy = 0 has no practical significance.
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The buckling wavelength and the buckling shape has not been clarified to as 
great an extent as the critical stress. The test results showed that the ratio 
m = ly/Ix of the half wavelengths in circumferential and axial directions lies 
between 0.7 and 1.0, but substantially less circumferential waves develop than 
predicted by the linear theory (Eq. (2.20)). Thus, empirical formulas were set 
up. On the basis of 550 experiments made on 47 Mylar cylinders, de Neufville 
and Connor [2.39] established the following formula for the circumferential 
full wave number:

containing also the length L of the cylinder, while R/t appears under the fourth 
root sign. In the experiments R/t varied between 800 and 1600, while R/L  was 
equal to 1, 1/2 or 1/3. Hence, the formula can be considered as reliable only 
in this range.

For cylinders with R/t = 540 ~  760 and R/L=  0.1~2, Hoff [1.2] found the 
following relation appropriate:

Both empirical formulas emphasize the fact that the circumferential wave 
number increases with decreasing cylinder length. This was also shown theoreti
cally when investigating cylinders of finite length [2.14]. Thus, the wave number 
formulas not containing the length are only valid for “ infinitely long” cylinders. 
(According to the same investigations, the critical stress is practically independ
ent of the length of the cylinder.)

A most important finding on the circumferential wave number is that it varies 
during the buckling process. This was already shown by computations made on 
perfect cylinders. On the basis of [2.6], in Fig. 2.10 the post-critical behaviour 
of a cylinder with R /t—1000 is shown versus w/t, assuming lx=ly (square buckles) 
and v =  0.3. It can be seen that the curve describing the behaviour of the shell is 
practically the lower envelope of the stress-strain curves pertaining to different 
circumferential wave numbers, and that this wave number n steadily decreases 
during buckling.

High-speed motion pictures of the buckling process [2.15], [2.48] have shown 
that, when the cylinder starts buckling near the linear critical stress (“near
perfect” cylinders), first a wave number corresponding to the linear theory 
develops, which then “jumps over” into shapes having longer and longer 
wavelengths, while the compressive stress gradually decreases (see Fig. 2.5). 
Imperfect shells start with greater wavelengths than those of the linear theory, 
and they exhibit a similar change in buckling pattern during the buckling

( 2.22)

(2.23)
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Fig. 2.10. Decrease of the circumferential wave 
number during the buckling process

process. When completing the test, the final buckling pattern with greater 
wavelengths (pertaining to a comparatively small compressive stress) rather 
than the initial one can be observed.

These results were also substantiated by the experiments of Yamaki, Otomo, 
and Matsuda [2.58], who followed the post-buckling behaviour by lowering 
or returning the loading head of polyester cylinders, and so were able to ob
serve the changes in the buckling pattern and the varying load taken by the 
models.

Therefore, it seems reasonable to relate the circumferential wave number to 
the actual compressive stress ax. Pflüger [2.41] proposed, on the basis of approxi
mate calculations, a factor varying with the ratio (rJolxncrinstead of the constant 
value of 0.87 in Eq. (2.20). Approximating the curves given by Pflüger for this 
factor by a straight line, we obtain the relation

n ~ 0 . 9 3 ^ / T ^ j / * .  (2.24)

2.2. Cylinders in Bending

Two equal couples of opposite sign applied to the ends of the cylinder cause 
normal stresses in the cylinder wall, which vary linearly along the diameter 
lying in the plane of the couples. Detailed investigations according to the 
linear theory [2.45] showed that the critical maximum bending stress is hardly
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greater than the critical value of the uniform compressive stress, so this latter 
can be taken instead. The explanation of this phenomenon is that the cylinder 
buckles in small, local waves, and so the smaller stresses of other, remote parts 
hardly relieve the environment of the maximum stress.

2.3. Circumferential Compression

A load acting perpendicularly to the surface of the cylinder (lateral pressure, 
Fig. 2.11 (a)) causes circumferential (hoop) stress a,p in the wall of the shell.

Fig. 2.11. Cylindricaljshells under lateral and hydrostatic pressure.
(a) -  Lateral pressure only (circumferential compression), (b) -  pressure also acting on the end

diaphragms (hydrostatic pressure)

Experiments show that when reaching the critical value of the load, the shell 
buckles in only one half wave in the longitudinal, but in several waves in the 
circumferential direction (Fig. 2.12). Hence, contrary to the case of axial com
pression, boundary conditions have here a considerable influence on the 
critical load: the shell obviously buckles at a smaller critical load when the two 
supporting edge rings are far apart, i.e. the shell is long, than if they are nearer.

In the following — if not stated to the contrary — we always refer to complete 
cylinders connected to the end diaphragms by hinged edges.

Assuming that the lateral pressure remains perpendicular to the buckled 
surface (fluid or air pressure), the linear theory [2.17], [2.17a], [2.43], [2.51] 
yielded a rather intricate formula for the critical hoop stress o(pcr. Using some 
approximations Flügge [2.17] simplified the result and plotted cr,,jCr against the 
parameters oj1 (Eq. (2.15a)) and ca2 (Eq. (2.15b)) for short and long shells re
spectively (Fig. 2.13). The curves have a falling character with increasing shell 
length L, due to the fact that the stiffening effect owing to bending of the genera
trices (and to the associated membrane forces) decreases with increasing cylinder
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Fig. 2.12. Buckling of a cylindrical shell under hydrostatic pressure

Fig. 2.13. Exact diagram for the linear critical circumferential stress of the cylinder under lateral
pressure.

(a) -  Short shells, (b) -  long shells
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length, while the critical hoop stress asymptotically approaches that of a circular 
ring. On the other hand, very short shells buckle as fiat plates.

Lundgren [2.32] approximated the above results by the following formulas, 
assuming v=0.2 (Fig. 2.11 (a)): 
for

L >  2.3

and for
L <  2.3 \Rt,

(2.25a)

(2.25b)

Batdorf [2.3] took v=0.3 and approximated the exact result of the linear 
theory by a diagram plotted against the geometric parameter Z = ( L 2/R t ) У l — v2 
(upper curve in Fig. 2.14), which is consistent with Lundgren’s results.

The linear theory yields a rather intricate expression for the circumferential

Г- 21.L2Í-4Í-D 12 I - ? 2 R L 2
b <P-cr E  t l  - ^ c r  ^ 2  £  t 3

Fig. 2.14. Approximate linear critical stresses of the cylindrical shell subjected to lateral and to
hydrostatic pressure
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full wave number (2.19a), which can be approximated according to [2.32] as
follows (with v=0.2):
for

L  >  2.3 l/Ht,

n =  7Д 1/  0.85-p=—1,
L \ yRt

and for
L <  2.3 \ Rt,

Rn =  it — .

(2.26a)

(2.26b)

We still have to deal with the buckling of shells subjected to external pressure 
also on their end diaphragms (hydrostatic pressure, Fig. 2.11 (b)), because 
several models were loaded in this way. In this case, an axial stress equal to half 
the hoop stress arises:

-hydrostat n n
^hydrostát _  U<P _  _

x ~  2 ~  2t '
(2.27)

The axial stress evidently diminishes the critical value of the pressure p. 
The shorter the shell, the greater this reduction is. That is, the influence of the 
axial compressive stress on the buckling is the greater the closer it comes to 
the critical axial stress axcr. On the other hand, aXt„ does not depend on the 
length of the cylinder but the critical hoop stress cr̂ , cr does. Consequently, the 
shorter the cylinder (i.e., the smaller the geometric parameter L /^R t), the great
er can be and at the same time also the influence of ax, since ax= aJ2. 
The lower curve of Fig. 2.14 shows the results of Batdorf [2.3], approximating 
to those of the exact linear theory. It can be seen that at L /^R t = 4 the difference 
between the two critical load intensities is less than 20%. Indeed, for greater 
values of the parameter L /^R t, Lundgren’s formula (2.25a) changes into the 
approximate one derived for hydrostatic pressure by Batdorf [2.3]:

t 0 92Et5li
a  — =  phydrostat _  ( 2  28)
u V ,cr л  Ver L R 3/2 » У/L.í-O )

valid for v =  0.3 [2.54], [3.5].
For great L /^R t  or small R/t values, the critical load of the circular ring 

(2.29a) sets a lower bound for the results of Batdorf (and of Lundgren). That is, 
the critical load of the shell can never be smaller than that of the circular ring. 
This circumstance also means that for values of L j^R t  greater than indicated 
in Fig. 2.14 the cirtical load also depends on the ratio R/t.

As far as the model tests are concerned, there were some series which buckled 
very close the critical load of the linear theory. Such were the models of Sturm
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[2.47], Litle [2.30], Weingarten and Seide [2.54], Windenburg and Trilling [2.55], 
and Lundgren [2.32]. (Some models of the last author buckled in the plastic 
range. Accordingly, agreement could be achieved by taking plasticity into 
account.)

However, other model tests (e.g., the three series of the David Taylor Model 
Basin, USA (see in [2.10] and [2.11]) show smaller critical loads than the linear 
one. Soviet tests yielded similar results [2.57]. These models mostly buckled 
at between 60% and 100% of the linear critical load. All these results indicate 
that cylindrical shells subjected to circumferential compression are far less 
sensitive to initial imperfections than those subjected to axial compression.

Among the models mentioned above, those of Weingarten and Seide [2.54] 
and of the David Taylor Model Basin (see in [2.10] and [2.11]) were subjected to 
hydrostatic pressure. However, except for one or two cylinders, the geometric 
parameter L /^R t  was always greater than 4 (maximum 60). The models of 
Sturm [2.47] were loaded partly by hydrostatic, partly by lateral, pressure, but 
since the minimum value of L /^R t  was 14, the kind of loading was irrelevant.

Lundgren [2.32] loaded his reinforced concrete barrel vaults by weights. This 
kind of loading differs from the fluid (or air) pressure in that it maintains its 
original direction, while the pressure loading remains perpendicular to the 
(buckled) surface. This difference causes a deviation in the magnitude of the 
critical load too, which increases in proportion as the circumferential wave 
number n decreases (i.e., as the shell becomes less shallow inside one buckling 
half wave). For the limiting cases of a closed ring, corresponding to the infi
nitely long cylindrical shell, the circumferential wave number is n=2. Denoting 
by E l  the flexural rigidity of the ring in its own plane, its critical pressures 
are for fluid pressure [2.51]:

E l
^ r  =  3.0 — , (2.29a)

while for constant directional load the magnitude of the critical pressure depends 
on the way the ring is supported against rotation in its own plane, as is explained 
very clearly in [2.45c], If two opposite points of the ring are connected to fixed 
hinges, we obtain the result valid for a semi-circular arch [2.6a]:

E l
pcr=  3.265-^3. (2.29b)

This deformation contains a certain rigid-body rotation of the whole ring, 
expressed by the constant term in the circumferential displacement v, see Fig. 
2.15 (a). However, the behaviour of a cylindrical shell supported by end dia
phragms corresponds rather to Fig. 2.15 (b) with no rigid-body rotation at all,



46 2. Cylindrical Shells

and results in a higher critical pressure [2.39a]:

(2.29c)

This difference of 33% between Eqs (2.29a) and (2.29c) decreases with increasing 
n. Computations in [2.45b] show differences of ff%, 6% and 3% for n =  3, 4 
and 6, respectively.

Fig. 2.15. Buckling deformation of a ling under radial pressure.
(a) -  With two opposite points fixed (rigid-body rotation), (b) -  without rigid-body rotation

These data clearly show that for design we may always use the formulas for 
fluid pressure, because when so doing we commit an error to the benefit of safety 
if the loads are constant directional. Nevertheless, for evaluating model tests 
we always have to consider the difference between the two kinds of critical loads.

As far as the nonlinear theory is concerned, up to now every author has started 
from the Donnell equations described in Section 2.1. As stated earlier, their 
accuracy is connected with the shallowness of the shell inside one buckling half 
wave. The error caused by the approximations of the Donnell equations in the 
nonlinear theory has not been investigated yet. However, some information 
can be obtained from similar investigations concerning the linear theory. 
Simitses and Aswani [2.45b] found that Donnell’s equations give practically 
accurate results for very long shells with n = 2, provided the load is constant 
directional, while for shorter shells (with пШ2) they give lower values with a 
maximum error of 22.3%. On the other hand, the Donnell equations for fluid 
pressure acting on very long shells result in critical loads 6.7% higher than 
the accurate ones, while for shorter shells (пш2) they again yield lower critical 
loads with a maximum error of 27%.

The linear theory presented before (Fig. 2.13 and Eqs (2.25 (a), (b))) has no

w = Csin 2ip w - Csin 2ч>

V (1 +cos 2ip) V = - —  cos 2if

(a) (b)
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such limitations or errors, since in its derivation no assumptions have been made 
concerning the shallowness of the shell.

In summary, we have to consider the following viewpoints when evaluating 
model tests or theoretical investigations:

-  whether the pressure acted also on the end diaphragms or only on the 
lateral surface of the cylinder,

-  whether the load maintained its direction during buckling or acted always 
perpendicularly to the buckled surface,

-  whether the derivation was based on the Donnell equations or more accu
rate relations were used.

The post-critical behaviour of the cylinder subjected to hydrostatic pressure 
(see Fig. 2.11 (b)) was first investigated by Donnell, who used the nonlinear 
theory and also took initial imperfections into account. This was done in partic
ular for shells connected to the end diaphragms by hinged edges [2.10] and 
for those with built-in edges [2.11].

Donnell assumed only three free parameters in the expression for the buckling 
shape. Presumably, this circumstance explains why he obtained curves with 
increasing post-buckling load bearing capacity for small L/УR t values, in contra
diction to other results below. Budiansky and Amazigo [2.5] investigated the 
problem on the basis of the general theory of Koiter, starting also from the 
Donnell equations. They found that the behaviour of the perfect shell corre
sponds to Fig. 1.1 (b) or 1.1 (c), i.e., its load-deformation curve can be described 
for small buckling amplitudes w by the first two terms of the series expansion

P/Pcr" =  l +  h(w/f)2. (2.30)

Hence, the variation of the post-buckling load bearing capacity in the initial 
stage of the buckling process is characterized by the coefficient b : if b is positive, 
the post-buckling load bearing capacity increases (Fig. 1.1 (b)), if it is negative, 
it decreases (Fig. 1.1 (c)). The greater the absolute value of b, the quicker the 
variation. They obtained for b the two curves in Fig. 2.16(a) plotted against 
the geometric parameter Z = (L 2/R t) f l  — v2. The curve valid for the circum
ferential compression clearly shows the three sections mentioned above: for 
small Z-values the shell has an increasing post-buckling load bearing capacity 
(short shell: “plate buckling” ; Fig. 1.1 (b)); for medium Z-values it shows a 
decreasing behaviour (snapping: Fig. 1.1 (c)); while for Z — °°, it approaches 
the behaviour of the circular ring, which, like all bars, exhibits (at least in the 
initial stage) a constant post-buckling load bearing capacity (Fig. 1.1 (a)).
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All these results are in agreement with the computations of Wolmir [2.57], 
who also obtained the minimum value of /?1c°wer for medium L /^R t-values.

The test results, in fact, show the same tendency as Fig. 2.16 (a); see the com
parisons in [2.5] and [1.1].

The diagrams of Fig. 2.16 (b) give, also on the basis of [2.5], the peak points 
ûpper pOSt-buckling curve of cylinders with initial imperfections as a

b
1 - v 2

Fig. 2.16. Post-critical behaviour o f the cylindrical shell subjected to lateral and to
hydrostatic pressure
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function of the quantity b, characterizing the initial tangent of this curve, and 
of the ratio of imperfection amplitude to wall thickness w jt. However, these 
diagrams are only approximate ones (as contrasted to the exact values of Fig. 
2.16 (a)).

The post-buckling load-deformation curves themselves were calculated with 
some approximations (for both perfect and imperfect cylinders of certain geo
metric ratios) by Dierks [2.7] and by Thielemann and Esslinger [2.50]. Based on 
computations and experiments, Pflüger [2.42] developed a simple, easy to use 
design formula for the circumferential compression due to lateral pressure. 
Figure 2.17 gives with close approximation the snapping stress assuming

an imperfection amplitude of 1/400 of the diameter (w0=2i?/400), as related 
to the linear critical stress <j'™cr determined by Eqs (2.25a) or (2.25b), plotted 
against the geometric parameter B?\Lt.

The circumferential wave number observed on test cylinders is generally 
less than that given by the linear theory (Eq. 2.26a, b)). This phenomenon is 
due to the fact that the shell “jumps over” to shapes with less and less circum
ferential wave numbers during buckling, similarly to the case of the axially 
compressed cylinder (see Fig. 2.10). According to the theoretical investigations 
of Dierks [2.7] and Pflüger [2.42] the wave number given by Eqs (2.26a, b) 
is to be reduced by 10% .Moreover, the tests of Pflüger gave an average wave 
number about 30% less than this latter value, with great scatter of the individual 
test results.

4 Buckling of Shells
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2.4. Simultaneous Action of Axial 
and Circumferential Compression

Detailed investigations on the basis of the linear theory [2.17], [2.51] showed 
that the diagram representing the inteiaction of both loading types is a broken 
line consisting of straight sections, concave when seen from the origin. Accord
ing to [2.54] and [3.6], this may be approximated by a flat curve bulging some
what outward, not differing very much from a straight line. Figure 2.18 shows

Fig. 2.18. Cylindrical shell compressed in 
axial and circumferential directions. Theoretical 

interaction curve and experimental results

the theoretical interaction curve of Seide, together with the experimental 
results of [2.54] and [2.57]. The more the axial compression prevails, the greater 
is the discrepancy between the linear theory and the experiments, according 
to the explanation of Section 2.1. The experimental results indicate a curve 
starting from about one third of the linear critical axial stress. On the other 
hand, the outward bulging character of the interaction curve was confirmed by 
the experiments. (It should be noted that Seide took as abscissa the circum
ferential compression due to hydrostatic rather than to lateral pressure).

Lundgren [2.32] approximated, to the benefit of safety, this flat curve by the 
straight line (Fig. 2.19):
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Fig. 2.19. Approximate analysis of simultaneous 
action of axial and circumferential compression

This line is also called the “straight interaction line of Dunkerley” [2.27], [2.40] 
and can be used in design. The same was also proposed in [2.57]. Here axcr 
denotes the actual critical axial stress (a fraction of the linear critical stress, to 
be taken, e.g., from Fig. 2.7 or 2.8 as explained above), and oxcr is given by 
Eq. (2.25a) or (2.25b).

2.5. The Stabilizing Effect of the Circumferential 
Tension on the Axial Compression

If in the perfect cylinder circumferential tension (caused by internal pressure) 
arises, this hinders the buckling with asymmetric (reticulated, diamond) patterns, 
but does not interfere with axisymmetric buckling. The explanation of this 
fact is that asymmetric buckling implies waves in the circumferential direction, 
which are “ ironed out” by the circumferential tension, while during axisym
metric buckling no circumferential waves develop, so that there is nothing to be 
“ ironed out” . (According to detailed investigations [2.44], in the case of internal 
pressure reticulated buckling pattern cannot come about, only diamond or 
axisymmetric ones.) Hence, the buckling phenomenon is as shown in Fig. 2.20, 
where circumferential tension is characterized by the internal pressure p [2.44]. 
(If the pressure also acts on both end-diaphragms of the cylinder, causing axial 
tension in addition, the axial compression diminished by this latter value has 
to be regarded as ox.) Increasing circumferential tension causes the axial linear 
critical stress of the diamond pattern buckling to increase over that of the 
axisymmetric buckling. At the same time, the post-critical load-deformation 
curves become flatter and flatter: their lowest points are getting higher and 
higher. Thus, the perfect cylinder starts to buckle axisymmetrically. Nevertheless,

4*
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when its axial compression /  becomes great enough to reach the “ diamond” 
postbuckling curve corresponding to the actual internal pressure, it continues 
to buckle along this latter curve: the shell “jumps over” from axisymmetric 
to diamond pattern. According to experiments, this diamond buckling has the 
shape of Fig. 2.21, even for small values of the internal pressure.

Cylinders with initial imperfections were investigated by Hutchinson [2.20] on 
the basis of Koiter’s theory. He also found that asymmetric (reticulated or diamond) 
initial imperfections will be “ironed out” by the internal pressure, so that the criti-

Fig. 2.20. Influence of internal pressure on the axial critical 
compressive stress of the perfect cylinder

Fig. 2.21. Buckling pattern of the axially 
compressed and internally pressurized cylinder



2.5. Circumferential Tension and Axial Compression 53

( a )

(b)

Fig. 2.22. Influence of initial imperfections on the critical axial compressive stress o f the internally
pressurized cylinder.

(a) -  Axisymmetric imperfection, (b) -  asymmetric imperfection

cal axial compressive stress becomes markedly greater as compared to the case 
of p =  0. However, the axisymmetric imperfection cannot be “ironed out” , so that 
the buckling process starts as if there were no internal pressure: the shell undergoes 
axisymmetric deformation, from which an asymmetric buckling bifurcates. The 
internal pressure can only hinder this bifurcating deformation. Consequently, 
the internal pressure increases the axial critical stress in the case of axisymmetric 
imperfections to a much smaller extent.

The results of Hutchinson’s calculations (assuming v =  0.3) for axisymmetric 
imperfections are shown in Fig. 2.22 (a), and those for asymmetric (reticulated) 
ones in Fig. 2.22 (b). (The curves for diamond-shape imperfections lie in between.)
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Hutchinson also checked his results for axisymmetric initial imperfections by 
the special theory of Koiter and obtained a slight deviation from Fig. 2.22.

Axisymmetric buckling actually occurred on a silo subjected to internal pressure 
as reported by Hooley at the IASS Symposium in Budapest 1965.

2.6. Cylinders under Torsion

If a cylindrical shell is subjected to two equal and opposite twisting moments 
applied on both ends, pure shear arises in the cylinder wall, and at a certain value 
of the shear stress the shell buckles. According to investigations performed on the 
basis of the linear theory [2.43], [2.51], we have to distinguish between two kinds 
of cylinders:

1. The cylinder is lo n g , if in the case of simply supported edges:

1 L 4
У 1 ^ ( 2 Л У

and in the case of clamped edges:

1 L 4

Tw(2i?T3

5.5,

7.8

(2.32)

(2.33)

(notations are explained in Fig. 2.11).
The boundary conditions of the “long” cylinder do not influence the critical 

shearing stress. It can lose its stability due to torsion in two ways:
(a) it may buckle by torsion as a bar at a critical shearing stress;

7ГЛ
тс г - Б  L  ’

(b) its wall may buckle as a shell at
-  E rj.i3/2

Tcr_ 3^2 ( l - v 2)3/4 W  '

As a rule, Eq (2.35) yields a lower critical stress than Eq. (2.34).

(2.34)

(2.35)

2. The cylinder is short, if the unequality sign in Eqs (2.32)—(2.33) is reversed. 
The critical shearing stress then becomes, according to Donnell (see in [2.51]), for 

hinged edges:

t r r  = т ^ [ 2 . 8 + / 2 . 6  +  1 . 4 ( 1 - , Г * Ш ‘], (2.36)
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and for clamped edges:

(2.37)

Using these formulas Batdorf [2.3] plotted the critical shearing stress against 
the geometric parameter Z = ] /l  — v2 (L 2/R t), as shown in Fig. 2.23.

• R  _ h ± 2  i !
cr ir2 E t 1

Rt \/l -V2

Fig. 2.23. Linear critical shearing stress of the twisted cylinder

The formula for hinged edges was refined by Kromm [2.28] cf. [2.51], resulting 
in the equation:

r„ =  4 - 3 9 - ^ i l j /  1 +  0.0257 (1 -v 2)3/4^ ] 3 (2.38)

that yields slightly lower values for xcr.
The buckling pattern consists of waves of helicoidal shape or of their combina

tions [2.51].
The experiments [1.1], [2.4], [2.51], [2.57] yielded critical stresses generally 

15-20% smaller than that of the linear theory. Flence, in the case of pure shear 
(twist), the cylinder is hardly sensitive to initial imperfection.

The post-buckling load-deformation curves of the twisted cylinder were first 
calculated by Loo [2.31], who used the Donnel equations valid for large deflec
tions. He assumed four free parameters in the expression for the buckling shape, 
and performed the computations for perfect and imperfect cylinders as well. 
Nash [2.38] improved the accuracy of these computations by taking five free param-
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eters in the buckling shape. These calculations showed the circumferential wave 
number to decrease during the buckling process.

Budiansky [2.4] determined the quantity b, characteristic of the initial tangent 
of the post-critical load bearing capacity curve of perfect cylinders (cf. Figs 1.1
(b) (c) and Section 2.3), by means of the general theory of Koiter, i.e. exactly. 
His results are shown in Fig. 2.24 (a) for cylinders with both hinged and clamped 
edges. For cylinders with initial imperfections, the theory furnishes the approxi
mate values of the snapping stress т“ррег of Fig. 2.24 (b), defined as in Fig. 1.1 (c).

b
1 - v 2

(a)

X - u p p e r  
L cr

' f - l i n  
L cr

Fig. 2.24. Initial post-critical behaviour of the twisted cylinder
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More elaborate theoretical investigations by Yamaki and Matsuda [2.60] 
on cylinders with clamped edges showed that the post-buckling behaviour of 
twisted cylinders is more complicated than the curves similar to Fig. 1.4 (c). Their 
results for R/t = 406, v =  0.3, which were also confirmed by very carefully conducted 
experiments [2.59], are shown in Fig. 2.25. (Solid lines refer to theoretical, dashed

Mt L2 1
2ir2R2B Vz 3

Fig. 2.25. Relations between twisting moment M ,  and angle of twist у/ for clamped cylindrical 
shells in the post-buckling range (R //= 405, v=0.3)

lines to experimental, results.) It can clearly be seen that the seemingly steep 
initial drop in the post-buckling load bearing capacity at Z —20 (cf. Fig. 2.24 (a)) is 
compensated to a large extent by the subsequent ascending character of the curve. 
The shapes of the curves in Fig. 2.25 explain why the test cylinders exhibit critical 
(snapping) stresses rather close to those of the linear theory, despite the steeply 
falling initial tangents at some values of Z  (see Fig. 2.24 (a)).

Summing up, we may conclude that a cylinder is most sensitive to initial imper
fections if subjected to axial compression. The sensitivity is less in the case of lateral 
(hydrostatic) pressure, while in the case of twist the influence of initial imperfec
tions becomes very small indeed.
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2.7. Simultaneous Action of Twist and Axial Compression

The problem of simultaneous action of twist and axial compression was investi
gated by Kromm [2.28], and cf. [7.21], on the basis of the linear theory. His main 
results are shown in Fig. 2.26. Here xcr denotes the critical shearing stress given

Fig. 2 .26. Interaction of axial compression and torsion according to the linear theory

by Eq. (2.36) for pure shear (twist), o'£cr is the linear critical axial compressive 
stress according to Eq. (2.13), while со represents a geometric parameter:

CO
12(1-V 2) L4

(2.39)
7Г4 R2t2 '

A special feature of the diagram in Fig. 2.26 is that the curve pertaining to
4 1 __

/со =6  has an extreme position. The curve corresponding to /со =20 may be taken
4 __

valid as far as /со =  o o  [7.21].



3. Buckling of Conical Shells

Investigations on the buckling of conical shells showed that they behave in a 
similar way to cylindrical ones. Therefore, their treatment is fairly simple.

In the following we deal only with circular conical and truncated conical shells 
of uniform wall thicknesses. It is assumed that the bottom diaphragm of the con
ical shell, truncated or not, (and the top diaphragm of the truncated one) is in
finitely rigid in its own plane and is connected to the shell by a hinged edge.

In this loading case (Fig. 3.1) only generatrix directed stresses of magnitude

arise in the cone.
The buckling problem was solved on the basis of the linear theory by Seide

[3.4]. The main result of his investigations is that the cone can be substituted for

3.1. Compression along the Generatrices

P
(3.1)<Tge” 2nrt cos a

P

Fig. 3.1. Conical shell compressed along the generatrices
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by a cylinder with the radius r/cos a equal to the actual principal radius of curva
ture of the cone (Fig. 3.1). This would result in cylinders with different radiuses 
for every point of the generatrix. However, since the generatrix directed stress 
varies, according to Eq. (3.1), in inverse proportion to the radius of curvature, 
just as the critical stress of the cylinder does (see Eq (2.13)), it is -—according to the 
linear theory — irrelevant at which point the substituting cylinder is established.

According to what was said on cylinder buckling, however, the initial imper
fection increases with increasing ratio R/t, causing a greater reduction in the 
critical load (see Fig. 2.3 (a), (b), (c)). Consequently, it is expedient to take the 
radius of the cylinder equal to the maximum radius of curvature RJcos a of the 
cone.

The behaviour of the cone is similar to that of the cylinder also in the following 
respect: if along the edges zero tangential stresses (nxy=  0) are stipulated instead 
of zero tangential displacements (u=0), then the linear critical load sinks to half 
its original value, just as in the case of the cylinder [3.1].

The model tests [2.53], [3.2] gave considerably lower buckling loads than predict
ed by the linear theory, again as in the case of the cylinders. The rate of decrease 
in the critical load was of about the same magnitude as in the case of the cylinders, 
except for the range of greater R/t ratios: from about R / t ^  1000 on, the conical 
shells carried more load than the corresponding cylindrical ones (Fig. 3.2).

б ехрU X, e r

r *  tin 
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Fig. 3.2. Experimental results on conical shells compressed along the generatrices

However, if we neglect this excess strength to the benefit of safety, the computation 
of conical shells becomes completely identical to that of cylinders.

The experimental shells generally buckled near their larger ends in circumferen
tial short waves arranged in several tiers. The buckling deformation was less in 
the region where the radius was smaller, and it was largest along the edge with 
maximum radius R2. These results comply with the theoretical predictions.
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3.2. Hydrostatic Pressure

In the case of hydrostatic pressure (Fig. 3.3) the following stresses arise in the 
conical shell:

Fig. 3.3. Conical shell subjected to hydrostatic pressure

t^h o o p
ps tan a 

t
(3.2)

* 8e „  =  = .  ( 3 - 3 )

The results of the various theoretical investigations differ slightly from each 
other. According to Niordson [3.3], the critical pressure of the (truncated) cone is 
equal to that of a cylinder with the radius

T?! +  /?2 
R -------2 (3.4)

and with the length L  equal to the (skew) generatrix length of the cone (see Fig. 
3.3). The critical pressure of this equivalent cylinder is given by the Batdorf 
formula (2.28).

According to Seide [3.5], the critical pressure of the equivalent cylinder is to 
be multiplied by a factor у depending on (1 —RJRz) to be taken from Fig. 3.4.

Seide also showed that the truncated conical shell buckles, like the cylindri
cal one, in one half wave in the axial direction, provided the inequality 
O s(l — i?1/i?2)=0-64 is fulfilled (cones with small vertex angles). In the case of 
(1 —ä 1//?2)=-0.64 a second, shorter half wave also develops near the apex. This 
may obviously be explained by observing that in this case the section near the 
apex is considerably stiffer than the other parts, so that the equivalent cylinder 
will be, so to say, shorter. Possibly this fact causes the value of factor у (Fig. 3.4) 
to be greater than one in this range.
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Fig. 3.4. Multiplication factor for the critical stress of the 
equivalent cylinder in the case of hydrostatic pressure

The experiments [2.54], [3.5] mostly gave values around these theoretical results.
As with the cylinder subjected to circumferential compression, the experimental 

buckling pressures were not less than 60 % of the theoretical ones. Figure 3.5 shows 
the test results published in [2.54] compared with the linear critical pressure of the 
equivalent cylinder. It can be seen that most of them differ by, at most, 20% 
from the theoretical value of Niordson. Greater discrepancy (40%) occurs only 
in the case of the complete cone with (1 —R1/R2)=0, i.e. just in the range where 
Seide’s factor у is greater than one. On the other hand, experiments with “near
perfect” conical shells [3.7] confirmed the validity of Seide’s factor у (Fig. 3.4) 
by yielding buckling pressures always greater than that of the equivalent cylinder 
multiplied by y. Still, the experimental results of Fig. 3.5 suggest that conical

Fig. 3.5. Experimental results on conical shells subjected to hydrostatic pressure
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shells, in the range where у is appreciably greater than one, are more sensitive to 
initial imperfections than those with a lower geometric parameter (1 —R JR 2). 
For this reason, and also for the sake of simplicity, we propose that for design 
purposes Niordson’s results should be accepted, i.e. practical computations 
should be made simply on the equivalent cylinder.

3.3. Simultaneous Action of Axial Compression 
and Hydrostatic Pressure

The problem of the simultaneous action of axial compression and hydrostatic 
pressure was investigated theoretically by Seide [3.6]. Experimental results to be 
found in [2.54] show that the straight line of Dunkerley, representing the inter
action between the critical loads of the cylinders equivalent as to axial compression 
and hydrostatic pressure respectively, gives critical stresses lying slightly on the 
safe side (see Figs 2.18-2.19 and the pertaining remarks).



4. Stability of Spherical Shells
and Domes of Other Forms

4.1. Buckling of Spherical Shells Subjected to Uniform 
Overall Radial Pressure

Among the doubly-curved surfaces with positive Gaussian curvature it is the 
spherical shell that is simplest to treat mathematically, due to its constant curva
ture. In fact, its buckling problems are treated very thoroughly in the literature. We 
begin with the buckling investigation based on the linear theory using the so-called 
“equilibrium method” (as that presented in Section 2.1.).

The exact derivation of the equations does not make use of the fact that one 
buckle extends over only a comparatively small area of the shell surface, which, 
consequently, can be regarded as shallow in the region of one buckle. The exact 
theory requires lengthy and intricate computations leading to Legendre (spherical) 
functions [2.17], [2.17a], [2.51].

However, we know from the exact theory and from experiments that the diam
eter of one buckle is small as compared to that of the sphere, so that the shell 
can be regarded as shallow in the region of one buckle. Consequently, we may 
start with the shallow-shell equations, thus greatly facilitating the derivation. In 
the following we shall develop the linear critical load in this way, see [2.6], 
[2.12] or [2.57].

We substitute the geometric expressions corresponding to the sphere into the 
general shallow-shell equations (2.4). In the case of the z-axis pointing toward 
the centre of the sphere, the latter assume the following forms, with the approxi
mations allowed by the shallow-shell theory (Fig. 4.1):

(4.1a)

(4.1b)

(4.1c)

d 2Z  d 2 Z  1

dx2 ~  dy2 ~  R ’

Ü L = 0>
дхду

, - 1 ( д* л. 32 ) _  1 л
р i?Ux2+ a.v2J
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The internal forces of the pre-buckling state are as follows:

nxy = 0, (4.2a)

(4.2b)

The incremental radial load p arising during buckling is the product of the com-

Fig. 4.1. Radically compressed spherical shell

pressive forces (4.2a) and of the change in curvature due to the buckling defor
mation w:

pR (d2w d2w) pR 
p = ~ —

Substituting all these expressions into Eq. (2.4) we obtain:

(4.2c)

BAiw + T{1- / í) A2w =  A3w. 
R1 2

(4.3)

Assuming for w a “reticulated” (chessboard) pattern, similar to that of the cylinder,

. л . л
W =  Wx S ill -у- X  S ill -у- у

l x  l y

furnishes the following equation for the critical pressure p„ :

R  „ , ( 1  1 1 T ( l - v 2)pcr -  Bn [ + j+  .

(4.4)

(4.5)

By differentiating pcr with respect to Í— +  —] and equating the derivative to
4 ? lP

zero, we obtain:
T ( l - v 2)

BR2 (4 .6)

5 Buckling of Shells
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Hence, the buckling shape (i.e. the ratio of the two buckling half-wave lengths) 
is again indeterminate, as in the case of the axially compressed cylinder [Eq.
( 2 . 10) ] .

Substituting Eq. (4.6) into Eq. (4.5) we arrive at the critical value of the radial 
pressure:

2 „ t 2 1.16 „ t 2
n i u i  —  —  —  h  —  =  — L  — .

Pcr /3(1 -V 2) Я2 /Pv* R2 (4.7)

Assuming an axisymmetric buckling pattern on the shallow shell yields the same 
result.

Since, as in the case of the axially compressed cylinder, we have several buckling 
modes associated with the same linear critical load, the spherical shell also exhibits 
the “compound-buckling” behaviour.

This linear, also called “classical”, value of the critical pressure was derived 
first in 1915 by Zoelly [4.43], who used the exact equations (i. e. he did not make 
use of the shallowness of the shell), and assumed an axisymmetric buckling pattern. 
Later van der Neut [4.27] showed that assuming an asymmetric buckling pattern 
yields the same results.

Nevertheless, experiments gave substantially lower values than this linear critical 
load. In Figs 4.2 and 4.3 we compiled the results of some test series plotted against 
the ratio R/t and the geometric parameter Я respectively. (The parameter Я, a 
characteristic of the spherical cap, is defined by Eq. (4.11); see also Fig. 4.9.)

Fig. 4.2. Exeprimental results on spherical shells versus R j t
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Fig. 4.3. Experimental results on spherical shells versus the geometric parameter Л

From the results of Schmidt [4.29] we plotted in Fig. 4.3 only those representing 
the four extreme cases; the others lie in between. For the sake of simplicity, the 
results for non-spherical shells were also plotted in these figures (see item (d) 
below).

To these seemingly completely irregular results some sense can be given by the 
following viewpoints:

(a) For some experiments “near-perfect” shells with practically no initial 
imperfections were manufactured by special methods. These were the specimens 
of Parmerter [4.28], Krenzke and Kiernan [4.25], Evan-Iwanowski and Loo [4.9]. 
Their results are, in fact, higher than those for the other, less perfect, shells. The 
models of Adam and King [4.1] and of Carlson, Sendelbeck and Hoff [4.5], not 
shown in the figures, also belong to this group; they reached 80% or sometimes 
even 86% of the />('".

(b) In some experiments the supports o f  the shell's edges were not stiff enough: 
either the base ring was too weak or — in the case of polygonal shells — the edges 
were supported by vertical diaphragms having no rigidity perpendicular to their 
planes. To this group belong the shells of Csonka [4.6], Torroja and Schubiger 
[4.30], Schmidt [4.29], Hergenröder and Riisch [4.11], Stenker [4.33], as well as 
some of the experiments of Klöppel and Jungbluth [4.19] (these will be discussed 
later).

The supports of the models of Kaplan and Fung [4.17], Homewood, Brine and

5*
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Johnson [4.12], Seaman [4.31] and of Litle [2.30] were also weaker than a rigid 
clamping (see the evaluation in [4.39]). These buckled at a lower critical load than 
the others.

(c) In the following cases the experimental shells had noncircular ground plans. 
This caused deviations from the axisymmetric distribution of the internal forces 
resulting in not exactly definable local disturbances, in addition to the effect 
mentioned under (b). Here belong the shells of Csonka, Torroja and Schubiger, 
Schmidt, and Hergenröder and Rüsch.

(d) In the experiments of Csonka, Torroja and Schubiger, and Schmidt, the shell 
surfaces were not spherical. We shall deal with this kind of shell in Section 4.3.

(e) The lowest test results were yielded by reinforced concrete shells (Csonka, 
Torroja and Schubiger, and Stenker). One can account for these by recognizing 
that concrete has cracks, it creeps and probably has greater initial imperfections 
than metallic shells (see Section 9.8).

(f) Finally, it should be noted that every experimental shell was shallow except 
for those of Tsien [4.38] and Litle, as well as some of the shells of Klöppel and 
Jungbluth, Homewood, Brine and Johnson, Seaman, and Krenzke. In his study, 
which evaluates a great number of experiments, Wang [4.39] points to the fact 
that only the critical loads of the shallow shells depend on the parameter X 
(see Eq. (4.11)), while those of deep ones do not.

The kind of loading (whether it maintains its direction like gravity loading, or 
whether it remains perpendicular to the buckled surface like fluid pressure) is, 
according to [4.32], practically irrelevant for the magnitude of the critical stress 
of the complete sphere, as contrasted with the case of the cylinder under lateral 
pressure. 1 his is most probably due to the fact that spherical shells always buckle 
in small, local, shallow waves. Therefore, we will not deal with the kind of loading 
here any more.

The discrepancy between the linear critical load and the test results necessitated 
the development of a buckling theory for spherical shells which takes large 
deformations into account (“nonlinear” theory). Its essential feature, as with 
what was said on cylinders, is that — maintaining the assumption concerning the 
shallowness of the shell surface — in the expressions for the deformations the 
second powers of the first derivatives of the displacement w, perpendicular to the 
shell surface, are also taken into account. This makes possible the description of 
the buckling process beyond the equilibrium position close to the underformed 
state, up to displacements several times the wall thickness. For geometrically 
perfect, complete spherical shells this calculation was first made by Kármán and 
Tsien [4.18]. They assumed the shape of the buckling pattern, characterizing its 
extension by a free parameter, with respect to which they minimized the load at
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every loading step. Thus, they determined the lowest point of the post-critical 
load-displacement curve, obtaining (for v=0) the result

F t2
№ "  = 0.365—  (4.8)

(Fig. 4.4.). They used as the abscissa the ratio of the average displacement /  
of the load to the displacement /JJ,“ pertaining to the linear critical load. Since 
the average displacement /  gives the change in volume A V of the sphere, we may 
write f l j f rn—AVI A V'™, where AV\'rn denotes the change in volume pertaining to 
the linear critical load. As ordinates we plotted the ratio p /p '™ ,  which, for 
Eq. (4.8), assumes the value 0.315.

Fig. 4.4. Post-critical behaviour of the perfect spherical shell

Later, improving the accuracy of the calculation, Tsien [4.38] arrived at the 
value of

p [ r er =  0.312 J ,  (4.9)

i.e. 0.27 times the linear critical load.
In their comments on the derivation of Kármán and Tsien [4.18], Friedrichs

[4.10] and Mushtari and Surkin [4.26] cite two errors of principle, which neverthe
less roughly compensate for each other. On the one hand, they neglected the tan
gential displacements of the shell surface; on the other hand, they minimized the 
load instead of the total potential energy (cf. the description of the nonlinear 
method in Section 2.1).

Thompson [4.34] assumed four free parameters in the expression for the buckling 
pattern. Thus, he was able to show that both the shape and the extension of the



70 4. Spherical Shells and Domes of Other Forms

Fig. 4.5. Variation of the buckling shape during the buckling process

buckling pattern greatly vary durint snapping, that is, the buckling half-wavelength 
increases with the decreasing load (Fig. 4.5). Fie assumed the deformation to be 
axisymmetric during the entire buckling process. Thus, he obtained with v= l/3  
the second curve of Fig. 4.4. Its lowest point is

f t 2rö wer =  0.283 —  ,

i.e. 0.232 times the linear critical load.
Other scientists performed further calculations on a similar basis in order to 

find the “true” value of the numerical factor appearing in the expression for p[°wer. 
Thus Pozo Frutos and Pozo Vindel [4.28a] got (with v =  0) 0.23, Mushtari [4.26a]
0. 22, Gabril’iants and Feodos’ev [4.10a] 0.13, and Dostanova and Raizer [4.7a] 
obtained (with v=0) the value

E f
р’Г ег =  0.126 —  , (4.10)

1. e. 0.108 times the linear critical load.
Rauch, Jacobs and Marz [4.28b] found that, using Reissner’s equations of small 

finite deflections [4.28c], p[°wer depends to some extend on the R/t ratio as well. 
They got 0.07 and 0.05 times the linear (classical) critical pressure for R/t=  100 
and 200 respectively.

All these results show that, although a perfect sphere theoretically buckles at 
the linear critical load, the shell is very sensitive to initial imperfections, as is
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indicated by the shape of the curve, and as was to be expected because of the 
“compound buckling” mentioned earlier.

Further investigations on complete shells are mostly based on Koiter’s method. 
This takes — according to what was said in Chapter 2 — every possible buckling 
mode of the linear theory into account. These are orthogonal in the frame of 
the linear theory. Koiter chose from these shapes those groups that, due to the 
nonlinearity, interact with each other and yield the minimum critical load. 
Hutchinson [4.14] investigated the perfect sphere in this way, starting from the 
shallow-shell equations, and also taking asymmetric buckling modes into account. 
He obtained a curve starting with a steeper initial tangent than that of Thompson 
in Fig. 4.4, but did not calculate its lowest point. On the other hand, for the 
sphere with initial imperfections he found a behaviour corresponding essentially 
to Fig. 1.1 (e). The snapping load рьс, шс (or />“pper) is given by the two upper 
curves in Fig. 4.6, plotted against the ratio of the initial imperfection amplitude

n u p p e r  
r  cr 
P lin 
Г cr

t

Fig. 4.6. Influence of the initial imperfection amplitude on the snapping load of the spherical shell

to the wall thickness (calculated for v=l/3). The two curves differ according to 
whether the shape of the initial imperfection is assumed to be actually similar 
to the first or to the second of the buckling modes, w  ̂= a  ̂cos (bx) and 
w2= u2 sin (cx) sin (УЗсу), coupling with each other and yielding the most 
onerous combination. The upper curve is for a “symmetrical” initial imperfection 
similar in shape to w1, while the initial imperfection assumed for the lower curve 
has the “asymmetric” shape of w2. The phenomena correspond in both cases to
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the compund “multimode buckling” described in Section 1.2. The investigation 
of Hutchinson can be considered as being completely general, since it is not 
confined to axisymmetric imperfections. It becomes inaccurate only for large 
imperfection amplitudes due to the approximations inherent to Koiter’s theory. 
This is illustrated by the lowest curve of Fig. 4.6, which represents — according to 
the special theory of Koiter — an exact solution (i.e. also correct for larger imper
fection amplitudes) taking a chosen imperfection shape as a basis. Since this does 
not represent the most onerous case, the truly exact curve has to lie somewhat 
lower.

