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Preface

The progress in any branch of science may perhaps be best demonstrated if a
body of knowledge that was earlier rather complicated to analyze can now be
treated in a much simpler way. This work aims at illustrating this principle in a
special field: it endeavours to summarize the problems of shell buckling in an
easily understandable manner, in a way that can be put to immediate practical use.

Chapters 1to 4, 6, Sections 5.1, 5.2, 8.2, 8.3 and 10.1 were written by the first
author; Chapters 7, 9, Sections 5.3, 5.4, 81, 84 and 10.2 by the second.
Nevertheless, they assume common responsibility for the whole book. We note
that the contents of Chapters 8 and 9 are rather complex, so that we have
edited them by considering each Section as a separate unit.

The Hungarian and the German editions (both published in 1973) have
been significantly expanded. Sections 4.3, 5.3, 5.4, 9.5, 9.7, 10.1 and 10.2 are
new, and the other sections and chapters have been brought up to date.

The authors are indebted to Professor Dr. I. Koranyi, who first suggested the
work, to all the authors and publishers who have given permission for the reproduc-
tion ofthe figures listed on pp. 277, to the publishers for making the English edition
available, and to Mr. G. R. Thompson who revised the translation.

Finally, they would like to pay tribute to Dr. I. Menyhéard, who taught them
how scientific thoroughness and practical usefulness can be reconciled. If this
has been achieved in this book, it is mainly due to him.

Dr. L. Kollar
Dr. E. Dulacska






1. Introduction

1.1. Setting of Objectives

The structural engineer prefers general methods of calculation by which static
and stability analyses of the structure can be made, preferably with a limited
amount of computational work. Although for bar structures such static
methods are available, stability problems, being described by differential equa-
tions subject to boundary conditions, or by eigenvalue problems of matrices have
to be solved separately in every case. There are, however, reference books
containing a great variety of ready solutions facilitating the design of structures.

The stability problems of shells are, in fact, much more complicated than those
of bar structures; hence, general computational methods may be even less expected.
Although the literature presents solutions for a great variety of special problems,
these are difficult to survey for the designer, if only for lack of time. In addition,
the individual papers mostly emphasize the special features of the particular prob-
lem dealt with, omitting an overall view of the phenomenon.

The construction of high-speed computers has made it possible to develop
programmes by which complicated shell buckling phenomena can be followed very
accurately. However, not every design engineer has access to these programmes,
moreover, there is very often not enough time and money to perform such
comprehensive computations. It is therefore desirable to provide the designers
with more simple, easy-to-survey and easy-to-use methods. We have tried to
comply with this demand in the present book, utilizing, of course, the results of
intricate calculations performed by many authors.

We set ourselves two objects when writing this book. On the one hand, we
wanted to give a clear picture of the physical phenomena of shell buckling. On
the other, we tried to collect the main results from the rather voluminous literature
and present them in a form ready for practical use.

In the survey we neither wanted to process the literature completely, nor to
report on the theory in detail, but rather to make known and describe clearly all
phenomena and kinds of problems involved. We present the results in the form
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of formulas and diagrams in order to facilitate practical application. Ample ref-
erence is made to the literature where the detailed analyses of special problems
can be found. In many cases approximate methods are given, especially when they
are more illuminating and simpler than the exact ones, but we always try to define
the limits of their validity.

Because of their complexity, we show the details of analysis of the elastic
stability theory only for some characteristic cases, while we only report on the
results of the others.

The following works included in the References deal with shell buckling prob-
lems in a comprehensive way:

[L.1] gives an overall view of shell-buckling problems;

[1.2] summarizes the theoretical results of the buckling of cylindrical and
spherical shells;

[1.3] and [1.3a] report on investigations concerning post-buckling behaviour
with special emphasis on shells, based mainly on Koiter’s theory;

[L.4] and [1.4a] review several hundred papers concerning shell-buckling;

[L5] presents a comprehensive collection of the results of various stability
problems;

[1.6] gives an excellent introduction to nonlinear instability theory, also dis-
playing the necessary mathematical methods;

[1.7] treats the general principles and theory of elastic stability systematically,
with special emphasis on post-buckling behaviour;

[1.8] presents a concise survey on principles and results in the field of plate
and shell buckling.

1.2. Survey of Shell-Buckling Phenomena

As in the stability theory of centrally compressed bars, we can look for the
critical value of load intensity at which, besides the original, unbuckled state,
another “neighbouring” shape, infinitely close to the first one, also becomes
possible (“bifurcation”). In this investigation only the first powers of the (infi-
nitely small) displacements, and/or of their derivatives, are taken into account,
while their second powers, being smaller by one order of magnitude, are neg-
lected. This will be called linear theory in what follows.

The critical load (P*n) determined in this way is, however, in many cases
much greater than those given by experiments. Hence, we have to consider
deflections of finite magnitude, occurring after buckling, resulting in the nonlinear
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theory, which includes “large deformations”. This is characterized by also taking
into account the second (or sometimes even higher) powers of displacements,
which determine the buckling shape (“geometrical nonlinearity”). According
to the basic papers of Koiter [2.24], [2.25], this nonlinear stability theory can be
set up in such a way that the buckling shape(s) are expanded into power series of
displacements, measured from the unbuckled state, and from this series as many
terms are taken as the computing possibilities allow. In the simplest case we
consider the squares of the greatest displacement component w, perpendicular
to the shell surface, while only the first powers of the other two displacement
components, tangential to the shell surface, are taken into account. The latter
are much smaller than w, having the same order of magnitude as w2 By so doing,
we can describe the behaviour of the buckled shell up to displacements several
times the shell thickness. Investigations show that most structures behave accord-
ing to one of the diagrams plotted in Figs 1.1 (a)—(e) (see e.g., in [1.6] or [1.7]).
In the Figures the load P is plotted against the buckling displacement w. Curves of

------- Behaviour of the geometrically
perfect shell

------- Behaviour of the
imperfect shell

wliWwg  Amplitudes of the
initial - imperfection

Fig. 1.1. Characteristic cases of post-buckling load bearing behaviour plotted against
the buckling deformation
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type Fig. 1.1 (a) show that after reaching the critical load, the equilibrium of the
centrally compressed structure becomes indifferent, i.e. its load bearing capacity
remains constant. Initial imperfections increase the deformations, but the curves
will have no peak points, approaching the horizontal line of the centrally com-
pressed structure asymptotically. Thus, the excentrically compressed structures of
this type have no “critical” load. This kind of diagram is obtained rather seldom
with shells; however, it describes fairly accurately the behaviour of many bar
structures. For shells the other types of diagrams are much more characteristic.

Figure 11 (b) shows the increasing load bearing capacity in the post-buckling
range. In the case of central compression there is a definite critical load at which
bifurcation occurs, but with eccentric compression this becomes “blurred” : the
buckling deformation of the structure gradually increases with the increasing load.
Consequently, this type of structure is insensitive to imperfections. Hitherto well-
known examples are plates. These behave symmetrically with respect to +wv
and —w displacements (“symmetric behaviour”). The physical conditions nec-
essary for increasing the load bearing capacity are dealt with in Section 6.1.
Other examples are — for certain geometric proportions — ring-compressed and
twisted cylindrical shells (Sections 2.3 and 2.6), as well as most shells with negative
Gaussian curvature (Chapter 5).

Structures described by Figs 11 (c), (d), (e) are characterized by the fact that
after reaching a certain critical load intensity their load bearing capacity decreases.
The shell of Fig. 1.1 (c) behaves identically with respect to +vv and —w displace-
ments: it is “symmetric” with respect to the buckling deformation. If disturbances
are present, either as geometrical imperfections of shape or as initial bending
deformations (indicated as “imperfections” in the Figures), then the maximum
load bearing capacity of the structure at which the shell snaps through, P “per,
lies lower than that of the perfect shell (Pj'n). Thus, this P “pper becomes the critical
load, markedly dependent on the amplitude w0 of the initial imperfection. Hence,
these structures are very sensitive to initial imperfections and can by no means be
designed on the basis of Pj.l. The hydrostatically compressed cylinder behaves
this way (see Section 2.3).

The structures of Fig. 11 (d) behaves “asymmetrically” with respect to +w
and —w. Practically, however, only the falling (right-hand side) branch of the
diagram is important: if the imperfection of the structure has a sign corresponding
to this branch, it behaves in a similar way to that of Fig. 11 (c), except that
the drop in the load bearing capacity is more sudden. The physical explanation
of the asymmetric behaviour is that the structure “stiffens” during buckling defor-
mation in one direction, while in the other it “unstiffens”. The axially compressed
cylindrical panel behaves in this way (see p. 305 in [2.57]) provided that it buckles
in both the axial and ring directions in one half wave (Fig. 1.2); if it buckles
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outwards, its curvature increases, causing stiffening; if inwards, it unstiffens. The
shell-arches discussed in Chapter 6 also behave differently under bending in their
planes in opposite directions, but the centrally compressed arch — since its two
halves are bent in opposite directions — behaves “symmetrically” with respect
to the buckling deformation.

w ¢eWPeu =i

ComDressed shape

Snapped-through Antisymmetric
position (inextensional) buckling
Fig. 1.2. Example of the Fig. 1.3. Antisymmetric buckling, bifurcating from
structure with “asymmetric” the symmetric deflection of the flat arch

post-critical behaviour

Figure 1.1 (e) shows a “composite” kind of behaviour: the shell deforms accord-
ing to the shape of a certain initial imperfection (e.g., according to one of the
dashed lines of Fig. 1.1 (c)) but before reaching the “snapping load intensity”
P “prer, corresponding to the peak of this curve, another buckling shape bifurcates
from this deformation, causing failure of the shell. The bifurcation point of this
latter buckling shape lies so low only if the shell has previously deformed in
another shape. An undeformed shell would exhibit a higher branching point into
this latter shape.

This branching of bifurcating phenomenon may also start from the dashed lines
of Fig. 1.1 (a), and the bifurcating deformation itself can have — besides a falling
(asymmetric) character — a symmetric shape as well, as shown in Figs. 11 (b)
or 11 (c). This kind of behaviour is illustrated by the uniformly loaded flat arch
(Fig. 1.3). It is well known [2.51] that such a flat arch may buckle in two ways:
after being sufficiently compressed it can snap downwards in a symmetric shape
(according to one of the dashed lines of Fig. 1.1 (c)), or it can buckle (by bifurca-
tion) in an antisymmetric shape with inextensional deformation. Now it may
happen that the arch is compressed symmetrically due to the load, not to such an
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extent that snapping occurs, but sufficiently to allow the increased compressive
force to cause antisymmetric buckling. (This bifurcation itself may correspond
to Fig. 11 (a), (b) or (c), i.e, it is “symmetric” with respect to +w and —tv).
The load intensity causing this type of buckling will obviously be smaller than that
causing antisymmetric buckling of the undeformed, i.e. incompressible, arch.

It also follows from what has been said in connection with Fig. 1.1 (e) that for
shells - in contrast to bars and plates - it is not always an initial imperfection
similar to the buckling shape that is most detrimental, but perhaps some other,
quite different from the “bifurcating” shape. As will be shown, the axially com-
pressed cylinder (Section 2.1), for example, may behave in this way.

Finally, we have to mention a more complex kind of behaviour which comes
about if several buckling modes are associated with the same (linear) critical load
(multimode or compound buckling). Within the frame of the linear theory, these
buckling modes are orthogonal to each other, i.e. they do not combine, but due
to the nonlinear relations governing post-buckling deformations, no longer
infinitely small, they couple (interact), resulting in a sharp drop in post-buckling
load bearing capacity, even more detrimental than that exhibited by the structures,
represented by Fig. 1.1 (d), with “asymmetric” behaviour. This drop comes about
even if the individual buckling modes have a constant or ascending post-buckling
character. The axially compressed cylinder and the radially compressed sphere
exhibit compound buckling, but the composite shell structures of Chapter 8 may
also show this kind of behaviour, if the critical load of the “local” buckling coin-
cides with that of the “overall” buckling.

Compound buckling may also be associated with imperfections or pre-buckling
deformations similar to or different from the buckling modes, resulting in a
deformation path as shown in Fig. 1.1 (e).

The diagrams of Fig. 11 can be plotted — instead of against the buckling
displacement w — as a function of the “average” displacement/ parallel to the
direction of the load. Since/ is in the first approximation proportional to w2
(see e.g. in [2.51]), the shapes of the curves change to some extent and will corre-
spond to Fig. 1.4. Figure 1.4 (a) needs no explanation. The curves of Fig. 1.4 (b)
may have different “kinks” (abrupt changes in slope), i.e. they may continue be-
yond Ph”with different slopes. Figure 1.4. (c) may correspond to both Figs 1.1 (c)
and 1.1 (d), with different initial tangents to the descending section of the curves
at P['n (cf. Fig. 8.2.3 (a)). We have also drawn the ascending section of this
diagram, because it has been computed for several cases. Finally, Fig. 1.4 (d)
corresponds to Fig. 1.1 (e).

For the practical design of shell structures with decreasing post-buckling load
bearing capacity (Figs L.1. (c), (d), (e) or Figs. 1.4 (c), (d)) it is expedient to plot
the critical force P “fper referred to P['nagainst the ratio of imperfection-amplitude
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Pertaining to a certain
initial imperfection

Behaviour of the - Behaviour of the
perfect shell imperfect shell

Fig. 1.4. Characteristic cases of post-buckling load bearing behaviour plotted
against the displacement in the direction of the load

Fig. 1.5. The critical load causing snapping plotted against
the initial imperfection amplitude

2 Buckling of Shells

17
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wbto wall-thickness t. Thus, we obtain a curve similar to Fig. 15 starting with a
very steep (or vertical) tangent, that exhibits the great imperfection sensitivity of
these structures.

Some shells buckle under the action of certain kinds of loads in several small
local buckles. Their critical loads practically do not depend on the edge conditions,
provided that the edge supports are not weaker than the shell itself. In other
cases, however, the buckles extend over the whole length (or width) of the shell.
The influence of the edge conditions becomes preponderant in these cases.

1.3. Structure of the Book

In Chapters 2 to 6 we sum up the knowledge available on the phenomena out-

lined in Section 1.2 as regards homogenous, isotropic (solid), and elastic shells.

Due to several uncertainties in shell buckling, experiments have here a primary
importance. Thus, they will be reported on in some detail.

The stiffness of a shell can advantageously be increased by ribs. Moreover, the
shell surface can be formed by bars of triangular network, omitting the skin
(reticulated shells). Ribbed and reticulated shells are generally anisotropic, causing
difficulties in the buckling computation and giving rise to some new phenomena.
Thus, in Chapter 7 we shall report on the most important results of the stability
theory of anisotropic shells. These allow the treatment of corrugated and sandwich
shells, in addition to ribbed and reticulated ones (Chapter 8). Since sandwich
shells exhibit a much greater deformation due to transverse shear than ordinary,
solid shells, we shall deal with this effect on stability as well.

In Chapter 9 we shall investigate how the results of the elastic stability theory
given hitherto are to be completed, or corrected, in order to make them utilizable
for shells made of steel, reinforced concrete or other materials. These completions
will also be made according to the dictates of simplicity and practical usefulness.

First of all, we will have to consider that the materials of shells are elastic at
most only up to a certain limit; after this they become plastic (“physical non-
linearity”). Due to the intricacy of shell-buckling problems, only a few attempts
have been made to assess theoretically the effects of plastic behaviour. Hence, we
will have to content ourselves with a simple approximate method that corrects
the results of elastic stability theory by taking the effects of plastic behaviour of
the material into account.

The creep of the materials also substantially reduces the critical load intensity
of shells. Due to difficulties similar to those connected with plasticity, we take
this into account only approximately.
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Cracks occurring in concrete diminish the stiffness of reinforced concrete shells
considerably, as compared to the uncracked section, so they reduce the critical
load intensity as well. We shall show how this unstiffening effect of cracks (together
with the stiffening effect of the reinforcement) can be taken into account.

The experimental determination of the critical load will also be treated briefly.

Finally, all circumstances (post-buckling behaviour of the shell, etc.) determining
a suitable magnitude for the safetyfactor will be examined in turn.

The procedure outlined in Chapters 2 to 9 will be elucidated by means of some
numerical examples.



2. Buckling of Cylindrical Shells

Here, we present the solutions for the following loading cases:

— axial compression (and the related case of bending);
— compression in the circumferential direction (due to lateral or hydrostatic

pressure);
— torsion.

We also deal with the simultaneous action of several loads.

2.1. Axial Compression

According to experiments the axially compressed shell buckles in small, local
waves. The end supports (edge conditions) generally influence buckling only if
the cylinder is short. Basically two kinds of buckles can develop: axisymmetric
(“ring”) ones or a reticulated (“chessboard”) pattern of inward and outward
buckles (Fig. 2.1 (a)).

In some experiments buckles of the shape shown in Figs 2.1 (a), (b), (c)
developed. This is partly due to the fact that testing machines mostly apply a given
strain to the shell that can be met by the latter with buckling of its middle
section alone. The other cause may be the stiffening effect of the edges. (In the
case of gravity loading only this latter applies [2.41]).

For developing the critical load according to the linear theory we present here a
simplified analysis based on [2.12], making use of the experimental result that, in
the case of a reticulated buckling pattern, one buckle extends over a small area
only, inside which the shell can be regarded as shallow.
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©

Fig. 2.1. Buckling patterns of the axially compressed cylindrical shell
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22 2. Cylindrical Shells

The equilibrium and compatibility equations of shallow shells run in cartesian
co-ordinates x, y as lollows [2.17], [2.17a], [2.35], [2.56]:

BAAwW—LPF —p, (2.1a)
AAF+T(l-v2LPw = 0. (2.1b)
Here,
P_P_
A2 df (2.22)
and
dz 3~ 0,22. d2 dz dl (2.20)
2 rtg)>"' <fccOy+ <O f)y2
the Laplace and Pucher differential operators, respectively;
z(x,y) — equation of the shell surface;
w — displacement perpendicular to the shell surface (buckling
deformation);
F — stress function;
Et3 . .
B= — bending stiffness of the shell;
12(1-V 2
Et
T-- — tensile stiffness of the shell;
1 — V2
E — Young’s modulus;
t — shell thickness;
\Y; — Poisson’s ratio;
P — load perpendicular to the shell surface.

The second derivatives of the stress function give the specific membrane forces:

AF

Ay2 (2.33)
dz-
PR (2.3b)
A
AxAy =—nr (2.3c)

When setting up Eqgs (2.1a, b), from the expressions of the strains only the linear
terms of displacements were taken into account. Hence, Eqs (2.1a, b) are linear
and the critical load to be obtained from them will be that of the linear theory.
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Equations (2.1a, b) are of general validity. Therefore* they may contain the load
and internal forces of the pre-buckling state, being in equilibrium, and, furthermore,
the infinitesimally small increments of internal forces arising during buckling,
together with the also infinitesimally small load increments p, perpendicular to
the shell surface, resulting from the pre-buckling internal forces of finite magnitude
multiplied by the changes in curvatures during buckling. In the following we omit
from Eqgs (2.1a, b) the pre-buckling load and internal forces (being in equilibrium),
and retain only those parts of the load and the internal forces that arise during
buckling.

We eliminate F from Eqgs (2.1a, b). For this purpose the first equation will be
multiplied by AA, the second one by LP, and they will be added:

BA*w+T (\-\2LBPw = A. (2.9
In the case of a cylindrical shell (Fig. 2.2):

dz 3%
ax2  dxdy

and (supposing the positive z axis to be pointing inwards):

d 1
dy2~ R’

so that
1 d2

Lp_ R dx2' (2:53)

In the case of buckling due to axial compression, the load p, perpendicular to
the shell surface, is given by the pre-buckling internal force nx multiplied by the

Fig. 2.2. The axially compressed cylinder
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change in curvature during buckling:

Fw
P="X no (2.5b)

Substituting these expressions into Eq. (2.4) results in the following homoge-
neous differential equation for w:

(2.6)

This equation represents a so-called “eigenvalue-problem”: those values of
nx have to be determined which allow a nonzero (*nontrivial”) solution for w.
Assuming for w a reticulated (“chessboard”) buckling pattern:

W—wsin-"xsin2ly @.7)
|

X y
— where Ix and ly denote the half buckling wavelengths — and substituting (2.7)

into (2.6), we arrive, after simplifying with w, at the following expression for the
critical axial force (omitting the negative sign):

(2.9

In this, the half buckling lengths in the directions x and y are still unknown.
Assuming their ratio provisionally as constant, let us minimize nx with respect
lo the expression

as follows:
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Arranging we obtain:

b~+7f) _ 11/y(i—\)
'R n2] BR2 (2.10
R

Substituting (2.10) into Eqg. (2.8) furnishes the minimum value of the critical
axial force:

nin, =2 "7 (R'i”) j/3(1Et—2vaR (2.11)
This yields for v=0.3 the value:
- 0.60652, (2.12
i.e. the critical stress:
Jmo o <or Et (2.13)

t 1/3(T A/

It can be seen that the ratio ofthe two half buckling wavelengths has disappeared
from the result. Though restriction (2.10) remains valid for the magnitude of the
buckle, the critical stress is independent of the shape of the buckle. This can be
demonstrated physically — with the aid of the energy method — by considering
that, e.g., in the case of a square buckle (Ix—ly), the strain energy of the bending is
great, but that of the circumferential tension is small, while for ly-*°° (axisymmet-
ric buckle) the strain energy of the circumferential forces predominates with si-
multaneous decrease of that of the bending.

Since several buckling modes are associated with the same linear critical load,
we have to deal with the phenomenon called “compound buckling” (see Section
1.2). The consequences of this phenomenon will be treated later.

The derivation of the linear (also called “classical™) critical load shown above
is not of general validity. On the one hand, the shallowness of the shell surface
was assumed; on the other, the buckling pattern was restricted to that described
by Eq. (2.7). Nevertheless, we also obtain the same critical stress if, instead of
Eqg. (2.7), we assume a reticulated buckling pattern rotated by 45°, even if we
assume an axisymmetric buckling shape. In this latter case a definite expression
for the buckling length in the axial direction is obtained:

IX = - -=---- ------YRt W 172 iRt (2.14)

1i2(1—\2
(for v=0.3).
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It should be noted, however, that only the isotropic shell under pure axial
compression exhibits this peculiarity, namely, that its linear critical load is inde-
pendent of the buckling shape, or, to put it in another way, that several buckling
modes are associated with the same linear critical load. Buckling with reticulated
and axisymmetric patterns differs already in post-buckling behaviour. Moreover,
orthotropy of the shell or circumferential tension (due to internal pressure)
acting simultaneously with axial compression causes the linear critical loads per-
taining to different buckling patterns to differ from each other (Section 2.5).

The exact derivation of general validity is to be found in [2.6], [2.17], [2.174],
[2.43] or [2.51], giving the same result as Eq. (2.13).

However, the test results yielded only about 15-60% of this linear critical stress.
In Figs 2.3 (a), (b), (c) we compiled the buckling stresses of the tests reported on
in [2.9], [2.33], [2.53], [2.57]. (The results of Fig. 2.3 (d), which refer to “near-
perfect” models fabricated by sophisticated methods, will be discussed later.)

This great discrepancy can be explained in several ways.

It can be shown that even the linear theory may give lower critical stresses if
the boundary conditions are modified. Hoff and Soong [2.19] solved the buckling
problem of the axially compressed cylinder for several boundary conditions and
found that the critical stresses of cylinders with built-in edges are equal to or greater
than (2.13), while the critical stresses of cylinders with hinged edges can be equal
to or greater than Eq. (2.13) only if “hinged edges” mean a constraint preventing
circumferential displacement v of the edge points. If we stipulate, instead of u=0,
that the edge shearing forces nxy should be equal to zero, the critical stress drops
to half the value given by Eq. (2.13). The critical stress of a cylinder with free
edges is 0.38 of Eqg. (2.13), and in the case of very short cylinders it is even less.

The above results of Hoff and Soong were confirmed by the calculations of
Thielemann and Esslinger [2.49]: if for the hinged edge we stipulate nxy= 0 and
mx—0 (no axial bending moment), the linear critical stress decreases to half the
value of (2.13).

The linear critical load may also be diminished by pre-buckling deformations
[2.16], [2.46]. The method of taking these into account is called the “consistent
theory”, because it applies the same boundary conditions to the pre-buckling
deformations as to the buckling itself. This means physically that during the com-
pression prior to buckling the shell expands radially (due to a nonzero Poisson’s
ratio), and since the supports cannot follow this expansion, the originally straight
generatrices of the cylinder become curved. Hence, this theory investigates, in
fact, the .buckling of a deformed cylinder. Since in this method of calculation the
pre-buckling deformations are not regarded as being infinitely small, these di-
minish the critical stress even if they were oithogonal to the buckling shape
(e.g. a cylinder that buckles in a reticulated pattern undergoes axisymmetric



gexp
X.cr

6ep

glin
X

(b)

Fig. 2.3. Experimental results on axially compressed cylindrical shells.
(@), (b), (c) - Models manufactured by usual methods, (d) - “near-perfect” models
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pre-buckling deformation). In this way 0.93 ox’tr was obtained for cylinders with
built-in edges.

Almroth [2.2] applied the consistent theory to boundary conditions prescribing
nxy= 0 and found that in the case of built-in edges the requirement nxy—0 practically
does not reduce the value 0.930'xror mentioned above, while for hinged edges
with nxy=0 he also obtained 0.50"'%,.

Fortunately, the boundary conditions prescribing nxy=0 are not realistic. The
“classical” hinged-edge support obviously prevents circumferential displacement
V, corresponding to realistic support conditions. In fact, the boundary condition
nxy= 0 or even the condition mx= 0 would be rather difficult to realize. Besides, as
will be shown in the frame of the nonlinear theory, shells with the boundary condi-
tion nxy= 0 are far less sensitive to initial imperfections than those with the usual
requirement t=0 (see Fig. 2.9). Summing up, we may state that the reduction of
o%cr by the boundary condition nxyy=0 does not have to be taken into account
when designing a shell.

All that has been said so far refers to cylindrical shells of medium length.

For the sake of completeness it should be mentioned that very short shells
buckle as wide flat plates of length L\ while very long cylindrical shells buckle
like bars with circular tube-like cross sections.

All these three phenomena are represented by the diagram of Fligge [2.17],
giving the critical axial stress ol™r plotted against the geometric parameter

«i= nea—a L (2.15a)

for short shells, and against the parameter

(2.15b)

for long shells (Fig. 2.4), assuming hinged edges. The ascending branch of the
first diagram represents the plate-like buckling, while the descending section of
the second one the bar buckling (assuming hinged bar ends). The middle part
of the two diagrams corresponds to the “local shell buckling” dealt with so far,
see Eg. (2.13).

The most important step towards the explanation of the test results was the
development of the nonlinear buckling theory. Its basic equations for geometrically
perfect shells were set up by Donnell in 1934 [2.8]. The nonlinear theory differs
from the linear one by also taking into account the second power terms of at
least the displacement w perpendicular to the shell surface, which appear in the
expressions of the strains. Hence, the hitherto linear formulas of the strains, ex-
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Fig. 2.4. Exact diagram for the axial linear critical stress of the cylinder
(a) - Short shells, (b) - long shells

pressed by the displacements (see. e.g. p. 286 in [2.6] or p. 201 in [2.17]), become
enlarged by the following terms (cf. p. 303 in [2.6] or p. 338 in [2.51]):

*_e2(£) <2/16a)
<=T1(|l L

*-,qa

If we develop the equilibrium (2.1a) and the compatibility equations (2.1b)
from the expressions completed by these quadratic terms, and if we substitute
the curvatures and twist of the deformed surface, instead of those of the unde-
formed one, into the Pucher operator (2.2b) of the equilibrium equation, then —
taking the relations (2.5a, b) into account — we obtain:

ynn 1o d2wd2F ~d wdF  d2wd2F d2w . .
W A Dx2 nn¥2+2 dxdy 0y2&t2 “ "x &2’ (2n7a)
M 6w dwdav (dw
\ - o (217b)
These two equations ate identical with those of Donnel, that were developed

from the more exact relations, i.e. not assuming the shallowness of the shell, but
omitting those terms that were small in comparison to the others. Thus, in the
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Donnell equations frequently used in shell theory the same approximations are
included as in those of shallow shells. Consequently, their validity is restricted
by the requirement that the shell should be shallow inside one buckle.

Hence, the Donnell equations have two characteristics: first, they stipulate the
shallowness of the shell surface; secondly, from the higher power terms of the
displacement components they consider only those given by Eqs (2.16a, b, c).
When mentioning the “Donnell-type” equations in the literature, the authors
refer now to the first, now to the second, characteristic.

Due to the well-known difficulties of solving nonlinear differential equations,
the energy method is generally preferred to the equilibrium one. By assuming a
suitable (mostly trigonometric) function for the buckling deformation w and
introducing it into (2.17b), the quadratic expressions can be transformed to linear
ones by the help of the well-known trigonometric relations. Then F and the internal
forces (2.3a, b, c) can be computed. Thus, the expression of the total potential
energy of the buckled shell might be written down, which, when minimized,
replaces the equilibrium equation. The more terms we take from the series of w,
with respect to whose coefficients the potential energy had to be minimized [2.6],
[2.51], the more exact results we obtain.

Kérméan and Tsien [2.21] investigated the post-buckling behaviour of the
geometrically perfect cylinder as described above, assuming a combined buckling
shape with two free parameters, in 1941. It turned out that the buckling shape varies
steadily during buckling. (This circumstance also necessitates the assumption of

Fig. 2.5. Post-buckling behaviour of the axially compressed perfect cylindrical shell
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a combined buckling shape with a possibly large number of free parameters.)
They obtained the upper curve of Fig. 2.5, where the ratio of the displacement/
of the load in its own direction to the displacement f ar pertaining to the critical
load was used as abscissa. The shape of the curve indicates a great sensitivity to
initial imperfections. This phenomenon will be discussed later.

Using the Donnell equations, Leggett-Jones [2.29], Michielsen [2.36], Kempner
[2.22], and Almroth [2.1] computed with more and more free parameters the curve
which describes the post-buckling behaviour of the cylinder. The character of the
curve did not change, but its lowest point, i.e. the value of od®wer, sank. This
reduction, expressed in the percentage of the linear critical load (2.13), varies
from 34% as computed by Karméan and Tsien to 10.8%, when the number of the
free parameters is increased to 11 (Fig. 2.5, Curves A, B, C, D). According to all
these computations, the whole curve, together with the ratio dcwe/Oc"'5is inde-
pendent of t/R, i.e. of the geometric proportions of the shell.

Floff, Madsen and Mayers [2.18] took more free parameters (i.e. more terms of
the Fourier series of the buckling displacement w) into account than previous
investigators. They found that when increasing the number of terms considered
to infinity, I°wer tends to zero. At the same time, t/R must also tend to zero,

Fig. 2.6. The Yoshimura-pattern
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while the buckling shape takes the form of the so-called “Yoshimura-pattein”
(Fig. 2.6).

The Yoshimura-pattern clearly demonstrates the propensity of the axially
compressed shell to “snapping”. The Yoshimura-pattern is, in fact, an inextension-
al “mapping” of the cylindrical surface: the individual plane triangles came
about by straightening the corresponding parts of the cylindrical surface, but
infinitely large bending deformations have to develop along the edges [2.18],
[2.33]. However, for geometric reasons, the cylindrical surface can reach the
Yoshimura-pattern only through extensional deformation. This explains the pro-
pensity to snapping: the final state represents a smaller resistance than the stage
leading to it.

Because of the infinite bending deformations necessary along the edges, the
Yoshimura-pattern can develop only if the shell has no bending rigidity, i.e.
(bending stiffness being equal to t3 and tensile stiffness to t) if t-<-0 (or t/R~*0).
In the case of a shell with finite wall thickness (t/R>0) and, consequently, with
finite bending stiffness, there will be no sharp “kink”, but a curvature with a small
but finite radius along the edges. As a result, the triangles will also undergo
some bending deformation, all these causing deviation from the Yoshimura-
pattern. Accordingly, ff[or will also be greater than zero. The experiments show,
in fact, that the thinner the shell, the closer the buckling shape to the Yoshimura-
pattern.

The Yoshimura-pattern is a limiting case of the “diamond” buckling shape
(for i—0). The “diamond” pattern can be described in the first approximation
by the expression

. 71 . T .27
W= W sin —Xsin - -w2sin X,
Ix |-y_y{ iX

so that it may be considered as the combination of an axisymmetric and a reticu-
lated (chessboard) shape. It yields the same linear critical load (2.11) as the
axisymmetric or reticulated shapes [2.44].

Hoff, Madsen and Mayers explain their result oE™r->0 by recalling that the
method of Karman and Tsien requires the minimization of the potential energy
with respect to the circumferential wave number (n) too, resulting in 2, which
is, for geometric reasons, obviously impossible. Another cause of <i€'®-*0 might
be that the nonlinear computation based on the Donnell equations (2.17) can
only describe exactly the buckling deformation of the infinitely thin cylinder.
That is, the nonlinear terms appearing in Eqgs (2.16a, b, ¢), comprising second
powers of the vv-derivatives, describe with sufficient accuracy the strains only
up to buckling deformations of limited magnitude. Therefore, they may be suffi-
cient for the initial section of the curve, while they may no longer be sufficient
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up to the environment of the lowest point. However, the Yoshimura-pattern of
the infinitely thin shell, being inextensional, can correctly be described by the
Donnell equations. To describe greater buckling deformations of the shell with
finite wall thickness, further terms of higher order should be taken into account.
This would tremendously complicate the computational work, which is already
intricate enough with the second power Donnell terms, because difficulties arise
not only due to the nonlinear character, but also due to the steadily changing
buckling shape. On the other hand, the Donnell equations are always accurate
enough to determine <ppper (Fig. 1.1 (c)) of the imperfect shell, which is necessary
for the practical design. In fact, the cylinder undergoes much smaller deformations
up to a“pper than up to u°mer.

The value of afer related to the geometrically perfect shell has theoretically
little significance, because if the cylinder were really perfect, it would buckle at
the upper stress value al** of the linear theory. On the other hand, if initial imper-
fections are present, it does not buckle at ff°wer either, but at a stress value tr?per
depending on the magnitude of the imperfection (Fig. 1.1 (c)).

However, a“wer can practically be considered as a lower bound for the value of
~upper j | lat j§ thg curves of the imperfect shells osculate that of the perfect one,
so that if their peak would lie lower than s€wer, then, in fact, they have no peak,
they rather have a steadily ascending character (Fig. 1.4 (c)), similar to the shells
with increasing post-buckling load bearing capacity (Fig. 1.4 (b)).

We still have to deal with the postcritical behaviour of the axisymmetrically
buckled cylindrical shell. This behaves according to Fig. 1.1 (a) [2.44], i.e. it has
an (almost) constant load bearing capacity. That is, the phenomenon is identical
with the buckling of bars on elastic foundation, where the bars are formed by the
longitudinal fibres, supported elastically by the ring-directed ones [2.51]. This
explains why the test cylinders always buckle with reticulated (or diamond)
pattern (with decreasing load bearing capacity), and never in axisymmetric form.

Using more exact relations than Eqs (2.16), i.e. taking further nonlinear terms
in the expressions for strains (and curvatures) into account, we can, of course,
follow the buckling process more closely. By so doing, Mayers and Rehfield
[2.34] found that the postcritical behaviour slightly depends on the ratio RIt.
Nevertheless, this dependence has hardly any practical relevance.

To make the practical design of cylindrical shells with adequate security against
buckling possible, the value <*pper, i.e. the actual critical stress pertaining to different
amplitudes of initial imperfections, has to be determined.

Taking initial imperfections into account, the deformation curves and the criti-
cal stresses of the cylindrical shells were first computed by Donnell and Wan
[2.9]. They took five free parameters in the expression of buckling deformation into
account and assumed that the initial imperfection has the same shape as the current3

3 Buckling of Shells
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buckling configuration. Since the latter varies during the buckling process, this
assumption of similarity is theoretically wrong, although it could furnish just
ffpper correctly, if it were true that an imperfection having the same shape as
the buckling pattern is the most onerous one.

Donnell and Wan, using the method outlined above for the perfect cylinder,
minimizing the potential energy and introducing some approximations, obtained
curves similar to the dashed lines of Fig. 1.1 (c). Plotting their peak points against
wjt as abscissa, we obtain apper, i.e. the actual critical stress as a function of the
amplitude w0 of the initial imperfection.

Donnell and Wan measured the initial imperfection by an “unevenness factor”
U, instead of the ratio wjt. Its definition is:

wji = U“S/ S_Ir ?} (2.18)
Here Ix and ly denote the half wavelengths of the initial imperfection,

tR _ half circumference _ circumference
ly half wavelength wavelength

a

m = — the ratio of both half wavelengths. (2.19b)

t-x

The value of m was assumed by Donnell and Wan, on the basis of experiments,
to be 0.75, while for n they obtained a value 10% to 30% smaller than that given
by the linear theory (2.10):

n_ /12(1—2 j/ILA Q . 8 T | I (220

m He---
m

Since their n depends not only on R/t but also on U, we substituted, for simplicity,
the value (2.20) given by the linear theory for n into (2.18), yielding:

< %2U i (2.21)

Hence, we “converted” the curve of Donnell and Wan from U to wjt in Fig.
2.7 with the aid of the relation (2.21). Since the actual n of Donnell and Wan is
smaller than that given by (2.20), the more exact value of wjt would be greater
than that given by (2.21). Hence, the curve of Fig. 2.7 would lie higher than plotted,
but using the approximation described, we are on the safe side and to some
extent compensate for the error caused by the small number of free parameters
considered.
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Fig. 2.7. The axial stress causing snapping plotted
against the initial imperfection amplitude

Voblykh [2.52] computed the critical stress in a similar way to Donnell and Wan,
assuming a different (axisymmetric) initial imperfection, and with a different
number of free parameters. His results lie quite close to those of Donnell and
Wan (Fig. 2.7).

Madsen and Hoff [2.33] did not assume that the initial imperfection always
has a shape similar to the buckling pattern. After comprehensive computations,
taking more free parameters into account, they obtained the upper curve of Fig.
2.7, which somewhat deviates from that of Donnell and Wan.

Each of these calculations gave a unique curve, which is independent of the
geometric proportions (R/t) of the cylinder. The tendency of the test results
shown in Figs 2.3 (a), (b), (c), according to which the actual buckling stress
decreases with increasing R/t, can be accounted for by assuming that the initial
imperfection amplitude w0 is proportional to the radius R of the cylinder and
is independent of the wall thickness t (see also [2.41]). In other words, this means
that on a more slender shell (with great R/t ratio) we may expect greater initial
imperfections in comparison to the wall thickness, as with the common compressed
bars, where an initial imperfection in some way proportional to the slenderness
ratio is also assumed.

The methods of calculation outlined in the foregoing all have in common
that they assume in advance — with a certain number of free parameters — the
shape of the initial imperfection and make it probable only with comparative

3%
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computations that the assumed imperfection shape indeed yields the lowest
< r rvalue for a given wijt.

The general theory of Koiter [2.24], [2.25] outlined in Section 1.2 makes possible
the investigation of the influence of the initial imperfections and buckling modes
of any shape and the choice of the most onerous one(s) of them, assuming only
that the deformations are small in comparison to the wall thickness. For the sake
of a shorter treatment we describe here a simplified version of Koiter’s method
applied to shell buckling, see [2.20] or [4.14]. The computation starts again from
Donnell’s equations containing among the higher power displacement terms only
the second powers of w (and w derivatives). The method essentially agrees with
that described after Egs (2.17a, b) up to the minimization of the potential energy.
Then, from the equation system of the third degree, obtained by differentiating
the fourth degree energy expression, terms containing the third powers of w/t
will be omitted. The resulting equations of second degree become simple enough
to make possible the direct investigation of the effect of the various initial imper-
fections (axisymmetric, asymmetric, i.e. reticulated, and combined) and that of
various buckling modes and their combinations. The buckling modes are eigen-
functions of the linear buckling theory, meeting requirement (2.10) for the buckling
wavelength ratio. Although they are orthogonal in the frame of the linear theory,
they interact due to the nonlinear expressions and appear as combinations.

The general theory of Koiter yielded several important results. It became mani-
fest that with shells it is not always the imperfection shape similar to the buckling
mode that proves to be the most onerous. That is, in most cases, to a given wijt

Fig. 2.8. The axial stress causing snapping plotted
against the initial imperfection amplitude



2.1. Axial Compression 37

the lowest <jpppci will be obtained in a similar manner to that shown in Fig. 1.1 (e):
the shell begins to deform according to an initial imperfection having the shape
of one of the eigenfunctions, but before reaching a*“ppxr pertaining to the peak
point of the load-deflection curve, another (possibly compound) buckling mode
bifurcates therefrom. This bifurcation point gives the lowest o*“pper value.

The general theory of Koiter is — due to the neglecting of higher powers of
w/t — the less exact, the greater the buckling deformations are. However, it gives
the initial tangent of the curve characterizing the post-buckling behaviour of
the perfect shell exactly, since it belongs to w=0. It furnishes good results for small
wQ't values, because in this case buckling deformations remain small when reach-
ing C Per- To throw light on the accuracy of his method Koiter developed his
“special theory” [2.26]. Its main point is that for certain special initial imperfections
exact solutions can be found without neglecting the higher terms, contrary to
the general theory. Thus, an upper bound for the exact solution can be established.
In Fig. 2.8, we show the results of the general and the special theories of Koiter
for the axially compressed cylinder. The special theory refers to the axisymmetric
initial imperfection from which, according to Fig. 11 (e), the asymmetric buckling
bifurcates. (For this latter he assumed v=0.272.)

It is worthwhile to note that at first sightthe axisymmetric imperfection (together
with the pertaining axisymmetric deformation) seems to be “harmless”, with —
as said before — an approximately constant post-buckling load bearing capacity
(Fig. 11 (a)). Nevertheless, it furnishes —to our present state of knowledge — the
lowest critical load, according to our remark referring to Fig. 11 (e): the shell
“jumps over” into another buckling mode.

Alimoth [2.2], using the general theory of Koiter and assuming an axisymmetric
imperfection, determined the a*“pper-curve more exactly, and he obtained somewhat
lower values (Fig. 2.8).

Figures 2.7 and 2.8 show that for the axially compressed cylinder different
computations, assuming various shapes for the initial imperfection (axisymmetric,
reticulated, or combined), furnished curves rather close to each other. Accordingly,
from the practical point of view, this problem can be considered as solved. The
amplitude of the initial imperfection should be assumed according to the erection
accuracy to be expected (see Section 9.2). The value of <“mer determined in this
way may be checked by Figs 2.3 (a), (b), (c).

The predominant role of imperfections is also verified by Fig. 2.3 (d), which
shows some experimental results performed on “nearly perfect” cylindrical
shells in recent years [2.45a]. These models were fabricated by special methods
(electroforming, etc.) in order to avoid imperfections and residual stresses. The
testing apparatus was also specially designed. The figure shows that, in fact,
buckling stiesses very close to the linear classical value of <ij'trcould be achieved.
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Very short or very long shells are less pione to snapping, because — as has
been said before — in these cases the phenomenon turns into plate or bar buckling
showing no snapping but gradually increasing deformations due to eccentric
compression. However, it can happen that an eccentrically loaded long cylinder
begins to deform as a bar, and on the compressed side the compressive stress
increased by bending causes local buckling of the shell (see Section 2.2). This
branching and snapping is also described by Fig. 1.1 (e).

Narasimhan and Hoff [2.37] investigated the post-buckling behaviour of a
cylinder with hinged edges assuming boundary condition nyy=0 and taking
initial imperfections into account. Starting from an imperfection shape sim-
ilar to that of the buckling mode of the linear theory pertaining to these
boundary conditions, they obtained the two curves of Fig. 2.9 for two different

Fig. 2.9. Decrease of the snapping stress of cylinders with
initial imperfection in the cases of
“normal” and of nxy= 0 boundary conditions

L/R ratios. For comparison, we also plotted the curve of Madsen-Hoff pertain-
ing to shells with “classical” boundary conditions (u=0 instead of nxy=0)
valid for the local buckling of infinitely long shells. It can be seen that the curves
of shells with boundary condition nxy=0, starting from a lower critical stress
value, intersect the curve of the shell with classical boundary conditions, start-
ing from a higher a“pper. This also confirms the earlier statement that the reduc-
tion of oxror due to boundary condition nxy=0 has no practical significance.
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The buckling wavelength and the buckling shape has not been clarified to as
great an extent as the critical stress. The test results showed that the ratio
m=Iy/lx of the half wavelengths in circumferential and axial directions lies
between 0.7 and 1.0, but substantially less circumferential waves develop than
predicted by the linear theory (Eq. (2.20)). Thus, empirical formulas were set
up. On the basis of 550 experiments made on 47 Mylar cylinders, de Neufville
and Connor [2.39] established the following formula for the circumferential
full wave number:

(2.22)

containing also the length L of the cylinder, while R/t appears under the fourth
root sign. In the experiments R/t varied between 800 and 1600, while R/L was
equal to 1, 1/2 or 1/3. Hence, the formula can be considered as reliable only
in this range.

For cylinders with R/t=540~ 760 and R/L= 0.1~2, Hoff [1.2] found the
following relation appropriate:

(2.23)

Both empirical formulas emphasize the fact that the circumferential wave
number increases with decreasing cylinder length. This was also shown theoreti-
cally when investigating cylinders of finite length [2.14]. Thus, the wave number
formulas not containing the length are only valid for “infinitely long” cylinders.
(According to the same investigations, the critical stress is practically independ-
ent of the length of the cylinder.)