Koiter [4.22] did not make use of the approximations of the shallow-shell 
theory, but he confined his investigation to axisymmetric imperfections and 
buckling shapes. His results are very close to those of Hutchinson.

Since the accuracy of Koiter’s method — at least in its original form — becomes 
less and less with increasing imperfection amplitudes, due to omission of the higher 
terms, other investigators chose a different approach: they confined themselves 
to axisymmetric imperfections and buckling shapes but tried to solve this problem 
exactly. This was also motivated by the experimental observation (see e.g. in
[4.21]) that spherical shells always deform — at least at the onset of the buckling 
process — axisymmetrically.

On the basis of these principles, Bushnell [4.4] computed the load intensity 
causing symmetric snapping (p“rpper, as defined by Fig. 1.1 (d)) for several geometric 
ratios. He assumed an initial imperfection as shown in Fig. 4.7 (b). When plotting

Perfect shape

Perfect shape

Fig. 4.7. The assumed initial imperfections
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these p“]’per-values against the ratio of the imperfection amplitude to the wall 
thickness (w j t ), he obtained different curves for different diameters d0 of the initial 
imperfection. These curves can be combined to give a “festoon curve” (Fig. 4.8). 
In this figure the diameter d0 of the imperfection was characterized by the geometric 
parameter A, defined by Eq. (4.11), in which H  denotes the height of the original 
(perfect) sphere over the imperfection circumference (Fig. 4.7 (b)). The envelope 
of this festoon curve, indicated by the dashed line, can be used for design.

The development of the festoon curve can be explained by two factors. On the 
one hand, spherical shells with initial imperfections of different А-s may behave 
differently because of the nonlinear character of the whole phenomenon, which 
means that, depending on the extent to which the diameter d0 of the initial imper
fection differs from the “natural” half buckling wavelength (given by the linear 
theory), the shell exhibits different behaviour patterns during buckling. On the 
other hand, that part of the spherical shell which is inside the initial imperfection 
behaves in a similar way to a spherical cap clamped along a circle with the diameter 
d0 [4.4], and for that reason it is quite natural to obtain a festoon curve (see below).

Figure 4.8 shows that for a given ratio of w jt  the minimum value of p“pper is 
given by the curves with A between 2 and 4. This approximately corresponds to 
AUn=2.35 [1.2], which characterizes the half buckling wavelength of the axisymmet- 
ric mode given by the linear theory.

Koga and Hoff [4.21] solved the axisymmetric buckling problem of the complete 
sphere by a numerical method different from Bushnell’s. They considered the two

Fig. 4.8. Influence o f the initial imperfection according to Bushnell
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imperfection shapes of Fig. 4.7 and found that, for the imperfection shapes (a) 
and (b), the minimum values of pppper were obtained for A « 4  and Aa;3, respec
tively. This latter result approximately corresponds to that of Bushnell (see Fig. 
4.8).

These minimum values of pppper of Koga and Hoff are plotted by dashed lines 
marked with (a) and (b), versus w jt  in Fig. 4.6. The curve marked with (b) practi
cally coincides with the envelope of Bushnell in Fig. 4.8, providing a good control.

It is worth noting that the two curves of Koga and Hoff hardly deviate from each 
other. Consequently, for practical purposes, it is sufficient to characterize the ini
tial imperfection by its amplitude w0 only, independent of its shape.

It seems that the close agreement of these curves with those of Hutchinson, who 
also took asymmetric imperfections and buckling shapes into account, is due to 
two factors compensating for each other. On the one hand, Koga and Hoff
[4.21] — as contrasted to Hutchinson — did not make use of the approximations 
of Koiter’s theory, so that they obtained somewhat lower curves. On the other 
hand, as mentioned before, the buckling shape is, in fact, — at least in the initial 
stage of the buckling process — axisymmetric, so this assumption might increase 
the calculated pppper only to a small degree. In summary, we may conclude that 
for the critical load of a spherical shell — as contrasted to the cylindrical one — 
practically the same result is obtained whether only symmetric imperfection and 
buckling deformation, or also asymmetric imperfection and deformation, are 
considered; see also in [4.22].

Another series of theoretical investigations refers to the spherical cap with a 
clamped (or hinged) edge. The notations to be used are indicated in Fig. 4.9. 
For the understanding of the behaviour of the clamped spherical cap, we first 
consider the cap supported as shown in Fig. 4.10: its contour points may roll 
freely on a conical surface but cannot rotate. Hence, it is in a situation similar 
to a partial sphere: when subjected to external pressure it can undergo compression 
without bending. The linear theory furnishes a festoon curve for the critical load

(a) -  Clamped, (b) -  hinged
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of this cap with a horizontal lower tangent, which coincides with the linear critical 
load (4.7) of the perfect complete sphere [4.3], [4.13]. Hence, the spherical cap 
supported in this way tends to buckle almost exactly like the complete sphere.

Fig. 4.10. Spherical cap supported by rollers

However, if the edge of the spherical cap is clamped or hinged (see Fig. 4.9), 
the shell — even if it was geometrically perfect — undergoes bending under the load 
before buckling, since the spherical cap gets compressed, while the support, being 
considered as infinitely rigid, does not. In certain cases this bending deformation 
has a shape of the same character as the buckling deformation, while in other 
cases it has the opposite character. Computations show that this behaviour 
depends on the geometric parameter

Я =  2 b ( l - v 2) j / ^  =  2.63 j / y  (4.11)

with H being the height of the cap (see Fig. 4.9). (The diameter of the cap, i.e. 
the radius of the sphere, does not appear in 2.)

The diagrams of Fig. 4.11 (a) show, on the basis of [4.3], the change in the slope 
of the clamped cap (see Fig. 4.9 (a)) due to bending for some values of 2. On the 
other hand, Fig. 4.11 (b) represents the diagrams for the change in the slope of 
the cap, supported as in Fig. 4.10, due to axisymmetric buckling deformation. 
(The cap is “most willing” to buckle in this latter way.) It can be seen that the 
two diagrams have similar forms for 2 =  4 and 10, while for 2 =  7 and 13 they 
have opposite characters.

Due to these bending deformations even the geometrically perfect spherical 
cap behaves as if it had an initial imperfection. Thus, its deformation corresponds 
to the “eccentric” curves of Fig. 1.1 (d). Using the results of [4.3], [4.35] and [4.42], 
in Fig. 4.12 we plotted with full lines the /?“pper- and /2°wer-values of these curves 
against 2. The curve of p"pper has the peculiarity of oscillating about the line 
PcJp'cr =  1 ■ The comparison with Fig. 4.11 shows that at 2-values, where bending
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Fig. 4.11. Change in slope of the bending and buckling deformations

F ig . 4.12. S n ap p in g  lo a d  o f  th e  p e rfe c t sp h e rica l cap  
(assu m in g  ax isym m etric  b u ck lin g  shape)

deformations due to the load are similar to the buckling deformation, the shell 
buckles at a load lower than the linear critical value, while where they are of an 
opposite character, the buckling load is greater than the linear one [4.3].

On the basis of [4.42], we plotted in Fig. 4.12 with a dashed line the /?“rpper-curve 
of the hinged spherical cap (see Fig. 4.9 (b)) as well. This lies lower than that of 
the clamped cap, but has a similar character.

However, the p“pper-curve of the clamped spherical cap according to Fig. 4.12 
gives considerably higher values for the critical load than the experimental ones 
(see Fig. 4.3). Consequently, in order to explain this discrepancy, the initial imper
fections of the cap have also to be taken into account. First Budiansky [4.3], 
then, refining the calculation, Thurston and Penning [4.37] developed a method 
for the investigation of the stability of clamped spherical caps with an axisymmetric

(b)(a )

„ u p p e r -  „ l o w e r  
H  c r  K c r

„ t i n  ’ „  tin 
r cr r  cr
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initial imperfection. They described the deformation of the shell by the nonlinear 
theory and determined the />рррег according to Fig. 1.1 (d), assuming an axisymmet- 
ric buckling mode. The last-mentioned authors investigated experimentally and 
theoretically forty shell models which were manufactured with great care in order 
to produce predetermined initial imperfections. Theory and experiments corre
sponded fairly well except for the very thin and the “near-perfect” shells (about 
half of the models). Later Thurston [4.36], further improving the calculation, 
obtained somewhat lower т>“ррег-values.

However, all these investigations had the shortcoming of disregarding the 
possibility of asymmetric buckling modes, although high-speed motion-picture 
recordings of the buckling process of spherical caps (e.g. [4.19]) showed that they 
often buckle asymmetrically, at least in one phase of the process. Thus, the phenom
enon should correspond to Fig. 1.1 (e). Consequently, further theoretical in
vestigations aimed at finding out the load intensity at which the axisymmetric 
deformation of the perfect spherical cap, described by the large-deflection (non
linear) theory, bifurcates into an asymmetric mode. This bifurcation itself can be 
treated by the linear theory, so that a linear eigenvalue problem has to be combined 
with the nonlinear axisymmetric deformation. This problem was solved indepen
dently by Huang [4.13] and Weinitschke [4.42], both arriving at the same result: 
b̂ifure js represented by a festoon curve when plotted against X. Figures 4.13 and 

4.14 show the curves for the clamped and the hinged spherical caps respectively, 
according to Weinitschke (n denotes the circumferential full-wave number of the 
asymmetric mode). The characteristic feature of these curves as contrasted to 
those describing the axisymmetric buckling of perfect spherical caps (see Fig. 4.12)

Fig. 4.13. Critical load pertaining to the asymmetric buckling 
which bifurcates from the axisymmetric deformation 

of the clamped perfect spherical cap
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Fig. 4.14. Critical load pertaining to the asymmetric buckling 
which bifurcates from the axisymmetric deformation 

of the hinged perfect spherical cap

is that they do not oscillate, being rather constant and practically independent 
of 2.

Archer and Famili [4.2] obtained the same curve when investigating the asymmet
ric vibrations of axisymmetrically deformed, clamped, spherical caps. The critical 
load intensity was reached when the eigenfrequency became zero.

Figure 4.13 shows that the clamped spherical cap is prone to bifurcation into 
asymmetric buckling for 2>5.5 only. At smaller values of 2 it buckles axisymmet
rically.

This theory, considering also asymmetric buckling, agrees fairly well with the 
experiments made on “nearly-perfect” shells (the results of Krenzke and Kiernan, 
of Evan-Iwanowsky and Loo, and of Parmerter in Fig. 4.3). Still, there remained a 
considerable discrepancy with respect to the experiments on “less perfect” shells, 
suggesting that asymmetric initial imperfections should also be taken into account. 
These calculations, involving great mathematical difficulties, were first performed by 
Kao and Perrone [4.16]. Later Kao [4.16a] improved on the results using a more 
exact method. They assumed an initial imperfection with the section similar to 
Fig. 4.7 (a), extending to one quarter of the clamped cap (Fig. 4.15), and they 
described the deformation by the nonlinear theory of shallow shells. The maximum 
value of the load gave p“rppcr. The ratio p“pper/Pc° as a function of w jt  was calculated 
for two values of X (Fig. 4.16). These curves apparently yield the critical loads 
corresponding to the test results, so that they can be regarded as the final solution 
of the problem. (The curve pertaining to 2 =  8 starts at w0= 0  from a value of 
PcrPer/Plcr greater than 1, corresponding to Fig. 4.12.)

Kao and Perrone also investigated the influence of the shape in the ground plan 
of the initial imperfection. They found that when the central angle of the imperfec
tion in Fig. 4.15 is decreased from 90° to 45°, this hardly influences the snapping load.
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It seems from the foregoing that the buckling problem of spherical caps has 
been completely solved. There are, however, some experimental results which 
give higher critical loads than the theoretical curve of Fig. 4.13 [4.10b], [4.33a], 
[4.33b]. Since this phenomenon has not been rationally explained yet, it shows 
that there are still some problems to be clarified.

If we compare the theoretical results on the complete sphere and on the clamped 
(or hinged) spherical caps we arrive at the following conclusions:

When investigating the buckling of a complete sphere, the shell may be divided 
into two parts [4.21]: a shallow cap that buckles, and the remaining part that 
undergoes only slight deformation due to the joining conditions. Hence, the 
clamped cap differs from the complete sphere only in being supported against 
displacement and rotation along the edge somewhat more rigidly, which results 
in a critical load greater than (or at least equal to) that of the complete sphere. 
The critical load of the hinged cap may possibly be lower than that of the complete 
sphere. This explains why the curves for the snapping loads of the complete sphere 
and of the spherical cap are nearly identical. A detectable discrepancy is to be

Initial imperfection

Fig. 4.15. Ground plan of the assumed asymmetric initial imperfection

Fig. 4.16. Influence of the asymmetric imperfection on 
the snapping load of the clamped spherical cap
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expected only if the extension of the cap is less than the buckle which develops 
on the complete sphere, i.e. for small Д-values.

The similarity between the behaviour of the complete sphere and that of the 
cap also explains why complete spherical shells buckle axisymmetrically, or why 
the results of the axisymmetric buckling investigations on complete shells can 
be used for design (see Fig. 4.6). It was shown that the complete sphere is most 
sensitive to imperfections with Я-values around 3. These spherical shells behave in 
a similar way to caps with approximately the same Я-s. As Fig. 4.13 shows, caps 
are not prone to buckle asymmetrically if Я<5.5. Bushnell [7.4] found, in fact, 
that complete spherical shells are inclined to buckle asymmetrically if Я is greater 
than about 6 [1.2].

It is also obvious from the foregoing that if the support of the spherical cap is 
weaker than that provided by the adjacent part of the shell (when imagining that 
the cap is part of a complete sphere), then the critical load of the cap is less than 
that of the complete sphere. Shells with a polygonal ground plan and supported 
by diaphragms with no bending rigidity belong to this group.

Figures 4.6 and 4.16 enable us to design spherical shells against buckling. We 
only have to assume in our computation the imperfection amplitudes to be expect
ed. However, these diagrams do not contain the circumstances mentioned under 
(b,) (c), (d) and (e), in the description of the model tests (Figs 4.2,4.3), i.e. the weak
ness of the supports, the non-circular ground plan, the non-spherical shape, and 
the material properties of the reinforced concrete. Nevertheless, the test results 
of Figs 4.2 and 4.3 could sufficiently be explained only by taking all these circum
stances into account. These effects cannot be analysed exactly yet, so we try to 
make allowance for them by half-empirical methods based on model tests and 
approximate calculations, to be surveyed in what follows.

The material properties of reinforced concrete can approximately be taken into 
consideration as outlined in Section 9.8.

Since local plastic yielding may also explain the low critical load of some models, 
some recent theoretical analyses give the maximum stress value that arises in the 
vicinity of the buckle. However, this cannot be taken into account in a practically 
usable way yet, so that we have to content ourselves with the approximate method 
described in Section 9.4.

Of the approximate methods we first present the half-empirical formula estab
lished on the basis of the already mentioned test series by Klöppel and Jungbluth 
[4.19]. For the critical uniform radial load of the spherical cap they write (see Fig. 
4.9):

pcr = к (cp0) к ( у ) 0.3£ , (4.12)
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where

fc(<?„) =  1-0.175 (Po2Qf ° - ,  (4.13a)

and

^ ( т )  =  1 - 0 , 0 7  4 0 6 7 '  ( 4 1 3 b )

This formula is valid between the limits

20° (p0 ^  60°, (4.14a)

400 =£ R/t  ^  2000. (4.14b)

Formula (4.12) actually completes that of Kármán and Tsien (4.8), and that 
improved by Tsien (4.9), by the factors k((p0) and k(R/t). For the sake of lucidity 
we compiled their extreme values in Table 4.1

Table 4.1

Values of the factors k(<p0) and k ( R / t )  
appearing in Eq. (4.12)

<p„ =  20° 60°

k(<p0) =  1.0 0.65

Я / t  =  400 2000

к  =  0.93 0.65

Equation (4.12) gives theoretically p£wer of the perfect spherical cap (see 
Figs 1.4 (c), 4.4). In fact, we may regard it as the />“ррсг of the imperfect shell, since 
this latter value was measured in the experiments. The imperfection amplitude 
corresponding to the factor 0.3 is, according to Fig. 4.16, w0/( ̂  0.4.

The scatter of the test results around the value of Eq. (4.12) was at maximum 
±20%. The metal shells were supported by squeezing their plane edges between 
two rings to be regarded as infinitely rigid.

In order to assess the influence of the support stiffness on the critical load, 
Klöppel and Roos [4.20] performed a series of experiments in which the spherical 
caps — like the reservoirs — are connected to cylinders welded at the joints without 
edge rings (Fig. 4.17). The pressure acted only on the spherical cap. Varying the 
ratio of the wall thicknesses ts of the sphere and tc of the cylinder, they found that

6 Buckling of Shells
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the critical load (4.12) still has to be multiplied by the factor

where

and

Я, =  0'65 (1+ Т м П ? Ж ■) (Фаг+  0.5) cos cp0 ,

t j t .  35 2 .5 .

Fig. 4.17. Spherical cap joining a cylindrical shell

(4.15)

(4.16a)

(4.16b)

(4.17)

The values of valid for b/R = 1/3 and R/ts= 1000~2000 are indicated in Table
4.2.

Table 4.2

Values of the factor Ai appearing in Eq. (4.15)

If t j t .  =  О 1 2.5

then A, =  0.53~0.57 0 .9~1 .0  1.25~1.35
(depending on R / t s)

The deviation of the experimental results from Eq. (4.12) multiplied by 
Eq. (4.15) was at maximum +23% '----11%.

These data give valuable information on the influence of the supporting edge: 
if the edge has no rigidity against rotation at all (tc/ts= 0), then this reduces the 
critical load of the cap supported as in the experiments of Klöppel and Jungbluth 
[4.19] to about half its value. The clamping effect of the cylindrical wall reaches 
that of the support used by Klöppel and Jungbluth at about tc/ts= 1, while thicker 
cylinder walls obviously further increase prr. This effect is, in fact, obvious when
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we consider that shell models in most cases started to buckle asymmetrically 
near the edges.

As far as we know, the test series of Klöppel and Roos was the first systematic 
attempt to investigate the influence of support stiffness on the critical load of spher
ical caps. The same problem was treated theoretically by van Koten and Haas 
in an approximate way [4.23], [4.24]. They tried to compare the rigidity of the 
circular edge ring of the spherical cap with that of the “missing” part of the 
shell. They considered the rigidity of the ring effective against rotation caused by 
uniformly distributed twisting moments, but they disregarded the elongation of 
the ring. The derivation followed that of Kármán and Tsien [4.18] and of Tsien 
[4.38] — see Eqs (4.8)—(4.9) and the remark to Eq. (4.12). Their results can be 
summed up as follows:

When we know the stiffness i shell of the spherical cap against uniformly distrib
uted bending moments acting on its edge

Et*
Sshe" ^ T / R / ’ (4Л8)

and the stiffness of the edge ring j ring against the same moments (appearing now 
as twisting ones):

■^ri n o
E l r i n g

CRsincpo)2
( 4 . 1 9 )

(where 7ring is the moment of inertia of the edge ring referred to the axis lying in 
the plane of the ring), we have to compute the parameter

<*i
2

^  I shell  

s r ing

Ä 2. (4.20)

The critical load can be determined from the “generalized” Eqs (4.8)-(4.9)

Pcr = c E ^ .  (4.21a)

The value of the factor c can be closely approximated by the simple formula:

c = 0.010+0.155^. (4.21b)

According to van Koten and Haas, a!=2.0 corresponds to the case of the com
plete spherical shell.

From the results of van Koten and Haas it can be seen that pcr depends on 
both the half central angle <p0 and the stiffness of the edge ring, but in a different 
way than that given by the formulas of Klöppel and Roos [4.20]. Accordingly,

6*
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this problem cannot be considered as definitely solved yet. Be that as it may, the 
formula of van Koten and Haas yielded a result for the test shell of Torroja and 
Schubiger [4.30] very close to that obtained in the experiment, although this latter 
was exceptionally low (see Figs 4.2 and 4.3).

A more exact analysis was performed by Bushnell [4.4a] who took into account 
the extensional rigidity of the ring as well. He followed the (initially) axisymmetric 
deformation of the spherical cap by the nonlinear theory and determined the load 
intensity at which asymmetric bifurcation occurs. For the cases of built-in, hinged 
and roller-supported edges (i.e. zero displacement and rotation, zero displacement 
and unprevented rotation, and unprevented displacement and rotation of the 
edge) he obtained upper critical load intensities of 0.790p]!”, 0.690p[!" and 0.160р],1" 
respectively. Here p1'" again means the value defined by Eq. (4.7).

Wang, Rodriquez-Agrait and Litle [4.40] investigated experimentally the influ
ence of the stiffnesses of these three kinds of support on the critical load on fifty- 
two spherical PYC caps. They obtained 0.635/?^", 0.530/^'" and 0.190/ '̂" as 
average values for the clamped, hinged and roller-supported edges respectively, 
these being in acceptable agreement with the results of Bushnell. The discrepancy 
between the experimental and theoretical values might be accounted for by the 
fact that Bushnell did not take initial imperfections into account. The imperfections 
affected the experimental critical loads considerably in the first two cases, but much 
less in the third case because of the much greater bending deformation.

The above results show that the edge rigidity against rotation has far less 
influence on the critical load than its extensional rigidity, effective against dis
placement.

4.2. Spherical Caps under Partial Loads

4.2.1. Buckling of Spherical Caps under One-Sided Load

The buckling of spherical caps under one-sided uniform load was investigated 
experimentally by Klöppel and Roos [4.20]. We shall not be dealing here with 
this problem in detail, but only state that the intensity of the one-sided load caus
ing buckling is close to that of the uniform load. A similar conclusion can be 
drawn from the calculation of Famili and Archer [4.9a].

However, we may remark that according to [9.2.3] the load intensity causing 
symmetric snapping of a flat arch becomes lower if it is arranged partially instead 
of over the whole arch; i.e. if we leave the two extreme sections of the arch that 
displace upwards unloaded. This reduction of the critical load intensity of the 
arch, if it is loaded by a single concentrated load applied at the centre, can even
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be 30%. (In this case the concentrated load distributed over the central portion 
of the arch, displacing downwards during buckling, is to be regarded as load 
intensity.) Since we shall not deal with the most onerous arrangement of the partial 
load acting on a spherical cap in detail, the above information may be used for 
assessing this effect.

4.2.2. Buckling of Spherical Caps under a Centrally Applied 
Concentrated Load

The buckling problem of a clamped spherical cap under a centrally applied 
concentrated load was solved by Fitch [4.9b]. The critical load Pcr was made 
dimensionless as follows (Fig. 4.18):

= %f ’ (4'22)
P

Fig. 4.18. Spherical cap under a concentrated load

R again being the radius of the sphere and В the bending rigidity of the shell:

В = E t3
12(1 —V2) ' (4.23)

The value of Qcr as plotted against the geometric parameter Я of the shell (4,11) 
is given (for V =  1/3) by the diagram of Fig. 4.19 (a) where n denotes the wave 
number of the buckle mode in the circumferential direction. (The dashed lines are 
theoretical values, the full lines are relevant.) Accordingly, n = 0 denotes axisym- 
metric, and и^1 asymmetric, buckling modes. In the case of A<7.8 neither snap
ping nor bifurcation develop: the load-deflection curve has the shape of Fig. 4.20 (a). 
In the range 7.8^Я ё9.2 the curve has a maximum (Fig. 4.20 (c)), i.e. snapping 
occurs, but these maxima are quite gentle and approach a point of inflexion, as 
Я tends to 7.8 (Fig. 4.20 (b)). For Я >9.2 asymmetric bifurcation occurs before the 
snapping load intensity is reached (Fig. 4.20 (d)). These bifurcation points are
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(a) (b)

Fig. 4.19. Critical concentrated load and initial post-buckling behaviour of the spherical cap

(С)

P

(d)

Fig. 4.20. Possible load-deflection paths o f the spherical cap

indicated as critical loads at /=-9.2 in Fig. 4.19 (a). Finally, if 2 — then ß cr— 
—10.8. For such large Я-s the buckling deformation is confined to the environment 
of the apex, so that this asymptotic value can be taken as the critical load of a 
complete spherical shell under two diametrically opposite concentrated loads.

The quantity b, which is characteristic of the initial tangent to the post-buckling 
load-deflection curve, is plotted in Fig. 4.19 (b) against X. It can be seen that at 
X >9.2, b is always positive.
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We show — according to the calculations of Fitch — the axisymmetric defor
mation shape valid at the bifurcation critical load intensity QCT= 13.28 for 2=11 
in Fig. 4.21 (a), and in Fig. 4.21 (b) the asymmetric mode that bifurcates from the

Fig. 4.21. Shapes of the axisymmetric deformation 
and of the bifurcating asymmetric buckling mode for A= 11

former one. The diagrams show that at 2=11 the buckling mode extends to the 
whole surface of the shell.

Fitch found that his results qualitatively agree with those of the model tests 
reported on in the literature.

When uniformly distributing the load over a circular area o f  radius r (Fig. 4.22), 
Fitch and Budiansky [4.9c] obtained for a built-in spherical cap with 2=12 (and 
у=1 /3) the results shown in Fig. 4.23. They introduced the notations:

X w 
2 Ht

(4.24)

( b )

(a)



88 4. Spherical Shells and Domes of Other Forms

the ratio of pcr, which acts over an area of radius r, to the linear (classical) critical 
load pi1, of a complete sphere loaded by overall radial pressure (4.7); further the 
geometric parameter, characteristic of the loaded surface:

l  = ‘m = + j j = .  <4,25)

Figure 4.23 shows that up to 1^2 , the buckling phenomenon does not differ 
essentially from that under a concentrated load (1=0). That is, from the axisym- 
metric deformation shape an asymmetric buckling mode bifurcates, and the post- 
buckling load-deflection curve has a positive initial slope (&>0 in Fig. 4.23 (b)).

Fig. 4.22. Spherical cap under a load distributed over a small circular area

(a)
b

Fig. 4.23. Critical load intensity and initial post-buckling behaviour 
of the spherical cap of Fig. 4.22 with A= 12
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if  the radius f of the loaded area is increased (2< I< 4 .8), the axysimmetric 
load-deflection curve will have a peak, i.e. the shell will snap through before any 
bifurcation occurs. Hence, the sudden drop of the critical load intensity at 1=2 
is not due only to the change in the critical load parameter from Qcr to pcr.

If I  >4.8, bifurcation occurs before snapping, and at the same time the quantity 
b characteristic of the initial tangent of the post-buckling load-deflection curve 
becomes negative: the load bearing capacity becomes decreasing and the critical 
load will depend on the initial imperfections.

The limit for a positive b can be written (with v= 1/3), by expressing 1 
with the help of (4.25) by the radius f  of the loaded area, as

f  <  ]/Rt. (4.26)

In Fig. 4.24 we show the results of similar calculations by Fitch and Budiansky 
for the limiting case k —°°. Since in the range 2 < I< 8  these results are very close 
to those for A —12, we may consider the critical loads computed for °° as valid

(a)

Fig. 4.24. Critical load intensity and initial post-buckling 
behaviour of the spherical cap of Fig. 4.22 with

for A=-12 also, provided 2< 1 < (л  —4). In other words, in the range 12 the 
boundary conditions practically do not affect the buckling process, provided the 
distance between the edge of the loaded area and the shell edge is not less than 4L 

The simultaneous action o f  overall uniform load p and a centrally applied concen
trated load P  on a clamped spherical cap was investigated by Loo and Evan-



9 0 4. Spherical Shells and Domes of Other Forms

Iwanowski [4.25a]. Their results, also confirmed by experiments, are shown (for 
v =  1/3) in Fig. 4.25. The interaction curves, pertaining to different values of the 
geometric parameter A (4.11), represent those intensities of the concentrated and 
distributed loads that cause buckling when acting together.

The left end points of the curves indicate the lower bounds for the uniform 
load intensity p below which no concentrated load intensity can produce buckling 
when acting simultaneously (i.e., the load-deformation curve will have no peak, 
cf. Figs 4.20 (a) and (b)).

Fig. 4.25. Interaction curves of concentrated and 
uniformly distributed loads acting on the spherical cap

4.3. Domes of Different Curvatures in Two Directions 
(Elliptic Surfaces)

In engineering practice other than spherical domes over circular, elliptic, rectan
gular, or polygonal plans are frequently used. Their mathematical treatment 
involves great difficulties because of their variable curvature. Accordingly, many 
less investigations have been made in this field than on spherical shells. In design 
the formula

P er  =  C E j £ r ü <4 -2 7 )

is frequently used. It may be considered as the generalization of that derived for 
spherical shells, substituting the product ot the two main radiuses of curvatures 
RiR-i for the square of the radius of the sphere, while the numerical value of the 
constant c is assumed according to the explanation given for the sphere or on
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the basis of experiments [4.6], [4.29]. The experimental results of non-spherical 
shells were plotted in Figs 4.2 and 4.3 accordingly.

In the following we investigate the validity of Eq. (4.27). The buckling of shells 
with different principal curvatures was investigated by Dulácska [4.8] using the 
linear shallow-shell theory. In addition to the ratio of the two radiuses of curva
ture, he also varied the ratio of the compressive forces (щ and n2) acting in the 
directions of the principal curvatures. As a result, he obtained (with v =  0.27) 
the surface shown in Fig. 4.26, representing the critical load p„ perpendicular to

Fig. 4.26. Linear critical loads of doubly curved shells versus the ratios of the two radiuses of 
principal curvatures and o f the compressive stresses arising in these directions

the shell surface. The derivation disregarded the stiffening effect of the edges, so 
that the results are valid only for shells which buckle in several waves, that is, 
when the boundary conditions have little influence. Consequently, the shell 
can also be regarded as shallow in the region of one buckle.

Figure 4.26 shows that the linear critical load of the sphere in the case of 
n1= n 2 assumes an extreme peak value as compared to other cases of n1^ n 2. 
This also explains the great imperfection sensitivity of the radially compressed 
sphere, i.e. its rapidly decreasing post-buckling load bearing capacity.

Figure 4.26 also shows that in using Eq. (4.27) we commit a slight error to the 
detriment of safety with respect to the linear critical load. That is, Eq. (4.27) 
may be represented by the straight line of Fig. 4.27. When keeping Rx constant

A] uiwuys positive

П\ always negative 
(compression)
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and increasing R2 from Rx to infinity, the (linear) critical load decreases from that 
of the sphere to the value zero of the hydrostatically compressed (infinitely long) 
cylinder. (The reason, why a zero value for pcr was obtained, in contradistinction 
to the finite values given by Eqs (2.29), is that in the frame of the shallow-shell 
theory an open cylindrical segment, having no edge stiffeners, was investigated.) 
This corresponds to some section of Fig. 4.26 starting from the point characterized 
by R1/R2—\.0 and «a/«! == 1.0. The direction of this section depends on the ratio 
«a/«! valid for the cases RX< R 2. In any case, it will be a curve bulging downwards 
as contrasted to the straight line of Fig. 4.27.

Fig. 4.27. Graphical representation of the approximate formula (4.27)

Figure 4.26 loses its validity at R1/R2-^0 because in this case the buckle ceases 
to be “local”, i.e. of limited dimensions, but expands as far as possible and will 
be confined by the edges only. In these cases the critical load, in fact, does not 
become zero, but it remains at least as great as that corresponding to the buckling 
stress of a plain plate which has the same dimensions as the ground plan of the

г

Fig. 4.28. The investigated ellipsoid of revolution
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shell. The straight line of Fig. 4.27 will also not be valid as far as to zero. Its lower 
limit ot validity is rather given by the horizontal straight line of the plate buckling.

On the basis of the linear theory, Hyman and Healey [4.15] computed the critical 
hydrostatic pressure of the ellipsoid of revolution shown in Fig. 4.28, assuming 
v =  0.3. (They used the energy method requiring, in the framework of the linear 
theory, the consideration of the second power terms of the displacement compo
nents.) On the basis of experimental evidence they assumed that the buckling oc
curs in the vicinity of the plane xy, so that they considered the shell as shallow 
along the osculating circle with the radius R2, but they did not use this assumption 
along the circle with radius Rx. Consequently, their derivation remained suffi
ciently accurate in the case of T?2—0 as well, despite the small circumferential wave 
number along the circle Rt (as contrasted to the Donnell equations, cf. what was 
said in Section 2.3). They confined their investigation only to n2/ffi values arising 
in the closed surface of revolution (Fig. 4.28) under hydrostatic pressure. These 
compressive forces are in the vicinity of plane xy:

< 4 ' 2 8 a )

=  (4.28b)

their ratio being:

~  = — '-r . (4-29)
n i - K x

Я2
while their shares in carrying the load are:

= (4.30a)

p2 =  ( l - a ) p  =  =  ~ p .  (4.30b)
J \ 2  ^ - / v  2

Here a denotes the ratio of the load parts carried by internal forces in the two 
principal directions.

The result of Hyman and Healey is very close to that of Dulácska computed for 
ratio (4.29), see Fig. 4.26. The small difference is due to the afore-mentioned 
circumstance that they did not consider the shell as shallow in the plane xy. 
Hence, they obtained also in the case (hydrostatically compressed cylinder)
a finite critical load. Moreover, their critical load depends on the ratio ///?х 
as well (when R19^R2).

Nonlinear buckling investigations of shells with different principal curvatures 
were first carried out by van Koten and Haas [4.24]. They calculated the pj,°wer of
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the geometrically perfect shell, as interpreted in Fig. 1.4 (c), by using the Kárrnán- 
Tsien method (cf. also Fig. 4.4). For the value 1/2 of the load distribution factor a, 
as defined by Eqs (4.30), they obtained the full line upper curve of Fig. 4.29. 
Assuming R JR 2=0.25 they calculated p|.°wcr for other a-values too and found 
them to be practically independent of a.

The Eq. (4.27), pcr considered as p1c°wer (with a constant factor c), is represented 
by the slanting dashed line in Fig. 4.29.

To evaluate the results of van Koten and Haas we have to consider that, due 
to calculation difficulties, they assumed the edge of the buckle to lie on a plane 
ellipse. Thus, the geometry of the shell determines the ratio of minor and major 
axes, so that only two free parameters remain: the extension and the amplitude 
of the buckle. Due to these constraints it was not possible to allow for the distor
tion of the buckle in the case of other а-values (other n2/n1 ratios). Moreover, we 
do not even know for which а-value the assumed buckle shape best approximates 
to reality. Besides, for small ratios R JR 2 (with the limiting case of the hydrostati
cally compressed cylinder), the antisymmetric buckling mode may also be onerous, 
which was not considered in this procedure. Due to all these circumstances the 
method yields a greater critical load than the actual one.

Fig. 4.29. Results of approximate post-critical analyses o f shells having different curvatures in
the two principal directions
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Several other authors investigated the buckling problem of a geometrically 
perfect elliptic paraboloid shell having different curvatures in two directions. Bu
ciiért [4.2a] and, moreover, Dostanova and Raizer [4.7a], obtained results that lie 
in the range 0 .5 ^ RJR 2^: 1.0, between Eq. (4.27) and those of van Koten and 
Haas. Chien and Lien [4.5a] assumed an ellipse-shaped buckle, and in addition, 
complete preventing of displacement and rotation along the boundary of the 
buckle. Using the Galerkin method, they obtained, in the range 0.5<7?1//?a<  1.0, 
results which osculate that given by Eq. (4.27). Dulácska [9.1.1] approximated 
the buckling surface by two arches crossing each other and, using the energy 
method, arrived at the following expression for the critical load:

p'c°rr = Et2 (-Щ +  -1.) . (4.31)

All these results are plotted in Fig. 4.29.
The investigation showed that the curve describing the post-buckling behaviour 

lies higher than the slanting straight line of constant c. This contradicts the 
explanation given to Fig. 4.26. This apparent contradiction was eliminated by 
the more detailed investigation of the post-buckling behaviour of the hydrostati
cally loaded ellipsoid of revolution shown in Fig. 4.28, carried out by Danielson 
Г4.7] by the method of Koiter. In this case, the values of a corresponding to differ
ent R i/R2 ratios are defined by Eqs (4.30), yielding a =1/2 for Rl = R2. Danielson 
found the sphere (R1/R2= 1) to be most sensitive to initial imperfections: its post- 
buckling load bearing curve drops most abruptly (see Fig. 4.4). This sensitivity 
to imperfections decreases when the ratio R JR 2 differs from unity, and it soon 
approaches the behaviour of the hydrostatically compressed infinitely long 
cylinder (R2-*°°) characterized by Fig. 1.1 (a). This phenomenon is in accordance 
with Fig. 4.26 too: the peak value of the linear critical load in the case of RX = R2 
(and ^ = « 2) explains the great sensitivity to imperfections. (The phenomenon is 
similar to the behaviour of the axially compressed cylinder as outlined in connec
tion with Fig. 2.9.)

In summary, we may consider Eq. (4.27) applicable for practical purposes in 
the range 0.5< RJR2< 1.0. However, in the range O ^ R J R ^ O S  we may use 
Eq. (4.27) with the value corresponding to R1/R2 = 0.5. Due to the approxi
mations in the methods presented, along with the fact that the computa
tion of Danielson refers to a single value a for every R JR 2 ratio, it seems expedient 
to assume a safety factor somewhat greater than usual if the parameters of the 
shell in question differ from those assumed in the above mentioned investigations. 
This increased safety factor may be reduced in the future if more exact investiga
tions determine />“ррег for every RJR 2 and a.



5. Stability Problems of Shells 
with Negative Gaussian Curvature 

(Hyperbolic Shells)

Hyperbolic paraboloid (“hypar”) shells are frequently used as roofs supported 
either along its generatrices (see Fig. 5.4) or along its lines of principal curvatures 
(“saddle-shaped” shell, Fig. 5.1). Hyperbolic shells of revolution are mostly used 
as cooling towers (see Fig. 5.14). Since this kind of shell is prone to develop inex- 
tensional deformation, which may influence its stability, we have to deal briefly 
with this phenomenon as well.

5.1. Inextensional Deformation of Hyperbolic Shells

Certain hyperbolic shells are able to develop inextensional deformation under 
boundary conditions that would ensure rigidity in the case of other kinds of shells. 
(The inextensional deformation consists of bending and twist only, so that merely 
the bending and twisting rigidities of the shell play a part, the extensional ones are 
of no importance.) Vlaszov [5.32] showed interesting examples of this phenomenon. 
The theory of inextensional deformations was developed for the saddle-shaped 
hypar by Geyling [5.7], [5.8]. His results can be summed up as follows:

If a saddle-shaped hypar is supported by diaphragms which are rigid only in 
their own plane while perpendicularly to it they are entirely soft (Fig. 5.1), then 
the shell is capable of developing inextensional deformation in every case when, 
starting from an edge point, we can return to the same point after proceeding 
along a finite number of straight generatrices joining each other (Fig. 5.2). The

Fig. 5.1. Saddle-shaped hyperbolic paraboloid
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Fig. 5.2. Inextensional deformation of the saddle-shaped hypar

more times we have to go round before returning, the smaller are the wavelengths 
with which the shell has to develop the inextensional deformation. With decreas
ing wavelengths, on the one hand the bending rigidities of the shell hinder this 
deformation more and more, and, on the other hand, the wavelengths become 
much smaller than those of the buckling shape, and consequently they become 
less and less onerous.

However, if the shell has the shape shown in Fig. 5.2, where a hypar with two 
rows of straight generatrices perpendicular in ground plan is depicted, then the 
inextensional deformation comes about with large wavelengths, i.e. the shell 
becomes very “soft” . Since it is this type of hypar that is able to carry uniform 
load with membrane forces only, without exerting horizontal thrust at the supports
[2.17], [2.35], and that is readily used in engineering practice, the significance of 
the problem is not purely theoretical.

The inextensional deformation consists theoretically of the sum of two cylindri
cal deformation surfaces parallel to the straight generatrices (Fig. 5.2 (a)). The 
curves w1 and w11 hence represent two surfaces that have constant ordinates along 
one row of generatrices. Their sum produces the total inextensional deformation 
shown in Fig. 5.2 (b). As can be seen, this is a “reticulated” deformation pattern 
with ordinates w= 0 along the edges.

Now, if such an inextensional deformation coincides with the buckling mode of 
the shell, its critical load — or more exactly the system of internal forces caused by 
this load — corresponds to that of a flat plate of the same ground plan buckling 
in the same mode.

This inextensional deformation requires horizontal displacements along the 
edges of the saddle-shaped hypar (see Fig. 5.1). These displacements are compat
ible with the diaphragms described earlier.

The hypar confined as shown in Fig. 5.4 behaves quite differently. It can 
be considered as the internal part of the shell in Fig. 5.2, bounded by straight

7 Buckling of Shells
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generatrices. It can be seen that the inextensional deformation of Fig. 5.2 (b) 
does not furnish w=0 along the edge-generatrices. Hence, if the supports do not 
permit any displacement w, no inextensional deformation can develop. This reason
ing is in agreement with the theoretical and experimental results to be presented 
in Section 5.2 that disregard inextensional deformation completely.

The hyperboloid of revolution [5.18], [5.27], [5.32] shows essentially the same 
behaviour as the saddle-shaped shell. If only the radial displacements of both edges 
are prevented, i.e. the shell is connected to upper and lower horizontal dia
phragms, rigid only in their own planes, by hinges, then the shell is capable of 
performing inextensional deformation in every case when, starting from an edge 
point, we can return to the same point after travelling along a sequence of straight 
generatrices of finite number.

The condition for the possibility of inextensional deformation can be expressed, 
according to Vlaszov [5.32], by the following equation:

__(&.+W mn
/ (Ь Ч М ( /> Ч М  n ’

where

Here m is the number of the half buckling waves in the meridional direction, while
n denotes the number of the circumferential full buckling waves. Obviously, m s  1
and 2, and both of them can only be whole numbers. The other notations are 
explained in Fig. 5.14.

If we support the hyperboloid of revolution at one of its edges only, but here 
prevent two displacement components, then no inexetensional deformation can 
occur [5.27]. However, a “nearly-inextensional” deformation (i.e., large deforma
tion of the entire shell connected with small specific elongations and distortions) 
may develop, which renders the shell more sensitive to the small deformations of 
the not entirely rigid supporting structure [5.18].

Finally we should remark that, due to the possibility of inextensional deforma
tion, the rigidity of the shell is provided mainly by the bending stiffness of the 
shell wall, while the role of the tensile (membrane) stiffnesses is negligible. In 
shell structures with no inextensional deformation, the decreasing post-buckling 
load bearing capacity is mostly caused by the decrease of the membrane stiffnesses 
due to the change in curvatures. However, if there is no active membrane stiffness, 
there is nothing to decrease, so that the load-bearing capacity of the structure will 
remain constant or will even be increasing.

This phenomenon is illustrated in Fig. 5.3, which shows the results obtained by 
Hutchinson for toroidal shells [5.12]. The factor a, which depends on the geometric

(5.1a)

( 5 . 1 b )
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Fig. 5.3. Post-critical behaviour of a hyperbolic shell o f revolution

ratios, characterizes the increasing or decreasing character of the post-buckling 
behaviour. The results shown in Fig. 5.3 suggest that in the range H 2/R0t>  100 
such shells practically do not exhibit a decreasing post-buckling load bearing 
capacity.

5.2. Buckling Caused
by Uniform Load of a Hyperbolic Paraboloid 

Supported along the Generatrices

If a hyperbolic paraboloid (hypar) supported along its four generatrices (Fig. 5.4) 
is subjected to a vertical load p uniformly distributed in ground plan, there arise, 
according to the membrane theory, only shearing forces of constant magnitude 
over the whole shell surface. The buckling of such a shell was investigated on the

Fig. 5.4. Hypar shell over a rectangular ground plan supported along its generatrices

7*
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basis of the linear theory, assuming hinged edges and shallowness of the surface. 
Ralston [5.28] considered a hypar over a square ground plan (Lx= Ly) and, assum
ing a series of seventeen terms for the buckling deformation w, arrived at the 
following result:

P  2Et2
Рс'~вЫуцГ^у (5.2)

Here Q is a festoon curve, which we have plotted against f j t  (for v =  0.3) in Fig.
5.5 (a), omitting some rather dense “slings” . It can be seen that the lower envelope 
(tangent) of the festoon curve gives q  = \ from about f / t ^ 25 on. This lower 
tangent can be obtained also in a very simple way, see [2.12].

La Tegola [5.22] arrived at the same result as Ralston.

(b)

Fig. 5.5. (a) -  Coefficient of the critical load of the hypar shell shown in Fig. 5.4, 
(b) -  Changeover of the critical shearing stress o f the hypar into that of a flat plate
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The transition into a plane plate (/-* 0) can be represented clearly if we plot the 
critical shearing stress xcr instead of the critical load against f t .  The membrane 
theory of shells yields (see, e.g., [2.17a]):

Thus (Lx= Ly):

Пх у = P
LxLy
2/  ‘

И  Eti
l t )  LI  P ( 1 _ V2)

(5.3a)

(5.3b)

The product factor gf/t was plotted in Fig. 5.5 (b) (substituting the lower tangent 
for the festoon curve of q from f \ t = 25 on). The value ef/ t= 14 a t /= 0  corresponds 
to the critical shearing stress of a square plate with hinged edges [2.51]. With 
increasing curvature of the shell (i.e. with increasing/) xcr first slowly, then more 
and more rapidly, augments until atf t = 25 it osculates the straight line pertaining 
to Q = 1. This may be interpreted as indicating that the critical stress is provided 
by the bending stiffness alone if the shell is very shallow, while with increasing 
curvature the tensile stiffness plays a greater and greater role, raising xcr to the 
value given by the straight line q = 1.

The quantity L?Jf in Eq. (5.3b) is equal to the main radius of curvature R of 
the hypar over a square ground plan (see Fig. 5.4). When considering that in our 
case of pure shear the shearing stress x is equal to the principal compressive stress 
ax acting along the principal curvature line, in the case of g =  l, Eq. (5.3b) turns 
into the expression

Et
^ 1  C f  /  •

/3(1  -V 2) R
(5.4)

This formula is identical with Eq. (2.13), valid for the axially compressed cylinder.
Leone and Wang [5.23b] took into consideration that due to bending and edge 

effects the shearing force is not exactly uniform all over the shell and that in 
the edge zones other internal forces also arise. They obtained slightly greater 
critical loads than Eq. (5.2). Consequently, in using Ralston’s result we remain on 
the safe side.

Experiments on hypars supported along the generatrices [5.23], [5.23b] showed 
that while the buckles are short in the direction of the principal compressive stress, 
they extend to the edges parallel to the principal tensile stress (Fig. 5.6). The shell 
models generally buckled at about 70% of the computed linear critical load (5.2). 
Lower buckling loads were observed only on shells with weak edge beams. All 
this is similar to the cylinders subjected to lateral pressure or to torsion: they also 
have similar ratios of experimental to theoretical linear critical loads.

The experimental shells generally showed an increasing post-buckling load 
bearing capacity. This can be explained physically by considering the tensioned
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r

Direction of principal 
tensile stress

Fig. 5.6. Buckling shape of the hypar shown in Fig. 5.4

Fig. 5.7. Hypar over a skew ground plan supported along its generatrices

strip connecting the corner points A and C (see Fig. 5.6) as suspending the buckling 
compressed strips. This effect obviously depends on the extent to which the corner 
points may be considered as rigidly supported against horizontal displacement. 
It also depends on the horizontal bending stiffness of the edge beams since it is 
more favourable for the shell if it is suspended by the other tensioned strips 
in addition to AC.

Hauptenbuchner [5.10a] generalized Ralston’s result (5.2) for hypars with 
unequal side lengths and for skew ground plan (Fig. 5.7). She obtained for the
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linear critical load:
P 2Ef-

Pcr s a2№ ]/3(i _  у2)
■ (1 +  cot2 со) (5.5)

where q means a festoon curve again, which has for greater f i t  ratios the lower 
tangent 1.0, while the shape of the curve and its starting point a t / = 0  (see Fig.
5.5 (a)) depend on the ratio b/a and on the angle со (see Fig. 5.7). Since 
ab I \  1 +  cot2 со is equal to the ground plan area of the shell, Eq. (5.5) states 
that pcr is inversely proportional to the square of the shell ground plan area.

Hauptenbuchner’s model tests [5.10a] showed the same trends as those of 
Leet [5.23], described earlier: they buckled mostly at load values between 60% 
and 70% of the linear critical load intensity (5.5). The experimental load-deflec
tion curves of Hauptenbuchner exhibited an ascending post-buckling load bearing 
capacity, and were similar to the dashed lines of Fig. 1.1 (b). Hence, the values of 
the experimental buckling loads could only be determined with some uncertainty. 
This statement also holds for the experimental results of Leet [5.23].

One additional remark seems to be necessary here. Hyperbolic paraboloid shells 
on skew parallelogram ground plans are free from normal forces along their 
straight generatrices only if their edges are free to move horizontally (perpendicu
larly to their directions). Since in most cases this condition is not fulfilled, in the 
case со <  90° compressive forces, and in the case cu>90° tensile forces, develop 
along the generatrices, which may influence the onset of buckling. This 
phenomenon needs further investigation.

5.3. Buckling of Saddle-Shaped Hyperbolic Paraboloid Shells 
under Uniform Load

The equation for the linear critical load of the saddle-shaped hypar shell (Fig. 
5.8) was first derived by Apeland [5.1a], who applied Reissner’s general solu
tion for shallow shells [5.29] to this particular case. He assumed in his solution 
a membrane stress state that exerts lateral thrust in two directions and complies 
with the compatibility requirements. Gioncu and Ivan [5.9] determined minimum 
critical loads from Apeland’s equation, assuming that the shell buckles in many short 
waves along the x direction shown in Fig. 5.8. He thus found that the critical 
load of the saddle-shaped shell is equal to that of a hypar supported along its 
generatrices and having the same principal curvatures as the saddle-shaped shell.

However, the saddle-shaped hypar is used in practice mostly as a shell without 
lateral thrust, and, moreover the buckling shape may not have many waves in the 
X direction either.
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Fig. 5.8. Notations for the saddle-shaped hypar

Let us first suppose that the saddle-shaped shell carries the uniform load p 
as an arch in the x direction, i.e. by forces nx only. The corresponding support con
ditions are: vertical diaphragms rigid only in their planes along the edges y = 
= ± L yl2, and rigid support along the edges x = ± L J 2 .  (Strictly speaking, the 
membrane stress state associated with these boundary conditions is statically 
indeterminate. However, numerical investigations with the aid of the bending 
theory showed that the shell carries at least 98% of the uniform load by membrane 
forces nx, so that the arch-like action can be considered as a good approximation.) 
For this case the linear critical load was determined in [5.5a]. The result is:

Pun — r
cr —  C1

Et2 „ 64Et*faf b
R rR„ L\L% (5.6)

The values of the factor cx are compiled in Table 5.1 for various geometric ratios. 
They yield critical loads that are about one third of those obtained by Gioncu.

The stability problem of the saddle-shaped hypar supported by diaphragms 
which cannot withstand lateral forces was first clarified for the range l ^ f j f b^ 4  
by Jankó in four papers [5.13], [5.14], [5.15], [5.15a]. In the first paper [5.13] he 
found that the shell carries the load up to f j f b= 1.5 predominantly by bending, 
so that there is no question of buckling. The range 1.5< f j f b<2.0 is a transitory 
zone, and, from f j f b^ 2.0 on, the shell is capable of carrying the load predom
inantly by membrane forces without exerting lateral thrust on the edges. Hence 
the stability problem has to be investigated in the range 2 .0 ^ /o/ /bs4 .0  

In his second paper Jankó [5.14] determined the linear critical load of the geo
metrically perfect shell which does not exert lateral thrust on the edges. He took 
into consideration in the x direction at most nine terms, in the у  direction at most 
three terms, of the series for the buckling shape and used the Galerkin method.

In Fig. 5.9 we show the variation of the critical load as a function of the ratio 
falfb for a chosen set of geometric parameters.

Jankó [5.14], [15.5a] compiled tables and diagrams for the easy computation of 
the critical loads of shells with geometric ratios occurring in practice. We present 
his results in an abridged form in Table 5.2. For the so-called “normal” shell



Table 5.1

Values o f the factor appearing in Eq. (5.6) valid for arch-like saddle-shaped hypar shells

8 f j t  100 _______________ 200________________________________ 300_______________

L J L y =  0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

f j f b  =  0.5 0.564 0.344 0.282 0.195 0.166 0.182 0.4810.294 0.200 0.188 0.129 0.113 0.459 0.259 0.182 0.141 0.137 0.094

1.0 0.580 0.412 0.266 0.246 0.191 0.141 0.516 0.339 0.227 0.157 0.159 0.133 0.497 0.282 0.180 0.143 0.126 0.158

1.5 0.585 0.421 0.276 0.233 0.233 0.163 0.535 0.355 0.231 0.175 0.141 0.150 0.519 0.310 0.202 0.158 0.120 0.112

2.0 0.586 0.444 0.318 0.224 0.215 0.192 0.546 0.390 0.234 0.194 0.139 0.135 0.533 0.344 0.220 0.161 0.127 0.105

2.5 0.585 0.464 0.331 0.228 0.202 0.211 0.552 0.395 0.262 0.202 0.144 0.129 0.543 0.353 0.230 0.163 0.144 0.113

3.0 0.585 0.479 0.345 0.237 0.199 0.198 0.557 0.409 0.266 0.198 0.163 0.130 0.549 0.374 0.251 0.165 0.141 0.121

3.5 0.585 0.492 0.369 0.261 0.201 0.196 0.560 0.423 0.276 0.210 0.167 0.130 0.554 0.395 0.248 0.184 0.139 0.121

4.0 0.584 0.501 0.379 0.260 0.205 0.186 0.563 0.437 0.295 0.207 0.186 0.129 0.558 0.416 0.259 0.184 0.147 0.126
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Table 5.2

Values of the factor c 2 of the linear critical load of saddle-shaped hypar shells according to Jankó [5.15a]

8f j t ___________________ 80_________________________ 160________________________ 240________________________ 320____________
L JL y = _______ 1.0 2.0 2.5 3.0 1.0 2.0 2.5 3.0 1.0 2.0 2.5 3.0 1.0 2X) 3jtT~

/_//„= 1.50 0.081 0.084 0.082 0.090 0.062 0.065 0.069 0.077 0.066 0.071 0.068 0.069 0.076 0.074 0.076 0.071
1.75 0.090 0.090 0.110 0.140 0.058 0.059 0.064 0.074 0.054 0.055 0.056 0.060 0.056 0.058 0.056 0.057
2.00 0.096 0.093 0.112 0.140 0.054 0.052 0.060 0.072 0.041 0.040 0.044 0.051 0.036 0.035 0.038 0.042

2.25 0.103 0.098 0.117 0.142 0.054 0.051 0.062 0.075 0.037 0.035 0.041 0.050 0.028 0.026 0.031 0.038
2.50 0.114 0.106 0.123 0.146 0.065 0.061 0.071 0.085 0.050 0.048 0.054 0.062 0.044 0.043 0.046 0.051
2.75 0.119 0.114 0.131 0.149 0.087 0.085 0.091 0.101 0.080 0.083 0.084 0.087 0.084 0.089 0.086 0.085
3.00 0.099 0.119 0.119 0.115 0.113 0.105 0.106 0.109 0.105 0.111 0.109 0.107 0.105 0.125 0.122 0.117

3.25 0.081 0.087 0.087 0.087 0.093 0.092 0.093 0.098 0.092 0.086 0.087 0.088 0.086 0.090 0.090 0.088
3.50 0.067 0.061 0.062 0.065 0.060 0.071 0.070 0.066 0.070 0.067 0.069 0.072 0.071 0.063 0.064 0.065
3.75 0.058 0.045 0.046 0.050 0.038 0.034 0.034 0.035 0.034 0.035 0.034 0.034 0.033 0.039 0.038 0.036
4.00 0.057 0.040 0.042 0.047 0.031 0.021 0.022 0.024 0.022 0.014 0.015 0.017 0.016 0.011 0.011 0.012

Д 2 _  <*/./>
R J R y \ C2 L I L I  '

1 П  --- - Л
P e r  —  C2
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Fig. 5.9. Linear critical load of a saddle-shaped hypar exerting no lateral thrust

with the geometric ratio /„//j,=4 [5.1] we set up, on the basis of the diagrams of 
Jankó, an approximate formula suitable for preliminary calculations:

lin
Pcr(fjfb = 4) y j  n  L ,

(5.7)

The investigations of Jankó also showed that the shell does not buckle exactly in 
the form of an inextensional deformation: this latter is rather completed by some 
additional extensional terms. However, the dominant term of the buckling shape 
is always an inextensional one pertaining to some adjecent ratio f j f b, i.e. to 
/„/Л =9/4 от f j f b= 4.

As can be seen from Fig. 5.9, in the range 2 . 5 ^ f j f b̂ 4  the critical load is always 
greater than or equal to that of the “normal” shell with the ratio f j f b= 4. Since 
the buckling shape of this latter is almost exactly inextensional, its critical load 
represents a “lower critical load” for other shells with different f j f b ratios, as 
defined in Fig. 1.4 (c), and may thus be regarded as a lower bound for the critical 
loads of shells of other geometric parameters and with initial imperfections as 
well as for the critical loads bifurcating from the deformed shape.

Figure 5.9 also shows that the critical load has a peak value at about f j f b= 3. 
Hence these shells have a high critical load but they also are rather sensitive to 
initial imperfections, since a small deviation in the geometric data of the surface 
results in a sharp drop in the critical load.

In his third paper Jankó [5.15], investigated the behaviour of the perfect shell,
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P L,/t =200
(£ 10' 6 ) h/Ly  = 0.1 fa/fb=b

Fig. 5.11. Comparison of the linear critical load, the snapping load, and the critical load causing 
bifurcation from the deformation leading to snapping o f a saddle-shaped hypar

Fig. 5.10. Load-deflection curve of a saddle-shaped hypar in the case of snapping
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and of the shell deformed by a uniform load, with the nonlinear theory, assuming 
a buckling shape with two free parameters. According to his findings, the saddle- 
shaped shell is also prone to snapping but the pertaining critical load is in most 
cases several times greater than the linear critical load (causing bifurcation). 
The snapping diagram of the “normal” shell with the geometric ratios as indicated 
in Fig. 5.9 is shown in Fig. 5.10.

It is also possible that bifurcation occurs from the deformed shape. In the range 
investigated ( l . 5 ^ f j f bs4 ) , this bifurcating critical load p*'rtarc is mostly lower 
than the linear critical load (calculated with an undeformed shape). The result 
of one of Jankó’s examples is shown in Fig. 5.11. The difference between the two 
critical loads is, in this case, about 10%, but in other cases this may be more.

Jankó finally investigated whether the character of the load bearing capacity 
after bifurcation from the deformed shape is increasing or decreasing. He found 
in the cases / a//fc>3 a slightly increasing character, and in the cases /„//(,-= 3 a 
decreasing one. In his fourth paper [5.15a] he improved the accuracy of his 
previous results by using a more refined calculation.

Unfortunately, his method was not suitable to determine the lower critical load 
of the perfect shell, or the dependence of the upper critical load on the initial 
imperfection.

5.4. Buckling of Hyperbolic Shells of Revolution

Among the hyperbolic shells of revolution the simplest one is the hyperboloid 
of revolution. This surface can be generated by rotating a pair of hyperbolas 
around their axis of symmetry which does not intersect them. The inextensional 
deformation of this surface was treated in Section 5.1. However, hyperbolic sur
faces of revolution may also be generated by rotating, e.g., a parabola or any other 
curve around the axis.

Hyperbolic shells are mostly used as cooling towers and are made, as a rule, 
of reinforced concrete. The dimensions of the cooling towers increased steadily 
increasing for years without their stability problem being thoroughly investigated. 
After the collapse of three cooling towers at Ferry-bridge in 1965, the research in
to the stability of hpyerbolic shells of revolution began. Due to the comparatively 
short time that has elapsed since then and to the intricacy of the problem, we cannot 
expect an exhaustive and easy-to-survey treatment of the subject, so that there is 
some uncertainty in the determination of the critical loads of such shells. For 
example the results of the research, due to difficulties in the investigations, are 
exactly valid only for certain simplified boundary conditions (e.g. rigidly supported 
hinged lower edge). There are hardly any results to be found for an elastically
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supported bottom edge, which is the actual boundary condition of the cooling 
towers.

Because of the more intricate nature of the elastic support, it seems feasible to 
use the two simple extreme cases as upper and lower bounds: entirely prevented 
and totally free displacements in meridian direction. However, some caution 
in necessary here. If the geometric ratio makes an inextensional deformation 
possible, and we apply hinged top and bottom diaphragms rigid only in their 
planes (i.e. allowing totally free displacements in meridian direction), these 
will not hinder the inextensional deformation and we obtain an unrealistically 
low critical load. By hindering the displacement of such shells in the meridional 
direction we may markedly increase the critical load, because by so doing we 
hinder the inextensional deformation.

Several older papers on model tests did not mention the support conditions 
applied in the experiments. Their results often differ considerably from each other. 
It thus seems probable that the discrepancy could be explained by the differences 
in the kinds of support. Another possible explanation is that when investigating 
experimentally the compression in the meridian direction, the results concerning 
the general and the local buckling were not separated, so that these results could 
have appeared mixed.

In recent years rather accurate computer calculations have been developed for 
the determination of the critical load. Lehmkämper [5.23a] calculated the critical 
loads of cooling tower shells with various dimensions and stiffening ribs for 
several loading cases. Veronda and Weingarten performed computer calculations 
on shells previously tested experimentally, taking the actual boundary conditions 
into account, and they found a rather close agreement [5.31]. These investigations 
included several loading cases and different boundary conditions. For the ratio 
of the experimental to the calculated critical load the following mean values and 
variational coefficients (i.e. standard deviations divided by the mean values) 
were obtained:

— vertical load: 0.96 (0.10),
— lateral pressure: 1.04 (0.12).

Unfortunately, not every engineer has access to the afore-mentioned computer 
calculations. Moreover, it will take a long time before, on the basis of numerical 
examples calculated by the exact computer programmes, practical recommenda
tions can be set up. Hence, it seems necessary to present some less accurate but 
easy-to-use results and methods obtained by more simple means.

Since the buckling problems of hyperbolic shells of revolution can by no 
means be regarded as definitely solved — indeed for certain cases there are no 
theoretical results at all — the experiments are even more important for the design 
than usual.
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5.4.1. Loads, Boundary Conditions and Buckling Modes of 
Hyperbolic Shells of Revolution

There are two dominant kinds of loads acting on hyperbolic cooling towers: 
their own weight and wind pressure. Both loads cause both meridian-directed 
and hoop stresses, as contrasted to cylinders with vertical axis where their own 
weight does not cause any hoop stresses. Hence, the influence of both stresses on 
buckling should be investigated simultaneously. Since, however, it is much simpler 
to deal separately with the two kinds of stresses, following Krätzig [5.20] we shall 
deal separately with the two basic loading cases shown in Fig. 5.12. In case (a) 
no stress arises in the meridian direction, while in case (b) there are no hoop 
stresses. We shall denote the critical hoop force pertaining to case (a) with и® cr, 
while the critical meridian force of case (b) will be called n°x cr. The superscript 
“zero” refers in each case to the zero value of the other normal force.

The theoretical and experimental investigations [5.26], [5.31] definitely showed 
that in the case of simultaneous action of both normal forces the condition of 
stability can be expressed (slightly to the benefit of safety) by the Dunkerley 
theorem:

, l x ,c r  , l y ,c r

The boundary conditions at the upper and lower edges of the hyperbolic shell, to 
be used in stability investigations, depend on the structural solution of the cool
ing tower, and are as follows:

(a) (b)

Fig. 5.12. The “pure” circumferential compression and the “pure” 
meridian-directed compression of a hyperbolic shell o f revolution
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At the upper edge mostly a stiffening ring is applied, due to which the following 
boundary conditions apply for the buckling of the shell: w=d2w/dx2=v=nx= 0. 
During erection (and also in the case of smaller towers) there is no stiffening 
ring, so that the boundary conditions become:

At the lower edge, in most cases, also a stiffening ring is applied, sometimes realized 
by the thickening of the shell wall. The ring or the lower edge is mostly supported 
by a truss resting on the soil, through which the cooling air can stream into the 
tower. The compression of this truss and the subsidence of the foundation act as 
elastic support for the shell. Moreover, if the foundation is light, it may also lift 
from the soil along a certain section.

If we assume a hinged joint, the boundary conditions of the lower edge can be 
written as follows:

(It should be noted that, due to the lower stiffening ring, it is irrelevant whether 
we denote by и the displacement in the vertical or in the meridional direction.)

If the vertical stiffness of the foundation and of the truss can be considered 
infinitely great, then «support =0- On the other hand, if the foundation may lift, 
then along this section we have to set nx—0 instead of the restriction for u.

Hyperbolic shells have four characteristic buckling modes.
In the case of a free upper edge, the specific distribution of the wind pressure

d2w/dx2 = d3w/dx3 = nx — nxy =  0.

w  =  V =  0 , d 2w / d x 2 =  0,
and

Thdl ŝupport •

(a) (b) (c) (d)

Free-edge buckling Local (diamond)
buckling

Axisymmetric
buckling

Overall buckling

Fig. 5.13. The buckling modes of the hyperbolic shells of revolution
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may cause a buckling pattern shown in Fig. 5.13 (a), which we shall call free-edge 
buckling.

The meridian-directed forces may cause local buckling in a diamond-shaped 
pattern shown in Fig. 5.13 (b). This phenomenon is similar to the buckling of 
cylinders under axial compression. The boundary conditions (even comparatively 
weak edge supports) do not influence this buckling mode, as a rule, since in the 
vicinity of the upper edge ring the meridian-directed forces are small so that they 
cause no local buckling here, while near the lower edge the usual thickening of the 
shell wall prevents local buckling.

The meridian-directed forces may also cause an axisymmetric buckling shown 
in Fig. 5.13 (c), which is again similar to the case of the axially compressed cylinder.

Finally, a reticulated buckling pattern, extending to the entire surface, has to 
be mentioned, which we call overall buckling (Fig. 5.13 (d)). This buckling mode 
is markedly influenced by the boundary conditions.

In the following we shall treat, in turn, the critical loads pertaining to each buck
ling mode. The notations are explained in Fig. 5.14.

8 Buckling of Shells

Fig. 5.14. Elevation of a hyperbolic shell o f revolution. Notations
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5.4.2. Free-Edge Buckling

The buckling of the free edge is caused by the lateral pressure of the wind. It 
may be onerous during erection when the strength of the concrete is still low and 
the upper stiffening ring is not yet built.

Most authors set up the following formula for the critical wind pressure (i.e. 
the maximum pressure value of the circumferential distribution of the wind 
load):

( 5 . 9 )

where R0 is the throat radius, В and T  are the bending and tensile stiffnesses of the 
shell wall, respectively. For the factor C  they suggest values on the basis of model 
tests, depending on the geometric ratios (principal curvatures and height to throat 
radius) of the shell:

Der and Fidler [5.4]: C =  0.060~ 0.077;
Walther and Wölfel [5.33]:
— taking extreme cases into account: C = 0.048 — 0.309;
— considering practical cases only: C = 0.072—0.220.

The discrepancies between these values are caused by the various support condi
tions of the lower edge and by the different geometric ratios of the shell.

Cole, Abel and Billington [5.2], [5.3], and also Walther and Wölfel [5.33], 
investigated by more exact computer calculations the influence of various factors 
and compared their results with those of several other authors [5.21], [5.31], 
[5.36].

Their findings are:
(a) If the shell has a free upper edge without any stiffening ring, the wind 

pressure causes buckling on the upper section of the shell. Besides the weakness of 
the free edge, there is the additional reason that in the upper section of the tower 
an increased local internal wind suction develops, due to the vortices caused by 
the free edge.

A stiffening ring applied on the upper edge eliminates the free-edge buckling, 
and the wind pressure becomes onerous for the overall buckling. In such cases 
the wind-induced buckling bulges in the middle part or in the lower half of the 
tower. The upper stiffening ring thus increases the critical wind load of the shell 
with constant wall thickness by about 10—20%. If the wall thickness of a shell 
with upper stiffening ring is increased towards the bottom along the lower half 
of the shell by up to 3 or 4 times, as is usual in cooling tower practice, the critical 
wind pressure augments by about 50—100% as compared to the shell with constant 
wall thickness.
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(b) As compared with the uniform lateral pressure, the actual wind pressure 
distribution causes an increase of 20~30% in the critical load (referred to the peak 
value of the wind pressure).

(c) Constant wind profile along the height reduces the critical pressure by 
about 20% as compared with the maximum intensity of the actual wind profile, 
increasing upwards.

(d) The interaction of the horizontal wind pressure p  and of the vertical own 
weight q can be closely approximated by the straight line of Dunkerley:

(5.10)

(e) The factor C in Eq. (5.9) depends on the ratio of the two radiuses of curva
ture of the shell. In the case of a rigid lower support (w =  0), the value of C may 
be computed from the relation:

(5.11)

which was obtained by approximating the results of numerical examples in the 
range 0.05-= 0.25. Here Rx denotes the radius of curvature of the meridian
line at the halfway height of the shell according to Eq. (5.19), while Ry is the hori
zontal radius of the shell at the same height (see Fig. 5.14).

If the support is elastic (MsheU=wsupport), the value of C yielded by Eq. (5.11) has 
to be multiplied by a factor x depending on the elasticity of the foundation. This 
latter is characterized by the expression ksR0/(Et), with ks as the spring constant of 
the support of the lower shell edge in vertical direction and E  as the modulus of 
elasticity of the shell material. The factor x is given by the diagram of Fig. 5.15, 
obtained by fitting a curve on the x values of numerical examples. In these latter 
the ratio of pcr for lcs = 0 (no hindering of vertical displacement) to that for ks= °° 
(rigid support) was equal to 1/6. Taking this value into account, the curve of Fig. 
5.15 can be approximated by the relation:

(5.12)

(f) Evaluation of some experimental results [5.33] showed a dependence of the 
critical load on the ratio of the shell height H  to the throat radius R0. When the 
ratio H/R0 is decreased from 4 to 2 or 1, the critical load increases to two or three 
times its value. However, the experiments which were in good agreement with the 
exact computer calculations [5.31] did not show such a dependence. The explana-

8*

. - i - [ . - ^ = 4 1 — Ц - .
L Pcr(fc5=°°)-I 1 _ 3fc ^0

s Et



116 5. Hyperbolic Shells

Fig. 5.15. The diminishing effect o f the elastic foundation on 
the linear critical load of the hyperbolic shell o f revolution

tion of this phenomenon is that H/R0 can also be expressed by R j R y, so that 
Eq. (5.11) automatically contains this dependence, too.

(g) Hyperbolic surfaces are much less sensitive to initial imperfections than 
elliptic ones. This follows from the fact that the lower critical load of the geometri
cally perfect shell (computed by the nonlinear theory) is only slightly less than the 
linear critical load.

As an explanation for this phenomenon we have to consider that the nonlinear 
theory may cause a considerable deviation from the linear critical load only if the 
membrane stiffnesses constitute a great part of the buckling resistance. Due to the 
propensity of hyperbolic shells to inextensional deformation, their membrane 
stiffnesses play only a minor role and their critical load is comparatively low, but 
— as with what has been said in connection with Fig. 2.9 — their imperfection- 
sensitivity is also small (or even absent in some cases).

5.4.3. Local Buckling

The compressive forces acting in meridian direction also cause hoop forces 
in a hyperbolic shell of revolution, so that its critical load is less than that of a 
substituting cylinder with the radius R equal to Ry of the hyperbolic shell (see 
Fig. 5.14), see [5.24].
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According to the investigations of Rosemeier [5.30], the critical loads computed 
on the replacement cylinder can be used for the hyperbolic shell of revolution 
provided they are multiplied by the reduction factor:

Щ '  (5' 13)

Rx and Ry being defined in Fig. 5.14.
Thus, we arrive at the following results:

л'*- =  0 6  EL ( 5 14)
x’cr 1+Ry/Rx Ry ’ P  j

=  j ^ R  JR  (cylinder), (5.15)

«5ВГ =  y + 1r  j R  w5f?rr(cylinder). (5.16)

In practical cases, the local buckling analysis has to be carried out at various 
heights, since the wall thickness as well as the stresses vary along the height.

5.4.4. Axisymmetric Buckling

Axisymmetric buckling was investigated by Kohli [5.17]. He derived for the 
critical value of the meridian force the expression:

Ff-
nx,cr = X —  . (5.17)

Ky

For Ry see Fig. 5.14. The factor A has the value 0.96 — 0.93 for shells with an 
upper stiffening ring and 0.46 — 0.43 for unstiffened shells. The higher A-values 
were obtained for the linear critical load while the lower values give the lower 
critical load (of the geometrically perfect shell) obtained by the nonlinear theory.

Since these values exceed those of the other buckling modes, axisymmetric 
buckling, as a rule, need not be investigated.
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5.4.5. Overall Buckling

The linear critical load of the overall buckling, which extends to the entire 
surface, is usually described by the following formula, similar to Eq. (5.17):

F t 2
nx,cr= A — , (5.18)

.у
Ry being shown in Fig. 5.14.

For the factor Я, various researchers obtained different results from the evalu
ation of model tests:

Krätzig [5.19]: 
Rosemeier [5.30]: 
Der and Fidler [5.4]: 
Wianeczki [5.34]: 
Mateja [5.25]:

Я=0.079
Я=0.07~0.10
Я=0.18
Я=0.12
Я =  0.24 ~  0.27

The lowest value among the above results is only one fourth of the highest one.
As possible reasons for these discrepancies we may mention the different 

geometric ratios and boundary conditions occurring in the model tests and 
computations of the various authors.

Krätzig [5.20] calculated numerical tables, from which we can establish the 
following expression for Я:

A =  0.13 ~  1.85) j / Z ,

His tables make it possibly to compute the values of and separately, 
as functions of the ratio throat to lower radii R0/Ri and of the dimensionless 
height factor £,, see Fig. 5.14. (The definitions of and nx™'c° are to be found 
in Section 5.4.1.) Unfortunately, these tables do not allow the influence of the 
dimensions of the upper part of the tower (above the throat) and of the ratio 
Ry/t to be properly taken into account. The critical loads computed by these 
tables give results that are 30~50% higher than those obtained by exact computa
tions confirmed by model tests [5.31]. Due to all these circumstances, we now pre
sent, on the basis of [5.6], the results of an approximate method which takes 
into consideration the influence of the geometric parameters. The main point 
of the approximation is that the investigation is carried out on a hyperbolic 
paraboloid shell by which we replace the hyperbolic shell of revolution in question. 
Since the hypar is a translational surface and, therefore, has no twist, it is less 
rigid than the hyperbolic shell of revolution, and has a somewhat lower critical 
load, which is, however, much easier to determine.

The replacement hypar is shown in Fig. 5.16. Its radius of curvature in they
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Fig. 5.16. The substituting hyperbolic paraboloid

direction Ry is assumed to be equal to the horizontal radius Ry of the shell of 
revolution at its half way height, i.e. at the mid-distance between the two edges 
(see Fig. 5.14). For the other radius of the hypar Rx we have chosen, at the half
way height of the tower, the radius of curvature of the flat parabola arc which lies 
in common plane with the axis of revolution and passes through the end points 
of Ru, Ry and R, (see Fig. 5.14), i.e.:

*‘=уфг-хJ-
By using these radiuses, the curvatures of the replacement hypar closely approxi
mate the average curvatures of the hyperbolic shell of revolution in question. 

We can write the equation of the replacement hypar surface as follows:

_  y 2 X2
Z ~ T R y ~ T R x '

The boundary conditions are:

— along the upper edge (stiffening ring): w=d2w/dx2= v= nx= 0,
— along the lower edge (rigid support): w=d2w/dx2=v = u=0.

(5.20)

The buckling shape was assumed to have the form:

. nn „  , . mn
w  =  s m  —  2 ^ m  sin —  л:

m **
(5.21)
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with the pertaining stress function:

(5.22)

Here T  denotes the tensile stiffness of the shell wall. Introducing the above expres
sions for w and F into the compatibility equation, the coefficients Fm can be de
termined. The above expressions can satisfy the boundary condition и= 0  by 
combining two terms with different m-s. The pairs of the m-values and n have to be 
chosen in such a way that they make the critical load a minimum.

We performed this computation and calculated the critical load in [5.6] accord
ing to the rules of the energy method. The following expressions for the critical 
meridian and hoop normal forces were obtained:

The numerical values of the factors 2° and 2° are compiled in Tables 5.3 and 5.4. 
Since by linear interpolation we would commit an error to the detriment of safety, 
we recommend a parabolic interpolation between the values of the tables.

Due to the variation of the meridian directed force, its value valid at the halfway 
height of the tower should be compared with that of the critical force.

The interaction of the meridian and hoop forces can be accounted for, according 
to the reasoning in Section 5.4.1, by the Dunkerley formula (5.8).

We compared the critical forces n'^cr given by the exact calculations and verified 
by model tests [5.31] with those computed with the Я-values of Tables 5.3 and 5.4, 
and found that the 1-values of the tables yield results about 10% lower than the 
more exact ones.

It seems probable that the effect of the support elasticity along the lower edge 
is similar in the cases of all the loading and buckling types. Consequently, we may 
use x (5.12), introduced in the case of the free-edge buckling, as a multiplicator 
for assessing the influence of the support elasticity on the critical load in our 
case too.

It was found by several nonlinear investigations on the overall buckling [5.2], 
[5.31] that the lower critical load (of the perfect shell) is only a few per cent (maxi
mum 5 %) lower than the linear critical one. Hence, knowledge of the latter seems 
to be sufficient to perform the stability investigation of hyperbolic shells of revolu
tion.

(5.23)

(5.24)



Table 5.3

Values of the factor A® , appearing in Eq. (5.23)

R y/ t  100 200 300

H / R y 2 4 6 8 2  4 6  8 2 4 6 8

R J R y =  2 0.224 0.137 — —  0.180 0.133 —  — 0.157 0.160 —  —

4 0.289 0.188 0.183 —  0.240 0.159 0.155 — 0.209 0.133 0.174

6 0.344 0.255 0.192 0.153 0.276 0.193 0.170 0.159 0.249 0.172 0.146 0.197

8 0.392 0.264 0.238 0.199 0.333 0.228 0.170 0.146 0.286 0.192 0.161 0.130

10 0.424 0.294 0.246 0.199 0.364 0.257 0.208 0.170 0.329 0.234 0.183 0.165
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Table 5.4

Values o f the factor Aj, appearing in Eq. (5.24)

Ry/t  100 200 300

H / R y 2 4 6 8 2 4  6 8 2  4 6 8

R J R y= 2 0.115 0.070 —  — 0.087 0.067 — —  0.080 0.081 — —

4 0.092 0.055 0.040 — 0.060 0.040 0.034 —  0.056 0.034 0.038 —

6 0.062 0.040 0.036 0.030 0.057 0.034 0.026 0.031 0.046 0.028 0.022 0.035

8 0.057 0.039 0.029 0.023 0.044 0.029 0.022 0.018 0.045 0.026 0.024 0.016

10 0.057 0.035 0.025 0.023 0.040 0.026 0.022 0.021 0.035 0.024 0.018 0.016
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6. Stability Problems of Shells with Free Edges

6.1. General Remarks on the Stability 
of Shells with Free Edges

All the kinds of shells discussed in the foregoing were supported all along 
their boundaries. In modern architecture, however, shells with unsupported 
edges are gaining ground, their appearance being much more graceful than 
that of the edge-supported ones.

Due to their free edges, these shells generally do not buckle locally (like, e.g. 
the axially compressed cylinder or the radially compressed sphere), but the struc
ture buckles as a whole. Thus, the local shell-like buckling merges into the “arch
like” buckling of the whole structure.

The stability of shells with free edges is a rather unexplored field. Hence we 
report on a model test here which allows us to draw conclusions of a fairly general 
nature.

Fig. 6.1. Dimensions of
the investigated shell model with free edges
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The experiment was performed on two shells of slightly different surfaces 
(sphere and sinusoid of revolution), made of 3 mm thick plexiglass [6.6]. Their 
dimensions are shown in Fig. 6.1. The structure was supported only at its three 
corner points, their edges were unstiffened. Under uniform load they closely ap
proximated the funicular surface of the load, i.e. only small bending moments 
arose in the shells.

The edges of the models began to wrinkle at a considerably lower load intensity 
than necessary to cause local buckling of an edge-supported shell (Section 4.1), 
i.e. the structure started to buckle as an arch. With the aid of the generalized 
Southwell-plot (Section 9.9) we established that the structure has an increasing 
post-buckling load bearing capacity, see Fig. 1.1 (b) [9.9.2], [9.9.3]. In fact, both 
structures failed, not because of instability, but due to bending in the vicinity of 
the supports.

This increasing post-buckling load bearing behaviour can clearly be explained 
by Fig. 6.2. The structure first carries the load according to Fig. 6.2 (a), i.e. it 
behaves as if it consisted of three arches. After wrinkling of the edges, the internal

Fig. 6.2. Rearrangement of the internal forces
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forces rearrange themselves: the lines of compression “retreat” to the internal 
part of the shell, which is less exposed to buckling (Fig. 6.2 (b)). Thus the outer 
parts are relieved, preventing increased buckling deformations of the edges, while 
the inner parts are able to carry much greater compression.

This model test allows us to draw the following conclusion for shells with free 
edges: We may reckon with increasing load bearing capacity after buckling of 
the whole structure, provided that the internal forces can rearrange themselves 
by shifting to the interior of the shell, and if this inner part alone is able to carry 
more load than the complete original structure with free edges working in 
compression [9.9.2].

When designing an actual shell structure with free edges, it is advisable to make 
a model test, except if its stability problems can be considered as solved, like e.g. 
the shell-arches to be discussed in Section 6.2.

6.2. Stability of Shell-Arches and Shell-Beams

Among shells with free edges only the stability problems of the shell-arches 
(and shell-beams) are solved in detail [6.5]. We report on them briefly in this section.

Shell-arches are, essentially, curved bars with thin-walled open cross sections 
(Fig. 6.3). The cross section of the bar has to have an axis of symmetry, which 
lies in the plane of the arch; otherwise the cross section may be optional. If the 
bar axis is straight, we are dealing with a shell-beam.

Owing to the symmetry of the cross section, instability phenomena in the 
arch plane and perpendicular to it can be treated separately.

6.2.1. Stability Investigations in the Plane of the Arch

Instability phenomena occurring in the plane of the arch cannot be treated by 
the classical methods of buckling analysis for arches with solid cross section, 
since the cross sections of the shell-arch undergo a transverse bending deforma
tion. This is shown in Fig. 6.4. Compressive and tensile stresses parallel to the arch 
axis, which arise from bending, produce resultants due to the curvature of the arch 
axis, causing transverse bending of the cross section. Thus, the thin cross section 
undergoes considerable deformation, resulting in a substantial reduction in the 
bending stiffness of the shell-arch as compared to the ordinary arch with unde- 
formable cross section. This phenomenon was first analysed by Kármán [6.4]
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Fig. 6.3. Shell arches and shell beams with cross sections 
(a) open upwards, (b) open downwards

Elevation of the arch 

^z• Tension

da. .
у  Resultant of tensile forces

i—^_ida.
Resultant of compressive,* ♦— 

forces
Forces causing transverse bending of cross section:

Deformed cross 
section 

Original cross^ 
section

Resultant of tensile forces

r'  ^ S7-diagram

Resultant of 
compressive forces

Fig. 6.4. Flattening of the cross section
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and Brazier [6.1] for closed tubes and by Weinel [6.7] for doubly curved open 
strips.

Owing to this deformation of the cross section, in the case of pure bending 
(Fig. 6.5 (a)) the behaviour of the shell arch is characterized by the diagram of 
Fig. 6.6, representing the bending moment M  versus the change in the curvature

Fig. 6.5. The two basic loading cases.
(a) -  Pure bending, (b) -  central compression

■/. (Jy denotes the moment of inertia of the cross section calculated by the elemen
tary theory, referred to the horizontal axis y.) This diagram shows that the arch 
not only undergoes much larger deformations than might be expected on the 
basis of the elementary theory, but at a certain value M cr of the positive bending 
moment, as defined in Fig. 6.5 (a), it also loses its stability in pure bending by 
snapping through, due to the flattening of the cross section. In the case of a nega
tive bending moment this does not happen, because the cross sections bulge and 
the arch becomes stiffer against bending, as shown by the lower part of the curve 
in Fig. 6.6. Hence, the shell-arch behaves “asymmetrically” with respect to + M  
and — M  (see Fig. 1.1 (d)), as mentioned in Section 1.2.

The critical bending moments causing snapping (i.e. the peaks of the curves 
M(x)  in Fig. 6.6 for different geometric ratios) are given for the four cross sections

F ig . 6.6. B e h av io u r o f  th e  she ll a rc h  u n d e r  p u re  b e n d in g
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Mcr (\ß 'Ьг \  
Ely \ h )

Fig. 6.7. Critical bending moments causing snapping due to flattening of the cross sections

of Fig. 6.3 in Fig. 6.7, plotted against the geometric parameter

УЗЬ 1.316 b

ß b = m = ^ m ~
(6. 1)

with the notations as shown in Fig. 6.3. The shell-beam is characterized by ßb= 0. 
The discontinuity in the curve of the wing-shaped cross section at ßb=0.15 is 
due to the fact that the M(/)-curve itself contains two buckles, the one and the 
other giving M™ax below and above ßb= 0.75 respectively.

The geometric data of the four cross sections of Fig. 6.3 are compiled in 
Fig. 6.8. The centroids and the shear centres are denoted by О and T  respectively.

It should be mentioned that — due to the transverse bending — the arch-directed 
stresses in the cross section do not vary linearly with the height [6.5].

In the case of central compression caused by uniform radial load in an arch with 
a circular axis (Fig. 6.5 (b)), the bending rigidity of the arch, necessary for calculat
ing buckling, is given by the initial tangent to the M(/)-curve in Fig. 6.6. The 
factor yx determining the reduced moment of inertia yxIy is plotted against ßb 
in Fig. 6.9. for the four cross section types. A simple approximate expression 
for is also given by the dashed line.
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Fig. 6.8. Cross section characteristics

When knowing y j y, the critical load of the shell arch can be determined by 
the usual arch analysis. However, this will yield only a theoretical critical load for 
the central compression N \ a s  explained in Fig. 1.1 (c). (Since the arch buckles 
always antisymmetrically, its two halves developing bending deformations of 
opposite signs, its “asymmetric” behaviour with respect to the bending deforma
tion mentioned above does not become manifest.) Nevertheless, the post-buckling 
behaviour of the whole arch has a decreasing character (Fig. 1.1 (c)), so that 
eccentric compression due to one-sided load has also to be considered.

Detailed investigations [6.3], [6.5] resulted in the curve shown in Fig. 6.10, 
describing the interaction between compressive force N  from uniform load and

9 Buckling of Shells
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Fig. 6.10. Interaction curve o f central compression and 
of bending moment causing snapping due to flattening of the cross section

bending moment M 2 arising at the quarter point of the arch due to antisymmetric 
load, which cause buckling when acting simultaneously. An approximate equation 
for the diagram is also given in Fig. 6.10. The curve is characterized by its convexity 
when seen from the origin and by its vertical tangent at N/Ncr= 1. This defines a 
behaviour similar to that of the axially compressed cylinder (Figs 2.7, 2.8), or of 
the radially compressed sphere (Figs 4.6, 4.8). Consequently, the buckling of the 
compressed shell-arch belongs to the type described by Figs 1.4 (c) and 1.5, 
necessitating the assumption of a bending moment due to initial imperfection 
even in the case of central compression, and the reduction of the critical compressive 
force N l™ accordingly.
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6.2.2. Stability Investigations Perpendicularly to the Plane of the Arch

The buckling of shell-arches out of their plane may be treated as lateral or 
torsional buckling o f  curved bars with open cross sections, since their cross sec
tions do not deform during these instability phenomena. Shell-arches differ from 
ordinary arches (with solid cross sections) in the following ways:

— their torsional to bending rigidity ratio is much smaller then unity;
— their shear centres do not coincide with their centroids;
— due to their thin walls, the compressive stresses, originally acting parallel 

to the arch axis, are bound to follow the distortion of the wall, and so exert a 
twisting effect on the structure.

These properties considerably reduce the critical load as compared with ordi
nary arches.

The theory of lateral (torsional) buckling of arches with open cross section was 
developed in [6.5]. Due to their small torsional rigidity, all the lateral stability 
problems of shell arches can be treated by considering their twisting deformations 
only. Thus, for most cases, closed formulas could be established. Nevertheless, 
the results are even so too lengthy to be reproduced here. We shall content our
selves with two remarks.

All the investigations mentioned were carried out on the basis of the linear 
theory. Accordingly, the interaction curve of bending and compression has the 
shape shown in Fig. 6.11, where M 2 again denotes the bending moment due to 
antisymmetric load arising in one fourth of the arch. This curve has exactly the 
opposite character of that in Fig. 6.10, the latter representing the combination of a 
nonlinear (snapping) phenomenon with a linear one. On the other hand, the lateral 
instability problems, being linear bifurcation phenomena, always yield an inter
action curve bulging outwards, as required by the theorem of Dunkerley see in 
[2.27], [2.40].

Fig. 6.11. Interaction curve o f central compression 
and of bending moment causing lateral (torsional) buckling

9*
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The model tests [6.5], performed to check the results of the linear theory, mostly 
showed an increasing (sometimes a constant) post-buckling load bearing capacity, 
corresponding to Fig. 1.1 (b) (or Fig. 1.1 (a) respectively). Therefore, the linear 
critical loads may be used for design purposes.

6.2.3. Lateral Buckling of Suspended Shell-Beams

The formulas for the critical load causing lateral buckling of shell-beams with 
cross sections shown in Fig. 6.3 will be presented on the basis of [6.2] and [6.5].

We assume that the beam is suspended at both ends, rigidly connected at points 
F to the end cross sections (Fig. 6.12), and loaded by uniformly distributed forces 
q acting at points P of the cross sections at a height m above the shear centres. 
(If the height/ of the suspension point F is increased to infinity, we obtain the case 
of the usual “fork-like” support, i.e. when the ends of the beam are prevented 
from rotating about the beam axis, but are still free to rotate about the vertical 
axis.)

Fig. 6.12. Suspended shell-beam

Both ends of the beam are considered as free to warp. (Warping may be prevented 
by horizontal end diaphragms but, according to detailed investigations [6.5], 
this hardly increases the critical load.)