A most important finding on the circumferential wave number is that it varies
during the buckling process. This was already shown by computations made on
perfect cylinders. On the basis of [2.6], in Fig. 2.10 the post-critical behaviour
ofa cylinder with R /t—1000 is shown versus w/t, assuming Ix=1y (square buckles)
and v=0.3. It can be seen that the curve describing the behaviour of the shell is
practically the lower envelope of the stress-strain curves pertaining to different
circumferential wave numbers, and that this wave number n steadily decreases
during buckling.

High-speed motion pictures of the buckling process [2.15], [2.48] have shown
that, when the cylinder starts buckling near the linear critical stress (“near-
perfect” cylinders), first a wave number corresponding to the linear theory
develops, which then “jumps over” into shapes having longer and longer
wavelengths, while the compressive stress gradually decreases (see Fig. 2.5).
Imperfect shells start with greater wavelengths than those of the linear theory,
and they exhibit a similar change in buckling pattern during the buckling
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Fig. 2.10. Decrease of the circumferential wave
number during the buckling process

process. When completing the test, the final buckling pattern with greater
wavelengths (pertaining to a comparatively small compressive stress) rather
than the initial one can be observed.

These results were also substantiated by the experiments of Yamaki, Otomo,
and Matsuda [2.58], who followed the post-buckling behaviour by lowering
or returning the loading head of polyester cylinders, and so were able to ob-
serve the changes in the buckling pattern and the varying load taken by the
models.

Therefore, it seems reasonable to relate the circumferential wave number to
the actual compressive stress ax. Pfliiger [2.41] proposed, on the basis of approxi-
mate calculations, a factor varying with the ratio (rJokrrinstead of the constant
value of 0.87 in Eq. (2.20). Approximating the curves given by Pfliger for this
factor by a straight line, we obtain the relation

N~0.93A~ T AjI*. (2.24)

2.2. Cylinders in Bending

Two equal couples of opposite sign applied to the ends of the cylinder cause
normal stresses in the cylinder wall, which vary linearly along the diameter
lying in the plane of the couples. Detailed investigations according to the
linear theory [2.45] showed that the critical maximum bending stress is hardly
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greater than the critical value of the uniform compressive stress, so this latter
can be taken instead. The explanation of this phenomenon is that the cylinder
buckles in small, local waves, and so the smaller stresses of other, remote parts
hardly relieve the environment of the maximum stress.

2.3. Circumferential Compression

A load acting perpendicularly to the surface of the cylinder (lateral pressure,
Fig. 2.11 (a)) causes circumferential (hoop) stress apin the wall of the shell.

Fig. 2.11. Cylindricaljshells under lateral and hydrostatic pressure.
(a) - Lateral pressure only (circumferential compression), (b) - pressure also acting on the end
diaphragms (hydrostatic pressure)

Experiments show that when reaching the critical value of the load, the shell
buckles in only one half wave in the longitudinal, but in several waves in the
circumferential direction (Fig. 2.12). Hence, contrary to the case of axial com-
pression, boundary conditions have here a considerable influence on the
critical load: the shell obviously buckles at a smaller critical load when the two
supporting edge rings are far apart, i.e. the shell is long, than if they are nearer.

In the following — if not stated to the contrary — we always refer to complete
cylinders connected to the end diaphragms by hinged edges.

Assuming that the lateral pressure remains perpendicular to the buckled
surface (fluid or air pressure), the linear theory [2.17], [2.17a], [2.43], [2.51]
yielded a rather intricate formula for the critical hoop stress o(pcr. Using some
approximations Fligge [2.17] simplified the result and plotted cr,j& against the
parameters ojl (Eq. (2.15a)) and ca2 (Eq. (2.15b)) for short and long shells re-
spectively (Fig. 2.13). The curves have a falling character with increasing shell
length L, due to the fact that the stiffening effect owing to bending of the genera-
trices (and to the associated membrane forces) decreases with increasing cylinder
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Fig. 2.12. Buckling of a cylindrical shell under hydrostatic pressure

Fig. 2.13. Exact diagram for the linear critical circumferential stress of the cylinder under lateral
pressure.
(a) - Short shells, (b) - long shells
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length, while the critical hoop stress asymptotically approaches that of a circular
ring. On the other hand, very short shells buckle as fiat plates.
Lundgren [2.32] approximated the above results by the following formulas,
assuming v=0.2 (Fig. 2.11 (a)):
for
L>23

(%4 -
E(' IVI (2.25a)

and for
L < 2.3\Rt,

2 “ = £[34(7;)!1+0'0250 ) T (2.25b)

Batdorf [2.3] took v=0.3 and approximated the exact result of the linear
theory by a diagram plotted against the geometric parameter Z=(L2Rt) Yl —2
(upper curve in Fig. 2.14), which is consistent with Lundgren’s results.

The linear theory yields a rather intricate expression for the circumferential

r  21.L2i-4i- 2 1-72 RL2
b <P-cr E I - t3

Fig. 2.14. Approximate linear critical stresses of the cylindrical shell subjected to lateral and to
hydrostatic pressure
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full wave number (2.19a), which can be approximated according to [2.32] as
follows (with v=0.2):

for
L > 2.3 I/Ht,
n= 0.85-p=—1, 2.26a
A, {085p% (2.262)
and for
L < 2.3 \Rt,
n= itk (2.26b)

We still have to deal with the buckling of shells subjected to external pressure
also on their end diaphragms (hydrostatic pressure, Fig. 2.11 (b)), because
several models were loaded in this way. In this case, an axial stress equal to half

the hoop stress arises:
-hydrostat nn
U<

~hydrostat

XY - s 17 gt (2.27)
The axial stress evidently diminishes the critical value of the pressure p.
The shorter the shell, the greater this reduction is. That is, the influence of the
axial compressive stress on the buckling is the greater the closer it comes to
the critical axial stress axcr. On the other hand, aXt,, does not depend on the
length of the cylinder but the critical hoop stress a? ¢ does. Consequently, the
shorter the cylinder (i.e., the smaller the geometric parameter L/*Rt), the great-
er can be and at the same time also the influence of ax, since ax=aJ2.
The lower curve of Fig. 2.14 shows the results of Batdorf [2.3], approximating
to those of the exact linear theory. It can be seen that at L/*"Rt=4 the difference
between the two critical load intensities is less than 20%. Indeed, for greater
values of the parameter L/ARt, Lundgren’s formula (2.25a) changes into the

approximate one derived for hydrostatic pressure by Batdorf [2.3]:

t 0 92Et5li
8V,CI’ no \ngdrOStat - LR32 » %I‘Zg)

valid for v=0.3 [2.54], [3.5].

For great L/"Rt or small R/t values, the critical load of the circular ring
(2.29a) sets a lower bound for the results of Batdorf (and of Lundgren). That is,
the critical load of the shell can never be smaller than that of the circular ring.
This circumstance also means that for values of Lj*Rt greater than indicated
in Fig. 2.14 the cirtical load also depends on the ratio R/t.

As far as the model tests are concerned, there were some series which buckled
very close the critical load of the linear theory. Such were the models of Sturm
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[2.47], Litle [2.30], Weingarten and Seide [2.54], Windenburg and Trilling [2.55],
and Lundgren [2.32]. (Some models of the last author buckled in the plastic
range. Accordingly, agreement could be achieved by taking plasticity into
account.)

However, other model tests (e.g., the three series of the David Taylor Model
Basin, USA (see in [2.10] and [2.11]) show smaller critical loads than the linear
one. Soviet tests yielded similar results [2.57]. These models mostly buckled
at between 60% and 100% of the linear critical load. All these results indicate
that cylindrical shells subjected to circumferential compression are far less
sensitive to initial imperfections than those subjected to axial compression.

Among the models mentioned above, those of Weingarten and Seide [2.54]
and of the David Taylor Model Basin (see in [2.10] and [2.11]) were subjected to
hydrostatic pressure. However, except for one or two cylinders, the geometric
parameter L/ARt was always greater than 4 (maximum 60). The models of
Sturm [2.47] were loaded partly by hydrostatic, partly by lateral, pressure, but
since the minimum value of L/*Rt was 14, the kind of loading was irrelevant.

Lundgren [2.32] loaded his reinforced concrete barrel vaults by weights. This
kind of loading differs from the fluid (or air) pressure in that it maintains its
original direction, while the pressure loading remains perpendicular to the
(buckled) surface. This difference causes a deviation in the magnitude of the
critical load too, which increases in proportion as the circumferential wave
number n decreases (i.e., as the shell becomes less shallow inside one buckling
half wave). For the limiting cases of a closed ring, corresponding to the infi-
nitely long cylindrical shell, the circumferential wave number is n=2. Denoting
by EI the flexural rigidity of the ring in its own plane, its critical pressures
are forfluid pressure [2.51]:

ar = 308! (2.293)

while for constant directional load the magnitude of the critical pressure depends
on the way the ring is supported against rotation in its own plane, as is explained
very clearly in [2.45c], If two opposite points of the ring are connected to fixed
hinges, we obtain the result valid for a semi-circular arch [2.6a]:

El
pcr= 3.265-"3. (2.29b)

This deformation contains a certain rigid-body rotation of the whole ring,
expressed by the constant term in the circumferential displacement v, see Fig.
2.15 (a). However, the behaviour of a cylindrical shell supported by end dia-
phragms corresponds rather to Fig. 2.15 (b) with no rigid-body rotation at all,
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and results in a higher critical pressure [2.39a]:

(2.29¢c)

This difference of 33% between Eqs (2.29a) and (2.29c) decreases with increasing
n. Computations in [2.45b] show differences of ff%, 6% and 3% for n=3, 4
and 6, respectively.

w=Csin 2ip w - Csin 24>
v (1 +cos 2ip) v =-— cos 2if

(@) (b)

Fig. 2.15. Buckling deformation of a ling under radial pressure.
(a) - With two opposite points fixed (rigid-body rotation), (b) - without rigid-body rotation

These data clearly show that for design we may always use the formulas for
fluid pressure, because when so doing we commit an error to the benefit of safety
if the loads are constant directional. Nevertheless, for evaluating model tests
we always have to consider the difference between the two kinds of critical loads.

As far as the nonlinear theory is concerned, up to now every author has started
from the Donnell equations described in Section 2.1. As stated earlier, their
accuracy is connected with the shallowness of the shell inside one buckling half
wave. The error caused by the approximations of the Donnell equations in the
nonlinear theory has not been investigated yet. However, some information
can be obtained from similar investigations concerning the linear theory.
Simitses and Aswani [2.45b] found that Donnell’s equations give practically
accurate results for very long shells with n=2, provided the load is constant
directional, while for shorter shells (with nLL2) they give lower values with a
maximum error of 22.3%. On the other hand, the Donnell equations for fluid
pressure acting on very long shells result in critical loads 6.7% higher than
the accurate ones, while for shorter shells (nw?2) they again yield lower critical
loads with a maximum error of 27%.

The linear theory presented before (Fig. 2.13 and Eqgs (2.25 (), (b))) has no
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such limitations or errors, since in its derivation no assumptions have been made
concerning the shallowness of the shell.

In summary, we have to consider the following viewpoints when evaluating
model tests or theoretical investigations:

- whether the pressure acted also on the end diaphragms or only on the
lateral surface of the cylinder,

- whether the load maintained its direction during buckling or acted always
perpendicularly to the buckled surface,

- whether the derivation was based on the Donnell equations or more accu-
rate relations were used.

The post-critical behaviour of the cylinder subjected to hydrostatic pressure
(see Fig. 2.11 (b)) was first investigated by Donnell, who used the nonlinear
theory and also took initial imperfections into account. This was done in partic-
ular for shells connected to the end diaphragms by hinged edges [2.10] and
for those with built-in edges [2.11].

Donnell assumed only three free parameters in the expression for the buckling
shape. Presumably, this circumstance explains why he obtained curves with
increasing post-buckling load bearing capacity for small L/YRt values, in contra-
diction to other results below. Budiansky and Amazigo [2.5] investigated the
problem on the basis of the general theory of Koiter, starting also from the
Donnell equations. They found that the behaviour of the perfect shell corre-
sponds to Fig. 1.1 (b) or 1.1 (c), i.e., its load-deformation curve can be described
for small buckling amplitudes w by the first two terms of the series expansion

PIPer = |+ h(w/f)2 (2.30)

Hence, the variation of the post-buckling load bearing capacity in the initial
stage of the buckling process is characterized by the coefficient b: if b is positive,
the post-buckling load bearing capacity increases (Fig. 11 (b)), if it is negative,
it decreases (Fig. 11 (c)). The greater the absolute value of b, the quicker the
variation. They obtained for b the two curves in Fig. 2.16(a) plotted against
the geometric parameter Z=(L2Rt)fl —2. The curve valid for the circum-
ferential compression clearly shows the three sections mentioned above: for
small Z-values the shell has an increasing post-buckling load bearing capacity
(short shell: “plate buckling”; Fig. 11 (b)); for medium Z-values it shows a
decreasing behaviour (snapping: Fig. 1.1 (c)); while for Z—°°, it approaches
the behaviour of the circular ring, which, like all bars, exhibits (at least in the
initial stage) a constant post-buckling load bearing capacity (Fig. 1.1 (a)).
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All these results are in agreement with the computations of Wolmir [2.57],
who also obtained the minimum value of /?®wer for medium L/*Rt-values.

The test results, in fact, show the same tendency as Fig. 2.16 (a); see the com-
parisons in [2.5] and [1.1].

The diagrams of Fig. 2.16 (b) give, also on the basis of [2.5], the peak points
upper pO&-buckling curve of cylinders with initial imperfections as a

1-v2

Fig. 2.16. Post-critical behaviour of the cylindrical shell subjected to lateral and to
hydrostatic pressure
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function of the quantity b, characterizing the initial tangent of this curve, and
of the ratio of imperfection amplitude to wall thickness wjt. However, these
diagrams are only approximate ones (as contrasted to the exact values of Fig.
2.16 (a)).

The post-buckling load-deformation curves themselves were calculated with
some approximations (for both perfect and imperfect cylinders of certain geo-
metric ratios) by Dierks [2.7] and by Thielemann and Esslinger [2.50]. Based on
computations and experiments, Pfliger [2.42] developed a simple, easy to use
design formula for the circumferential compression due to lateral pressure.
Figure 2.17 gives with close approximation the snapping stress assuming

an imperfection amplitude of 1/400 of the diameter (w0=2i?/400), as related
to the linear critical stress §™r determined by Eqgs (2.25a) or (2.25b), plotted
against the geometric parameter B?\Lt.

The circumferential wave number observed on test cylinders is generally
less than that given by the linear theory (Eq. 2.26a, b)). This phenomenon is
due to the fact that the shell “jumps over” to shapes with less and less circum-
ferential wave numbers during buckling, similarly to the case of the axially
compressed cylinder (see Fig. 2.10). According to the theoretical investigations
of Dierks [2.7] and Pfliger [2.42] the wave number given by Eqs (2.26a, b)
is to be reduced by 10% .Moreover, the tests of Pfliiger gave an average wave
number about 30% less than this latter value, with great scatter of the individual
test results.

4 Buckling of Shells
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2.4. Simultaneous Action of Axial
and Circumferential Compression

Detailed investigations on the basis of the linear theory [2.17], [2.51] showed
that the diagram representing the inteiaction of both loading types is a broken
line consisting of straight sections, concave when seen from the origin. Accord-
ing to [2.54] and [3.6], this may be approximated by a flat curve bulging some-
what outward, not differing very much from a straight line. Figure 2.18 shows

Fig. 2.18. Cylindrical shell compressed in
axial and circumferential directions. Theoretical
interaction curve and experimental results

the theoretical interaction curve of Seide, together with the experimental
results of [2.54] and [2.57]. The more the axial compression prevails, the greater
is the discrepancy between the linear theory and the experiments, according
to the explanation of Section 2.1. The experimental results indicate a curve
starting from about one third of the linear critical axial stress. On the other
hand, the outward bulging character of the interaction curve was confirmed by
the experiments. (It should be noted that Seide took as abscissa the circum-
ferential compression due to hydrostatic rather than to lateral pressure).

Lundgren [2.32] approximated, to the benefit of safety, this flat curve by the
straight line (Fig. 2.19):
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Fig. 2.19. Approximate analysis of simultaneous
action of axial and circumferential compression

This line is also called the “straight interaction line of Dunkerley” [2.27], [2.40]
and can be used in design. The same was also proposed in [2.57]. Here axcr
denotes the actual critical axial stress (a fraction of the linear critical stress, to
be taken, e.g., from Fig. 2.7 or 2.8 as explained above), and oxcr is given by
Eg. (2.25a) or (2.25b).

2.5. The Stabilizing Effect of the Circumferential
Tension on the Axial Compression

If in the perfect cylinder circumferential tension (caused by internal pressure)
arises, this hinders the buckling with asymmetric (reticulated, diamond) patterns,
but does not interfere with axisymmetric buckling. The explanation of this
fact is that asymmetric buckling implies waves in the circumferential direction,
which are “ironed out” by the circumferential tension, while during axisym-
metric buckling no circumferential waves develop, so that there is nothing to be
“ironed out”. (According to detailed investigations [2.44], in the case of internal
pressure reticulated buckling pattern cannot come about, only diamond or
axisymmetric ones.) Hence, the buckling phenomenon is as shown in Fig. 2.20,
where circumferential tension is characterized by the internal pressure p [2.44].
(If the pressure also acts on both end-diaphragms of the cylinder, causing axial
tension in addition, the axial compression diminished by this latter value has
to be regarded as ox.) Increasing circumferential tension causes the axial linear
critical stress of the diamond pattern buckling to increase over that of the
axisymmetric buckling. At the same time, the post-critical load-deformation
curves become flatter and flatter: their lowest points are getting higher and
higher. Thus, the perfect cylinder starts to buckle axisymmetrically. Nevertheless,

4*
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when its axial compression / becomes great enough to reach the “diamond”
postbuckling curve corresponding to the actual internal pressure, it continues
to buckle along this latter curve: the shell “jumps over” from axisymmetric
to diamond pattern. According to experiments, this diamond buckling has the
shape of Fig. 2.21, even for small values of the internal pressure.

Cylinders with initial imperfections were investigated by Hutchinson [2.20] on
the basis of Koiter’s theory. He also found that asymmetric (reticulated or diamond)
initial imperfections will be “ironed out” by the internal pressure, so that the criti-

Fig. 2.20. Influence of internal pressure on the axial critical
compressive stress of the perfect cylinder

Fig. 2.21. Buckling pattern of the axially
compressed and internally pressurized cylinder



2.5. Circumferential Tension and Axial Compression 53

(b)
Fig. 2.22. Influence of initial imperfections on the critical axial compressive stress of the internally
pressurized cylinder.
(a) - Axisymmetric imperfection, (b) - asymmetric imperfection

cal axial compressive stress becomes markedly greater as compared to the case
of p=0. However, the axisymmetric imperfection cannot be “ironed out”, so that
the buckling process starts as ifthere were no internal pressure: the shell undergoes
axisymmetric deformation, from which an asymmetric buckling bifurcates. The
internal pressure can only hinder this bifurcating deformation. Consequently,
the internal pressure increases the axial critical stress in the case of axisymmetric
imperfections to a much smaller extent.

The results of Hutchinson’s calculations (assuming v=0.3) for axisymmetric
imperfections are shown in Fig. 2.22 (a), and those for asymmetric (reticulated)
ones in Fig. 2.22 (b). (The curves for diamond-shape imperfections lie in between.)
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Hutchinson also checked his results for axisymmetric initial imperfections by
the special theory of Koiter and obtained a slight deviation from Fig. 2.22.

Axisymmetric buckling actually occurred on a silo subjected to internal pressure
as reported by Hooley at the IASS Symposium in Budapest 1965.

2.6. Cylinders under Torsion

If a cylindrical shell is subjected to two equal and opposite twisting moments
applied on both ends, pure shear arises in the cylinder wall, and at a certain value
of the shear stress the shell buckles. According to investigations performed on the
basis of the linear theory [2.43], [2.51], we have to distinguish between two kinds
of cylinders:

1L The cylinder is 1ong, if in the case of simply supported edges:

1 L4

Y1A(Q2NY 5.5, (2.32)
and in the case of clamped edges:
1 L4
. 7.8 2.33
TwW(2i?T3 (239

(notations are explained in Fig. 2.11).
The boundary conditions of the “long” cylinder do not influence the critical
shearing stress. It can lose its stability due to torsion in two ways:
(@ it may buckle by torsion as a bar at a critical shearing stress;
T

TCcr- b L
(b) its wall may buckle as a shell at
- E rj.i32
Ter 372 (1-v2UW (2.35)

As a rule, Eq (2.35) yields a lower critical stress than Eq. (2.34).

(2.34)

2. The cylinder is short, if the unequality sign in Eqs (2.32)—2.33) is reversed.
The critical shearing stress then becomes, according to Donnell (see in [2.51]), for
hinged edges:

e TA[2 .8 +/2.6+1.4(1-,F*W ‘], (2.36)
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and for clamped edges:

(2.37)

Using these formulas Batdorf [2.3] plotted the critical shearing stress against
the geometric parameter Z=1/1 —2(L 2Rt), as shown in Fig. 2.23.

Rt VI-V2

Fig. 2.23. Linear critical shearing stress of the twisted cylinder

The formula for hinged edges was refined by Kromm [2.28] cf. [2.51], resulting
in the equation:

r,=4-39-7~ilj/1+00257(1-v334"~ ] 3 (2.38)

that yields slightly lower values for xcr.

The buckling pattern consists of waves of helicoidal shape or of their combina-
tions [2.51].

The experiments [1.1], [2.4], [2.51], [2.57] yielded critical stresses generally
15-20% smaller than that of the linear theory. Flence, in the case of pure shear
(twist), the cylinder is hardly sensitive to initial imperfection.

The post-buckling load-deformation curves of the twisted cylinder were first
calculated by Loo [2.31], who used the Donnel equations valid for large deflec-
tions. He assumed four free parameters in the expression for the buckling shape,
and performed the computations for perfect and imperfect cylinders as well.
Nash [2.38] improved the accuracy ofthese computations by taking five free param-
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eters in the buckling shape. These calculations showed the circumferential wave
number to decrease during the buckling process.

Budiansky [2.4] determined the quantity b, characteristic of the initial tangent
of the post-critical load bearing capacity curve of perfect cylinders (cf. Figs 1.1
(b) (c) and Section 2.3), by means of the general theory of Koiter, i.e. exactly.
His results are shown in Fig. 2.24 (a) for cylinders with both hinged and clamped
edges. For cylinders with initial imperfections, the theory furnishes the approxi-
mate values of the snapping stress T“per of Fig. 2.24 (b), defined as in Fig. 1.1 (c).

@

X-upper
LCr

‘f-lin
LCr

Fig. 2.24. Initial post-critical behaviour of the twisted cylinder
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More elaborate theoretical investigations by Yamaki and Matsuda [2.60]
on cylinders with clamped edges showed that the post-buckling behaviour of
twisted cylinders is more complicated than the curves similar to Fig. 1.4 (c). Their
results for R/t=406, v= 0.3, which were also confirmed by very carefully conducted
experiments [2.59], are shown in Fig. 2.25. (Solid lines refer to theoretical, dashed

Mt L2 1
2ir2R2B Vvz3

Fig. 2.25. Relations between twisting moment M, and angle of twist y/ for clamped cylindrical
shells in the post-buckling range (R //=405, v=0.3)

lines to experimental, results.) It can clearly be seen that the seemingly steep
initial drop in the post-buckling load bearing capacity at Z —20 (cf. Fig. 2.24 (a)) is
compensated to a large extent by the subsequent ascending character of the curve.
The shapes of the curves in Fig. 2.25 explain why the test cylinders exhibit critical
(snapping) stresses rather close to those of the linear theory, despite the steeply
falling initial tangents at some values of Z (see Fig. 2.24 (a)).

Summing up, we may conclude that a cylinder is most sensitive to initial imper-
fections if subjected to axial compression. The sensitivity is less in the case of lateral
(hydrostatic) pressure, while in the case of twist the influence of initial imperfec-
tions becomes very small indeed.
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2.7. Simultaneous Action of Twist and Axial Compression

The problem of simultaneous action of twist and axial compression was investi-
gated by Kromm [2.28], and cf. [7.21], on the basis of the linear theory. His main
results are shown in Fig. 2.26. Here xa denotes the critical shearing stress given

Fig. 2.26. Interaction of axial compression and torsion according to the linear theory
by Eq. (2.36) for pure shear (twist), o'Ear is the linear critical axial compressive

stress according to Eq. (2.13), while o represents a geometric parameter:

12(1-v2 L4
T4 R22'

A special feature of the diagram in Fig. 2.26 is that the curve pertaining to
1

© (2.39)

4 J—
/co =6 has an extreme position. The curve corresponding to /co =20 may be taken
4

valid as far as /co = .. [7.21].



3. Buckling of Conical Shells

Investigations on the buckling of conical shells showed that they behave in a
similar way to cylindrical ones. Therefore, their treatment is fairly simple.

In the following we deal only with circular conical and truncated conical shells
of uniform wall thicknesses. It is assumed that the bottom diaphragm of the con-
ical shell, truncated or not, (and the top diaphragm of the truncated one) is in-
finitely rigid in its own plane and is connected to the shell by a hinged edge.

3.1. Compression along the Generatrices

In this loading case (Fig. 3.1) only generatrix directed stresses of magnitude

P

<Jeg’ 2nrtcos a (31

arise in the cone.
The buckling problem was solved on the basis of the linear theory by Seide
[3.4]. The main result of his investigations is that the cone can be substituted for

P

Fig. 3.1. Conical shell compressed along the generatrices
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by a cylinder with the radius r/cos a equal to the actual principal radius of curva-
ture of the cone (Fig. 3.1). This would result in cylinders with different radiuses
for every point of the generatrix. However, since the generatrix directed stress
varies, according to Eqg. (3.1), in inverse proportion to the radius of curvature,
just as the critical stress of the cylinder does (see Eq (2.13)), it is—according to the
linear theory — irrelevant at which point the substituting cylinder is established.

According to what was said on cylinder buckling, however, the initial imper-
fection increases with increasing ratio R/t, causing a greater reduction in the
critical load (see Fig. 2.3 (a), (b), (c)). Consequently, it is expedient to take the
radius of the cylinder equal to the maximum radius of curvature RJcos a of the
cone.

The behaviour of the cone is similar to that of the cylinder also in the following
respect: if along the edges zero tangential stresses (nxy=0) are stipulated instead
of zero tangential displacements (u=0), then the linear critical load sinks to half
its original value, just as in the case of the cylinder [3.1].

The model tests [2.53], [3.2] gave considerably lower buckling loads than predict-
ed by the linear theory, again as in the case of the cylinders. The rate of decrease
in the critical load was of about the same magnitude as in the case of the cylinders,
except for the range of greater R/t ratios: from about R/t~ 1000 on, the conical
shells carried more load than the corresponding cylindrical ones (Fig. 3.2).
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Fig. 3.2. Experimental results on conical shells compressed along the generatrices

However, if we neglect this excess strength to the benefit of safety, the computation
of conical shells becomes completely identical to that of cylinders.

The experimental shells generally buckled near their larger ends in circumferen-
tial short waves arranged in several tiers. The buckling deformation was less in
the region where the radius was smaller, and it was largest along the edge with
maximum radius R2. These results comply with the theoretical predictions.
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3.2. Hydrostatic Pressure

In the case of hydrostatic pressure (Fig. 3.3) the following stresses arise in the
conical shell:

Fig. 3.3. Conical shell subjected to hydrostatic pressure

S tan a
t*hoop p t (32)

*ge, = = . (3-3)

The results of the various theoretical investigations differ slightly from each
other. According to Niordson [3.3], the critical pressure of the (truncated) cone is
equal to that of a cylinder with the radius

(3.4)

and with the length L equal to the (skew) generatrix length of the cone (see Fig.
3.3). The critical pressure of this equivalent cylinder is given by the Batdorf
formula (2.28).

According to Seide [3.5], the critical pressure of the equivalent cylinder is to
be multiplied by a factor y depending on (1—RJRz) to be taken from Fig. 3.4.

Seide also showed that the truncated conical shell buckles, like the cylindri-
cal one, in one half wave in the axial direction, provided the inequality
Os(I —?%i?2=0-64 is fulfilled (cones with small vertex angles). In the case of
(1—aY/?2=-0.64 a second, shorter half wave also develops near the apex. This
may obviously be explained by observing that in this case the section near the
apex is considerably stiffer than the other parts, so that the equivalent cylinder
will be, so to say, shorter. Possibly this fact causes the value of factor y (Fig. 3.4)
to be greater than one in this range.
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Fig. 3.4. Multiplication factor for the critical stress of the
equivalent cylinder in the case of hydrostatic pressure

The experiments [2.54], [3.5] mostly gave values around these theoretical results.

As with the cylinder subjected to circumferential compression, the experimental
buckling pressures were not less than 60 %of the theoretical ones. Figure 3.5 shows
the test results published in [2.54] compared with the linear critical pressure of the
equivalent cylinder. It can be seen that most of them differ by, at most, 20%
from the theoretical value of Niordson. Greater discrepancy (40%) occurs only
in the case of the complete cone with (1—RY¥R2=0, i.e. just in the range where
Seide’s factor y is greater than one. On the other hand, experiments with “near-
perfect” conical shells [3.7] confirmed the validity of Seide’s factor y (Fig. 3.4)
by yielding buckling pressures always greater than that of the equivalent cylinder
multiplied by y. Still, the experimental results of Fig. 3.5 suggest that conical

Fig. 3.5. Experimental results on conical shells subjected to hydrostatic pressure
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shells, in the range where y is appreciably greater than one, are more sensitive to
initial imperfections than those with a lower geometric parameter (1—RJR2.
For this reason, and also for the sake of simplicity, we propose that for design
purposes Niordson’s results should be accepted, i.e. practical computations
should be made simply on the equivalent cylinder.

3.3. Simultaneous Action of Axial Compression
and Hydrostatic Pressure

The problem of the simultaneous action of axial compression and hydrostatic
pressure was investigated theoretically by Seide [3.6]. Experimental results to be
found in [2.54] show that the straight line of Dunkerley, representing the inter-
action between the critical loads of the cylinders equivalent as to axial compression
and hydrostatic pressure respectively, gives critical stresses lying slightly on the
safe side (see Figs 2.18-2.19 and the pertaining remarks).



4. Stability of Spherical Shells
and Domes of Other Forms

4.1. Buckling of Spherical Shells Subjected to Uniform
Overall Radial Pressure

Among the doubly-curved surfaces with positive Gaussian curvature it is the
spherical shell that is simplest to treat mathematically, due to its constant curva-
ture. In fact, its buckling problems are treated very thoroughly in the literature. We
begin with the buckling investigation based on the linear theory using the so-called
“equilibrium method” (as that presented in Section 2.1.).

The exact derivation of the equations does not make use of the fact that one
buckle extends over only a comparatively small area of the shell surface, which,
consequently, can be regarded as shallow in the region of one buckle. The exact
theory requires lengthy and intricate computations leading to Legendre (spherical)
functions [2.17], [2.17a], [2.51].

However, we know from the exact theory and from experiments that the diam-
eter of one buckle is small as compared to that of the sphere, so that the shell
can be regarded as shallow in the region of one buckle. Consequently, we may
start with the shallow-shell equations, thus greatly facilitating the derivation. In
the following we shall develop the linear critical load in this way, see [2.6],
[2.12] or [2.57].

We substitute the geometric expressions corresponding to the sphere into the
general shallow-shell equations (2.4). In the case of the z-axis pointing toward
the centre of the sphere, the latter assume the following forms, with the approxi-
mations allowed by the shallow-shell theory (Fig. 4.1):

d 2z d2z 1

dx2~ dy2~ R’ (4.13)
UL =0 (4.1b)
Xy
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The internal forces of the pre-buckling state are as follows:

nxy = 0, (4.2a)
(4.2b)

The incremental radial load p arising during buckling is the product of the com-

Fig. 4.1. Radically compressed spherical shell

pressive forces (4.2a) and of the change in curvature due to the buckling defor-
mation w:
PR (dav d2w) PR

4.2c
b= ~— (4.20)

Substituting all these expressions into Eq. (2.4) we obtain:
BA|W+T{1§{ i) Aaw = ) Adw. (4.3)

Assuming for wa “reticulated” (chessboard) pattern, similar to that of the cylinder,

. N .on
W = WxSill -y- X Sill -y-y (4.9)
I'x ly

furnishes the following equation for the critical pressurep,, :

T(I-v2

oot - e (F o+ T (45)

By differentiating par with respect to i?r I_] and equating the derivative to
47 IP

zero, we obtain:
T(l1-v2

BR2 (4.6)

5 Buckling of Shells
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Hence, the buckling shape (i.e. the ratio of the two buckling half-wave lengths)
is again indeterminate, as in the case of the axially compressed cylinder [Eq.
(2.10)].

Substituting Eq. (4.6) into Eq. (4.5) we arrive at the critical value of the radial
pressure:

N 2 , 12 116 ,, w2

Pr /3(1-va 2 IPv* R2 (4.7)

Assuming an axisymmetric buckling pattern on the shallow shell yields the same
result.

Since, as in the case of the axially compressed cylinder, we have several buckling
modes associated with the same linear critical load, the spherical shell also exhibits
the “compound-buckling” behaviour.

This linear, also called “classical”, value of the critical pressure was derived
first in 1915 by Zoelly [4.43], who used the exact equations (i. e. he did not make
use ofthe shallowness of the shell), and assumed an axisymmetric buckling pattern.
Later van der Neut [4.27] showed that assuming an asymmetric buckling pattern
yields the same results.

Nevertheless, experiments gave substantially lower values than this linear critical
load. In Figs 4.2 and 4.3 we compiled the results of some test series plotted against
the ratio R/t and the geometric parameter H respectively. (The parameter A, a
characteristic of the spherical cap, is defined by Eq. (4.11); see also Fig. 4.9.)

Fig. 4.2. Exeprimental results on spherical shells versus Rjt
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Fig. 4.3. Experimental results on spherical shells versus the geometric parameter n

From the results of Schmidt [4.29] we plotted in Fig. 4.3 only those representing
the four extreme cases; the others lie in between. For the sake of simplicity, the
results for non-spherical shells were also plotted in these figures (see item (d)
below).

To these seemingly completely irregular results some sense can be given by the
following viewpoints:

(@) For some experiments “near-perfect” shells with practically no initial
imperfections were manufactured by special methods. These were the specimens
of Parmerter [4.28], Krenzke and Kiernan [4.25], Evan-Iwanowski and Loo [4.9].
Their results are, in fact, higher than those for the other, less perfect, shells. The
models of Adam and King [4.1] and of Carlson, Sendelbeck and Hoff [4.5], not
shown in the figures, also belong to this group; they reached 80% or sometimes
even 86% of the />(".

(b) In some experiments the supports of the shell's edges were not stiff enough:
either the base ring was too weak or — in the case of polygonal shells — the edges
were supported by vertical diaphragms having no rigidity perpendicular to their
planes. To this group belong the shells of Csonka [4.6], Torroja and Schubiger
[4.30], Schmidt [4.29], Hergenrdder and Riisch [4.11], Stenker [4.33], as well as
some of the experiments of Kloppel and Jungbluth [4.19] (these will be discussed
later).

The supports of the models of Kaplan and Fung [4.17], Homewood, Brine and

5*
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Johnson [4.12], Seaman [4.31] and of Litle [2.30] were also weaker than a rigid
clamping (see the evaluation in [4.39]). These buckled at a lower critical load than
the others.

(c) In the following cases the experimental shells had noncircular ground plans.
This caused deviations from the axisymmetric distribution of the internal forces
resulting in not exactly definable local disturbances, in addition to the effect
mentioned under (b). Here belong the shells of Csonka, Torroja and Schubiger,
Schmidt, and Hergenréder and Risch.

(d) Inthe experiments of Csonka, Torroja and Schubiger, and Schmidt, the shell
surfaces were not spherical. We shall deal with this kind of shell in Section 4.3.

(e) The lowest test results were yielded by reinforced concrete shells (Csonka,
Torroja and Schubiger, and Stenker). One can account for these by recognizing
that concrete has cracks, it creeps and probably has greater initial imperfections
than metallic shells (see Section 9.8).

(f) Finally, it should be noted that every experimental shell was shallow except
for those of Tsien [4.38] and Litle, as well as some of the shells of Kloppel and
Jungbluth, Homewood, Brine and Johnson, Seaman, and Krenzke. In his study,
which evaluates a great number of experiments, Wang [4.39] points to the fact
that only the critical loads of the shallow shells depend on the parameter X
(see Eq. (4.11)), while those of deep ones do not.

The kind of loading (whether it maintains its direction like gravity loading, or
whether it remains perpendicular to the buckled surface like fluid pressure) is,
according to [4.32], practically irrelevant for the magnitude of the critical stress
of the complete sphere, as contrasted with the case of the cylinder under lateral
pressure. 1his is most probably due to the fact that spherical shells always buckle
in small, local, shallow waves. Therefore, we will not deal with the kind of loading
here any more.

The discrepancy between the linear critical load and the test results necessitated
the development of a buckling theory for spherical shells which takes large
deformations into account (“nonlinear” theory). Its essential feature, as with
what was said on cylinders, isthat — maintaining the assumption concerning the
shallowness of the shell surface — in the expressions for the deformations the
second powers of the first derivatives of the displacement w, perpendicular to the
shell surface, are also taken into account. This makes possible the description of
the buckling process beyond the equilibrium position close to the underformed
state, up to displacements several times the wall thickness. For geometrically
perfect, complete spherical shells this calculation was first made by Karman and
Tsien [4.18]. They assumed the shape of the buckling pattern, characterizing its
extension by a free parameter, with respect to which they minimized the load at
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every loading step. Thus, they determined the lowest point of the post-critical
load-displacement curve, obtaining (for v=0) the result

Ft2
Ne " = 0.365— (4.8)

(Fig. 4.4)). They used as the abscissa the ratio of the average displacement /
of the load to the displacement /JJ* pertaining to the linear critical load. Since
the average displacement/ gives the change in volume AV of the sphere, we may
write fljfm—AVIAV'™, where AV\'m denotes the change in volume pertaining to
the linear critical load. As ordinates we plotted the ratio p/p'™, which, for
Eqg. (4.8), assumes the value 0.315.

Fig. 4.4. Post-critical behaviour of the perfect spherical shell

Later, improving the accuracy of the calculation, Tsien [4.38] arrived at the
value of

p[rer= 0312J , (4.9

i.e. 0.27 times the linear critical load.

In their comments on the derivation of Karman and Tsien [4.18], Friedrichs
[4.10] and Mushtari and Surkin [4.26] cite two errors of principle, which neverthe-
less roughly compensate for each other. On the one hand, they neglected the tan-
gential displacements of the shell surface; on the other hand, they minimized the
load instead of the total potential energy (cf. the description of the nonlinear
method in Section 2.1).

Thompson [4.34] assumed four free parameters in the expression for the buckling
pattern. Thus, he was able to show that both the shape and the extension of the
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Fig. 4.5. Variation of the buckling shape during the buckling process

buckling pattern greatly vary durint snapping, that is, the buckling half-wavelength
increases with the decreasing load (Fig. 4.5). Fie assumed the deformation to be
axisymmetric during the entire buckling process. Thus, he obtained with v=1/3
the second curve of Fig. 4.4. Its lowest point is

rower= 0.283f—tz,
i.e. 0.232 times the linear critical load.

Other scientists performed further calculations on a similar basis in order to
find the “true” value of the numerical factor appearing in the expression for p[°wer.
Thus Pozo Frutos and Pozo Vindel [4.28a] got (with v=0) 0.23, Mushtari [4.26a]
0. 22, Gabril’iants and Feodos’ev [4.10a] 0.13, and Dostanova and Raizer [4.7a]
obtained (with v=0) the value

Ef
pT er= 0.126 — |, (4.10)

1 e. 0.108 times the linear critical load.

Rauch, Jacobs and Marz [4.28b] found that, using Reissner’s equations of small
finite deflections [4.28c], p[°ver depends to some extend on the R/t ratio as well.
They got 0.07 and 0.05 times the linear (classical) critical pressure for R/t= 100
and 200 respectively.

All these results show that, although a perfect sphere theoretically buckles at
the linear critical load, the shell is very sensitive to initial imperfections, as is
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indicated by the shape of the curve, and as was to be expected because of the
“compound buckling” mentioned earlier.

Further investigations on complete shells are mostly based on Koiter’s method.
This takes — according to what was said in Chapter 2 — every possible buckling
mode of the linear theory into account. These are orthogonal in the frame of
the linear theory. Koiter chose from these shapes those groups that, due to the
nonlinearity, interact with each other and yield the minimum critical load.
Hutchinson [4.14] investigated the perfect sphere in this way, starting from the
shallow-shell equations, and also taking asymmetric buckling modes into account.
He obtained a curve starting with a steeper initial tangent than that of Thompson
in Fig. 4.4, but did not calculate its lowest point. On the other hand, for the
sphere with initial imperfections he found a behaviour corresponding essentially
to Fig. 11 (e). The snapping load ps uc (or /~pper) is given by the two upper
curves in Fig. 4.6, plotted against the ratio of the initial imperfection amplitude

nupper
rcr

Fer

Fig. 4.6. Influence of the initial imperfection amplitude on the snapping load of the spherical shell

to the wall thickness (calculated for v=1/3). The two curves differ according to
whether the shape of the initial imperfection is assumed to be actually similar
to the first or to the second of the buckling modes, w*=a"cos (bx) and
w2=u2sin (cx) sin (¥3cy), coupling with each other and vyielding the most
onerous combination. The upper curve is for a “symmetrical” initial imperfection
similar in shape to wl, while the initial imperfection assumed for the lower curve
has the “asymmetric” shape of w2. The phenomena correspond in both cases to
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the compund “multimode buckling” described in Section 1.2. The investigation
of Hutchinson can be considered as being completely general, since it is not
confined to axisymmetric imperfections. It becomes inaccurate only for large
imperfection amplitudes due to the approximations inherent to Koiter’s theory.
This is illustrated by the lowest curve of Fig. 4.6, which represents — according to
the special theory of Koiter — an exact solution (i.e. also correct for larger imper-
fection amplitudes) taking a chosen imperfection shape as a basis. Since this does
not represent the most onerous case, the truly exact curve has to lie somewhat
lower.

Koiter [4.22] did not make use of the approximations of the shallow-shell
theory, but he confined his investigation to axisymmetric imperfections and
buckling shapes. His results are very close to those of Hutchinson.

Since the accuracy of Koiter’s method — at least in its original form — becomes
less and less with increasing imperfection amplitudes, due to omission of the higher
terms, other investigators chose a different approach: they confined themselves
to axisymmetric imperfections and buckling shapes but tried to solve this problem
exactly. This was also motivated by the experimental observation (see e.g. in
[4.21]) that spherical shells always deform — at least at the onset of the buckling
process — axisymmetrically.

On the basis of these principles, Bushnell [4.4] computed the load intensity
causing symmetric snapping (p“peer, as defined by Fig. 1.1 (d)) for several geometric
ratios. He assumed an initial imperfection as shown in Fig. 4.7 (b). When plotting

Perfect shape

Perfect shape

Fig. 4.7. The assumed initial imperfections
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these p‘Iper-values against the ratio of the imperfection amplitude to the wall
thickness (w jt), he obtained different curves for different diameters d0of the initial
imperfection. These curves can be combined to give a “festoon curve” (Fig. 4.8).
In this figure the diameter dOof the imperfection was characterized by the geometric
parameter A defined by Eq. (4.11), in which H denotes the height of the original
(perfect) sphere over the imperfection circumference (Fig. 4.7 (b)). The envelope
of this festoon curve, indicated by the dashed line, can be used for design.

The development of the festoon curve can be explained by two factors. On the
one hand, spherical shells with initial imperfections of different As may behave
differently because of the nonlinear character of the whole phenomenon, which
means that, depending on the extent to which the diameter dOof the initial imper-
fection differs from the “natural” half buckling wavelength (given by the linear
theory), the shell exhibits different behaviour patterns during buckling. On the
other hand, that part of the spherical shell which is inside the initial imperfection
behaves in a similar way to a spherical cap clamped along a circle with the diameter
d0[4.4], and for that reason it is quite natural to obtain a festoon curve (see below).

Figure 4.8 shows that for a given ratio of wjt the minimum value of p“pper is
given by the curves with Abetween 2 and 4. This approximately corresponds to
Ah=2.35 [1.2], which characterizes the halfbuckling wavelength of the axisymmet-
ric mode given by the linear theory.

Koga and Hoff [4.21] solved the axisymmetric buckling problem ofthe complete
sphere by a numerical method different from Bushnell’s. They considered the two

Fig. 4.8. Influence of the initial imperfection according to Bushnell
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imperfection shapes of Fig. 4.7 and found that, for the imperfection shapes (a)
and (b), the minimum values of pppper were obtained for A«4 and Aa;3, respec-
tively. This latter result approximately corresponds to that of Bushnell (see Fig.
4.8).

These minimum values of pppper of Koga and Hoff are plotted by dashed lines
marked with (a) and (b), versus wjt in Fig. 4.6. The curve marked with (b) practi-
cally coincides with the envelope of Bushnell in Fig. 4.8, providing a good control.

It is worth noting that the two curves of Koga and Hoff hardly deviate from each
other. Consequently, for practical purposes, it is sufficient to characterize the ini-
tial imperfection by its amplitude w0 only, independent of its shape.