First we deal with beams with cross sections open upwards, as shown in 
Fig. 6.3 (a), i.e. when the free edges of the beams are compressed.

Lateral buckling deformation consists, then, of twist only. The critical bending 
moment

=  M ri (6.2)

is to be calculated from the quadratic equation

а%МсГ + а хМ cr+ a 0 =  0 (6.3)
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with the coefficients:
ш 2 m5*

а2 = 5.145Х02 + 12 .36К 0 т + 10.17 К 0 —  +  1.6т2+ 1.441 — ,

Í F T  E I
24.29i:0 Gl, + 1043tf0— 19.74mG/, +  1597m - j f  +

+ 14.5 8 ^ G / ,+ 1 2 8 1 ^ ^ 2 ] ,

/г / ( F l  V
a0=21.9(G/t)H2163G /(—̂ + 1 9  2 1 4 ^ - ^ .

(6.4a)

(6.4b)

(6.4c)

The cross section characteristics appearing in these expressions are compiled 
in Fig. 6.8.

In Fig. 6.13 we plotted the critical bending moment M cr causing lateral buckling 
of a beam with V-shaped cross section (with EI0> r; 0), loaded by its own weight 
acting in the centroid (m—e), against the inverse value of the suspension height / .  
It can be seen that, compared to the case of end cross sections with prevented 
twist (/==»; i.e. m/f=0), the suspension at a finite height up to m /f=2  (i.e. as 
low as three quarters of the cross section height) does not cause a substantial 
reduction in the critical bending moment.

Fig. 6.13. Bending moment causing lateral buckling 
of a suspended shell-beam with V-shaped cross section 

(open upwards), the load acting on the centroid

However, if the cross section of the beam is open downwards (Fig. 6.3 (b)), 
i.e. the free edges are in tension, then the lateral bending deformation also has to 
be taken into consideration when calculating lateral buckling. The critical bending 
moment M„  is to be computed also in this case from Eq. (6.3), but with the
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coefficients derived on the basis of [6.2]:

I -0.1650-0.1331 Y  +  0.06657 - y ] , (6.5a)

(6.5b)

(6.5c)

The definitions of the symbols are to be found in Figs 6.8 and 6.12. In Formulas 
(6.5a, b, c), m and К have to be taken with negative signs because of the inverse 
position of the cross sections as compared to Fig. 6.8.

The suspension height /influences M cr in this case much more strongly than 
with cross sections open upwards (Fig. 6.3 (a)). On the other hand, the critical 
bending moment causing lateral buckling of beams with cross sections open 
downwards is generally much greater than either the snapping moment causing 
flattening (Fig. 6.7), or the bending moment causing local buckling of the com
pressed middle part of the cross sections. Thus, we also touch briefly upon this 
latter problem.

If the free edges of the shell-arch (beam) are in compression (central compression, 
or bending that causes compression in the free edges), the local buckling would 
begin at the free edge. The buckling half wavelength extends over the entire length 
of the arch (beam), so that the local buckling merges with the instability of the 
whole structure. (This was shown for straight bars with angle cross section in
[2.51].) Hence, the local buckling has to be investigated only if the free edges of 
the structure are in tension, as in the case of shell-beams with cross sections open 
downwards (Fig. 6.3 (b)). The stability analysis of the middle part of the cross 
sections has to be carried out as for a shell, as shown in the previous chapters. 
Some special points to be considered for its implementation are to be found 
in [6.5].

6.2.4. Local Buckling of Shell-Arches and Shell-Beams
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7.1. Orthotropic Shells in General

The elastic properties of isotropic shells, dealt with in the foregoing, are the 
same in every direction. However, this static model is only suitable to describe 
the behaviour of shells which consist of one solid layer made of a unique, iso
tropic material.

Due to their static and structural advantages, composite (reticulated, ribbed, 
corrugated, sandwich, etc.) shells are frequently used in the engineering practice. 
Since their properties differ markedly from those of isotropic shells, we have to 
use the theory of anisotropic shells to describe their behaviour with sufficient 
accuracy.

It is rather intricate to take general anisotropy into account, so we will deal 
here only with a special case of anisotropy called orthotropy. Moreover, we 
stipulate that the cross section of the shell be symmetric with respect to the middle 
surface of the shell.

An orthotropic shell has in every point of the middle surface two particular 
planes perpendicular to each other and to the middle surface, which are character
ized by the fact that in every optional pair of planes symmetric to them the elas
tic properties of the shell are the same. The intersection lines of these two particular 
planes with the middle surface are called the principal directions of orthotropy.

Taking these principal directions as co-ordinates, the stiffness matrix of the 
shell can be set up as follows (neglecting the deformation due to transverse shear, 
to be considered in Section 8.1 on sandwich shells):

nx Tx T' 0 0 0 0 ех
пу Т  Т, 0 0 0 0 £у
пху 0 0 Тху 0 0 0 Уху/2
тх 0 0 0 Вх В' 0 w" ‘
ту 0 0 0 В' Ву 0 w
тху 0 0 0 0 0 Вху w'-

(7.1)
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Here the following notations have been used:

Ex , Ey 

Уху
W —
' and • —
Bx, b f —
B xy _  ----
тх, Ту —
T  —x xy

B' and r  —

specific elongations in the direction of л and у  respectively; 
angular distortion of the directions x and y\ 
displacement perpendicular to the shell surface; 
differentiation according to x and у  respectively; 
bending stiffnesses in the directions x and у  respectively, 
torsional rigidity;
tensile stiffnesses in the directions of x and у  respectively; 
shearing stiffness in the plane xy connecting half the distortion angle 
and the shearing force;
transversal bending and tensile stiffnesses respectively.

It should be remarked that in some references the shearing and torsional stiff
nesses are differently defined and, accordingly, in these cases the stiffness matrix
(7.1) also undergoes some modification.

The rigidity matrix of the orthotropic shell (7.1) is always symmetric with 
respect to the main diagonal [7.30], so Ihat the elements denoted by dashes are 
identical in both directions.

In some cases, as e.g., in the case of the plate reinforced by ribs having different 
torsional stiffnesses in two directions, the torsional rigidity Bxy is composed of 
two parts, see in Chapter 8.

In the following we suppose that the lines traced according to the principal 
directions of orthotropy in the different points of the shell form a usable system of 
co-ordinates.

The investigation of such an orthotropic shell is still fairly complicated, so we 
shall examine the possibility of neglecting the terms Б '  and T ' ,  which represent 
the effect of the transversal contraction. That is, in this case the rigidity matrix 
will have elements only in its main diagonal.

In the case of isotropic shells, Poisson’s ratio v appears in factors which have 
the extreme values of

or (see e‘g‘ Eqs (2Л1) and (4-7̂ '
For v=0.3 these values become 1.125 or 1.06. Consequently, if we assume v=0, 
i.e. if we neglect the transversal contraction, this diminishes the computed critical 
load by 11 ~ 6  %. (On the other hand, if we neglected only B' and T ' in the rigidity 
matrix on the isotropic shell, while in the other rigidity characteristics we took 
v into consideration, the aforementioned errors would increase to 1.5 times 
their values.)
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The influence of v on several kinds of orthotropic shells is even less. For example, 
the critical load of a ribbed shell will be influenced only by the v of the plate but 
not by the v of the ribs. Hence, the error caused by the assumption of v=0 will 
be less than indicated above, and the result will be on the safe side. Consequently, 
the assumption of v=0 simplifies the stability analysis considerably, and many 
authors of the papers to be reported on also used this assumption.

In most cases of orthotropic shells it is not possible to neglect Poisson’s ratio 
in the rigidity characteristics because it does not appear in them explicitly. More
over, the influence of the transversal contraction is, in some cases, (e.g. reticulated 
shells) considerable. Hence, in these cases we propose the following procedure: 
We omit the elements B '  and T '  from the rigidity matrix, but assume values for 
the other elements which compensate for this omission. We denote these substitut
ing rigidity characteristics by capital letters without overlining. (Of course, if 
v=0, the two kinds of rigidity characteristics become identical.)

The relations between the actual and the substituting rigidity characteristics 
can be obtained from the equilibrium and compatibility equations of shallow 
shells. We have to choose the substituting rigidities in such a way that they furnish 
the same equations as the actual ones. The substituting rigidity characteristics 
are as follows:

В х  =  В Х , (7.2а)
В у =  В У , (7.2Ь)

В х  у  =  В х  у  +  В ' ,  (7.2с)

Т х = Т х - ^ ~ ,  (7.2d)
1 У
* Г '  2

Т у = Т у — т Г ,  (7.2е)

Т х у  = ------- fe w ---- . (7.20
1 _  __ i ŷ_

Т х Т у - Т ' 2

Hence, the rigidity properties of the orthotropic shell, symmetric to the middle 
surface, can be characterized by six data. The simplified stiffness matrix assumes 
the following form:

п х  Т х  О О О 0 0 ех
пу 0 Гу 0 0 0 0 £у
и„ _  О 0 7^  О О 0 y J 2
m x  О О О В х  О 0 w"
?Иу О О О О 2?у 0 w*

т х у  0 0 0 0 0 В х у  [ w/-

(7.3)
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The rigidity characteristics will be determined for the different composite shells 
in Chapter 8, otherwise we refer to the literature [7.10], [7.31]. Thus, the equilib
rium and compatibility equations of shallow orthotropic shells of constant stiffness 
can be developed in a rectangular system of co-ordinates as follows [2.13]:

-  (Bxw"” + 2Bxyw”" + Byw -) + F"(zq + w'ó + w ) -

— 2 /v  (V  + К  +  w') + F•• (ző +  wő + w") +

+ wFo"—2tv 'ir0'- +  w"F„ = 0, (7.4a)

~ jT  + ----b ~ ~ w" (ző + wo) + 2w'- {z'o + О  —
*  у ■* x y  *■ X

w" (zq + wö) - w w "+ w'*. (7.4b)

Formulas (7.4a) and (7.4b) are the Donnell-type equations of the shallow ortho
tropic shell, which also take into account the second powers of the derivatives of 
the displacement w, perpendicular to the shell surface. In the equations z0 denotes 
the height of the shell surface over the plane xy, w0 the sum of the initial imperfec
tion and the pre-buckling deformation due to static load, w the buckling deforma
tion, and F0 and F the stress functions belonging to the internal forces due to 
static load and to buckling respectively.

The method of solution and the considerations concerning the taking of linear 
and nonlinear terms into account applied in this chapter are essentially the same 
as in the previous chapters.

7.2. Linear Critical Load of the Orthotropic Shell

If we neglect the nonlinear terms in Eq. (7.4a, b), we obtain the differential 
equations which determine the linear critical load. Most shell shapes can be closely 
approximated by the shallow paraboloid

1 , 1 ,
Ж х + Ж г - (7.5)

The solution of the equilibrium and compatibility equations for this shell shape 
can be written in the form

w — IV cos (7.6)
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if we assume a rectangular ground plan, hinged edges, the pre-buckling internal 
forces

F'0 =  nx =  constant,

F'á = ny =  constant,

/'0' = ~ n xy = 0,

and geometrically perfect shape (vr0 =  0). In Eq. (7.6) IE is an (undetermined) 
constant, while lx and ly denote the buckling lengths in the directions x and у  
respectively. The critical internal forces nx,n y, caused by the critical load inten
sity, can be determined, according to [2.13], from the characteristic equation

The critical force (or forces) in Eq. (7.7) have to be minimized with respect to 
lx and ly. However, we have to observe the geometric restictions for lx and ly set 
by the boundary conditions or by other requirements, e.g. that along the circum
ference of a cylinder only an integer number of buckling wavelengths can develop.

In the case of some isotropic shells under certain loadings, several buckling 
modes were associated with the linear critical load (e.g. axially compressed cylinder, 
radially compressed sphere). This does not hold true for orthotropic shells. As 
remarked in Section 2.1, orthotropy mostly does not allow multimode (compound) 
buckling [8.2.6a], [8.2.6b]. As a rule, uniquely determined buckling lengths, lx and 
ly, are associated with the minimum critical load [7.22], [7.30].

As with isotropic shells (see Eqs (2.5a) and (4.1)), the result obtained for the 
paraboloid (7.5) may be used as an approximation for orthotropic shells of other 
shapes. The only requirement is that the paraboloid should approximate fairly 
closely the actual shape inside one buckle. Consequently, in the case of a radially 
compressed spherical shell Rx = Ry = R and nx=ny=pR/2. With these data, the 
critical load /£" can be computed from Eq. (7.7). Or, for the cylinder shown in 
Fig. 2.2, Ry = R, Rx = °° and y=R(p, and the critical load can again be determined 
from Eq. (7.7).

On the basis of what has been said above and of the exact and approximate 
methods to be found in the references, we shall now present the critical loads for 
several kinds of orthotropic shells.
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7.3. Linear Critical Load of the Orthotropic Cylinder

In certain cases, it is expedient to form three parameters of the six rigidity char
acteristics (7.2), becasue they describe the main properties of the orthotropic 
cylinder fairly well [7.1], [7.22], [7.30]. These parameters are:

о _  а д
^ S rj-, 5

■* xy  

D
Q _  n xy  

P

y =  b J j L
7 ByTx

(7.8)

The values 3 ,= <9p= у = 1 correspond to the isotropic shell.
We call the cylinder ring-stiffened if 1/y >  1, and axially (or stringer)-stiffened 

if l /y < l. It should be remarked that — except for short cylinders — if we use the 
same amount of material, the critical loads of ring-stiffened cylinders are always 
greater than those of stringer-stiffened ones, so that the former are more advan
tageous.

The buckling mode of the cylinder of length L  has several characteristic shapes. 
One is the axially symmetric mode (with Iy = °° and lx=L/m, m=  1 ,2 ,3 ,...)  
that yields the minimum critical load for some cases of axial compression. In 
other cases of axial compression, and furthermore for circumferential compression, 
the reticulated buckling pattern proves to be the most onerous (with lx=L/m  and 
ly—Rn/n for a complete cylinder, while ly= Ly\n for a cylindrical panel, Ly being 
the circumferential length of the panel and n — 2, 3, ...). In addition, the diamond 
shape buckling pattern may also occur, see also in Section 7.7.1.

The buckling shape of the twisted cylinder has one half wave skew to the cylinder 
axis with the length L in the x  direction, while in circumferential direction several 
waves develop [7.21].

7.3.1. Axially Compressed Orthotropic Cylinder 
(with or without Internal Pressure)

In the case of axial compression (see Fig. 2.2), the buckling pattern is either 
axisymmetric or reticulated. Gerard’s investigations [7.9] clarified which of the 
two will develop, i.e. which one is associated with a lower critical load. His results 
are shown in Fig. 7.1, using the parameters defined by Eqs (7.8).
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Fig. 7.1. Buckling patterns of axially compressed orthotropic cylindrical 
shells as functions of the rigidity parameters

According to various values of the rigidity parameters of the shell, Fig. 7.1 (a) 
is subdivided into six fields. The diagrams of Fig. 7.1 (b) show the variations of 
the critical forces corresponding to each field. The parameters corresponding to 
point (1,1) characterize the isotropic cylinder, for which the same critical 
load is associated with any buckling length ratio n = l j l y. In Field I, there are two 
possibilities: the minimum critical load is associated either with axisymmetric
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buckling, or with a reticulated pattern, where the buckling length in the axial 
direction extends to the whole cylinder (lx—L, i.e. m = 1). In Field II, the minimum 
critical load is always associated with a reticulated pattern with a wavelength in 
the axial direction equal to the entire length of the cylinder (lx=L). In Fields III 
and IV, the reticulated buckling pattern is the most onerous one, either with 
m=  1 (lx—L ), or with 1х=Цт , where m = 2, 3... Finally, cylindrical shells falling 
into Fields V and VI always buckle axisymmetrically.

If Fig. 7.1 shows that the axisymmetric buckling pattern is the most onerous 
one, the critical axial compression can be calculated from the following formula 
(see [2.13], [7.9], [7.30]):

n'x"cr =  \  fB^Ty. (7.9)

As with isotropic shells, the axisymmetric buckling is not influenced by the 
internal pressure.

If the shell buckled in a reticulated pattern with an infinitely large buckling 
length in the x direction, its critical load would be given by the expression:

<"«■ = (7.10)

This formula may serve for assessing the critical load of a cylinder that buckles 
with lx = L.

If Fig. 7.1 yields a reticulated buckling pattern, the internal pressure may 
increase the critical load up to that pertaining to axisymmetric buckling.

In the general case, the critical axial load can be calculated from Eq. (7.7). 
Expressing n'™cr from this, considering that, in the case of an internal pressure p, 
ny= —pR , and minimizing nx*cr with respect to l2x, we arrive at the following equa
tion:

n“n„  =  \  ] /  (Bx+ 2p*Bxy+ p % )  ( ^  + y ^  +  ̂ )  1+ P W -  (7.11)

Here again p — l j l y is the ratio of the two buckling lengths. Equation (7.11) is 
in accordance with the relations to be found in the literature [7.22], [7.30].

The minimum critical load is to be determined by choosing an appropriate value 
for p. As was mentioned in Section 7.2, in the case of orthotropic shells, only one 
buckling mode is associated with the minimum linear critical load, so that we will 
find the minimum value of nl™cr at a definite value of p.

In the case of axisymmetric buckling, /i—0, and Eq. (7.11) turns into Eq. (7.9).
For the determination of the value of p which makes the critical load a minimum, 

Fig. 7.2 may be of some help. Figure 7.2 (a) shows the additive term of the critical
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Field I

Field III or IV

(b)

Fig. 7.2. The influence of the internal pressure p  on 
the linear critical loads o f axially compressed orthotropic cylindrical shells

load due to the internal pressure p. This parabola has to be added to one of the 
curves plotted with dashed lines in Fig. 7.2 (b), representing the case of pure axial 
compression. The full line curves give the sum of both effects.

The diagrams show that, in the cases belonging to Fields V and VI in Fig. 7.1, 
when axisymmetric buckling occurs without internal pressure, the same buckling 
mode remains onerous with 0. In the other cases we have to minimize pcr 
with respect to p and, in addition, to check the case lx = L, too. From these two 
values the actual critical load will be the one which belongs to a smaller lx.

In engineering practice it is generally more expedient to compute from 
Eq. (7.7) for a series of p values instead of performing the minimization analytically.

The internal pressure p  influences the buckling of stringer- and ring-stiffened 
cylinders differently.
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Ring-stiffened cylinders may develop, as mentioned earlier, two kinds of buck
ling pattern (see Fig. 7.1). If the shell buckles axisymmetrically, the internal pressure 
does not interfere, while it impedes buckling with a reticulated pattern. However, 
the difference between the critical axial forces pertaining to axisymmetric and 
reticulated buckling patterns in the absence of internal pressure is rather slight. 
This fact limits the influence of the internal pressure too, since the critical load 
cannot be greater than that of the axisymmetric buckling.

On the other hand, stringer-stiffened cylinders show, in the absence of internal 
pressure, a much greater difference in the critical axial forces pertaining to axi
symmetric and reticulated buckling patterns. Hence, the internal pressure may 
increase the critical load to several times its value.

7.3.2. Orthotropic Cylindrical Shells in Bending

We have seen that the maximum axial compressive bending stress causing buck
ling of a closed, isotropic, cylindrical shell hardly exceeds it critical uniform com
pressive stress. Holston [7.12], as well as Reese and Bert [7.20a], showed that this 
statement is valid for orthotropic cylindrical shells too. Thus, buckling due to 
bending may be analysed by the formulas valid for the critical stress of axial 
compression.

7.3.3. The Orthotropic Cylinder under Circumferential Compression 
Due to External Lateral Pressure

For the loading case shown in Fig. 2.11 (a), the critical load can be calculated 
from Eq. (7.7) with the membrane forces nx=0, ny—pR. The buckling length lx 
in the direction x  always extends to the whole cylinder length L, hence lx=L. 
The buckling length ly has to be chosen in such a way that the critical load be a 
minimum. An informative value of the circumferential wave number n which 
determines ly on a closed cylinder may be read off the diagram of Fig. 7.3, rec
ommended for hydrostatic compression [7.3].

In the case of very long closed cylinders, the end supports do not influence the 
magnitude of the critical load, so that this will be equal to that of a ring. Equation 
(7.7) yields:

rö n* =  ^ ,  (7.12)
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which is the equivalent of Eq. (2.29c) for the orthotropic case, corresponding to 
the constant directional pressure considered in the derivation of Eq. (7.7). For 
fluid pressure the remarks made in connection with Eqs (2.29a, b, c) apply.

If the shell is a long but flat cylindrical panel, we may take Iy % Ly/2, so that we 
obtain the critical load of a flat arch:

4л2 В
P" h =  ~ R i f -  (7 -13)

The critical pressures p™e or p ^ ch give a lower bound for the critical loads of 
cylinders of medium lengths L.

In the case of long cylinders and those of medium length, the effect of ring- 
stiffening is stronger. For short cylinders, however, the effect of stringer-stiffening 
increases more and more, so that the critical load can reach a much higher value 
than that given by Eq. (7.13).

10 Buckling of Shells

Fig. 7.3. Buckling full wave member in circumferential direction 
of hydrostatically compressed orthotropical cylinders
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7.3.4. The Orthotropic Cylinder Subjected to Hydrostatic Pressure

The effect of hydrostatic pressure, shown in Fig. 2.11 (b), is similar to that of 
the lateral pressure dealt with in the previous section, with the difference that in 
the present case an axial compression with nx—pR!2 also arises. The circumferen
tial compression has the value ny=pR. The buckling length in the axial direction 
again extends over the whole length of the cylinder, i.e. IX=L.  The critical pressure 
is to be computed from Eq. (7.7). For ring-stiffened closed cylinders Bodner [7.3] 
performed the minimization and obtained the diagram of Fig. 7.3. This gives the 
circumferential full wave number n, which yields the minimum critical pressure 
/>['". Knowing n, the critical hydrostatic pressure may be computed, according to
[1.1], [7.3], from the equation:

(7.14)

The value of the critical hydrostatic pressure can also be immediately read off 
the diagram of Bodner, Fig. 7.4.

Fig. 7.4. Linear critical load of the ring-stiffened cylindrical 
shell subjected to hydrostatic pressure
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7.3.5. Torsion of the Orthotropic Cylinder

Equation (7.7) is not suitable for the investigation of the buckling caused by 
torsion, since it does not contain the shearing force nxy. In fact, up to now no exact 
solution has been found for buckling by torsion. Hence, instead of using the equilib
rium equations, investigations were carried out by the energy method, assuming 
different buckling shapes.

Simitses [7.24] established the influence of each rigidity characteristic on the 
critical load. He found that the role of By is important in all cases, that of Bxy 
only for medium and short shells, while that of Bx only for short cylinders. The 
quantities Tx and Txy hardly influence the critical twisting load...

Milligan and Gerard [7.20] developed the following expression for the critical 
shearing force nxy cr or the twisted orthotropic cylinder of medium length:

n ^ cr =  0.89Zt3/4^ - ,  (7.15)

where Z, is given by the equation:

Hayashi [7.11], (and in [1.1]) also determined the critical load of medium and 
short twisteed cylinders. His results are presented in the diagram shown in Fig. 7.5.

Fig. 7.5. Linear critical shearing force o f the twisted orthotropic cylinder

10*
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The buckling mode of the twisted cylinder is always long-shaped, including an 
angle smaller to the axial than to the circumferential direction. Hence, the circum
ferential direction intersects the buckling wave nearly perpendicularly, resulting 
in a far greater role for the ring-stiffening.

Stein et ál. [7.29], see also in [1.1], in their solution for the ring-stiffened twist
ed cylinder also took into consideration that the ring-stiffening consists of indi
vidual ribs, the number of which along the cylinder length sets an upper bound 
for the critical load, since the shell may also buckle between the ribs. (This limita
tion is, of course, not valid for cylinders made of orthotropic material.) Their re
sults are represented by the diagram of Fig. 7.6. Using the parameter Z  defined 
in the figure, the critical shearing force can be readily determined.

Fig. 7.6. Linear critical shearing force 
of the twisted cylinder ring-stiffened by discrete stiffeners

7.3.6. Simultaneous Action of Several Kinds of Loads on the 
Orthotropic Cylinder

We may conclude on the effect of several kinds of simultaneously acting loads 
on the orthotropic cylinder only from numerical examples or experimental results.

According to the investigations of Holston [7.12], and further of Reese and Bert 
[7.20a] cited before, the critical compressive stresses caused by bending and by
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central compression have practically the same value. We have also seen on the 
isotropic cylinder that the interaction of axial and lateral pressures may be safely 
approximated, according to Seide and Weingarten [2.45], by the expression:

The numerical examples of Mah, Almroth and Pittner [7.15] show the relation:

to be valid for the interaction of axial compression due to bending and of circum
ferential compression.

Batdorf [2.3] established the relation:

for the interaction of shear and axial compression.
Finally, Stein et al [7.29] found for internal, and Simitses [7.24] for external, 

lateral pressure that the expression:

can be regarded as valid for the simultaneous action of shear and circumferential 
compression or tension due to lateral pressure.

For more than two loading cases no complex investigations have been made 
yet. On the basis of the foregoing, however, the following Dunkerley-type expres
sion can be set up, which yields results corresponding to all the relations shown 
hitherto (or deviating on the safe side), provided ny is compression:

(7.17)

Until more detailed investigations have been made, we recommend the approxi
mate general formula (7.17) for use.

7.4. Linear Critical Load of Orthotropic Conical Shells

Most investigations referring to orthotropic conical shells were made by 
Singer et al. [7.2], [7.25], [7.26], [7.27]. They found that, as with isotropic shells 
(see Chapter 3), orthotropic conical shells may also be analyzed on a substituting 
cylinder with orthotropy and stiffness properties corresponding to the cone.
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7.5. Linear Critical Load of Orthotropic Spherical Shells

The linear critical value of the uniform radial pressure acting on the orthotropic 
complete spherical shell was computed exactly by Crawford and Schwartz [7.5]. 
Their results coincide with those calculated for the substituting shallow elliptic 
paraboloid. Hence, we can calculate the critical load of the latter from Eq. (7.7), 
with Rx=Ry= R  and nx=ny=pR/2. Owing to the manifold symmetry of the spheri
cal shell, the tensile and bending rigidity characteristics in the x and у  directions 
are mostly equal with each other. Consequently, the minimum critical load is 
associated with lx—ly, so that only a minimization with respect to lx is needed. 
The critical load becomes:

If the rigidities in the x and у  directions differ from each other, then lx^ l y, 
and p^r has to be determined by a double minimization process.

7.6. Linear Critical Load of Orthotropic Hyperbolic 
Paraboloid Shells

The critical load of saddle-shaped hypar shells (see Fig. 5.8) can be determined 
from Eq. (7.7), provided that the two membrane forces nx and ny can be regarded 
as constant all over the shell surface. In the computation it should be observed 
that the two radiuses of principal curvatures (and possibly the two membrane 
forces) have opposite signs.

The hypar shell of Fig. 5.4, with the principal directions of orthotropy parallel 
to the supported generatrices, cannot be treated by Eq. (7.7). That is, the surface 
has a twist, but this does not appear in the equation; moreover, the uniform load 
is carried only by shearing forces nxy, which are also not contained in Eq (7.7). 
Consequently, we have to resort to Eqs (7.4a, b) and to solve them for the surface 
z0=fxy/LxLy, the membrane forces nx=ny=0, nxy= const, and the pre-buckling 
deformation w0=0.

From experiments and from the internal forces it follows that the solution of 
these differential equations, i.e. the buckling shape of the shell, extends over the 
whole width of the shell in one direction, while many half waves develop in the 
other (as with Fig 5.6). We keep the many half waves in the second direction, but 
for simplicity we assume no change in curvature in the first direction. The error 
committed in this is mostly negligible and always serves to the benefit of safety.

(7.18)
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Since the principal directions of orthotropy are parallel to the generatrices 
rather than to the directions of principal curvatures, the direction of the waves 
has to be turned by an angle a with respect to the principal curvature [7.6]. Hence, 
the approximate solution for the deflection may be written as

w — W  sin a{y tan a—x).

Introducing this expression into the differential equations and eliminating F, 
we arrive at the characteristic equation:

+ [ - jr 1- +  ~Y^~\ a8 tan6 a + ^ j  a8 tan8 a +  4 a4 tan2 a =  (7.19)

— 2 n,
■ ( -

tana f 2a6tan3a r a6tan5
rj-<  1 r j i  I r r i

1  У ■* x y  ■* JC -)■

In Eq. (7.19), the quantities a and a have to be chosen in such a way as to render 
nxy a minimum.

The critical shearing force cannot be lower than that of the flat orthotropic 
plate with the same rigidity properties and ground plan, as with Figure 5.5 (b). 
The deviation from the case of the isotropic shell is that the critical shearing stress 
of plate buckling lies, as a rule, comparatively higher for orthotropic plates than 
for isotropic ones, so that even steeper orthotropic shells may fail by plate buckling 
rather than by shell buckling. The critical shearing force of an orthotropic plate 
is, according to Seydel (see in [2.40]):

nxy<cr = - J  У Ж Д  [2 +(0.6 +  Ss) (2 .1+2.5 H | ^ ) ] , (7.20)

with Ly as the smaller side length.
The critical load can be computed from the minimum value of nxy, which is to 

be determined from Eqs (7.19) or (7.20), as follows:

2/
Per T T ftx y , cr ’ 

l ^ x ^ y
(7.21)
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7.7. Nonlinear and Experimental Investigations 
on Orthotropic Shells

Many fewer nonlinear investigations have been made in the range of large post- 
buckling deformations for orthotropic shells than for isotropic ones; moreover, 
these investigations mostly refer to geometrically perfect shells. This has several 
reasons, such as:

(a) it is necessary to get a clear picture of the behaviour of isotropic shells 
first, on the basis of which orthotropic shells may be studied;

(b) nonlinear buckling investigations on orthotropic shells are far more intricate 
than those on isotropic ones;

(c) ribbed shells, representing the bulk of orthotropic shells, show experimental 
buckling loads that are generally much closer to the linear critical ones than for 
isotropic shells; actually, orthotropic shells buckle in several cases at the linear 
critical loads.

Most nonlinear investigations refer to orthotropic cylinders. This is due to the 
fact that most vehicles with a shell body are of (nearly) cylindrical form (planes, 
ships, submarines, rockets). The number of orthotropic shells of other forms used 
in civil engineering practice is small as compared to the former.

7.7.1. Nonlinear and Experimental Investigations on Cylinders

The post-buckling behaviour of axially compressed, geometrically perfect cyl
inders was first treated by March [7.16], using a simplified nonlinear theory. The 
investigation was further developed by Schnell, Brühl and Thielemann [7.22], [7.30], 
assuming an enlarged buckling pattern, but they did not present a general solution. 
They showed on two numerical examples (one on a ring-stiffened, one on a stringer- 
stiffened cylinder), that the critical load pertaining to the reticulated buckling 
pattern of the stringer-stiffened cylinder is much lower than that pertaining to the 
axially symmetric pattern, and moreover that the load bearing capacity drops 
to an nx™*r equal to about one third of the linear critical value, as with isotropic 
shells. A diamond-shaped buckling pattern is associated with The linear
critical loads pertaining to the reticulated and axisymmetric patterns of the ring- 
stiffened cylinder respectively, were almost equal, being about two thirds 
of n^ncr. Again a diamond-shaped pattern was associated with nl° ^ r. The dia
monds are longer in axial direction with stringer-stiffened cylinders, and longer in
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ring direction with ring-stiffened ones. The linear critical load of the diamond
shaped buckling pattern is higher than that of the reticulated one. Hence, the 
buckling of an axially compressed orthotropic cylinder proceeds as follows:

Geometrically perfect orthotropic cylinders begin to buckle in a reticulated 
pattern when reaching nx™cr, while some ring-stiffened ones begin to buckle axi- 
symmetrically. At a comparatively small buckling amplitude, these patterns jump 
over into the diamond-shaped one, associated with a decreasing load bearing 
capacity, as with isotropic cylinders.

Hence, these investigations have shown that in some cases orthotropic cylinders 
behave similarly to isotropic ones, while in other cases they behave more favour
ably.

With knowledge of these results, Almroth [7.1] performed extensive computa
tions for the determination of the lower critical load of axially compressed, 
geometrically perfect cylinders with the stiffness parameters 0.5 8.0.
His results obtained for long cylinders showed that the ratio nl° ^ T/nl™cr depends 
only slightly on the parameters 9S and 9P, but varies strongly with the parameter 
y, which indicates whether the cylinder is stringer- or ring-stiffened. The afore
mentioned ratio is the smallest for isotropic cylinders, it slightly increases for

Fig. 7.7. Influence of ring- and of stringer-stiffening on the lower critical load 
of axially compressed long cylindrical shells
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stringer-stiffening, and greatly increases for ring-stiffening. (It should be noted 
that the axially directed stiffeners also take some compression.) Almroth presented 
his results in the form of a series of diagrams. From these we constructed Fig. 7.7, 
where the investigated range of 9S, 9p is denoted by a dotted area. The dashed 
boundary curves of this area were obtained by selecting those 9S- and 9p-values 
which yield extreme ratios. Inside the dotted area, the ratio nl° ^ r/n'^cr correspond
ing to the parameters 9S= 5 P=1 is marked by a full line. The intersection point 
of this curve with the ordinate axis corresponds to the isotropic cylinder.

Almroth’s calculations on short cylinders showed that stringer-stiffening be
comes more effective, and the ratio п]™?г/пх%г increases considerably with decreas
ing shell length. His results ate shown in Fig. 7.8 for the most characteristic 
cases.

Fig. 7.8. Lower critical loads
of the stringer-stiffened orthotropic cylindrical shell subjected to axial compression

The investigations of Thielemann [7.30] also proved that the internal pressure 
may not only raise the linear critical load to the level of the axisymmetric buckling, 
but it also increases the ratio n'°wc*T/n]™cr. This increase is, of course, greater in the 
cases, where n1™? was low, i.e. for stringer-stiffened cylinders.

On the basis of two numerical examples to be found in [7.30], we show in Figs 
7.9 (a) and (b) the variation due to the internal pressure of the load bearing capac
ity of a stringer-stiffened and of a ring-stiffened perfect cylinder.
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(b)

Fig. 7.9. Influence of the internal pressure p  on the buckling 
of the axially compressed orthotropic cylindrical shell, 

(a) -  Example for the stringer-stiffened cylinder,
(b) -  example for the ringstiffened cylinder

Experimental results [7.9], [7.23], [7.28] showed that stringer-stiffened shells 
are more sensitive to initial imperfections than ring-stiffened ones. Among the 
ring-stiffened cylinders those with light stiffeners are more sensitive. Shells made 
of orthotropic materials [7.23] are found to be more sensitive than rib-stiffened 
ones. The investigations of Tennyson, Chan and Muggeridge [7.29a] showed that 
the upper critical loads of cylinders made of anisotropic materials depend on the 
initial imperfection in the same way as those of isotropic ones.

In Fig. 7.10 we show the results of some series of experiments performed on 
axially compressed ring-stiffened shells [7.28], [7.32]. The experimental buckling 
loads were plotted against the ratio of stiffener area to shell wall area, indicating 
in parenthesis the corresponding values 1 /у as well. The experimental results

(a)
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Fig. 7.10. Experimental results on ring-stiffened cylindrical shells subjected 
to axial compression, plotted against the ratio of rib area to skin area

approach the linear critical load with increasing rib rigidity. This fact may be 
explained as follows:

From experiments made on axially compressed isotropic cylinders it is known 
(cf. Fig. 2.3 (a), (b), (c)) that the experimental critical load, which is equal to the 
upper critical load, decreases with increasing R/t ratio. This diminution may be 
approximated fairly well by the expression:

„ u p p e r

1 + /3  R 
1000 t

(7.22)

obtained from the average values of experimental results. For the ribbed cylinder, 
the effect of the ribs may be taken into account by establishing an “equivalent 
isotropic thickness” t to be determined from the equality:

El3
12 Ei = У в Ж  Утхту. (7.23)

The ribs increase the actual shell thickness t to t, so that the ratio R/t characteriz
ing the ribbed shell will be comparatively low. Introducing this value into Eq. 
(7.22) we obtain the upper (i.e. epxerimental) critical forces near the linear critical
one.
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Introducing the value t computed from Eq. (7.23) into (7.22), we obtain the full 
line curve plotted in Fig. 7.10. It coincides practically with the average values of 
the experimental results, visually showing the described effect.

The higher critical loads (as compared to the linear critical ones) of ring-stiffened 
cylinders may be explained by considering that the circumferential ribs are used 
only for stiffening, whereas the longitudinal ribs— in the case of axially compressed 
cylinders — undergo compression too, thus also becoming prone to buckling 
themselves. One part of the rigidity of the axial ribs is necessary for preventing 
their own buckling, so that only their remaining rigidity is able to stiffen the shell. 
Besides, the circumferential buckling length — because of geometric reasons — 
cannot be larger than one fourth of the circumference, while the longitudinal 
buckling length is geometrically limited only by the cylinder length. Hence, 
ring-stiffening has a much more favourable effect for long cylinders than stringer- 
stiffening.

A third reason may be the finding of Singer et al. [7.28], who established by very 
careful measurements that among shell models manufactured with the same 
technology, the stringer-stiffened ones had much larger initial imperfections than 
the ring-stiffened ones. This also shows the great influence of manufacturing tech
nology on the magnitude of initial imperfections and thereby on the actual critical 
load.

Summing up the results on orthotropic cylinders, we may state the following:
The actual critical loads of orthotropic shells are, according to the experiments, 

much closer to the linear critical values than those of isotropic shells. From the 
two possible kinds of stiffening, ring-stiffening is the more favourable.

These results may be explained by the following characteristics of the orthotropic 
shell:

(a) The lower critical loads of orthotropic shells compared to the linear ones 
are higher than those of the isotropic ones. This may be also related to the fact 
that a unique buckling mode is associated with the (minimum) linear critical load 
[8.2.6a], [8.2.6b], as contrasted to the multimode (compound) buckling of the iso
tropic cylinder. This results in a less steep drop in the post-buckling load-bearing 
capacity. Ring-stiffening raises the lower critical load even more than stringer- 
stiffening. Thus, instead of the ratio n]° ^ r/n^"cr ̂  0.10 ~  0.15 valid for isotropic 
shells we obtain for the same ratio 0.25 ~  0.70 for orthotropic ones.

(b) The ratio of the radius to the equivalent (isotropic) thickness is, as a rule, 
much smaller for ribbed orthotropic shells than for unstiffend isotropic ones, and 
smaller R/t ratios result in higher n“^ rer. Thus, instead of values nx^ T/nx”cr ~  0.3 ~  
~0.5 valid for isotropic shells, ribbed ones yield values of 0.7~ 0.9.

(c) The torsional stiffness Bxy is comparatively small for shells stiffened by ribs 
with small torsional rigidity. As can be seen from Eq. (7.7), Bxy has approximately
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the same effect on the linear critical load as the sum of Bx and By, provided the 
buckle is rectangular. The lower critical load is associated with a diamond-shaped 
buckling pattern, since, in this case, the buckle has a shape closer to the circular 
or elliptic form on which the torsional rigidity has a much smaller effect. This 
further reduces the difference between n'xncr and

(d) With short shell models stiffened by longitudinal ribs, the partial clamping 
effect exerted by the platens of the compression machine on the ribs, being in 
contact over their whole cross section, is greater, due to the greater equivalent 
thickness ?, than with unribbed or ring-stiffened shells.

Thus, due to all these effects, the ratio ne*pci;nmenUl/n'™cr increases from the 
values 0.15 ~  0.60, valid for isotropic shell, to 0.7~1.1 for the test models of 
ribbed orthotropic ones.

The experimental critical loads of circumferentially compressed [7.23] and of 
twisted orthotropic cylinders [7.20] were found to be practically equal to the 
linear critical values. This was, in fact, to be expected since the isotropic cylinder 
subjected to these loadings was also less sensitive to initial imperfections than 
under axial compression. The effects mentioned under (a) to (d) for axially com
pressed orthotropic cylindres are mostly valid for circumferential compression and 
torsion too, so that the orthotropic cylinder is even less sensitive to imperfections 
than the isotropic one. Thus its upper critical load is also higher as compared to 
the linear critical one, resulting in the ratio f7“ ^ nmental//>j!“ approaching or even 
reaching unity, and oscillating around this value.

7.7.2. Nonlinear and Experimental Results on Other Kinds of Shells

Nonlinear [7.13] and experimental [7.25], [7.26], [7.27] research on orthotropic 
conical shells showed that substitution by an equivalent cylinder is suitable not 
only for determining the linear critical load, but also for investigating the post- 
critical behaviour. This may be done according to Chapter 3, using the orthotropic 
cylinder characteristics described in Section 7.6.1.

To our knowledge no exact nonlinear investigations exist for orthotropic spherical 
shells; there are only half-empirical methods based on experiments [7.4], [7.5],
[7.7], [7.18]. For example, Bushnell [7.4] modifies the geometry of the shell accord
ing to the initial imperfection and determines the critical load on this modified 
shell as an eigenvalue-problem. On the basis of his examples, made for homo
geneous, isotropic shells, the curve of the critical load versus imperfection can be 
constructed. This is similar to that representing the decrease fo the upper critical 
load of the isotropic shell with increasing initial imperfection amplitude: we
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obtain 0.55 and 0.35/^T for w jt= 0.25 and 0.50, respectively (cf. e.g. Fig. 4.6). 
The curve constructed this way may be accepted as that of the upper critical load 
of the orthotropic spherical shell. The ribbed spherical caps tested in [7.18] had 
R/t values of about 50. Accordingly, in conformity with what has been said before, 
their critical loads did not deviate by more than 10% from the linear critical values. 
Their buckling patterns also corresponded to those of the linear theory.

Orthotropic hyperbolic paraboloid shells are manufactured mostly by distorting 
corrugated plates. For such shells no nonlinear investigations have been made; 
in fact, these are not even necessary, since the experiments [7.8], [7.17] showed 
that, as with the isotropic hypar, the orthotropic one also has an increasing post- 
buckling load bearing capacity. The test shells of [7.17] failed in the “shell buck
ling” range, while those of [7.8] failed in the “plate buckling” range. The critical 
loads deviated from the linear critical values determined according to Section
7.5 by less than 10%.

It can be seen from the foregoing that the buckling problems of orthotropic 
shells are still far from being solved. Much research is needed in the domain of 
nonlinear buckling and, above all, in the determination of the upper critical 
load.



8. Buckling of Composite Shells

In this chapter we shall deal with the stability problems of sandwich, rib- 
stiffened, reticulated and corrugated shells. All four types of shells have in common 
that they may fail not only by overall but also by local buckling. The critical load 
intensities of these two kinds of buckling generally differ from each other and, 
consequently, they practically do not interact. If, however, the proportions of a 
composite shell cause overall and local bucklings to occur at about the same load 
intensity, the interaction of the two kinds of buckling may considerably reduce 
the critical load (“erosion of the optimum design”, “compound buckling” , see 
in [1.7], briefly described in Section 1.2). This reduction of the critical load may 
generally be assessed at 10-15%, but in some cases this may be even more.

This interaction of the local and overall buckling may be computed approxi
mately by the method for considering the effect of plasticity, described in Section
9.4. For this purpose we have to consider the critical load intensity causing local 
buckling as ppl, which is uniquely related to the specific normal force npl appear
ing in Section 9.4. When dealing with the different types of composite shells in 
detail, we shall specify the details of this method.

As we shall see from the viewpoint of overall buckling these four composite 
shell structures may be considered orthotropic shells as described in Chapter 7, 
and in special cases even is isotropic ones. Hence the calculation methods of ortho
tropic or isotropic shells can be applied.

In what follows we investigate the special problems of sandwich, rib-stiffened, 
reticulated and corrugated shells, in turn. When necessary, the conditions for con
sidering them as homogeneous orthotropic shells from the viewpoint of overall 
buckling will be established. The data needed to calculate the rigidity characteris
tics of these shells will be presented. Finally, the considerations to be taken into 
account in calculating the local buckling will be outlined.
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8.1. Sandwich Shells

Sandwich structures mostly consist of three layers: of two thin faces with a com
paratively high extensional rigidity and of a much thicker core with a small but 
finite shearing rigidity.

The faces are mostly continuous plates but they may also be reticulated surfaces 
(Fig. 8.3.2) or ribs (Fig. 8.4.4). The core may be made of light, homogeneous, 
possibly sponge-like, materials (balsa wood or expanded plastic), but also of plate
cell constructions. We show the two most characteristic ones of the latter (honey
comb and box-like cores) in Fig. 8.1.1.

11 Buckling of Shells

Fig. 8.1.1. Cell-like cores.
(a) -  Honeycomb core, (b) -  box-like core
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The faces obviously have to be fastened to the core in such a way as to exclude 
a failure of these joints due to flexural and buckling shear before buckling.

Sandwich constructions are generally calculated by considering only the exten- 
sional stiffnesses of the faces and the transversal shearing stiffness of the core. 
Accordingly, the bending and tensile stiffnesses of the sandwich plate can be 
written as follows:

В = Ef th2 
2 ’

T  =  2Ef t.
( 8 . 1. 1)

Here Ef  and t are the Young’s modulus and the thickness of one face respectively, 
and h is the structural height of the entire sandwich plate, i.e. the distance between 
the middle surfaces of the faces.

The deformation of the sandwich shell caused by transverse shear is, due to the 
low transversal shearing stiffness of the core, much greater than that of a solid 
shell. This may reduce the critical load considerably. Hence, this „sandwich- 
effect” cannot be neglected here, in contrast to the case of solid shells. The defor
mation due to transverse shear (“sandwich-effect”) can be characterized by the 
factor

« - ü b n  (8Л-2)
where Gc is the modulus of shear of the core material. In the case of the box-like 
core shown in Fig. 8.1.1 (b) the substituting modulus of shear can be calcu
lated from the expression with the data given in Fig. 8.1.2:

^ s u b s t i tu t in g  ~  * ( 8 . 1 . 3 )

For the honeycomb core (see Fig. 8.1.1. (a)), the value of Gsubstituting as computed 
from Eq. (8.1.3) has to be multiplied by the ratio of the ratio of the diameter to 
the half circumference of one hexagon of the honeycomb.

Fig. 8.1.2. Cross section of a sandwich plate with cell-like core
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Sandwich constructions may be isotropic or orthotropic with respect to the 
faces and to the core as well. Since a survey of the theory of orthotropic shells 
would be rather lengthy, we confine ourselves in this section to isotropic sandwich 
shells only. For lack of a more exact calculation method, shells orthotropic with 
respect to the faces can be approximately analysed according to Chapter 7, while 
orthotropic cores can be made approximately isotropic by the relation:

Here, qx and gy are the values of the factor g to be determined in the directions x 
and у  respectively. More exact methods are outlined in [8.1.1], [8.1.6], [2.13]. 
An excellent survey of the theory of sandwich shells with a comprehensive list 
of references is to be found in [8.1.2].

The main difference between sandwich and solid shells with respect to buckling 
is that the deformation of the core due to transverse shear (the “sandwich-effect”) 
considerably reduces the critical load of the shell.

The linear critical load of the axially compressed cylindrical sandwich shell 
with thin faces was first determined by Teichmann et al. [8.1.8]. Their results 
are shown in Fig. 8.1.3.

(8.1.4)

8.1.1. Overall Buckling

Fig. 8.1.3. Critical load of an axially compressed cylindrical sandwich shell

и*
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Hegedűs [8.1.3] considered the bending stiffnesses of the faces, too, when in
vestigating the axially compressed cylinder. He found that if the bending stiffnesses 
of the faces are entirely neglected, the critical loads of the reticulated and axi- 
symmetric bucklings are equal to each other. On the other hand, if any bending 
stiffness, no matter how small, is attributed to each face, the critical load of the 
axisymmetric buckling becomes smaller than that of the reticulated pattern. 
According to his results, the surplus critical load calculated with the bending ri
gidities of the faces and with the buckling wavelength of the axisymmetric buckling 
can be simply added to that computed for the same buckling mode with faces 
having no bending stiffnesses at all.

The experiments of Teichmann et al. showed that in the case of shear-soft cores 
(ей],"',,>4) the experimental critical loads agree well with those computed on the 
basis of the linear theory, so that for Qn'™0> 4 the linear critical loads of the sand
wich cylinders can be considered as the actual ones. On the other hand, experiments 
made with shear-rigid cores (ел^'0<4) yielded much lower values than the linear 
critical loads. Here we have denoted by n^"0 the axial linear critical load computed 
by disregarding the “sandwich-effect” .

The lower critical load of the geometrically perfect cylindrical sandwich shell 
was first determined by March and Kuenzi [8.1.5], who used the nonlinear theory 
of Kármán and Tsien [2.21]. Later Sylvester, [8.1.7] by improving the calculation 
with the aid of Kempner’s method, obtained about three quarter of this value.

In Fig. 8.1.3 we have shown the critical loads of the axially compressed cylindri
cal sandwich shell plotted against Qnl™ 0.

To evaluate Sylvester’s results we have to consider that the horizontal straight 
line of his n‘°wer intersects the curve of the linear critical load; moreover that in 
the case of q =  0, corresponding to the homogeneous solid shell, it yields 
i£ " 7 /£ = 0 .3 .  We know, however, that for the homogeneous solid shell more 
recent and more exact computations [2.1] furnished the value 0.108 instead of 
the earlier one of about 0.3. Thus, more exact computations for the sandwich shell 
would presumably shift the line of the lower critical load downward, and we 
would probably obtain the dashed line of Fig. 8.1.3 osculating the hyperbola of the 
linear critical load from underneath.

Yao [8.1.9] extended the investigations to the radially compressed spherical 
sandwich shell. His essential result is that the diagram of Fig. 8.1.3 is applicable 
in this case too.

Experiments performed on spherical caps [8.1.4] and on cylindrical shells 
quoted in [8.1.6] showed that the ratio of «“rppcr (i.e. the experimental critical load) 
to и'1“ of shells with initial imperfections depends on the ratio R/h, as in the case 
of homogenous shells.
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For design the uppper critical load n“fper of the imperfect shell would be needed. 
No investigations have been made, however, for its determination. Experiments
[8.1.1], [8.1.6] showed that the sensitivity of sandwich shells to imperfections 
decreases with increasing values of q . In the case of 0 = 0, the upper critical load 
can evidently be determined by the results for the homogeneous solid shell.

Practically we may proceed as follows: For 0 =  0 we determine the upper critical 
load n“pper of the imperfect homogeneous shell and connect this by a tangential 
straight line with the curve of the linear critical load of the sandwich shell, plotted 
against on['r" 0. We thus obtain for и“ррег an approximate straight line which starts 
from the n“pper of the corresponding homogeneous shell at 0 = 0  and osculates, 
according to the experiments, the curve of nj!" for greater values of q. In the case 
of zero initial imperfection, this straight line starts from the value of the linear 
critical load, and we may assume that its lowest position is the straight line of 
the lower critical load (n[°wer), marked in Fig. 8.1.3 with dashed line. This approxi
mate determination of the straight line of и“ррег is hown in Fig. 8.1.4.

We shall not deal here with the problems of the twisted cylinder and of the cyl
inder under lateral pressure, we only refer the reader to the book by Plantema
[8.1.6] which treats them extensively.

Fig. 8.1.4. Approximate determination of the upper critical load n“f per 
of the axially compressed cylindrical sandwich shell
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8.1.2. Local Buckling

Several kinds of local buckling may occur in sandwich shells.
The core supports the faces elastically, so that the buckling of the faces — 

called wrinkling — occurs like that of a plate on elastic foundation.
The critical stress o{r of the face can be computed for vc=0.3 and up to the 
. i t  \ГЁ~г , .limit — / -~-=  1 from the equation 

h ! Ec

=  px УEf E?, ( 8 . 1 . 5 )

where ^ = 0 .5 7  [8.1.1]. Here vc denotes Poisson’s ratio of the core, while Ef  and 
Ec are the moduli of elasticity of the face and the core, respectively.

Another kind of local failure is the detachment of the initially imperfect face 
from the core and its buckling with a greater wavelength. The corresponding critical 
stress can be calculated, according to [8.1.1], from the expression

acr — ßi У Ef E?, (8.1.6)

where ß2 might be given by the following interpolation formula which approximates 
the data to be found in [8.1.1]:

where

_ 0.75 —0.25k
, 3 к
i + T  —2 Qf

к = WqEc

k&adh and

(8.1.7)

Here H’o is the maximum amplitude of the initial imperfection of the face and 
aadh is the adhesive strength between face and core.

There are sandwich constructions in which the local failure has a third form, 
namely, local plate buckling. This may occur in sandwich shells with box-like, 
honeycomb or corrugated cores, where either the faces buckle in compression 
between the core plates or the core plates buckle in shear. Therefore, they can be 
analyzed accordingly.

We can certainly avoid local buckling if, according to what will be said in Section
8.2.1 on rib-stiffened shells, the critical load causing local buckling is at least 
twice that pertaining to overall buckling.

On the other hand, if we want to take local buckling and its interaction with 
overall buckling into account, we have to consider the load causing local buckling
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as the plastic load ppl (Section 9.4), depending on the amplitude of initial imper
fection too. There are several other problems of detail concerning local buckling 
of sandwich shells that will be dealt with here. Their comprehensive treatment 
with diagrams usable for design is to be found in [8.1.1].

8.2. Rib-Stiffened Shells

The local buckling of rib-stiffened shells is represented by the buckling of the 
skin between the ribs. We analyze this first, because it determines the necessary 
density of the ribs. Following that we deal with the problems related to the replace
ment of the rib-stiffened shell as a whole by a continuous one; these include the 
effective width of the skin with respect to the bending of the ribs, problems of the 
one-sidedness (eccentricity) of the ribs, and the role of Poisson’s ratio. After having 
clarified these questions, the rigidity characteristics of the equivalent orthotropic 
shell can be established and an overall buckling analysis can be performed.

Throughout this section, t denotes the actual thickness of the skin (without ribs).

8.2.1. Buckling of the Shell Panels between the Ribs.
Density and Rigidity of the Ribs Required to Prevent Skin Buckling

Rib-stiffening greatly increases the critical load of the whole shell structure. 
If, however, the distance between the ribs is greater than the buckling length of the 
unstiffened skin, this latter will buckle at the same stress as if the shell were unstif
fened. Thus we may choose one of the two following ways. We may either permit 
the buckling of the skin between ribs but ensure that the whole load should be 
taken by the ribs (with the effective width of the buckled skin). This principle is 
generally used in aircraft design.

In common engineering structures, however, the buckling of the skin between 
ribs under service loads is generally not considered desirable. From this principle 
it follows that if the distance between the ribs is greater than or equal to the 
buckling length developing in the unstiffened shell, the ribs increase the load bear
ing capacity only by taking some part of the load themselves. However, in this 
case, the structure will be less economical than if we use the material of the ribs 
to increase the shell thickness. That is, in this latter case, the load bearing capacity 
increases not only proportionally to the material added, but also because of the 
increase in the critical stress due to the greater wall thickness. Hence, there is 
little sense in arranging the ribs that sparsely. Thus, the distances between the 
ribs have to be chosen inferior to the buckling lengths of the unstiffened shell.
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Accordingly, we first have to know the dimensions of the buckle of the unstiffened 
shell, and secondly, how the critical stress of a shell panel, supported along the 
ribs, increases with decreasing rib distances as compared with the unstiffened 
shell. In the following we present the buckling lengths of some characteristic shells 
for several loading cases and the critical stresses of the shell panels smaller than 
these lengths.

We saw in the foregoing that perfect shells begin to buckle with buckling lengths 
determined by the linear theory, while imperfect ones begin to buckle with greater 
buckling lengths. In any case the buckling lengths increase during the buckling 
process (see Fig. 2.10). Thus, we commit an error to the benefit of safety if we 
choose the rib distance smaller than the buckling length of the linear theory. 
We may certainly consider the rib-stiffening as practically effective if the distance 
of the ribs is not greater than 0.7 times the buckling length of the unstiffened shelf. 
In this case the critical load of the shell panel between the ribs is appoximately 
twice that of the unstiffened shell.

Critical load o f  axially compressed cylindrical shell panels. The unstiffened 
complete cylindrical shell buckles under this load in small, local waves. The 
relation between the two half wavelengths lx and ly according to the linear theory 
is given by Eq. (2.10), and can be written in the following form:

The ratio of the two buckling lengths is undetermined.
Accordingly, we plotted ly against lx in Fig. 8.2.1, assuming v=0.3. The main 

conclusion to be drawn from the diagram is that lx and ly cannot be smaller than 
1.73 /jRi and 3.46 ^  Rt respectively. Therefore, in the case of ribs running in one 
direction only, we have to arrange them closer than whichever of these two min- 

, imum lengths is perpendicular to the ribs. On the other hand, if we apply two- 
way rib-stiffening, the distances of the ribs in the two directions should be smaller 
than the buckling lengths proportional to the rib distances, determined by the 
diagram.

The critical stress of the shell panel stiffened by ribs closer than these values can 
be computed from Eq. (2.8) (assuming hinged supports along the ribs), substitut
ing the rib distances bx, by for the buckling lengths lx, ly (Fig. 8.2.2):

1
(8.2.1)У

/12(1 — v2) __1_
n \~Rt lx II

1 2 ( 1 — v*)b*

Ti2Ets i2 Etbl 1
n-R2 (8.2 .2)
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h
'J~Rt

Fig. 8.2.1. Half buckling wavelengths of the axially compressed 
cylindrical shell according to the linear theory

1

Fig. 8.2.2. Ribbed cylindrical shell

The derivation without assuming the shallowness of the shell yields the same result
[2.51].

Equation (8.2.2) assumes buckling in one half wave in both axial and circum
ferential directions. This is true as long as bxS b y. If, however, bx>by, then — 
as with flat plates — the shell panel may buckle in several half waves in the axial 
direction, so that its critical load may be equal at most to that of a shell panel of 
the dimension by in both directions, i.e. to

nii„ _  n2Et3 Etby
* 'cr 3(1 — v2)by + 4 n 2R 2 ’ K ’

The first terms in Eqs (8.2.2) and (8.2.3) represent the bending stiffness of a flat 
plate with the same dimensions as the shell panel, while the second terms express 
the additional extensional (membrane) stiffness due to the curvature.
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Fig. 8.2.3. Post-buckling behaviour of the axially compressed cylindrical panel

The post-buckling behaviour of the cylindrical shell panel was studied by Koiter
[8.2.8]. He obtained initial tangents to the post-buckling load-deflection curves 
of the perfect panel as shown in Fig. 8.2.3 (a), where/ denotes the compression in 
the axial direction, and Э = Ьу/У Rt is a geometric parameter, characteristic of the 
curvature of the shell panel. The value 0  =  0 corresponds to flat plates. At small 
values of 0 , the post-critical load bearing capacity has an ascending character, 
so that the linear critical load can be considered as the actual critical load. From 
0>O.64 on, however, the initial tangent becomes negative. For this range, 
Fig. 8.2.3 (b) gives the magnitude of я“рргег causing snapping, plotted against the am
plitude vv0 of the initial imperfection for two 0-values. So, as the central angle 
of the shell panel increases, its behaviour approaches that of the complete cylinder.

All these were confirmed by Tamate and Sekine [8.2.16], who analyzed the post- 
critical behaviour of cylindrical shell panels of the side length bx = by.

The experiments [2.51], [2.57] yielded results in accordance with the theory 
outlined above.

From the theoretical analyses published in [2.57] we may draw a conclusion 
that can be useful in practical applications. That is, the (not completely exact) 
calculation yielded for the post-critical er|”wer of the perfect shell panel a value 
equal to the critical stress of the flat plate of the same side lengths bx,by. On the 
other hand, it is known that the flat plate exhibits an increasing post-buckling 
load bearing capacity. Hence, we may state that if we cannot determine the critical 
load of a shell panel exactly, then we may take instead the critical load of a flat
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plate loaded and supported in the same way, committing an error generally to 
the benefit of safety.

Critical load o f  a cylindrical shell panel compressed in the circumferential direc
tion. Since the unstiffened cylindrical shell under lateral pressure buckles in one 
half wave in the axial direction between the supports, but develops several half 
waves in the circumferential direction, we can compute the critical stress of shell 
panels of ring-stiffened cylinders from Eqs (2.25) if we substitute the distance bx 
between the ring-directed ribs for the length L  of the cylinder.

More exact investigations on the basis of the linear theory [8.2.14] showed that 
the shell panel may buckle at a load smaller than that of a complete cylinder, if 
the distance between the axial stiffeners allows a circumferential wave number 
that is prevented on the complete cylinder by the circumferential continuity. How
ever, this reduction is less than 10%, and the critical load can by no means be smaller 
than that given by the envelope of the festoon curve.

Axial stiffeners increase the critical load practically only if they are arranged 
more densely than the circumferential half wavelength determined by Eq. (2.26). 
In these cases we may compute the critical stress from the more exact formulas 
to be found in [2.17a] or [2.51], which also contain the circumferential wave num
ber, if we take the distance by of the axial stiffeners as the half wavelength.

Critical load o f  cylindrical shell panels subjected to pure shear. The linear theory 
yields the following critical shearing stress (see Fig. 8.2.2):
if b e h 

änd if bx^ b y:

г „ = ksE [ y } ,  (8.2.4a)

r cr= k'sE ^ .  (8.2.4b)

According to the investigations of Kromm and Schapitz (see in [7.21]), the 
factors к  and k ' can be read off Figs 8.2.4 (a) and 8.2.4 (b) respectively.

Critical load o f  spherical shell panels subjected to radial pressure. The half buck
ling wavelengths of an unstiffened spherical shell — assuming rectangular buckles — 
can be obtained from Eq. (4.6):

/  j / l 2 ( l - v 2) 1
n2Rt II

(8.2.5)

The interdependent half wavelengths (for v=0.3) are plotted in Fig. 8.2.5. As can 
be seen, the half wavelength cannot be shorter than 1.72 ^ R t in either direction.
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( a )

Fig. 8.2.4. Multiplication factors of the cylindrical panel subjected to pure shear

Fig. 8.2.5. Flalf buckling wavelengths of the radially compressed 
spherical shell according to the linear theory

(b)
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Hence, if we want to increase the critical load of the shell panel as compared 
to that of the unstiffened shell, we have to arrange the stiffeners so densely as to 
obtain rib distances bx and by smaller than the related pairs of values in Fig. 8.2.5. 
In this case the critical compressive force is to be computed from Eq. (4.5), substi
tuting bx and by for lx and ly respectively:

The first and second terms on the right-hand side of Eq. (8.2.6) represent the 
bending and extensional rigidities, corresponding to fiat plate and curved (mem
brane) shell action respectively. In the case of R-<-°°, i.e. if we divide the 
spherical shell into smaller and smaller panels, we approach the flat plate more 
and more: the post-critical behaviour exhibits an ascending character. The consider
able decrease of the critical load after buckling (see Fig. 4.4) will fully prevail 
only when the rib distances reach the half buckling wavelengths of the unstiffened 
shell. The phenomenon is similar to that depicted in Fig. 8.2.3 (a).

The following problem may also arise: what is the necessary stiffness o f  the ribs 
which prevents skin displacements perpendicular to the skin surface along the 
ribs during skin buckling sufficiently to allow us to consider the ribs as rigid 
supports of the skin?

To our knowledge, this question has not been generally answered as yet. How
ever, it is possible to suggest a simple rule which in all likelihood ensures that the 
skin buckles as if the ribs were rigid supports.

We start from the analogy of a theorem established by Dulácska for simple 
bar structures [8.2.3a], [8.2.3b], which can be briefly stated as follows:

If we want to stiffen a comparatively weak simple frame in such a way that it 
only buckles with unmovable nodes, we have to apply a sufficiently rigid structure.

Fig. 8.2.6. The basic principle according to which we can establish 
the necessary rigidity of the rib
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Its rigidity can be taken as sufficient if its critical load, computed assuming 
infinitely elastic material, is not less that the sum of all the loads acting on the 
stiffened frame and on the stiffening structure (Fig. 8.2.6).

Applying this principle to our case, we have to stipulate that the ribs be capable 
of carrying all the load acting on the skin and on the ribs, assuming infinitely 
elastic behaviour.

In this computation an effective width of the skin, as valid before skin buckling 
(see Section 8.2.2), can be assumed as part of the rib. (According to what is 
said in Section 8.2.2 on the interaction of overall and skin buckling, this rule 
does not ensure that the ribs are, in fact, able to carry the load after the skin has 
buckled.)

8.2.2. Effective Width of the Skin with Respect to the Bending of the Ribs

In a plate connected with ribs, the bending causes stresses of varying magnitude 
(Fig. 8.2.7). As is known, we may define an “effective width” be of the plate, form
ing a Г-section with the ribs, i.e. assuming constant bending stress all along its 
width. This effective width may be determined in such a way as to obtain either 
the same rigidity as that of the actual structure or the same bending stress as the

Fig. 8.2.7. Effective width of the ribbed plate

maximum bending stress in the actual ribbed plate at the junction of rib and 
skin. We thus arrive at two different effective widths. The difference results from 
computing the strain of the skin from the relation ex=((xx—vcTy)/E, and that of the 
rib from ex = gx/E, so that different upvalues belong to the same ex in rib and 
plate. Flowever, if Poisson’s ratio is neglected, the two effective widths become 
identical.

For the buckling analysis the bending stiffness rather than the bending stress 
arising in the plate is relevant. Consequently, the effective width providing the same 
bending stiffness should be used. However, since the effective width yielding the 
same bending stress is at most only a few per cent greater, we may use this as well.



8.2. R ib-S tiffened Shells 175

The effective width may also be different depending on whether we allow the 
buckling of the shell panels between the ribs or not. In common engineering 
practice we generally do not allow the buckling of the panels, so that we shall 
deal here mainly with unbuckled skins.

Effective width o f  the unbuckled skin. Chwalla [8.2.3] found for flat plates that 
the effective width be is constant along the length of the rib, provided the rib 
deflects in a sine wave shape (which corresponds to the buckling wave). The ratio 
of be to the half wavelength / of the sine wave is given in Table 8.2.1 for some 
values of Posison’s ratio v.

Table 8.2.1

Values of the effective width b e of a flat plate according 
to Chwalla [8.2.3]

V =  0.3 0.2 0.1 0

b j l  =  0.363 0.3S0 0.402 0.424

These values refer to a plate of infinite width, connected to one rib only. How
ever, the effective width cannot be greater than the distance of the ribs, so that 
this latter sets an upper bound for the values of the table.

The problem becomes more intricate if the rib is connected to a curved shell 
instead of to a flat plate. The following value can be derived for the effective width 
of a cylindrical shell connected to an axial rib by Schorer’s approximate theory 
valid for cylindrical shells [2.32], [7.10], on the basis of the identical maximum 
bending stress requirement and assumnig v=0 [8.2.7]:

where lx is the axial half wavelength.
Since the derivation assumed only one axial stiffener, the maximum value of be 

to be taken into account cannot be greater than the distance by of the stiffeners. 
In addition, we also have to check (because of the approximations inherent in 
Schorer’s theory) whether be obtained from Eq. (8.2.7) is not greater than that 
valid for the flat plate (see Table 8.2.1), since the effective width of a cylindrical 
shell has to be smaller in any case than that of the flat plate.

The effective width be of a cylindrical shell connected to circumferential ribs 
was determined by Biezeno and Koch (see in [8.2.2]) on the basis of equal rigidities. 
They calculated be as a function of the rib distance bx and the circumferential (full)

(8.2.7)



176 8. Composite Shells

wave number n, for different ratios t/R. We present in Fig. 8.2.8 from their results 
the effective widths pertaining to bx=<*>. When using these values we have to keep 
in mind that be cannot be greater than the actual distance bx of the ribs.

The effective width given by Fig. 8.2.8 approaches with increasing R (or n) 
that of the flat plate (see Table 8.2.1), but it always remains smaller than that.

6*
R

(Circumferential 
wave number)

Fig. 8.2.8. Effective width of the ring-stiffened cylindrical shell

Lundgren [2.32], assuming
n4/2 
12 R~ < 1, (8.2.8)

derived for bx=°° the following formula for the effective width:

be =  1.52(l -0 .2 9 n2-^-) ]/jR, (8.2.9)

which shows, in the range given by Eq. (8.2.8), a rather close agreement with the 
curves of Fig. 8.2.8.

For the calculation of the effective width of the cylindrical shell as outlined 
above, we ought to know the axial half buckling wavelength of the composite 
shell. However, this depends on the rigidity of the ribbed shell, this being, in 
turn, dependent on the effective width. Thus, we can solve the problem by trial 
and error only, correcting the assumed effective width and half buckling wave
length step by step.
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Bodner [7.3] proposed a correction to the effective width of Biezeno and Koch 

in order to obtain the distance of the ribs if the areas of the ribs tend to zero. 
This has significance only in the case of very weak stiffeners.

Behaviour o f  ribbed shells after buckling o f  the skin. According to both experi
ments and analysis, the load bearing capacity of the ribs considerably increases 
after the skin has buckled. This is exploited in airplane construction in such a 
way that for some short-term loads skin buckling is allowed, because it disappears 
after the load has decreased. In common engineering construction skin buckling 
is generally not allowed, although it would yield some economic advantages.

In the following we only outline briefly the phenomena of the skin buckling 
and the difficulties of design connected therewith.

A flat plate between stiffeners, subjected to uniform compression parallel to the 
stiffeners, buckles as shown in Fig. 8.2.9 (a). The plate is able to produce shorten
ing in the direction of the ribs, in the section c-c situated far from them, mostly by 
buckling deformation, undergoing only a small compression. As we examine the

Fig. 8.2.9. Effective width of the buckled plate

12 Buckling of Shells
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sections closer and closer to the ribs, the buckling deformation decreases, so that 
the plate has to undergo greater and greater compressive strains. The stress a 
in the plate, being proportional to the compressive strain, will vary according to 
the diagram shown in Fig. 8.2.9 (b). A stress ae corresponding to the entire com
pressive strain arises close to the stiffener, while farther away a decresaes. The 
effective width be denotes the width of the plate with which it could carry a force 
equal to that of the actual structure if along this width be the stress oe arose every
where.

This effective width may be computed, according to Marguerre [8.2.9], from a 
cubic equation. Very useful graphs are to be found for this purpose in [7.21]. 
However, the effective width decreases with the increase of the load acting on the 
structure and also with increasing rib deflection, since the skin becomes more 
and more buckled. (The phenomenon is to some extent similar to the decrease 
of stiffness of cracked reinforced concrete shells described in Section 9.8). Thus, 
we already encounter some difficulties if we want to design the rib as a simple 
compressed bar against buckling, since its bending stiffness depends on the load 
and on the magnitude of buckling deformation as well [7.21].

The phenomenon may also be described as an interaction between local and 
overall bucklings. That is, the buckling of the skin reduces the rigidity of the whole 
structure, rendering the character of the post-buckling load bearing capacity 
decreasing even in cases when both local and overall bucklings have, considered 
alone, increasing characters. This phenomenon is very clearly demonstrated in a 
simple example in the paper of Walker [8.2.18].

The problem becomes even more intricate in the case of stiffened shells with 
buckled skin. The effective width of the buckled skin may be computed on the 
basis of an approximate assumption of Ebner [8.2.4], see also in [7.21], but, 
to the best of our knowledge, no simple method exists for the buckling analysis 
of an orthotropic shell, whose rigidity properties depend on the deformation. 
Hence, we do not deal with this problem any more here, only mention that the 
interaction of local and overall bucklings was treated by Byskov and Hutchinson 
[8.2.2b], This interaction reduces the actual critical load most if the critical loads 
of local and overall bucklings, considered separately, are equal.

8.2.3. Problems of Eccentric Stiffening

The skin can be stiffened in two ways: the ribs can be arranged on both sides 
of the skin, symmetrically to its midsurface, or only on one side of it (eccentric 
stiffening). In the first case, after “smearing out” the rigidities of the ribs, the 
equations of orthotropic shells presented in Chapter 7 correctly describe the
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behaviour of the structure. However, this kind of stiffening is much more difficult 
to realize — no matter whether the shell is made of reinforced concrete or of metal 
— than the eccentric one. Moreover, it is also less economical than the latter, 
since eccentric stiffeners provide with the same cross sections a considerably 
greater bending rigidity.

The behaviour of the eccentrically stiffened shell can no longer be described 
by the equations of Chapter 7. To make the difference more easily understood, 
we first examine the role of eccentric stiffeners on the flat plate, including also 
the case when stiffeners running in two directions are arranged on opposite sides 
of the plate.

Eccentrically stiffened flat plates. If we arrange the stiffeners eccentrically, we 
obtain no unique “neutral plane”, in which no stresses arise either from bending 
or from twisting. To put it more exactly: the twisting moments cause not only 
twist but, in the skin, also angular distortion, that is in-plane (membrane) shearing 
stresses too. Because of these latter, in order to maintain equilibrium, in-plane 
compressive and tensile stresses also arise in the skin. The phenomenon is essen
tially the same as the “warping” of twisted thin-walled bars with open cross section. 
Thus, it can be seen even without detailed analysis that the effective torsional re
sistance of an eccentrically stiffened flat plate is greater than its “torsion rigidity” 
proper. Due to this effect, the differential equation of the eccentrically stiffened 
plate is of the eight order [8.2.6], [8.2.17], as contrasted to the fourth-order differen
tial equation of the symmetrically stiffened plate.

If we want to use the fourth-order differential equation of the orthotropic plate, 
we have to neglect the above described additional rigidity due to the eccentric 
arrangement of the stiffeners, and we have to take only the torsional rigidity pro
per of the ribbed plate into account. By so doing, in the stability analysis we always 
commit an error to the benefit of safety, since we consider the structure less rigid 
than it is in reality.

We may obtain useful information for the magnitude of this error from the 
paper of Trenks [8.2.17], in which he compared the exactly computed deflection 
(i.e. the rigidity) of the eccentrically stiffened plate with the approximate value 
obtained by taking only the torsional rigidity of the ribbed plate into account. 
He showed that the error is greater in proportion as

— the eccentricity of the centroid of the rib as related to the thickness of the 
plate is greater;

— the cross sectional area of the rib as related to the area of the plate between 
the ribs is larger;

12»
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— the moment of inertia of the ribbed plate as related to the cube of the plate 
thickness is smaller; and

— the role the twist plays in the deformation of the plate is greater.

Numerically he has obtained in the case of a square plate simply supported all 
along its boundary, with the eccentricity ratio 12 (Fig. 8.2.10), subjected to a 
centrally applied line load distributed according to a half sine wave, so that the 
deflection becomes at most 30% or 6% larger in the cases of one or two directional 
ribs respectively. In these computations he neglected the effect of the rib eccen
tricity, as compared with the exact computation which takes the rib eccentricity 
into account.

(b)

Fig. 8.2.10. The eccentrically stiffened flat plate investigated by Trenks [8.2.17]
(a) -  Ground plan, (b) -  cross section

Pflüger [8.2.11], [8.2.12] developed and solved the exact differential equations 
of the flat plate eccentrically stiffened by ribs without and with torsional rigidity 
(i.e. with open and close cross sections respectively). For one-directional stiffeners 
and compression in the same direction we compared the diagrams of Pflüger with 
the critical stresses of the orthotropic plate, i.e. taking only the torsional rigidity 
of the ribbed plate into consideration. The deviations showed close agreement 
with those given by Trenks.

As far as the critical load of a flat plate is concerned, it obviously makes no 
difference whether the stiffeners are arranged on one or on the other side of the 
plate. However, it does make a difference whether ribs running in two directions 
are arranged on the same side or on opposite sides of the plate [8.2.2a]. Let us
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consider, e.g. ribs running in the x direction. Because of the eccentricity of these 
ribs, displacements develop in the plane of the plate, causing in-plane stresses. 
From the equilibrium and compatibility equations (see, e.g. [8.2.2a] or [8.2.13]) 
can be derived that the normal in-plane forces arising in the x and у  directions 
have the same sign. If the у  directional ribs are arranged on the same side of the 
plate as the x directional ones, they produce — due to curvatures of the same 
sign in the x and у  directions — normal forces of the same sign as the x directional 
ribs. Hence, the influences of both rows of ribs combine, and the “warping rigid
ity” of the ribbed plate will be, so to say, doubled.

However, if the у  directional ribs are arranged on the opposite side of the 
plate to the x directional ones, in-plane forces of opposite signs arise due to the 
x and у  directional ribs respectively, so that they cancel out each others’ influence.

Eccentrically stiffened shells. In the case of ribbed shells, the eccentric arrange
ment of the stiffeners causes — besides the increase in rigidity as explained in connec
tion with flat plates — the following effect: it does make a difference whether the 
ribs are arranged on the outer (convex) or on the inner (concave) side of the skin. 
This phenomenon was discovered by van der Neut [8.2.10]. For a better understand
ing of it let us investigate, according to [8.2.5], a stringer- and ring-stiffened 
cylincrical shell. The results thus found will be valid for doubly-curved ribbed 
shells too.

First we have to define some notions. We call the inflexion points of the neutral 
fibre of ring-directional bending simply inflexion points, while by nodal points 
we denote those points which undergo no displacement either in radial or in 
tangential directions during buckling deformation. (The nodal points generally 
do not lie on the neutral fibre of bending.) The lines connecting the nodal points 
are called nodal lines.

If ring-directional waves develop during buckling, the arch length would have 
to increase along the half waves bulging outwards and decrease along those bulg
ing inwards, if the inflexion points did not displace in the ring direction as shown in 
(Fig. 8.2.11 (a)).. The shell obviously tries to eliminate these elongations, so that the 
inflexion points displace in the ring direction from the inward half waves to the 
outward ones. If the amplitude of the buckling half waves did not vary in the axial 
direction (i.e. if in the axial direction very long half waves developed), then these dis
placements of the inflexion points could completely eliminate the elongations in the 
ring direction. However, if the buckling amplitude in the axial direction varies, 
then the inflexion points have to shift to a varying degree, i.e. they have to displace 
by sections in opposite directions. This causes shearing deformation in the shell 
surface, according to Fig. 8.2.11 (b), which is hindered by its shearing rigidity. 
Hence, finally, the shell undergoes some elongation or compression in the ring
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Original shape Buckled shape

Original shape Buckled shape

Fig. 8.2.11. Displacement of the inflexion point 
of an eccentrically stiffened shell during buckling

direction (along the outward or inward bulging half waves), and also some shearing 
deformation. The corresponding normal and shearing forces are proportional to 
each other, and have the same order of magnitude.

The shearing deformation develops in the neutral surface of ring-directional 
bending of the shell, according to Fig. 8.2.11 (b). Flowever, in the surface passing 
through the nodal lines, no such distortion arises, since — by definition — the 
nodal lines do not shift in the ring direction.

The nodal lines always lie outside the neutral surface of the ring-directional 
bending, since the inflexion points always shift towards the outside bulging half 
waves in the ring direction (see Fig. 8.2.12, representing the enlarged detail “A” 
of Fig. 8.2.11 (b).

The shearing deformation, arising in the surface of the shell which is capable 
of taking shearing forces, is the greater, the farther it lies from the surface passing 
through the nodal lines. In the case of unstiffened or symmetrically stiffened shells, 
the surface capable of taking shearing forces coincides with the neutral surface 
of bending. Hence, the excess buckling rigidity of such “common” shells, as

(a)
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"A’ Nodal point

Fig. 8.2.12. Enlarged detail “A ” of Fig. 8.2.11 (b)

compared with that of flat plates, is due to the shearing deformation arising in the 
surface capable of taking shearing forces. That is, this latter lies at a certain distance 
from the nodal lines, which lie outside the neutral surface.

The surface capable of taking shearing forces of a shell with outside stiffeners 
(i.e. the inside skin) is at a greater distance from the nodal lines than the neutral 
surface of bending of the “common” shells. Thus, these shells with outside stiffeners 
exhibit an excess rigidity in buckling.

Hence the curvature of the shell has the same stiffening influence as the outside 
ring-stiffeners: these two effects have to be added up. Thus, in accordance with 
what has been said about flat plates, outside stringer-stiffeners increase the stiffen
ing effects both of the curvature in the ring direction and of the outside ring- 
stiffeners. To sum up, we may conclude that outside ring- and stringer-stiffeners 
alike give an (effective) excess buckling rigidity to the shell.

On the other hand, inside ring-stiffeners bring the skin capable of taking shear
ing forces nearer to the nodal lines, thereby decreasing the stiffening effect of the 
curvature, until the skin reaches the nodal lines. In this latter position the effective 
buckling rigidity of the shell becomes a minimum. (Until this position, the influence 
of the longitudinal stiffeners is the same as described before: outside ribs increase, 
inside ribs decrease the stiffening effects due to the ring-directional phenomena.) 
In this position, the effective buckling rigidity of the stiffened shell will be less than 
that of a symmetrically stiffened shell with the same (geometric) rigidity charac
teristics (but, of course, greater than that of the unstiffened skin). If the ring-stiffen
ers shifted the position of the skin beyond (i.e. inside) the nodal lines, the effective 
buckiing rigidity of the structure would increase again. As a rule, however, this 
does not occur practically, or if it does, the effective buckling rigidity does not 
increase again to the level of that of the symmetrically stiffened shell. Hence, the 
effective buckling rigidity of shells with inside stiffeners will certainly be lower
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than that of shells with outside stiffeners, and in some cases even lower than that 
of symmetrically stiffened shells with the same (geometric) rigidity characteristics.

It follows from the foregoing that the difference in effective rigidities of outside 
and inside stiffeners becomes manifest only if the buckling deformation contains 
some twist, i.e. if the buckling half-wave lengths in both directions do not differ 
very much from each other. We may also say that the ultimate cause of the 
difference in effective rigidities of outside and inside stiffeners is the same as that 
of the excess rigidity due to the eccentric stiffeners of the flat plate: the “warping 
stillness” . With shells, however, — due to the curvature — outside stiffeners increase 
while inside ones decrease this effect as compared to the flat plate.

The phenomenon described in the foregoing is called the “primary effect” of 
eccentric stiffeners of shells. There is a “secondary effect” too, due to the transverse 
contraction, which acts in the opposite sense.

Let us first consider the case of outside stiffeners. The outward bulging half waves 
in the longitudinal direction induce compression in the inside lying skin. Due 
to the transverse contraction (Poisson’s ratio), this causes tension in the ring 
direction, reducing the ring-directed displacement of the inflexion points caused 
by the primary effect. On the other hand, along the inward bulging longitudinal 
half waves the skin undergoes tension in the axial direction, which, due to the 
transverse contraction, induces compression in the ring direction, again decreas
ing the displacements of the inflexion points. The reduction of the inflexion 
point displacements, however, diminishes the shearing deformation shown in 
Fig. 8.2.11, rendering the shell less stiff.

In the case of inside stiffeners the secondary effect has an inverse influence, 
since the skin lies outside. The shearing deformation shown in Fig. 8.2.11 increases, 
so that the shell becomes more rigid.

To sum up, the secondary effect makes the shell with outside stiffeners less rigid 
than that with inside ones. Hence, the secondary effect acts in a sense contrary to 
the primary effect.

The secondary effect appears even if the buckling deformation contains no twist, 
provided that the ribs are arranged in the direction of the buckling waves, as e.g. 
in the case of axisymmetric buckling of stringer-stiffened shells. That is, due to 
the transverse contraction, variable hoop elongations and shearing deformations 
develop in the skin. If Poisson’s ratio of the skin is equal to zero, the secondary 
effect obviously also ceases to exist.

It cannot always be decided without a detailed analysis which of the primary 
or the secondary effects, acting in contrary senses, prevails, i.e. whether outside or 
inside stiffening results in providing a greater effective rigidity. According to the 
investigations of Geier [8.2.5] and Singer, Baruch and Harari [8.2.13], in the case
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of cylindrical shells under lateral (or hydrostatic) pressure, inside stiffeners pro
vide a greater stiffness for long cylinders, while outside stiffeners are more effective 
for short ones. In other cases, however, when the buckles are not long-shaped as 
in the aforementioned cases, but are (nearly) square, outside stiffeners provide a 
greater effective rigidity, as a rule. Thus, in the case of axially compressed cylinders, 
it is always outside stiffeners that provide a greater rigidity.

Numerical computations showed the following differences between the rigidities 
of outside and inside stiffeners of the same cross sections in favour of outside 
ones: For ring-stiffeners, mostly 10~15% [8.2.1], in extreme cases (very heavy 
stiffeners) 30~40% [8.2.6b], For stringer-stiffeners the difference may reach 100% 
or, in the case of very heavy stiffeners, even more [8.2.2a], [8.2.6a], [8.2.6b].

However, this favourable effect of outside stiffeners is greatly counteracted by 
the increased sensitivity of outside stiffened shells to initial imperfections. In fact, 
from the basic paper of Hutchinson and Amazigo [8.2.6b], the conclusion can be 
drawn, taking it by and large, that — except for very long shells exhibiting more 
favourable behaviour — the stiffeners which provide a higher critical load (i.e 
outside, in particular longitudinal ones) are rather sensitive to imperfections 
This circumstance partially counterbalances their advantages described earlier.

In all probability this imperfection-sensitivity accounts for the fact that in 
several cases the experiments did not exhibit the difference between the critical 
loads of outside and inside stiffened shells [7.9], [8.2.15]. In other cases, however, 
the difference was well marked [8.2.2c], [8.2.6a].

The exact value of the linear critical load of eccentrically stiffened Shells has 
been calculated for several cases. Closed solutions are to be found in [8.2.6a] 
for axially compressed stringer-stiffened shells, in [8.2.1] and in [8.2.13] for ring- 
stiffened and ring- and stringer-stiffened ones respectively, under hydrostatic 
pressure, and in [8.2.2a] for ring- and stringer-stiffened shells under the simulta
neous action of axial compression and hydrostatic pressure. Ribbed shells of 
revolution are treated in [7.4].

The buckling analysis of ribbed shells — as with ribbed plates — can be reduced 
to that of simple orthotropic shells dealt with in Chapter 7 if we neglect the 
effect of the eccentricity of the stiffeners, i.e. if we neglect the excess torsional (or, 
to be more exact, warping) rigidity due to the eccentricity of the stiffeners together 
with their primary and secondary effects, and take only the torsional rigidity 
proper into account. Although it has not yet been proved that by so doing we 
remain on the safe side even in extreme cases, we may expect, as a rule, to obtain 
the critical load of the ribbed shell with an accuracy sufficient for practical pur
poses. We do not see any other way, at present, to perform the buckling analysis 
of these structures with a reasonable amount of work.

To sum up, we propose to neglect the warping rigidity and the primary and
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secondary effects caused by the eccentricity of the stiffeners in the buckling analysis, 
to compute the rigidity characteristics with the well-known formulas of ribbed 
flat plates (see Section 8.2.6) and to consider the structure a simple orthotropic 
shell (Chapter 7).

8.2.4. Poisson’s Ratio of the Stiffened Shell

Transverse contraction in the ribs is obviously of no interest.
Transverse contraction plays a role only in connection with the rigidity char

acteristics of the skin, so that, all things considered, its influence is much less 
than on unstiffened shells.

Neglecting transverse contraction always causes the rigidity characteristics 
to be considered less than their actual values, since v appears in their denominators 
in the form of (1— v2), see in Section 7.1. Hence, taking into account that the 
influence of Poisson’s ratio is rather small, in order to simplify calculations it is 
expedient to set v=0. This also serves to the benefit of safety.

8.2.5. Density of Ribs Required for “Smearing out” their Rigidities

If we want to calculate ribbed shells as continuous orthotropic ones, in addition 
to what has been already said, the requirement has to be fulfilled also that there 
should be ribs not only on the nodal inflexion lines of the orthotropic shell, but 
also within the buckling half waves. As far as the necessary number of ribs within 
one half wave is concerned, we refer to some comparative analyses [7.14] and to 
results obtained for reticulated shells [8.3.1]. From these we may draw the conclu
sion that if the half buckling wavelength is equal to at least two times the rib 
distance, the “smearing out” of the rib rigidities furnishes results sufficiently 
accurate for practical applications.

As a rule, the buckling wavelength of ribbed (orthotropic) shells is considerably 
greater than that of the unstiffened skin (the half buckling wavelength being usually 
proportional to the square root of the effective thickness, which is many times great
er for stiffened shells than for the unstiffened skin). Hence, if we choose, according 
to Section 8.2.1, a smaller rib distance than the half buckling wavelength of the 
unstiffened skin, we mostly also meet the requirement that the half wavelength 
of the stiffened shell should be equal to several rib distances. This was confirmed 
by the investigations carried out in [8.2.13a] showing that if we arrange the ribs 
so densely as to prevent skin buckling at a lower load intensity than necessary 
for overall buckling, then, in the case of stiffeners without torsional rigidity and 
for the value 10 of the geometric parameter Z  (see Fig. 2.14), the “smearing out”
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of the rib stiffenesses results in a critical load about 7% higher than that obtained 
with discrete stiffeners. This discrepancy rapidly decreases with increasing Z. 
For ring-stiffeners some results are to be found in [8.2.8a] which permit us to 
draw similar conclusions.

It should be noted that, according to [8.2.4a], the “smearing out” of the rib 
rigidities always results in a somewhat higher critical load than the computation 
with discrete stiffeners.

The method for taking individual stiffeners into account is to be found in [8.2.19] 
or [8.2.20].

It should be mentioned that individual stiffeners cause several disturbances not 
taken into account be the continuum approach. For example, if an axially com
pressed cylindrical shell is stiffened by ribs in the circumferential direction, the 
skin, due to Poisson’s ratio, undergoes an elongation in the circumferential direc
tion, while the ribs keep their original length. Consequently, the skin bulges out
wards between the ribs, so that an appreciable initial imperfection comes about, 
which may reduce the critical load. Some aspects of this effect under pure bending 
are dealt with in [8.2.9a].

8.2.6. Rigidity Characteristics of the Orthotropic Shell Equivalent 
to the Stiffened One

Using the approximations mentioned above (neglecting the “warping rigidity”, 
the primary and secondary effects due to the eccentricity of the stiffeners and the 
transverse contraction), the rigidity characteristics of the shell ribbed in x  and у 
directions can be written as follows:

Extensional (membrane) rigidities:

(8.2.10a)

(8.2.10b)

Txy =  2Gt. (8.2.10c)
Bending (plate) rigidities:

(8.2.11a)

(8.2.11b)

(8.2.11c)
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Here:

Ax, Ay — cross sectional area of one rib in the x and у  directions respectively 
(without the skin);

bx, by — rib distances (see Fig. 8.2.2);
Ix, Iу — moment of inertia of one rib in the x  and у  directions respectively,

calculated with the effective width of the skin;
Ixt, Iyt — torsional constant of one rib in the x and у  directions respectively, 

calculated without the skin;
E

G=  — — modulus of shear.
2

1

8.2.7. Suitable Stiffening of Cylindrical Shells

Regarding the question of which kind of stiffening is most effective for different 
loading cases, we may state that, as a rule, — in accordance with what has been 
said in Chapter 7 — stringer-stiffeners are more effective on short shells while ring- 
stiffeners are more expedient on long ones. Ring-stiffeners may also considerably 
increase the critical axial load of cylindrical shells when applied together with 
stringer-stiffeners [8.2.12a]. For the expedient design of the stiffening of axially 
compressed cylindrical shells we find instructions in [8.2.12a] and [8.2.12b].