It seems that the close agreement of these curves with those of Hutchinson, who
also took asymmetric imperfections and buckling shapes into account, is due to
two factors compensating for each other. On the one hand, Koga and Hoff
[4.21] — as contrasted to Hutchinson — did not make use of the approximations
of Koiter’s theory, so that they obtained somewhat lower curves. On the other
hand, as mentioned before, the buckling shape is, in fact, — at least in the initial
stage of the buckling process — axisymmetric, so this assumption might increase
the calculated pppper only to a small degree. In summary, we may conclude that
for the critical load of a spherical shell — as contrasted to the cylindrical one —
practically the same result is obtained whether only symmetric imperfection and
buckling deformation, or also asymmetric imperfection and deformation, are
considered; see also in [4.22].

Another series of theoretical investigations refers to the spherical cap with a
clamped (or hinged) edge. The notations to be used are indicated in Fig. 4.9.
For the understanding of the behaviour of the clamped spherical cap, we first
consider the cap supported as shown in Fig. 4.10: its contour points may roll
freely on a conical surface but cannot rotate. Hence, it is in a situation similar
to a partial sphere: when subjected to external pressure it can undergo compression
without bending. The linear theory furnishes a festoon curve for the critical load

(a) - Clamped, (b) - hinged
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of this cap with a horizontal lower tangent, which coincides with the linear critical
load (4.7) of the perfect complete sphere [4.3], [4.13]. Hence, the spherical cap
supported in this way tends to buckle almost exactly like the complete sphere.

Fig. 4.10. Spherical cap supported by rollers

However, if the edge of the spherical cap is clamped or hinged (see Fig. 4.9),
the shell — even if it was geometrically perfect — undergoes bending under the load
before buckling, since the spherical cap gets compressed, while the support, being
considered as infinitely rigid, does not. In certain cases this bending deformation
has a shape of the same character as the buckling deformation, while in other
cases it has the opposite character. Computations show that this behaviour
depends on the geometric parameter

A= 2b (1-v2j/~ = 263 ily (4.11)

with H being the height of the cap (see Fig. 4.9). (The diameter of the cap, i.e.
the radius of the sphere, does not appear in 2.)

The diagrams of Fig. 4.11 (a) show, on the basis of [4.3], the change in the slope
of the clamped cap (see Fig. 4.9 (a)) due to bending for some values of 2. On the
other hand, Fig. 4.11 (b) represents the diagrams for the change in the slope of
the cap, supported as in Fig. 4.10, due to axisymmetric buckling deformation.
(The cap is “most willing” to buckle in this latter way.) It can be seen that the
two diagrams have similar forms for 2=4 and 10, while for 2= 7 and 13 they
have opposite characters.

Due to these bending deformations even the geometrically perfect spherical
cap behaves as if it had an initial imperfection. Thus, its deformation corresponds
to the “eccentric” curves of Fig. 1.1 (d). Using the results of [4.3], [4.35] and [4.42],
in Fig. 4.12 we plotted with full lines the /?pper- and /2°we-values of these curves
against 2. The curve of p"pper has the peculiarity of oscillating about the line
PcJp'cr = 1mThe comparison with Fig. 4.11 shows that at 2-values, where bending



76 4. Spherical Shells and Domes of Other Forms

(a) (b)

Fig. 4.11. Change in slope of the bending and buckling deformations
wupper- ~lower
Her Ker

Ltin *o, tin
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Fig. 4.12. Snapping load of the perfect spherical cap
(assuming axisymmetric buckling shape)

deformations due to the load are similar to the buckling deformation, the shell
buckles at a load lower than the linear critical value, while where they are of an
opposite character, the buckling load is greater than the linear one [4.3].

On the basis of [4.42], we plotted in Fig. 4.12 with a dashed line the /?pper-curve
of the hinged spherical cap (see Fig. 4.9 (b)) as well. This lies lower than that of
the clamped cap, but has a similar character.

However, the p“pper-curve of the clamped spherical cap according to Fig. 4.12
gives considerably higher values for the critical load than the experimental ones
(see Fig. 4.3). Consequently, in order to explain this discrepancy, the initial imper-
fections of the cap have also to be taken into account. First Budiansky [4.3],
then, refining the calculation, Thurston and Penning [4.37] developed a method
for the investigation ofthe stability of clamped spherical caps with an axisymmetric
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initial imperfection. They described the deformation of the shell by the nonlinear
theory and determined the />ppper according to Fig. 1.1 (d), assuming an axisymmet-
ric buckling mode. The last-mentioned authors investigated experimentally and
theoretically forty shell models which were manufactured with great care in order
to produce predetermined initial imperfections. Theory and experiments corre-
sponded fairly well except for the very thin and the “near-perfect” shells (about
half of the models). Later Thurston [4.36], further improving the calculation,
obtained somewhat lower ™‘pper-values.

However, all these investigations had the shortcoming of disregarding the
possibility of asymmetric buckling modes, although high-speed motion-picture
recordings of the buckling process of spherical caps (e.g. [4.19]) showed that they
often buckle asymmetrically, at least in one phase of the process. Thus, the phenom-
enon should correspond to Fig. 1.1 (e). Consequently, further theoretical in-
vestigations aimed at finding out the load intensity at which the axisymmetric
deformation of the perfect spherical cap, described by the large-deflection (non-
linear) theory, bifurcates into an asymmetric mode. This bifurcation itself can be
treated by the linear theory, so that a linear eigenvalue problem has to be combined
with the nonlinear axisymmetric deformation. This problem was solved indepen-
dently by Huang [4.13] and Weinitschke [4.42], both arriving at the same result:
"pifure js represented by a festoon curve when plotted against X Figures 4.13 and
4.14 show the curves for the clamped and the hinged spherical caps respectively,
according to Weinitschke (n denotes the circumferential full-wave number of the
asymmetric mode). The characteristic feature of these curves as contrasted to
those describing the axisymmetric buckling of perfect spherical caps (see Fig. 4.12)

Fig. 4.13. Critical load pertaining to the asymmetric buckling
which bifurcates from the axisymmetric deformation
of the clamped perfect spherical cap
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Fig. 4.14. Critical load pertaining to the asymmetric buckling
which bifurcates from the axisymmetric deformation
of the hinged perfect spherical cap

is that they do not oscillate, being rather constant and practically independent
of 2.

Archer and Famili [4.2] obtained the same curve when investigating the asymmet-
ric vibrations of axisymmetrically deformed, clamped, spherical caps. The critical
load intensity was reached when the eigenfrequency became zero.

Figure 4.13 shows that the clamped spherical cap is prone to bifurcation into
asymmetric buckling for 2>5.5 only. At smaller values of 2 it buckles axisymmet-
rically.

This theory, considering also asymmetric buckling, agrees fairly well with the
experiments made on “nearly-perfect” shells (the results of Krenzke and Kiernan,
of Evan-lwanowsky and Loo, and of Parmerter in Fig. 4.3). Still, there remained a
considerable discrepancy with respect to the experiments on “less perfect” shells,
suggesting that asymmetric initial imperfections should also be taken into account.
These calculations, involving great mathematical difficulties, were first performed by
Kao and Perrone [4.16]. Later Kao [4.16a] improved on the results using a more
exact method. They assumed an initial imperfection with the section similar to
Fig. 4.7 (a), extending to one quarter of the clamped cap (Fig. 4.15), and they
described the deformation by the nonlinear theory of shallow shells. The maximum
value ofthe load gave p“ppcr. The ratio p “ppar/Pc® as a function of w jt was calculated
for two values of X (Fig. 4.16). These curves apparently yield the critical loads
corresponding to the test results, so that they can be regarded as the final solution
of the problem. (The curve pertaining to 2= 8 starts at w0=0 from a value of
PcrRy/Pbr greater than 1, corresponding to Fig. 4.12.)

Kao and Perrone also investigated the influence of the shape in the ground plan
of the initial imperfection. They found that when the central angle of the imperfec-
tion in Fig. 4.15 is decreased from 90° to 45°, this hardly influences the snapping load.
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It seems from the foregoing that the buckling problem of spherical caps has
been completely solved. There are, however, some experimental results which
give higher critical loads than the theoretical curve of Fig. 4.13 [4.10b], [4.334],
[4.33b]. Since this phenomenon has not been rationally explained yet, it shows
that there are still some problems to be clarified.

If we compare the theoretical results on the complete sphere and on the clamped
(or hinged) spherical caps we arrive at the following conclusions:

When investigating the buckling of a complete sphere, the shell may be divided
into two parts [4.21]: a shallow cap that buckles, and the remaining part that
undergoes only slight deformation due to the joining conditions. Hence, the
clamped cap differs from the complete sphere only in being supported against
displacement and rotation along the edge somewhat more rigidly, which results
in a critical load greater than (or at least equal to) that of the complete sphere.
The critical load of the hinged cap may possibly be lower than that of the complete
sphere. This explains why the curves for the snapping loads of the complete sphere
and of the spherical cap are nearly identical. A detectable discrepancy is to be

Initial imperfection

Fig. 4.15. Ground plan of the assumed asymmetric initial imperfection

supper

C
Rép
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t

Fig. 4.16. Influence of the asymmetric imperfection on
the snapping load of the clamped spherical cap
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expected only if the extension of the cap is less than the buckle which develops
on the complete sphere, i.e. for small Lvalues.

The similarity between the behaviour of the complete sphere and that of the
cap also explains why complete spherical shells buckle axisymmetrically, or why
the results of the axisymmetric buckling investigations on complete shells can
be used for design (see Fig. 4.6). It was shown that the complete sphere is most
sensitive to imperfections with Fvalues around 3. These spherical shells behave in
a similar way to caps with approximately the same $s. As Fig. 4.13 shows, caps
are not prone to buckle asymmetrically if A<5.5. Bushnell [7.4] found, in fact,
that complete spherical shells are inclined to buckle asymmetrically if Ais greater
than about 6 [1.2].

It is also obvious from the foregoing that if the support of the spherical cap is
weaker than that provided by the adjacent part of the shell (when imagining that
the cap is part of a complete sphere), then the critical load of the cap is less than
that of the complete sphere. Shells with a polygonal ground plan and supported
by diaphragms with no bending rigidity belong to this group.

Figures 4.6 and 4.16 enable us to design spherical shells against buckling. We
only have to assume in our computation the imperfection amplitudes to be expect-
ed. However, these diagrams do not contain the circumstances mentioned under
(b,) (c), (d) and (e), in the description of the model tests (Figs 4.2,4.3), i.e. the weak-
ness of the supports, the non-circular ground plan, the non-spherical shape, and
the material properties of the reinforced concrete. Nevertheless, the test results
of Figs 4.2 and 4.3 could sufficiently be explained only by taking all these circum-
stances into account. These effects cannot be analysed exactly yet, so we try to
make allowance for them by half-empirical methods based on model tests and
approximate calculations, to be surveyed in what follows.

The material properties of reinforced concrete can approximately be taken into
consideration as outlined in Section 9.8.

Since local plastic yielding may also explain the low critical load of some models,
some recent theoretical analyses give the maximum stress value that arises in the
vicinity of the buckle. However, this cannot be taken into account in a practically
usable way yet, so that we have to content ourselves with the approximate method
described in Section 9.4.

Ofthe approximate methods we first present the half-empirical formula estab-
lished on the basis of the already mentioned test series by Kléppel and Jungbluth
[4.19]. For the critical uniform radial load of the spherical cap they write (see Fig.
4.9):

por= KOk (y)0.3E (4.12)
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where

fo(<?,) = 1-0.175 (Fo2Q¥° -, (4.13)

and

A(T) = 1-0,07 4067 (413b)
This formula is valid between the limits
20° (" 60° (4.14a)
400 £ R/t ~ 2000. (4.14b)

Formula (4.12) actually completes that of Karméan and Tsien (4.8), and that
improved by Tsien (4.9), by the factors k((p0) and k(R/t). For the sake of lucidity
we compiled their extreme values in Table 4.1

Table 4.1

Values of the factors k(<p0) and k(R/t)
appearing in Eq. (4.12)

Q.= 20° 60°
k(<p0) = 1.0 0.65
At = 400 2000
K = 0.93 0.65

Equation (4.12) gives theoretically pEwer of the perfect spherical cap (see
Figs 1.4 (c), 4.4). In fact, we may regard it as the />“ppr of the imperfect shell, since
this latter value was measured in the experiments. The imperfection amplitude
corresponding to the factor 0.3 is, according to Fig. 4.16, w0 (™ 0.4.

The scatter of the test results around the value of Eq. (4.12) was at maximum
+20%. The metal shells were supported by squeezing their plane edges between
two rings to be regarded as infinitely rigid.

In order to assess the influence of the support stiffness on the critical load,
Kloppel and Roos [4.20] performed a series of experiments in which the spherical
caps — like the reservoirs —are connected to cylinders welded at the joints without
edge rings (Fig. 4.17). The pressure acted only on the spherical cap. Varying the
ratio of the wall thicknesses ts of the sphere and tc of the cylinder, they found that

6 Buckling of Shells
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the critical load (4.12) still has to be multiplied by the factor

9= 0'65(1+ T M T 2K B (Part 0.5) cos cpo, (4.15)
where
(4.16a)
(4.16b)
and
tjt. 352.5. 4.17)

Fig. 4.17. Spherical cap joining a cylindrical shell

The values of valid for b/R = 1/3 and R/ts= 1000~2000 are indicated in Table
4.2.
Table 4.2

Values of the factor Ai appearing in Eq. (4.15)
Iftjt. = (0] 1 25

then A = 0.53~0.57 0.9~1.0 1.25~1.35
(depending on R/ts)

The deviation of the experimental results from Eqg. (4.12) multiplied by
Eg. (4.15) was at maximum +23%"'----11%.

These data give valuable information on the influence of the supporting edge:
if the edge has no rigidity against rotation at all (tdts=0), then this reduces the
critical load of the cap supported as in the experiments of Kléppel and Jungbluth
[4.19] to about half its value. The clamping effect of the cylindrical wall reaches
that of the support used by Kldppel and Jungbluth at about td/ts= 1, while thicker
cylinder walls obviously further increase prr. This effect is, in fact, obvious when
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we consider that shell models in most cases started to buckle asymmetrically
near the edges.

As far as we know, the test series of Kloppel and Roos was the first systematic
attempt to investigate the influence of support stiffness on the critical load of spher-
ical caps. The same problem was treated theoretically by van Koten and Haas
in an approximate way [4.23], [4.24]. They tried to compare the rigidity of the
circular edge ring of the spherical cap with that of the “missing” part of the
shell. They considered the rigidity of the ring effective against rotation caused by
uniformly distributed twisting moments, but they disregarded the elongation of
the ring. The derivation followed that of Ka&rméan and Tsien [4.18] and of Tsien
[4.38] — see Eqgs (4.8)—4.9) and the remark to Eq. (4.12). Their results can be
summed up as follows:

When we know the stiffness iddl of the spherical cap against uniformly distrib-
uted bending moments acting on its edge

Et*
Se'r"TIR /I’ (4n8)
and the stiffness of the edge ring jring against the same moments (appearing now
as twisting ones):

Elrin
wrino ’ (4.19)

CRsincpo)2
(where 7ring is the moment of inertia of the edge ring referred to the axis lying in
the plane of the ring), we have to compute the parameter

. 2 A2 (4.20)

A1 shell

sring

The critical load can be determined from the “generalized” Eqs (4.8)-(4.9)
Por=cE ". (4.21a)

The value of the factor ¢ can be closely approximated by the simple formula:

¢ = 0.010+0.155". (4.21b)

According to van Koten and Haas, a!=2.0 corresponds to the case of the com-
plete spherical shell.

From the results of van Koten and Haas it can be seen that pa depends on
both the half central angle sDand the stiffness of the edge ring, but in a different
way than that given by the formulas of Kldppel and Roos [4.20]. Accordingly,

6*
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this problem cannot be considered as definitely solved yet. Be that as it may, the
formula of van Koten and Haas yielded a result for the test shell of Torroja and
Schubiger [4.30] very close to that obtained in the experiment, although this latter
was exceptionally low (see Figs 4.2 and 4.3).

A more exact analysis was performed by Bushnell [4.4a] who took into account
the extensional rigidity of the ring as well. He followed the (initially) axisymmetric
deformation of the spherical cap by the nonlinear theory and determined the load
intensity at which asymmetric bifurcation occurs. For the cases of built-in, hinged
and roller-supported edges (i.e. zero displacement and rotation, zero displacement
and unprevented rotation, and unprevented displacement and rotation of the
edge) he obtained upper critical load intensities of 0.790p]!”, 0.690p[!" and 0.160p],1
respectively. Here pI* again means the value defined by Eq. (4.7).

Wang, Rodriquez-Agrait and Litle [4.40] investigated experimentally the influ-
ence of the stiffnesses of these three kinds of support on the critical load on fifty-
two spherical PYC caps. They obtained 0.635/?", 0.530/~" and 0.190/"" as
average values for the clamped, hinged and roller-supported edges respectively,
these being in acceptable agreement with the results of Bushnell. The discrepancy
between the experimental and theoretical values might be accounted for by the
fact that Bushnell did not take initial imperfections into account. The imperfections
affected the experimental critical loads considerably in the first two cases, but much
less in the third case because of the much greater bending deformation.

The above results show that the edge rigidity against rotation has far less
influence on the critical load than its extensional rigidity, effective against dis-
placement.

4.2. Spherical Caps under Partial Loads

4.2.1. Buckling of Spherical Caps under One-Sided Load

The buckling of spherical caps under one-sided uniform load was investigated
experimentally by Kléppel and Roos [4.20]. We shall not be dealing here with
this problem in detail, but only state that the intensity of the one-sided load caus-
ing buckling is close to that of the uniform load. A similar conclusion can be
drawn from the calculation of Famili and Archer [4.9a].

However, we may remark that according to [9.2.3] the load intensity causing
symmetric snapping of a flat arch becomes lower if it is arranged partially instead
of over the whole arch; i.e. if we leave the two extreme sections of the arch that
displace upwards unloaded. This reduction of the critical load intensity of the
arch, if it is loaded by a single concentrated load applied at the centre, can even
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be 30%. (In this case the concentrated load distributed over the central portion
of the arch, displacing downwards during buckling, is to be regarded as load
intensity.) Since we shall not deal with the most onerous arrangement of the partial
load acting on a spherical cap in detail, the above information may be used for
assessing this effect.

4.2.2. Buckling of Spherical Caps under a Centrally Applied
Concentrated Load

The buckling problem of a clamped spherical cap under a centrally applied
concentrated load was solved by Fitch [4.9b]. The critical load Po was made
dimensionless as follows (Fig. 4.18):

= % “2

P

Fig. 4.18. Spherical cap under a concentrated load

R again being the radius of the sphere and B the bending rigidity of the shell:

Et3

B = 1209 (4.23)
The value of Qa as plotted against the geometric parameter 4 of the shell (4,11)
is given (for V= 1/3) by the diagram of Fig. 4.19 (a) where n denotes the wave
number of the buckle mode in the circumferential direction. (The dashed lines are
theoretical values, the full lines are relevant.) Accordingly, n=0 denotes axisym-
metric, and n~1 asymmetric, buckling modes. In the case of A<7.8 neither snap-
ping nor bifurcation develop: the load-deflection curve has the shape of Fig. 4.20 (a).
In the range 7.87A&9.2 the curve has a maximum (Fig. 4.20 (c)), i.e. snapping
occurs, but these maxima are quite gentle and approach a point of inflexion, as
Atends to 7.8 (Fig. 4.20 (b)). For A>9.2 asymmetric bifurcation occurs before the
snapping load intensity is reached (Fig. 4.20 (d)). These bifurcation points are
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@ ()

Fig. 4.19. Critical concentrated load and initial post-buckling behaviour of the spherical cap

© (d)
Fig. 4.20. Possible load-deflection paths of the spherical cap

indicated as critical loads at /=-9.2 in Fig. 4.19 (a). Finally, if 2— then Bcr—
—10.8. For such large $s the buckling deformation is confined to the environment
of the apex, so that this asymptotic value can be taken as the critical load of a
complete spherical shell under two diametrically opposite concentrated loads.

The quantity b, which is characteristic of the initial tangent to the post-buckling
load-deflection curve, is plotted in Fig. 4.19 (b) against X It can be seen that at
X>9.2, b is always positive.
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We show — according to the calculations of Fitch — the axisymmetric defor-
mation shape valid at the bifurcation critical load intensity QC= 13.28 for 2=11
in Fig. 4.21 (a), and in Fig. 4.21 (b) the asymmetric mode that bifurcates from the

@ 2

(b)

Fig. 4.21. Shapes of the axisymmetric deformation
and of the bifurcating asymmetric buckling mode for A= 11

former one. The diagrams show that at 2=11 the buckling mode extends to the
whole surface of the shell.

Fitch found that his results qualitatively agree with those of the model tests
reported on in the literature.

When uniformly distributing the load over a circular area of radius r (Fig. 4.22),
Fitch and Budiansky [4.9c] obtained for a built-in spherical cap with 2=12 (and
y=1/3) the results shown in Fig. 4.23. They introduced the notations:

(4.24)
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the ratio ofpcr, which acts over an area of radius r, to the linear (classical) critical
load pil of a complete sphere loaded by overall radial pressure (4.7); further the
geometric parameter, characteristic of the loaded surface:

l=m = + jj= . <4,25)

Figure 4.23 shows that up to 172, the buckling phenomenon does not differ
essentially from that under a concentrated load (1=0). That is, from the axisym-
metric deformation shape an asymmetric buckling mode bifurcates, and the post-
buckling load-deflection curve has a positive initial slope (&>0 in Fig. 4.23 (b)).

Fig. 4.22. Spherical cap under a load distributed over a small circular area

@

Fig. 4.23. Critical load intensity and initial post-buckling behaviour
of the spherical cap of Fig. 4.22 with A=12
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if the radius f of the loaded area is increased (2<1<4.8), the axysimmetric
load-deflection curve will have a peak, i.e. the shell will snap through before any
bifurcation occurs. Hence, the sudden drop of the critical load intensity at 1=2
is not due only to the change in the critical load parameter from Qo to pcr.

If 1 >4.8, bifurcation occurs before snapping, and at the same time the quantity
b characteristic of the initial tangent of the post-buckling load-deflection curve
becomes negative: the load bearing capacity becomes decreasing and the critical
load will depend on the initial imperfections.

The limit for a positive b can be written (with v= 1/3), by expressing 1
with the help of (4.25) by the radius f of the loaded area, as
f < J/Rt. (4.26)

In Fig. 4.24 we show the results of similar calculations by Fitch and Budiansky
for the limiting case k—°°. Since in the range 2<1<8 these results are very close
to those for A—12, we may consider the critical loads computed for °° as valid

(@)

Fig. 4.24. Critical load intensity and initial post-buckling
behaviour of the spherical cap of Fig. 4.22 with

for A=-12 also, provided 2<1<(n—4). In other words, in the range 12 the
boundary conditions practically do not affect the buckling process, provided the
distance between the edge of the loaded area and the shell edge is not less than 4L

The simultaneous action o f overall uniform loadp and a centrally applied concen-
trated load P on a clamped spherical cap was investigated by Loo and Evan-
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Iwanowski [4.25a]. Their results, also confirmed by experiments, are shown (for
v= 1/3) in Fig. 4.25. The interaction curves, pertaining to different values of the
geometric parameter A(4.11), represent those intensities of the concentrated and
distributed loads that cause buckling when acting together.

The left end points of the curves indicate the lower bounds for the uniform
load intensity p below which no concentrated load intensity can produce buckling
when acting simultaneously (i.e., the load-deformation curve will have no peak,

cf. Figs 4.20 (a) and (b)).

Fig. 4.25. Interaction curves of concentrated and
uniformly distributed loads acting on the spherical cap

4.3. Domes of Different Curvatures in Two Directions
(Elliptic Surfaces)

In engineering practice other than spherical domes over circular, elliptic, rectan-
gular, or polygonal plans are frequently used. Their mathematical treatment
involves great difficulties because of their variable curvature. Accordingly, many
less investigations have been made in this field than on spherical shells. In design
the formula

Per = CEjJf r a <4-27)

is frequently used. It may be considered as the generalization of that derived for
spherical shells, substituting the product ot the two main radiuses of curvatures
RiR-i for the square of the radius of the sphere, while the numerical value of the
constant c is assumed according to the explanation given for the sphere or on
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the basis of experiments [4.6], [4.29]. The experimental results of non-spherical
shells were plotted in Figs 4.2 and 4.3 accordingly.

In the following we investigate the validity of Eq. (4.27). The buckling of shells
with different principal curvatures was investigated by Duldcska [4.8] using the
linear shallow-shell theory. In addition to the ratio of the two radiuses of curva-
ture, he also varied the ratio of the compressive forces (u and n2 acting in the
directions of the principal curvatures. As a result, he obtained (with v=0.27)
the surface shown in Fig. 4.26, representing the critical load p,, perpendicular to

A] uiwuys positive

M always negative
(compression)

Fig. 4.26. Linear critical loads of doubly curved shells versus the ratios of the two radiuses of
principal curvatures and of the compressive stresses arising in these directions

the shell surface. The derivation disregarded the stiffening effect of the edges, so
that the results are valid only for shells which buckle in several waves, that is,
when the boundary conditions have little influence. Consequently, the shell
can also be regarded as shallow in the region of one buckle.

Figure 4.26 shows that the linear critical load of the sphere in the case of
nl=n2 assumes an extreme peak value as compared to other cases of n1"n2.
This also explains the great imperfection sensitivity of the radially compressed
sphere, i.e. its rapidly decreasing post-buckling load bearing capacity.

Figure 4.26 also shows that in using Eq. (4.27) we commit a slight error to the
detriment of safety with respect to the linear critical load. That is, Eq. (4.27)
may be represented by the straight line of Fig. 4.27. When keeping Rx constant
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and increasing R2from Rxto infinity, the (linear) critical load decreases from that
of the sphere to the value zero of the hydrostatically compressed (infinitely long)
cylinder. (The reason, why a zero value for porwas obtained, in contradistinction
to the finite values given by Eqgs (2.29), is that in the frame of the shallow-shell
theory an open cylindrical segment, having no edge stiffeners, was investigated.)
This corresponds to some section of Fig. 4.26 starting from the point characterized
by RYR2—\.0 and «a/«!=1.0. The direction of this section depends on the ratio
«a/«! valid for the cases RX<R 2. In any case, it will be a curve bulging downwards
as contrasted to the straight line of Fig. 4.27.

Fig. 4.27. Graphical representation of the approximate formula (4.27)

Figure 4.26 loses its validity at RYR2-"0 because in this case the buckle ceases
to be “local”, i.e. of limited dimensions, but expands as far as possible and will
be confined by the edges only. In these cases the critical load, in fact, does not
become zero, but it remains at least as great as that corresponding to the buckling
stress of a plain plate which has the same dimensions as the ground plan of the

r

Fig. 4.28. The investigated ellipsoid of revolution
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shell. The straight line of Fig. 4.27 will also not be valid as far as to zero. Its lower
limit ot validity is rather given by the horizontal straight line of the plate buckling.

On the basis of the linear theory, Hyman and Healey [4.15] computed the critical
hydrostatic pressure of the ellipsoid of revolution shown in Fig. 4.28, assuming
v=0.3. (They used the energy method requiring, in the framework of the linear
theory, the consideration of the second power terms of the displacement compo-
nents.) On the basis of experimental evidence they assumed that the buckling oc-
curs in the vicinity of the plane xy, so that they considered the shell as shallow
along the osculating circle with the radius R2, but they did not use this assumption
along the circle with radius Rx. Consequently, their derivation remained suffi-
ciently accurate in the case of T2—0 as well, despite the small circumferential wave
number along the circle Rt (as contrasted to the Donnell equations, cf. what was
said in Section 2.3). They confined their investigation only to n2ffi values arising
in the closed surface of revolution (Fig. 4.28) under hydrostatic pressure. These
compressive forces are in the vicinity of plane xy:

<4'28a)

= (4.28b)
their ratio being:
WS “29)
A2
while their shares in carrying the load are:
= (4.30a)
p2= (l-a)p = =~p. (4.30b)

J\2 N-lv2

Here a denotes the ratio of the load parts carried by internal forces in the two
principal directions.

The result of Hyman and Healey is very close to that of Dulacska computed for
ratio (4.29), see Fig. 4.26. The small difference is due to the afore-mentioned
circumstance that they did not consider the shell as shallow in the plane xy.
Hence, they obtained also in the case (hydrostatically compressed cylinder)
a finite critical load. Moreover, their critical load depends on the ratio ///?x
as well (when R19"R2).

Nonlinear buckling investigations of shells with different principal curvatures
were first carried out by van Koten and Haas [4.24]. They calculated the pj,°wer of
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the geometrically perfect shell, as interpreted in Fig. 1.4 (c), by using the Karrnan-
Tsien method (cf. also Fig. 4.4). For the value 1/2 of the load distribution factor a,
as defined by Eqs (4.30), they obtained the full line upper curve of Fig. 4.29.
Assuming RJR2=0.25 they calculated p|.>wor for other a-values too and found
them to be practically independent of a.

The Eq. (4.27), par considered as p&wer (with a constant factor c), is represented
by the slanting dashed line in Fig. 4.29.

To evaluate the results of van Koten and Haas we have to consider that, due
to calculation difficulties, they assumed the edge of the buckle to lie on a plane
ellipse. Thus, the geometry of the shell determines the ratio of minor and major
axes, so that only two free parameters remain: the extension and the amplitude
of the buckle. Due to these constraints it was not possible to allow for the distor-
tion of the buckle in the case of other a-values (other nZnlratios). Moreover, we
do not even know for which a-value the assumed buckle shape best approximates
to reality. Besides, for small ratios RJR 2 (with the limiting case of the hydrostati-
cally compressed cylinder), the antisymmetric buckling mode may also be onerous,
which was not considered in this procedure. Due to all these circumstances the
method yields a greater critical load than the actual one.

Fig. 4.29. Results of approximate post-critical analyses of shells having different curvatures in
the two principal directions
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Several other authors investigated the buckling problem of a geometrically
perfect elliptic paraboloid shell having different curvatures in two directions. Bu-
ciiért [4.2a] and, moreover, Dostanova and Raizer [4.7a], obtained results that lie
in the range 0.5"RJR2": 1.0, between Eq. (4.27) and those of van Koten and
Haas. Chien and Lien [4.5a] assumed an ellipse-shaped buckle, and in addition,
complete preventing of displacement and rotation along the boundary of the
buckle. Using the Galerkin method, they obtained, in the range 0.5<7?1/?a< 1.0,
results which osculate that given by Eq. (4.27). Dulacska [9.1.1] approximated
the buckling surface by two arches crossing each other and, using the energy
method, arrived at the following expression for the critical load:

p'cerr = Et2(-L, +-1.) . (4.31)

All these results are plotted in Fig. 4.29.

The investigation showed that the curve describing the post-buckling behaviour
lies higher than the slanting straight line of constant c. This contradicts the
explanation given to Fig. 4.26. This apparent contradiction was eliminated by
the more detailed investigation of the post-buckling behaviour of the hydrostati-
cally loaded ellipsoid of revolution shown in Fig. 4.28, carried out by Danielson
4.7] by the method of Koiter. In this case, the values of a corresponding to differ-
ent Ri/R2ratios are defined by Eqgs (4.30), yielding a=1/2 for RI=R2. Danielson
found the sphere (RYR2=1) to be most sensitive to initial imperfections: its post-
buckling load bearing curve drops most abruptly (see Fig. 4.4). This sensitivity
to imperfections decreases when the ratio RJR2 differs from unity, and it soon
approaches the behaviour of the hydrostatically compressed infinitely long
cylinder (R2-*°°) characterized by Fig. 11 (a). This phenomenon is in accordance
with Fig. 4.26 too: the peak value of the linear critical load in the case of RX=R2
(and "= « 2 explains the great sensitivity to imperfections. (The phenomenon is
similar to the behaviour of the axially compressed cylinder as outlined in connec-
tion with Fig. 2.9.)

In summary, we may consider Eq. (4.27) applicable for practical purposes in
the range 0.5<RJR2< 1.0. However, in the range O*RJR"O S we may use
Eqg. (4.27) with the value corresponding to RY¥R2=0.5. Due to the approxi-
mations in the methods presented, along with the fact that the computa-
tion of Danielson refers to a single value a for every RJR 2ratio, it seems expedient
to assume a safety factor somewhat greater than usual if the parameters of the
shell in question differ from those assumed in the above mentioned investigations.
This increased safety factor may be reduced in the future if more exact investiga-
tions determine /~*pper for every RJR2and a.



5. Stability Problems of Shells
with Negative Gaussian Curvature
(Hyperbolic Shells)

Hyperbolic paraboloid (“hypar”) shells are frequently used as roofs supported
either along its generatrices (see Fig. 5.4) or along its lines of principal curvatures
(“saddle-shaped” shell, Fig. 5.1). Hyperbolic shells of revolution are mostly used
as cooling towers (see Fig. 5.14). Since this kind of shell is prone to develop inex-
tensional deformation, which may influence its stability, we have to deal briefly
with this phenomenon as well.

5.1. Inextensional Deformation of Hyperbolic Shells

Certain hyperbolic shells are able to develop inextensional deformation under
boundary conditions that would ensure rigidity in the case of other kinds of shells.
(The inextensional deformation consists of bending and twist only, so that merely
the bending and twisting rigidities of the shell play a part, the extensional ones are
of no importance.) Vlaszov [5.32] showed interesting examples of this phenomenon.
The theory of inextensional deformations was developed for the saddle-shaped
hypar by Geyling [5.7], [5.8]. His results can be summed up as follows:

If a saddle-shaped hypar is supported by diaphragms which are rigid only in
their own plane while perpendicularly to it they are entirely soft (Fig. 5.1), then
the shell is capable of developing inextensional deformation in every case when,
starting from an edge point, we can return to the same point after proceeding
along a finite number of straight generatrices joining each other (Fig. 5.2). The

Fig. 5.1. Saddle-shaped hyperbolic paraboloid
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Fig. 5.2. Inextensional deformation of the saddle-shaped hypar

more times we have to go round before returning, the smaller are the wavelengths
with which the shell has to develop the inextensional deformation. With decreas-
ing wavelengths, on the one hand the bending rigidities of the shell hinder this
deformation more and more, and, on the other hand, the wavelengths become
much smaller than those of the buckling shape, and consequently they become
less and less onerous.

However, if the shell has the shape shown in Fig. 5.2, where a hypar with two
rows of straight generatrices perpendicular in ground plan is depicted, then the
inextensional deformation comes about with large wavelengths, i.e. the shell
becomes very “soft”. Since it is this type of hypar that is able to carry uniform
load with membrane forces only, without exerting horizontal thrust at the supports
[2.17], [2.35], and that is readily used in engineering practice, the significance of
the problem is not purely theoretical.

The inextensional deformation consists theoretically of the sum of two cylindri-
cal deformation surfaces parallel to the straight generatrices (Fig. 5.2 (a)). The
curves wland wilhence represent two surfaces that have constant ordinates along
one row of generatrices. Their sum produces the total inextensional deformation
shown in Fig. 5.2 (b). As can be seen, this is a “reticulated” deformation pattern
with ordinates w= 0 along the edges.

Now, if such an inextensional deformation coincides with the buckling mode of
the shell, its critical load — or more exactly the system of internal forces caused by
this load — corresponds to that of a flat plate of the same ground plan buckling
in the same mode.

This inextensional deformation requires horizontal displacements along the
edges of the saddle-shaped hypar (see Fig. 5.1). These displacements are compat-
ible with the diaphragms described earlier.

The hypar confined as shown in Fig. 5.4 behaves quite differently. It can
be considered as the internal part of the shell in Fig. 5.2, bounded by straight

7 Buckling of Shells
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generatrices. It can be seen that the inextensional deformation of Fig. 5.2 (b)
does not furnish w=0 along the edge-generatrices. Hence, if the supports do not
permit any displacement w, no inextensional deformation can develop. This reason-
ing is in agreement with the theoretical and experimental results to be presented
in Section 5.2 that disregard inextensional deformation completely.

The hyperboloid of revolution [5.18], [5.27], [5.32] shows essentially the same
behaviour as the saddle-shaped shell. If only the radial displacements of both edges
are prevented, i.e. the shell is connected to upper and lower horizontal dia-
phragms, rigid only in their own planes, by hinges, then the shell is capable of
performing inextensional deformation in every case when, starting from an edge
point, we can return to the same point after travelling along a sequence of straight
generatrices of finite number.

The condition for the possibility of inextensional deformation can be expressed,
according to Vlaszov [5.32], by the following equation:

L (&+W mn (5.12)
/(BYM (/>4M n’

where

(5.1b)

Here m is the number of the half buckling waves in the meridionaldirection, while
n denotes the number of the circumferential full bucklingwaves.Obviously, ms 1
and 2, and both of them can only be whole numbers. The other notations are
explained in Fig. 5.14.

If we support the hyperboloid of revolution at one of its edges only, but here
prevent two displacement components, then no inexetensional deformation can
occur [5.27]. However, a “nearly-inextensional” deformation (i.e., large deforma-
tion of the entire shell connected with small specific elongations and distortions)
may develop, which renders the shell more sensitive to the small deformations of
the not entirely rigid supporting structure [5.18].

Finally we should remark that, due to the possibility of inextensional deforma-
tion, the rigidity of the shell is provided mainly by the bending stiffness of the
shell wall, while the role of the tensile (membrane) stiffnesses is negligible. In
shell structures with no inextensional deformation, the decreasing post-buckling
load bearing capacity is mostly caused by the decrease of the membrane stiffnesses
due to the change in curvatures. However, if there is no active membrane stiffness,
there is nothing to decrease, so that the load-bearing capacity of the structure will
remain constant or will even be increasing.

This phenomenon is illustrated in Fig. 5.3, which shows the results obtained by
Hutchinson for toroidal shells [5.12]. The factor a, which depends on the geometric
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Fig. 5.3. Post-critical behaviour of a hyperbolic shell of revolution

ratios, characterizes the increasing or decreasing character of the post-buckling
behaviour. The results shown in Fig. 5.3 suggest that in the range H 2R0t> 100
such shells practically do not exhibit a decreasing post-buckling load bearing
capacity.

5.2. Buckling Caused
by Uniform Load of a Hyperbolic Paraboloid
Supported along the Generatrices

Ifa hyperbolic paraboloid (hypar) supported along its four generatrices (Fig. 5.4)
is subjected to a vertical load p uniformly distributed in ground plan, there arise,
according to the membrane theory, only shearing forces of constant magnitude
over the whole shell surface. The buckling of such a shell was investigated on the

Fig. 5.4. Hypar shell over a rectangular ground plan supported along its generatrices
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basis of the linear theory, assuming hinged edges and shallowness of the surface.
Ralston [5.28] considered a hypar over a square ground plan (Lx=LY) and, assum-
ing a series of seventeen terms for the buckling deformation w, arrived at the
following result:

P 2Et2

R ~sblyuly 52

Here Qis a festoon curve, which we have plotted againstfjt (for v=0.3) in Fig.
55 (a), omitting some rather dense “slings”. It can be seen that the lower envelope
(tangent) of the festoon curve gives =\ from about ¢/t~ 25 on. This lower
tangent can be obtained also in a very simple way, see [2.12].

La Tegola [5.22] arrived at the same result as Ralston.

(b)

Fig. 5.5. (a) - Coefficient of the critical load of the hypar shell shown in Fig. 5.4,
(b) - Changeover of the critical shearing stress of the hypar into that of a flat plate
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The transition into a plane plate (/-* 0) can be represented clearly if we plot the
critical shearing stress xor instead of the critical load againstft. The membrane
theory of shells yields (see, e.g., [2.17a]):

LxLy

> (5.3a)

My =P
Thus (Lx=Ly):

Vlt) LI P%T_\/Z) (5:3b)

The product factor gf/t was plotted in Fig. 5.5 (b) (substituting the lower tangent
for the festoon curve of gfromf\t=25 on). The value ef/t= 14 at/=0 corresponds
to the critical shearing stress of a square plate with hinged edges [2.51]. With
increasing curvature of the shell (i.e. with increasing/) xcr first slowly, then more
and more rapidly, augments until atf t = 25 it osculates the straight line pertaining
to Q=1 This may be interpreted as indicating that the critical stress is provided
by the bending stiffness alone if the shell is very shallow, while with increasing
curvature the tensile stiffness plays a greater and greater role, raising xa to the
value given by the straight line g=1

The quantity L?Jfin Eq. (5.3b) is equal to the main radius of curvature R of
the hypar over a square ground plan (see Fig. 5.4). When considering that in our
case of pure shear the shearing stress x is equal to the principal compressive stress
ax acting along the principal curvature line, in the case of g= I, Eq. (5.3b) turns
into the expression

Et

; . 5.4
/3(1-V IR 4

This formula is identical with Eq. (2.13), valid for the axially compressed cylinder.

Leone and Wang [5.23b] took into consideration that due to bending and edge
effects the shearing force is not exactly uniform all over the shell and that in
the edge zones other internal forces also arise. They obtained slightly greater
critical loads than Eq. (5.2). Consequently, in using Ralston’s result we remain on
the safe side.

Experiments on hypars supported along the generatrices [5.23], [5.23b] showed
that while the buckles are short in the direction of the principal compressive stress,
they extend to the edges parallel to the principal tensile stress (Fig. 5.6). The shell
models generally buckled at about 70% of the computed linear critical load (5.2).
Lower buckling loads were observed only on shells with weak edge beams. All
this is similar to the cylinders subjected to lateral pressure or to torsion: they also
have similar ratios of experimental to theoretical linear critical loads.

The experimental shells generally showed an increasing post-buckling load
bearing capacity. This can be explained physically by considering the tensioned
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Direction of principal
tensile stress

Fig. 5.6. Buckling shape of the hypar shown in Fig. 5.4

Fig. 5.7. Hypar over a skew ground plan supported along its generatrices

strip connecting the corner points A and C (see Fig. 5.6) as suspending the buckling
compressed strips. This effect obviously depends on the extent to which the corner
points may be considered as rigidly supported against horizontal displacement.
It also depends on the horizontal bending stiffness of the edge beams since it is
more favourable for the shell if it is suspended by the other tensioned strips
in addition to AC.

Hauptenbuchner [5.10a] generalized Ralston’s result (5.2) for hypars with
unequal side lengths and for skew ground plan (Fig. 5.7). She obtained for the
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linear critical load:

P Z_Ef' (1 + cot200) (5.5)
Per s alNe 1/3(i _y2
where g means a festoon curve again, which has for greater fit ratios the lower
tangent 1.0, while the shape of the curve and its starting point at/=0 (see Fig.
55 (a)) depend on the ratio b/a and on the angle o (see Fig. 5.7). Since
abl\ 1+ cot2c is equal to the ground plan area of the shell, Eq. (5.5) states
that pa is inversely proportional to the square of the shell ground plan area.

Hauptenbuchner’s model tests [5.10a] showed the same trends as those of
Leet [5.23], described earlier: they buckled mostly at load values between 60%
and 70% of the linear critical load intensity (5.5). The experimental load-deflec-
tion curves of Hauptenbuchner exhibited an ascending post-buckling load bearing
capacity, and were similar to the dashed lines of Fig. 1.1 (b). Hence, the values of
the experimental buckling loads could only be determined with some uncertainty.
This statement also holds for the experimental results of Leet [5.23].

One additional remark seems to be necessary here. Hyperbolic paraboloid shells
on skew parallelogram ground plans are free from normal forces along their
straight generatrices only if their edges are free to move horizontally (perpendicu-
larly to their directions). Since in most cases this condition is not fulfilled, in the
case o< 90° compressive forces, and in the case cu>90° tensile forces, develop
along the generatrices, which may influence the onset of buckling. This
phenomenon needs further investigation.

5.3. Buckling of Saddle-Shaped Hyperbolic Paraboloid Shells
under Uniform Load

The equation for the linear critical load of the saddle-shaped hypar shell (Fig.
5.8) was first derived by Apeland [5.1a], who applied Reissner’s general solu-
tion for shallow shells [5.29] to this particular case. He assumed in his solution
a membrane stress state that exerts lateral thrust in two directions and complies
with the compatibility requirements. Gioncu and lvan [5.9] determined minimum
critical loads from Apeland’s equation, assuming that the shell buckles in many short
waves along the x direction shown in Fig. 5.8. He thus found that the critical
load of the saddle-shaped shell is equal to that of a hypar supported along its
generatrices and having the same principal curvatures as the saddle-shaped shell.

However, the saddle-shaped hypar is used in practice mostly as a shell without
lateral thrust, and, moreover the buckling shape may not have many waves in the
X direction either.
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Yy

Fig. 5.8. Notations for the saddle-shaped hypar

Let us first suppose that the saddle-shaped shell carries the uniform load p
as an arch in the x direction, i.e. by forces nxonly. The corresponding support con-
ditions are: vertical diaphragms rigid only in their planes along the edges y =
=+LylI2, and rigid support along the edges x=+LJ2. (Strictly speaking, the
membrane stress state associated with these boundary conditions is statically
indeterminate. However, numerical investigations with the aid of the bending
theory showed that the shell carries at least 98% of the uniform load by membrane
forces nx, so that the arch-like action can be considered as a good approximation.)
For this case the linear critical load was determined in [5.5a]. The result is:

pun —r Et2 ,, 64Et*fafb
“ ~ “RIR, L\L%
The values of the factor cxare compiled in Table 5.1 for various geometric ratios.
They vyield critical loads that are about one third of those obtained by Gioncu.
The stability problem of the saddle-shaped hypar supported by diaphragms
which cannot withstand lateral forces was first clarified for the range 1~ fjfb*4
by Janko in four papers [5.13], [5.14], [5.15], [5.15a]. In the first paper [5.13] he
found that the shell carries the load up to fjfb=15 predominantly by bending,
so that there is no question of buckling. The range 1.5< fjfb<2.0 is a transitory
zone, and, from fjfb* 2.0 on, the shell is capable of carrying the load predom-
inantly by membrane forces without exerting lateral thrust on the edges. Hence
the stability problem has to be investigated in the range 2.0"/o//bs4.0
In his second paper Janké [5.14] determined the linear critical load of the geo-
metrically perfect shell which does not exert lateral thrust on the edges. He took
into consideration in the x direction at most nine terms, in the y direction at most
three terms, of the series for the buckling shape and used the Galerkin method.
In Fig. 5.9 we show the variation of the critical load as a function of the ratio
falfb for a chosen set of geometric parameters.
Jankd [5.14], [15.5a] compiled tables and diagrams for the easy computation of
the critical loads of shells with geometric ratios occurring in practice. We present
his results in an abridged form in Table 5.2. For the so-called “normal” shell

(5.6)
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Table 5.2

Values of the factor c2 of the linear critical load of saddle-shaped hypar shells according to Jank¢ [5.15a]

sfjt 80 160 240 320
LJLy - 1.0 2.0 2.5 3.0 1.0 2.0 2.5 3.0 1.0 2.0 25 3.0 1.0 2X) 3jtT~
/_Il,,= 1.50 0.081 0.084 0.082 0.090 0.062 0.065 0.069 0.077 0.066 0.071 0.068 0.069 0.076 0.074 0.076 0.071
1.75 0.090 0.090 0.110 0.140 0.058 0.059 0.064 0.074 0.054 0.055 0.056 0.060 0.056 0.058 0.056 0.057
2.00 0.096 0.093 0.112 0.140 0.054 0.052 0.060 0.072 0.041 0.040 0.044 0.051 0.036 0.035 0.038 0.042
2.25 0.103 0.098 0.117 0.142 0.054 0.051 0.062 0.075 0.037 0.035 0.041 0.050 0.028 0.026 0.031 0.038
2.50 0.114 0.106 0.123 0.146 0.065 0.061 0.071 0.085 0.050 0.048 0.054 0.062 0.044 0.043 0.046 0.051
2.75 0.119 0.114 0.131 0.149 0.087 0.085 0.091 0.101 0.080 0.083 0.084 0.087 0.084 0.089 0.086 0.085
3.00 0.099 0.119 0.119 0.115 0.113 0.105 0.106 0.109 0.105 0.111 0.109 0.107 0.105 0.125 0.122 0.117
3.25 0.081 0.087 0.087 0.087 0.093 0.092 0.093 0.098 0.092 0.086 0.087 0.088 0.086 0.090 0.090 0.088
3.50 0.067 0.061 0.062 0.065 0.060 0.071 0.070 0.066 0.070 0.067 0.069 0.072 0.071 0.063 0.064 0.065
3.75 0.058 0.045 0.046 0.050 0.038 0.034 0.034 0.035 0.034 0.035 0.034 0.034 0.033 0.039 0.038 0.036
4.00 0.057 0.040 0.042 0.047 0.031 0.021 0.022 0.024 0.022 0.014 0.015 0.017 0.016 0.011 0.011 0.012
*
pet" = &2 'ﬂ' 2 <*1.>
RJIRy\ Q LiL1
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Fig. 5.9. Linear critical load of a saddle-shaped hypar exerting no lateral thrust

with the geometric ratio/,,//j,=4 [5.1] we set up, on the basis of the diagrams of
Jankoé, an approximate formula suitable for preliminary calculations:

PCT(fjfb=s) yi n L (5.7)
The investigations of Janké also showed that the shell does not buckle exactly in
the form of an inextensional deformation: this latter is rather completed by some
additional extensional terms. However, the dominant term of the buckling shape
is always an inextensional one pertaining to some adjecent ratio fjfb, i.e. to
/,,/N=9/4 otfjfb=4.

As can be seen from Fig. 5.9, in the range 2.5 fjf* 4 the critical load is always
greater than or equal to that of the “normal” shell with the ratio fjfb=4. Since
the buckling shape of this latter is almost exactly inextensional, its critical load
represents a “lower critical load” for other shells with different fjfb ratios, as
defined in Fig. 1.4 (c), and may thus be regarded as a lower bound for the critical
loads of shells of other geometric parameters and with initial imperfections as
well as for the critical loads bifurcating from the deformed shape.

Figure 5.9 also shows that the critical load has a peak value at aboutfjfb=3.
Hence these shells have a high critical load but they also are rather sensitive to
initial imperfections, since a small deviation in the geometric data of the surface
results in a sharp drop in the critical load.

In his third paper Jankd [5.15], investigated the behaviour of the perfect shell,
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P L,/t =200
(E10¢) hiLy -01 f/fb=b

Fig. 5.10. Load-deflection curve of a saddle-shaped hypar in the case of snapping

Fig. 5.11. Comparison of the linear critical load, the snapping load, and the critical load causing
bifurcation from the deformation leading to snapping of a saddle-shaped hypar
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and of the shell deformed by a uniform load, with the nonlinear theory, assuming
a buckling shape with two free parameters. According to his findings, the saddle-
shaped shell is also prone to snapping but the pertaining critical load is in most
cases several times greater than the linear critical load (causing bifurcation).
The snapping diagram of the “normal” shell with the geometric ratios as indicated
in Fig. 5.9 is shown in Fig. 5.10.

It is also possible that bifurcation occurs from the deformed shape. In the range
investigated (1.5"fjfbs4), this bifurcating critical load p*rarc is mostly lower
than the linear critical load (calculated with an undeformed shape). The result
of one of Jankd’s examples is shown in Fig. 5.11. The difference between the two
critical loads is, in this case, about 10%, but in other cases this may be more.

Janko finally investigated whether the character of the load bearing capacity
after bifurcation from the deformed shape is increasing or decreasing. He found
in the cases / a/f>3 a slightly increasing character, and in the cases /,//(,-=3 a
decreasing one. In his fourth paper [5.15a] he improved the accuracy of his
previous results by using a more refined calculation.

Unfortunately, his method was not suitable to determine the lower critical load
of the perfect shell, or the dependence of the upper critical load on the initial
imperfection.

5.4. Buckling of Hyperbolic Shells of Revolution

Among the hyperbolic shells of revolution the simplest one is the hyperboloid
of revolution. This surface can be generated by rotating a pair of hyperbolas
around their axis of symmetry which does not intersect them. The inextensional
deformation of this surface was treated in Section 5.1. However, hyperbolic sur-
faces of revolution may also be generated by rotating, e.g., a parabola or any other
curve around the axis.

Hyperbolic shells are mostly used as cooling towers and are made, as a rule,
of reinforced concrete. The dimensions of the cooling towers increased steadily
increasing for years without their stability problem being thoroughly investigated.
After the collapse of three cooling towers at Ferry-bridge in 1965, the research in-
to the stability of hpyerbolic shells of revolution began. Due to the comparatively
short time that has elapsed since then and to the intricacy ofthe problem, we cannot
expect an exhaustive and easy-to-survey treatment of the subject, so that there is
some uncertainty in the determination of the critical loads of such shells. For
example the results of the research, due to difficulties in the investigations, are
exactly valid only for certain simplified boundary conditions (e.g. rigidly supported
hinged lower edge). There are hardly any results to be found for an elastically
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supported bottom edge, which is the actual boundary condition of the cooling
towers.

Because of the more intricate nature of the elastic support, it seems feasible to
use the two simple extreme cases as upper and lower bounds: entirely prevented
and totally free displacements in meridian direction. However, some caution
in necessary here. If the geometric ratio makes an inextensional deformation
possible, and we apply hinged top and bottom diaphragms rigid only in their
planes (i.e. allowing totally free displacements in meridian direction), these
will not hinder the inextensional deformation and we obtain an unrealistically
low critical load. By hindering the displacement of such shells in the meridional
direction we may markedly increase the critical load, because by so doing we
hinder the inextensional deformation.

Several older papers on model tests did not mention the support conditions
applied in the experiments. Their results often differ considerably from each other.
It thus seems probable that the discrepancy could be explained by the differences
in the kinds of support. Another possible explanation is that when investigating
experimentally the compression in the meridian direction, the results concerning
the general and the local buckling were not separated, so that these results could
have appeared mixed.

In recent years rather accurate computer calculations have been developed for
the determination of the critical load. Lehmk&mper [5.23a] calculated the critical
loads of cooling tower shells with various dimensions and stiffening ribs for
several loading cases. Veronda and Weingarten performed computer calculations
on shells previously tested experimentally, taking the actual boundary conditions
into account, and they found a rather close agreement [5.31]. These investigations
included several loading cases and different boundary conditions. For the ratio
of the experimental to the calculated critical load the following mean values and
variational coefficients (i.e. standard deviations divided by the mean values)
were obtained:

— vertical load:  0.96 (0.10),

— lateral pressure: 1.04 (0.12).

Unfortunately, not every engineer has access to the afore-mentioned computer
calculations. Moreover, it will take a long time before, on the basis of numerical
examples calculated by the exact computer programmes, practical recommenda-
tions can be set up. Hence, it seems necessary to present some less accurate but
easy-to-use results and methods obtained by more simple means.

Since the buckling problems of hyperbolic shells of revolution can by no
means be regarded as definitely solved — indeed for certain cases there are no
theoretical results at all — the experiments are even more important for the design
than usual.



5.4. Hyperbolic Shells of Revolution 111

5.4.1. Loads, Boundary Conditions and Buckling Modes of
Hyperbolic Shells of Revolution

There are two dominant kinds of loads acting on hyperbolic cooling towers:
their own weight and wind pressure. Both loads cause both meridian-directed
and hoop stresses, as contrasted to cylinders with vertical axis where their own
weight does not cause any hoop stresses. Hence, the influence of both stresses on
buckling should be investigated simultaneously. Since, however, it is much simpler
to deal separately with the two kinds of stresses, following Kratzig [5.20] we shall
deal separately with the two basic loading cases shown in Fig. 5.12. In case (a)
no stress arises in the meridian direction, while in case (b) there are no hoop
stresses. We shall denote the critical hoop force pertaining to case (a) with u®cr,
while the critical meridian force of case (b) will be called rfx cr. The superscript
“zero” refers in each case to the zero value of the other normal force.

The theoretical and experimental investigations [5.26], [5.31] definitely showed
that in the case of simultaneous action of both normal forces the condition of
stability can be expressed (slightly to the benefit of safety) by the Dunkerley
theorem:

JIx,cr Jy,cr

The boundary conditions at the upper and lower edges of the hyperbolic shell, to
be used in stability investigations, depend on the structural solution of the cool-
ing tower, and are as follows:

(a) ()

Fig. 5.12. The “pure” circumferential compression and the “pure”
meridian-directed compression of a hyperbolic shell of revolution
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At the upper edge mostly a stiffening ring is applied, due to which the following
boundary conditions apply for the buckling of the shell: w=d2v/dx2=v=nx=0.
During erection (and also in the case of smaller towers) there is no stiffening
ring, so that the boundary conditions become:

d2w/dx2 = d3w/dx3= nx —nxy = 0.

At the lower edge, in most cases, also a stiffening ring is applied, sometimes realized
by the thickening of the shell wall. The ring or the lower edge is mostly supported
by a truss resting on the soil, through which the cooling air can stream into the
tower. The compression of this truss and the subsidence of the foundation act as
elastic support for the shell. Moreover, if the foundation is light, it may also lift
from the soil along a certain section.

If we assume a hinged joint, the boundary conditions of the lower edge can be
written as follows:
w=VvV=0, d2w/dx2= 0,
and

Thdl  “supporte

(It should be noted that, due to the lower stiffening ring, it is irrelevant whether
we denote by u the displacement in the vertical or in the meridional direction.)
If the vertical stiffness of the foundation and of the truss can be considered
infinitely great, then «wupport =0- On the other hand, if the foundation may lift,
then along this section we have to set nx—0 instead of the restriction for u.
Hyperbolic shells have four characteristic buckling modes.
In the case of a free upper edge, the specific distribution of the wind pressure

@) () © ©)
Free-edge buckling Local (diamond) Axisymmetric Overall buckling
buckling buckling

Fig. 5.13. The buckling modes of the hyperbolic shells of revolution
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may cause a buckling pattern shown in Fig. 5.13 (a), which we shall call free-edge
buckling.

The meridian-directed forces may cause local buckling in a diamond-shaped
pattern shown in Fig. 5.13 (b). This phenomenon is similar to the buckling of
cylinders under axial compression. The boundary conditions (even comparatively
weak edge supports) do not influence this buckling mode, as a rule, since in the
vicinity of the upper edge ring the meridian-directed forces are small so that they
cause no local buckling here, while near the lower edge the usual thickening of the
shell wall prevents local buckling.

The meridian-directed forces may also cause an axisymmetric buckling shown
in Fig. 5.13 (c), which is again similar to the case of the axially compressed cylinder.

Finally, a reticulated buckling pattern, extending to the entire surface, has to
be mentioned, which we call overall buckling (Fig. 5.13 (d)). This buckling mode
is markedly influenced by the boundary conditions.

In the following we shall treat, in turn, the critical loads pertaining to each buck-
ling mode. The notations are explained in Fig. 5.14.

Fig. 5.14. Elevation of a hyperbolic shell of revolution. Notations

8 Buckling of Shells



].].4 5. Hyperbolic Shells

5.4.2. Free-Edge Buckling

The buckling of the free edge is caused by the lateral pressure of the wind. It
may be onerous during erection when the strength of the concrete is still low and
the upper stiffening ring is not yet built.

Most authors set up the following formula for the critical wind pressure (i.e.

the maximum pressure value of the circumferential distribution of the wind
load):

(5.9)

where ROis the throat radius, B and T are the bending and tensile stiffnesses of the
shell wall, respectively. For the factor C they suggest values on the basis of model
tests, depending on the geometric ratios (principal curvatures and height to throat
radius) of the shell:

Der and Fidler [5.4]: C=0.060~ 0.077;
Walther and Wélfel [5.33]:

— taking extreme cases into account: C =0.048—0.309;
— considering practical cases only: C=0.072—0.220.

The discrepancies between these values are caused by the various support condi-
tions of the lower edge and by the different geometric ratios of the shell.

Cole, Abel and Billington [5.2], [5.3], and also Walther and Wolfel [5.33],
investigated by more exact computer calculations the influence of various factors
and compared their results with those of several other authors [5.21], [5.31],
[5.36].

Their findings are:

(a) If the shell has a free upper edge without any stiffening ring, the wind
pressure causes buckling on the upper section of the shell. Besides the weakness of
the free edge, there is the additional reason that in the upper section of the tower
an increased local internal wind suction develops, due to the vortices caused by
the free edge.

A stiffening ring applied on the upper edge eliminates the free-edge buckling,
and the wind pressure becomes onerous for the overall buckling. In such cases
the wind-induced buckling bulges in the middle part or in the lower half of the
tower. The upper stiffening ring thus increases the critical wind load of the shell
with constant wall thickness by about 10—20%. If the wall thickness of a shell
with upper stiffening ring is increased towards the bottom along the lower half
of the shell by up to 3 or 4 times, as is usual in cooling tower practice, the critical
wind pressure augments by about 50—100% as compared to the shell with constant
wall thickness.
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(b) As compared with the uniform lateral pressure, the actual wind pressure
distribution causes an increase of 20~30% in the critical load (referred to the peak
value of the wind pressure).

(c) Constant wind profile along the height reduces the critical pressure by
about 20% as compared with the maximum intensity of the actual wind profile,
increasing upwards.

(d) The interaction of the horizontal wind pressure p and of the vertical own
weight g can be closely approximated by the straight line of Dunkerley:

(5.10)

(e)  The factor C in Eq. (5.9) depends on the ratio of the two radiuses of curva-
ture of the shell. In the case of a rigid lower support (w=0), the value of C may
be computed from the relation:

(5.11)

which was obtained by approximating the results of numerical examples in the
range 0.05-= 0.25. Here Rx denotes the radius of curvature of the meridian
line at the halfway height of the shell according to Eq. (5.19), while Ry s the hori-
zontal radius of the shell at the same height (see Fig. 5.14).

If the support is elastic (MheU=wsupport), the value of C yielded by Eq. (5.11) has
to be multiplied by a factor x depending on the elasticity of the foundation. This
latter is characterized by the expression ksRQ'(Et), with ksas the spring constant of
the support of the lower shell edge in vertical direction and E as the modulus of
elasticity of the shell material. The factor x is given by the diagram of Fig. 5.15,
obtained by fitting a curve on the x values of numerical examples. In these latter
the ratio ofpar for Is=0 (no hindering of vertical displacement) to that for ks="°°
(rigid support) was equal to 1/6. Taking this value into account, the curve of Fig.
5.15 can be approximated by the relation:

1= '-Pcr(fc5— °)]1 3|]€Lo ' (512

s Et

()] Evaluation of some experimental results [5.33] showed a dependence of the
critical load on the ratio of the shell height H to the throat radius R0. When the
ratio H/ROis decreased from 4 to 2 or 1, the critical load increases to two or three
times its value. However, the experiments which were in good agreement with the
exact computer calculations [5.31] did not show such a dependence. The explana-

8
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Fig. 5.15. The diminishing effect of the elastic foundation on
the linear critical load of the hyperbolic shell of revolution

tion of this phenomenon is that H/RO can also be expressed by RjRy, so that
Eg. (5.11) automatically contains this dependence, too.

(@9  Hyperbolic surfaces are much less sensitive to initial imperfections than
elliptic ones. This follows from the fact that the lower critical load of the geometri-
cally perfect shell (computed by the nonlinear theory) is only slightly less than the
linear critical load.

As an explanation for this phenomenon we have to consider that the nonlinear
theory may cause a considerable deviation from the linear critical load only if the
membrane stiffnesses constitute a great part of the buckling resistance. Due to the
propensity of hyperbolic shells to inextensional deformation, their membrane
stiffnesses play only a minor role and their critical load is comparatively low, but
— as with what has been said in connection with Fig. 2.9 — their imperfection-
sensitivity is also small (or even absent in some cases).

5.4.3. Local Buckling

The compressive forces acting in meridian direction also cause hoop forces
in a hyperbolic shell of revolution, so that its critical load is less than that of a
substituting cylinder with the radius R equal to Ry of the hyperbolic shell (see
Fig. 5.14), see [5.24].
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According to the investigations of Rosemeier [5.30], the critical loads computed
on the replacement cylinder can be used for the hyperbolic shell of revolution
provided they are multiplied by the reduction factor:

L ' (5'13)
Rx and Ry being defined in Fig. 5.14.
Thus, we arrive at the following results:

k- o= 06 EL (514)
Xa 1+RyRxRy’ P
= jAR R (cylinder), (5.15)
«5BIM=y+ & jr WBF(cylinder). (5.16)

In practical cases, the local buckling analysis has to be carried out at various
heights, since the wall thickness as well as the stresses vary along the height.

5.4.4. Axisymmetric Buckling

Axisymmetric buckling was investigated by Kohli [5.17]. He derived for the
critical value of the meridian force the expression:
Ff-
nx,or= X— . (5.17)
Ky
For Ry see Fig. 5.14. The factor A has the value 0.96—0.93 for shells with an
upper stiffening ring and 0.46—0.43 for unstiffened shells. The higher A-values
were obtained for the linear critical load while the lower values give the lower
critical load (of the geometrically perfect shell) obtained by the nonlinear theory.
Since these values exceed those of the other buckling modes, axisymmetric
buckling, as a rule, need not be investigated.
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5.4.5. Overall Buckling

The linear critical load of the overall buckling, which extends to the entire

surface, is usually described by the following formula, similar to Eq. (5.17):
Ft2

nx,cr=A— , (5.18)

y
Ry being shown in Fig. 5.14.

For the factor 4, various researchers obtained different results from the evalu-
ation of model tests:

Krétzig [5.19]: $=0.079
Rosemeier [5.30]: A=0.07~0.10
Der and Fidler [5.4]: #=0.18
Wianeczki [5.34]: A=0.12
Mateja [5.25]: A=0.24~0.27

The lowest value among the above results is only one fourth of the highest one.
As possible reasons for these discrepancies we may mention the different
geometric ratios and boundary conditions occurring in the model tests and
computations of the various authors.
Krétzig [5.20] calculated numerical tables, from which we can establish the
following expression for #:

A= 0.13 ~ 1.85)j/Z ,

His tables make it possibly to compute the values of and separately,
as functions of the ratio throat to lower radii RORi and of the dimensionless
height factor £,, see Fig. 5.14. (The definitions of and nX%¥° are to be found
in Section 5.4.1.) Unfortunately, these tables do not allow the influence of the
dimensions of the upper part of the tower (above the throat) and of the ratio
Ryt to be properly taken into account. The critical loads computed by these
tables give results that are 30~50% higher than those obtained by exact computa-
tions confirmed by model tests [5.31]. Due to all these circumstances, we now pre-
sent, on the basis of [5.6], the results of an approximate method which takes
into consideration the influence of the geometric parameters. The main point
of the approximation is that the investigation is carried out on a hyperbolic
paraboloid shell by which we replace the hyperbolic shell of revolution in question.
Since the hypar is a translational surface and, therefore, has no twist, it is less
rigid than the hyperbolic shell of revolution, and has a somewhat lower critical
load, which is, however, much easier to determine.

The replacement hypar is shown in Fig. 5.16. Its radius of curvature in they
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Fig. 5.16. The substituting hyperbolic paraboloid

direction Ry is assumed to be equal to the horizontal radius Ry of the shell of
revolution at its half way height, i.e. at the mid-distance between the two edges
(see Fig. 5.14). For the other radius of the hypar Rxwe have chosen, at the half-
way height of the tower, the radius of curvature of the flat parabola arc which lies
in common plane with the axis of revolution and passes through the end points
of Ru, Ryand R, (see Fig. 5.14), i.e.:

“=yopr-x-

By using these radiuses, the curvatures of the replacement hypar closely approxi-
mate the average curvatures of the hyperbolic shell of revolution in question.
We can write the equation of the replacement hypar surface as follows:

y2 X2

Z~TRy~TRx' (.20
The boundary conditions are:
— along the upper edge (stiffening ring): w=d2n/dx2=v=nx=0,
— along the lower edge (rigid support): w=d2w/dx2=v =u=0.
The buckling shape was assumed to have the form:
w=sin 2 27 sin g (5.21)

m
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with the pertaining stress function:
(5.22)

Here T denotes the tensile stiffness of the shell wall. Introducing the above expres-
sions for w and F into the compatibility equation, the coefficients Fmcan be de-
termined. The above expressions can satisfy the boundary condition n=0 by
combining two terms with different m-s. The pairs ofthe m-values and n have to be
chosen in such a way that they make the critical load a minimum.

We performed this computation and calculated the critical load in [5.6] accord-

ing to the rules of the energy method. The following expressions for the critical
meridian and hoop normal forces were obtained:

(5.23)

(5.24)

The numerical values of the factors 2° and 2° are compiled in Tables 5.3 and 5.4.
Since by linear interpolation we would commit an error to the detriment of safety,
we recommend a parabolic interpolation between the values of the tables.

Due to the variation of the meridian directed force, its value valid at the halfway
height of the tower should be compared with that of the critical force.

The interaction of the meridian and hoop forces can be accounted for, according
to the reasoning in Section 5.4.1, by the Dunkerley formula (5.8).

We compared the critical forces n'*ar given by the exact calculations and verified
by model tests [5.31] with those computed with the Svalues of Tables 5.3 and 5.4,
and found that the 1-values of the tables yield results about 10% lower than the
more exact ones.

It seems probable that the effect of the support elasticity along the lower edge
is similar in the cases of all the loading and buckling types. Consequently, we may
use x (5.12), introduced in the case of the free-edge buckling, as a multiplicator
for assessing the influence of the support elasticity on the critical load in our
case too.

It was found by several nonlinear investigations on the overall buckling [5.2],
[5.31] that the lower critical load (of the perfect shell) is only a few per cent (maxi-
mum 5%) lower than the linear critical one. Hence, knowledge of the latter seems
to be sufficient to perform the stability investigation of hyperbolic shells of revolu-
tion.
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6. Stability Problems of Shells with Free Edges

6.1. General Remarks on the Stability
of Shells with Free Edges

All the kinds of shells discussed in the foregoing were supported all along
their boundaries. In modern architecture, however, shells with unsupported
edges are gaining ground, their appearance being much more graceful than
that of the edge-supported ones.

Due to their free edges, these shells generally do not buckle locally (like, e.g.
the axially compressed cylinder or the radially compressed sphere), but the struc-
ture buckles as a whole. Thus, the local shell-like buckling merges into the *“arch-
like” buckling of the whole structure.

The stability of shells with free edges is a rather unexplored field. Hence we

report on a model test here which allows us to draw conclusions of a fairly general
nature.

Fig. 6.1. Dimensions of
the investigated shell model with free edges
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The experiment was performed on two shells of slightly different surfaces
(sphere and sinusoid of revolution), made of 3 mm thick plexiglass [6.6]. Their
dimensions are shown in Fig. 6.1. The structure was supported only at its three
corner points, their edges were unstiffened. Under uniform load they closely ap-
proximated the funicular surface of the load, i.e. only small bending moments
arose in the shells.

The edges of the models began to wrinkle at a considerably lower load intensity
than necessary to cause local buckling of an edge-supported shell (Section 4.1),
i.e. the structure started to buckle as an arch. With the aid of the generalized
Southwell-plot (Section 9.9) we established that the structure has an increasing
post-buckling load bearing capacity, see Fig. 11 (b) [9.9.2], [9.9.3]. In fact, both
structures failed, not because of instability, but due to bending in the vicinity of
the supports.

This increasing post-buckling load bearing behaviour can clearly be explained
by Fig. 6.2. The structure first carries the load according to Fig. 6.2 (a), i.e. it
behaves as if it consisted of three arches. After wrinkling of the edges, the internal

Fig. 6.2. Rearrangement of the internal forces
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forces rearrange themselves: the lines of compression “retreat” to the internal
part of the shell, which is less exposed to buckling (Fig. 6.2 (b)). Thus the outer
parts are relieved, preventing increased buckling deformations of the edges, while
the inner parts are able to carry much greater compression.

This model test allows us to draw the following conclusion for shells with free
edges: We may reckon with increasing load bearing capacity after buckling of
the whole structure, provided that the internal forces can rearrange themselves
by shifting to the interior of the shell, and if this inner part alone is able to carry
more load than the complete original structure with free edges working in
compression [9.9.2].

When designing an actual shell structure with free edges, it is advisable to make
a model test, except if its stability problems can be considered as solved, like e.g.
the shell-arches to be discussed in Section 6.2.

6.2. Stability of Shell-Arches and Shell-Beams

Among shells with free edges only the stability problems of the shell-arches
(and shell-beams) are solved in detail [6.5]. We report on them briefly in this section.

Shell-arches are, essentially, curved bars with thin-walled open cross sections
(Fig. 6.3). The cross section of the bar has to have an axis of symmetry, which
lies in the plane of the arch; otherwise the cross section may be optional. If the
bar axis is straight, we are dealing with a shell-beam.

Owing to the symmetry of the cross section, instability phenomena in the
arch plane and perpendicular to it can be treated separately.

6.2.1. Stability Investigations in the Plane of the Arch

Instability phenomena occurring in the plane of the arch cannot be treated by
the classical methods of buckling analysis for arches with solid cross section,
since the cross sections of the shell-arch undergo a transverse bending deforma-
tion. This is shown in Fig. 6.4. Compressive and tensile stresses parallel to the arch
axis, which arise from bending, produce resultants due to the curvature of the arch
axis, causing transverse bending of the cross section. Thus, the thin cross section
undergoes considerable deformation, resulting in a substantial reduction in the
bending stiffness of the shell-arch as compared to the ordinary arch with unde-
formable cross section. This phenomenon was first analysed by Karman [6.4]
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Arch (elevation)

\A

Beam (elevation)

\A

o \ - =3
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Fig. 6.3. Shell arches and shell beams with cross sections
(a) open upwards, (b) open downwards
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_i—_ida.
Resultant of compressive,*¢— ~
forces
Forces causing transverse bending of cross section:

Az Tension

Resultant of tensile forces

Deformed cross t A S7-diagram
section

Original _cross™ Resultant of
section compressive forces

Fig. 6.4. Flattening of the cross section
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and Brazier [6.1] for closed tubes and by Weinel [6.7] for doubly curved open
strips.

Owing to this deformation of the cross section, in the case of pure bending
(Fig. 6.5 (a)) the behaviour of the shell arch is characterized by the diagram of
Fig. 6.6, representing the bending moment M versus the change in the curvature

Fig. 6.5. The two basic loading cases.
(a) - Pure bending, (b) - central compression

w. (Jy denotes the moment of inertia of the cross section calculated by the elemen-
tary theory, referred to the horizontal axis y.) This diagram shows that the arch
not only undergoes much larger deformations than might be expected on the
basis of the elementary theory, but at a certain value M o of the positive bending
moment, as defined in Fig. 6.5 (a), it also loses its stability in pure bending by
snapping through, due to the flattening of the cross section. In the case of a nega-
tive bending moment this does not happen, because the cross sections bulge and
the arch becomes stiffer against bending, as shown by the lower part of the curve
in Fig. 6.6. Hence, the shell-arch behaves “asymmetrically” with respect to + M
and —M (see Fig. 1.1 (d)), as mentioned in Section 1.2.

The critical bending moments causing snapping (i.e. the peaks of the curves
M(x) in Fig. 6.6 for different geometric ratios) are given for the four cross sections

Fig. 6.6. Behaviour of the shell arch under pure bending
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Fig. 6.7. Critical bending moments causing snapping due to flattening of the cross sections

of Fig. 6.3 in Fig. 6.7, plotted against the geometric parameter

Y3b  1316b

Rb=m ="m -~

(6.1

with the notations as shown in Fig. 6.3. The shell-beam is characterized by Rb=0.
The discontinuity in the curve of the wing-shaped cross section at Rb=0.15 is
due to the fact that the M(/)-curve itself contains two buckles, the one and the
other giving M™ax below and above Bb=0.75 respectively.

The geometric data of the four cross sections of Fig. 6.3 are compiled in
Fig. 6.8. The centroids and the shear centres are denoted by O and T respectively.

It should be mentioned that — due to the transverse bending — the arch-directed
stresses in the cross section do not vary linearly with the height [6.5].

In the case of central compression caused by uniform radial load in an arch with
a circular axis (Fig. 6.5 (b)), the bending rigidity of the arch, necessary for calculat-
ing buckling, is given by the initial tangent to the M(/)-curve in Fig. 6.6. The
factor yx determining the reduced moment of inertia ydy is plotted against 3b
in Fig. 6.9. for the four cross section types. A simple approximate expression
for s also given by the dashed line.
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Fig. 6.8. Cross section characteristics

When knowing yjy, the critical load of the shell arch can be determined by
the usual arch analysis. However, this will yield only a theoretical critical load for
the central compression N\'a s explained in Fig. 11 (c). (Since the arch buckles
always antisymmetrically, its two halves developing bending deformations of
opposite signs, its “asymmetric” behaviour with respect to the bending deforma-
tion mentioned above does not become manifest.) Nevertheless, the post-buckling
behaviour of the whole arch has a decreasing character (Fig. 1.1 (c)), so that
eccentric compression due to one-sided load has also to be considered.

Detailed investigations [6.3], [6.5] resulted in the curve shown in Fig. 6.10,
describing the interaction between compressive force N from uniform load and

9 Buckling of Shells
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Fig. 6.10. Interaction curve of central compression and
of bending moment causing snapping due to flattening of the cross section

bending moment M 2arising at the quarter point of the arch due to antisymmetric
load, which cause buckling when acting simultaneously. An approximate equation
for the diagram is also given in Fig. 6.10. The curve is characterized by its convexity
when seen from the origin and by its vertical tangent at N/Ncr= 1 This defines a
behaviour similar to that of the axially compressed cylinder (Figs 2.7, 2.8), or of
the radially compressed sphere (Figs 4.6, 4.8). Consequently, the buckling of the
compressed shell-arch belongs to the type described by Figs 1.4 (c) and 1.5,
necessitating the assumption of a bending moment due to initial imperfection
even in the case of central compression, and the reduction of the critical compressive
force N I™accordingly.
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6.2.2. Stability Investigations Perpendicularly to the Plane of the Arch

The buckling of shell-arches out of their plane may be treated as lateral or
torsional buckling of curved bars with open cross sections, since their cross sec-
tions do not deform during these instability phenomena. Shell-arches differ from
ordinary arches (with solid cross sections) in the following ways:

— their torsional to bending rigidity ratio is much smaller then unity;

— their shear centres do not coincide with their centroids;

— due to their thin walls, the compressive stresses, originally acting parallel
to the arch axis, are bound to follow the distortion of the wall, and so exert a
twisting effect on the structure.

These properties considerably reduce the critical load as compared with ordi-
nary arches.

The theory of lateral (torsional) buckling of arches with open cross section was
developed in [6.5]. Due to their small torsional rigidity, all the lateral stability
problems of shell arches can be treated by considering their twisting deformations
only. Thus, for most cases, closed formulas could be established. Nevertheless,
the results are even so too lengthy to be reproduced here. We shall content our-
selves with two remarks.

All the investigations mentioned were carried out on the basis of the linear
theory. Accordingly, the interaction curve of bending and compression has the
shape shown in Fig. 6.11, where M2 again denotes the bending moment due to
antisymmetric load arising in one fourth of the arch. This curve has exactly the
opposite character of that in Fig. 6.10, the latter representing the combination of a
nonlinear (snapping) phenomenon with a linear one. On the other hand, the lateral
instability problems, being linear bifurcation phenomena, always yield an inter-
action curve bulging outwards, as required by the theorem of Dunkerley see in
[2.27], [2.40].

Fig. 6.11. Interaction curve of central compression
and of bending moment causing lateral (torsional) buckling
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The model tests [6.5], performed to check the results of the linear theory, mostly
showed an increasing (sometimes a constant) post-buckling load bearing capacity,
corresponding to Fig. 1.1 (b) (or Fig. 1.1 (a) respectively). Therefore, the linear
critical loads may be used for design purposes.

6.2.3. Lateral Buckling of Suspended Shell-Beams

The formulas for the critical load causing lateral buckling of shell-beams with
cross sections shown in Fig. 6.3 will be presented on the basis of [6.2] and [6.5].

We assume that the beam is suspended at both ends, rigidly connected at points
F to the end cross sections (Fig. 6.12), and loaded by uniformly distributed forces
g acting at points P of the cross sections at a height m above the shear centres.
(If the height/ of the suspension point F is increased to infinity, we obtain the case
of the usual “fork-like” support, i.e. when the ends of the beam are prevented
from rotating about the beam axis, but are still free to rotate about the vertical
axis.)

Fig. 6.12. Suspended shell-beam

Both ends of the beam are considered as free to warp. (Warping may be prevented
by horizontal end diaphragms but, according to detailed investigations [6.5],
this hardly increases the critical load.)

First we deal with beams with cross sections open upwards, as shown in
Fig. 6.3 (a), i.e. when the free edges of the beams are compressed.

Lateral buckling deformation consists, then, of twist only. The critical bending
moment

Il
<
=.

(6.2

is to be calculated from the quadratic equation

a%Mcl+ axMcr+a0 - 0 (63)
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with the coefficients:

a2= 5.145X@+ 12.36K0T + 10.17K0£2+ 1.672+ 1.441 25, (6.4a)
T . FT E.l
b4.20i:061, + 1043tf0—  19.74mG/, + 1507m - j f +
+1458"G/,+1281~"2], (6.4b)

Ir/ FI V
a0=21.9(G/)H2163G/(-2 + 19 21 4A-A, (6.4¢)

The cross section characteristics appearing in these expressions are compiled
in Fig. 6.8.

In Fig. 6.13 we plotted the critical bending moment M or causing lateral buckling
of a beam with V-shaped cross section (with EIGr;0), loaded by its own weight
acting in the centroid (m—e), against the inverse value of the suspension height/.
It can be seen that, compared to the case of end cross sections with prevented
twist (/==»; i.e. m/f=0), the suspension at a finite height up to m/f=2 (i.e. as
low as three quarters of the cross section height) does not cause a substantial
reduction in the critical bending moment.

Fig. 6.13. Bending moment causing lateral buckling
of a suspended shell-beam with V-shaped cross section
(open upwards), the load acting on the centroid

However, if the cross section of the beam is open downwards (Fig. 6.3 (b)),
i.e. the free edges are in tension, then the lateral bending deformation also has to
be taken into consideration when calculating lateral buckling. The critical bending
moment M,, is to be computed also in this case from Eq. (6.3), but with the
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coefficients derived on the basis of [6.2]:

1-0.1650-0.1331 Y + 0.06657 -y ], (6.5a)

(6.5b)

(6.5¢)

The definitions of the symbols are to be found in Figs 6.8 and 6.12. In Formulas
(6.5, b, ¢), m and K have to be taken with negative signs because of the inverse
position of the cross sections as compared to Fig. 6.8.

The suspension height /influences Ma in this case much more strongly than
with cross sections open upwards (Fig. 6.3 (a)). On the other hand, the critical
bending moment causing lateral buckling of beams with cross sections open
downwards is generally much greater than either the snapping moment causing
flattening (Fig. 6.7), or the bending moment causing local buckling of the com-
pressed middle part of the cross sections. Thus, we also touch briefly upon this
latter problem.

6.2.4. Local Buckling of Shell-Arches and Shell-Beams

If the free edges ofthe shell-arch (beam) are in compression (central compression,
or bending that causes compression in the free edges), the local buckling would
begin at the free edge. The buckling half wavelength extends over the entire length
of the arch (beam), so that the local buckling merges with the instability of the
whole structure. (This was shown for straight bars with angle cross section in
[2.51].) Hence, the local buckling has to be investigated only if the free edges of
the structure are in tension, as in the case of shell-beams with cross sections open
downwards (Fig. 6.3 (b)). The stability analysis of the middle part of the cross
sections has to be carried out as for a shell, as shown in the previous chapters.
Some special points to be considered for its implementation are to be found
in [6.5].
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7.1. Orthotropic Shells in General

The elastic properties of isotropic shells, dealt with in the foregoing, are the
same in every direction. However, this static model is only suitable to describe
the behaviour of shells which consist of one solid layer made of a unique, iso-
tropic material.

Due to their static and structural advantages, composite (reticulated, ribbed,
corrugated, sandwich, etc.) shells are frequently used in the engineering practice.
Since their properties differ markedly from those of isotropic shells, we have to
use the theory of anisotropic shells to describe their behaviour with sufficient
accuracy.

It is rather intricate to take general anisotropy into account, so we will deal
here only with a special case of anisotropy called orthotropy. Moreover, we
stipulate that the cross section of the shell be symmetric with respect to the middle
surface of the shell.

An orthotropic shell has in every point of the middle surface two particular
planes perpendicular to each other and to the middle surface, which are character-
ized by the fact that in every optional pair of planes symmetric to them the elas-
tic properties of the shell are the same. The intersection lines of these two particular
planes with the middle surface are called the principal directions of orthotropy.

Taking these principal directions as co-ordinates, the stiffness matrix of the
shell can be set up as follows (neglecting the deformation due to transverse shear,
to be considered in Section 81 on sandwich shells):

nx T™x T" 0 00 O ex
ny T T, 0 00 0 Y
nxy 0 0Ty 00 0 WP (7.0)
TX 0 0 0 BxB 0 w'o e ’
Ty 0 0 0 B'By O w
™ 0 0 0 0 0 By w-
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Here the following notations have been used:

Ex, Ey specific elongations in the direction of n and y respectively;

Yy angular distortion of the directions x and y\

W — displacement perpendicular to the shell surface;

"and ¢ — differentiation according to x and y respectively;

Bx,bf  — bending stiffnesses in the directions x and y respectively,

Bxy _ _.. torsional rigidity;

Tx, Ty  — tensile stiffnesses in the directions of x and y respectively;

Ty — shearing stiffness in the plane xy connecting half the distortion angle
and the shearing force;

B'and r — transversal bending and tensile stiffnesses respectively.

It should be remarked that in some references the shearing and torsional stiff-
nesses are differently defined and, accordingly, in these cases the stiffness matrix
(7.1) also undergoes some modification.

The rigidity matrix of the orthotropic shell (7.1) is always symmetric with
respect to the main diagonal [7.30], so Ihat the elements denoted by dashes are
identical in both directions.

In some cases, as e.g., in the case of the plate reinforced by ribs having different
torsional stiffnesses in two directions, the torsional rigidity Bxy is composed of
two parts, see in Chapter 8.

In the following we suppose that the lines traced according to the principal
directions of orthotropy in the different points of the shell form a usable system of
co-ordinates.

The investigation of such an orthotropic shell is still fairly complicated, so we
shall examine the possibility of neglecting the terms 5* and T, which represent
the effect of the transversal contraction. That is, in this case the rigidity matrix
will have elements only in its main diagonal.

In the case of isotropic shells, Poisson’s ratio v appears in factors which have
the extreme values of

ar (e ey EBp Q) ad @

For v=0.3 these values become 1.125 or 1.06. Consequently, if we assume v=0,
i.e. if we neglect the transversal contraction, this diminishes the computed critical
load by 11~6 % (On the other hand, if we neglected only B' and T' in the rigidity
matrix on the isotropic shell, while in the other rigidity characteristics we took
v into consideration, the aforementioned errors would increase to 1.5 times
their values.)
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The influence of v on several kinds of orthotropic shells is even less. For example,
the critical load of a ribbed shell will be influenced only by the v of the plate but
not by the v of the ribs. Hence, the error caused by the assumption of v=0 will
be less than indicated above, and the result will be on the safe side. Consequently,
the assumption of v=0 simplifies the stability analysis considerably, and many
authors of the papers to be reported on also used this assumption.

In most cases of orthotropic shells it is not possible to neglect Poisson’s ratio
in the rigidity characteristics because it does not appear in them explicitly. More-
over, the influence of the transversal contraction is, in some cases, (e.g. reticulated
shells) considerable. Hence, in these cases we propose the following procedure:
We omit the elements 8* and 7' from the rigidity matrix, but assume values for
the other elements which compensate for this omission. We denote these substitut-
ing rigidity characteristics by capital letters without overlining. (Of course, if
v=0, the two kinds of rigidity characteristics become identical.)

The relations between the actual and the substituting rigidity characteristics
can be obtained from the equilibrium and compatibility equations of shallow
shells. We have to choose the substituting rigidities in such a way that they furnish
the same equations as the actual ones. The substituting rigidity characteristics
are as follows:

Bx = BX, (7.2a)
By = BY, (7.2b)
Bxy = Bxy+ B', (7-2C)
Tx=Tx-"~, (7-2d)
1y
*re2
Txy S mmm———— feW"". (720
1 _ iy
TxTy-T "2

Hence, the rigidity properties of the orthotropic shell, symmetric to the middle
surface, can be characterized by six data. The simplified stiffness matrix assumes
the following form:

nx 7x O O O 00 ex

ny 0O ry o 0 0O By

m, _ O 078 O OO0 yJ2

m x O O O 8 OO w" (7.3)
W O O 0O Oy oO w*
T Xy 0 0 0 O OsBxy [ w-
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The rigidity characteristics will be determined for the different composite shells
in Chapter 8, otherwise we refer to the literature [7.10], [7.31]. Thus, the equilib-
rium and compatibility equations of shallow orthotropic shells of constant stiffness
can be developed in a rectangular system of co-ordinates as follows [2.13]:

- (Bxw"™+ 2Bxyw’™ +Byw -) + F"(zg + wét+ w ) -
—2/v(V+K +w')+Fe(z6+wi+w")+

+wFo"—=2tv'ilk+ wW'F,, =0, (7.4a)

~jT+ b ~-w'(z6+W)+2W-Zo+O —
*y -

wxy X

W' (zg + W) - ww "+ w'*, (7.4b)

Formulas (7.4a) and (7.4b) are the Donnell-type equations of the shallow ortho-
tropic shell, which also take into account the second powers of the derivatives of
the displacement w, perpendicular to the shell surface. In the equations z0denotes
the height of the shell surface over the plane xy, wOthe sum of the initial imperfec-
tion and the pre-buckling deformation due to static load, w the buckling deforma-
tion, and FO and F the stress functions belonging to the internal forces due to
static load and to buckling respectively.

The method of solution and the considerations concerning the taking of linear
and nonlinear terms into account applied in this chapter are essentially the same
as in the previous chapters.

7.2. Linear Critical Load of the Orthotropic Shell

If we neglect the nonlinear terms in Eg. (7.4a, b), we obtain the differential
equations which determine the linear critical load. Most shell shapes can be closely
approximated by the shallow paraboloid

1, 1 |

WX X+ X r - (7.5)

The solution of the equilibrium and compatibility equations for this shell shape
can be written in the form

w—1v (08 (79)
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if we assume a rectangular ground plan, hinged edges, the pre-buckling internal
forces
FO = nx = constant,

Fa = ny = constant,
/0" =~nxy =0,

and geometrically perfect shape (w0=0). In Eq. (7.6) IE is an (undetermined)
constant, while Ix and ly denote the buckling lengths in the directions x and y
respectively. The critical internal forces nx,ny, caused by the critical load inten-
sity, can be determined, according to [2.13], from the characteristic equation

The critical force (or forces) in Eq. (7.7) have to be minimized with respect to
Ix and ly. However, we have to observe the geometric restictions for Ix and ly set
by the boundary conditions or by other requirements, e.g. that along the circum-
ference of a cylinder only an integer number of buckling wavelengths can develop.