8.3. Reticulated Shells

If the shell has to bridge a large span, we may expediently construct it of steel, 
covering the shell surface by a triangular network and arranging bars correspond
ing to its sides. We thus obtain a reticulated shell. The roofing layer plays no struc
tural role in this case. The structural grid itself may be either single- or double
layered.

If the network of the structure has some regularity properties, it is generally 
possible to find a statically equivalent continuum and to reduce the overall sta
bility analysis of the reticulated structure to that of a continuous shell as treated 
in the previous chapters.
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8.3.1. Single-Layer Reticulated Shells

If the network consist of equilateral triangles, all bars have equal cross sections 
and they are rigidly connected at the joints (Fig. 8.3.1), then the equivalent con
tinuum of the structure is a solid isotropic shell [8.3.3], [8.3.5] with the thickness:

t' = 2

and with the modulus of elasticity:

E' =

У 3 EI+GI,
EA

2 A
f i a t '

E.

(8.3.1)

(8.3.2)

Fig. 8.3.1. The single-layer reticulated shell 
that has an isotropic shell as equivalent continuum

Here the following notations have been used:

a — centre-line length of one bar;
A — cross sectional area of one bar;
/  — moment of inertia of one bar (referred to the axis tangential to the shell 

surface);
/, — torsional constant of one bar;
E  — modulus of elasticity of the bar material;
G — modulus of shear of the bar material.

Poisson’s ratio for tension of the equivalent shell is (independent of the bar 
material):

v' =  1/3. (8.3.3)

In the case of bending a somewhat smaller v" is obtained if G /,>  0, so that the struc
ture is not perfectly isotropic. This difference has, however, no practical signifi
cance since, according to what has been said in Chapter 7, the transverse con
traction may be neglected in most cases anyway.

As with ribbed shells, here also the question arises of how dense the net should 
be in order to obtain a satisfactory accuracy when using the replacement homo
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geneous shell. Forman and Hutchinson [8.3.1] computed the linear critical load 
of a radially compressed reticulated (shallow) spherical cap and of an axially 
compressed reticulated cylinder, both with the net described above, exactly 
(considering the actual reticulated structure) and by using the replacement homo
geneous isotropic shell. They assumed the torsional rigidities of the bars to be 
GI,=0J69EI, corresponding to circular solid or tube sections. They found for 

(with i = i  If A as the radius of gyration of the bar cross section and 
R as the radius of the shell surface), or — substituting for i the equivalent wall 
thickness t '  ̂ 3 .88i valid for the assumed ratio GIJEI — for a ji R t' S  1, that the 
continuum method yields (linear) critical loads less than 10% higher than the 
exact values.

With the aid of Figs 8.2.1 and 8.2.5, this result can easily be converted into a 
ratio of bar length to half buckling wavelength of the replacement shell. Since the 
linear theory does not determine uniquely the two lengths of the buckle, we took, 
for the benefit of safety, the minimum possible lengths in every case, and we 
obtained approximately that the 10% limit of error can be assured if the half 
buckling length of the reticulated shell, according to the linear theory, is equal 
to at least two bar lengths.

According to [8.3.1], the 10% limit of error can also be guaranteed by requiring 
that under the action of the (linear) critical load of the replacement shell the 
compressive force in no bar should exceed 70% of its Euler buckling load (assum
ing hinged ends).

If the grid consists of triangles other than equilateral, or the cross sections of 
bars in the different directions are not identical, the replacement shell will be 
anisotropic, see [8.3.2] or [8.3.3].

Single-layer shells have two kinds of buckling that might be considered as 
“local” . One is the buckling of individual bars between the joints. This can be 
eliminated by designing the bars for buckling in the usual way, taking the clamping 
effect of the joining bars into account (or neglecting it for the benefit of safety, 
assuming hinged ends). The other phenomenon is the snapping of a part of the 
structure under a concentrated load, acting e.g. during erection. This may be treat
ed with the aid of the replacement continuous shell, using the results presented in 
Section 4.2.2, since the phenomenon represents an “overall” rather than a “local” 
buckling problem, provided the network is “dense enough” to allow the conti
nuum treatment. As an alternative, a special “ local” method for the analysis of 
the snapping is to be found in [8.3.4].
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8.3.2. Double-Layer Reticulated Shells

With respect to bending (and twist) the double-layer reticulated shell is equivalent 
to a homogeneous isotropic solid shell [8.3.3], [8.3.6] if both layers are identical 
and they consist of bars of identical cross-sectional areas forming nets of equilat
eral triangles (Fig. 8.3.2). The replacement shell has the thickness:

t '  = i J h  (8.3.4)
and the modulus of elasticity:

E' = ^ E .  (8.3.5)
3 ah

Here h denotes the distance between the two layers, while the other symbols are 
defined after Eqs (8.3.1)—(8.3.2).

Fig. 8.3.2. The double-layer reticulated shell 
that has an isotropic sandwich shell as equivalent continuum

Poisson’s ratio is given by Eq. (8.3.3) in this case too.
With double-layer reticulated shells it makes practically no difference whether 

the joints are hinged or ensure a rigid connection between the bars, because the 
stiffness of the structure is provided by the extensional rigidities of the bars rather 
than by the rigid joint connections, as contrasted to single-layer shells.

The accuracy of the continuum buckling analysis of double-layer reticulated 
shells has not yet been investigated in detail. However, it seems to be logical to 
consider the results of Forman and Hutchinson [8.3.1], outlined in the previous 
section, for double-layer shells too.

Double-layer reticulated shells are much less stiff in transverse shear than their 
replacement solid shells defined by Eqs (8.3.4)—(8.3.5). In fact, they are equivalent 
to sandwich shells (see Section 8.1), rather than to solid ones. If every bracing 
member connecting the two layers has the same length and the same cross-sectional 
area, the structure is isotropic with respect to transverse shear, and it has the factor
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Q characterizing the “sandwich-effect” :

n _  l i b r a e  

У  ^b rach2’
where (see Fig. 8.3.2):

/brac — length of the bracing members; 
brae — cross-sectional area of the same.

(8.3.6)

In buckling analysis the “sandwich-effect” should be taken into account as 
outlined in Section 8.1.

If the networks of the two layers consist of triangles other than equilateral, or 
the cross-sectional areas of the bars running in different directions are not equal 
to each other, the replacement continuum becomes anisotropic [8.3.3]. If the net
work of the two layers differ or if the rigidity properties of the two layers are not 
proportional to each other, the equivalent continuum becomes a ribbed shell 
[8.3.3].

The “local” instability of double-layer reticulated shells consists of the buckling 
of the individual bars. This can be avoided by designing the bars for buckling, 
taking into account the clamping effect of the adjacent bars (or neglecting it to 
the benefit of safety).

8.3.3. Interaction Between Local and Overall Buckling

When investigating the necessary net density of single-layer reticulated shells 
which allows the replacement continuum to be used, Forman and Hutchinson
[8.3.1] considered this interaction, too. Their rule, given in Section 8.3.1, thus 
indicates the real, total deviation of the (linear) critical load of the replacement 
continuum from that of the actual reticulated structure.

On the other hand, if we consider the load intensity which causes local buckling 
(also taking, if necessary, the plasticity of the individual members into account) 
as npl (Section 9.4), and apply Eq. (9.4.2) for the “limit” case of Forman and 
Hutchinson (0.7 npl—ncr el), we obtain a “combined” critical load 18% less than the 
elastic one, as compared with the 10% deviation given by Forman and Hutchinson,
i.e. we remain one the safe side. This presumably applies to double-layer 
reticulated shells, too. Hence, we may also use this procedure in those cases when 
the condition given by Forman and Hutchinson (Section 8.3.1) is not fulfilled. 
(It should be remarked that although Eq. (9.4.2) is written for the upper elastic 
critical load, it may be applied to the linear critical load as well, because the 
former turns into the latter for w0^0.)
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8.4. Corrugated Shells

Corrugated shells are mostly produced by twisting or bending corrugated 
(Fig. 8.4.2) or folded (Fig. 8.4.3) plates. Consequently, corrugated shells 
mostly have the shape of cylinders or hyperbolic paraboloids [8.4.1], [8.4.3],
[8.4.4]. In [2.35] we also find an application in the form of an elliptic paraboloid.

The special feature of such corrugated or folded plates is that they have a great 
bending rigidity in the direction у  perpendicularly to the waves, while in the di
rection X of the waves they have a small extensional rigidity. Due to this speciality 
of the rigidities, in the cases of the critical loads appearing as the product of these 
two rigidities (“shell-like” buckling), the critical load of the corrugated shell is 
the same as if it were made of the same sheet without corrugation [7.6]. The corru
gation increases the critical load substantially only when it is determined mainly 
by the bending rigidity (“plate-like” buckling).

In order to understand this phenomenon better, we have to consider that the 
critical load appears as the product of extensional and bending rigidities, when the 
boundary conditions do not influence the buckling wavelength and the critical 
load is obtained by minimization, e.g. in the cases of the axially compressed 
cylinder, the radially compressed sphere or the (not too shallow) hyperbolic pa
raboloid supported along the generatrices. These cases represent “shell-like buck
ling” . Plotting the critical load against the curvature (1 /R) of the shell, we obtain 
a slanting straight line (Fig. 8.4.1).

Fig. 8.4.1. Shell-like and plate-like critical loads

On the other hand, if the buckling wavelength is limited by the boundary condi
tions, then — in an extreme case -— the curvature of the shell (i.e. its extensional 
rigidities) play no role, and the critical load is determined by the bending rigidities 
only (“plate-like” buckling); see the horizontal straight lines of Fig. 8.4.1. In 
these cases we may compute the critical compressive force as that of a flat plate 
with the same ground plan and the same boundary conditions. The corrugation 
increases the combinations of the bending rigidities in any case. Thus, only the

13 Buckling of Shells
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rigidity-increasing influence of the corrugation remains effective, shifting the 
horizontal line pertaining to the “plate-like” buckling of the corrugated plate 
(see Fig. 8.4.1) higher than that of the flat plate. This occurs e.g. in the case of the 
buckling of corrugated shallow hyperbolic paraboloid shells supported along the 
generatrices.

The exact curve of the actual critical load of the shell osculates the straight 
lines of shell-like and plate-like buckling, as in the case of the hyperbolic para
boloid shell, shown in Fig. 5.5 (b).

Accordingly, in the vicinity of the interaction point of the two straight lines, 
the buckling behaviour of the shell shows some intermediate behaviour between 
pure “shell-like” and “plate-like” buckling.

However, this transitory section is not very long; moreover, the critical load 
is not much, higher than that given by the straight lines. Thus, the behaviour of 
the shell can be well characterized by the straight lines pertaining to shell-like 
and plate-like buckling.

It should be remarked that if a complete cylinder is corrugated in the axial direc
tion (i.e. its straight generatrices are parallel to the axis x  in Figs 8.4.2 or 8.4.3),

Fig. 8.4.3. Folded plate and its cross section
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the bar-like buckling of the whole cylinder may also be onerous. That is, this kind 
of corrugation provides a rather low axial tensile stiffness which may reduce the 
rigidity against bar buckling more than that against shell buckling.

The rigidity of the corrugated shell may be increased by applying stiffening 
ribs or plates in the direction of the waves [2.35], as shown in Fig. 8.4.4. These

Fig. 8.4.4. Stiffened corrugated plate and its cross section (The stiffeners may also be bars of 
other cross sections, even flat plates)

increase the bending and extensional rigidities in the direction parallel to the 
waves, thereby raising the critical load of the corrugated shell too. In this structure 
the corrugated plate acts as a bracing. On the other hand, since this bracing con
sists of “curved members”, rather than of straight ones, the transverse shear also 
causes bending in the corrugated “members” . Consequently, the transversal shear
ing deformation can no longer be neglected. Thus, when calculating the critical 
load, the “sandwich-effect” (Section 8.1) also has to be taken into account.

In corrugated or folded shells, local buckling of the corrugations or of the folded 
plate elements can only occur if the structure as a whole buckles in a “plate-like” 
manner. That is, the critical load of the “shell-like” overall buckling is in any 
case lower than that of the local buckling occurring in very short buckling waves. 
On the other hand, in the case of stiffened corrugated (or folded) shells (see Fig. 
8.4.4) local buckling also has to be investigated in the case of shell-like overall 
buckling. In order to use the procedure outlined in Section 9.4 for taking into ac
count the interaction of overall and local buckling, we have to regard the load 
intensity of the appropriate local buckling as ppl.

The rigidity characteristics of corrugated or folded shells described above, which 
are necessary for designing them like orthotropic ones for buckling, are given in 
the following.

13*
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Rigidity characteristics o f  the corrugated plate. The cross section of the corrugated 
plate is shown in Fig. 8.4.2. With v =  0, assuming the sine arcs to be flat, and 
neglecting the warping rigidity (as in the case of ribbed shells), we may write the 
rigidity characteristics on the basis of [7.6] as follows:

Bx =  Вху =  в ,
Ву =  В(  1 +  0 ) ,
т _  Т (8.4.1)
1 1 +  0 ’

Ту =  Тху = Т.
Неге:

E t 3

B = J 2 ’ T = E t ’
and s , м г ’ (8.4.2)

6 ) .  I

Rigidity characteristics o f  the folded plate. The rigidity characteristics of the 
folded plate shown in Fig. 8.4.3 may be derived in a similar way to those of the 
corrugated plate. However, the flatness of the cross section can no longer be 
assumed, since the influence of the plate sections in the direction £ may be consider
able. In the following we present the rigidity characteristics assuming v=0 and 
neglecting the warping rigidity:

Bx

By

B Xy

в 1
T + hfí*

->Ы$Ш
5 ( 1  +  A /s ) .

(8.4.3)

T1  X

T

Tл xy

T ------------- Í------------- )
, J h Y  h ( f t ) 21+3H +tH

m+hs), f
l +  h/s ’

(8.4.4)

In these formulas В =Et3/ 12 and T=Et.
If the corrugated or folded shell has a curvature in the у  direction with the 

radius of curvature Ry, its tensile stiffness in the л: direction, Tx, increases, because 
the outward or inward bulging parts of the shell are forced onto circles of larger 
or smaller radiuses of curvature, and the hoop forces which arise hinder this de
formation.
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The modified values of the tensile stiffness Tx are [8.4.2]:

— for the corrugated shell:
„  T
Tr = --------------------------:

1 + 6.0

— for the folded shell:

/2
— FO 123— __
to Ъ О ^ у

T = , „ h* , h3 ’
1+ 3Т ф + ^

with ф plotted in Fig. 8.4.5.

(8.4.5)

(8.4.6)

Fig. 8.4.5. Factor у/ representing the influence of curvature on the tensile stiffness
T x of folded shells

These modified 7^-values were derived for axisymmetric deformation. In the 
case of asymmetric deformation these values may be somewhat less [8.4.2].

Rigidity characteristics o f  the stiffened corrugated plate. The rigidity character
istics in the direction у  of the stiffened corrugated plate shown in Fig. 8.4.4 are 
equal to those of the unstiffened one. In the direction x the rigidities of the corru
gated plate can be neglected in comparison to those of the stiffeners, so that only 
these latter appear in the expressions. On the other hand, the “in-plane” shearing 
rigidity is hardly increased by the stiffeners, so that this will be provided by that 
of the corrugated plate. Finally, the torsional rigidity can be approximately 
obtained by taking that of the plate, neglecting those of the stiffeners.
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Hence, the rigidities of the stiffened corrugated shell are:

2 F
Bx = — (Ad* + I),

By = B( 1 +  0),
Bxy = В, (8.4.7)

T = T  = Tл  у л  xy  x •

In these formulas, В, T, 0  are as defined by Eq. (8.4.2), A  and 1 are, respectively, 
the cross-sectional area of one stiffening element and the element’s moment of 
inertia referred to its own centroid.

It should be remarked that the upper and lower stiffeners may be shifted with 
respect to each other in the у  direction.

The “sandwich-effect”, i.e. the deformation of the corrugated plate, acting as a 
web, due to transverse shear, may be taken into account with the aid of the factor 
Q explained in Section 8.1. Its value can be determined by equating the transversal 
shearing deformation of the corrugated plate-web with that of a sandwich plate 
and expressing therefrom q. The factors qx and Qy valid in the x and у  directions 
respectively, determined in this way, are as follows:

To assess the critical load as that of an isotropic sandwich shell we may use the 
approximate expression (8.1.4). In cases demanding greater accuracy we may 
compute the structure as an orthotropic sandwich shell according to the 
procedures outlined in [2.13], [8.1.6].

& = ; Ш ’<1+0'25е>- (8.4.8)1 2s
Qy Et t ‘



9. Practical Application of the Results 
of the Stability Theory

In the previous chapters we presented the results of the theory of elastic stability. 
The knowledge of these results is, however, not sufficient to design an actual shell 
against buckling. We have to know, in addition, which are the values to be assumed 
for the basic data of the elastic stability analysis; furthermore we have to consider 
that the properties of the shell material generally differ from the linearly elastic 
ones. Thus, in the case of most structural materials the plasticity and, in the cases 
of concrete, synthetics, wood and metals (at high temperatures), the creep may 
reduce the elastic critical load considerably. Finally, for concrete and reinforced 
concrete shells, in addition to the aforementioned effects, the influence of cracks 
and reinforcement has to be clarified.

In the following we intend to deal with each of these aspects, in turn.

9.1. Factors Influencing the Critical Loads of Shells

The factors influencing the critical loads of shells may be classified as follows:

The critical load depends

— on the material properties of the shell that can be characterized by the mod
ulus of deformation E  (i.e. the modulus of elasticity of the material model, 
see Sections 9.4, 9.6, 9.8);

— on the extensional and bending rigidities, T  and В respectively, of the shell; 
in the cases of “shell-like” buckling, these can be taken coupled as a unique “shell- 
buckling rigidity characteristic”

К = ÍB T  (9.1.1)

into account, as is shown in [9.1.1];
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— on the curvatures of the shell, characterized by the radiuses of principal 
curvatures.

These factors again depend on the following data or effects:

The modulus of deformation E  depends on the

— quality (strength);
— creep;
— actual stress

of the material. (The effect of the plastic properties of the material is incorporated 
into the last item.)

The shell buckling rigidity characteristic К  depends on the

— ratio of thicknesses of the erected and the designed shells; 

and furthermore, in the case of reinforced concrete shells, on the

— cracks of the concrete;
— eccentricities of the normal forces;
— quantity, quality, and position inside the cross section of the reinforcing 

bars.

The radiuses of curvature of the shell depend on the initial imperfections caused 
by the

— inaccuracies of erection;
— bending moments,

taken into account by the initial eccentricity of the in-surface (membrane) forces, 
and by the amplitude w0 of the initial imperfection.

First, we deal with the assumption of the proper initial eccentricity vv0 necessary 
for the determination of the critical loads of elastic shells (Sections 9.2-9.3). 
Next we investigate the influence of plasticity (Section 9.4) and of creep (Section 
9.5) of the shell material. Then we deal with the special problems of shells made 
of metals, synthetics or timber and (reinforced) concrete (Sections 9.6, 9.7 and 
9.8). The problems connected with the experimental determination of the critical 
load will be treated in Section 9.9. Finally, the necessary value of the safety factor 
will be examined (Section 9.10).
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9.2 The Initial Imperfection and the Eccentricity of the Normal 
Force to be Taken into Account

We have seen in the previous chapters that the upper critical loads of most 
homogeneous elastic shells sharply decrease with increasing initial imperfection 
amplitude w0. This decrease is due partly to the magnitude of the imperfection 
itself, partly to the eccentricity e0 of the compressive force belonging to this 
imperfection. In the case of homogeneous shells the rigidity characteristics of the 
shell cross section were independent of the magnitude of the eccentricity, so that 
it was sufficient to investigate the decrease of the critical force dependent 
on the imperfection alone. However, the plastic deformation and load bearing 
capacity of the shell wall, and the rigidity of the cracked reinforced concrete cross 
section depend decisively on the eccentricity of the normal force. Consequently, 
in the following we have to deal separately with the influence of the imperfection 
vv0 and with that of the eccentricity e0 of the normal force.

9.2.1. Relation between Imperfection and Eccentricity

One part of the imperfection causes bending moment, i.e. eccentricity, while 
the other part changes the distribution of the membrane forces, thus not giving 
rise to eccentricity. Hence our problem is to find the relation between the imper
fection amplitude and the eccentricity resulting from the imperfection in the 
cases of various shell types.

If we impose a small deformation w onto a shell with a given geometry and state 
of stresses, we can determine the pertaining bending moment and the change in 
the membrane force at any point and in any direction with the aid of the classical 
bending theory. Dividing the bending moment by the modified value of the 
membrane force we arrive at the magnitude of the eccentricity. Performing this 
investigation for several shell surfaces and for various states of stresses we obtained 
the following results for the ratio c = e jw 0.

— in the vicinity of stiffened edges the value of c may become greater than 
unity; however, since the edge stiffener impedes buckling, the shell does 
not fail here;

— in regions where buckling may occur, the value of c always becomes smaller 
than unity;

— the value of c depends on the geometry, on the state of membrane stresses, 
and on the value of the imperfection amplitude w0 as well; nevertheless, 
we may consider the following values, in the range 0.167<w0/t<0.50, as 
safe, good approximations:
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— cylindrical shells: c=1.00;
— domes: c=0.67;
— hyperbolic shells: c=0.50.

The value of c decreases with increasing w0, so that in the range w0/t>  0.50 
the above values yield a wider margin of safety when computing e0 from w0.

Since we established the above c-values on the basis of the classical (small-defor
mation) bending theory, these values are independent of the buckling deformation 
w. Our qualitative investigations with the aid of the large-deflection theory 
showed that this can, in fact, be considered as a permissible approximation. 
So, with the above values of c we can convert imperfection to eccentricity and vice 
versa, according to which value is given and which is needed.

9.2.2. The Magnitude of the Imperfection

We described in Chapters 2 and 4 how the initial imperfection reduces the crit
ical load. The greatest reduction was obtained by Kao [4.16a] for the spherical 
cap. However, he assumed an extremely onerous imperfection, one rather unlikely 
to occur in practice, i.e. an asymmetric one extending only over one quarter of 
the spherical cap. We may reasonably assume that only a part of the initial imper
fections to be expected have these properties. Hence, we should take Kao’s 
results only partially into account. If we evaluate the theoretical results, consider
ing these viewpoints, we obtain the curves of Fig. 9.2.1, of which those of the ra
dially compressed sphere and of the axially compressed cylinder coincide. These 
curves can be applied to calculate reliably the upper critical loads of cylindrical 
and spherical shells with known initial imperfections.

In the following, в stands for the ratio of the upper critical load to the linear 
one, (Q = p“rppe7rfrn), while the kind of upper critical load is indicated by subscripts. 
(Thus the values related to homogeneous, concrete, and reinforced concrete 
shells are denoted by phom, qc, and Qrc, respectively). The curves of Fig. 9.2.1 
can be closely approximated in the range w0/t<  1 by the expression:

(9.2.1)

The value of A is different for the various shell types. Knowing the value of 
£>hom valid for w jt  — 0.5, Qhom (0.5), the constant A can be computed from the for
mula:

a=2L ' « ->1 (9.2.2)

1
ö h o m  —  •

1 + A - f
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Fig. 9.2.1. Decrease of the upper critical loads of cylindrical and spherical shells with increasing
initial imperfection amplitude vv0

The value of ehom (0.5) is to be assessed from the expression:

ehom( 0 . 5 ) ^ l ( i  +  5 i ^ l ) .  (9.2.3)

The values of £>hom (0.5) and A for various shell types are compiled in Table 9.2.1.
We still have to investigate the magnitude of w0 to be assumed. Since, as 

Fig. 9.2.1 shows, the initial inperfection markedly reduces the critical load, we 
have to deal with this problem in detail.

The initial imperfection consists of two parts. One is the accidental imperfection 
due to inaccuracies of erection, the amplitude of which we denote by w0accid.

The other part is the calculable imperfection to be computed by the bending 
theory of shells. Its amplitude will be denoted by w0 calc.

The coincidence of the maximum values of both imperfections is rather improb
able. Thus, according to the rules of the probability theory, we may take the 
greater of the following values for design imperfection:

w0 ,design —
W0, calc +  0 .8  W0 , accid 

WO, accid
(9.2.4)
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Table 9.2.1

Values o f (?hom (0.5) and A  (Eqs (9.2.3) and (9.2.2)) for various 
shell types

Shell types s „ „  (0.5) A

Axially compressed cylinder,
radially compressed sphere 0.25 6.0

Long cylinders, -  10000J , 1.00 0.0

Medium length cylinders =  lOOoj, 0.77 0.6

Short cilinders Í----- =  lO o l,U/7 у
subjected to lateral pressure 0.59 1.4

By so doing we have taken the probability of coincidence of the mean values of 
imperfection amplitudes into account. The standard deviations of the eccentrici
ties from their mean values will be considered in the safety factor.

Accidental imperfection. When we compare the decrease of the theoretical critical 
load, as plotted against the initial imperfection (Fig. 9.2.1), with the decrease of the 
mean values of the experimental critical loads obtained for the axially compressed 
cylinder and the sphere, as plotted against the ratio R/t (see Figs 2.3 (a), (b), (c) 
and 4.2), we find that they show the same tendency. The reason for this phenom
enon is that the thinner the shell is as compared to its radius of curvature, the 
less accurately it can be built.

For both the cylinder and the sphere, the upper and lower bounds at R/t = 1000 
are 0.7 and 0.1, respectively. The average value of both is 0.4. According to [9.2.2], 
however, the distribution of the experimental values is not symmetric: for the 
experiments on cylinders, the mean value is 10% lower than the average value. 
A detailed evaluation of the experimental results on spheres furnishes a similar 
result. Thus, the mean value may be assumed to be 0.36.

The decrease of the critical load with increasing initial imperfection amplitude 
w0 in the cases of axially compressed cylinders and of spheres can be expressed 
from Eq. (9.2.1) and Table 9.1.1, yielding the hyperbola:

(9.2.5)
« u p p e r  1_ F c r  _ A

^ h o m  —  m1 in  _  »
1+ 6 ^



9.2. Initial Imperfection and Eccentricity 205
(Fig. 9.2.2 (a)). On the other hand, the mean value of the experimental critical 
loads as a function of the ratio R/t is approximately represented by the relation:

„ u p p e r  1
У er _______   I_

Dlin — R ’
P cr 1+1/3——

r 1000?

(9.2.6)

( a )

Fig. 9.2.2. (a) -  Upper critical load of the axially compressed cylindrical and of the radially 
compressed spherical shell as a function of the maximum amplitude w0 o f the initial imperfection; 
(b) -  scatter range of experiments on cylindrical and spherical shells plotted against the ratio of 

radius of curvature to wall thickness R / t

(Fig. 9.2.2 (b)). Equating the two left sides we obtain the following value for 
the accidental imperfection amplitude to be taken into account:

R
W fl.accid  -  3 5 0 Q • (9.2.7a)

The accidental imperfection was also checked by measurements [9.2.1]. On 
cylinders with the ratio 7?/f=1000 the amplitudes of the accidental imperfection 
half waves in the axial direction measured at points where it later buckled were 
around R13000. Hence, the value given by Eq. (9.2.7a) seems to be acceptable for 
carefully fabricated shells.

In the case of erection methods which result in greater imperfections (e.g. 
assembling from parts by welding; reinforced concrete shells erected with a sliding 
formwork, etc.), it is reasonable to assume greater initial imperfection amplitudes 
than that given by Eq. (9.2.7a).
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A further shortcoming of Eq. (9.2.7a) is that it disregards the fact that the acciden
tal imperfection depends on the thickness of the shell as well, and that the acciden
tal imperfection cannot become infinitely large if R -*•», i.e. in the case of the 
plane plate. Thus, evaluating measurements on erected cooling towers, we propose 
the following empirical formula for the accidental imperfection:

^O .accid 0.051 + R a 
2m ~ R ft  

1000 +
1000 'ж

(9.2.7b)

Here the factor a represents the influence of the accuracy of the erection method. 
For example we can assume a=  1 for reinforced concrete shells with rigid form- 
work, while for sliding shuttering we can take a=6.

(It should be remarked that w0 is not the maximum imperfection amplitude, 
but the mean value of the absolute values of the maximum amplitudes, i.e. in 
practice half the maximum measurable amplitude. The deviation from w0 is 
covered by the safety factor, since the scatter of the critical load is mostly caused 
by the deviation of the imperfection amplitude from tv0.)

Calculable imperfection. This can be determined by the bending theory of shells. 
Some simple formulas for the initial eccentricities caused by the edge disturbances 
of membrane shells are to be found in [9.2.4] from which we can compute 
imperfection amplitudes outlined in Section 9.2.1.

Imperfections caused by vibrations due to dynamic influences also have to be 
included in the values of initial imperfection, if their magnitude is comparable 
with и’0, because, in the case of intensive dynamic excitation, the initial imper
fection increased by the amplitude of vibration may cause the structure to buckle. 
Such vibrations arise, e.g. in the hulls of ships and in aeroplanes caused by the 
motors, or in some industrial buildings due to unbalanced machines.

In shell roofs, the deformation caused by the concentrated loads of workers 
during erection may also cause an increase in imperfection whose magnitude is 
comparable with w0. This effect can be taken into account approximately by means 
of the snapping theory of flat arches [9.2.3], or according to the results for spherical 
shells [9.2.5].
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9.3. Approximate Determination of the Upper Critical Loads 
of Eccentrically Compressed Elastic Shells

For the determination of the upper critical loads of eccentrically compressed 
shells of plastic material or of concrete or reinforced concrete, the load-deflection 
curves p(w) of the homogeneous elastic shell (see Fig. 1.1) are needed. These 
can be found, however, for some cases only (e.g. in the example of the cylindrical 
panel dealt with in [2.57] and in the example of the spherical shell to be found 
in [4.21]), since the load is mostly plotted against the compression /  measured in 
the load direction (see Fig. 1.4) rather than against the buckling deformation w.

Hence, we need a procedure to approximate the load-deflection diagram p(w) 
of the eccentrically compressed shell. In what follows, such a method, outlined 
in [9.3.1], will be presented.

The load-deflection diagram p(w) for the perfect shell is known for several cases. 
In the approximate procedure, we distort the relation:

= ( 9 ' 3 1 )

valid for the eccentrically compressed straight bar (see Fig. 1.1 (a)), by proportional 
reduction in such a way that it osculates the p{w) curve representing the post- 
buckling behaviour of the perfect shell instead of osculating the horizontal straight 
line pcr of the bar.

If the p(w)-diagram of the perfect shell is not available, but the values p1'" and 
p l*[wer as well as wcr pertaining to />(°wer are known, then the p(w) diagram of the 
perfect shell with asymmetric post-buckling behaviour (Fig. 1.1 (d)) may be ap
proximated by a parabola of the second degree which starts from the point p/pl™= 1 
and has a horizontal tangent at the bottom point wcr pertaining to p'c°wer. The 
p(>v)-diagrams 0f perfect shells of symmetric post-buckling behaviour (Fig. 1.1 (c)) 
start with a horizontal tangent, so that the approximation with the parabola 
starting with a falling tangent serves to the benefit of safety.

If even the wcr value pertaining to the lower critical load of the shell is not known, 
then, maintaining the parabola approximation, we have to choose the smallest 
wcr from those given for similar cases, because this yields the smallest critical load. 
Since wcr is always greater than double the wall thickness, the value

wcr «  21 (9.3.2)
may be used safely in any case.

We show this approximate procedure in Fig. 9.3.1, using the example of the 
complete sphere to be found in [4.21]. In Fig. 9.3.2 the approximate and exact 
values of the upper critical load p“pper are compared with each other as plotted 
against the initial imperfection amplitude w0.
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Fig. 9.3.1. Post-critical behaviour of the complete spherical shell and the approximate 
construction of the load-deflection curve

Fig. 9.3.2. Exact and approximate values of the upper critical 
load of the spherical shell plotted against the amplitude 

w0 of the initial imperfection

From the diagrams to be found in the references we may draw the conclusion 
that the lower critical load px°?a  of the perfect shell sets a lower bound to the upper 
critical loads of the imperfect shell. That is, in the case of an imperfection amplitude 
w0 greater than that pertaining to a p“pper equal to this p^°wer, the load-deflection 
curve has, as a rule, no peak point, because increasing deformation implies a 
steadily increasing load bearing capacity. Thus, in these cases, no upper critical 
load can be defined any more — see the lowest dashed line in Fig. 1.4 (c).
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9.4. Effect of Plasticity

Shells are mostly built of materials with plastic properties. If during shell 
buckling the deformations exceed the elastic limit and they become plastic, the 
critical load will be less than that given by the elastic theory. Hence it is necessary 
to take the influence of plasticity into consideration.

In stability analyses, the nonlinear or plastic behaviour of the shell material 
can be taken into account with the aid of simplified structural models, of approxi
mate calculations based on logical considerations, or of more exact computer 
calculations using the plastic material model.

Unfortunately, there are not yet enough results of computer calculations 
available to establish definite simple rules for design. However, they allow us to 
draw the conclusion that the stability of elastic-plastic shells depends on the 
same factors as that of elastic shells. Besides, the critical load certainly has to be 
lower than the (fictitious) load causing plastic flow of the structure (without 
buckling). For guidance we shall mention some papers presenting such computer 
calculations.

Kaganov and Manevich [9.4.8] investigated the axisymmetric buckling of the 
geometrically perfect cylindrical shell of elastic-plastic material on the basis of the 
linear theory and also took internal pressure and variation of temperature into 
account. Grimaldi [9.4.4] treated a similar shell with the aid of the nonlinear 
theory. (His results are in close agreement with those to be found in [9.4.1], valid 
for the special case of eccentric buckling of plastic structures.) Zielnica [9.4.11] 
analyzed the buckling behaviour of plastic conical shells. Hutchinson [9.4.6] 
investigated the stability of structures made of plastic material, in particular that 
of a spherical dome, with the aid of a simplified structural model, taking geomet
ric nonlinearity into account. Sureshwara et ál. [9.4.10] analyzed shallow shells 
of revolution with clamped edges. They took four layers in the wall thickness 
into consideration. Assuming an axisymmetric deformation, they solved the 
snapping problem step by step, taking the elastic and plastic parts of deforma
tion into account. By so doing they could also follow the spreading of the 
plastic zone. The relation of plasticity and shell buckling theories is clearly shown 
in their paper.

The first method suitable for practical application was given by Herber [9.4.5]. 
He established a substituting “slenderness ratio” from the lower critical load of 
the shell, and with this he computed the critical load according to the rules valid 
for bars made of plastic materials. By so doint he took the plasticity into account, 
but neglected the fact that the shell is more sensitive to imperfections than the 
straight bar. Pflüger [9.4.9], by plotting the curve representing the variation of 
ûpper Qf cylinder as a function of R/t, determined the straight lines correspond-

14 Buckling of Shells
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Fig. 9.4.1. The plastic critical load of the axially compressed 
geometrically perfect cylindrical shell according to Pflüger [9.4.9]

6

ing to the proportionality limit <rprop and to the yield limit ay respectively, see Fig.
9.4.1. He constructed a parabola that has the line of <ry as the initial tangent and 
touches the curve of <r“pper at the point corresponding to crprop. This parabola 
forms an upper bound for the critical load of the shell with accidental initial 
imperfection (Fig. 9.4.1).

In [9.4.2] we developed a method which takes the imperfection sensitivity and 
the plasticity of the shells into account, and which can be generalized comparatively 
easily. Our results are in close agreement with the experiments. The basic assump
tion of the method is that during buckling plastic flow develops simultaneously 
in both directions. If this condition is not fulfilled, then we commit a slight error 
to the benefit of safety. In the following this method will be outlined.

In the analysis we assume a perfectly elastic-plastic material, whose stress-strain 
diagram is shown in Fig. 9.4.2. This corresponds fairly well to the properties of
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metal shells, and moreover, by proper choice of the deformation characteristics, 
even to those of reinforced concrete ones.

The procedure is based on the principle of Jezek [9.4.7], which is valid for 
compressed bars. It states that the elastic and the ultimate values (nel and nult) 
of the load intensity set lower and upper bounds to the upper critical load of an 
eccentrically compressed structure. Since these two bounds lie fairly close to each 
other, the upper critical load can be determined between these bounds with 
sufficient accuracy by an approximate graphical method. In fact, even the arithme
tic mean of both bounds yields an acceptable result.

Here nel denotes the internal specific force causing yield stress ay in one of the 
extreme fibres of the critical cross section (which is at the maximum amplitude 
of the buckling deformation), while nuh causes entire plastification of the same 
cross section. For the case e = w these notations are also defined in Fig. 9.4.3. 
Hence, the quantities nel and nuIt are related to a cross section, and depend on 
the actual eccentricity e — w of the specific compressive force acting on the

14*

Fig. 9.4.3. Definitions of the elastic limit state 
and o f various plastic states of the cross section
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same. Since we define nel and nult as related to the cross section of the maximum 
buckling deformation, they may be approximately considered as characteristic of 
the state of the whole structure.

In the following we shall use two more quantities: npl and nyield (see Fig. 9.4.3). 
By npl we denote that value of nalt, which belongs to the given initial eccentricity 
e0 =  w0, while «yield is the central compressive force causing yield stress ay in the 
entire cross section.

For the analysis we use the approximate force-buckling deformation diagram 
described in Section 9.3, assuming wcr=2t. (Obviously, if there is a more exact 
diagram available, this has to be used.) We show the principle of the procedure 
in Fig. 9.4.4, using as an example a cylindrical shell with an initial imperfection 
amplitude w0=0.1 i and the ratio иу1еШ/Ис"= 1.

Fig. 9.4.4. Determination of the upper critical load

When the load intensity reaches the elastic limit nel, i.e. when the curve of the 
load versus elastic deformation intersects that of nel, the deformation curve does 
not continue along the dashed line corresponding to the elastic behaviour, but 
deviates, and, after having reached a peak point, osculates the curve of nuh. This 
peak gives the plastic upper critical force or load (n"?pp{ or pucf vp[)-

Plasticity changes the post-critical load bearing behaviour of shells, turning 
even their increasing characters into decreasing ones. This is shown in Fig. 9.4.5,
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where we substituted, for simplicity, two sections of straight dashed lines for the 
load-deflection curve of the elastic shell. Figure 9.4.5 (a) corresponds to a compara
tively high value of the elastic critical load. In this case the curves nel and nuU 
intersect that of the elastic deformation, resulting in a decreasing load bearing 
capacity in every case. On the other hand, Fig. 9.4.5 (b) shows an elastic critical 
load much lower than the central ultimate load nyield. In that case a decreasing 
elastic load bearing capacity of a shell remains decreasing, while the behaviour of 
shell with increasing elastic load bearing capacity remains unchanged prior to 
buckling, but its post-critical load bearing capacity remains increasing only up 
to a certain level, after which it also becomes decreasing.

In a given case, the critical load of a shell is to be determined using the construc
tion shown in Fig. 9.4.6. This can be performed, according to [9.4.2], in the follow
ing steps:

First, we draw the axes I and II. In point 1.0 of the axis II we erect a perpendicu
lar axis III with the same scale as the axis I. We connect the point H0 of the axis 
III (to be determined later) and the origin by a straight line IV. We draw the 
horizontal line V from the point of the axis I, intersecting the straight
line IV at the point A. Here we construct a parabola with a vertical axis, starting 
with a horizontal tangent at A, intersecting the axis II at the point npl/nyiM. 
This parabola has to be intersected by a straight line VII connecting the origin 
with the point nyieid/n'c" of the axis III. Projecting this point of intersection В 
onto the axis I, we obtain the sought value

О И'o/i 1.0 0 “V f 1.0

(а) (b)

Fig. 9.4.5. Influence of plasticity on the post-critical behaviour of shells
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Fig. 9.4.6. (a) -  Construction for the determination of the plastic critical load, (b) -  definition
of «yield and determination of H 0

Here, and K PPpi denote the elastic and plastic upper critical loads respec
tively, while the other notations are to be found in Fig. 9.4.3.

The value # 0 to be plotted on the axis III is equal to the ratio n*ield/n"n, where 
n*ield is a fictitious central (“plastic”) compressive force that has to be chosen in 
such a way that the curve nel starting from n*ield should intersect the elastic load 
deflection curve of the shell pertaining to w0/ t—0.1 just at its peak point n“£P7 
(Fig. 9.4.6 (b)). Namely, the curve nel separates the elastic and the plastic ranges. 
The quantity n*ield thus belongs to a fictitious yield stress a*, independent of the 
actual yield stress ay of the material.

We may assume for the laterally compressed isotropic cylinder H0=4, and for 
the axially compressed isotropic cylinder and the radially compressed sphere 
H0 = 2, as good approximations.

The diagrams to be used for the determination of the plastic critical load were 
constructed in [9.4.2], assuming homogeneous shells for the axially compressed 
cylinder and the radially compressed sphere, and for the cylinder subjected to 
lateral pressure. These diagrams are reproduced in Figs 9.4.7 and 9.4.8. The 
plastic critical load is obtained by projecting the intersection point of the curve 
w jt  and the straight line nyiM/ n onto the vertical axis.
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Fig. 9.4.7. Diagrams for the determination of the plastic critical load of long cylindrical shells 
compressed in the circumferential direction

Fig. 9.4.8. Diagrams for the determination of the plastic critical loads of axially compressed 
cylindrical and radially compressed spherical shells
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The perfectly elastic-plastic diagram of Fig. 9.4.2 may also be used in the cases 
of materials which have a curvilinear elastic stress-strain curve. This provides a 
good approximation in the case of any small eccentricity, but for central compres
sion it results in a considerable error to the detriment of safety [9.4.7].

In [9.4.1] we proposed a more exact procedure for the determination of the 
critical force of centrally compressed structures. In order to avoid the error men
tioned before, we constructed the dashed lines for the case of w j t—0 (central 
compression) in Figs 9.4.7, 9.4.8, 9.4.9 on the basis of [9.4.1].

Fig. 9.4.9. Plastic critical forces of shells made of high-strength steel, pure 
aluminium or concrete as functions of R / t

If the structure is homogeneous, npl is the force which causes yielding, and then 
the structure is no longer able to carry any additional load. On the other hand, if the 
structure is not homogeneous but composite, the local buckling of one element 
(e.g. wrinkling of the faces of a sandwich shell, or buckling of the individual bars 
of a reticulated shell, etc.) also causes the structure to be no longer able to carry 
any additional load. Hence, in these cases, the value of n which causes local buck
ling should be considered npl, as mentioned in Chapter 8.

Assuming the ratio E/ay=600, approximately valid for structural steel with 
tensile and yield strengths of 500 and 350 N/mm2 respectively, for mild (unalloyed) 
aluminium and also for usual concrete, we determined the plastic critical loads 
for shells and plotted them against the ratio R/t. We thus obtained the curves
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of Fig. 9.4.9, similar to those of compressed bars plotted against their slenderness 
ratio.

As can be seen, the curves for shells lie lower than those valid for bars.
The plastic critical load can also be calculated in accordance with the graphical 

construction shown in Fig. 9.4.6. Of course, we have to assume nyiclJn'™<H0, 
since otherwise elastic buckling would occur.

Introducing the abbreviations y=nyiM/n„  and a = n pi/nyield, the calculation 
according to the graphical construction yields:

n
n

u p p er  
cr, pi
upper
cr, el

(9.4.1)

In the case of a homogeneous shell wall, a can be closely approximated up to 
e j t ^  1 by the expression:

1a % --------- .
1+3-^-

Making use of this relation, we computed the values of npl from Eq. (9.4.1) for 
w jt= 0; 0.1; 1.0, and plotted them against y/H0 in Figs 9.4.10 and 9.4.11 for the

upper 
Псг, pi 

upper 
n cr, el

0 05  1.0 «0

Fig. 9.4.10. The plastic critical loads of axially compressed cylindrical and 
of radially compressed spherical shells



218 9. Practical Application of the Stability Theory

upper 
n cr, pi
n upper
n cr, el

JL

Fig. 9.4.11. The plastic critical load of the cylindrical shell under lateral pressure

axially compressed cylinder and the radially compressed sphere, and in addition 
for a cylinder of medium length under lateral pressure.

The reference [9.4.3] publishes simulated computer results performed on alu
minium models. It contains all the data which are necessary to make a comparison 
with Eq. (9.4.1). For these shells, f?hom~0.8, and thus w j t ^  0.04. We compared 
the results with the values computed for w0/ t= 0 and 0.05. The comparison is to 
be seen in Fig. 9.4.12.

All these diagrams can be approximated within an error limit of ±10% by the 
relation

Krp,p; n 2 , ( n T p f t  _ ,
U g f t 'J  l npl )

(9.4.2)

that may also be called the “quadratic Dunkerley formula” . Transcribing the 
forces n into loads and expressing the plastic upper critical force from Eq. (9.4.2) 
we obtain

Pcf.pY =  CPgff (9.4.3)
with the factor

(9.4.4)
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Fig. 9.4.12. Comparison of experimental critical loads of plastic 
aluminium dome models with computed values

According to [9.4.2] we certainly commit an error to the benefit of safety if, 
instead of (9.4.2), we use the semi-quadratic Dunkerley formula

„upper / „ u p o e r V 2
I!£!1£L+  M  =  1. (9.4.5)
n ? r , e i r  ‘ " p i  >

Transcribing Eq. (9.4.5) into loads, and again using Eq. (9.4.3), £ assumes the 
following form:

д а  \ 4 1 д а ;  2 1 д а ) (9.4.6)

In practice, Eq. (9.4.4) can be advantageously used in evaluating experimental 
results, and Eq. (9.4.6) is suitable for design.

The plastic behaviour probably caused a reduction in pupper in some model tests 
reported on in the literature (Fig. 2.3 (a), (b), (c), Fig. 4.2), mainly in the range 
of smaller R/t ratios. Flowever, it would be rather difficult to assess this effect 
subsequently, because there were not sufficient measured data.

For the idealized elastic-plastic diagram (Fig. 9.4.2), the deformation moduli 
of the various materials are to be chosen differently. We treat this problem in 
detail in the following sections.
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9.5. Influence of Creep

Most materials used in shell structures develop, under certain conditions, de
formations, that depend not only on the acting stresses but also on the time. 
Accordingly, the initial elastic deformation increases in time even if the stress 
applied remains constant. In the case of stresses increasing with time this increase 
of deformation becomes even more marked. This time-dependent deformation is 
called creep. Its influence on the stability of shells is unfavourable, since the 
increased deformation, as a rule, reduces the critical load.

The first research on creep can be probably attributed to Vicát [9.5.20]. Since 
then the theory of viscoelasticity has developed. An excellent survey of this 
field is given in Flfigge’s book [9.5.7]. Many viscoelastic models were proposed, 
but the pertaining material constants are only incompletely established.

The main features of the influence of creep on stability phenomena can be stud
ied on very simple viscoelastic models, so that in the following these will be 
presented first. Then, the influence of creep on buckling will be analysed on a 
simple structural model, using various viscoelastic models. Finally, we show a 
practical method by which we can approximately consider the influence of creep 
in a very simple way.

9.5.1. The Basic Viscoelastic Models

The viscoelastic models are built up of two elements: the spring and the dashpot. 
Figure 9.5.1 (a) shows the linear spring, whose specific elongation s is obtained by 
dividing the acting stress a by the spring constant E:

^sp rin g  £  • ( 9 . 5 . 1 )

The second element, the dashpot is to be seen in Fig. 9.5.1 (b). Its elongation e 
is to be determined from the relation

‘T ' d a s h p  __

dt t] ’ ( 9 . 5 . 2 )

where de/dt is the creep rate and q is the viscosity coefficient. Connecting a spring 
and a dashpot in series, we obtain the Maxwell model (Fig. 9.5.2). It is also called 
Maxwell fluid since its deformation due to a constant stress tends to infinity for 
t-~ °°. The differential equation of its deformation can be built up from
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6

Fig. 9.5.1. Basic elements of the viscoelastic models: 
(a) Spring, (b) dashpot

Fig. 9.5.2. The linear Maxwell fluid

Eqs (9.5.1) and (9.5.2):

_despring t dS(\ashp   1 do о ro ^
~dt di dt E d i t i n '  K ' ' ’

For some materials which also exhibit plastic behaviour, a better agreement can 
be obtained if the Maxwell model is completed by a nonlinear term. Thus, we
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arrive at the equation
d e  1 d a  о

Tt -~Ё17+̂ +Аа’ (9.5.4)

where A and n are material constants. The last term on the right-hand side is called 
Odquist’s [9.5.19], Norton’s [9.5.17] or Bailey’s [9.5.1] law.

Connecting a spring and a dashpot in parallel, we obtain the Kelvin (-Voigt) 
model (Fig. 9.5.3), also called Kelvin solid, since its deformation due to a constant 
stress tends to a finite value for r—°°. Since the elongation of the spring has to 
be equal to that of the dashpot, and also the sum of the stresses of both elements 
have to counterbalance the acting stress, the differential equation of the Kelvin 
model becomes:

dsa — Es + rj —  . (9.5.5)

Completing the Kelvin model by a spring, we arrive at the so-called standard 
linear three-parameter solid shown in Fig. 9.5.4, with the differential equation:

(9.5.6)

To describe qualitatively the behaviour of real materials, we can make advan
tageous use of the Burger model, which consists of a Maxwell and a Kelvin model, 
connected in series (Fig. 9.5.5). It contains all the properties of the models dealt 
with hitherto, and has the differential equation:

„ . Í '/I , 4 1  +  4 * )  d a  , W i  d 2 a  _  i/£+ U x +  £2 J d t  +  В Д  d t 2 1,1 d t  +

hihi d 2s 
E2 dt2 ' (9.5.7)

Fig. 9.5.3. The Kelvin solid
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Fig. 9.5.4. The standard linear three-parameter solid

Fig. 9.5.5. The four-parameter Burger model

Integrating Eq. (9.5.7) between f= 0  and t = t  for g = gx= const., we obtain the 
following expression for the elongation:

(9.5.8)

Setting the suitable parameters in the Burger model equal to infinity, we can 
obtain anyone of the models dealt with hitherto.
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The Burger model is suitable for describing qualitatively the behaviour of every 
material, but may be quantitatively inaccurate in some cases. Its accuracy can be 
improved by connecting several Kelvin models either in series or in parallel. By 
so doing, the model will be more and more complicated, so we shall omit detailed 
treatment of it.

9.5.2. Influence of the Various Viscoelastic Models on the Stability

The influence of creep on the stability of structures with constant post-buckling 
load bearing capacity was analysed by Kempner [9.5.15]. His results, extended to 
various cases of post-buckling behaviour, can be shown visually on the structural 
model of Fig. 9.5.6, where a viscoelastic support hinders the bar from tilting 
under the force F [9.5.3a].

Setting г1х=г]1 =Ег=°°, the system becomes elastic with an Euler-type critical 
load:

Fe = E J.

In the case of F>FE, the system is unstable and buckles instantaneously accord
ing to the dashed line marked by 1 in Fig. 9.5.7 (a).

If the structure has an initial imperfection w0, then the deformation follows 
the path denoted by 2 in Fig. 9.5.7 (a), approaching line 1 asymptotically.

Let us modify the previously described elastic model (that of Fig. 9.5.6 with 
rji = t]2= E2=°°) by making the spring characteristic Ex decrease with increasing
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Fig. 9.5.7. (a) Buckling behaviour of the elastic structure with constant post-buckling load bearing 
capacity, (b) buckling behaviour of the elastic structure with decreasing post-buckling load

bearing capacity

deflection q, i.e. let E1= E1(w). Let us stipulate further that E\(w) approaches a 
finite nonzero value Elt „  for w-*-«>. This modified model is then able to describe 
the behaviour of structures with descreasing post-buckling load-bearing capacity 
such as axially compressed cylinders and radially compressed spheres, but also 
other shells made of plastic materials and even of reinforced concrete, the rigidity 
of which is reduced by the cracks developing during deformation. If this model is 
loaded up to a load intensity FE, the load bearing capacity decreases to the value 
FEfQa=E1'„l. This phenomenon is plotted as Curve 1 in Fig. 9.5.7(b). (In the case 
of shells, the value FEt „  corresponds to the lower critical load.)

If there is an initial imperfection w0 present, this structure may behave in two 
different ways. If w0 exceeds a certain limit value, the deformation increases with 
steadily increasing load, following the Curve 2.2 which osculates the horizontal line 
of F£j «,. The behaviour is similar to that described by the Curve 2 in Fig. 9.5.7 (a). 
On the other hand, if w0 is smaller than the above-mentione limit value, then 
the load bearing capacity exceeds FE «,, and it increases to a certain extent 
until, after reaching a maximum value F “pper, thestructure snaps through and follow 
with decreasing load bearing capacity the Path 2.1 of Fig. 9.5.7 (b) osculating the 
horizontal line of F£>00. As we shall see later, the influence of creep is different 
in the cases of the two types of deformation Paths 2.1 and 2.2.

Returning to the linearly elastic spring 1 we now choose a Maxwell fluid as 
supporting element, i.e. set ri2=E2=°°. The system is loaded by a force F with 
initial eccentricity w0. The bar performs displacements increasing with time 
(see Fig. 9.5.8 (a)). As we see from Fig. 9.5.8 (b), the force-displacement path, 
valid at any fixed value of t, approaches asymptotically the line of the elastic 
critical force FE.

15 Buckling of Shells
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Fig. 9.5.8. Creep buckling behaviour of a Maxwell-fluid-type structure ( 
as a function of time, (b) as a function of the deformation w.

Fig. 9.5.9. Creep buckling behaviour of a Maxwell-fluid-type structure with 
a spring characteristic decreasing with deformation (a) as a function of 

time, (b) as a function o f the deformation w.

This means that the critical load remains the same as the elastic one FE valid 
for instantaneous loading, which was not reduced by the creep. On the other hand, 
the deformation w is increased by the creep. When the structure is unloaded, 
it does not return to its initial position w0, but to a larger value. However, if i—°°, 
then the deformation w tends, at any small but finite value of F, to infinity.

Looking back upon the elastic case with a spring characteristic Ex{w) which 
decreases with increasing w, it can be seen that the structure treated in the forego
ing behaves according to the Curve 2.2 of Fig. 9.5.7 (b), i.e. its critical load is equal 
to FEt „ . Hence, in this case the creep of the Maxwell model increases the deforma
tion of the structure, but leaves its critical load unchanged, see Fig. 9.5.8 (b). 
If the initial imperfection is smaller than the limit eccentricity, and the applied 
load exceeds „ , then the elastic deformation develops according to the Curve
2.1 of Fig. 9.5.7. In this case the creep may increase the deformation after a certain 
time to such an extent that the structure arrives at the descending branch of the

(a)
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curve (Fig. 9.5.9), becomes unstable and undergoes an infinitely large deformation. 
The corresponding time is called the critical time (tcr). It can also be seen that a 
shorter critical time corresponds to a higher load.

Investigations made on the nonlinear Norton model (9.5.4) show that infinitely 
large deformations occur during a finite critical time in any of the hitherto treated 
cases. However, the nonlinear creep law is mostly needed only in the stress range 
close to the yield point, while in the case of lower stresses — as usual in the sta
bility investigations of shells — the linear creep law yields, as a rule, a sufficient 
accuracy. Hence, we will no longer deal with the nonlinear creep law.

The aforementioned infinitely large deformation can be regarded in two different 
ways as a limit. Either we consider the critical time pertaining to a given load, 
or we seek the critical load which, at the end of the given period, causes an infi
nitely large deformation.

Let our next model be supported laterally by a standard linear three-parameter 
solid. First, we suppose F ^ F e= E11. The bar obviously tilts at once.

We now form the resultant characteristic of both springs:
ЕгЕ2

E = --------- . If we apply the force Fe=EI, the bar would just tilt abruptly if
E1 + E2

no dashpot were present. The dashpot hinders the buckling, but the displacement 
w increases at a constant rate without bond. If F<FE, the displacement w ap
proaches a finite limit value asymptotically. Finally, F>FE causes the displacement 
to increase at an increasing rate. All this is shown in Fig. 9.5.10.

Fig. 9.5.10. Creep buckling behaviour of a standard 
linear three-parameter-solid-type structure as a function of time

If we characterize the creep with the ratio of the full (elastic-)-creep) final dis
placement Woo to the elastic displacement wel, i.e. with the final value of the creep 
factor (pca = w0o/wel, we may express FE with the aid of q>„=EJE2 as follows:

15*
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We can also formulate the phenomenon this way: in the case of instantaeouso 
loading (f=0) the load-deflection curve approaches FE, while for long-term n lad
ing (f=  o o  ) it osculates FE= F E/ ( \ + < p a.J), see Fig. 9.5.11.

Fig. 9.5.11. Buckling behaviour of a three-parameter-solid-type 
structure (with constant post- buckling load-bearing 

capacity) as a function o f the deformation w

F ig . 9.5 .12. C reep  b u ck lin g  b e h av io u r o f  a  s tru c tu re  w ith  
d ecreas in g  p o st-b u ck lin g  lo ad  b ea rin g  

c a p a c ity  a s  a  fu n c tio n  o f  th e  d e fo rm a tio n  w

Let us investigate the same system with a spring characteristic Ex{w) decreasing 
with increasing w, i.e. a structure with decreasing post-buckling behaviour. Its 
load-deflection curve is similar to the Curve 1 in Fig. 9.5.7, but starts from FE/( 1 +  
+(Рж), instead of FE. The curve of the imperfect structure 2.1, which corresponds 
to that marked with i= 0  in Fig. 9.5.11, osculates this Curve 1. It deviates from the 
original, dashed curve (Fig. 9.5.12) valid for constant post-buckling load bearing 
capacity, and, after reaching a maximum, approaches the Curve 1. The Curve
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2.2, which corresponds to t=°°, osculate the straight line FE/( l+cp^) from under
neath again, without reaching a maximum point.

We still have to mention briefly the case of an E^w) which increases with 
increasing w, corresponding to the structures with increasing post-buckling 
load bearing capacity. The pertaining load-deflection curves have a monotonically 
ascending character, without maximum points. In Figs 9.5.13 (a) and (b) we show 
the curves valid for the Maxwell fluid type and for the three-parameter solid type 
support, respectively.

In the literature, numerous solutions are to be found for various cases of insta
bility and post-buckling behaviour, considering creep laws more complicated 
than treated here. We do not intend to present them in detail but, for orientation, 
we list some of them as the following references: [9.5.2], [9.5.3], [9.5.4], [9.5.5],
[9.5.6], [9.5.8], [9.5.9], [9.5.10], [9.5.12], [9.5.13], [9.5.14], [9.5.18].

F  F

F ig . 9 .5.13. C reep  b u ck lin g  b e h a v io u r in  th e  case  o f  a n  in c reas in g  p o s t-b u ck lin g  lo ad  bearing  
cap ac ity  a s  a  fu n c tio n  o f  th e  d e fo rm a tio n  w.

(a) o f  a  M axw ell-flu id -like  s tru c tu re  (b) o f  a  th re e p a ra m e te r-so lid -lik e  s tru c tu re

9.5.3. Practical Consideration of the Effect of Creep

As was mentioned in the previous section, we may either speak about a critical 
time pertaining to a given load, or about a critical load corresponding to a given 
time. In the literature, the effect of creep is mostly taken into consideration with 
the critical time tcr. This can be explained by the fact that it is easier to express 
the critical time than the critical load from the formulas.

It was shown in the previous section that structures with certain kinds of creep 
have no critical time, while every structure has a critical load. Consequently, in 
the following we shall take the effect of creep into consideration by means of a 
critical load pertaining to a given creep period.



230 9. Practical Application of the Stability Theory

Our task is easier in the case of materials which behave according to the stan
dard three-parameter solid (concrete, wood), since their creep tends to a finite 
final value. For design, it is sufficient to know the final value cp^—EJE2 of the 
creep factor cp(t), pertaining to t=°°. By dividing the modulus of elasticity by 
(1+<?«>), we consider every deformation as being increased to (l +Ф«,) times its 
value and the load-deformation curves assume the shapes shown in Figs 9.5.11 
and 9.5.12. The critical loads obtained this way will be, as a rule, slightly lower 
than the real ones, since the stress increments which develop in the final phase of 
the deformation prior to buckling have less time to induce creep than the stress 
parts which developed earlier. Theoretical computations [9.5.11], [9.5.16] as well 
as experiments on concrete dome models [9.8.15] fully confirmed the validity of 
the approximate calculation mentioned above, which consists of dividing the 
modulus of elasticity by (1+<?>«,)■ Hence, in the case of structures which behave 
like the standard linear three-parameter solid with an increasing, constant or 
decreasing post-buckling load bearing capacity, the influence of creep can be 
allowed for by reducing the modulus of elasticity:

(9.5.9)

where E0= E1 is the initial modulus of elasticity measured under short-time 
loading (e.g. vibration).

If the planned lifetime of the structure is limited, we can take the value cp, 
corresponding to the expected lifetime tt of the structure, and reduce the modulus 
of elasticity accordingly:

Ег = Е»
1 + <Pi'

(9.5.10)

Structures whose creep response can be described by the Maxwell fluid (syn
thetics, ice) may behave in two different ways.

If the post-critical load bearing capacity of the elastic structure is constant or 
increasing, no creep stability analysis can be performed, since to infinite time 
infinite deformation corresponds under the action of any small but finite load. 
Consequently, the stability of such structures should be checked with E0, as that 
of an elastic, geometrically perfect strcuture, but, in addition, a stress analysis 
should also be carried out for the increased deformation wei( l +<?,) correspond
ing to the expected lifetime ?,. On the other hand, if the post-critical load-bearing 
capacity of the structure decreases, i.e. the modulus of elasticity decreases with 
increasing deformation (see Fig. 9.5.7), then, as in the previous case, a stress anal
ysis has to be performed for forces lower than FEy „  (which corresponds to the 
flower 0f sheiis), taking the deformation w = wel(\ +(pt) into account. In both
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cases wel also contains the deformation increment caused by the compressive force 
acting on the structure with initial imperfection.

If the load is greater than the lower critical load FEi «, of the structure, but is 
inferior to the linear critical load, then a more exact stability analysis is to be 
performed, applying a suitable creep buckling theory to be found in the literature. 
The phenomenon can be approximately analyzed by using the reduced modulus 
of elasticity according to Eq. (9.5.10) for the calculation of the upper critical load 
F “pper (see Fig. 9.5.7 (b)), but in this case we do not need to consider a critical load 
inferior to the lower critical load FE< „ . Hence, the approximate stability criteria 
for the Maxwell fluid type structures:

but in any case:

r u p p e r

^ - i T V  <95и>
F . S F , . . .  (9.5.12)

Finally, it should be remarked that all that has been said about creep in the forego
ing is based on the uniaxial stress state. In shell structures, bi- (or tri-) axial stress 
states prevail, that are much more complicated. However, for the qualitative 
assessment of the behaviour of shell structures, the knowledge of the creep laws 
valid for the uniaxial stress state is sufficient.

9.6. Problems of Metal Shells

As outlined in Section 9.4, in order to assess the influence of plastic behaviour 
we assume the material to be perfectly elastic-plastic (see Fig. 9.4.2). We have now 
to investigate how this perfectly elastic-plastic model has to be chosen for real 
materials used in metal shell construction.

Metal shells are mostly built of steel or aluminium. Hence we deal with these 
two materials only.

9.6.1. Moduli of Deformation of Metals

Modulus o f  deformation o f  steel. Steels with a yield plateau have a stress-strain 
diagram according to Fig. 9.6.1, becoming curved beyond the propertionality 
limit crprop and osculating the horizontal yield plateau. This curved section is 
comparatively short, so that we may assume the modulus of deformation E  (i.e. 
the modulus of elasticity of the perfectly elastic-plastic material model) to be 
equal to the initial modulus of elasticity of steel: .E0=200 kN/mm2 (Fig. 9.6.1).
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Fig. 9.6.1. Idealized stress-strain diagram of steel

Fig. 9.6.2. Idealized stress-strain diagram of aluminium

For steels with no definite yield plateau, the perfectly elastic-plastic material 
model may be applied safely, provided that an appropriate value is chosen for 
(Tj,, as is shown in Fig. 9.6.2 for aluminium.

Modulus o f  deformation o f  aluminium. The proportionality limit, <тргор, for 
aluminium is lower as related to ay than for steel. The stress-strain diagram be
comes curved and shows no definite yield plateau (Fig. 9.6.2). Nevertheless, it can 
be approximated by a “compensating” perfectly elastic-plastic material model, 
provided we chose the modulus of deformation appropriately. Thus we obtain 
for the modulus of deformation of the perfectly elastic-plastic aluminium model 
E ^ 5 0  kN/mm2, i.e. 0.7 times of the actual initial modulus of elasticity E0= 
=  70 kN/mm2 (see Fig. 9.6.2).
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9.6.2. Creep of Metals

Metals are prone to creep above a certain temperature. The curve characterizing 
creep deformation consists of three sections shown in Fig. 9.6.3. The behaviour in 
Section II can be approximated by the Maxwell fluid, while for Section III we 
may use Norton’s law. If we replace Section I by the straight backward continua-

Fig. 9.6.3. Characteristic curve of the creep of steel at high temperatures

tion of Section II (dashed line), we may use the Maxwell fluid as a model throughout 
Section I and II. Its creep rate dscreep/dt is constant, so that the creep factor q>(t ) 
can be computed from the relation:

= i dJi r -  ( 9 - 6 л >

For information, we show in Figs 9.6.4 and 9.6.5 some diagrams representing 
the creep rates of a steel containing 0.15% carbon and of a chrome-nickel-steel

Fig. 9.6.4. Creep rate of steel containing 0.15% C
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Fig. 9.6.6. Creep factor of a high-strength aluminium alloy

respectively. In Fig. 9.6.6 the creep factors of a high-strength aluminium alloy- 
subjected to 320 N/mm2 stress are to be seen, plotted against the duratoin t of 
the load which is measured in hours (h).

9.6.3. Dimensions of Metal Shells

As we have seen in Section 9.4, for the determination of the plastic critical load 
we need the elastic upper critical load p“pp<jr, and the load ppl which causes the 
entire plastification and failure of the critical cross section with the given initial 
eccentricity. The elastic buckling load is essentially determined by the average 
cross sectional dimensions, so that we may take the design dimensions, to be 
considered as average ones, into consideration when computing On the

Fig. 9.6.5. Creep rate o f a Cr—N i steel
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other hand, plastic failure may occur in one cross section only, so that for ppl 
we have to take deviations in the dimensions of the individual cross sections into 
account. Consequently, when determining ppl, we have to consider the dimensions 
reduced by the allowable tolerances.

9.6.4 Influence of Residual Stresses

Welding and straightening cause residual stresses in metal structures, due to 
which some parts of the cross sections become plastic at a lower load intensity 
than other parts. Experiments made on bars of welded I sections showed that the 
critical load of bars of medium slenderness is about 10-20% lower than that of 
rolled bars of the same cross sections. However, no such reduction could be 
observed on very slender bars, where buckling comes about without plastic 
deformation.

Applying these results to shells we find that reduction of the critical load 
due to residual stresses is to be expected in the range 400. In practice we 
can take this reduction into condiseration by computing the “plastic” critical 
load from the semi-quadratic Dunkerley formulas (9.4.5.) or (9.4.6), rather 
than from expression (9.4.1) or its approximate version (9.4.4). That is, the 
semi-quadratic Dunkerley formula deviates to the benefit of safety over about 
the same range and by about the same amount as the residual stresses reduce 
the critical load, and thus in practice it makes proper allowance for this effect.

9.7. Problems of Shells Made of Synthetics and of Timber

Homogeneous shells are built, besides of metals, either of synthetics or of timber. 
In this section we briefly deal with their specific problems.

9.7.1. Shells Made of Synthetics

Shell structures of synthetics have been built only in the last two decades, so 
that the relevant literature is much scarcer than that dealing with traditional ma
terials. On the other hand, there are already many kinds of synthetics nowadays 
with considerably different characteristics. Consequently, it is not possible to give 
general recommendations. Thus, we shall only give a short informative descrip
tion, based mainly on the work of Hintersdorf [9.7.4].
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Synthetics can be divided into two main groups: thermoplastic and thermo
setting ones. If great mechanical strength is required, some suitable synthetics are 
reinforced by (glass or graphite) fibres.

In the following we present some data on the mechanical properties and their 
dependence on various factors. These data are to be regarded as rough informa
tion only, since they exhibit a considerable scatter even for the same material, 
and they differ even more for the various kinds of synthetics.

The moduli of elasticity of synthetics are considerably lower than those of 
metals. The ratio of the modulus of elasticity to the yield stress, EJay, is about 
30-50 in the case of thermosetting synthetics, and in the case of thermoplastics 
about 10-30, rather than 500-700 which is characteristic of metals. Hence, the 
stability analysis of structures made of synthetics is of primary importance. In 
addition, the modulus of elasticity of thermoplastic synthetics depends on the 
temperature too : at 40°C or 60°C it is only about one half or one fourth of that 
valid for 20°C.

The stress-strain diagrams of synthetics are, as a rule, straight over a long range, 
becoming slightly curved only at their end. Therefore synthetics can be considered 
as elastic materials. Only some special synthetics (e.g. cellulose acetate, synthetic 
foams) have notable plastic deformations.

Synthetics show a marked propensity to creep. The creep factor (i.e. the ratio 
of creep deformation to elastic deformation) referred to a ten-year period has the 
value of approximately one, but the creep deformation does not approach a finite 
value asymptotically. Consequently, for the creep model of synthetics the Burger 
model can be used (see Fig. 9.5.5). Besides, the creep factor of thermoplastic 
synthetics increases with increasing temperature: at 40°C it is about twice as 
great as at 20°C.

Long lasting loadings have an unfavourable effect on the strength of synthetics. 
Loading of one year’s duration diminishes the strength of thermosetting synthetics 
by about 10%, and that of thermoplastic materials by about 50%.

The strength of thermoplastic synthetics is also diminished by heat. This decrease 
is approximately 1 % for each degree centigrade of temperature over 20°C.

All these properties and uncertainties indicate the desirability of designing 
only shell structures of minor importance (i.e. whose failure does not cause any 
great damage) on the basis of the data on synthetics to be found in the literature; 
but even then it is advisable to use a higher safety factor than usual. For the design 
of structures of greater significance the material properties should be determined 
by experiments. The shorter duration of synthetics to be expected, as compared 
to conventional materials, should also be taken into consideration.

Theoretical and experimental investigations concerning the stability of cylindri
cal shells made of synthetics [9.7.6] showed that the imperfection sensitivity of
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axially compressed cylinders made of fibre-reinforced synthetics corresponds to the 
theoretical value, but the experimental critical loads are 10 ~  20 % lower than the 
computed ones. We may attribute this discrepancy to the fact that these compu
tations neglected the small effect of plasticity and creep.

9.7.2. Shells Made of Timber

We give here some information about fir-(pine-)wood, which is the timber 
material most widely used for shell structures. Since the properties of wood scatter 
very much, the data presented here have to be considered only as rough infoma- 
tion.

The properties of wood vary very greatly with its moisture-content и up to 
и=30%, while over и=30% they are no longer influenced. The data to be given 
refer to и =  30%.

The compressive and tensile strengths of fir-wood are, parallel to its fibres, 
20~30N /m m 2 and 40~50N /m m 2 respectively. The reduction of the moisture- 
content to 15% and to zero results in an increase in strength of about double 
and three or four times respectively.

The given strength values are valid only for short-term loading. A loading that 
lasts longer (for about one month) reduces the strength of wood by about 60% 
[9.7.3], see Fig. 9.7.1, where time is measured in hours (h).

The modulus of elasticity of fir-wood with г/=30%, parallel to its fibres, has 
the value of about £■„ =  10 N/mm2. Reducing the moisture-content to 15% and 
zero results in an increase of E0 of about 25% and 50% respectively.

The progress of creep in time depends on the moisture-content and on the ratio 
of actual stress to ultimate strength (crult) of the wood. Some information is

^ l o n g - t e r m  u lt 

6ull

Fig. 9.7.1. Characteristic curve of
the long-term ultimate strength of fir-(pine-)wood
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given in Fig. 9.7.2 on the basis of [9.7.1], [9.7.2] and [9.7.5]. If the actual stress is 
lower than the long-term ultimate strength, the creep tends to a finite end value 
and has to be modelled by the standard linear three-parameter solid. Accordingly, 
the creep curves for tractual/<Tuit =  0.25 and и = 30% or 10% have the forms of 
Fig. 9.7.2 (b).

On the other hand, if the actual stress exceeds the long-term ultimate strength, 
the rate of creep of the wood increases with time, resulting in failure without any 
additional load after a certain time.

The aforementioned characteristics of wood deteriorate markedly in temperatures 
higher than 100°C. Its ignition point lies at about 250~300°C. Biological parasites 
(fungi, insects) may also markedly reduce the properties of the wood.

<p(f) ip(f)

(a) (b)

Fig. 9.7.2. (a) Characteristic creep curves of fir-wood for various ratios of the actual stress to 
the ultimate strength, (b) influence of the moisture content on the creep of fir-wood

9.8. Problems of Reinforced Concrete Shells

The deformation properties of the material of reinforced concrete shells which 
are necessary for buckling analysis cannot be defined as simply as for other ma
terials, because the deformation depends on the cracks, the reinforcement, and 
the creep of the concrete as well, so that it becomes a nonlinear function of the 
load. Consequently, we have to deal with the deformation and rigidity charac
teristics of the reinforced concrete in detail.

The material model of the reinforcing bars can be assumed on the basis of 
Section 9.6.1.

The stress-strain diagram of the concrete is curved from the beginning on 
(Fig. 9.8.1). This curvature is, in fact, caused by a “nonlinear creep”, i.e. a slowly 
developing deformation not proportional to the stress. We take this into account 
as the plasticity of the concrete. (In addition, the concrete has a “linear creep”
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б

Fig. 9.8.1. Idealized stress-strain diagram of concrete

as well, i.e. a slowly developing deformation proportional to the stress, commonly 
called “creep” .) Hence, we have to choose the modulus of deformation Ec of the 
perfectly elastic-plastic material model, approximating the real stress-strain 
diagram, depending on whether the load is acting for a long or for a short time. 
Namely, under a long-term load, the creep develops completely, while under 
a short-term (e.g. test) load only a fraction of it may come about. Thus, the per
fectly elastic-plastic material model may be characterized by the modulus of de
formation referred to long-term (Ecj) or to short-term (Ec sh) loading, according 
to the duration of the load. A load should be considered as long-term if it acts at 
least for one year during the lifetime of the structure. That is, practically the entire 
creep develops during this time.

In the case of loads acting for a very short time (e.g. vibrations), there is no 
creep at all, so that when analysing loads of this kind, the modulus of deformation 
Ec can be considered equal to the initial modulus of elasticity ECj 0 of the concrete.

In conclusion, we take into consideration the creep of the concrete by an appro
priate choice of the modulus of deformation Ec.

The behaviour of the cracked reinforced concrete cross section is influenced by 
the geometric data and the material properties of both the concrete and the rein
forcement. Assuming suitable moduli of deformation, and furthermore suppos
ing that the behaviour of the whole cross section in bending can also be described 
by an ideally elastic-plastic material model, we obtain relations between bending 
moments and curvatures similar to that shown in Fig. 9.4.2 for stress and strain.

On the whole, reinforced concrete differs from elastic homogeneous material 
in the following ways:

— the compressed concrete zone creeps;
— the concrete and the reinforcement behave elasto-pastically,
— the tension zone of the concrete cracks, the stiffness of the cross section
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drops, and the position, quantity and quality of the reinforcement plays an im
portant role.

Several authors took the cracking of the concrete into consideration by diminish
ing the value of the modulus of elasticity [5.33], [9.8.11]. However, this method 
cannot follow the change in the stiffness due to the variation of the eccentricity of 
the compressive force. The method to be outlined in the following, based on 
[9.3.2], [9.8.4], takes this effect into account, so that there is a sufficient agreement 
between its results and those of the model tests.

In this section we shall use several subscripts that are explained below:

c
rc
st
crack
uncr
hom

0

sh or /

el
pi

— concrete;
— reinforced concrete;
— steel;
— cracked (cross section);
— uncracked (cross section);
— refers to the uncracked, unreinforced (homogeneous) concrete cross 

section considered as completely elastic, or to quantities computed 
with such a cross section;

— refers to the beginning of some process, e.g. to the initial value of the 
modulus of elasticity valid for the beginning of the loading process; 
or, in connection with ij/, it refers to the initial zero value of the 
eccentricity;

— denotes whether the value of the deformation modulus is valid for 
short-term or long-term loading;

— computed with an elastic material model;
— computed with a plastic material model; by the side of subscript cr 

it denotes the plastic critical load, while standing alone it denotes the 
compressive force causing plastification of the entire cross section 
when acting with the initial eccentricity.

9.8.1. Deformation Characteristics of the Concrete

Modulus o f  elasticity (ECf0). The (initial) modulus of elasticity of the concrete, 
EC' o, in fact, describes deformations caused by instantaneous effects (e.g. vibra
tion).

The modulus of elasticity, ECj0, depends on the strength of the concrete. Its 
mean value is, according to the generally accepted formula [9.8.13]:

Ec. о =  55 000 °,prism -  «  6750 [N/mm2]. (9.8.1)
^ ^  ' ^ p r is m
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Here <rprism denotes the prism (or cylinder) strength of the concrete, related to the 
cube strength <rcube as follows:

^"prism 0-8<Tcube.

In design we take into account the standard deviation of the modulus of elastic
ity by that of the strength, i.e. we associate Ec>0 with the minimum required 
strength rather than with the mean value of the strength. By minimum required 
strength we denote the threshold strength corresponding to the fractile required.

Modulus o f  deformation taking creep into account (Ec) . The measure of creep 
of the concrete depends on the data of loading, since the concrete hardens with 
time and, thus, its deformation characteristics also vary. However, the creep of 
concrete is caused not only by the creep of its material but also by the fact that 
the load is carried initially by the solid skeleton and by the pore water as well. 
After a certain time the pore water partly becomes pressed out partly evaporates, 
so that gradually the entire stress will be carried by the internal skeleton of the 
concrete.

According to Dischinger’s theory [9.5.2], the creep deformation begins according 
to the creep factor function <p(i) =  £creep(i)/eel at the time of the first loading, and 
the loads applied at a later date induces only that part of the creep deformation 
that corresponds to the remaining part of the original creep factor function. (It 
should be remarked that the Dischinger model can be reduced to a fictitious 
Maxwell fluid with the aid of a co-ordinate transformation, taking cp instead of 
t as the independent variable, see e.g. in [9.5.3]. However, in this case the “time” 
cp cannot increase to infinity, only to a certain finite value, i.e. to the final value 
of the creep factor q>c of the concrete at

On the other hand, the conception of Freyssinet assumes that the main cause 
of creep is the squeezing out of the pore water. As a result, we obtain the standard 
linear three-parameter solid as a model for the creep of concrete.

In recent years, Trost [9.8.14a] and Zerna [9.8.16] showed that the actual be
haviour of the concrete lies between these two conceptions, but is closer to the 
standard three-parameter solid. They established the following fomula for the creep 
of the concrete:

Ec —  - т г М 1  +  ^ о Ф ( 0 ] + - г г М 1 + ё ^ <?) (0 ] -
&C, о Е с> о

The coefficient q appearing in this relation depends on several factors. Accord
ing to Dischinger’s theory, £ = 0.5, while for the three-parameter solid 0 =  1.0. 
Trost and Zerna suggest q= 0.7~0.9. The coefficient к represents the decreasing 
propensity of the concrete to creep with increasing time. It has the value 1.8 
at the beginning of concrete hardening, and 1.0 at the age of one month, while

16 Buckling of Shells
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it decreases to /с =  0.5 for concretes older than one year. The value of к  valid at 
the onset of the initial stress er0 is denoted by k0, while that valid at the onset of 
a, at a later date t is denoted by kt .

Corresponding to the standard linear three-parameter solid, the creep factor 
(p{t) tends to a finite value <p(°°) which we shall call cpc for the concrete in the 
following.

The value of <pc depends on the thickness of the structure, on the quantity and 
quality of cement applied, on the water-cement ratio, and, finally, on the humidity 
of the environment of the concrete [9.8.2].

The data published in [9.8.2] suggest that, assuming average circumstances, 
cpc practically depends on the strength of the concrete only, and can be described 
by the relation

4>c -  4 - 2  log10 <rprism, (9.8.2)

where the prism strength Oprism's to be substituted in N/mm2.
It should be remarked that the data given so far for the concrete are valid up 

to 200° C only, because at higher temperatures the concrete disintegrates rapidly.
The critical loads of some structures with decreasing post-buckling load bear

ing capacity were determined in [9.5.11], taking the influence of linear creep exactly 
into account. Evaluating these results and considering what has been said in 
Section 9.5 we may conclude that if we consider the effect of the creep of con
crete by reducing Ес й, i.e. by assuming a modulus of deformation Ec lower 
than ECt0 according to the formula:

E = Ec,°
c 1 +  9 c ’

see [9.8.2], we commit a slight error to the benefit of safety. The well-foundedness 
of this formula has been proven by model tests performed on concrete shell 
domes [9.8.15].

In the case when only a part of the load is acting from the beginning causing 
a0, while another part begins to act only at a later date t causing at, we may 
reduce the creep factor (pc accordingly. By so doing we arrive at the following 
interpolation formula for the modulus of deformation:

(9.8.3b)

The meanings of kt and q were explained earlier.
For structures with increasing post-buckling load bearing capacity we know 

of no such investigations. The effect of creep seems to be smaller on these structures. 
Until more exact results are available, we suggest using Eq. (9.8.3) as an approxi

(9.8.За)

E  ______________E c ,0 __________

C”  \ + a° + k‘^ ‘ <p(t) ' 
(То+СГ,



9.8. Reinforced Concrete Shells 243

mation also for structures with an increasing character. By so doing we certainly 
remain on the safe side.

If the load acts on the structure for a short time only (e.g. for a few hours), 
merely a part of the creep develops [9.8.2]. We may take this part of the creep 
into account by assuming the “short-term” deformation modulus Ec>sh, to be 
applied for short-term (e.g. test) loads, as 70% of the modulus of elasticity ЕСш 0 
[9.8.13]. Hence, we obtain:

ECS'h = OJECt0. (9.8.4)

In the following, Ec always denotes the appropriate value, i.e. for the analysis of 
the effect of long-term loads, Ec=ECil, for that of short-term loads, Ec = Ec sh, 
and for the investigation of the effect of vibration, Ec—Ec 0.

9.8.2. Dimensions of Reinforced Concrete Shells

As a rule, the thicknesses of concrete and reinforced concrete structures, also 
included shells, deviate from the design values. Extensive series of measurements 
on erected reinforced concrete slabs, conducted in the Institute of Quality Control 
of the Building Industry (Építőipari Minőségvizsgáló Intézet, EMI) in Budapest, 
and their evaluation [9.8.10], [9.8.14] showed that the mean value of the dimen
sions is equal to 1.05 of the design thickness, while for the lower extreme values 
(fractiles) of the cross sectional dimensions we can take the design values reduced by 
10 mm. For buckling, the average dimensions are decisive, and the deviations of the 
dimensions of the individual cross sections become decisive only in the calculation 
of the plastic failure load. Thus, as with other reinforced concrete constructions, 
for the calculation of the elastic critical loads of shells we may use the design 
dimensions, while for the calculation of the load pp, causing plastic failure we 
may use the design dimensions reduced by 10mm.

9.8.3. The Shell Buckling Rigidity Characteristic 
of the Reinforced Concrete Cross Section

On the basis of the reasoning to be found in [9.1.1], for the buckling analysis 
of reinforced concrete shells we introduce the “shell buckling rigidity charac
teristic” K = iB T , see Eq. (9.1.1). Here В and T  are the bending and tensile stiff
nesses of the shell cross section respectively.

We compute the rigidity characteristics on the basis of the second state of 
the reinforced concrete structures, i.e. assuming a cracked tensile zone but still 
linearly elastic behaviour.

16*
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In the case of reinforced concrete structures, the bending and tensile stiffnesses 
В and T  depend on the reinforcement and on the eccentricity of the compressive 
force, because with increasing eccentricity the tensile zone of the concrete gradually 
cracks, causing a decrease in stiffness.

The rigidity characteristics of the uncracked, unreinforced concrete cross 
section are, neglecting Poisson’s ratio, as follows:

t3
В Г 1 = ECIC = EC —  ,

7 T cr = ECAC = Ect,

where Ic and Ac are, respectively, the moment of inertia and the area of the con
crete cross section of unit width. From this we can compute the shell buckling rigid
ity characteristic of the uncracked full concrete cross section:

________  л
K c - \ B C l c - Е с- щ -  (9.8.5)

If we apply reinforcement in the cross section, its rigidity characteristics will 
be increased due to the area of reinforcement which, multiplied by E jE c=n 
(with Est as the modulus of elasticity of the reinforcement), can be considered as 
an additional concrete area. Hence, we have:

D u n cr  ----  Z7 Tuner
r c  X-'C 1 r c  9

y u n c r  _  p  j u n c r  
1  r c  J - 'c  S ^ r c  9

and the shell buckling rigidity characteristic of the uncracked full reinforced 
concrete cross section becomes:

К?™ =  ) ő rll£ncr7’“"cr. (9.8.6)

In the formulas the subscript rc denotes that we considered the above-mentioned 
additional concrete area in the calculation of the rigidity characteristics. We thus 
have:

B ? r  = ~ f [ l  + 2 n n ( l-2 r ,n

r ruc"cr =  Ect(l + nn),

where n = A J A c is the ratio of reinforcement area in one direction to the cross 
sectional area, and ri=h'/t is the ratio of the concrete thickness covering the 
reinforcement to the height of the cross section, see Fig. 9.8.2.

Introducing the notation
E =  ф0К Г сг,
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n -  E s t / E c ^ - h ' / t

»  = A st/ A c f = * / f

Fig. 9.8.2. Stresses in a cracked reinforced concrete shell cross section

t̂ o can be written as follows:

Фо = У(1 + пц)[1 + Зпц(1~2г,П  (9.8.7)

In reinforced concrete shell structures, two kinds of reinforcement are generally 
used: the single layer grid (placed, as a rule, in the middle of the height) and the 
double layer grid (placed on the two sides of the cross section). In the case of 
single layer grids »7 — 0.5, while for double layer grids we may take t/%0.2, as a 
rule. We computed from Eq. (9.8.7) the values of and »/y(li2, characteristic of 
the single layer middle grid and of the double layer grid (with »7 — 0.2) respectively. 
These values are to be seen in Table 9.8.1 and Fig. 9.8.3.

Table 9.8.1

Values of 4/  appearing in Eqs (9.8.7) and (9.8.10)

п ц  О 0 .0 5  0 .1 0  0 .1 5  0 .2 0  0 .3 0  0 .4 0  0 .5 0

1/0,1 1 .0 0 0  1 .025  1 .049  1 .0 7 2  1 .095  1 .1 4 0  1 .183  1.225

l/ о , г 1 -000 1 .0 5 2  1 .1 0 4  1 .156  1 .2 0 8  1 .3 1 2  1 .4 1 6  1 .5 2 0

l/„ ,i 0 0.139 0.212 0.269 0.316 0.393 0.457 0.513
1/во, 2 о 0.178 0.285 0.373 0.453 0.597 0.730 0.855

Jau n e r   ... ryuncr. rycrack ... ^ u n c r
A rc =  </o A c > K rc — V  00 A  c

If the cross section cracks, its rigidity characteristics decrease. The degree of 
decrease depends on the eccentricity of the compressive force. When the eccentric
ity reaches the value of half the height of the cross section, the rigidity charac
teristics closely approximate the values

= BcIrcack =  4 ^ [ 4 £ s+ 6  п ц (1 + 2 ^+ 2 ^ -2 ^ -2 г ,)] ,

TrT ck = E cA v r k =  Ect(Q + nn),
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У0 , Uncracked 
?oo,i: Cracked 
y 0 2 : Uncracked 
Уoo,i" Cracked

Reinforced concrete 
with single-layer 

reinforcement 
Reinforced concrete 
with double-layer 

reinforcement

Fig. 9.8.3. Factors 4/  for calculating 
the shell buckling rigidity characteristic o f reinforced 

concrete shells plotted against the quantity of reinforcement

valid for infinitely large eccentricity, i.e. for bending. Here £ denotes the ratio 
of the height of the compressed zone to that of the cross section, see Fig. 9.8.2.

The difference between these rigidity characteristics and those of the uncracked 
cross section, B™cr and Tr“ncr, is that in f?“ ack and T,™ck the stiffness of the tension 
zone of the concrete is omitted.

Consequently, the shell buckling rigidity characteristic of the cracked reinforced 
concrete cross section can be written with close approximation as follows:

j^crack _  j/^ c ra c k  ^Tcrack _  j?  ^crack ̂ c ra ck

This expression can be regarded as valid in the range of large eccentricities {e>tj2). 
By eccentricity e we denote the distance of the compressive force ncompr measured 
from the centroid of the full (uncracked) cross section.

In the case of a symmetric reinforcement as shown in Fig. 9.8.2, we obtain with 
the aid of the usual reinforced concrete theory [9.8.5]:

(9.8.8)
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Introducing the notation
(9.8.9)

we can derive from the foregoing the following expression for t/i*,:

The values of t/rTC l and valid for single layer middle reinforcement (17 =  0.5) 
and double layer reinforcement (17=0.2) respectively, are shown in Table 9.8.1 
and Fig. 9.8.3. It is permissible to interpolate linearly between the values of the 
table.

If there is no reinforcement, then the tensile stresses disappear after cracking. 
The compressive forces alone have to counterbalance the bending moment acting 
on the cross section. Consequently, the unreinforced concrete cross section is 
able to take bending moment only if the compressive force acts inside the cross 
section.

Shrinkage and variation of temperature cause cracks in the concrete even without 
external forces. Hence, we may assume that from the beginning of the loading 
process on no tensile stresses arise in the cross section. By so doing we remain on 
the safe side.

The effective area of the cracked concrete cross section is

The above formulas are only valid if the compressive force acts outside the core 
of the cross section, i.e. if the eccentricity e exceeds the kernel radius t/6.