In the case of some isotropic shells under certain loadings, several buckling
modes were associated with the linear critical load (e.g. axially compressed cylinder,
radially compressed sphere). This does not hold true for orthotropic shells. As
remarked in Section 2.1, orthotropy mostly does not allow multimode (compound)
buckling [8.2.6a], [8.2.6b]. As a rule, uniquely determined buckling lengths, Ix and
ly, are associated with the minimum critical load [7.22], [7.30].

As with isotropic shells (see Eqs (2.5a) and (4.1)), the result obtained for the
paraboloid (7.5) may be used as an approximation for orthotropic shells of other
shapes. The only requirement is that the paraboloid should approximate fairly
closely the actual shape inside one buckle. Consequently, in the case of a radially
compressed spherical shell Rx=Ry=R and nx=ny=pR/2. With these data, the
critical load /£" can be computed from Eq. (7.7). Or, for the cylinder shown in
Fig. 2.2, Ry=R, Rx="°and y=R(p, and the critical load can again be determined
from Eq. (7.7).

On the basis of what has been said above and of the exact and approximate
methods to be found in the references, we shall now present the critical loads for
several kinds of orthotropic shells.
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7.3. Linear Critical Load of the Orthotropic Cylinder

In certain cases, it is expedient to form three parameters of the six rigidity char-
acteristics (7.2), becasue they describe the main properties of the orthotropic
cylinder fairly well [7.1], [7.22], [7.30]. These parameters are:

’QS - @ f]f‘ 5
Xy
D
¢ - (7.8)
P
y=blJjL
7 ByTx

The values 3,=<=y= 1correspond to the isotropic shell.

We call the cylinder ring-stiffened if 1/y> 1, and axially (or stringer)-stiffened
if I/y<I. It should be remarked that — except for short cylinders — if we use the
same amount of material, the critical loads of ring-stiffened cylinders are always
greater than those of stringer-stiffened ones, so that the former are more advan-
tageous.

The buckling mode of the cylinder of length L has several characteristic shapes.
One is the axially symmetric mode (with ly=°° and Ix=L/m, m=1,2,3,...)
that yields the minimum critical load for some cases of axial compression. In
other cases of axial compression, and furthermore for circumferential compression,
the reticulated buckling pattern proves to be the most onerous (with Ix=L/m and
ly—Rn/n for a complete cylinder, while ly=Lwn for a cylindrical panel, Ly being
the circumferential length of the panel and n—2, 3, ...). In addition, the diamond
shape buckling pattern may also occur, see also in Section 7.7.1.

The buckling shape ofthe twisted cylinder has one half wave skew to the cylinder
axis with the length L in the x direction, while in circumferential direction several
waves develop [7.21].

7.3.1. Axially Compressed Orthotropic Cylinder
(with or without Internal Pressure)

In the case of axial compression (see Fig. 2.2), the buckling pattern is either
axisymmetric or reticulated. Gerard’s investigations [7.9] clarified which of the
two will develop, i.e. which one is associated with a lower critical load. His results
are shown in Fig. 7.1, using the parameters defined by Eqgs (7.8).
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Fig. 7.1. Buckling patterns of axially compressed orthotropic cylindrical
shells as functions of the rigidity parameters

According to various values of the rigidity parameters of the shell, Fig. 7.1 (a)
is subdivided into six fields. The diagrams of Fig. 7.1 (b) show the variations of
the critical forces corresponding to each field. The parameters corresponding to
point (1,1) characterize the isotropic cylinder, for which the same critical
load is associated with any buckling length ratio n=1jly. In Field I, there are two
possibilities: the minimum critical load is associated either with axisymmetric
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buckling, or with a reticulated pattern, where the buckling length in the axial
direction extends to the whole cylinder (Ix—L, i.e. m = 1). In Field Il, the minimum
critical load is always associated with a reticulated pattern with a wavelength in
the axial direction equal to the entire length of the cylinder (Ix=L). In Fields 111
and 1V, the reticulated buckling pattern is the most onerous one, either with
m= 1 (Ix—L), or with X=L,T, where m=2, 3... Finally, cylindrical shells falling
into Fields V and VI always buckle axisymmetrically.

If Fig. 7.1 shows that the axisymmetric buckling pattern is the most onerous
one, the critical axial compression can be calculated from the following formula
(see [2.13], [7.9], [7-30]):

nx'cr =\ fBATy. (7.9)

As with isotropic shells, the axisymmetric buckling is not influenced by the
internal pressure.

If the shell buckled in a reticulated pattern with an infinitely large buckling
length in the x direction, its critical load would be given by the expression:

<'«m = (7.10)

This formula may serve for assessing the critical load of a cylinder that buckles
with Ix=L.

If Fig. 7.1 yields a reticulated buckling pattern, the internal pressure may
increase the critical load up to that pertaining to axisymmetric buckling.

In the general case, the critical axial load can be calculated from Eq. (7.7).
Expressing n™xr from this, considering that, in the case of an internal pressure p,
ny= —pR, and minimizing nx’tr with respect to 12, we arrive at the following equa-
tion:

n“n, =\ ]/ (Bx+2p*Bxy+p%) (» +y " +") 1+PW- (7.11)

Here again p—ljly is the ratio of the two buckling lengths. Equation (7.11) is
in accordance with the relations to be found in the literature [7.22], [7.30].

The minimum critical load is to be determined by choosing an appropriate value
for p. As was mentioned in Section 7.2, in the case of orthotropic shells, only one
buckling mode is associated with the minimum linear critical load, so that we will
find the minimum value of nI™¥ at a definite value of p.

In the case of axisymmetric buckling, /i—0, and Eq. (7.11) turns into Eq. (7.9).

For the determination of the value of p which makes the critical load a minimum,
Fig. 7.2 may be of some help. Figure 7.2 (a) shows the additive term of the critical
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Field 1

Field Il or IV

(b)
Fig. 7.2. The influence of the internal pressurep on
the linear critical loads of axially compressed orthotropic cylindrical shells

load due to the internal pressure p. This parabola has to be added to one of the
curves plotted with dashed lines in Fig. 7.2 (b), representing the case of pure axial
compression. The full line curves give the sum of both effects.

The diagrams show that, in the cases belonging to Fields V and VI in Fig. 7.1,
when axisymmetric buckling occurs without internal pressure, the same buckling
mode remains onerous with 0. In the other cases we have to minimize pa
with respect to p and, in addition, to check the case Ix=L, too. From these two
values the actual critical load will be the one which belongs to a smaller Ix.

In engineering practice it is generally more expedient to compute from
Eqg. (7.7) for a series of p values instead of performing the minimization analytically.

The internal pressure p influences the buckling of stringer- and ring-stiffened
cylinders differently.
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Ring-stiffened cylinders may develop, as mentioned earlier, two kinds of buck-
ling pattern (see Fig. 7.1). If the shell buckles axisymmetrically, the internal pressure
does not interfere, while it impedes buckling with a reticulated pattern. However,
the difference between the critical axial forces pertaining to axisymmetric and
reticulated buckling patterns in the absence of internal pressure is rather slight.
This fact limits the influence of the internal pressure too, since the critical load
cannot be greater than that of the axisymmetric buckling.

On the other hand, stringer-stiffened cylinders show, in the absence of internal
pressure, a much greater difference in the critical axial forces pertaining to axi-
symmetric and reticulated buckling patterns. Hence, the internal pressure may
increase the critical load to several times its value.

7.3.2. Orthotropic Cylindrical Shells in Bending

We have seen that the maximum axial compressive bending stress causing buck-
ling of a closed, isotropic, cylindrical shell hardly exceeds it critical uniform com-
pressive stress. Holston [7.12], as well as Reese and Bert [7.20a], showed that this
statement is valid for orthotropic cylindrical shells too. Thus, buckling due to
bending may be analysed by the formulas valid for the critical stress of axial
compression.

7.3.3. The Orthotropic Cylinder under Circumferential Compression
Due to External Lateral Pressure

For the loading case shown in Fig. 2.11 (a), the critical load can be calculated
from Eq. (7.7) with the membrane forces nx=0, ny—pR. The buckling length Ix
in the direction x always extends to the whole cylinder length L, hence Ix=L.
The buckling length ly has to be chosen in such a way that the critical load be a
minimum. An informative value of the circumferential wave number n which
determines ly on a closed cylinder may be read off the diagram of Fig. 7.3, rec-
ommended for hydrostatic compression [7.3].

In the case of very long closed cylinders, the end supports do not influence the
magnitude of the critical load, so that this will be equal to that of a ring. Equation

(7.7) yields:
o= ? | 1)
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Fig. 7.3. Buckling full wave member in circumferential direction
of hydrostatically compressed orthotropical cylinders

which is the equivalent of Eq. (2.29¢) for the orthotropic case, corresponding to
the constant directional pressure considered in the derivation of Eq. (7.7). For
fluid pressure the remarks made in connection with Eqs (2.29a, b, c) apply.

If the shell is a long but flat cylindrical panel, we may take ly%LV/2, so that we
obtain the critical load of a flat arch:

4n2B
P" h= ~Rif- (7-13)

The critical pressures p™e or p~ch give a lower bound for the critical loads of
cylinders of medium lengths L.

In the case of long cylinders and those of medium length, the effect of ring-
stiffening is stronger. For short cylinders, however, the effect of stringer-stiffening
increases more and more, so that the critical load can reach a much higher value
than that given by Eq. (7.13).

10 Buckling of Shells
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7.3.4. The Orthotropic Cylinder Subjected to Hydrostatic Pressure

The effect of hydrostatic pressure, shown in Fig. 2.11 (b), is similar to that of
the lateral pressure dealt with in the previous section, with the difference that in
the present case an axial compression with nx—pR!2 also arises. The circumferen-
tial compression has the value ny=pR. The buckling length in the axial direction
again extends over the whole length of the cylinder, i.e. IX=L. The critical pressure
is to be computed from Eq. (7.7). For ring-stiffened closed cylinders Bodner [7.3]
performed the minimization and obtained the diagram of Fig. 7.3. This gives the
circumferential full wave number n, which yields the minimum critical pressure
/>[". Knowing n, the critical hydrostatic pressure may be computed, according to
[1.1], [7.3], from the equation:

(7.14)

The value of the critical hydrostatic pressure can also be immediately read off
the diagram of Bodner, Fig. 7.4.

Fig. 7.4. Linear critical load of the ring-stiffened cylindrical
shell subjected to hydrostatic pressure
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7.3.5. Torsion of the Orthotropic Cylinder

Equation (7.7) is not suitable for the investigation of the buckling caused by
torsion, since it does not contain the shearing force nxy. In fact, up to now no exact
solution has been found for buckling by torsion. Hence, instead of using the equilib-
rium equations, investigations were carried out by the energy method, assuming
different buckling shapes.

Simitses [7.24] established the influence of each rigidity characteristic on the
critical load. He found that the role of By is important in all cases, that of Bxy
only for medium and short shells, while that of Bx only for short cylinders. The
quantities Tx and Txy hardly influence the critical twisting load..

Milligan and Gerard [7.20] developed the following expression for the critical
shearing force nxy o or the twisted orthotropic cylinder of medium length:

nAo = 0.89284° - (7.15)

where Z, is given by the equation:

Hayashi [7.11], (and in [1.1]) also determined the critical load of medium and
short twisteed cylinders. His results are presented in the diagram shown in Fig. 7.5.

Fig. 7.5. Linear critical shearing force of the twisted orthotropic cylinder
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The buckling mode of the twisted cylinder is always long-shaped, including an
angle smaller to the axial than to the circumferential direction. Hence, the circum-
ferential direction intersects the buckling wave nearly perpendicularly, resulting
in a far greater role for the ring-stiffening.

Stein et &l. [7.29], see also in [1.1], in their solution for the ring-stiffened twist-
ed cylinder also took into consideration that the ring-stiffening consists of indi-
vidual ribs, the number of which along the cylinder length sets an upper bound
for the critical load, since the shell may also buckle between the ribs. (This limita-
tion is, of course, not valid for cylinders made of orthotropic material.) Their re-
sults are represented by the diagram of Fig. 7.6. Using the parameter Z defined
in the figure, the critical shearing force can be readily determined.

Fig. 7.6. Linear critical shearing force
of the twisted cylinder ring-stiffened by discrete stiffeners

7.3.6. Simultaneous Action of Several Kinds of Loads on the
Orthotropic Cylinder

We may conclude on the effect of several kinds of simultaneously acting loads
on the orthotropic cylinder only from numerical examples or experimental results.
According to the investigations of Holston [7.12], and further of Reese and Bert
[7.20a] cited before, the critical compressive stresses caused by bending and by
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central compression have practically the same value. We have also seen on the
isotropic cylinder that the interaction of axial and lateral pressures may be safely
approximated, according to Seide and Weingarten [2.45], by the expression:

The numerical examples of Mah, Almroth and Pittner [7.15] show the relation:

to be valid for the interaction of axial compression due to bending and of circum-
ferential compression.
Batdorf [2.3] established the relation:

for the interaction of shear and axial compression.
Finally, Stein et al [7.29] found for internal, and Simitses [7.24] for external,
lateral pressure that the expression:

can be regarded as valid for the simultaneous action of shear and circumferential
compression or tension due to lateral pressure.

For more than two loading cases no complex investigations have been made
yet. On the basis of the foregoing, however, the following Dunkerley-type expres-
sion can be set up, which yields results corresponding to all the relations shown
hitherto (or deviating on the safe side), provided ny is compression:

(7.17)

Until more detailed investigations have been made, we recommend the approxi-
mate general formula (7.17) for use.

7.4. Linear Critical Load of Orthotropic Conical Shells

Most investigations referring to orthotropic conical shells were made by
Singer et al. [7.2], [7.25], [7.26], [7.27]. They found that, as with isotropic shells
(see Chapter 3), orthotropic conical shells may also be analyzed on a substituting
cylinder with orthotropy and stiffness properties corresponding to the cone.
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7.5. Linear Critical Load of Orthotropic Spherical Shells

The linear critical value of the uniform radial pressure acting on the orthotropic
complete spherical shell was computed exactly by Crawford and Schwartz [7.5].
Their results coincide with those calculated for the substituting shallow elliptic
paraboloid. Hence, we can calculate the critical load of the latter from Eq. (7.7),
with Rx=Ry=R and nx=ny=pR/2. Owing to the manifold symmetry of the spheri-
cal shell, the tensile and bending rigidity characteristics in the x and y directions
are mostly equal with each other. Consequently, the minimum critical load is
associated with Ix—ly, so that only a minimization with respect to Ix is needed.
The critical load becomes:

(7.18)

If the rigidities in the x and y directions differ from each other, then Ix*1ly,
and p*r has to be determined by a double minimization process.

7.6. Linear Critical Load of Orthotropic Hyperbolic
Paraboloid Shells

The critical load of saddle-shaped hypar shells (see Fig. 5.8) can be determined
from Eq. (7.7), provided that the two membrane forces nx and ny can be regarded
as constant all over the shell surface. In the computation it should be observed
that the two radiuses of principal curvatures (and possibly the two membrane
forces) have opposite signs.

The hypar shell of Fig. 5.4, with the principal directions of orthotropy parallel
to the supported generatrices, cannot be treated by Eq. (7.7). That is, the surface
has a twist, but this does not appear in the equation; moreover, the uniform load
is carried only by shearing forces nxy, which are also not contained in Eq (7.7).
Consequently, we have to resort to Eqs (7.4a, b) and to solve them for the surface
z0=fxy/LxLy, the membrane forces nx=ny=0, nxy=const, and the pre-buckling
deformation w0=0.

From experiments and from the internal forces it follows that the solution of
these differential equations, i.e. the buckling shape of the shell, extends over the
whole width of the shell in one direction, while many half waves develop in the
other (as with Fig 5.6). We keep the many half waves inthe second direction, but
for simplicity we assume no change in curvature in the first direction. The error
committed in this is mostly negligible and always serves to the benefit of safety.
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Since the principal directions of orthotropy are parallel to the generatrices
rather than to the directions of principal curvatures, the direction of the waves
has to be turned by an angle a with respect to the principal curvature [7.6]. Hence,
the approximate solution for the deflection may be written as

w —W sin a{y tan a—x).

Introducing this expression into the differential equations and eliminating F,
we arrive at the characteristic equation:

+ [-jrl-+ ~Y*~\a8tan6a+" | a8tan8a+ 4 ad4tan2a = (7.19)
5 tana f 2a6tan3a r a6tanb
7 u (- 2&)/ ril‘lxy :IJC -).

In Eqg. (7.19), the quantities a and a have to be chosen in such a way as to render
nxy a minimum.

The critical shearing force cannot be lower than that of the flat orthotropic
plate with the same rigidity properties and ground plan, as with Figure 5.5 (b).
The deviation from the case of the isotropic shell is that the critical shearing stress
of plate buckling lies, as a rule, comparatively higher for orthotropic plates than
for isotropic ones, so that even steeper orthotropic shells may fail by plate buckling
rather than by shell buckling. The critical shearing force of an orthotropic plate
is, according to Seydel (see in [2.40]):

nyr=+J YX[I[2+(0.6+Ss) (2.1+25H |~ )], (7.20)

with Ly as the smaller side length.
The critical load can be computed from the minimum value of nxy, which is to
be determined from Eqs (7.19) or (7.20), as follows:

2/

T ftxy,cr’
ny

Per T (721)
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7.7. Nonlinear and Experimental Investigations
on Orthotropic Shells

Many fewer nonlinear investigations have been made in the range of large post-
buckling deformations for orthotropic shells than for isotropic ones; moreover,
these investigations mostly refer to geometrically perfect shells. This has several
reasons, such as:

(@) it is necessary to get a clear picture of the behaviour of isotropic shells
first, on the basis of which orthotropic shells may be studied;

(b) nonlinear buckling investigations on orthotropic shells are far more intricate
than those on isotropic ones;

(c) ribbed shells, representing the bulk of orthotropic shells, show experimental
buckling loads that are generally much closer to the linear critical ones than for
isotropic shells; actually, orthotropic shells buckle in several cases at the linear
critical loads.

Most nonlinear investigations refer to orthotropic cylinders. This is due to the
fact that most vehicles with a shell body are of (nearly) cylindrical form (planes,
ships, submarines, rockets). The number of orthotropic shells of other forms used
in civil engineering practice is small as compared to the former.

7.7.1. Nonlinear and Experimental Investigations on Cylinders

The post-buckling behaviour of axially compressed, geometrically perfect cyl-
inders was first treated by March [7.16], using a simplified nonlinear theory. The
investigation was further developed by Schnell, Briihl and Thielemann [7.22], [7.30],
assuming an enlarged buckling pattern, but they did not present a general solution.
They showed on two numerical examples (one on a ring-stiffened, one on a stringer-
stiffened cylinder), that the critical load pertaining to the reticulated buckling
pattern of the stringer-stiffened cylinder is much lower than that pertaining to the
axially symmetric pattern, and moreover that the load bearing capacity drops
to an nX™r equal to about one third of the linear critical value, as with isotropic
shells. A diamond-shaped buckling pattern is associated with The linear
critical loads pertaining to the reticulated and axisymmetric patterns of the ring-
stiffened cylinder respectively, were almost equal, being about two thirds
of nrer. Again a diamond-shaped pattern was associated with nl°~r. The dia-
monds are longer in axial direction with stringer-stiffened cylinders, and longer in
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ring direction with ring-stiffened ones. The linear critical load of the diamond-
shaped buckling pattern is higher than that of the reticulated one. Hence, the
buckling of an axially compressed orthotropic cylinder proceeds as follows:

Geometrically perfect orthotropic cylinders begin to buckle in a reticulated
pattern when reaching nX¥r, while some ring-stiffened ones begin to buckle axi-
symmetrically. At a comparatively small buckling amplitude, these patterns jump
over into the diamond-shaped one, associated with a decreasing load bearing
capacity, as with isotropic cylinders.

Hence, these investigations have shown that in some cases orthotropic cylinders
behave similarly to isotropic ones, while in other cases they behave more favour-
ably.

With knowledge of these results, Almroth [7.1] performed extensive computa-
tions for the determination of the lower critical load of axially compressed,
geometrically perfect cylinders with the stiffness parameters 0.5 8.0.
His results obtained for long cylinders showed that the ratio nl°~7nI™ depends
only slightly on the parameters 9Sand 9P, but varies strongly with the parameter
y, which indicates whether the cylinder is stringer- or ring-stiffened. The afore-
mentioned ratio is the smallest for isotropic cylinders, it slightly increases for

Fig. 7.7. Influence of ring- and of stringer-stiffening on the lower critical load
ofaxially compressed long cylindrical shells
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stringer-stiffening, and greatly increases for ring-stiffening. (It should be noted
that the axially directed stiffeners also take some compression.) Almroth presented
his results in the form of a series of diagrams. From these we constructed Fig. 7.7,
where the investigated range of 9S, 9p is denoted by a dotted area. The dashed
boundary curves of this area were obtained by selecting those 9S- and 9p-values
which yield extreme ratios. Inside the dotted area, the ratio nl°”#n" cr correspond-
ing to the parameters 9S=5P=1 is marked by a full line. The intersection point
ofthis curve with the ordinate axis corresponds to the isotropic cylinder.

Almroth’s calculations on short cylinders showed that stringer-stiffening be-
comes more effective, and the ratio n]™2/ x4 increases considerably with decreas-
ing shell length. His results ate shown in Fig. 7.8 for the most characteristic
cases.

Fig. 7.8. Lower critical loads
of the stringer-stiffened orthotropic cylindrical shell subjected to axial compression

The investigations of Thielemann [7.30] also proved that the internal pressure
may not only raise the linear critical load to the level of the axisymmetric buckling,
but it also increases the ratio n'*w*Tn]™r. This increase is, of course, greater in the
cases, where nTM? was low, i.e. for stringer-stiffened cylinders.

On the basis of two numerical examples to be found in [7.30], we show in Figs
7.9 (a) and (b) the variation due to the internal pressure of the load bearing capac-
ity of a stringer-stiffened and of a ring-stiffened perfect cylinder.
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@

(b)

Fig. 7.9. Influence of the internal pressurep on the buckling
of the axially compressed orthotropic cylindrical shell,
(a) - Example for the stringer-stiffened cylinder,

(b) - example for the ringstiffened cylinder

Experimental results [7.9], [7.23], [7.28] showed that stringer-stiffened shells
are more sensitive to initial imperfections than ring-stiffened ones. Among the
ring-stiffened cylinders those with light stiffeners are more sensitive. Shells made
of orthotropic materials [7.23] are found to be more sensitive than rib-stiffened
ones. The investigations of Tennyson, Chan and Muggeridge [7.29a] showed that
the upper critical loads of cylinders made of anisotropic materials depend on the
initial imperfection in the same way as those of isotropic ones.

In Fig. 7.10 we show the results of some series of experiments performed on
axially compressed ring-stiffened shells [7.28], [7.32]. The experimental buckling
loads were plotted against the ratio of stiffener area to shell wall area, indicating
in parenthesis the corresponding values 1y as well. The experimental results
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Fig. 7.10. Experimental results on ring-stiffened cylindrical shells subjected
to axial compression, plotted against the ratio of rib area to skin area

approach the linear critical load with increasing rib rigidity. This fact may be
explained as follows:

From experiments made on axially compressed isotropic cylinders it is known
(cf. Fig. 2.3 (a), (b), (c)) that the experimental critical load, which is equal to the
upper critical load, decreases with increasing R/t ratio. This diminution may be
approximated fairly well by the expression:

supper (7.22)

1+ /3 R
1000 t

obtained from the average values of experimental results. For the ribbed cylinder,

the effect of the ribs may be taken into account by establishing an “equivalent
isotropic thickness” t to be determined from the equality:

El';Ei =YX YTy, (7.23)

The ribs increase the actual shell thickness t to t, so that the ratio R/t characteriz-
ing the ribbed shell will be comparatively low. Introducing this value into Eq.
(7.22) we obtain the upper (i.e. epxerimental) critical forces near the linear critical
one.
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Introducing the value t computed from Eq. (7.23) into (7.22), we obtain the full
line curve plotted in Fig. 7.10. It coincides practically with the average values of
the experimental results, visually showing the described effect.

The higher critical loads (as compared to the linear critical ones) of ring-stiffened
cylinders may be explained by considering that the circumferential ribs are used
only for stiffening, whereas the longitudinal ribs—in the case of axially compressed
cylinders — undergo compression too, thus also becoming prone to buckling
themselves. One part of the rigidity of the axial ribs is necessary for preventing
their own buckling, so that only their remaining rigidity is able to stiffen the shell.
Besides, the circumferential buckling length — because of geometric reasons —
cannot be larger than one fourth of the circumference, while the longitudinal
buckling length is geometrically limited only by the cylinder length. Hence,
ring-stiffening has a much more favourable effect for long cylinders than stringer-
stiffening.

A third reason may be the finding of Singer et al. [7.28], who established by very
careful measurements that among shell models manufactured with the same
technology, the stringer-stiffened ones had much larger initial imperfections than
the ring-stiffened ones. This also shows the great influence of manufacturing tech-
nology on the magnitude of initial imperfections and thereby on the actual critical
load.

Summing up the results on orthotropic cylinders, we may state the following:

The actual critical loads of orthotropic shells are, according to the experiments,
much closer to the linear critical values than those of isotropic shells. From the
two possible kinds of stiffening, ring-stiffening is the more favourable.

These results may be explained by the following characteristics ofthe orthotropic
shell:

(@) The lower critical loads of orthotropic shells compared to the linear ones
are higher than those of the isotropic ones. This may be also related to the fact
that a unique buckling mode is associated with the (minimum) linear critical load
[8.2.6a], [8.2.6b], as contrasted to the multimode (compound) buckling of the iso-
tropic cylinder. This results in a less steep drop in the post-buckling load-bearing
capacity. Ring-stiffening raises the lower critical load even more than stringer-
stiffening. Thus, instead of the ratio nPArn™'a” 0.10~ 0.15 valid for isotropic
shells we obtain for the same ratio 0.25~ 0.70 for orthotropic ones.

(b) The ratio of the radius to the equivalent (isotropic) thickness is, as a rule,
much smaller for ribbed orthotropic shells than for unstiffend isotropic ones, and
smaller R/t ratios result in higher n“~er. Thus, instead of values nx* Tnx’tr~ 0.3~
~0.5 valid for isotropic shells, ribbed ones yield values of 0.7~ 0.9.

(c) The torsional stiffness Bxy is comparatively small for shells stiffened by ribs
with small torsional rigidity. As can be seen from Eq. (7.7), Bxy has approximately
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the same effect on the linear critical load as the sum of Bx and By, provided the
buckle is rectangular. The lower critical load is associated with a diamond-shaped
buckling pattern, since, in this case, the buckle has a shape closer to the circular
or elliptic form on which the torsional rigidity has a much smaller effect. This
further reduces the difference between rixror and
(d)  With short shell models stiffened by longitudinal ribs, the partial clamping

effect exerted by the platens of the compression machine on the ribs, being in
contact over their whole cross section, is greater, due to the greater equivalent

thickness ?, than with unribbed or ring-stiffened shells.

Thus, due to all these effects, the ratio nepinmenUin™r increases from the
values 0.15~ 0.60, valid for isotropic shell, to 0.7~1.1 for the test models of
ribbed orthotropic ones.

The experimental critical loads of circumferentially compressed [7.23] and of
twisted orthotropic cylinders [7.20] were found to be practically equal to the
linear critical values. This was, in fact, to be expected since the isotropic cylinder
subjected to these loadings was also less sensitive to initial imperfections than
under axial compression. The effects mentioned under (a) to (d) for axially com-
pressed orthotropic cylindres are mostly valid for circumferential compression and
torsion too, so that the orthotropic cylinder is even less sensitive to imperfections
than the isotropic one. Thus its upper critical load is also higher as compared to
the linear critical one, resulting in the ratio 7" nmental/~5!“ approaching or even
reaching unity, and oscillating around this value.

7.7.2. Nonlinear and Experimental Results on Other Kinds of Shells

Nonlinear [7.13] and experimental [7.25], [7.26], [7.27] research on orthotropic
conical shells showed that substitution by an equivalent cylinder is suitable not
only for determining the linear critical load, but also for investigating the post-
critical behaviour. This may be done according to Chapter 3, using the orthotropic
cylinder characteristics described in Section 7.6.1.

To our knowledge no exact nonlinear investigations exist for orthotropic spherical
shells; there are only half-empirical methods based on experiments [7.4], [7.5],
[7.7], [7.18]. For example, Bushnell [7.4] modifies the geometry of the shell accord-
ing to the initial imperfection and determines the critical load on this modified
shell as an eigenvalue-problem. On the basis of his examples, made for homo-
geneous, isotropic shells, the curve of the critical load versus imperfection can be
constructed. This is similar to that representing the decrease fo the upper critical
load of the isotropic shell with increasing initial imperfection amplitude: we
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obtain 0.55 and 0.35/AT for wjt=10.25 and 0.50, respectively (cf. e.g. Fig. 4.6).
The curve constructed this way may be accepted as that of the upper critical load
of the orthotropic spherical shell. The ribbed spherical caps tested in [7.18] had
R/t values of about 50. Accordingly, in conformity with what has been said before,
their critical loads did not deviate by more than 10% from the linear critical values.
Their buckling patterns also corresponded to those of the linear theory.

Orthotropic hyperbolic paraboloid shells are manufactured mostly by distorting
corrugated plates. For such shells no nonlinear investigations have been made;
in fact, these are not even necessary, since the experiments [7.8], [7.17] showed
that, as with the isotropic hypar, the orthotropic one also has an increasing post-
buckling load bearing capacity. The test shells of [7.17] failed in the *“shell buck-
ling” range, while those of [7.8] failed in the “plate buckling” range. The critical
loads deviated from the linear critical values determined according to Section
7.5 by less than 10%.

It can be seen from the foregoing that the buckling problems of orthotropic
shells are still far from being solved. Much research is needed in the domain of
nonlinear buckling and, above all, in the determination of the upper critical
load.



8. Buckling of Composite Shells

In this chapter we shall deal with the stability problems of sandwich, rib-
stiffened, reticulated and corrugated shells. All four types of shells have in common
that they may fail not only by overall but also by local buckling. The critical load
intensities of these two kinds of buckling generally differ from each other and,
consequently, they practically do not interact. If, however, the proportions of a
composite shell cause overall and local bucklings to occur at about the same load
intensity, the interaction of the two kinds of buckling may considerably reduce
the critical load (“erosion of the optimum design”, “compound buckling”, see
in [1.7], briefly described in Section 1.2). This reduction of the critical load may
generally be assessed at 10-15%, but in some cases this may be even more.

This interaction of the local and overall buckling may be computed approxi-
mately by the method for considering the effect of plasticity, described in Section
9.4. For this purpose we have to consider the critical load intensity causing local
buckling as ppl, which is uniquely related to the specific normal force npl appear-
ing in Section 9.4. When dealing with the different types of composite shells in
detail, we shall specify the details of this method.

As we shall see from the viewpoint of overall buckling these four composite
shell structures may be considered orthotropic shells as described in Chapter 7,
and in special cases even is isotropic ones. Hence the calculation methods of ortho-
tropic or isotropic shells can be applied.

In what follows we investigate the special problems of sandwich, rib-stiffened,
reticulated and corrugated shells, in turn. When necessary, the conditions for con-
sidering them as homogeneous orthotropic shells from the viewpoint of overall
buckling will be established. The data needed to calculate the rigidity characteris-
tics of these shells will be presented. Finally, the considerations to be taken into
account in calculating the local buckling will be outlined.
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8.1. Sandwich Shells

Sandwich structures mostly consist of three layers: of two thin faces with a com-
paratively high extensional rigidity and of a much thicker core with a small but
finite shearing rigidity.

The faces are mostly continuous plates but they may also be reticulated surfaces
(Fig. 8.3.2) or ribs (Fig. 8.4.4). The core may be made of light, homogeneous,
possibly sponge-like, materials (balsa wood or expanded plastic), but also of plate-
cell constructions. We show the two most characteristic ones of the latter (honey-
comb and box-like cores) in Fig. 8.1.1.

Fig. 8.1.1. Cell-like cores.
(a) - Honeycomb core, (b) - box-like core

1 Buckling of Shells
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The faces obviously have to be fastened to the core in such a way as to exclude
a failure of these joints due to flexural and buckling shear before buckling.

Sandwich constructions are generally calculated by considering only the exten-
sional stiffnesses of the faces and the transversal shearing stiffness of the core.
Accordingly, the bending and tensile stiffnesses of the sandwich plate can be
written as follows:

B:Eﬂm
2 (8.1.1
T= 2Eft

Here Ef and t are the Young’s modulus and the thickness of one face respectively,
and h is the structural height of the entire sandwich plate, i.e. the distance between
the middle surfaces of the faces.

The deformation of the sandwich shell caused by transverse shear is, due to the
low transversal shearing stiffness of the core, much greater than that of a solid
shell. This may reduce the critical load considerably. Hence, this ,sandwich-
effect” cannot be neglected here, in contrast to the case of solid shells. The defor-
mation due to transverse shear (“sandwich-effect”) can be characterized by the
factor

«-Ubn @R
where Gcis the modulus of shear of the core material. In the case of the box-like

core shown in Fig. 8.1.1 (b) the substituting modulus of shear can be calcu-
lated from the expression with the data given in Fig. 8.1.2:

~Asubstituting ~ * (8.1.3)

For the honeycomb core (see Fig. 8.1.1. (a)), the value of Gsubstituting as computed
from Eqg. (8.1.3) has to be multiplied by the ratio of the ratio of the diameter to
the half circumference of one hexagon of the honeycomb.

Fig. 8.1.2. Cross section of a sandwich plate with cell-like core
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Sandwich constructions may be isotropic or orthotropic with respect to the
faces and to the core as well. Since a survey of the theory of orthotropic shells
would be rather lengthy, we confine ourselves in this section to isotropic sandwich
shells only. For lack of a more exact calculation method, shells orthotropic with
respect to the faces can be approximately analysed according to Chapter 7, while
orthotropic cores can be made approximately isotropic by the relation:

(8.1.4)

Here, gxand gy are the values of the factor g to be determined in the directions x
and y respectively. More exact methods are outlined in [8.1.1], [8.1.6], [2.13].
An excellent survey of the theory of sandwich shells with a comprehensive list
of references is to be found in [8.1.2].

8.1.1. Overall Buckling

The main difference between sandwich and solid shells with respect to buckling
is that the deformation of the core due to transverse shear (the “sandwich-effect”)
considerably reduces the critical load of the shell.

The linear critical load of the axially compressed cylindrical sandwich shell
with thin faces was first determined by Teichmann et al. [8.1.8]. Their results
are shown in Fig. 8.1.3.

Fig. 8.1.3. Critical load of an axially compressed cylindrical sandwich shell

M*



164 8. Composite Shells

Heged(s [8.1.3] considered the bending stiffnesses of the faces, too, when in-
vestigating the axially compressed cylinder. He found that ifthe bending stiffnesses
of the faces are entirely neglected, the critical loads of the reticulated and axi-
symmetric bucklings are equal to each other. On the other hand, if any bending
stiffness, no matter how small, is attributed to each face, the critical load of the
axisymmetric buckling becomes smaller than that of the reticulated pattern.
According to his results, the surplus critical load calculated with the bending ri-
gidities of the faces and with the buckling wavelength of the axisymmetric buckling
can be simply added to that computed for the same buckling mode with faces
having no bending stiffnesses at all.

The experiments of Teichmann et al. showed that in the case of shear-soft cores
(ei],"™,,>4) the experimental critical loads agree well with those computed on the
basis of the linear theory, so that for Qi'™0> 4 the linear critical loads of the sand-
wich cylinders can be considered as the actual ones. On the other hand, experiments
made with shear-rigid cores (en”~'0<4) yielded much lower values than the linear
critical loads. Here we have denoted by n*"0Othe axial linear critical load computed
by disregarding the “sandwich-effect”.

The lower critical load of the geometrically perfect cylindrical sandwich shell
was first determined by March and Kuenzi [8.1.5], who used the nonlinear theory
of K&rméan and Tsien [2.21]. Later Sylvester, [8.1.7] by improving the calculation
with the aid of Kempner’s method, obtained about three quarter of this value.

In Fig. 8.1.3 we have shown the critical loads of the axially compressed cylindri-
cal sandwich shell plotted against Qn™0.

To evaluate Sylvester’s results we have to consider that the horizontal straight
line of his n“wer intersects the curve of the linear critical load; moreover that in
the case of g- 0, corresponding to the homogeneous solid shell, it yields
i£"7/£=0.3. We know, however, that for the homogeneous solid shell more
recent and more exact computations [2.1] furnished the value 0.108 instead of
the earlier one of about 0.3. Thus, more exact computations for the sandwich shell
would presumably shift the line of the lower critical load downward, and we
would probably obtain the dashed line of Fig. 8.1.3 osculating the hyperbola of the
linear critical load from underneath.

Yao [8.1.9] extended the investigations to the radially compressed spherical
sandwich shell. His essential result is that the diagram of Fig. 8.1.3 is applicable
in this case too.

Experiments performed on spherical caps [8.1.4] and on cylindrical shells
quoted in [8.1.6] showed that the ratio of «“ppcr (i.e. the experimental critical load)
to n'T’ of shells with initial imperfections depends on the ratio R/h, as in the case
of homogenous shells.
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For design the uppper critical load n“fper of the imperfect shell would be needed.
No investigations have been made, however, for its determination. Experiments
[8.1.1], [8.1.6] showed that the sensitivity of sandwich shells to imperfections
decreases with increasing values of q. In the case of 0= 0, the upper critical load
can evidently be determined by the results for the homogeneous solid shell.

Practically we may proceed as follows: For 0= 0 we determine the upper critical
load n“pper of the imperfect homogeneous shell and connect this by a tangential
straight line with the curve of the linear critical load of the sandwich shell, plotted
against on['t'0. We thus obtain for n“pper an approximate straight line which starts
from the n“pper of the corresponding homogeneous shell at 0=0 and osculates,
according to the experiments, the curve of nj!" for greater values of g. In the case
of zero initial imperfection, this straight line starts from the value of the linear
critical load, and we may assume that its lowest position is the straight line of
the lower critical load (n[°wer), marked in Fig. 8.1.3 with dashed line. This approxi-
mate determination of the straight line of n“pper is hown in Fig. 8.1.4.

We shall not deal here with the problems of the twisted cylinder and of the cyl-
inder under lateral pressure, we only refer the reader to the book by Plantema
[8.1.6] which treats them extensively.

Fig. 8.1.4. Approximate determination of the upper critical load n“f per
of the axially compressed cylindrical sandwich shell
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8.1.2. Local Buckling

Several kinds of local buckling may occur in sandwich shells.

The core supports the faces elastically, so that the buckling of the faces —
called wrinkling — occurs like that of a plate on elastic foundation.

The critical stress ofr of the face can be computed for vc=0.3 and up to the
O = :
I|m|t—h |/ = 1 from the equation

= pXYEfE?, (8.1.5)

where ~=0.57 [8.1.1]. Here vc denotes Poisson’s ratio of the core, while Ef and
Ecare the moduli of elasticity of the face and the core, respectively.

Another kind of local failure is the detachment of the initially imperfect face
from the core and its buckling with a greater wavelength. The corresponding critical
stress can be calculated, according to [8.1.1], from the expression

aa —Ri YEfE?, (8.1.6)

where 82might be given by the following interpolation formula which approximates
the data to be found in [8.1.1]:

0.75—0.25k
3K (8.1.7)
i+ 'I'2 G
where
_ WeEc
K=
kgadh and

Here Ho is the maximum amplitude of the initial imperfection of the face and
aath is the adhesive strength between face and core.

There are sandwich constructions in which the local failure has a third form,
namely, local plate buckling. This may occur in sandwich shells with box-like,
honeycomb or corrugated cores, where either the faces buckle in compression
between the core plates or the core plates buckle in shear. Therefore, they can be
analyzed accordingly.

We can certainly avoid local buckling if, according to what will be said in Section
8.2.1 on rib-stiffened shells, the critical load causing local buckling is at least
twice that pertaining to overall buckling.

On the other hand, if we want to take local buckling and its interaction with
overall buckling into account, we have to consider the load causing local buckling
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as the plastic load ppl (Section 9.4), depending on the amplitude of initial imper-
fection too. There are several other problems of detail concerning local buckling
of sandwich shells that will be dealt with here. Their comprehensive treatment
with diagrams usable for design is to be found in [8.1.1].

8.2. Rib-Stiffened Shells

The local buckling of rib-stiffened shells is represented by the buckling of the
skin between the ribs. We analyze this first, because it determines the necessary
density of the ribs. Following that we deal with the problems related to the replace-
ment of the rib-stiffened shell as a whole by a continuous one; these include the
effective width of the skin with respect to the bending of the ribs, problems of the
one-sidedness (eccentricity) of the ribs, and the role of Poisson’s ratio. After having
clarified these questions, the rigidity characteristics of the equivalent orthotropic
shell can be established and an overall buckling analysis can be performed.

Throughout this section, t denotes the actual thickness of the skin (without ribs).

8.2.1. Buckling of the Shell Panels between the Ribs.
Density and Rigidity of the Ribs Required to Prevent Skin Buckling

Rib-stiffening greatly increases the critical load of the whole shell structure.
If, however, the distance between the ribs is greater than the buckling length of the
unstiffened skin, this latter will buckle at the same stress as if the shell were unstif-
fened. Thus we may choose one of the two following ways. We may either permit
the buckling of the skin between ribs but ensure that the whole load should be
taken by the ribs (with the effective width of the buckled skin). This principle is
generally used in aircraft design.

In common engineering structures, however, the buckling of the skin between
ribs under service loads is generally not considered desirable. From this principle
it follows that if the distance between the ribs is greater than or equal to the
buckling length developing in the unstiffened shell, the ribs increase the load bear-
ing capacity only by taking some part of the load themselves. However, in this
case, the structure will be less economical than if we use the material of the ribs
to increase the shell thickness. That is, in this latter case, the load bearing capacity
increases not only proportionally to the material added, but also because of the
increase in the critical stress due to the greater wall thickness. Hence, there is
little sense in arranging the ribs that sparsely. Thus, the distances between the
ribs have to be chosen inferior to the buckling lengths of the unstiffened shell.
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Accordingly, we first have to know the dimensions of the buckle of the unstiffened
shell, and secondly, how the critical stress of a shell panel, supported along the
ribs, increases with decreasing rib distances as compared with the unstiffened
shell. In the following we present the buckling lengths of some characteristic shells
for several loading cases and the critical stresses of the shell panels smaller than
these lengths.

We saw in the foregoing that perfect shells begin to buckle with buckling lengths
determined by the linear theory, while imperfect ones begin to buckle with greater
buckling lengths. In any case the buckling lengths increase during the buckling
process (see Fig. 2.10). Thus, we commit an error to the benefit of safety if we
choose the rib distance smaller than the buckling length of the linear theory.
We may certainly consider the rib-stiffening as practically effective if the distance
of the ribs is not greater than 0.7 times the buckling length of the unstiffened shelf.
In this case the critical load of the shell panel between the ribs is appoximately
twice that of the unstiffened shell.

Critical load of axially compressed cylindrical shell panels. The unstiffened
complete cylindrical shell buckles under this load in small, local waves. The
relation between the two half wavelengths Ix and ly according to the linear theory
is given by Eq. (2.10), and can be written in the following form:

y ! (8.2.1)

/12(1—2 1
n \~Rt Ix I

The ratio of the two buckling lengths is undetermined.

Accordingly, we plotted ly against Ix in Fig. 8.2.1, assuming v=0.3. The main
conclusion to be drawn from the diagram is that Ix and ly cannot be smaller than
173 /jRi and 3.46 "Rt respectively. Therefore, in the case of ribs running in one
direction only, we have to arrange them closer than whichever of these two min-
imum lengths is perpendicular to the ribs. On the other hand, if we apply two-
way rib-stiffening, the distances of the ribs in the two directions should be smaller
than the buckling lengths proportional to the rib distances, determined by the
diagram.

The critical stress of the shell panel stiffened by ribs closer than these values can
be computed from Eg. (2.8) (assuming hinged supports along the ribs), substitut-
ing the rib distances bx, by for the buckling lengths Ix, ly (Fig. 8.2.2):

Ti2Ets 2 Etbl 1

2.2
12(1—v*)b* n-R2 (82.2)
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Fig. 8.2.1. Half buckling wavelengths of the axially compressed
cylindrical shell according to the linear theory

Fig. 8.2.2. Ribbed cylindrical shell

The derivation without assuming the shallowness of the shell yields the same result
[2.51].