The change in curvature % of the bending deformation is to be computed gen
erally from the expression

so that its tensile stiffness becomes:

M

In the case of the cross section without tensile strength this becomes:

e a  2  n,compr

X Ecx t Y '

Accnck = 3 i-^ --e ) ,

7T ack = Ec3 \ L - e j .

i s  c rack    ,/# f i r n e r
Л ГС Г  ооЛ С ?
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Equating the two expressions for x and substituting encompT for M, we obtain the 
bending stiffness of the cracked concrete cross section:

Hence, the shell buckling rigidity characteristic for the range t/6< e< f/2  becomes:

According to what has been said in Section 9.2, we can assume e —cw for the 
eccentricity e without detailed analysis. The assumption c — 1 causes an error 
to the benefit of safety.

9.8.4. Determination of the Upper Critical Loads of Reinforced 
Concrete Shells

We first take into account only the influence of cracking, i.e. the decrease of 
the shell buckling rigidity characteristic with increasing eccentricity. Then we 
consider the effect of creep through the modulus of deformation Ec, as said before. 
In this way we determine the elastic upper critical load of the reinforced concrete 
shell. Finally, using the results of Section 9.4, we establish the plastic upper crit
ical load of the reinforced concrete shell.

Upper critical load o f  the elastic reinforced concrete shell. Inside the area of a 
buckle, the eccentricity and, consequently, also the shell buckling rigidity char
acteristic of the reinforced concrete varies from place to place. Nevertheless, 
it is the value of this rigidity characteristic valid at the maximum buckling ampli
tude that has the greatest influence on the buckling deformation. Considering 
that the value of the rigidity characteristic is greater everywhere else inside the 
buckle, we may assume its minimum value, pertaining to the maximum amplitude, 
to be valid all over the buckle. We thus commit a slight error to the benefit of 
safety. Hence, the rigidity of the shell will be considered to be constant, and the 
differential equations will have constant coefficients. The load p pertaining to some 
deformation w may be computed by using the shell buckling rigidity characteristic 
pertaining to wmax.

The construction based on this assumption was worked out in [9.8.4] and is 
shown in Fig. 9.8.4 for the homogeneous elastic cylindrical panel solved in [2.57]. 
The load-deformation diagram of the perfect shell is represented by the full heavy 
parabola-like line in the figure, branching from the point that corresponds to

(9.8.11)
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k='Jb T

Fig. 9.8.4. Determination of the upper critical load 
of the elastic reinforced concrete shell

the linear critical load. Supposing that the compressive force acts on the homo
geneous shell with an eccentricity wo= c ()=0.25 t, or that the shell has an initial 
imperfection with a maximum amplitude equal to this value, then the eccentricity 
w increases with increasing load intensity as shown by the thin curve, according 
to [2.57].

In Fig. 9.8.4 (b) we show the variation of the shell buckling rigidity character
istic К  of the concrete and reinforced concrete cross sections plotted against the 
eccentricity e =  iv.We have to reduce the ordinates of the p(w) curve valid for the 
homogeneous material to the same extent that the shell buckling rigidity character
istic К  decreases.. Thus we obtain for the reinforced concrete shell the curve drawn 
by the full heavy line, while for the concrete shell we arrive at the heavy dashed 
curve in Fig. 9.8.4 (a).
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The critical loads of the elastic reinforced concrete shell pertaining to various 
initial eccentricities are given by the peak points of these curves. This critical load 
may be written in the form:

PTei'rc = QrcP'jrn: r Q!- (9.8.12)

If we consider the rigidity K°*ack from the beginning as the shell buckling rigidity 
characteristic, we obtain the thin dashed curve of Fig. 9.8.4 (a). It can be seen that 
the critical load pertaining to this curve is somewhat smaller than the more exact 
one. Hence, by using the approximate value, we remain on the safe side.

If we determine the upper critical load of the concrete shell carcked equally in 
both directions as a function of w0/t for various values of wcr and p|.°wer, as explained 
above, we find that it hardly depends on wcr and />'c°wer. The upper critical load of 
the concrete shell which is cracked equally in both directions and has no tensile 
strength can be represented, in the case of wcr = 2t and Ĵ,°wer —o.25p^rn, by the full 
line curve in Fig. 9.8.5.

Fig. 9.8.5. The variation of the factor qc of the concrete shell 
as a function of the initial imperfection amplitude foi the case ea =  w Q

The cracks develop, in fact, not infinitely densely in the concrete shell, but at 
finite distances. Hence, its stiffness becomes also somewhat greater than that of 
the shell with no tensile strength at all. Consequently, we do not commit any error 
to the detriment of safety if, instead of the exact full line curve, we take the approxi-
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mate dashed line curve of Fig. 9.8.5, corresponding to the simple relation:

(9.8.13)

which is much easier to use in the following.
In the range e j t ^  0.5 we obviously have qc=0, since the stiffnesses of the cracked 

concrete cross section become zero at e j t = 0.5. As we explained in the course of 
the analysis of the shell buckling rigidity characteristic of the reinforced concrete 
cross section, from e j t —0.5 on we may consider the rigidity of the cracked, bent 
reinforced concrete cross section as valid; consequently, its critical load can also 
be computed by multiplying that of the homogeneous (uncracked concrete) shell 
by i/',», i.e.:

0.5) =  ^ ßhom. (9.8.14)

The stiffnesses computed by completely neglecting the tensile stresses in the 
concrete will be increased by the uncracked sections of the tension zone between 
the cracked cross sections. On the other hand, if the cracks do not intersect the 
reinforcing bars at a right angle, the stiffnesses decrease. These two effects approxi
mately cancel each other out, so that in practice we can work with the value

In the uncracked parts of the shell the efficacy of the reinforcing bars which do 
not subtend a right angle with the directions of the principal bending moments 
decreases. In the case of a rectangular mesh reinforcement of equal strength in 
both directions this reduction becomes greatest at 45°, where its efficacy is only 
0.5. Since we do not know in advance how the buckling shape will develop, it 
seems advisable to take this value 0.5 into consideration. Hence the stiffnesses of 
the uncracked reinforced concrete shell can be computed by using the factor:

„  ( 4  ^  i + < A o
M T  =  0 J  =  - 2- -

1  “f"
In the range e0/ t ^ 0.5, the value of grc lies between those of —-—  ghom and

l  +  i/'o 
2

qc. Detailed investigations showed that we can interpolate between these

two values according to 1//00, see Fig. 9.8.6. Thus we have:

0 г с ( у  =  О - 5 ]  =  l + 2 ^ °  Qc +  ' l 'c o ( g h o m - g c ) - (9.8.15)

Finally, the upper critical load of the elastic reinforced concrete shell can be com
puted from the relation:

„ u p p e r  _  0  _ l i n  
У с г , г с  ЬГгс F c r ,  ho m  * (9.8.16)
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Fig. 9.8.6. Determination o f the factor Qrc of the reinforced concrete shell by interpolation

In shell structures the usual reinforcement is mostly weak, so that t/r0 exceeds 
unity only slightly. If we use the approximation 1, we can further simplify the 
procedure as follows.

Introducing the ratio:

(9.8.17)

the critical load of the weakly reinforced elastic concrete shell can also be computed 
from the expression:

PTrJ = ßPSXL  =  « с “ '""" (9-8.18)

The numerical values of the factor ß are compiled in Table 9.8.2. The values corre
sponding to ßhom(0.5)=0.25 refer to shells which behave like the axially compressed 
cylinder or the radially compressed sphere. Hence, we also plotted these values 
in Fig. 9.8.7.

If the reinforcement, i.e. the rigidities, are not equal in the two directions, the 
shell is to be computed as orthotropic, with the different factors ßx and ßy in the 
two directions. In most practical cases, however, the difference between the two
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Table 9.8.2

Values of the factor /?(Eq. (9.8.17))

в ы »  (0 .5 )  V„ e0lw 0 -  =  0  0.1  0 .2  0 .3  0 .4  0 .5
t

0 .5
í.o 1 0  1.0 1.0 1.0 1.0 1.0 1.0

0.8 0,5 1.0 0,87 0 82 0 80 0.8 0.8
1 .0  0 .9 0  0 .8 4  0 .8 1 ____________________________

0.6 0 5  1.0 075 064  0,61 0.6 0.6
1 .0  0 .8 0  0 .6 9  0 .6 3

1 . 0 0 ------------------------------------------------------------------------------------------------------------------------------------------

0 .4  0 5  1 .0  0 6 2  0 4 6  0 4 1  0 .4  0 .4
1 .0  0 .7 1  0 .5 3  0 .4 4

n ,  0 .5  , n  0 .4 9  0 .2 8  0 .2 1  0 .2 0  „  ,

1 .0  0 .6 1  0 .3 7  0 .2 5  0 .2 1

0  0 .5  j 0  0 .3 7  0 .1 0  0 .0 2  0  0
1 .0  0 .5 1  0 .2 2  0 .0 6  0 .0 1

0 .5
í . o  1 0  1.0 1.0 1.0 1.0 1.0 1.0

0.8 0 5  1.0 088 0,83 0,80 0.8 0.8
1 .0  0 .9 1  0 .8 5  0 .8 2 ________________

0.6 0 5  1.0 0,77 0 65 ° '61 0.6 0.6
1 .0  0 .8 2  0 .7 0  0 .6 3

0  4  0 .5  1 0  0 .6 5  0 .4 8  0 .4 1  0 .4 0  Q 4
1 .0  ' 0 .7 3  0 .5 5  0 .4 5  0 .4 1

n  ~ 0 .5  . n  0 .5 3  0 .3 0  0 .2 2  0 .2 0  „  ,

1 .0  ' 0 .6 4  0 .4 0  0 .2 6  0 .2 1

0  0 .5  j 0  0 .4 2  0 .1 3  0 .0 2  0  Q
1 .0  ’ 0 .5 5  0 .2 4  0 .0 8  0 .0 1  _

í . o  1 0  1.0 1.0 1.0 1.0 1.0 1.0

0.8 0,5 1.0 ° '90 0-84 0,81 0.8 0.8
1 .0  0 .9 2  0 .8 6  0 .8 2

0  6 0 .5  1 0  0 .8 1  0 .6 7  0 .6 1  0 .6 0  0  6
1 .0  ‘ 0 .8 5  0 .7 2  0 .6 4  0 .6 1

0 . 5 0 ------------------------------------------------------------------------------------------------------------------------------------------
„  . 0 .5  , „  0 .7 1  0 .5 1  0 .4 2  0 .4 0  n  .
0 .4  1 .0  0 .4

1 .0  0 .7 7  0 .5 8  0 .4 6  0 .4 1

0 .5  0 .6 1  0 .3 4  0 .2 3  Ö 2Ö

° ' 2  1 .0  1 -0  0 .6 9  0 .4 4  0 .2 8  0 .2 1  ° 'Z
Ö l Ö7Í1 ö l i  o!Ö4 Ö

0  1 .0  1 0 ________ 0 .6 1  0 .3 0  0 .1 0  0 .0 1  0
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Table 9.8.2. (continued)

C hom (0.5) e jwo  — =  0  0 .1  0 .2  0 .3  0 .4  0 .5
t

0 .5
l . o  1 0  1 . 0  1 . 0  1 . 0  1 . 0  1 . 0  1 . 0

0.5 0.96 0.87 0.81 0.80
0 8  1.0 1 0 0.96 0.90 0.84 0.81 0 8

0 .5  0 .9 2  0 .7 4  0 .6 3  0 .6 0
0  6 1 .0  1 0  0 .9 3  0 .7 9  0 .6 7  0 .6 1  0  6

0 . 2 5 -----------------------------------------------------------------------------------------------------------------------------------------
0.5 0.88 0.60 0.44 0.40

0 4  1.0 1 0 0.89 0.69 0.51 0.42 0 4

0 .5  0 .8 4  0 .4 7  0 .2 6  0 .2 0
0 2  1 .0  1 0  0 .8 6  0 .5 8  0 .3 4  0 .2 2  0 2

0 .5  0 .8 1  0 .3 4  0 .0 7  0
0  1 .0  1 0  0 .8 2  0 .4 8  0 .1 8  0 .0 3  0

Fig. 9.8.7. The factors ft of the reinforced concrete cylindrical 
shell as functions of the imperfection amplitude in 

the case of Qhom (0.5)=0.25 and e 0= w 0
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stiffnesses is not very significant, so that the shell can be considered as approximate
ly isotropic with the substituting factor:

/ U s  t = Y ß J y  ( 9 - 8 . 1 9 )

Upper critical load o f  the plastic reinforced concrete shell. The plastic behaviour 
of the reinforced concrete shell can be taken into consideration either by 
Eq. (9.4.2) or by Eq. (9.4.6). Elence, summing up the foregoing, the critical load 
taking into consideration all the properties of reinforced concrete shells (cracking, 
reinforcement, creep and plasticity) can be computed from the following formula, 
obtained by combining Eqs (9.4.3) and (9.8.18):

„ u p p e r  
Fcr, pi, cr = iPu p p er 

cr, e l,rc = Cßpu p p er 
cr, hom • (9.8.20)

Here ри™р1гс denotes the upper critical load of the reinforced concrete shell with 
plastic properties, p“£hom the uPPer critical load of the uncracked concrete shell 
considered as elastic with the modulus of deformation Ec (taking into considera
tion the effect of creep), C the factor taking the plastic properties according to 
Eq. (9.4.4) or (9.4.6) into account, and ß the ratio of the upper critical loads of 
elastic reinforced concrete and elastic homogeneous shells, to be determined from 
Eq. (9.8.17) or Table 9.8.2.

We computed in [9.3.1] the critical loads of the experimental reinforced concrete 
shells reported on in [4.6], [4.30], [4.33], [9.8.7], [9.8.8], [9.8.9] and [9.8.12] by means 
of Eq. (9.8.20) and compared them with the experimental values. The results are 
plotted against (R/t) in Fig. 9.8.8.

Fig. 9.8.8. Comparison of test results to be found in 
the literature with values calculated by the proposed method
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The mean value of the ratios of the experimental to the computed critical loads 
is 1.02; the standard deviation is 20%. This proves that the method presented in 
the foregoing corresponds to reality.

If we take the special properties of the reinforced concrete into consideration 
by using the method presented above, the low values of critical loads of reinforced 
concrete shells shown in Fig. 4.2 and 4.3 rise to the average values.

9.9. Determination of Critical Loads by Model Tests 
and by Measurements on Erected Structures

From the foregoing it can be seen that not all stability problems of shells even 
of the simplest shapes have been solved in a way that is satisfactory for practical 
applications. Hence, the critical loads, of shells of new, more complicated shapes 
can be determined theoretically during the design procedure only in the most 
exceptional cases. Consequently, in these cases we have to resort to model tests. 
By so doing we may load the shell up to failure. However, besides the critical load 
causing failure, it is important to know whether the post-buckling load bearing 
capacity of the shell is constant, decreasing or increasing, because this circumstance 
basically influences the magnitude of the safety factor to be chosen. The demand 
also may arise that the shell — at least in some loading cases — should not be 
loaded up to failure in order to save costs, but that, nevertheless, the above data 
should be determined.

Plotting the buckling deformation w against the load intensity generally does 
not furnish a reliable answer to the above questions. That is, this diagram corre
sponds to one of the dashed lines of Figs. 1.1 (a), (b), (c) or (d). However, these 
are so similar to each other that it is impossible to find out to which one the mea
sured diagram corresponds. Moreover, the peak point of the curve, i.e. the critical 
load, cannot be reliably extrapolated either. Thus, we have to resort to Southwell’s 
plot [2.51] that transforms the load-deflection diagram of structures with initial 
imperfections, corresponding to Fig. 1.1 (a) into a straight line. In this case the 
buckling deformation w depends on the initial eccentricity w0 and on the load 
P as follows:

(9.9.1)

This relation is based on the usual assumption that the initial imperfection has 
the same shape as the buckling deformation, which is fulfilled in most cases with 
good approximation.
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Introducing the displacement ö measured from the initial imperfection vt>0:

w — w0 =  (5, (9.9.2)

Equation (9.9.1) can be rearranged into the form:

=  +  <9 -9 ' 3)

which is the equation of a straight line according to the co-ordinates Ö/P and <5. 
Hence, measuring the deflection Ö caused by several load intensities P, and plot
ting the data in the co-ordinate system [5/P, <5], we obtain a straight line the tangent 
of which yields the critical load (Fig. 9.9.1). (In shell buckling problems we may 
write p  instead of P.)

Fig. 9.9.1. The Southwell-plot for structures 
with constant post-buckling load bearing capacity

Fig. 9.9.2. Determination of the ascending or descending character 
of the post-buckling behaviour by the generalized Southwell-plot

17 Buckling of Shells
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Thus, Southwell’s plot has the advantage of making the extrapolation of the 
critical load more accurate. In addition, it may also be used to find out whether 
the post-buckling load bearing capacity of the shell is increasing, constant or 
decreasing (Figs 1.1 (a), (b), (c) or (d)). That is, it can be shown [9.9.2], [9.9.3] 
that the Southwell plot becomes curved upwards or downwards depending on 
whether the post-critical load bearing capacity of the structure increases or de
creases (Figs 9.9.2 (a) and (b)). Hence, if by plotting the measured values <5 
and ö/p, we obtain one of the curves of Fig. 9.9.2 instead of a straight line, we may 
decide on the increasing or decreasing post-buckling behaviour of the shell, corre
sponding to Fig. 1.1 (b) or Figs 1.1 (c), (d) respectively. However, as a rule, we 
cannot determine the critical load of the structure from these curved Southwell 
diagrams, so that we have to chose an appropriate safety factor corresponding to 
the type of post-buckling behaviour. For structures with an increasing post- 
buckling behaviour (see Fig. 1.1 (b)), the so-called Spencer plot proposed in [9.9.4] 
is in most cases able to furnish the critical load.

We have to be careful if there is a chance that the behaviour of the structure 
corresponds to Fig. 1.1 (e). That is, it may happen that the initial section of the 
load-deflection curve corresponds, e.g. to Fig. 1.1 (a), and its Southwell plot becomes 
straight, although the branching that occurs later results in a (sometimes sharply) 
decreasing post-buckling load bearing capacity.

The initial section of the Southwell plot is sometimes curved. This is mostly 
due to errors in the measurements at low loads, which can be eliminated by the 
“modified Lundgren plot”, see in [9.9.4].

Another way to determine the linear critical load without destroying the struc
ture is the measurement o f  vibrations [2.12], [9.8.3]. This method is mainly suitable 
for application on erected shells, but it can also be performed during model tests. 
It is based on the following relation, well known for compressed bars [9.9.1]:

Equation (9.9.4) is also valid for shallow shells subjected to compressive forces 
of constant magnitude. Here:

p  — the total load acting on the shell (dead-weight included);
px™ — the linear critical load;
Ndc.id — eigenfrequency of the unloaded shell (loaded only by its dead weight), 

disregarding the influence of compressive forces due to dead weight 
on the vibration;

N  — eigenfrequency of the shell loaded by p, taking the influence of com
pressive forces into account.

(9.9.4)
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The assumption underlying Eq. (9.9.4) is that the load p  does not increase the 
vibrating inert mass of the shell. This is fulfilled if, e.g. the shell model is loaded 
by air pressure or by weights suspended on soft springs. However, if we load the 
structure by weights rigidly connected to it (e.g. by placing them on the shell), 
then we have to consider that they increase the vibrating mass of the shell, causing 
a reduction in its eigenfrequency (even without considering the effect of the com
pressive forces). Since the mass appears in the formula of the eigenfrequency in the 
denominator under the square root sign, Eq. (9.9.4) has to be modified as follows:

where pdead denotes the dead weight.
Hence, if we measure the eigenfrequencies of the shell subjected to two differ

ent loads (possibly not very close to each other), we can write two equations for 
the unknowns Ndcad and , from which p1“  can be calculated. This allows us to 
decide also on the actual critical load p“pper of the structure.

Equations (9.9.4) and (9.9.5) are valid on the condition that the eigenshape of 
the vibration coincides with the buckling shape. However, this is not always ful
filled. Consequently, as a rule, measurements have to be performed in as many 
points as necessary to distinguish the vibrations of different wavelengths and to 
determine the corresponding eigenfrequencies separately. Then the critical loads 
have to be computed from every eigenfrequency and the minimum of them 
should be considered as the most onerous one.

As with the Southwell plot, the measurement of the vibration is also not suit
able for the determination of the critical load in the case corresponding to Fig.
1.1 (e).

When using either the Southwell plot or the measurement of vibration, we im
pose only small deformations on the structure. Hence, neither of these methods 
assesses the rigidity-reducing effects of the plasticity, creep and cracks which de
velop in the reinforced concrete structures only in a later stage of buckling. Both 
methods consider, on the other hand, the actual stiffening effect of the edge 
supports (considered in most cases only roughly in the computation) and the 
influence of cracks due to the dead weight.

In summary, these methods can be applied only in correlation with and 
completed by the theoretical results.

(9.9.5)

17*
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9.10. The Safety Factor

The safety factor к determines the actual security against buckling. We may 
choose its magnitude freely, but it should depend

— on the accuracy of the theory for the computation of the critical load;
— on whether the failure of the shell occurs suddenly or slowly (decreasing, 

constant or increasing post-buckling load-bearing capacity);
— on the discrepancies between the theoretical model and the erected shell with 

respect to:

-— material quality,
— load intensity,
— dimensions and
— shape;

— on the standard deviations of these effects and on the coincidence of tehse 
effects and of these standard deviations; finally

— on the acceptable degree of risk of failure.

These effects appear in a different manner depending on whether we determine 
the elastic critical load or the plastic failure load p pl pertaining to a given initial 
imperfection. The change in the radius of curvature due to the initial imperfection 
has different influences on the elastic critical load p ^ ef  and on the plastic failure 
load ppl, because e.g. in the case of a spherical shell, R  appears squared in the de
nominator of the elastic critical load, but to the first power in that of the plastic 
failure load, since ppl=2npJR. Furthermore, the plastic load bearing capacity 
always decreases with increasing buckling deflection w, while the post-buckling 
elastic load bearing capacity may either decrease or increase.

For all these reasons two different safety factors, kel and kpl, are to be used for 
the elastic critical and for the plastic failure loads respectively. Thus, we can 
write for the allowable load of the shell рсг<Моу,, according to Eq. (9.4.2) or (9.4.5), 
the following relations:

( k*el Per, a l low )  , Í  kpi P cr, a l lo w )     .

PcZT J V Ppi ) (9.10.1a)

or

(9.10.2a)(k e l  P e r ,  allow  1 P e r ,  allow  __ <

„ u p p e r  I ' ~
P e r , el '  P p l
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Expressing pcr< al,ow from these formulas we obtain:

or

(9.10.1b)

(9.10.2b)

If, for simplicity, we want to use a unique safety factor k eli p[ = k, this has to 
assume an intermediate value between kel and kpl. However, this assumption 
provides no transition to the analysis of failure without buckling.

The safety of the shell against buckling can be provided in the most simple way, 
if we consider the most onerous, extreme values of all effects, if we determine the 
critical load with these data and reduce it by a safety factor. This procedure may 
be called the “multiplication of the partial safety factors” . By so doing we are 
certainly safe, but uneconomical, because we do not take into consideration that, 
as a rule, the most unfavourable values of the different data do not coincide.

The application of the probability theory yields a more exact method, see, 
e.g. in [9.2.2], [9.3.3]. Accordingly, the threshold value of the critical load to be 
applied in design is obtained by subtracting a times the resultant standard deviation 
from the mean value of the experimental results (or from the critical load computed 
with the mean values of all data). Here, a denotes a numerical value that depends 
on the fractile corresponding to the risk taken.

Hence, we can compute the safety factor from the formula:

к = kp
í —aSr ' (9.10.3)

Here k0 denotes a “basic” safety factor that determines the measure by which we 
want to “draw apart” the upper extreme value (fractile) of the load and the lower 
extreme value (fractile) of the load bearing capacity. If the computation model and 
the actual structure agree fairly well, we may assume Лг0=  1.10. This value should 
be increased if the model or the computation are of an approximate nature.

The value of a depends on the probability according to which we want to choose 
the safety factor. In building practice a fractile of 2.5% is generally accepted [9.8.2], 
from which, assuming a normal distribution, it follows that a =2.0.

The Sr appearing in Eq. (9.10.1) is the resultant relative standard deviation, 
which can be defined by the following formulas:
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for kpl: 

and for kel: 

Here:

sr,Pi = isLä+sh

s r, et =  Ys?oad+ s i + s * + s ? r.

tSjoad — the relative standard deviation of the load;
S pl — that of the plastic load bearing capacity of the structure (i.e. of the 

force causing plastic failure without buckling);
S E — that of the effect of the modulus of elasticity of the concrete;

— that of the effect of the creep of the concrete;
S cr — that of the critical load causing elastic buckling.

By “relative” we denote “normalized with respect to the mean value” .
Since the relative standard deviations of both the load and the force causing 

plastic failure are about 10%, consequently 5'load =  0.10, 5^,=0.10.
For reinforced concrete shells we obtained from the data of Fig. 9.8.7 the value 

S exp =  0.2. The standard deviation of the critical loads of the cylindrical and 
spherical metal models (with decreasing post-buckling load bearing capacity) 
is about the same. We evaluated separately the data of the various authors, 
shown in Figs 2.3 and 4.2, in the range 3 0 0 1 3 0 0 ,  and found that the stan
dard deviation S np, that can be considered as equal to Scr, was in every case 
less than 0.23. Hence we can assume S „ = 0.23.

(In the range R/t<  300 plastic deformations predominate, but the reports on 
these experiments did not publish enough results to take this effect into account. 
On the other hand, the range 1300 lies above the R/t ratios used in practice.)

The authors of [9.8.15] obtained from their very extensive test results 
performed on concrete dome models the average values i ’cxp =  0.12 for instanta
neous loading and S'«,,=0.20 for long-time loading (creep buckling). Evaluating 
these tests, a value iS'(J,=0.16 for the standard deviation of the effect of the creep 
on the critical load is arrived at. Metal shells do not creep at normal temperatures, 
so that for them the value 5^= 0  is appropriate. (We have no usable data for the 
creep of metals at high temperatures.)

When calculating the modulus of elasticity ECy0 from the nominal strength of 
the concrete, we automatically obtain a certain standard deviation for ECy0. How
ever, Ec>0 also shows an additional standard deviation, which proved to be SEyC= 0.1 
in the evaluation of the experimental results published in [9.8.13]. For steel, half 
this value for the additional standard deviation can be assumed, i.e. S EyŜ 0.05.

Hence we obtain the following resultant standard deviations:
— for metal shells:

Sr,ei = Vs?md + S l  + S% = ]/0.12 +  0.052+0.232 -  0.256,
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and
sr>pl = ]/S!oad + Sl, =  /0 .Н  +  0.Н =  0.14;

— for concrete and reinforced concrete shells:

Sr,el = Vs?oad+sl+s*+s?r =  ^ о . р + о . р + о л б н о . г з 2 =  о .з м ,
and

s r,pl = Ys?oad+ s 2pl = /0 .1 4 0 .1 »  =  0.14.

These values yield, according to Eq. (9.10.3), the following safety factors for 
axially compressed cylinders and radially compressed spheres made of metals:

and

If we want to use a unique safety factor, the value k = 2.3 can be assumed. 
For the aforementioned shells made of reinforced concrete we obtain:

and

As a unique safety factor k = 3.0 can be assumed.
The post-critical load bearing capacity of unreinforced concrete shells is equal 

to zero, while shells made of steel and of reinforced concrete do have some load 
bearing capacity in the post-buckling range. Hence, it is reasonable to increase 
the basic safety factor k0 by about 20%, i.e. to assume k0= 1.35.

We thus arrive at the values k el= 3.7, kpl = 1.9 and as a unique factor /с =  3.7 
for concrete shells.

These safety factors should be increased

— if the theory used is only approximate;
— if the computation model does not agree with the actual structure;
— if the data on the material properties are not reliable enough.

We determined the critical loads of several erected large reinforced concrete 
domes described in [4.6], [9.10.1], [9.10.2], [9.10.3], [9.10.4], [9.10.5], and plotted 
them in Fig. 9.10.1, compared with their actual loads. These data show that most 
structures have a safety factor greater than two. Two domes exhibited a safety

Kl,decreasing 1_2(0.256) 2‘25 % 2'30>

1.10 _ л п * _ . , п 
Kel,d ec reasing  2  2(0 314) ~  J .U ,

, 11
р‘ 2-2(0.14)
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Fig. 9.10.1. Safety factors of some erected reinforced concrete domes

factor somewhat inferior to two, and one showed a safety factor inferior to one. 
This latter structure, in fact, collapsed. On the whole, a safety factor between 2.5 
and 3.0 seems to be realistic for shells with decreasing post-buckling load bearing 
capacity.

However, this value of the safety factor is exaggerated for shell structures whose 
post-buckling load bearing capacity does not decrease. For structures with a 
constant load bearing capacity (Fig. 1.1 (a)), Scr^0.18 can be assumed. Conse
quently, the relative standard deviation of such metal shells becomes Sr=0.21, 
and for their unique safety factor we obatin from Eq. (9.10.3) for metal shells:

кconstant
l . i

1 - 2 (0.21)
1.90.
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For reinforced concrete shells S',.=0.28 and, consequently:

The safety factor of unreinforced concrete shells becomes:

In the case of an increasing post-buckling load bearing capacity, the “loss of 
stability” does not mean failure. Hence we can use the factor £increasings l.7 5  
for the benefit of safety.

For shells with post-buckling load bearing capacity decreasing at a lower rate 
than that of the axially compressed cylinder or the radially compressed sphere, 
some intermediate safety factor between kconstant and kdecreasing seems to be reason
able. With the aid of the value ghom(0.5), characteristic of the rate of decrease 
(see Section 9.2), the following approximate interpolating formula can be set up :

For some values of ghom(0.5) the safety factors are given in Table 9.10.1.

T a b le  9.10 .1 . 

V alu es o f  k ;ntermediate

0hom(O.5) 0.25 0.50 0.75 | 1.00

Metal 2.30 2.17 2.04 1.90

Reinforced
concrete 3.00 2.83 2.67 2.50

Unreinforced
concrete 3.70 3.50 3.30 3.10

к ~ к +(k - k  ) 1 ehom(°'5)' ''in te rm e d ia te  ^ ' ' - c o n s t a n t  ' ^ d e c r e a s in g  '''c o n s ta n t /  0  7 5

Consta"» 1-2(0.28) 2'50’

1 . 3 5
^c o n s ta n t 1 2  ( 0  2 8 )  3 . 0 7  ~  3 . 1 .



10. Numerical Examples

10.1. Buckling Analysis of a Reticulated Cylindrical 
Cooling Tower

Let us check the stability of a reticulated steel cooling tower, shown in 
Fig. 10.1. For the sake of simplicity, we shall investigate only the upper section of 
the tower with a characteristic mesh to be seen in Fig. 10.2. We shall take only 
vertical compressive forces into account. In conformity with what was said in 
Section 8.3, we shall substitute the reticulated structure by a statically equivalent 
continuum.

Fig. 10.1. Overall view of the reticulated cooling tower

The stiffening rings serve two purposes. First, they carry the ring-directed bend
ing moments due to wind. Secondly, they stiffen the reticulated shell against 
buckling in the sense that they prevent the “overall-” and “free-edge-” type buck
ling modes described in detail in Section 5.4 for hyperbolic cooling towers. These
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Fig. 10.2. Details of the reticulated shell
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buckling modes may also occur on cylindrical shells with free edges, cf. the expla
nation after Eq. (2.14) and the low linear critical load for the cylinder with free 
edges. Hence, the stiffening rings should have д rigidity sufficiently great to comply 
with these two requirements.

Since the individual bars are themselves trusses, they can either be considered 
as unique bars and the structure as a single-layer grid, or we may regard the 
whole structure as a double-layer reticulated shell.

Considering the structure as single-layered, the extensional and bending rigid
ities of the grid, valid for the replacement continuum, can be computed from the 
data of the individual bars. Neglecting the torsional rigidities of the individual 
members (resulting in an error of about 3%), we obtain the rigidity characteristics 
of the equivalent orthotropic shell (see Eqs (7.1), (7.2) and (7.3)) from the formu
las of [8.3.2] as follows:

Auxiliary quantities:

EA1 200 kN/mm2(4920 mm2) no
e, = -----= ----------  ------------ - =  98.40 kN/mm,ax 10 m '

e2 =  e3
EA2 _  200(3470) 
a2 7.30 95.07 kN/mm,

и = E h 200 kN/mm2 (3.9237) 108 mm4 
10m 7.8474 MNm,

h h —
E h
a2

200(2.6433) 108 
7.30 7.2419 MNm.

The tensile stiffnesses become:

Tx = ex+2e2 cos4 a =  98.40+2(95.07) cos4 68.59° =  101.78 kN/mm, 

Ty — 2e2 sin4 a =  142.8 kN/mm,

T  =  2e2 sin2 a cos2 a =  21.96 kN/mm,

Txy = 2T  = 43.92 kN/mm.

From these we compute the equivalent rigidities according to Eqs (7.2):

Tx = 98.40 kN/mm,

Ty =  138.06 kN/mm,

Txy =  47.16 kN/mm.
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The bending stiffnesses are:

Bx — 4+ 2 4  cos4 a =  8.1046 MNm,

By = 2/2 sin4 a =  10.8809 MNm,

B' = 2/2 sin2 a cos2 a =  1.6728 MNm,

Bxy = 2B' =  3.3457 MNm.

From these we obtain the equivalent rigidities:

Bx =  8.1046 MNm,

By = 10.8809 MNm,

Bxy = 5.0185 MNm,

The linear critical axial force is obtained from Eq (7.11) with p =  0 by selecting 
that value of p = ljly for which nl™cr becomes a minimum. Performing the calcula
tion for several //-values we find:

n“"c, =  1.464 MN/m for ц = l j l y =  0.94.

Since the flanges of the individual bars are connected by bracings (see Fig. 10.2), 
we compute their transverse shearing rigidity in order to assess the “sanwich- 
effect” (Section 8.1).

Calculating the shearing deformation of the bracing by the energy method 
yields

Q = 0.0985 m/MN

for the continuum. The product Qn'™0 thus assumes the value 0.1442 <4, so that 
the shell can be considered “rigid” against transverse shear. From Fig. 8.1.3 we 
read off the reduction factor for the linear critical load:

l-0 .2 5 (e n “"0) =  0.9640,

and we obtain the actual critical load, taking the sandwich-effect into account as 
well:

„Umsandw =  0.964(1.464) =  1.411 MN/m.

For assessing the reduction of 7jJj”/rsandw due to initial imperfections we 
compute the parameter l/y (7.8):

-  =  | ^  =  0.957 *  1.0.
У BxTy

According to Fig. 7.7, the post-buckling behaviour of our orthotropic shell is 
very close to that of the isotropic one. In order to use the reduction factors for
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the latter, plotted against w jt, we have to compute the wall thickness t' of the 
“equivalent” isotropic shell. If we now consider the structure as a double-layer 
reticulated shell, Eq. (8.3.4) clearly shows that t ' is independent of the rigidity of 
the shell and depends only on the distance between the centroids of the two flanges 
(see Fig. 10.2):

t' =  0.56 m /3  =  0.97 m.

(The same result is obtained from Eq. (8.3.1) of the single-layer shell, if GI, is 
neglected.)

Assuming an initial imperfection of w0= ±  100 mm we obtain:

wj f  =  0.1/0.97 »  0.10.

From Fig 2.7 or 2.8 we read off a reduction factor of 0.6. Consequently, the elastic 
upper critical load of the structure becomes:

n"fj!rer = 0.6n“"c*rsandw =  0.6(1.411) =  0.847 MN/m.

To assess the interaction of overall and local bucklings (Section 8.3.3) we com
pute the specific axial force causing buckling in one member.

Disregarding, for simplicity, the buckling of the flanges between the bracing 
bars, we obtain for the Euler critical force of the skew member 2 or 3 (Fig. 10.2):

_ n2E I  я2 (200 kN/mm2) 2.64 3 3(108) mm2
F'  = “  = --------------( IÖ 7 W -------------- =

=  4.523 MN.

The compressive force causing plastic yielding of the same member is

Fpl = Ac, = 3470 mm2 (240 N/mm2) =  833 kN.

The force causing plastic buckling will be computed by Ritter’s formula (equiv
alent to a Dunkerley-type relation:

1 _  1 1
~ ^ + V

see e.g. in [2.32]):

Fcr,Pi =  — V  =  - 4 % T=  °-703 M N - 
1 + —  1 +—— —

Fpl 0.833

This corresponds to a specific axial load on the cylinder of the magnitude:

n*,Pi =
2Fcr<pi sin 68.59° 

7.84 m 0.1671 MN/m.
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Considering this value as npl, we may use Eqs (9.4.5) and (9.4.6) for assessing the 
interaction of (plastic) local buckling and overall shell buckling:

,  0.1671 i A1 ( 0.1671 у  '  1 ( 0.167112 Л1„00 ̂ 0.847 } 4 I 0.847 J +  2 [ 0.847 J “  ° ' 788,
n“?P'rpI =  0.1788(0.847) =  0.1514 MN/m.

The safety of the cylinder against buckling is thus sufficient if the actual axial 
load does not exceed 0.065 MN/m:

, 0.1514 MN/m л „
к ~  г, . ш |—  =  2.33 >  2.3.0.065 MN/m

10.2. Stability Analysis of a Reinforced Concrete Dome

Let us perform the stability analysis of the domes presented in [9.9.4], formed 
according to spherical surfaces with the radius R =56.2 m, over a square ground 
plan of 48X48 m (Fig. 10.3). The shells are supported by vertical arches which 
rest on column rows, so that the shells cannot exert lateral thrust. The shells have 
a thickness of 90 mm which increases to 200 mm in the corners. For lack of data 
we suppose that the shell wall has been thickened to 140 mm along the edges. 
They are made of concrete with cube strength of 22 N/mm2, reinforced by mild 
St 37 steel (<rult= 370 N/mm2). 0 6  mm/250mm reinforcing meshes were applied, 
in the central zone as single-layer reinforcement and along the edges in double

9 + p
f f l j j j

Fig. 10.3. Overall view of the reinforced concrete dome
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layer arrangement near the surfaces of the shell wall. The area of reinforcement in 
one direction is, accordingly, 113mm2/m in the single-layer and 226mm2/m in 
the double-layer zone.

The reference mentioned above does not give the insulation, etc. layers of the 
structure. Hence we perform the weight analysis with estimated data, assuming 
90 mm thickness in the central part of the shell, while near the edges, at the 
middle of the buckle to be expected, we take 140 mm thickness:

Central part: Near the edges:
10 mm damp course 0.15 kN/m2
90 mm cork heat insulation 0.14 kN/m2
r. c. shell 2.16 kN/m2

0.15 kN/m2 
0.14 kN/m2 
3.36 kN/m2

2.45 kN/m2 3.65 kN/m2

We further assume 0.8 kN/m2 snow load.
The prism strength of the concrete is:

ffp rism  =  0.8crcube =  0.8(22) =  17.6 N/mm2.

The modulus of elasticity is given by Eq. (9.8.1):

Ec о =  55000 = 29700 N/mm2.
I j  +  17.6

The final value of the creep factor is determined from Eq. (9.8.2):

q>e = 4 - 2  log 17.6 =  1.51.

Three quarters of the load consist of dead load while the remaining 25 % is the 
snow load occurring only at a later date and for a not very long duration. Hence, 
we set k ,= 0.5 for the snow load and, to the benefit of safety, we assume q = 1. 
Accordingly, we may compute the modulus of deformation from Eq. (9.8.3b):

29700
c ~  , , 0-75 + 0.5(0.25) 1 c, 

0.75 + 0.25

12830 N/mm2.

The ratio of the moduli of deformation of steel and concrete is:

Est 200000 ( ,_
И =  Х  =  1 2 8 3 Г = 1 5 -6-

Due to the different stress states, the two kinds of reinforcement and the 
variable thickness, we have to investigate the stability of the shell at three places: 
in the middle of the shell, near the edges and in the corners. We present here 
the stability analyses at the centre and near the edge.
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Stability analysis at the centre o f  the shell:

пц =  15.6
113

=  0.0196.90000
Interpolating from Table 9.8.1 we obtain

Ф о л  =  1.000 +  0.025 - ^ ^  =  1.010,

^ = 0-139w  =  0-0545-
In the middle part of the shell the bending moment is zero, hence the imperfec

tion amplitude consists only of the accidental part: u’0,design =  w0iaccid. Assuming 
an average value, we have from Eq. (9.2.7):

ô,design =  0.67(17.12) =  11.47 mm. 
Equation (9.8.13) yields:

S c
Г 2(11.47)l|(i-n.5) 
[ 90 J =  0.333,

and from Eq. (9.2.1) and Table 9.1.1 we obtain

Equation (9.8.15) gives:

Qrc =  1.005 (0.441)+  0.0545 (0.467-0.333) =  0.342,

Equation (4.7):

Ähom =  1.2 -1(58632oo)T  =  °-0395 N/mm2 =  39.5 kN/m2,
Equation (9.8.16):

р„'ГС = 0.342(39.5) =  13.51 kN/m2.

We compute the plastic failure load neglecting the reinforcement, assuming a 
10 mm tolerance in the thickness and considering only that part of the concrete 
cross section on which the load is acting centrally:

____2ctprism t f 1 2e0) _  2(17.6)80 f, 2(11.47)]
Ppl~  R { t ) 56200 L 80 J

=  0.03574 N/mm2 =  35.74 kN/m2,

18 Buckling of Shells

^o, design 0.05(90)+ 2000 562(y9 1000 17.12 mm.

1000 +  5620/9

0hom 17.12 ° -467,1 +  6 —
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Equation (9.4.4):

„ 35.74 W  1 (35.74Н “ 1 7 35.7412
C “  13.51 ] 4 113.51 J + 2 113.51 J 0.887.

Hence, the upper critical load of the reinforced concrete shell becomes: 
Equation (9.8.20):

PcZc*''’1 = 0.887(13.51) =  11.98 kN/m2.

The load perpendicular to the shell surface consists of the shell’s own weight 
and the snow load:

Acuai =  2.45 + 0.8 =  3.25 kN/m2.

The safety factor thus becomes:
„ u p p e r , pi 

__ Fcr,rc
P  ac tual

which is sufficient.

11.98
3.25 =  3.69 >  3.0

Stability analysis near the edges:

(Here we shall show the use of the separated safety factors kel and kpl.)

15.6(226) 
nfi ~  14000

0.0252.

Interpolating from Table 9.8.1:
0 0252

Фо,2 =  1.000 + 0 . 0 5 2 - ^ -  =  1.026,

^ 0 0 , 2
0.178

0.0252
0.050

0.0897.

The membrane forces, in the vicinity of the maximum amplitude of the buckle 
to be expected, have approximately the following values:

pi? pR1-5— ; Иг w 0 .5— ,

so that n2/n1= 0.33.
We read off Fig. 4.18 that

№  horn =  0 . 8  ~  =  0 . 8  12(8S 6 2 t o 7 '  =  ° - 0 6 3 7  N / m m 2  =

=  63.7 kN/m2.
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From Eq. (9.2.3) we obtain:

£?hom(0.5) ~  j  [ 1 +  5 0Л00̂ 1'2)] -  0.30,

Equation (9.2.2): A « 2 f e - ‘) 4.63.

Due to the restraining effect of the columns, we may consider the edge of the 
shell as clamped. The eccentricity at the place of the maximum positive bending 
moment can be taken from [9.4.2]:

ecaic =  0.133i =  0.133(140) =  18.62 mm. wcalc
18.62

=  27.8.

56200 1
wacc =  0.05 (140) +  -2ööö~ 56200/140 1000

1000 + 56200/140

0.67 

=  13.6 mm.

eacc =  0.67(13.6) =  9.1mm.

We obtain the eccentricity of the membrane forces from Eq. (9.2.4): 

e0 = 19.62 +  0.8(9.1) =  25.9 mm, 

and the amplitude of the imperfection:

25 9
W° =  =  38-7 mm-

Furthermore:

( 25.9 YF(1+1-5)
Equation (9.8.13): qc — ^1 — 2 ^ --  j =0.177,

Equation (9.2.1):

0l""" = ~w„ =  '  ~  38.7 =  ° '439, 
, + 4 . 6 3 =  1 + « З т а

Equation (9.8.15):

Qrc = 1.013 (0.177)+ 0.089 (0.439 —0.177) =  0.203, 

Equation (9.8.16): pcr,rc =  0.203(63.7) =  12.92 kN/m2,

__ ^ ^ p r i s m  ^ ( i  __л  £o  \  __

Ppl “  Л V  1 t )

-  2<15620.o '0 ( ‘ “ 2 w )  = °'049 N/mm‘ '  49 kN,m!-

18*



276 10. Numerical Examples

The safety factors are: kel = 3.0, k pl= 1.55, and /?cr>allow is given by Eq. (9.10.2b):

Per, allow

12.92 [ 49.00 ( 3.01 ^  1 ( 49.00'l2 ( 3.0 V " 1 ( 49.0012 ( 3.012]
3.0 [ 12.92 U .55J !  4 U 2.92J U .55J +  2 112.92 /  U .55J J ~  ' '

The component of the load perpendicular to the shell surface is computed (with 
a as the angle of the surface) as

Рртер ~  downweight COS OC +  p snow COS2 OC =

=  3.65 (0.904) +0.8 (0.904)2 =  3.95 kN/m2.

Since P perp^ P er, allow > the safety of the shell against buckling is sufficient.
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