Equation (8.2.2) assumes buckling in one half wave in both axial and circum-
ferential directions. This is true as long as bxSby. If, however, bx>by, then —
as with flat plates — the shell panel may buckle in several half waves in the axial
direction, so that its critical load may be equal at most to that of a shell panel of
the dimension by in both directions, i.e. to

nii,, _ n2Et3 Etby
*'er 3(1—2by + an2r2’ K

The first terms in Egs (8.2.2) and (8.2.3) represent the bending stiffness of a flat
plate with the same dimensions as the shell panel, while the second terms express
the additional extensional (membrane) stiffness due to the curvature.
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Fig. 8.2.3. Post-buckling behaviour of the axially compressed cylindrical panel

The post-buckling behaviour of the cylindrical shell panel was studied by Koiter
[8.2.8]. He obtained initial tangents to the post-buckling load-deflection curves
of the perfect panel as shown in Fig. 8.2.3 (a), where/ denotes the compression in
the axial direction, and 3 = t is a geometric parameter, characteristic of the
curvature of the shell panel. The value 0 =0 corresponds to flat plates. At small
values of 0, the post-critical load bearing capacity has an ascending character,
so that the linear critical load can be considered as the actual critical load. From
0>0.64 on, however, the initial tangent becomes negative. For this range,
Fig. 8.2.3 (b) gives the magnitude of a“pErcausing snapping, plotted against the am-
plitude w0 of the initial imperfection for two 0-values. So, as the central angle
of the shell panel increases, its behaviour approaches that of the complete cylinder.

All these were confirmed by Tamate and Sekine [8.2.16], who analyzed the post-
critical behaviour of cylindrical shell panels of the side length bx="hy.

The experiments [2.51], [2.57] yielded results in accordance with the theory
outlined above.

From the theoretical analyses published in [2.57] we may draw a conclusion
that can be useful in practical applications. That is, the (not completely exact)
calculation yielded for the post-critical ef”wer of the perfect shell panel a value
equal to the critical stress of the flat plate of the same side lengths bx,by. On the
other hand, it is known that the flat plate exhibits an increasing post-buckling
load bearing capacity. Hence, we may state that if we cannot determine the critical
load of a shell panel exactly, then we may take instead the critical load of a flat
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plate loaded and supported in the same way, committing an error generally to
the benefit of safety.

Critical load of a cylindrical shell panel compressed in the circumferential direc-
tion. Since the unstiffened cylindrical shell under lateral pressure buckles in one
half wave in the axial direction between the supports, but develops several half
waves in the circumferential direction, we can compute the critical stress of shell
panels of ring-stiffened cylinders from Eqs (2.25) if we substitute the distance bx
between the ring-directed ribs for the length L of the cylinder.

More exact investigations on the basis of the linear theory [8.2.14] showed that
the shell panel may buckle at a load smaller than that of a complete cylinder, if
the distance between the axial stiffeners allows a circumferential wave number
that is prevented on the complete cylinder by the circumferential continuity. How-
ever, this reduction is less than 10%, and the critical load can by no means be smaller
than that given by the envelope of the festoon curve.

Axial stiffeners increase the critical load practically only if they are arranged
more densely than the circumferential half wavelength determined by Eg. (2.26).
In these cases we may compute the critical stress from the more exact formulas
to be found in [2.17a] or [2.51], which also contain the circumferential wave num-
ber, if we take the distance by of the axial stiffeners as the half wavelength.

Critical load of cylindrical shell panels subjected to pure shear. The linear theory
yields the following critical shearing stress (see Fig. 8.2.2):
ifbeh -

r, =ksE[Yy}, (8.2.4a)
and if bx"by:
rcr=k'se ~ . (8.2.4b)

According to the investigations of Kromm and Schapitz (see in [7.21]), the
factors k and k' can be read off Figs 8.2.4 (a) and 8.2.4 (b) respectively.

Critical load of spherical shell panels subjected to radial pressure. The half buck-
ling wavelengths of an unstiffened spherical shell —assuming rectangular buckles —
can be obtained from Eq. (4.6):

I jn2@-vy 1 (8.2

n2Rt I

The interdependent halfwavelengths (for v=0.3) are plotted in Fig. 8.2.5. As can
be seen, the half wavelength cannot be shorter than 1.72 7Rt in either direction.
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(a) ()

Fig. 8.2.4. Multiplication factors of the cylindrical panel subjected to pure shear

Fig. 8.2.5. Flalf buckling wavelengths of the radially compressed
spherical shell according to the linear theory
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Hence, if we want to increase the critical load of the shell panel as compared
to that of the unstiffened shell, we have to arrange the stiffeners so densely as to
obtain rib distances bx and by smaller than the related pairs of values in Fig. 8.2.5.
In this case the critical compressive force is to be computed from Eq. (4.5), substi-
tuting bx and by for Ix and ly respectively:

The first and second terms on the right-hand side of Eq. (8.2.6) represent the
bending and extensional rigidities, corresponding to fiat plate and curved (mem-
brane) shell action respectively. In the case of R-<-°°, i.e. if we divide the
spherical shell into smaller and smaller panels, we approach the flat plate more
and more: the post-critical behaviour exhibits an ascending character. The consider-
able decrease of the critical load after buckling (see Fig. 4.4) will fully prevail
only when the rib distances reach the half buckling wavelengths of the unstiffened
shell. The phenomenon is similar to that depicted in Fig. 8.2.3 (a).

The following problem may also arise: what is the necessary stiffness of the ribs
which prevents skin displacements perpendicular to the skin surface along the
ribs during skin buckling sufficiently to allow us to consider the ribs as rigid
supports of the skin?

To our knowledge, this question has not been generally answered as yet. How-
ever, it is possible to suggest a simple rule which in all likelihood ensures that the
skin buckles as if the ribs were rigid supports.

We start from the analogy of a theorem established by Dulacska for simple
bar structures [8.2.3a], [8.2.3b], which can be briefly stated as follows:

If we want to stiffen a comparatively weak simple frame in such a way that it
only buckles with unmovable nodes, we have to apply a sufficiently rigid structure.

Fig. 8.2.6. The basic principle according to which we can establish
the necessary rigidity of the rib
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Its rigidity can be taken as sufficient if its critical load, computed assuming
infinitely elastic material, is not less that the sum of all the loads acting on the
stiffened frame and on the stiffening structure (Fig. 8.2.6).

Applying this principle to our case, we have to stipulate that the ribs be capable
of carrying all the load acting on the skin and on the ribs, assuming infinitely
elastic behaviour.

In this computation an effective width of the skin, as valid before skin buckling
(see Section 8.2.2), can be assumed as part of the rib. (According to what is
said in Section 8.2.2 on the interaction of overall and skin buckling, this rule
does not ensure that the ribs are, in fact, able to carry the load after the skin has
buckled.)

8.2.2. Effective Width of the Skin with Respect to the Bending of the Ribs

In a plate connected with ribs, the bending causes stresses of varying magnitude
(Fig. 8.2.7). As is known, we may define an “effective width” be of the plate, form-
ing a -section with the ribs, i.e. assuming constant bending stress all along its
width. This effective width may be determined in such a way as to obtain either
the same rigidity as that of the actual structure or the same bending stress as the

Fig. 8.2.7. Effective width of the ribbed plate

maximum bending stress in the actual ribbed plate at the junction of rib and
skin. We thus arrive at two different effective widths. The difference results from
computing the strain of the skin from the relation ex=((xx—\Ty)/E, and that of the
rib from ex=gxE, so that different upvalues belong to the same ex in rib and
plate. Flowever, if Poisson’s ratio is neglected, the two effective widths become
identical.

For the buckling analysis the bending stiffness rather than the bending stress
arising in the plate is relevant. Consequently, the effective width providing the same
bending stiffness should be used. However, since the effective width yielding the
same bending stress is at most only a few per cent greater, we may use this as well.
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The effective width may also be different depending on whether we allow the
buckling of the shell panels between the ribs or not. In common engineering
practice we generally do not allow the buckling of the panels, so that we shall
deal here mainly with unbuckled skins.

Effective width of the unbuckled skin. Chwalla [8.2.3] found for flat plates that
the effective width be is constant along the length of the rib, provided the rib
deflects in a sine wave shape (which corresponds to the buckling wave). The ratio
of beto the half wavelength / of the sine wave is given in Table 8.2.1 for some
values of Posison’s ratio v.

Table 8.2.1

Values of the effective width be of a flat plate according
to Chwalla [8.2.3]

V= 0.3 0.2 0.1 0

bjl = 0.363 0.3S0 0.402 0.424

These values refer to a plate of infinite width, connected to one rib only. How-
ever, the effective width cannot be greater than the distance of the ribs, so that
this latter sets an upper bound for the values of the table.

The problem becomes more intricate if the rib is connected to a curved shell
instead of to a flat plate. The following value can be derived for the effective width
of a cylindrical shell connected to an axial rib by Schorer’s approximate theory
valid for cylindrical shells [2.32], [7.10], on the basis of the identical maximum
bending stress requirement and assumnig v=0 [8.2.7]:

(8.2.7)

where Ix is the axial half wavelength.

Since the derivation assumed only one axial stiffener, the maximum value of be
to be taken into account cannot be greater than the distance by of the stiffeners.
In addition, we also have to check (because of the approximations inherent in
Schorer’s theory) whether be obtained from Eq. (8.2.7) is not greater than that
valid for the flat plate (see Table 8.2.1), since the effective width of a cylindrical
shell has to be smaller in any case than that of the flat plate.

The effective width be of a cylindrical shell connected to circumferential ribs
was determined by Biezeno and Koch (see in [8.2.2]) on the basis of equal rigidities.
They calculated beas a function of the rib distance bx and the circumferential (full)
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wave number n, for different ratios t/R. We present in Fig. 8.2.8 from their results
the effective widths pertaining to bx=<= When using these values we have to keep
in mind that be cannot be greater than the actual distance bx of the ribs.

The effective width given by Fig. 8.2.8 approaches with increasing R (or n)
that of the flat plate (see Table 8.2.1), but it always remains smaller than that.

6
R

(Circumferential
wave number)

Fig. 8.2.8. Effective width of the ring-stiffened cylindrical shell

Lundgren [2.32], assuming

n4/2

m. < 1 (82.8)

derived for bx=°° the following formula for the effective width:

be= 1.52(1 -0.29n2-) J/jR, (8.2.9)

which shows, in the range given by Eq. (8.2.8), a rather close agreement with the
curves of Fig. 8.2.8.

For the calculation of the effective width of the cylindrical shell as outlined
above, we ought to know the axial half buckling wavelength of the composite
shell. However, this depends on the rigidity of the ribbed shell, this being, in
turn, dependent on the effective width. Thus, we can solve the problem by trial
and error only, correcting the assumed effective width and half buckling wave-
length step by step.
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Bodner [7.3] proposed a correction to the effective width of Biezeno and Koch
in order to obtain the distance of the ribs if the areas of the ribs tend to zero.
This has significance only in the case of very weak stiffeners.

Behaviour ofribbed shells after buckling of the skin. According to both experi-
ments and analysis, the load bearing capacity of the ribs considerably increases
after the skin has buckled. This is exploited in airplane construction in such a
way that for some short-term loads skin buckling is allowed, because it disappears
after the load has decreased. In common engineering construction skin buckling
is generally not allowed, although it would yield some economic advantages.

In the following we only outline briefly the phenomena of the skin buckling
and the difficulties of design connected therewith.

Aflat plate between stiffeners, subjected to uniform compression parallel to the
stiffeners, buckles as shown in Fig. 8.2.9 (a). The plate is able to produce shorten-
ing in the direction of the ribs, in the section c-c situated far from them, mostly by
buckling deformation, undergoing only a small compression. As we examine the

Fig. 8.2.9. Effective width of the buckled plate

12 Buckling of Shells
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sections closer and closer to the ribs, the buckling deformation decreases, so that
the plate has to undergo greater and greater compressive strains. The stress a
in the plate, being proportional to the compressive strain, will vary according to
the diagram shown in Fig. 8.2.9 (b). A stress ae corresponding to the entire com-
pressive strain arises close to the stiffener, while farther away a decresaes. The
effective width be denotes the width of the plate with which it could carry a force
equal to that of the actual structure if along this width bethe stress oe arose every-
where.

This effective width may be computed, according to Marguerre [8.2.9], from a
cubic equation. Very useful graphs are to be found for this purpose in [7.21].
However, the effective width decreases with the increase of the load acting on the
structure and also with increasing rib deflection, since the skin becomes more
and more buckled. (The phenomenon is to some extent similar to the decrease
of stiffness of cracked reinforced concrete shells described in Section 9.8). Thus,
we already encounter some difficulties if we want to design the rib as a simple
compressed bar against buckling, since its bending stiffness depends on the load
and on the magnitude of buckling deformation as well [7.21].

The phenomenon may also be described as an interaction between local and
overall bucklings. That is, the buckling of the skin reduces the rigidity of the whole
structure, rendering the character of the post-buckling load bearing capacity
decreasing even in cases when both local and overall bucklings have, considered
alone, increasing characters. This phenomenon is very clearly demonstrated in a
simple example in the paper of Walker [8.2.18].

The problem becomes even more intricate in the case of stiffened shells with
buckled skin. The effective width of the buckled skin may be computed on the
basis of an approximate assumption of Ebner [8.2.4], see also in [7.21], but,
to the best of our knowledge, no simple method exists for the buckling analysis
of an orthotropic shell, whose rigidity properties depend on the deformation.
Hence, we do not deal with this problem any more here, only mention that the
interaction of local and overall bucklings was treated by Byskov and Hutchinson
[8.2.2b], This interaction reduces the actual critical load most if the critical loads
of local and overall bucklings, considered separately, are equal.

8.2.3. Problems of Eccentric Stiffening

The skin can be stiffened in two ways: the ribs can be arranged on both sides
of the skin, symmetrically to its midsurface, or only on one side of it (eccentric
stiffening). In the first case, after “smearing out” the rigidities of the ribs, the
equations of orthotropic shells presented in Chapter 7 correctly describe the
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behaviour of the structure. However, this kind of stiffening is much more difficult
to realize — no matter whether the shell is made of reinforced concrete or of metal
— than the eccentric one. Moreover, it is also less economical than the latter,
since eccentric stiffeners provide with the same cross sections a considerably
greater bending rigidity.

The behaviour of the eccentrically stiffened shell can no longer be described
by the equations of Chapter 7. To make the difference more easily understood,
we first examine the role of eccentric stiffeners on the flat plate, including also
the case when stiffeners running in two directions are arranged on opposite sides
of the plate.

Eccentrically stiffened flat plates. If we arrange the stiffeners eccentrically, we
obtain no unique “neutral plane”, in which no stresses arise either from bending
or from twisting. To put it more exactly: the twisting moments cause not only
twist but, in the skin, also angular distortion, that is in-plane (membrane) shearing
stresses too. Because of these latter, in order to maintain equilibrium, in-plane
compressive and tensile stresses also arise in the skin. The phenomenon is essen-
tially the same as the “warping” of twisted thin-walled bars with open cross section.
Thus, it can be seen even without detailed analysis that the effective torsional re-
sistance of an eccentrically stiffened flat plate is greater than its “torsion rigidity”
proper. Due to this effect, the differential equation of the eccentrically stiffened
plate is ofthe eight order [8.2.6], [8.2.17], as contrasted to the fourth-order differen-
tial equation of the symmetrically stiffened plate.

If we want to use the fourth-order differential equation of the orthotropic plate,
we have to neglect the above described additional rigidity due to the eccentric
arrangement of the stiffeners, and we have to take only the torsional rigidity pro-
per of the ribbed plate into account. By so doing, in the stability analysis we always
commit an error to the benefit of safety, since we consider the structure less rigid
than it is in reality.

We may obtain useful information for the magnitude of this error from the
paper of Trenks [8.2.17], in which he compared the exactly computed deflection
(i.e. the rigidity) of the eccentrically stiffened plate with the approximate value
obtained by taking only the torsional rigidity of the ribbed plate into account.
He showed that the error is greater in proportion as

— the eccentricity of the centroid of the rib as related to the thickness of the
plate is greater;

— the cross sectional area of the rib as related to the area of the plate between
the ribs is larger;

12»
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— the moment of inertia of the ribbed plate as related to the cube of the plate
thickness is smaller; and
— the role the twist plays in the deformation of the plate is greater.

Numerically he has obtained in the case of a square plate simply supported all
along its boundary, with the eccentricity ratio 12 (Fig. 8.2.10), subjected to a
centrally applied line load distributed according to a half sine wave, so that the
deflection becomes at most 30% or 6% larger in the cases of one or two directional
ribs respectively. In these computations he neglected the effect of the rib eccen-
tricity, as compared with the exact computation which takes the rib eccentricity

into account.

(b)

Fig. 8.2.10. The eccentrically stiffened flat plate investigated by Trenks [8.2.17]
(@) - Ground plan, (b) - cross section

Pfliger [8.2.11], [8.2.12] developed and solved the exact differential equations
of the flat plate eccentrically stiffened by ribs without and with torsional rigidity
(i.e. with open and close cross sections respectively). For one-directional stiffeners
and compression in the same direction we compared the diagrams of Pflliger with
the critical stresses of the orthotropic plate, i.e. taking only the torsional rigidity
of the ribbed plate into consideration. The deviations showed close agreement
with those given by Trenks.

As far as the critical load of a flat plate is concerned, it obviously makes no
difference whether the stiffeners are arranged on one or on the other side of the
plate. However, it does make a difference whether ribs running in two directions
are arranged on the same side or on opposite sides of the plate [8.2.2a]. Let us
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consider, e.g. ribs running in the x direction. Because of the eccentricity of these
ribs, displacements develop in the plane of the plate, causing in-plane stresses.
From the equilibrium and compatibility equations (see, e.g. [8.2.2a] or [8.2.13])
can be derived that the normal in-plane forces arising in the x and y directions
have the same sign. If the y directional ribs are arranged on the same side of the
plate as the x directional ones, they produce — due to curvatures of the same
sign in the x andy directions — normal forces of the same sign as the x directional
ribs. Hence, the influences of both rows of ribs combine, and the “warping rigid-
ity” of the ribbed plate will be, so to say, doubled.

However, if the y directional ribs are arranged on the opposite side of the
plate to the x directional ones, in-plane forces of opposite signs arise due to the
x and y directional ribs respectively, so that they cancel out each others’ influence.

Eccentrically stiffened shells. In the case of ribbed shells, the eccentric arrange-
ment of the stiffeners causes — besides the increase in rigidity as explained in connec-
tion with flat plates —the following effect: it does make a difference whether the
ribs are arranged on the outer (convex) or on the inner (concave) side of the skin.
This phenomenon was discovered by van der Neut [8.2.10]. For a better understand-
ing of it let us investigate, according to [8.2.5], a stringer- and ring-stiffened
cylincrical shell. The results thus found will be valid for doubly-curved ribbed
shells too.

First we have to define some notions. We call the inflexion points of the neutral
fibre of ring-directional bending simply inflexion points, while by nodal points
we denote those points which undergo no displacement either in radial or in
tangential directions during buckling deformation. (The nodal points generally
do not lie on the neutral fibre of bending.) The lines connecting the nodal points
are called nodal lines.

If ring-directional waves develop during buckling, the arch length would have
to increase along the half waves bulging outwards and decrease along those bulg-
ing inwards, if the inflexion points did not displace in the ring direction as shown in
(Fig. 8.2.11 (a)).. The shell obviously tries to eliminate these elongations, so that the
inflexion points displace in the ring direction from the inward half waves to the
outward ones. If the amplitude of the buckling halfwaves did not vary in the axial
direction (i.e. if inthe axial direction very long half waves developed), then these dis-
placements of the inflexion points could completely eliminate the elongations in the
ring direction. However, if the buckling amplitude in the axial direction varies,
then the inflexion points have to shift to a varying degree, i.e. they have to displace
by sections in opposite directions. This causes shearing deformation in the shell
surface, according to Fig. 8.2.11 (b), which is hindered by its shearing rigidity.
Hence, finally, the shell undergoes some elongation or compression in the ring
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Original shape Buckled shape

(@ Original shape Buckled shape

Fig. 8.2.11. Displacement of the inflexion point
of an eccentrically stiffened shell during buckling

direction (along the outward or inward bulging half waves), and also some shearing
deformation. The corresponding normal and shearing forces are proportional to
each other, and have the same order of magnitude.

The shearing deformation develops in the neutral surface of ring-directional
bending of the shell, according to Fig. 8.2.11 (b). Flowever, in the surface passing
through the nodal lines, no such distortion arises, since — by definition — the
nodal lines do not shift in the ring direction.

The nodal lines always lie outside the neutral surface of the ring-directional
bending, since the inflexion points always shift towards the outside bulging half
waves in the ring direction (see Fig. 8.2.12, representing the enlarged detail “A”
of Fig. 8.2.11 (b).

The shearing deformation, arising in the surface of the shell which is capable
of taking shearing forces, is the greater, the farther it lies from the surface passing
through the nodal lines. In the case of unstiffened or symmetrically stiffened shells,
the surface capable of taking shearing forces coincides with the neutral surface
of bending. Hence, the excess buckling rigidity of such “common” shells, as
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A Nodal point

Fig. 8.2.12. Enlarged detail “A” of Fig. 8.2.11 (b)

compared with that of flat plates, is due to the shearing deformation arising in the
surface capable of taking shearing forces. That is, this latter lies at a certain distance
from the nodal lines, which lie outside the neutral surface.

The surface capable of taking shearing forces of a shell with outside stiffeners
(i.e. the inside skin) is at a greater distance from the nodal lines than the neutral
surface of bending ofthe “common” shells. Thus, these shells with outside stiffeners
exhibit an excess rigidity in buckling.

Hence the curvature of the shell has the same stiffening influence as the outside
ring-stiffeners: these two effects have to be added up. Thus, in accordance with
what has been said about flat plates, outside stringer-stiffeners increase the stiffen-
ing effects both of the curvature in the ring direction and of the outside ring-
stiffeners. To sum up, we may conclude that outside ring- and stringer-stiffeners
alike give an (effective) excess buckling rigidity to the shell.

On the other hand, inside ring-stiffeners bring the skin capable of taking shear-
ing forces nearer to the nodal lines, thereby decreasing the stiffening effect of the
curvature, until the skin reaches the nodal lines. In this latter position the effective
buckling rigidity ofthe shell becomes a minimum. (Until this position, the influence
of the longitudinal stiffeners is the same as described before: outside ribs increase,
inside ribs decrease the stiffening effects due to the ring-directional phenomena.)
In this position, the effective buckling rigidity of the stiffened shell will be less than
that of a symmetrically stiffened shell with the same (geometric) rigidity charac-
teristics (but, of course, greater than that of the unstiffened skin). If the ring-stiffen-
ers shifted the position of the skin beyond (i.e. inside) the nodal lines, the effective
buckiing rigidity of the structure would increase again. As a rule, however, this
does not occur practically, or if it does, the effective buckling rigidity does not
increase again to the level of that of the symmetrically stiffened shell. Hence, the
effective buckling rigidity of shells with inside stiffeners will certainly be lower
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than that of shells with outside stiffeners, and in some cases even lower than that
of symmetrically stiffened shells with the same (geometric) rigidity characteristics.

It follows from the foregoing that the difference in effective rigidities of outside
and inside stiffeners becomes manifest only if the buckling deformation contains
some twist, i.e. if the buckling half-wave lengths in both directions do not differ
very much from each other. We may also say that the ultimate cause of the
difference in effective rigidities of outside and inside stiffeners is the same as that
of the excess rigidity due to the eccentric stiffeners of the flat plate: the “warping
stillness”. With shells, however, — due to the curvature — outside stiffeners increase
while inside ones decrease this effect as compared to the flat plate.

The phenomenon described in the foregoing is called the “primary effect” of
eccentric stiffeners of shells. There isa “secondary effect” too, due to the transverse
contraction, which acts in the opposite sense.

Let us first consider the case of outside stiffeners. The outward bulging half waves
in the longitudinal direction induce compression in the inside lying skin. Due
to the transverse contraction (Poisson’s ratio), this causes tension in the ring
direction, reducing the ring-directed displacement of the inflexion points caused
by the primary effect. On the other hand, along the inward bulging longitudinal
half waves the skin undergoes tension in the axial direction, which, due to the
transverse contraction, induces compression in the ring direction, again decreas-
ing the displacements of the inflexion points. The reduction of the inflexion
point displacements, however, diminishes the shearing deformation shown in
Fig. 8.2.11, rendering the shell less stiff.

In the case of inside stiffeners the secondary effect has an inverse influence,
since the skin lies outside. The shearing deformation shown in Fig. 8.2.11 increases,
so that the shell becomes more rigid.

To sum up, the secondary effect makes the shell with outside stiffeners less rigid
than that with inside ones. Hence, the secondary effect acts in a sense contrary to
the primary effect.

The secondary effect appears even if the buckling deformation contains no twist,
provided that the ribs are arranged in the direction of the buckling waves, as e.g.
in the case of axisymmetric buckling of stringer-stiffened shells. That is, due to
the transverse contraction, variable hoop elongations and shearing deformations
develop in the skin. If Poisson’s ratio of the skin is equal to zero, the secondary
effect obviously also ceases to exist.

It cannot always be decided without a detailed analysis which of the primary
or the secondary effects, acting in contrary senses, prevails, i.e. whether outside or
inside stiffening results in providing a greater effective rigidity. According to the
investigations of Geier [8.2.5] and Singer, Baruch and Harari [8.2.13], in the case
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of cylindrical shells under lateral (or hydrostatic) pressure, inside stiffeners pro-
vide a greater stiffness for long cylinders, while outside stiffeners are more effective
for short ones. In other cases, however, when the buckles are not long-shaped as
in the aforementioned cases, but are (nearly) square, outside stiffeners provide a
greater effective rigidity, as a rule. Thus, in the case of axially compressed cylinders,
it is always outside stiffeners that provide a greater rigidity.

Numerical computations showed the following differences between the rigidities
of outside and inside stiffeners of the same cross sections in favour of outside
ones: For ring-stiffeners, mostly 10~15% [8.2.1], in extreme cases (very heavy
stiffeners) 30~40% [8.2.6b], For stringer-stiffeners the difference may reach 100%
or, in the case of very heavy stiffeners, even more [8.2.2a], [8.2.6a], [8.2.6b].

However, this favourable effect of outside stiffeners is greatly counteracted by
the increased sensitivity of outside stiffened shells to initial imperfections. In fact,
from the basic paper of Hutchinson and Amazigo [8.2.6b], the conclusion can be
drawn, taking it by and large, that — except for very long shells exhibiting more
favourable behaviour — the stiffeners which provide a higher critical load (i.e
outside, in particular longitudinal ones) are rather sensitive to imperfections
This circumstance partially counterbalances their advantages described earlier.

In all probability this imperfection-sensitivity accounts for the fact that in
several cases the experiments did not exhibit the difference between the critical
loads of outside and inside stiffened shells [7.9], [8.2.15]. In other cases, however,
the difference was well marked [8.2.2c], [8.2.6a].

The exact value of the linear critical load of eccentrically stiffened Shells has
been calculated for several cases. Closed solutions are to be found in [8.2.6a]
for axially compressed stringer-stiffened shells, in [8.2.1] and in [8.2.13] for ring-
stiffened and ring- and stringer-stiffened ones respectively, under hydrostatic
pressure, and in [8.2.2a] for ring- and stringer-stiffened shells under the simulta-
neous action of axial compression and hydrostatic pressure. Ribbed shells of
revolution are treated in [7.4].

The buckling analysis of ribbed shells — as with ribbed plates — can be reduced
to that of simple orthotropic shells dealt with in Chapter 7 if we neglect the
effect of the eccentricity of the stiffeners, i.e. if we neglect the excess torsional (or,
to be more exact, warping) rigidity due to the eccentricity of the stiffeners together
with their primary and secondary effects, and take only the torsional rigidity
proper into account. Although it has not yet been proved that by so doing we
remain on the safe side even in extreme cases, we may expect, as a rule, to obtain
the critical load of the ribbed shell with an accuracy sufficient for practical pur-
poses. We do not see any other way, at present, to perform the buckling analysis
of these structures with a reasonable amount of work.

To sum up, we propose to neglect the warping rigidity and the primary and
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secondary effects caused by the eccentricity of the stiffeners in the buckling analysis,
to compute the rigidity characteristics with the well-known formulas of ribbed
flat plates (see Section 8.2.6) and to consider the structure a simple orthotropic
shell (Chapter 7).

8.2.4. Poisson’s Ratio of the Stiffened Shell

Transverse contraction in the ribs is obviously of no interest.

Transverse contraction plays a role only in connection with the rigidity char-
acteristics of the skin, so that, all things considered, its influence is much less
than on unstiffened shells.

Neglecting transverse contraction always causes the rigidity characteristics
to be considered less than their actual values, since vappears in their denominators
in the form of (1—v2, see in Section 7.1. Hence, taking into account that the
influence of Poisson’s ratio is rather small, in order to simplify calculations it is
expedient to set v=0. This also serves to the benefit of safety.

8.2.5. Density of Ribs Required for “Smearing out” their Rigidities

If we want to calculate ribbed shells as continuous orthotropic ones, in addition
to what has been already said, the requirement has to be fulfilled also that there
should be ribs not only on the nodal inflexion lines of the orthotropic shell, but
also within the buckling half waves. As far as the necessary number of ribs within
one half wave is concerned, we refer to some comparative analyses [7.14] and to
results obtained for reticulated shells [8.3.1]. From these we may draw the conclu-
sion that if the half buckling wavelength is equal to at least two times the rib
distance, the “smearing out” of the rib rigidities furnishes results sufficiently
accurate for practical applications.

As a rule, the buckling wavelength of ribbed (orthotropic) shells is considerably
greater than that of the unstiffened skin (the halfbuckling wavelength being usually
proportional to the square root of the effective thickness, which is many times great-
er for stiffened shells than for the unstiffened skin). Hence, if we choose, according
to Section 8.2.1, a smaller rib distance than the half buckling wavelength of the
unstiffened skin, we mostly also meet the requirement that the half wavelength
of the stiffened shell should be equal to several rib distances. This was confirmed
by the investigations carried out in [8.2.13a] showing that if we arrange the ribs
so densely as to prevent skin buckling at a lower load intensity than necessary
for overall buckling, then, in the case of stiffeners without torsional rigidity and
for the value 10 of the geometric parameter Z (see Fig. 2.14), the “smearing out”
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of the rib stiffenesses results in a critical load about 7% higher than that obtained
with discrete stiffeners. This discrepancy rapidly decreases with increasing Z.
For ring-stiffeners some results are to be found in [8.2.8a] which permit us to
draw similar conclusions.

It should be noted that, according to [8.2.4a], the “smearing out” of the rib
rigidities always results in a somewhat higher critical load than the computation
with discrete stiffeners.

The method for taking individual stiffeners into account isto be found in [8.2.19]
or [8.2.20].

It should be mentioned that individual stiffeners cause several disturbances not
taken into account be the continuum approach. For example, if an axially com-
pressed cylindrical shell is stiffened by ribs in the circumferential direction, the
skin, due to Poisson’s ratio, undergoes an elongation in the circumferential direc-
tion, while the ribs keep their original length. Consequently, the skin bulges out-
wards between the ribs, so that an appreciable initial imperfection comes about,
which may reduce the critical load. Some aspects of this effect under pure bending
are dealt with in [8.2.9a].

8.2.6. Rigidity Characteristics of the Orthotropic Shell Equivalent
to the Stiffened One

Using the approximations mentioned above (neglecting the “warping rigidity”,
the primary and secondary effects due to the eccentricity of the stiffeners and the
transverse contraction), the rigidity characteristics of the shell ribbed in x and y
directions can be written as follows:

Extensional (membrane) rigidities:

(8.2.10a)

(8.2.10b)

Txy = 2Gt. (8.2.10c)
Bending (plate) rigidities:
(8.2.11a)

(8.2.11b)

(8.2.11c)
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Here:

AXx, Ay — cross sectional area of one rib in the x and y directions respectively
(without the skin);

bx, by — rib distances (see Fig. 8.2.2);

Ix, ly — moment of inertia of one rib in the x and y directions respectively,
calculated with the effective width of the skin;

Ixt, Iyt — torsional constant of one rib in the x and y directions respectively,
calculated without the skin;

E
:? — modulus of shear.

8.2.7. Suitable Stiffening of Cylindrical Shells

Regarding the question of which kind of stiffening is most effective for different
loading cases, we may state that, as a rule, — in accordance with what has been
said in Chapter 7 — stringer-stiffeners are more effective on short shells while ring-
stiffeners are more expedient on long ones. Ring-stiffeners may also considerably
increase the critical axial load of cylindrical shells when applied together with
stringer-stiffeners [8.2.12a]. For the expedient design of the stiffening of axially
compressed cylindrical shells we find instructions in [8.2.12a] and [8.2.12b].

8.3. Reticulated Shells

If the shell has to bridge a large span, we may expediently construct it of steel,
covering the shell surface by a triangular network and arranging bars correspond-
ing to its sides. We thus obtain a reticulated shell. The roofing layer plays no struc-
tural role in this case. The structural grid itself may be either single- or double-
layered.

If the network of the structure has some regularity properties, it is generally
possible to find a statically equivalent continuum and to reduce the overall sta-
bility analysis of the reticulated structure to that of a continuous shell as treated
in the previous chapters.
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8.3.1. Single-Layer Reticulated Shells

If the network consist of equilateral triangles, all bars have equal cross sections
and they are rigidly connected at the joints (Fig. 8.3.1), then the equivalent con-
tinuum of the structure is a solid isotropic shell [8.3.3], [8.3.5] with the thickness:

. _ 3EI+GI,
t'=2 EA (8.3.1)
and with the modulus of elasticity:
2A
E'= E.
fiat' (83.2)

Fig. 8.3.1. The single-layer reticulated shell
that has an isotropic shell as equivalent continuum

Here the following notations have been used:

a —
A —
/| —

/, —
E —
G —

centre-line length of one bar;

cross sectional area of one bar;

moment of inertia of one bar (referred to the axis tangential to the shell
surface);

torsional constant of one bar;

modulus of elasticity of the bar material;

modulus of shear of the bar material.

Poisson’s ratio for tension of the equivalent shell is (independent of the bar
material):

V= 13 (8.3.3)

In the case ofbending a somewhat smaller v* is obtained if G/,> 0, so that the struc-
ture is not perfectly isotropic. This difference has, however, no practical signifi-
cance since, according to what has been said in Chapter 7, the transverse con-
traction may be neglected in most cases anyway.

As with ribbed shells, here also the question arises of how dense the net should
be in order to obtain a satisfactory accuracy when using the replacement homo-
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geneous shell. Forman and Hutchinson [8.3.1] computed the linear critical load
of a radially compressed reticulated (shallow) spherical cap and of an axially
compressed reticulated cylinder, both with the net described above, exactly
(considering the actual reticulated structure) and by using the replacement homo-
geneous isotropic shell. They assumed the torsional rigidities of the bars to be
G1,=0J69EI, corresponding to circular solid or tube sections. They found for

(with i=ilfA as the radius of gyration of the bar cross section and
R as the radius of the shell surface), or — substituting for i the equivalent wall
thickness t'#3.88i valid for the assumed ratio GIJEI — for aji Rt'S 1, that the
continuum method yields (linear) critical loads less than 10% higher than the
exact values.

With the aid of Figs 8.2.1 and 8.2.5, this result can easily be converted into a
ratio of bar length to half buckling wavelength of the replacement shell. Since the
linear theory does not determine uniquely the two lengths of the buckle, we took,
for the benefit of safety, the minimum possible lengths in every case, and we
obtained approximately that the 10% limit of error can be assured if the half
buckling length of the reticulated shell, according to the linear theory, is equal
to at least two bar lengths.

According to [8.3.1], the 10% limit of error can also be guaranteed by requiring
that under the action of the (linear) critical load of the replacement shell the
compressive force in no bar should exceed 70% of its Euler buckling load (assum-
ing hinged ends).

If the grid consists of triangles other than equilateral, or the cross sections of
bars in the different directions are not identical, the replacement shell will be
anisotropic, see [8.3.2] or [8.3.3].

Single-layer shells have two kinds of buckling that might be considered as
“local”. One is the buckling of individual bars between the joints. This can be
eliminated by designing the bars for buckling in the usual way, taking the clamping
effect of the joining bars into account (or neglecting it for the benefit of safety,
assuming hinged ends). The other phenomenon is the snapping of a part of the
structure under a concentrated load, acting e.g. during erection. This may be treat-
ed with the aid of the replacement continuous shell, using the results presented in
Section 4.2.2, since the phenomenon represents an “overall” rather than a “local”
buckling problem, provided the network is “dense enough” to allow the conti-
nuum treatment. As an alternative, a special “local” method for the analysis of
the snapping is to be found in [8.3.4].
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8.3.2. Double-Layer Reticulated Shells

With respect to bending (and twist) the double-layer reticulated shell isequivalent
to a homogeneous isotropic solid shell [8.3.3], [8.3.6] if both layers are identical
and they consist of bars of identical cross-sectional areas forming nets of equilat-
eral triangles (Fig. 8.3.2). The replacement shell has the thickness:

t'=1iJh (8.3.4)
and the modulus of elasticity:

E'= (835)

N"NE .
3 ah
Here h denotes the distance between the two layers, while the other symbols are
defined after Egs (8.3.1)—8.3.2).

Fig. 8.3.2. The double-layer reticulated shell
that has an isotropic sandwich shell as equivalent continuum

Poisson’s ratio is given by Eq. (8.3.3) in this case too.

With double-layer reticulated shells it makes practically no difference whether
the joints are hinged or ensure a rigid connection between the bars, because the
stiffness of the structure is provided by the extensional rigidities of the bars rather
than by the rigid joint connections, as contrasted to single-layer shells.

The accuracy of the continuum buckling analysis of double-layer reticulated
shells has not yet been investigated in detail. However, it seems to be logical to
consider the results of Forman and Hutchinson [8.3.1], outlined in the previous
section, for double-layer shells too.

Double-layer reticulated shells are much less stiff in transverse shear than their
replacement solid shells defined by Eqs (8.3.4)8.3.5). In fact, they are equivalent
to sandwich shells (see Section 8.1), rather than to solid ones. If every bracing
member connecting the two layers has the same length and the same cross-sectional
area, the structure is isotropic with respect to transverse shear, and it has the factor
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Qcharacterizing the “sandwich-effect” :

n _ librae
v "brach2’ 836

where (see Fig. 8.3.2):

/brac — length of the bracing members;
brae — cross-sectional area of the same.

In buckling analysis the *“sandwich-effect” should be taken into account as
outlined in Section 8.1.

If the networks of the two layers consist of triangles other than equilateral, or
the cross-sectional areas of the bars running in different directions are not equal
to each other, the replacement continuum becomes anisotropic [8.3.3]. If the net-
work of the two layers differ or if the rigidity properties of the two layers are not
proportional to each other, the equivalent continuum becomes a ribbed shell
[8.3.3].

The “local” instability of double-layer reticulated shells consists of the buckling
of the individual bars. This can be avoided by designing the bars for buckling,
taking into account the clamping effect of the adjacent bars (or neglecting it to
the benefit of safety).

8.3.3. Interaction Between Local and Overall Buckling

When investigating the necessary net density of single-layer reticulated shells
which allows the replacement continuum to be used, Forman and Hutchinson
[8.3.1] considered this interaction, too. Their rule, given in Section 8.3.1, thus
indicates the real, total deviation of the (linear) critical load of the replacement
continuum from that of the actual reticulated structure.

On the other hand, if we consider the load intensity which causes local buckling
(also taking, if necessary, the plasticity of the individual members into account)
as npl (Section 9.4), and apply Eq. (9.4.2) for the “limit” case of Forman and
Hutchinson (0.7 npl—nar €l), we obtain a “combined” critical load 18% less than the
elastic one, as compared with the 10% deviation given by Forman and Hutchinson,
i.e. we remain one the safe side. This presumably applies to double-layer
reticulated shells, too. Hence, we may also use this procedure in those cases when
the condition given by Forman and Hutchinson (Section 8.3.1) is not fulfilled.
(It should be remarked that although Eq. (9.4.2) is written for the upper elastic
critical load, it may be applied to the linear critical load as well, because the
former turns into the latter for w0"0.)
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8.4. Corrugated Shells

Corrugated shells are mostly produced by twisting or bending corrugated
(Fig. 8.4.2) or folded (Fig. 8.4.3) plates. Consequently, corrugated shells
mostly have the shape of cylinders or hyperbolic paraboloids [8.4.1], [8.4.3],
[8.4.4]. In [2.35] we also find an application in the form of an elliptic paraboloid.

The special feature of such corrugated or folded plates is that they have a great
bending rigidity in the direction y perpendicularly to the waves, while in the di-
rection X of the waves they have a small extensional rigidity. Due to this speciality
of the rigidities, in the cases of the critical loads appearing as the product of these
two rigidities (“shell-like” buckling), the critical load of the corrugated shell is
the same as if it were made of the same sheet without corrugation [7.6]. The corru-
gation increases the critical load substantially only when it is determined mainly
by the bending rigidity (“plate-like” buckling).

In order to understand this phenomenon better, we have to consider that the
critical load appears as the product of extensional and bending rigidities, when the
boundary conditions do not influence the buckling wavelength and the critical
load is obtained by minimization, e.g. in the cases of the axially compressed
cylinder, the radially compressed sphere or the (not too shallow) hyperbolic pa-
raboloid supported along the generatrices. These cases represent “shell-like buck-
ling”. Plotting the critical load against the curvature (1/R) of the shell, we obtain
a slanting straight line (Fig. 8.4.1).

Fig. 8.4.1. Shell-like and plate-like critical loads

On the other hand, ifthe buckling wavelength is limited by the boundary condi-
tions, then — in an extreme case —the curvature of the shell (i.e. its extensional
rigidities) play no role, and the critical load is determined by the bending rigidities
only (“plate-like” buckling); see the horizontal straight lines of Fig. 8.4.1. In
these cases we may compute the critical compressive force as that of a flat plate
with the same ground plan and the same boundary conditions. The corrugation
increases the combinations of the bending rigidities in any case. Thus, only the

13 Buckling of Shells
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rigidity-increasing influence of the corrugation remains effective, shifting the
horizontal line pertaining to the “plate-like” buckling of the corrugated plate
(see Fig. 8.4.1) higher than that of the flat plate. This occurs e.g. in the case of the
buckling of corrugated shallow hyperbolic paraboloid shells supported along the
generatrices.

The exact curve of the actual critical load of the shell osculates the straight
lines of shell-like and plate-like buckling, as in the case of the hyperbolic para-
boloid shell, shown in Fig. 5.5 (b).

Accordingly, in the vicinity of the interaction point of the two straight lines,
the buckling behaviour of the shell shows some intermediate behaviour between
pure “shell-like” and “plate-like” buckling.

However, this transitory section is not very long; moreover, the critical load
is not much, higher than that given by the straight lines. Thus, the behaviour of
the shell can be well characterized by the straight lines pertaining to shell-like
and plate-like buckling.

It should be remarked that if a complete cylinder is corrugated in the axial direc-
tion (i.e. its straight generatrices are parallel to the axis x in Figs 8.4.2 or 8.4.3),

Fig. 8.4.3. Folded plate and its cross section
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the bar-like buckling of the whole cylinder may also be onerous. That is, this kind
of corrugation provides a rather low axial tensile stiffness which may reduce the
rigidity against bar buckling more than that against shell buckling.

The rigidity of the corrugated shell may be increased by applying stiffening
ribs or plates in the direction of the waves [2.35], as shown in Fig. 8.4.4. These

Fig. 8.4.4. Stiffened corrugated plate and its cross section (The stiffeners may also be bars of
other cross sections, even flat plates)

increase the bending and extensional rigidities in the direction parallel to the
waves, thereby raising the critical load of the corrugated shell too. In this structure
the corrugated plate acts as a bracing. On the other hand, since this bracing con-
sists of “curved members”, rather than of straight ones, the transverse shear also
causes bending in the corrugated “members”. Consequently, the transversal shear-
ing deformation can no longer be neglected. Thus, when calculating the critical
load, the “sandwich-effect” (Section 8.1) also has to be taken into account.

In corrugated or folded shells, local buckling of the corrugations or of the folded
plate elements can only occur if the structure as a whole buckles in a “plate-like”
manner. That is, the critical load of the “shell-like” overall buckling is in any
case lower than that of the local buckling occurring in very short buckling waves.
On the other hand, in the case of stiffened corrugated (or folded) shells (see Fig.
8.4.4) local buckling also has to be investigated in the case of shell-like overall
buckling. In order to use the procedure outlined in Section 9.4 for taking into ac-
count the interaction of overall and local buckling, we have to regard the load
intensity of the appropriate local buckling as ppl.

The rigidity characteristics of corrugated or folded shells described above, which
are necessary for designing them like orthotropic ones for buckling, are given in
the following.

13+
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Rigidity characteristics o f the corrugatedplate. The cross section ofthe corrugated
plate is shown in Fig. 8.4.2. With v=0, assuming the sine arcs to be flat, and
neglecting the warping rigidity (as in the case of ribbed shells), we may write the
rigidity characteristics on the basis of [7.6] as follows:

Bx= Bxy = B,
By = B(1+ 0),
T_ T (8.4.1)
1 1+ 0
Ty=Txy=T.
Here:
E t3
B=J2" T=Et
and S M T (8.4.2)

Rigidity characteristics of the folded plate. The rigidity characteristics of the
folded plate shown in Fig. 8.4.3 may be derived in a similar way to those of the
corrugated plate. However, the flatness of the cross section can no longer be
assumed, since the influence ofthe plate sections in the direction £ may be consider-
able. In the following we present the rigidity characteristics assuming v=0 and
neglecting the warping rigidity:

1
Bx T+ hfi*

. Sbll

BXy 5(1 + Als).

T )
ft
g +tH -
T m+hs),
Ty I+ h/s ’

In these formulas B=Et312 and T=Et.

If the corrugated or folded shell has a curvature in the y direction with the
radius of curvature Ry, its tensile stiffness in the it direction, Tx, increases, because
the outward or inward bulging parts of the shell are forced onto circles of larger
or smaller radiuses of curvature, and the hoop forces which arise hinder this de-
formation.
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The modified values of the tensile stiffness Tx are [8.4.2]:

— for the corrugated shell:

Tr = : (8.4.5)
6.0
1+ P
— FO123—
to b0y
— for the folded shell:
T = , i} h* , h3' (846)
1+3T p+»

with ¢ plotted in Fig. 8.4.5.

Fig. 8.4.5. Factor y/ representing the influence of curvature on the tensile stiffness
Tx of folded shells

These modified 7”-values were derived for axisymmetric deformation. In the
case of asymmetric deformation these values may be somewhat less [8.4.2].

Rigidity characteristics of the stiffened corrugated plate. The rigidity character-
istics in the direction y of the stiffened corrugated plate shown in Fig. 8.4.4 are
equal to those of the unstiffened one. In the direction x the rigidities of the corru-
gated plate can be neglected in comparison to those of the stiffeners, so that only
these latter appear in the expressions. On the other hand, the “in-plane” shearing
rigidity is hardly increased by the stiffeners, so that this will be provided by that
of the corrugated plate. Finally, the torsional rigidity can be approximately
obtained by taking that of the plate, neglecting those of the stiffeners.
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Hence, the rigidities of the stiffened corrugated shell are:

Bx= 2L (Ad*+1),

By = B(1+ 0),
Bxy = B, (8.4.7)
Ay = dxy = 1.

In these formulas, B, T, 0 are as defined by Eq. (8.4.2), A and 1are, respectively,
the cross-sectional area of one stiffening element and the element’s moment of
inertia referred to its own centroid.

It should be remarked that the upper and lower stiffeners may be shifted with
respect to each other in the y direction.

The “sandwich-effect”, i.e. the deformation of the corrugated plate, acting as a
web, due to transverse shear, may be taken into account with the aid of the factor
Qexplained in Section 8.1. Its value can be determined by equating the transversal
shearing deformation of the corrugated plate-web with that of a sandwich plate
and expressing therefrom q. The factors gxand @ valid in the x and y directions
respectively, determined in this way, are as follows:

&=; W ’<1+025e>
12s
Q Ett-

To assess the critical load as that of an isotropic sandwich shell we may use the
approximate expression (8.1.4). In cases demanding greater accuracy we may
compute the structure as an orthotropic sandwich shell according to the
procedures outlined in [2.13], [8.1.6].

(8.4.8)



9. Practical Application of the Results
of the Stability Theory

In the previous chapters we presented the results of the theory of elastic stability.
The knowledge of these results is, however, not sufficient to design an actual shell
against buckling. We have to know, in addition, which are the values to be assumed
for the basic data of the elastic stability analysis; furthermore we have to consider
that the properties of the shell material generally differ from the linearly elastic
ones. Thus, in the case of most structural materials the plasticity and, in the cases
of concrete, synthetics, wood and metals (at high temperatures), the creep may
reduce the elastic critical load considerably. Finally, for concrete and reinforced
concrete shells, in addition to the aforementioned effects, the influence of cracks
and reinforcement has to be clarified.

In the following we intend to deal with each of these aspects, in turn.

9.1. Factors Influencing the Critical Loads of Shells

The factors influencing the critical loads of shells may be classified as follows:

The critical load depends

— on the material properties of the shell that can be characterized by the mod-
ulus of deformation E (i.e. the modulus of elasticity of the material model,
see Sections 9.4, 9.6, 9.8);

— on the extensional and bending rigidities, T and B respectively, of the shell;
in the cases of “shell-like” buckling, these can be taken coupled as a unique “shell-
buckling rigidity characteristic”

K=1IBT (9.1.1)

into account, as is shown in [9.1.1];
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— on the curvatures of the shell, characterized by the radiuses of principal
curvatures.

These factors again depend on the following data or effects:
The modulus of deformation E depends on the

— quality (strength);
— creep;
— actual stress

of the material. (The effect of the plastic properties of the material is incorporated
into the last item.)

The shell buckling rigidity characteristic K depends on the
— ratio of thicknesses of the erected and the designed shells;
and furthermore, in the case of reinforced concrete shells, on the

— cracks of the concrete;

— eccentricities of the normal forces;

— quantity, quality, and position inside the cross section of the reinforcing
bars.

The radiuses of curvature of the shell depend on the initial imperfections caused
by the

— inaccuracies of erection;
— bending moments,

taken into account by the initial eccentricity of the in-surface (membrane) forces,
and by the amplitude w0 of the initial imperfection.

First, we deal with the assumption of the proper initial eccentricity w0 necessary
for the determination of the critical loads of elastic shells (Sections 9.2-9.3).
Next we investigate the influence of plasticity (Section 9.4) and of creep (Section
9.5) of the shell material. Then we deal with the special problems of shells made
of metals, synthetics or timber and (reinforced) concrete (Sections 9.6, 9.7 and
9.8). The problems connected with the experimental determination of the critical
load will be treated in Section 9.9. Finally, the necessary value of the safety factor
will be examined (Section 9.10).
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9.2 The Initial Imperfection and the Eccentricity of the Normal
Force to be Taken into Account

We have seen in the previous chapters that the upper critical loads of most
homogeneous elastic shells sharply decrease with increasing initial imperfection
amplitude w0. This decrease is due partly to the magnitude of the imperfection
itself, partly to the eccentricity e0 of the compressive force belonging to this
imperfection. In the case of homogeneous shells the rigidity characteristics of the
shell cross section were independent of the magnitude of the eccentricity, so that
it was sufficient to investigate the decrease of the critical force dependent
on the imperfection alone. However, the plastic deformation and load bearing
capacity of the shell wall, and the rigidity of the cracked reinforced concrete cross
section depend decisively on the eccentricity of the normal force. Consequently,
in the following we have to deal separately with the influence of the imperfection
w0and with that of the eccentricity e0of the normal force.

9.2.1. Relation between Imperfection and Eccentricity

One part of the imperfection causes bending moment, i.e. eccentricity, while
the other part changes the distribution of the membrane forces, thus not giving
rise to eccentricity. Hence our problem is to find the relation between the imper-
fection amplitude and the eccentricity resulting from the imperfection in the
cases of various shell types.

If we impose a small deformation w onto a shell with a given geometry and state
of stresses, we can determine the pertaining bending moment and the change in
the membrane force at any point and in any direction with the aid of the classical
bending theory. Dividing the bending moment by the modified value of the
membrane force we arrive at the magnitude of the eccentricity. Performing this
investigation for several shell surfaces and for various states of stresses we obtained
the following results for the ratio c=ejw0.

— in the vicinity of stiffened edges the value of ¢ may become greater than
unity; however, since the edge stiffener impedes buckling, the shell does
not fail here;

— in regions where buckling may occur, the value of ¢ always becomes smaller
than unity;

— the value of c depends on the geometry, on the state of membrane stresses,
and on the value of the imperfection amplitude w0 as well; nevertheless,
we may consider the following values, in the range 0.167<w(t<0.50, as
safe, good approximations:
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— cylindrical shells:  ¢=1.00;
— domes: c=0.67;
— hyperbolic shells:  ¢=0.50.

The value of ¢ decreases with increasing w0, so that in the range wQ't> 0.50
the above values yield a wider margin of safety when computing €0 from wo.

Since we established the above c-values on the basis of the classical (small-defor-
mation) bending theory, these values are independent of the buckling deformation
w. Our qualitative investigations with the aid of the large-deflection theory
showed that this can, in fact, be considered as a permissible approximation.
So, with the above values of ¢ we can convert imperfection to eccentricity and vice
versa, according to which value is given and which is needed.

9.2.2. The Magnitude of the Imperfection

We described in Chapters 2 and 4 how the initial imperfection reduces the crit-
ical load. The greatest reduction was obtained by Kao [4.16a] for the spherical
cap. However, he assumed an extremely onerous imperfection, one rather unlikely
to occur in practice, i.e. an asymmetric one extending only over one quarter of
the spherical cap. We may reasonably assume that only a part of the initial imper-
fections to be expected have these properties. Hence, we should take Kao’s
results only partially into account. If we evaluate the theoretical results, consider-
ing these viewpoints, we obtain the curves of Fig. 9.2.1, of which those of the ra-
dially compressed sphere and of the axially compressed cylinder coincide. These
curves can be applied to calculate reliably the upper critical loads of cylindrical
and spherical shells with known initial imperfections.

In the following, B stands for the ratio of the upper critical load to the linear
one, (Q=p*“pee7 rfn), while the kind of upper critical load is indicated by subscripts.
(Thus the values related to homogeneous, concrete, and reinforced concrete
shells are denoted by phom qc, and Qrc, respectively). The curves of Fig. 9.2.1
can be closely approximated in the range wO't< 1 by the expression:

! 9.2.1)

6hom —

1+A-f

The value of A is different for the various shell types. Knowing the value of
£romyvalid for w jt—0.5, Qum(0.5), the constant A can be computed from the for-

mula:
FZ_ '« 'ﬁ. 9:2.2)
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Fig. 9.2.1. Decrease of the upper critical loads of cylindrical and spherical shells with increasing
initial imperfection amplitude w0

The value of ehom(0.5) is to be assessed from the expression:
ehom(0.5)"I(i+5i~1). 9.2.3)

The values of £/om(0.5) and A for various shell types are compiled in Table 9.2.1.

We still have to investigate the magnitude of w0 to be assumed. Since, as
Fig. 9.2.1 shows, the initial inperfection markedly reduces the critical load, we
have to deal with this problem in detail.

The initial imperfection consists of two parts. One is the accidental imperfection
due to inaccuracies of erection, the amplitude of which we denote by wOaccid.

The other part is the calculable imperfection to be computed by the bending
theory of shells. Its amplitude will be denoted by wO calc.

The coincidence of the maximum values of both imperfections is rather improb-
able. Thus, according to the rules of the probability theory, we may take the
greater of the following values for design imperfection:

WO, calc + 0.8 WO, accid (9.2.4)

Wh, design — .
WO, accid
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Table 9.2.1
Values of (hom (0.5) and A (Eqgs (9.2.3) and (9.2.2)) for various
shell types
Shell types .. (0.5) A
Axially compressed cylinder,
radially compressed sphere 0.25 6.0
Long cylinders, - 10000J, 1.00 0.0
Medium length cylinders = 1000j, 0.77 0.6

Short cilinders [j'ﬁ': IOoy

subjected to lateral pressure 0.59 14

By so doing we have taken the probability of coincidence of the mean values of
imperfection amplitudes into account. The standard deviations of the eccentrici-
ties from their mean values will be considered in the safety factor.

Accidental imperfection. When we compare the decrease of the theoretical critical
load, as plotted against the initial imperfection (Fig. 9.2.1), with the decrease of the
mean values of the experimental critical loads obtained for the axially compressed
cylinder and the sphere, as plotted against the ratio R/t (see Figs 2.3 (a), (b), (c)
and 4.2), we find that they show the same tendency. The reason for this phenom-
enon is that the thinner the shell is as compared to its radius of curvature, the
less accurately it can be built.

For both the cylinder and the sphere, the upper and lower bounds at R/t= 1000
are 0.7 and 0.1, respectively. The average value of both is 0.4. According to [9.2.2],
however, the distribution of the experimental values is not symmetric: for the
experiments on cylinders, the mean value is 10% lower than the average value.
A detailed evaluation of the experimental results on spheres furnishes a similar
result. Thus, the mean value may be assumed to be 0.36.

The decrease of the critical load with increasing initial imperfection amplitude
w0 in the cases of axially compressed cylinders and of spheres can be expressed
from Eqg. (9.2.1) and Table 9.1.1, yielding the hyperbola:

«u er 1
Fv:rpp A

- — (9.2.5)

“hom —  mlin »

S 1+6N



9.2. Initial Imperfection and Eccentricity 205

(Fig. 9.2.2 (8)). On the other hand, the mean value of the experimental critical
loads as a function of the ratio R/t is approximately represented by the relation:

S,/Lé?per ! | (9 2 6)
Hin— 3R
r 10007

(a)

Fig. 9.2.2. (a) - Upper critical load of the axially compressed cylindrical and of the radially

compressed spherical shell as a function of the maximum amplitude wo of the initial imperfection;

(b) - scatter range of experiments on cylindrical and spherical shells plotted against the ratio of
radius of curvature to wall thickness R/t

(Fig. 9.2.2 (b)). Equating the two left sides we obtain the following value for
the accidental imperfection amplitude to be taken into account:

R
Wflaccid - 350Q » (9.2.73)

The accidental imperfection was also checked by measurements [9.2.1]. On
cylinders with the ratio 7?/f=1000 the amplitudes of the accidental imperfection
half waves in the axial direction measured at points where it later buckled were
around R13000. Hence, the value given by Eq. (9.2.7a) seems to be acceptable for
carefully fabricated shells.

In the case of erection methods which result in greater imperfections (e.g.
assembling from parts by welding; reinforced concrete shells erected with a sliding
formwork, etc.), it is reasonable to assume greater initial imperfection amplitudes
than that given by Eq. (9.2.7a).
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A further shortcoming of Eq. (9.2.7a) is that it disregards the fact that the acciden-
tal imperfection depends on the thickness of the shell as well, and that the acciden-
tal imperfection cannot become infinitely large if R-*e», i.e. in the case of the
plane plate. Thus, evaluating measurements on erected cooling towers, we propose
the following empirical formula for the accidental imperfection:

R a
roacas 0051+ o pft 1000 (9:2.70)

1000 + YK

Here the factor a represents the influence of the accuracy of the erection method.
For example we can assume a=1 for reinforced concrete shells with rigid form-
work, while for sliding shuttering we can take a=6.

(It should be remarked that w0 is not the maximum imperfection amplitude,
but the mean value of the absolute values of the maximum amplitudes, i.e. in
practice half the maximum measurable amplitude. The deviation from w0 is
covered by the safety factor, since the scatter of the critical load is mostly caused
by the deviation of the imperfection amplitude from t0.)

Calculable imperfection. This can be determined by the bending theory of shells.
Some simple formulas for the initial eccentricities caused by the edge disturbances
of membrane shells are to be found in [9.24] from which we can compute
imperfection amplitudes outlined in Section 9.2.1.

Imperfections caused by vibrations due to dynamic influences also have to be
included in the values of initial imperfection, if their magnitude is comparable
with 10, because, in the case of intensive dynamic excitation, the initial imper-
fection increased by the amplitude of vibration may cause the structure to buckle.
Such vibrations arise, e.g. in the hulls of ships and in aeroplanes caused by the
motors, or in some industrial buildings due to unbalanced machines.

In shell roofs, the deformation caused by the concentrated loads of workers
during erection may also cause an increase in imperfection whose magnitude is
comparable with w0. This effect can be taken into account approximately by means
ofthe snapping theory offlat arches [9.2.3], or according to the results for spherical
shells [9.2.5].



9.3. Upper Critical Load of Elastic Shells 207

9.3. Approximate Determination of the Upper Critical Loads
of Eccentrically Compressed Elastic Shells

For the determination of the upper critical loads of eccentrically compressed
shells of plastic material or of concrete or reinforced concrete, the load-deflection
curves p(w) of the homogeneous elastic shell (see Fig. 1.1) are needed. These
can be found, however, for some cases only (e.g. in the example of the cylindrical
panel dealt with in [2.57] and in the example of the spherical shell to be found
in [4.21]), since the load is mostly plotted against the compression/ measured in
the load direction (see Fig. 1.4) rather than against the buckling deformation w.

Hence, we need a procedure to approximate the load-deflection diagram p(w)
of the eccentrically compressed shell. In what follows, such a method, outlined
in [9.3.1], will be presented.

The load-deflection diagram p(w) for the perfect shell is known for several cases.
In the approximate procedure, we distort the relation:

- (9'31)

valid for the eccentrically compressed straight bar (see Fig. 1.1 (a)), by proportional
reduction in such a way that it osculates the p{w) curve representing the post-
buckling behaviour of the perfect shell instead of osculating the horizontal straight
line par of the bar.

If the p(w)-diagram of the perfect shell is not available, but the values pI"and
p Piner as well as war pertaining to /~(°wer are known, then the p(w) diagram of the
perfect shell with asymmetric post-buckling behaviour (Fig. 11 (d)) may be ap-
proximated by a parabola of the second degree which starts from the pointp/pI™=1
and has a horizontal tangent at the bottom point wear pertaining to péwer. The
p(>v)-diagrams Of perfect shells of symmetric post-buckling behaviour (Fig. 1.1 (c))
start with a horizontal tangent, so that the approximation with the parabola
starting with a falling tangent serves to the benefit of safety.

If even the warvalue pertaining to the lower critical load of the shell is not known,
then, maintaining the parabola approximation, we have to choose the smallest
war from those given for similar cases, because this yields the smallest critical load.
Since wor is always greater than double the wall thickness, the value

wer « 21 (9.3.2)
may be used safely in any case.

We show this approximate procedure in Fig. 9.3.1, using the example of the
complete sphere to be found in [4.21]. In Fig. 9.3.2 the approximate and exact
values of the upper critical load p“pper are compared with each other as plotted
against the initial imperfection amplitude wo.
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Fig. 9.3.1. Post-critical behaviour of the complete spherical shell and the approximate
construction of the load-deflection curve

Fig. 9.3.2. Exact and approximate values of the upper critical
load of the spherical shell plotted against the amplitude
w0 of the initial imperfection

From the diagrams to be found in the references we may draw the conclusion
that the lower critical load pX?a ofthe perfect shell sets a lower bound to the upper
critical loads ofthe imperfect shell. That is, in the case ofan imperfection amplitude
w0 greater than that pertaining to a p“pper equal to this p*wer, the load-deflection
curve has, as a rule, no peak point, because increasing deformation implies a
steadily increasing load bearing capacity. Thus, in these cases, no upper critical
load can be defined any more — see the lowest dashed line in Fig. 1.4 (c).
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9.4. Effect of Plasticity

Shells are mostly built of materials with plastic properties. If during shell
buckling the deformations exceed the elastic limit and they become plastic, the
critical load will be less than that given by the elastic theory. Hence it is necessary
to take the influence of plasticity into consideration.

In stability analyses, the nonlinear or plastic behaviour of the shell material
can be taken into account with the aid of simplified structural models, of approxi-
mate calculations based on logical considerations, or of more exact computer
calculations using the plastic material model.

Unfortunately, there are not yet enough results of computer calculations
available to establish definite simple rules for design. However, they allow us to
draw the conclusion that the stability of elastic-plastic shells depends on the
same factors as that of elastic shells. Besides, the critical load certainly has to be
lower than the (fictitious) load causing plastic flow of the structure (without
buckling). For guidance we shall mention some papers presenting such computer
calculations.

Kaganov and Manevich [9.4.8] investigated the axisymmetric buckling of the
geometrically perfect cylindrical shell of elastic-plastic material on the basis of the
linear theory and also took internal pressure and variation of temperature into
account. Grimaldi [9.4.4] treated a similar shell with the aid of the nonlinear
theory. (His results are in close agreement with those to be found in [9.4.1], valid
for the special case of eccentric buckling of plastic structures.) Zielnica [9.4.11]
analyzed the buckling behaviour of plastic conical shells. Hutchinson [9.4.6]
investigated the stability of structures made of plastic material, in particular that
of a spherical dome, with the aid of a simplified structural model, taking geomet-
ric nonlinearity into account. Sureshwara et al. [9.4.10] analyzed shallow shells
of revolution with clamped edges. They took four layers in the wall thickness
into consideration. Assuming an axisymmetric deformation, they solved the
snapping problem step by step, taking the elastic and plastic parts of deforma-
tion into account. By so doing they could also follow the spreading of the
plastic zone. The relation of plasticity and shell buckling theories is clearly shown
in their paper.

The first method suitable for practical application was given by Herber [9.4.5].
He established a substituting “slenderness ratio” from the lower critical load of
the shell, and with this he computed the critical load according to the rules valid
for bars made of plastic materials. By so doint he took the plasticity into account,
but neglected the fact that the shell is more sensitive to imperfections than the
straight bar. Pfluger [9.4.9], by plotting the curve representing the variation of
~upper F  cylinder as a function of R/t, determined the straight lines correspond-

14 Buckling of Shells
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Fig. 9.4.1. The plastic critical load of the axially compressed
geometrically perfect cylindrical shell according to Pfliger [9.4.9]

6

ing to the proportionality limit <prgp and to the yield limit ay respectively, see Fig.
9.4.1. He constructed a parabola that has the line of <y as the initial tangent and
touches the curve of <“pper at the point corresponding to aprop. This parabola
forms an upper bound for the critical load of the shell with accidental initial
imperfection (Fig. 9.4.1).

In [9.4.2] we developed a method which takes the imperfection sensitivity and
the plasticity of the shells into account, and which can be generalized comparatively
easily. Our results are in close agreement with the experiments. The basic assump-
tion of the method is that during buckling plastic flow develops simultaneously
in both directions. If this condition is not fulfilled, then we commit a slight error
to the benefit of safety. In the following this method will be outlined.

In the analysis we assume a perfectly elastic-plastic material, whose stress-strain
diagram is shown in Fig. 9.4.2. This corresponds fairly well to the properties of
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metal shells, and moreover, by proper choice of the deformation characteristics,
even to those of reinforced concrete ones.

The procedure is based on the principle of Jezek [9.4.7], which is valid for
compressed bars. It states that the elastic and the ultimate values (nel and nul)
of the load intensity set lower and upper bounds to the upper critical load of an
eccentrically compressed structure. Since these two bounds lie fairly close to each
other, the upper critical load can be determined between these bounds with
sufficient accuracy by an approximate graphical method. In fact, even the arithme-
tic mean of both bounds yields an acceptable result.

Here nel denotes the internal specific force causing yield stress ay in one of the
extreme fibres of the critical cross section (which is at the maximum amplitude
of the buckling deformation), while nuh causes entire plastification of the same
cross section. For the case e =w these notations are also defined in Fig. 9.4.3.
Hence, the quantities nel and nult are related to a cross section, and depend on
the actual eccentricity e—w of the specific compressive force acting on the

Fig. 9.4.3. Definitions of the elastic limit state
and of various plastic states of the cross section

14~
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same. Since we define nd and nult as related to the cross section of the maximum
buckling deformation, they may be approximately considered as characteristic of
the state of the whole structure.

In the following we shall use two more quantities: npl and nyield (see Fig. 9.4.3).
By npl we denote that value of nalt, which belongs to the given initial eccentricity
e0= w0, while «yidld is the central compressive force causing yield stress ayin the
entire cross section.

For the analysis we use the approximate force-buckling deformation diagram
described in Section 9.3, assuming wcr=2t. (Obviously, if there is a more exact
diagram available, this has to be used.) We show the principle of the procedure
in Fig. 9.4.4, using as an example a cylindrical shell with an initial imperfection
amplitude w0=0.1i and the ratio nyldliNc"=1

Fig. 9.4.4. Determination of the upper critical load

When the load intensity reaches the elastic limit nel, i.e. when the curve of the
load versus elastic deformation intersects that of nel, the deformation curve does
not continue along the dashed line corresponding to the elastic behaviour, but
deviates, and, after having reached a peak point, osculates the curve of nuh. This
peak gives the plastic upper critical force or load (n"?p{ or pdp])-

Plasticity changes the post-critical load bearing behaviour of shells, turning
even their increasing characters into decreasing ones. This is shown in Fig. 9.4.5,
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where we substituted, for simplicity, two sections of straight dashed lines for the
load-deflection curve of the elastic shell. Figure 9.4.5 (a) corresponds to a compara-
tively high value of the elastic critical load. In this case the curves nd and nWJ
intersect that of the elastic deformation, resulting in a decreasing load bearing
capacity in every case. On the other hand, Fig. 9.4.5 (b) shows an elastic critical
load much lower than the central ultimate load nyield. In that case a decreasing
elastic load bearing capacity of a shell remains decreasing, while the behaviour of
shell with increasing elastic load bearing capacity remains unchanged prior to
buckling, but its post-critical load bearing capacity remains increasing only up
to a certain level, after which it also becomes decreasing.

In a given case, the critical load of a shell isto be determined using the construc-
tion shown in Fig. 9.4.6. This can be performed, according to [9.4.2], in the follow-
ing steps:

First, we draw the axes | and I1. In point 1.0 of the axis Il we erect a perpendicu-
lar axis Il with the same scale as the axis I. We connect the point HO of the axis
I11 (to be determined later) and the origin by a straight line 1V. We draw the
horizontal line V from the point of the axis I, intersecting the straight
line IV at the point A. Here we construct a parabola with a vertical axis, starting
with a horizontal tangent at A, intersecting the axis Il at the point npl/nyiM.
This parabola has to be intersected by a straight line VIl connecting the origin
with the point nyieidn'c" of the axis Ill. Projecting this point of intersection B
onto the axis I, we obtain the sought value

OVbli 10 0“vf 10
@ (b)

Fig. 9.4.5. Influence of plasticity on the post-critical behaviour of shells



2].4 9. Practical Application of the Stability Tehory

Fig. 9.4.6. (a) - Construction for the determination of the plastic critical load, (b) - definition
of «yield and determination of Ho

Here, and KHpi denote the elastic and plastic upper critical loads respec-
tively, while the other notations are to be found in Fig. 9.4.3.

The value # Oto be plotted on the axis Il is equal to the ratio n*iddn"n, where
n*ield is a fictitious central (“plastic”) compressive force that has to be chosen in
such a way that the curve nd starting from n*idd should intersect the elastic load
deflection curve of the shell pertaining to wO't—0.1 just at its peak point n“EP7
(Fig. 9.4.6 (b)). Namely, the curve nd separates the elastic and the plastic ranges.
The quantity n*ield thus belongs to a fictitious yield stress a*, independent of the
actual yield stress ay of the material.

We may assume for the laterally compressed isotropic cylinder H0=4, and for
the axially compressed isotropic cylinder and the radially compressed sphere
H0=2, as good approximations.

The diagrams to be used for the determination of the plastic critical load were
constructed in [9.4.2], assuming homogeneous shells for the axially compressed
cylinder and the radially compressed sphere, and for the cylinder subjected to
lateral pressure. These diagrams are reproduced in Figs 9.4.7 and 9.4.8. The
plastic critical load is obtained by projecting the intersection point of the curve
w jt and the straight line nyiM/ n onto the vertical axis.
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Fig. 9.4.7. Diagrams for the determination of the plastic critical load of long cylindrical shells
compressed in the circumferential direction

Fig. 9.4.8. Diagrams for the determination of the plastic critical loads of axially compressed
cylindrical and radially compressed spherical shells
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The perfectly elastic-plastic diagram of Fig. 9.4.2 may also be used in the cases
of materials which have a curvilinear elastic stress-strain curve. This provides a
good approximation in the case of any small eccentricity, but for central compres-
sion it results in a considerable error to the detriment of safety [9.4.7].

In [9.4.1] we proposed a more exact procedure for the determination of the
critical force of centrally compressed structures. In order to avoid the error men-
tioned before, we constructed the dashed lines for the case of w jt—0 (central
compression) in Figs 9.4.7, 9.4.8, 9.4.9 on the basis of [9.4.1].

Fig. 9.4.9. Plastic critical forces of shells made of high-strength steel, pure
aluminium or concrete as functions of R/t

If the structure is homogeneous, npl is the force which causes yielding, and then
the structure is no longer able to carry any additional load. On the other hand, ifthe
structure is not homogeneous but composite, the local buckling of one element
(e.g. wrinkling of the faces of a sandwich shell, or buckling of the individual bars
of a reticulated shell, etc.) also causes the structure to be no longer able to carry
any additional load. Hence, in these cases, the value of n which causes local buck-
ling should be considered npl, as mentioned in Chapter 8.

Assuming the ratio E/ay=600, approximately valid for structural steel with
tensile and yield strengths of 500 and 350 N/mm2respectively, for mild (unalloyed)
aluminium and also for usual concrete, we determined the plastic critical loads
for shells and plotted them against the ratio R/t. We thus obtained the curves
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of Fig. 9.4.9, similar to those of compressed bars plotted against their slenderness
ratio.

As can be seen, the curves for shells lie lower than those valid for bars.

The plastic critical load can also be calculated in accordance with the graphical
construction shown in Fig. 9.4.6. Of course, we have to assume nyiclJn'™<HQ0,
since otherwise elastic buckling would occur.

Introducing the abbreviations y=nyiM/n,, and a=npi/nyield, the calculation
according to the graphical construction yields:

upper
r]c?,ppi

upper
ncr, el

(9.4.1)

In the case of a homogeneous shell wall, a can be closely approximated up to
e jt™ 1 by the expression:

Making use of this relation, we computed the values of npl from Eq. (9.4.1) for
wjt=0; 0.1; 1.0, and plotted them against y/HOin Figs 9.4.10 and 9.4.11 for the

upper
Mer, pi

upper
ncr, el

0 05 10 Q

Fig. 9.4.10. The plastic critical loads of axially compressed cylindrical and
of radially compressed spherical shells
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Fig. 9.4.11. The plastic critical load of the cylindrical shell under lateral pressure

axially compressed cylinder and the radially compressed sphere, and in addition
for a cylinder of medium length under lateral pressure.

The reference [9.4.3] publishes simulated computer results performed on alu-
minium models. It contains all the data which are necessary to make a comparison
with Eq. (9.4.1). For these shells, fhom~0.8, and thus w jt~ 0.04. We compared
the results with the values computed for wO't=0 and 0.05. The comparison is to
be seen in Fig. 9.4.12.

All these diagrams can be approximated within an error limit of £10% by the
relation

Krpn2, (nTpft _, 942
uUgft' I npl ) (942)

that may also be called the *“quadratic Dunkerley formula”. Transcribing the
forces n into loads and expressing the plastic upper critical force from Eq. (9.4.2)
we obtain

PcfpY = CPgff (9.4.3)
with the factor

(9.4.4)
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Fig. 9.4.12. Comparison of experimental critical loads of plastic
aluminium dome models with computed values

According to [9.4.2] we certainly commit an error to the benefit of safety if,
instead of (9.4.2), we use the semi-quadratic Dunkerley formula
Lupper /,upoerV2
NEIIEL+ M =1 (9.4.5)
n?r,eir ‘ "pi >
Transcribing Eq. (9.4.5) into loads, and again using Eq. (9.4.3), £ assumes the
following form:

ga\4lpa; 21pa) (9.46)

In practice, Eq. (9.4.4) can be advantageously used in evaluating experimental
results, and Eq. (9.4.6) is suitable for design.

The plastic behaviour probably caused a reduction in pyger in some model tests
reported on in the literature (Fig. 2.3 (a), (b), (), Fig. 4.2), mainly in the range
of smaller R/t ratios. Flowever, it would be rather difficult to assess this effect
subsequently, because there were not sufficient measured data.

For the idealized elastic-plastic diagram (Fig. 9.4.2), the deformation moduli
of the various materials are to be chosen differently. We treat this problem in
detail in the following sections.
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9.5. Influence of Creep

Most materials used in shell structures develop, under certain conditions, de-
formations, that depend not only on the acting stresses but also on the time.
Accordingly, the initial elastic deformation increases in time even if the stress
applied remains constant. In the case of stresses increasing with time this increase
of deformation becomes even more marked. This time-dependent deformation is
called creep. Its influence on the stability of shells is unfavourable, since the
increased deformation, as a rule, reduces the critical load.

The first research on creep can be probably attributed to Vicat [9.5.20]. Since
then the theory of viscoelasticity has developed. An excellent survey of this
field is given in FIfigge’s book [9.5.7]. Many viscoelastic models were proposed,
but the pertaining material constants are only incompletely established.

The main features of the influence of creep on stability phenomena can be stud-
ied on very simple viscoelastic models, so that in the following these will be
presented first. Then, the influence of creep on buckling will be analysed on a
simple structural model, using various viscoelastic models. Finally, we show a
practical method by which we can approximately consider the influence of creep
in a very simple way.

9.5.1. The Basic Viscoelastic Models

The viscoelastic models are built up oftwo elements: the spring and the dashpot.
Figure 9.5.1 (a) shows the linear spring, whose specific elongation s is obtained by
dividing the acting stress a by the spring constant E:

Aspring £ . (9.5.1)

The second element, the dashpot is to be seen in Fig. 9.5.1 (b). Its elongation e
is to be determined from the relation

T'dashp __

dt t] , (9.5.2)
where de/dt is the creep rate and q is the viscosity coefficient. Connecting a spring
and a dashpot in series, we obtain the Maxwell model (Fig. 9.5.2). It is also called
Maxwell fluid since its deformation due to a constant stress tends to infinity for
t-~°°. The differential equation of its deformation can be built up from
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Fig. 9.5.1. Basic elements of the viscoelastic models:

(a) Spring, (b) dashpot

Fig. 9.5.2. The linear Maxwell fluid

Egs (9.5.1) and (9.5.2):

_despring t dS(\astp 1do o
~dt di dt Editin'
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For some materials which also exhibit plastic behaviour, a better agreement can
be obtained if the Maxwell model is completed by a nonlinear term. Thus, we
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arrive at the equation
de lda o

Tt —BlA+ e 0549

where A and n are material constants. The last term on the right-hand side is called
Odquist’s [9.5.19], Norton’s [9.5.17] or Bailey’s [9.5.1] law.

Connecting a spring and a dashpot in parallel, we obtain the Kelvin (-Voigt)
model (Fig. 9.5.3), also called Kelvin solid, since its deformation due to a constant
stress tends to a finite value for r—°°. Since the elongation of the spring has to
be equal to that of the dashpot, and also the sum of the stresses of both elements

have to counterbalance the acting stress, the differential equation of the Kelvin
model becomes:

a—Es+ij5s (9.5.5)

Completing the Kelvin model by a spring, we arrive at the so-called standard
linear three-parameter solid shown in Fig. 9.5.4, with the differential equation:

(9.5.6)

To describe qualitatively the behaviour of real materials, we can make advan-
tageous use of the Burger model, which consists of a Maxwell and a Kelvin model,
connected in series (Fig. 9.5.5). It contains all the properties of the models dealt
with hitherto, and has the differential equation:

+U/)%+41£2Hi N g,u', i 11;/?+
hihi d2s

E2 dt2" (9.5.7)

Fig. 9.5.3. The Kelvin solid
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Fig. 9.5.4. The standard linear three-parameter solid

Fig. 9.5.5. The four-parameter Burger model

Integrating Eq. (9.5.7) between f=0 and t=t for g=gx=const., we obtain the
following expression for the elongation:

(9.5.8)

Setting the suitable parameters in the Burger model equal to infinity, we can
obtain anyone of the models dealt with hitherto.
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The Burger model is suitable for describing qualitatively the behaviour of every
material, but may be quantitatively inaccurate in some cases. Its accuracy can be
improved by connecting several Kelvin models either in series or in parallel. By
so doing, the model will be more and more complicated, so we shall omit detailed
treatment of it.

9.5.2. Influence of the Various Viscoelastic Models on the Stability

The influence of creep on the stability of structures with constant post-buckling
load bearing capacity was analysed by Kempner [9.5.15]. His results, extended to
various cases of post-buckling behaviour, can be shown visually on the structural
model of Fig. 9.5.6, where a viscoelastic support hinders the bar from tilting
under the force F [9.5.3a].

Setting rx=r]:=Er=°°, the system becomes elastic with an Euler-type critical

load:
Fe = EJ.

In the case of F>FE, the system is unstable and buckles instantaneously accord-
ing to the dashed line marked by 1 in Fig. 9.5.7 (a).

If the structure has an initial imperfection w0, then the deformation follows
the path denoted by 2 in Fig. 9.5.7 (a), approaching line 1 asymptotically.

Let us modify the previously described elastic model (that of Fig. 9.5.6 with
rji=f2=E2=°°) by making the spring characteristic Ex decrease with increasing
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Fig. 9.5.7. (a) Buckling behaviour of the elastic structure with constant post-buckling load bearing
capacity, (b) buckling behaviour of the elastic structure with decreasing post-buckling load
bearing capacity

deflection q, i.e. let EI=EXw). Let us stipulate further that E\(w) approaches a
finite nonzero value Elt,, for w-*«> This modified model is then able to describe
the behaviour of structures with descreasing post-buckling load-bearing capacity
such as axially compressed cylinders and radially compressed spheres, but also
other shells made of plastic materials and even of reinforced concrete, the rigidity
of which is reduced by the cracks developing during deformation. If this model is
loaded up to a load intensity FE, the load bearing capacity decreases to the value
FEQ@=EZ,,I. This phenomenon isplotted as Curve 1 in Fig. 9.5.7(b). (In the case
of shells, the value FE&,, corresponds to the lower critical load.)

If there is an initial imperfection w0 present, this structure may behave in two
different ways. If w0 exceeds a certain limit value, the deformation increases with
steadily increasing load, following the Curve 2.2 which osculates the horizontal line
of FEj«,. The behaviour is similar to that described by the Curve 2 in Fig. 9.5.7 (a).
On the other hand, if w0 is smaller than the above-mentione limit value, then
the load bearing capacity exceeds FE«, and it increases to a certain extent
until, after reaching a maximum value F “pper, thestructure snapsthrough and follow
with decreasing load bearing capacity the Path 2.1 of Fig. 9.5.7 (b) osculating the
horizontal line of FEX00. As we shall see later, the influence of creep is different
in the cases of the two types of deformation Paths 2.1 and 2.2.

Returning to the linearly elastic spring 1 we now choose a Maxwell fluid as
supporting element, i.e. set ri2=E2=°°. The system is loaded by a force F with
initial eccentricity w0. The bar performs displacements increasing with time
(see Fig. 9.5.8 (a)). As we see from Fig. 9.5.8 (b), the force-displacement path,
valid at any fixed value of t, approaches asymptotically the line of the elastic
critical force FE.

15 Buckling of Shells
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(@)

Fig. 9.5.8. Creep buckling behaviour of a Maxwell-fluid-type structure (
as a function of time, (b) as a function of the deformation w.

Fig. 9.5.9. Creep buckling behaviour of a Maxwell-fluid-type structure with
a spring characteristic decreasing with deformation (a) as a function of
time, (b) as a function of the deformation w.

This means that the critical load remains the same as the elastic one FE valid
for instantaneous loading, which was not reduced by the creep. On the other hand,
the deformation w is increased by the creep. When the structure is unloaded,
it does not return to its initial position w0, but to a larger value. However, if i—°,
then the deformation w tends, at any small but finite value of F, to infinity.

Looking back upon the elastic case with a spring characteristic ExXw) which
decreases with increasing w, it can be seen that the structure treated in the forego-
ing behaves according to the Curve 2.2 of Fig. 9.5.7 (b), i.e. its critical load is equal
to FR&,, . Hence, in this case the creep of the Maxwell model increases the deforma-
tion of the structure, but leaves its critical load unchanged, see Fig. 9.5.8 (b).
If the initial imperfection is smaller than the limit eccentricity, and the applied
load exceeds . » then the elastic deformation develops according to the Curve
2.1 of Fig. 9.5.7. In this case the creep may increase the deformation after a certain
time to such an extent that the structure arrives at the descending branch of the
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curve (Fig. 9.5.9), becomes unstable and undergoes an infinitely large deformation.
The corresponding time is called the critical time (ta). It can also be seen that a
shorter critical time corresponds to a higher load.

Investigations made on the nonlinear Norton model (9.5.4) show that infinitely
large deformations occur during a finite critical time in any of the hitherto treated
cases. However, the nonlinear creep law is mostly needed only in the stress range
close to the yield point, while in the case of lower stresses — as usual in the sta-
bility investigations of shells — the linear creep law yields, as a rule, a sufficient
accuracy. Hence, we will no longer deal with the nonlinear creep law.

The aforementioned infinitely large deformation can be regarded in two different
ways as a limit. Either we consider the critical time pertaining to a given load,
or we seek the critical load which, at the end of the given period, causes an infi-
nitely large deformation.

Let our next model be supported laterally by a standard linear three-parameter
solid. First, we suppose F*F e=E1l The bar obviously tilts at once.

We now form the resultant characteristic of both springs:
Erg2

E= TITEY If we apply the force Fe=El, the bar would just tilt abruptly if
no dashpot were present. The dashpot hinders the buckling, but the displacement
W increases at a constant rate without bond. If F<FE, the displacement w ap-
proaches a finite limit value asymptotically. Finally, F>FE causes the displacement
to increase at an increasing rate. All this is shown in Fig. 9.5.10.

Fig. 9.5.10. Creep buckling behaviour of a standard
linear three-parameter-solid-type structure as a function of time

If we characterize the creep with the ratio of the full (elastic-)-creep) final dis-

placement Woto the elastic displacement wel, i.e. with the final value of the creep
factor (pa=wm/wel, we may express FE with the aid of g>,,=EJE2 as follows:

15«
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We can also formulate the phenomenon this way: in the case of instantaeouso
loading (f=0) the load-deflection curve approaches FE, while for long-termn lad-
ing (f=.) it osculates FE= F E/(\+<paJ), see Fig. 9.5.11.

Fig. 9.5.11. Buckling behaviour of a three-parameter-solid-type
structure (with constant post- buckling load-bearing
capacity) as a function of the deformation w

Fig. 9.5.12. Creep buckling behaviour of a structure with
decreasing post-buckling load bearing
capacity as a function of the deformation w

Let us investigate the same system with a spring characteristic Ex{w) decreasing
with increasing w, i.e. a structure with decreasing post-buckling behaviour. Its
load-deflection curve is similar to the Curve 1in Fig. 9.5.7, but starts from FE(1+
+(P>K), instead of FE. The curve of the imperfect structure 2.1, which corresponds
to that marked with i=0 in Fig. 9.5.11, osculates this Curve 1. It deviates from the
original, dashed curve (Fig. 9.5.12) valid for constant post-buckling load bearing
capacity, and, after reaching a maximum, approaches the Curve 1. The Curve
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2.2, which corresponds to t=°°, osculate the straight line FE(I+cp”) from under-
neath again, without reaching a maximum point.

We still have to mention briefly the case of an E*w) which increases with
increasing w, corresponding to the structures with increasing post-buckling
load bearing capacity. The pertaining load-deflection curves have a monotonically
ascending character, without maximum points. In Figs 9.5.13 (a) and (b) we show
the curves valid for the Maxwell fluid type and for the three-parameter solid type
support, respectively.

In the literature, numerous solutions are to be found for various cases of insta-
bility and post-buckling behaviour, considering creep laws more complicated
than treated here. We do not intend to present them in detail but, for orientation,
we list some of them as the following references: [9.5.2], [9.5.3], [9.5.4], [9.5.5],
[9.5.6], [9.5.8], [9.5.9], [9.5.10], [9.5.12], [9.5.13], [9.5.14], [9.5.18].

F F

Fig. 9.5.13. Creep buckling behaviour in the case of an increasing post-buckling load bearing
capacity as a function of the deformation w.
(a) of a Maxwell-fluid-like structure (b) of a threeparameter-solid-like structure

9.5.3. Practical Consideration of the Effect of Creep

As was mentioned in the previous section, we may either speak about a critical
time pertaining to a given load, or about a critical load corresponding to a given
time. In the literature, the effect of creep is mostly taken into consideration with
the critical time tcr. This can be explained by the fact that it is easier to express
the critical time than the critical load from the formulas.

It was shown in the previous section that structures with certain kinds of creep
have no critical time, while every structure has a critical load. Consequently, in
the following we shall take the effect of creep into consideration by means of a
critical load pertaining to a given creep period.
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Our task is easier in the case of materials which behave according to the stan-
dard three-parameter solid (concrete, wood), since their creep tends to a finite
final value. For design, it is sufficient to know the final value cp*—~EJE?2 of the
creep factor cp(t), pertaining to t=°°. By dividing the modulus of elasticity by
(1+<*), we consider every deformation as being increased to (I +®«,) times its
value and the load-deformation curves assume the shapes shown in Figs 9.5.11
and 9.5.12. The critical loads obtained this way will be, as a rule, slightly lower
than the real ones, since the stress increments which develop in the final phase of
the deformation prior to buckling have less time to induce creep than the stress
parts which developed earlier. Theoretical computations [9.5.11], [9.5.16] as well
as experiments on concrete dome models [9.8.15] fully confirmed the validity of
the approximate calculation mentioned above, which consists of dividing the
modulus of elasticity by (1+<x)m Hence, in the case of structures which behave
like the standard linear three-parameter solid with an increasing, constant or
decreasing post-buckling load bearing capacity, the influence of creep can be
allowed for by reducing the modulus of elasticity:

(9.5.9)

where EO=E1 is the initial modulus of elasticity measured under short-time
loading (e.g. vibration).

If the planned lifetime of the structure is limited, we can take the value
corresponding to the expected lifetime tt of the structure, and reduce the modulus
of elasticity accordingly:

BE»

Er= !
1+ <Pl

(9.5.10)

Structures whose creep response can be described by the Maxwell fluid (syn-
thetics, ice) may behave in two different ways.

If the post-critical load bearing capacity of the elastic structure is constant or
increasing, no creep stability analysis can be performed, since to infinite time
infinite deformation corresponds under the action of any small but finite load.
Consequently, the stability of such structures should be checked with EQ, as that
of an elastic, geometrically perfect strcuture, but, in addition, a stress analysis
should also be carried out for the increased deformation wei(1+<?)) correspond-
ing to the expected lifetime ?,. On the other hand, if the post-critical load-bearing
capacity of the structure decreases, i.e. the modulus of elasticity decreases with
increasing deformation (see Fig. 9.5.7), then, as in the previous case, a stress anal-
ysis has to be performed for forces lower than FBy, (which corresponds to the
flower Of sheiis), taking the deformation w=wel(\ +(pt) into account. In both
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cases wel also contains the deformation increment caused by the compressive force
acting on the structure with initial imperfection.

If the load is greater than the lower critical load FEi« of the structure, but is
inferior to the linear critical load, then a more exact stability analysis is to be
performed, applying a suitable creep buckling theory to be found in the literature.
The phenomenon can be approximately analyzed by using the reduced modulus
of elasticity according to Eq. (9.5.10) for the calculation of the upper critical load
F “poer (see Fig. 9.5.7 (b)), but in this case we do not need to consider a critical load
inferior to the lower critical load FEs, . Hence, the approximate stability criteria
for the Maxwell fluid type structures:

rupper

N-iTV 951>
but in any case:

F.SF,... (9.5.12)

Finally, it should be remarked that all that has been said about creep in the forego-
ing is based on the uniaxial stress state. In shell structures, bi- (or tri-) axial stress
states prevail, that are much more complicated. However, for the qualitative
assessment of the behaviour of shell structures, the knowledge of the creep laws
valid for the uniaxial stress state is sufficient.

9.6. Problems of Metal Shells

As outlined in Section 9.4, in order to assess the influence of plastic behaviour
we assume the material to be perfectly elastic-plastic (see Fig. 9.4.2). We have now
to investigate how this perfectly elastic-plastic model has to be chosen for real
materials used in metal shell construction.

Metal shells are mostly built of steel or aluminium. Hence we deal with these
two materials only.

9.6.1. Moduli of Deformation of Metals

Modulus o f deformation of steel. Steels with a yield plateau have a stress-strain
diagram according to Fig. 9.6.1, becoming curved beyond the propertionality
limit aprop and osculating the horizontal yield plateau. This curved section is
comparatively short, so that we may assume the modulus of deformation E (i.e.
the modulus of elasticity of the perfectly elastic-plastic material model) to be
equal to the initial modulus of elasticity of steel: .E0=200 kN/mm2 (Fig. 9.6.1).
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Fig. 9.6.1. Idealized stress-strain diagram of steel

Fig. 9.6.2. Idealized stress-strain diagram of aluminium

For steels with no definite yield plateau, the perfectly elastic-plastic material
model may be applied safely, provided that an appropriate value is chosen for
(T, as is shown in Fig. 9.6.2 for aluminium.

Modulus of deformation of aluminium. The proportionality limit, <prop, for
aluminium is lower as related to ay than for steel. The stress-strain diagram be-
comes curved and shows no definite yield plateau (Fig. 9.6.2). Nevertheless, it can
be approximated by a “compensating” perfectly elastic-plastic material model,
provided we chose the modulus of deformation appropriately. Thus we obtain
for the modulus of deformation of the perfectly elastic-plastic aluminium model
E~50 KN/mm2 i.e. 0.7 times of the actual initial modulus of elasticity EO=
= 70 kN/mm2 (see Fig. 9.6.2).
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9.6.2. Creep of Metals

Metals are prone to creep above a certain temperature. The curve characterizing
creep deformation consists of three sections shown in Fig. 9.6.3. The behaviour in
Section Il can be approximated by the Maxwell fluid, while for Section 111 we
may use Norton’s law. If we replace Section | by the straight backward continua-

Fig. 9.6.3. Characteristic curve of the creep of steel at high temperatures

tion of Section Il (dashed line), we may use the Maxwell fluid as a model throughout
Section | and Il. Its creep rate dscregd/dt is constant, so that the creep factor g=(t)
can be computed from the relation:

=i d]r' (9-6n >

For information, we show in Figs 9.6.4 and 9.6.5 some diagrams representing
the creep rates of a steel containing 0.15% carbon and of a chrome-nickel-steel

Fig. 9.6.4. Creep rate of steel containing 0.15% C
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Fig. 9.6.5. Creep rate of a Cr—Nii steel

Fig. 9.6.6. Creep factor of a high-strength aluminium alloy

respectively. In Fig. 9.6.6 the creep factors of a high-strength aluminium alloy-
subjected to 320 N/mm2 stress are to be seen, plotted against the duratoin t of
the load which is measured in hours (h).

9.6.3. Dimensions of Metal Shells

As we have seen in Section 9.4, for the determination of the plastic critical load
we need the elastic upper critical load p“gdr, and the load ppl which causes the
entire plastification and failure of the critical cross section with the given initial
eccentricity. The elastic buckling load is essentially determined by the average
cross sectional dimensions, so that we may take the design dimensions, to be
considered as average ones, into consideration when computing On the
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other hand, plastic failure may occur in one cross section only, so that for ppl
we have to take deviations in the dimensions of the individual cross sections into
account. Consequently, when determining ppl, we have to consider the dimensions
reduced by the allowable tolerances.

9.6.4 Influence of Residual Stresses

Welding and straightening cause residual stresses in metal structures, due to
which some parts of the cross sections become plastic at a lower load intensity
than other parts. Experiments made on bars of welded | sections showed that the
critical load of bars of medium slenderness is about 10-20% lower than that of
rolled bars of the same cross sections. However, no such reduction could be
observed on very slender bars, where buckling comes about without plastic
deformation.

Applying these results to shells we find that reduction of the critical load
due to residual stresses is to be expected in the range 400. In practice we
can take this reduction into condiseration by computing the “plastic” critical
load from the semi-quadratic Dunkerley formulas (9.4.5.) or (9.4.6), rather
than from expression (9.4.1) or its approximate version (9.4.4). That is, the
semi-quadratic Dunkerley formula deviates to the benefit of safety over about
the same range and by about the same amount as the residual stresses reduce
the critical load, and thus in practice it makes proper allowance for this effect.

9.7. Problems of Shells Made of Synthetics and of Timber

Homogeneous shells are built, besides of metals, either of synthetics or of timber.
In this section we briefly deal with their specific problems.

9.7.1. Shells Made of Synthetics

Shell structures of synthetics have been built only in the last two decades, so
that the relevant literature is much scarcer than that dealing with traditional ma-
terials. On the other hand, there are already many kinds of synthetics nowadays
with considerably different characteristics. Consequently, it is not possible to give
general recommendations. Thus, we shall only give a short informative descrip-
tion, based mainly on the work of Hintersdorf [9.7.4].
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Synthetics can be divided into two main groups: thermoplastic and thermo-
setting ones. If great mechanical strength is required, some suitable synthetics are
reinforced by (glass or graphite) fibres.

In the following we present some data on the mechanical properties and their
dependence on various factors. These data are to be regarded as rough informa-
tion only, since they exhibit a considerable scatter even for the same material,
and they differ even more for the various kinds of synthetics.

The moduli of elasticity of synthetics are considerably lower than those of
metals. The ratio of the modulus of elasticity to the yield stress, EJay, is about
30-50 in the case of thermosetting synthetics, and in the case of thermoplastics
about 10-30, rather than 500-700 which is characteristic of metals. Hence, the
stability analysis of structures made of synthetics is of primary importance. In
addition, the modulus of elasticity of thermoplastic synthetics depends on the
temperature too: at 40°C or 60°C it is only about one half or one fourth of that
valid for 20°C.

The stress-strain diagrams of synthetics are, as a rule, straight over a long range,
becoming slightly curved only at their end. Therefore synthetics can be considered
as elastic materials. Only some special synthetics (e.g. cellulose acetate, synthetic
foams) have notable plastic deformations.

Synthetics show a marked propensity to creep. The creep factor (i.e. the ratio
of creep deformation to elastic deformation) referred to a ten-year period has the
value of approximately one, but the creep deformation does not approach a finite
value asymptotically. Consequently, for the creep model of synthetics the Burger
model can be used (see Fig. 9.5.5). Besides, the creep factor of thermoplastic
synthetics increases with increasing temperature: at 40°C it is about twice as
great as at 20°C.

Long lasting loadings have an unfavourable effect on the strength of synthetics.
Loading of one year’s duration diminishes the strength of thermosetting synthetics
by about 10%, and that of thermoplastic materials by about 50%.

The strength ofthermoplastic synthetics is also diminished by heat. This decrease
is approximately 1% for each degree centigrade of temperature over 20°C.

All these properties and uncertainties indicate the desirability of designing
only shell structures of minor importance (i.e. whose failure does not cause any
great damage) on the basis of the data on synthetics to be found in the literature;
but even then it is advisable to use a higher safety factor than usual. For the design
of structures of greater significance the material properties should be determined
by experiments. The shorter duration of synthetics to be expected, as compared
to conventional materials, should also be taken into consideration.

Theoretical and experimental investigations concerning the stability of cylindri-
cal shells made of synthetics [9.7.6] showed that the imperfection sensitivity of
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axially compressed cylinders made of fibre-reinforced synthetics corresponds to the
theoretical value, but the experimental critical loads are 10~ 20% lower than the
computed ones. We may attribute this discrepancy to the fact that these compu-
tations neglected the small effect of plasticity and creep.

9.7.2. Shells Made of Timber

We give here some information about fir-(pine-)wood, which is the timber
material most widely used for shell structures. Since the properties of wood scatter
very much, the data presented here have to be considered only as rough infoma-
tion.

The properties of wood vary very greatly with its moisture-content n up to
n=30%, while over n=30% they are no longer influenced. The data to be given
refer to n=30%.

The compressive and tensile strengths of fir-wood are, parallel to its fibres,
20~30N/mm2and 40~50N/mm?2 respectively. The reduction of the moisture-
content to 15% and to zero results in an increase in strength of about double
and three or four times respectively.

The given strength values are valid only for short-term loading. A loading that
lasts longer (for about one month) reduces the strength of wood by about 60%
[9.7.3], see Fig. 9.7.1, where time is measured in hours (h).

The modulus of elasticity of fir-wood with r/=30%, parallel to its fibres, has
the value of about =10 N/mm2 Reducing the moisture-content to 15% and
zero results in an increase of EQof about 25% and 50% respectively.

The progress of creep in time depends on the moisture-content and on the ratio
of actual stress to ultimate strength (crult) of the wood. Some information is

~ong-term ult

eul

Fig. 9.7.1. Characteristic curve of
the long-term ultimate strength of fir-(pine-)wood
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given in Fig. 9.7.2 on the basis of [9.7.1], [9.7.2] and [9.7.5]. If the actual stress is
lower than the long-term ultimate strength, the creep tends to a finite end value
and has to be modelled by the standard linear three-parameter solid. Accordingly,
the creep curves for tracual<Wuit= 0.25 and n=30% or 10% have the forms of
Fig. 9.7.2 (b).

On the other hand, if the actual stress exceeds the long-term ultimate strength,
the rate of creep of the wood increases with time, resulting in failure without any
additional load after a certain time.

The aforementioned characteristics of wood deteriorate markedly in temperatures
higher than 100°C. Its ignition point lies at about 250~300°C. Biological parasites
(fungi, insects) may also markedly reduce the properties of the wood.

<(h) ip(f)

@ (b)

Fig. 9.7.2. (a) Characteristic creep curves of fir-wood for various ratios of the actual stress to
the ultimate strength, (b) influence of the moisture content on the creep of fir-wood

9.8. Problems of Reinforced Concrete Shells

The deformation properties of the material of reinforced concrete shells which
are necessary for buckling analysis cannot be defined as simply as for other ma-
terials, because the deformation depends on the cracks, the reinforcement, and
the creep of the concrete as well, so that it becomes a nonlinear function of the
load. Consequently, we have to deal with the deformation and rigidity charac-
teristics of the reinforced concrete in detail.

The material model of the reinforcing bars can be assumed on the basis of
Section 9.6.1.

The stress-strain diagram of the concrete is curved from the beginning on
(Fig. 9.8.1). This curvature is, in fact, caused by a “nonlinear creep”, i.e. a slowly
developing deformation not proportional to the stress. We take this into account
as the plasticity of the concrete. (In addition, the concrete has a “linear creep”
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Fig. 9.8.1. Idealized stress-strain diagram of concrete

as well, i.e. a slowly developing deformation proportional to the stress, commonly
called “creep”.) Hence, we have to choose the modulus of deformation Ec of the
perfectly elastic-plastic material model, approximating the real stress-strain
diagram, depending on whether the load is acting for a long or for a short time.
Namely, under a long-term load, the creep develops completely, while under
a short-term (e.g. test) load only a fraction of it may come about. Thus, the per-
fectly elastic-plastic material model may be characterized by the modulus of de-
formation referred to long-term (Ecj) or to short-term (Ecd) loading, according
to the duration of the load. A load should be considered as long-term if it acts at
least for one year during the lifetime of the structure. That is, practically the entire
creep develops during this time.

In the case of loads acting for a very short time (e.g. vibrations), there is no
creep at all, so that when analysing loads of this kind, the modulus of deformation
Eccan be considered equal to the initial modulus of elasticity EGO of the concrete.

In conclusion, we take into consideration the creep of the concrete by an appro-
priate choice of the modulus of deformation Ec.

The behaviour of the cracked reinforced concrete cross section is influenced by
the geometric data and the material properties of both the concrete and the rein-
forcement. Assuming suitable moduli of deformation, and furthermore suppos-
ing that the behaviour of the whole cross section in bending can also be described
by an ideally elastic-plastic material model, we obtain relations between bending
moments and curvatures similar to that shown in Fig. 9.4.2 for stress and strain.

On the whole, reinforced concrete differs from elastic homogeneous material
in the following ways:

— the compressed concrete zone creeps;
— the concrete and the reinforcement behave elasto-pastically,
— the tension zone of the concrete cracks, the stiffness of the cross section
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drops, and the position, quantity and quality of the reinforcement plays an im-

portant role.

Several authors took the cracking of the concrete into consideration by diminish-
ing the value of the modulus of elasticity [5.33], [9.8.11]. However, this method
cannot follow the change in the stiffness due to the variation of the eccentricity of

the compressive force. The method to be outlined in the following, based on
[9.3.2], [9.8.4], takes this effect into account, so that there is a sufficient agreement

between its

results and those of the model tests.

In this section we shall use several subscripts that are explained below:

C —_—
rc —
st —
crack —
uncr —
hom —

shor/—

el —

pi  —

concrete;

reinforced concrete;

steel;

cracked (cross section);

uncracked (cross section);

refers to the uncracked, unreinforced (homogeneous) concrete cross
section considered as completely elastic, or to quantities computed
with such a cross section;

refers to the beginning of some process, e.g. to the initial value of the
modulus of elasticity valid for the beginning of the loading process;
or, in connection with ij/, it refers to the initial zero value of the
eccentricity;

denotes whether the value of the deformation modulus is valid for
short-term or long-term loading;

computed with an elastic material model;

computed with a plastic material model; by the side of subscript cr
it denotes the plastic critical load, while standing alone it denotes the
compressive force causing plastification of the entire cross section
when acting with the initial eccentricity.

9.8.1. Deformation Characteristics of the Concrete

Modulus of elasticity (EC0Q. The (initial) modulus of elasticity of the concrete,
ECo, in fact, describes deformations caused by instantaneous effects (e.g. vibra-

tion).

The modulus of elasticity, EG0, depends on the strength of the concrete. Its
mean value is, according to the generally accepted formula [9.8.13]:

Eco= 55000 °prism - « 6750 [N/mm3. (9.8.1)

© Aprism
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Here <prism denotes the prism (or cylinder) strength of the concrete, related to the
cube strength <oue as follows:

A"prism 0-8<Tcube.

In design we take into account the standard deviation of the modulus of elastic-
ity by that of the strength, i.e. we associate EcO with the minimum required
strength rather than with the mean value of the strength. By minimum required
strength we denote the threshold strength corresponding to the fractile required.

Modulus of deformation taking creep into account (Ec). The measure of creep
of the concrete depends on the data of loading, since the concrete hardens with
time and, thus, its deformation characteristics also vary. However, the creep of
concrete is caused not only by the creep of its material but also by the fact that
the load is carried initially by the solid skeleton and by the pore water as well.
After a certain time the pore water partly becomes pressed out partly evaporates,
so that gradually the entire stress will be carried by the internal skeleton of the
concrete.

According to Dischinger’stheory [9.5.2], the creep deformation begins according
to the creep factor function <p(i) = £creep(i)/ed at the time of the first loading, and
the loads applied at a later date induces only that part of the creep deformation
that corresponds to the remaining part of the original creep factor function. (It
should be remarked that the Dischinger model can be reduced to a fictitious
Maxwell fluid with the aid of a co-ordinate transformation, taking @ instead of
t as the independent variable, see e.g. in [9.5.3]. However, in this case the “time”
@ cannot increase to infinity, only to a certain finite value, i.e. to the final value
of the creep factor ge of the concrete at

On the other hand, the conception of Freyssinet assumes that the main cause
of creep is the squeezing out of the pore water. As a result, we obtain the standard
linear three-parameter solid as a model for the creep of concrete.

In recent years, Trost [9.8.14a] and Zerna [9.8.16] showed that the actual be-
haviour of the concrete lies between these two conceptions, but is closer to the
standard three-parameter solid. They established the following fomula for the creep
of the concrete:

Ec — -TrM1+ "0o® (0]+-rrM 1+é7%(0]-
&c,0 EcO0

The coefficient g appearing in this relation depends on several factors. Accord-

ing to Dischinger’s theory, £=0.5, while for the three-parameter solid 0= 10.

Trost and Zerna suggest g=0.7~0.9. The coefficient k represents the decreasing

propensity of the concrete to creep with increasing time. It has the value 1.8

at the beginning of concrete hardening, and 1.0 at the age of one month, while

16 Buckling of Shells
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it decreases to /fc= 0.5 for concretes older than one year. The value of k valid at
the onset of the initial stress e0is denoted by kO, while that valid at the onset of
a, at a later date t is denoted by kt.

Corresponding to the standard linear three-parameter solid, the creep factor
(p{t) tends to a finite value <p(°°) which we shall call gx for the concrete in the
following.

The value of gx depends on the thickness of the structure, on the quantity and
quality of cement applied, on the water-cement ratio, and, finally, on the humidity
of the environment of the concrete [9.8.2].

The data published in [9.8.2] suggest that, assuming average circumstances,

g practically depends on the strength of the concrete only, and can be described
by the relation

4c- 4-2 logl0<prism, (9.8.2)

where the prism strength Qorism's to be substituted in N/mm2

It should be remarked that the data given so far for the concrete are valid up
to 200° C only, because at higher temperatures the concrete disintegrates rapidly.

The critical loads of some structures with decreasing post-buckling load bear-
ing capacity were determined in [9.5.11], taking the influence of linear creep exactly
into account. Evaluating these results and considering what has been said in
Section 9.5 we may conclude that if we consider the effect of the creep of con-
crete by reducing Ecii, i.e. by assuming a modulus of deformation Ec lower
than EQOaccording to the formula:

E = Ec° (9.8.3a)
C 1+9¢c’
see [9.8.2], we commit a slight error to the benefit of safety. The well-foundedness
of this formula has been proven by model tests performed on concrete shell
domes [9.8.15].

In the case when only a part of the load is acting from the beginning causing
a0, while another part begins to act only at a later date t causing at, we may
reduce the creep factor (pc accordingly. By so doing we arrive at the following
interpolation formula for the modulus of deformation:

E Eco (9.8.3b)
Cu \+ ao_'_k‘/\ [ qK.t) '
(Tordr,
The meanings of kt and g were explained earlier.
For structures with increasing post-buckling load bearing capacity we know
ofno such investigations. The effect of creep seems to be smaller on these structures.
Until more exact results are available, we suggest using Eq. (9.8.3) as an approxi-
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mation also for structures with an increasing character. By so doing we certainly
remain on the safe side.

If the load acts on the structure for a short time only (e.g. for a few hours),
merely a part of the creep develops [9.8.2]. We may take this part of the creep
into account by assuming the “short-term” deformation modulus Ecsh to be
applied for short-term (e.g. test) loads, as 70% of the modulus of elasticity EQ0
[9.8.13]. Hence, we obtain:

EGh= OJEQO. (9.8.4)

In the following, Ec always denotes the appropriate value, i.e. for the analysis of
the effect of long-term loads, Ec=ECIl, for that of short-term loads, Ec=Ec sh,
and for the investigation of the effect of vibration, Ec—Ec 0.

9.8.2. Dimensions of Reinforced Concrete Shells

As a rule, the thicknesses of concrete and reinforced concrete structures, also
included shells, deviate from the design values. Extensive series of measurements
on erected reinforced concrete slabs, conducted in the Institute of Quality Control
of the Building Industry (EpitGipari MinGségvizsgalo Intézet, EMI) in Budapest,
and their evaluation [9.8.10], [9.8.14] showed that the mean value of the dimen-
sions is equal to 1.05 of the design thickness, while for the lower extreme values
(fractiles) of the cross sectional dimensions we can take the design values reduced by
10mm. For buckling, the average dimensions are decisive, and the deviations of the
dimensions of the individual cross sections become decisive only in the calculation
of the plastic failure load. Thus, as with other reinforced concrete constructions,
for the calculation of the elastic critical loads of shells we may use the design
dimensions, while for the calculation of the load pp, causing plastic failure we
may use the design dimensions reduced by 10mm.

9.8.3. The Shell Buckling Rigidity Characteristic
of the Reinforced Concrete Cross Section

On the basis of the reasoning to be found in [9.1.1], for the buckling analysis
of reinforced concrete shells we introduce the “shell buckling rigidity charac-
teristic” K=iBT, see Eq. (9.1.1). Here B and T are the bending and tensile stiff-
nesses of the shell cross section respectively.

We compute the rigidity characteristics on the basis of the second state of
the reinforced concrete structures, i.e. assuming a cracked tensile zone but still
linearly elastic behaviour.

16*
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In the case of reinforced concrete structures, the bending and tensile stiffnesses
B and T depend on the reinforcement and on the eccentricity of the compressive
force, because with increasing eccentricity the tensile zone of the concrete gradually
cracks, causing a decrease in stiffness.

The rigidity characteristics of the uncracked, unreinforced concrete cross
section are, neglecting Poisson’s ratio, as follows:

t3
BI1=EQC= EC— ,

7Ta = ECAC= Ect,

where Icand Acare, respectively, the moment of inertia and the area of the con-
crete cross section of unit width. From this we can compute the shell buckling rigid-
ity characteristic of the uncracked full concrete cross section:

— n
Kc -\BC Ilc -Ec-uw- (9.8.5)

If we apply reinforcement in the cross section, its rigidity characteristics will
be increased due to the area of reinforcement which, multiplied by EjJE c=n
(with Est as the modulus of elasticity of the reinforcement), can be considered as
an additional concrete area. Hence, we have:

Duncr — Tuner
rc Arc 9

yuncr _ p juncr
1rc J-'c S”rc 9

and the shell buckling rigidity characteristic of the uncracked full reinforced
concrete cross section becomes:

K?™ = )& 7o (9.8.6)

In the formulas the subscript rc denotes that we considered the above-mentioned
additional concrete area in the calculation of the rigidity characteristics. We thus
have:

B?r=~f[l +2nn(l-2r,n

rg'a = Ect(l +nn),

where n=AJAc is the ratio of reinforcement area in one direction to the cross
sectional area, and ri=h'/t is the ratio of the concrete thickness covering the
reinforcement to the height of the cross section, see Fig. 9.8.2.
Introducing the notation
E = 0K,
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n- Est/Ec ~N-h'/t
» =Ast/A ¢ f=*/f

Fig. 9.8.2. Stresses in a cracked reinforced concrete shell cross section

to can be written as follows:

= Y1+ny[l+3ny(l~2r,M (9.8.7)

In reinforced concrete shell structures, two kinds of reinforcement are generally
used: the single layer grid (placed, as a rule, in the middle of the height) and the
double layer grid (placed on the two sides of the cross section). In the case of
single layer grids %—0.5, while for double layer grids we may take t/%0.2, as a
rule. We computed from Eq. (9.8.7) the values of and »(li2, characteristic of
the single layer middle grid and of the double layer grid (with »—0.2) respectively.
These values are to be seen in Table 9.8.1 and Fig. 9.8.3.

Table 9.8.1
Values of 4 appearing in Egs (9.8.7) and (9.8.10)

nuy o} 0.05 0.10 0.15 0.20 0.30 0.40 0.50
1/0,1 1.000  1.025 1.049  1.072  1.095 1.140  1.183 1.225
Vo,r 1-000  1.052  1.104  1.156  1.208 1.312  1.416 1.520
I/, 0 0139 0212 0269 0.316 0393 0457 0.513
10,2 0 0178 0285 0373 0453 0.597 0.730  0.855

Jauner_ .. ryuncr. rycrack .. “uncr
A% S = GoA’d s REET — VoAl

If the cross section cracks, its rigidity characteristics decrease. The degree of
decrease depends on the eccentricity of the compressive force. When the eccentric-
ity reaches the value of half the height of the cross section, the rigidity charac-
teristics closely approximate the values

= Bclrcak = 4 "[4£s+6ny(1+27+27-210-21,)],

T &k = ECAvrk = Ect(Q+ nn),
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YO0 Uncracked Reinforced concrete
" with single-layer
?200,i: Cracked reinforcement
y02: Uncracked Reinforced concrete
o with double-layer
Yo" Cracked reinforcement

Fig. 9.8.3. Factors «# for calculating
the shell buckling rigidity characteristic of reinforced
concrete shells plotted against the quantity of reinforcement

valid for infinitely large eccentricity, i.e. for bending. Here £ denotes the ratio
of the height of the compressed zone to that of the cross section, see Fig. 9.8.2.
The difference between these rigidity characteristics and those of the uncracked
cross section, B™caand Tr'ner, is that in f“akand T,™ck the stiffness of the tension
zone of the concrete is omitted.
Consequently, the shell buckling rigidity characteristic of the cracked reinforced
concrete cross section can be written with close approximation as follows:

jAcrack _  j/~crack ATerack _ j? Acrack ~crack

This expression can be regarded as valid in the range of large eccentricities {e>tj2).
By eccentricity e we denote the distance of the compressive force ncompr measured
from the centroid of the full (uncracked) cross section.

In the case of a symmetric reinforcement as shown in Fig. 9.8.2, we obtain with
the aid of the usual reinforced concrete theory [9.8.5]:

(9.8.8)
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Introducing the notation

/I15 rcéack r,/ifmnfléner’) (989)

we can derive from the foregoing the following expression for t/i*;:

The values of t/TClI and valid for single layer middle reinforcement (I7= 0.5)
and double layer reinforcement (17=0.2) respectively, are shown in Table 9.8.1
and Fig. 9.8.3. It is permissible to interpolate linearly between the values of the
table.

If there is no reinforcement, then the tensile stresses disappear after cracking.
The compressive forces alone have to counterbalance the bending moment acting
on the cross section. Consequently, the unreinforced concrete cross section is
able to take bending moment only if the compressive force acts inside the cross
section.

Shrinkage and variation of temperature cause cracks in the concrete even without
external forces. Hence, we may assume that from the beginning of the loading
process on no tensile stresses arise in the cross section. By so doing we remain on
the safe side.

The effective area of the cracked concrete cross section is

Acnck = 3i-"--¢),

so that its tensile stiffness becomes:

7Tak = Ec3\L-¢ej.

The above formulas are only valid if the compressive force acts outside the core
of the cross section, i.e. if the eccentricity e exceeds the kernel radius t/6.
The change in curvature %of the bending deformation is to be computed gen-
erally from the expression
M

In the case of the cross section without tensile strength this becomes:

e a 2N, compr

X Ecx t Yy’
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Equating the two expressions for x and substituting enanpl for M, we obtain the
bending stiffness of the cracked concrete cross section:

Hence, the shell buckling rigidity characteristic for the range t/6 <e<f/2 becomes:

(9.8.11)

According to what has been said in Section 9.2, we can assume e—cw for the
eccentricity e without detailed analysis. The assumption c¢—1 causes an error
to the benefit of safety.

9.8.4. Determination of the Upper Critical Loads of Reinforced
Concrete Shells

We first take into account only the influence of cracking, i.e. the decrease of
the shell buckling rigidity characteristic with increasing eccentricity. Then we
consider the effect of creep through the modulus of deformation Ec, as said before.
In this way we determine the elastic upper critical load of the reinforced concrete
shell. Finally, using the results of Section 9.4, we establish the plastic upper crit-
ical load of the reinforced concrete shell.

Upper critical load of the elastic reinforced concrete shell. Inside the area of a
buckle, the eccentricity and, consequently, also the shell buckling rigidity char-
acteristic of the reinforced concrete varies from place to place. Nevertheless,
it is the value of this rigidity characteristic valid at the maximum buckling ampli-
tude that has the greatest influence on the buckling deformation. Considering
that the value of the rigidity characteristic is greater everywhere else inside the
buckle, we may assume its minimum value, pertaining to the maximum amplitude,
to be valid all over the buckle. We thus commit a slight error to the benefit of
safety. Hence, the rigidity of the shell will be considered to be constant, and the
differential equations will have constant coefficients. The load p pertaining to some
deformation w may be computed by using the shell buckling rigidity characteristic
pertaining to wmex.

The construction based on this assumption was worked out in [9.8.4] and is
shown in Fig. 9.8.4 for the homogeneous elastic cylindrical panel solved in [2.57].
The load-deformation diagram of the perfect shell is represented by the full heavy
parabola-like line in the figure, branching from the point that corresponds to
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k=JT

Fig. 9.8.4. Determination of the upper critical load
of the elastic reinforced concrete shell

the linear critical load. Supposing that the compressive force acts on the homo-
geneous shell with an eccentricity wo=c(=0.25 t, or that the shell has an initial
imperfection with a maximum amplitude equal to this value, then the eccentricity
w increases with increasing load intensity as shown by the thin curve, according
to [2.57].

In Fig. 9.8.4 (b) we show the variation of the shell buckling rigidity character-
istic K of the concrete and reinforced concrete cross sections plotted against the
eccentricity e = iv.We have to reduce the ordinates of the p(w) curve valid for the
homogeneous material to the same extent that the shell buckling rigidity character-
istic K decreases.. Thus we obtain for the reinforced concrete shell the curve drawn
by the full heavy line, while for the concrete shell we arrive at the heavy dashed
curve in Fig. 9.8.4 (a).
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The critical loads of the elastic reinforced concrete shell pertaining to various
initial eccentricities are given by the peak points of these curves. This critical load
may be written in the form:

PTei'rc = QPjmr G (9.8.12)

If we consider the rigidity K**ack from the beginning as the shell buckling rigidity
characteristic, we obtain the thin dashed curve of Fig. 9.8.4 (a). It can be seen that
the critical load pertaining to this curve is somewhat smaller than the more exact
one. Hence, by using the approximate value, we remain on the safe side.

If we determine the upper critical load of the concrete shell carcked equally in
both directions as a function of wQ't for various values of warand p|.°wer, as explained
above, we find that it hardly depends on werand A0wer. The upper critical load of
the concrete shell which is cracked equally in both directions and has no tensile
strength can be represented, in the case of war=2t and J,°wer—o.25p™n, by the full
line curve in Fig. 9.8.5.

Fig. 9.8.5. The variation of the factor qc of the concrete shell
as a function of the initial imperfection amplitude foi the case ea= wQ

The cracks develop, in fact, not infinitely densely in the concrete shell, but at
finite distances. Hence, its stiffness becomes also somewhat greater than that of
the shell with no tensile strength at all. Consequently, we do not commit any error
to the detriment of safety if, instead of the exact full line curve, we take the approxi-
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mate dashed line curve of Fig. 9.8.5, corresponding to the simple relation:
(9.8.13)

which is much easier to use in the following.

In the range e jt~ 0.5 we obviously have qc=0, since the stiffnesses of the cracked
concrete cross section become zero at ejt=0.5. As we explained in the course of
the analysis of the shell buckling rigidity characteristic of the reinforced concrete
cross section, from e jt—0.5 on we may consider the rigidity of the cracked, bent
reinforced concrete cross section as valid; consequently, its critical load can also
be computed by multiplying that of the homogeneous (uncracked concrete) shell
by i/'», i.e.:

05) =~ Rhom (9.8.14)

The stiffnesses computed by completely neglecting the tensile stresses in the
concrete will be increased by the uncracked sections of the tension zone between
the cracked cross sections. On the other hand, if the cracks do not intersect the
reinforcing bars at a right angle, the stiffnesses decrease. These two effects approxi-
mately cancel each other out, so that in practice we can work with the value

In the uncracked parts of the shell the efficacy of the reinforcing bars which do
not subtend a right angle with the directions of the principal bending moments
decreases. In the case of a rectangular mesh reinforcement of equal strength in
both directions this reduction becomes greatest at 45°, where its efficacy is only
0.5. Since we do not know in advance how the buckling shape will develop, it
seems advisable to take this value 0.5 into consideration. Hence the stiffnesses of
the uncracked reinforced concrete shell can be computed by using the factor:

. (4 A i+<A0
T o=0=- 2.

In the range eQt” 0.5, the value of grc lies between those of S ghomand

! +2'/° qc. Detailed investigations showed that we can interpolate between these

two values according to 1/00, see Fig. 9.8.6. Thus we have:

Orc(y = O0-5] = I+2~7° Qc+ 'lI'co(ghom-gc)- (9815)

Finally, the upper critical load of the elastic reinforced concrete shell can be com-
puted from the relation:
"l:?,prsf.:r - Errcl:éirn, hom * (9816)

y
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Fig. 9.8.6. Determination of the factor Qrc of the reinforced concrete shell by interpolation

In shell structures the usual reinforcement is mostly weak, so that th0 exceeds
unity only slightly. 1f we use the approximation 1, we can further simplify the
procedure as follows.

Introducing the ratio:

(9.8.17)

the critical load ofthe weakly reinforced elastic concrete shell can also be computed
from the expression:
PTrJ =RPSXL = « ¢ “™"" (9-8.18)

The numerical values of the factor B are compiled in Table 9.8.2. The values corre-
sponding to Rhom(0.5)=0.25 refer to shells which behave like the axially compressed
cylinder or the radially compressed sphere. Hence, we also plotted these values
in Fig. 9.8.7.

If the reinforcement, i.e. the rigidities, are not equal in the two directions, the
shell is to be computed as orthotropic, with the different factors Bx and Ry in the
two directions. In most practical cases, however, the difference between the two
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Table 9.8.2

Values of the factor /?(Eq. (9.8.17))

253

vV,  e0wo0 ' 0 0.1 0.2 0.3 0.4 0.5

. 0.5

i.o 10 1.0 1.0 1.0 1.0 1.0 1.0

0.8 0,5 1.0 0,87 0 82 0 80 0.8 0.8
1.0 0.90 0.84 0.81

0.6 05 1.0 075 064 0,61 0.6 0.6
1.0 0.80 0.69 0.63

0.4 05 1.0 062 046 041 0.4 0.4
1.0 0.71 0.53 0.44

n, 0.5 . 0.49 0.28 0.21 0.20 ,
1.0 0.61 0.37 0.25 0.21

0 0.5 jio 0.37 0.10 0.02 0 0
1.0 0.51 0.22 0.06 0.01
0.5

i.o 10 1.0 1.0 1.0 1.0 1.0 1.0

0.8 05 1.0 088 0,83 0,80 0.8 0.8
1.0 0.91 0.85 0.82

0.6 05 1.0 0,77 065 °'6l 0.6 0.6
1.0 082 0.70 0.63

04 0.5 10 0.65 0.48 0.41 0.40 Q4
1.0 0.73 0.55 0.45 0.41

n -~ 0.5 . n 0.53 0.30 0.22 0.20 ,
1.0 0.64 0.40 0.26 0.21

0 0.5 io 0.42 0.13 0.02 0 Q
1.0 g 0.55 0.24 0.08 0.01 _

o 10 1.0 1.0 1.0 1.0 1.0 1.0

0.8 0,5 1.0 °'90 0-84 0,81 0.8 0.8
1.0 0.92 0.86 0.82

06 0.5 10 0.81 0.67 0.61 0.60 06
1.0 0.85 0.72 0.64 0.61

0.4 0.5 o 0.71 051 0.42 0.40 L
1.0 0.77 0.58 0.46 0.41
0.5 0.61 0.34 0.23 020

°'2 1.0 1-0 0.69 0.44 0.28 0.21 °'7Z
01 oni oli oA 0]

0 1.0 10 0.61 0.30 0.10 0.01 0
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Table 9.8.2. (continued)

ejwo e 0 0.1 0.2 0.3 0.4 0.5
0.5

l.0 10 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.96 0.87 0.81 0.80

08 1.0 10 0.96 0.90 0.84 0.81 08
0.5 0.92 0.74 0.63 0.60

06 1.0 10 0.93 0.79 0.67 0.61 06
05 0.88 0.60 0.44 0.40

04 1.0 10 0.89 0.69 0.51 0.42 04
0.5 0.84 0.47 0.26 0.20

02 1.0 10 0.86 0.58 0.34 0.22 02
0.5 0.81 0.34 0.07 0

0 1.0 10 0.82 0.48 0.18 0.03 0

Fig. 9.8.7. The factors ft of the reinforced concrete cylindrical

shell as functions of the imperfection amplitude in

the case of Qhom (0.5)=0.25 and e0=w0
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stiffnesses is not very significant, so that the shell can be considered as approximate-
ly isotropic with the substituting factor:

ust=YRJy (9-8.19)

Upper critical load of the plastic reinforced concrete shell. The plastic behaviour
of the reinforced concrete shell can be taken into consideration either by
Eqg. (9.4.2) or by Eq. (9.4.6). Elence, summing up the foregoing, the critical load
taking into consideration all the properties of reinforced concrete shells (cracking,
reinforcement, creep and plasticity) can be computed from the following formula,
obtained by combining Egs (9.4.3) and (9.8.18):

#gp,ppeir, cr = iPLcJIP,peeIr,rc = CBpgrp,pheorm . (9820)

Here pu™plrc denotes the upper critical load of the reinforced concrete shell with
plastic properties, p“Ehom the uPPer critical load of the uncracked concrete shell
considered as elastic with the modulus of deformation Ec (taking into considera-
tion the effect of creep), Cthe factor taking the plastic properties according to
Eqg. (9.4.4) or (9.4.6) into account, and R the ratio of the upper critical loads of
elastic reinforced concrete and elastic homogeneous shells, to be determined from
Eg. (9.8.17) or Table 9.8.2.

We computed in [9.3.1] the critical loads of the experimental reinforced concrete
shells reported on in [4.6], [4.30], [4.33], [9.8.7], [9.8.8], [9.8.9] and [9.8.12] by means
of Eq. (9.8.20) and compared them with the experimental values. The results are
plotted against (R/t) in Fig. 9.8.8.

Fig. 9.8.8. Comparison of test results to be found in
the literature with values calculated by the proposed method
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The mean value of the ratios of the experimental to the computed critical loads
is 1.02; the standard deviation is 20%. This proves that the method presented in
the foregoing corresponds to reality.

If we take the special properties of the reinforced concrete into consideration
by using the method presented above, the low values of critical loads of reinforced

concrete shells shown in Fig. 4.2 and 4.3 rise to the average values.

9.9. Determination of Critical Loads by Model Tests
and by Measurements on Erected Structures

From the foregoing it can be seen that not all stability problems of shells even
of the simplest shapes have been solved in a way that is satisfactory for practical
applications. Hence, the critical loads, of shells of new, more complicated shapes
can be determined theoretically during the design procedure only in the most
exceptional cases. Consequently, in these cases we have to resort to model tests.
By so doing we may load the shell up to failure. However, besides the critical load
causing failure, it is important to know whether the post-buckling load bearing
capacity of the shell is constant, decreasing or increasing, because this circumstance
basically influences the magnitude of the safety factor to be chosen. The demand
also may arise that the shell — at least in some loading cases — should not be
loaded up to failure in order to save costs, but that, nevertheless, the above data
should be determined.

Plotting the buckling deformation w against the load intensity generally does
not furnish a reliable answer to the above questions. That is, this diagram corre-
sponds to one of the dashed lines of Figs. 1.1 (a), (b), (c) or (d). However, these
are so similar to each other that it is impossible to find out to which one the mea-
sured diagram corresponds. Moreover, the peak point of the curve, i.e. the critical
load, cannot be reliably extrapolated either. Thus, we have to resort to Southwell’s
plot [2.51] that transforms the load-deflection diagram of structures with initial
imperfections, corresponding to Fig. 1.1 (a) into a straight line. In this case the
buckling deformation w depends on the initial eccentricity w0 and on the load
P as follows:

(9.9.2)
This relation is based on the usual assumption that the initial imperfection has

the same shape as the buckling deformation, which is fulfilled in most cases with
good approximation.
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Introducing the displacement & measured from the initial imperfection \t0:
w—w0= (§ (9.9.2)

Equation (9.9.1) can be rearranged into the form:

= + <9-9'3)

which is the equation of a straight line according to the co-ordinates O/P and %
Hence, measuring the deflection Ocaused by several load intensities P, and plot-
ting the data in the co-ordinate system [5/P, <, we obtain a straight line the tangent
of which yields the critical load (Fig. 9.9.1). (In shell buckling problems we may
write p instead of P.)

Fig. 9.9.1. The Southwell-plot for structures
with constant post-buckling load bearing capacity

Fig. 9.9.2. Determination of the ascending or descending character
of the post-buckling behaviour by the generalized Southwell-plot

17 Buckling of Shells
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Thus, Southwell’s plot has the advantage of making the extrapolation of the
critical load more accurate. In addition, it may also be used to find out whether
the post-buckling load bearing capacity of the shell is increasing, constant or
decreasing (Figs 1.1 (a), (b), (c) or (d)). That is, it can be shown [9.9.2], [9.9.3]
that the Southwell plot becomes curved upwards or downwards depending on
whether the post-critical load bearing capacity of the structure increases or de-
creases (Figs 9.9.2 (a) and (b)). Hence, if by plotting the measured values %
and 6/p, we obtain one of the curves of Fig. 9.9.2 instead of a straight line, we may
decide on the increasing or decreasing post-buckling behaviour of the shell, corre-
sponding to Fig. 11 (b) or Figs 11 (c), (d) respectively. However, as a rule, we
cannot determine the critical load of the structure from these curved Southwell
diagrams, so that we have to chose an appropriate safety factor corresponding to
the type of post-buckling behaviour. For structures with an increasing post-
buckling behaviour (see Fig. 11 (b)), the so-called Spencer plot proposed in [9.9.4]
is in most cases able to furnish the critical load.

We have to be careful if there is a chance that the behaviour of the structure
corresponds to Fig. 11 (e). That is, it may happen that the initial section of the
load-deflection curve corresponds, e.g. to Fig. 1.1 (a), and its Southwell plot becomes
straight, although the branching that occurs later results in a (sometimes sharply)
decreasing post-buckling load bearing capacity.

The initial section of the Southwell plot is sometimes curved. This is mostly
due to errors in the measurements at low loads, which can be eliminated by the
“modified Lundgren plot”, see in [9.9.4].

Another way to determine the linear critical load without destroying the struc-
ture is the measurement of vibrations [2.12], [9.8.3]. This method is mainly suitable
for application on erected shells, but it can also be performed during model tests.
It is based on the following relation, well known for compressed bars [9.9.1]:

(9.9.4)

Equation (9.9.4) is also valid for shallow shells subjected to compressive forces
of constant magnitude. Here:

p — the total load acting on the shell (dead-weight included);

pX™M — the linear critical load;

Ndcid— eigenfrequency of the unloaded shell (loaded only by its dead weight),
disregarding the influence of compressive forces due to dead weight
on the vibration;

N  — eigenfrequency of the shell loaded by p, taking the influence of com-
pressive forces into account.
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The assumption underlying Eq. (9.9.4) is that the load p does not increase the
vibrating inert mass of the shell. This is fulfilled if, e.g. the shell model is loaded
by air pressure or by weights suspended on soft springs. However, if we load the
structure by weights rigidly connected to it (e.g. by placing them on the shell),
then we have to consider that they increase the vibrating mass of the shell, causing
a reduction in its eigenfrequency (even without considering the effect of the com-
pressive forces). Since the mass appears in the formula of the eigenfrequency in the
denominator under the square root sign, Eq. (9.9.4) has to be modified as follows:

(9.9.5)

where p dead denotes the dead weight.

Hence, if we measure the eigenfrequencies of the shell subjected to two differ-
ent loads (possibly not very close to each other), we can write two equations for
the unknowns Ndcad and , from which p1* can be calculated. This allows us to
decide also on the actual critical load p “pper of the structure.

Equations (9.9.4) and (9.9.5) are valid on the condition that the eigenshape of
the vibration coincides with the buckling shape. However, this is not always ful-
filled. Consequently, as a rule, measurements have to be performed in as many
points as necessary to distinguish the vibrations of different wavelengths and to
determine the corresponding eigenfrequencies separately. Then the critical loads
have to be computed from every eigenfrequency and the minimum of them
should be considered as the most onerous one.

As with the Southwell plot, the measurement of the vibration is also not suit-
able for the determination of the critical load in the case corresponding to Fig.
11 (e).

When using either the Southwell plot or the measurement of vibration, we im-
pose only small deformations on the structure. Hence, neither of these methods
assesses the rigidity-reducing effects of the plasticity, creep and cracks which de-
velop in the reinforced concrete structures only in a later stage of buckling. Both
methods consider, on the other hand, the actual stiffening effect of the edge
supports (considered in most cases only roughly in the computation) and the
influence of cracks due to the dead weight.

In summary, these methods can be applied only in correlation with and
completed by the theoretical results.

17«



260 9. Practical Application of the Stability Tchory

9.10. Th