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ON THE VECTORIAL REPRESENTATION OF BASIC COLOUR

PERCEPTION AND ITS USE IN COLOUR-MEASUREMENT
x 

G.Lux - J.Schanda

1. Introduction

It is usual to distinguish between two levels of colorimetry, a basic one, 

where Grassmann's laws are valid and an advanced, perceptual one. In this 

paper we will stay within the boundaries of basic colorimetry, where linear 

metrics can be applied. Within these limits it is usual to define three primary 

colours and use the laws of additive colour mixture to express the problems of 

tristimulus colorimetry.

In the following an alternative interpretation of this system, based on vector 

calculus, will be given, and applied to discuss tristimulus colorimetry.

2. Colour transformations

XX
The colour S of an unknown spectral distribution can be expressed as the 

additive sum of three reference stimuli (R, G, B):

S = RR + GG + BB_ 1

where R, G and B are the tristimulus values.

Using this equation for all the monochromatic radiations finaly the spectral 

tristimulus values (STV) r(7^ gM, b(A) are reached, by the help of which 

the tristimulus values of a colour can be calculated if the spectral distribution

x Now with Tungsram Inc.Lamp Works, Budapest.

XX Colours are represented by underlined capital letters.
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S of the radiation representing the colour is known:
” 7«0 730 780

R“js^r(^dA( G- 5*9 (AÏdA, B- i SA bOûdA

380 380 >m

2

The STV-s are characteristic to the R, G, B reference stimuli, but not to 

their spectral distribution, as the same colour can be produced by different 

spectral distributions (metamerism).

It is well known that the same colour matching equation as seen in Equ.l 

can be written for other reference stimuli, thus e.g.:

S = FF + HH + NN 3

Here again equations of the form of Equ.2 hold, only the STV functions 

( HA h(Xl n(A))have to be determined.

Equations coupling the two systems of reference stimuli are

F — Rf R + Gj G + 6^ B

N = RR + GG + BB

4

The tristimulus values expressing the colour attributes of colour S in the two 

systems (Equ.l and 3.) are coupled by similar equations. Writing the 

tristimulus values as column vectors it can be shown that equation

holds. By denoting the inverse of the matrix in this equation by this can be 

written in a simpler form:

R

G

B
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Using the form of Equ.2. this can be rewritten as 

gives the transformation equations for the STV-s. It is very important to notice 

that L is independent of A, and the equations have to hold for every wavelength.

It is well known that the CIE fixed in 1933 the STV-s of the so called average 

observer, and fixed also a linear transformation of these, a transformation where 

all the STV-s are non-negative numbers. It is usual to denote this system of 

STV-s by x(A), y(A), z(A) (CIE-STV-s).

A tristimulus colorimeter should show sensitivity distributions in accordance to 

these CIE-STV-s. If, however, the instrumental STV-s are a linear transform

ation of the CIE ones, i.e.

[a. (A)] = L [x (A) J, (with i=1...4, ¡=1...3) 9

where a. (a) represents the instrumental STV-s (it is usual to use four detectors, 

thus I = 1...4), and (A) = Xj (A) = y (a) and xg (a) = z (A), an 

exact colour measurement is still possible.
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In practice it is usual to set L in Equ.9. as a unity matrix (using the a. (A) 

curves instead of the x. (>) ones), but even in the more general case of an 

arbitrary matrix L Equ.9. does not hold for every wavelength in question 

(380 nm s A = 780 nm) exactly. This leads to measurement errors. Budinszky 

[1] showed a method of finding an optimal L matrix based on a minimum 

calculus.

In the following we shall discuss a vector representation of the spectral power 

distributions and show how vector calculus can be applied to describe colori

metry. By the help of this we shall get an answer on the problem of optimal 

transformation as well.

3. Vectorial representation of colour measurement

As well known the human eye can distinguish between spectral distributions only 

in the form of integrals. All the different PA spectral distributions that yield 

the same
740 780 780

X=jp>xO)d>, Y= Px y(A)dA, Z= PxZ(A)dA 10

380 380 380

tristimulus values are metameric, we cannot distinguish them.

In Equ.5. we used already the column vector representation of the tristimulus 

values. Using the system of the reference stimuli as basic vectors the manyfold 

of colours can be represented as the elements of this tridimensional space, 

where the tristimulus values give the coordinates of the colour-vector.

It is straight-forward to regard the spectral power distributions as elements of 

a multidimensional vector space [2-4]. It can be shown that in such a re

presentation all the laws of vector calculus hold. The only exception would 

be the multiplication by a negative number, as this operation would lead out 

of the set of spectral distributions. If, however, the system of spectral 

distributions is completed with these "virtual" distributions, in a similar way 

as the concept of virtual colours is used, this problem is solved without any 

difficulty. Thus all the continuous or quadraticly integrable functions are 
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elements of this vector space. The number of dimensions of this space can be 

reached by finding a basis. Such a basis could be the system of the sine or 

cosine functions used in the Fourier-series of the functions. From this it can 

be seen that our vector space is countably infinite.

It can be shown that inner products between the elements of this linear space 

can be defined in the following form;

f (x) function is represented by vector f

g (x) function is represented by vector g 

and

j f fc) g fc) dx = c (real) —* _f * £ = c 11

As both the

*3 = z (A))

PA power distributions and the x. (x1 = x x2 = y (A) ,

STV functions can be represented in this vector space by vectors

(P and x.), the colour measurement is, according to Equ.ll., just the inner 

product of the P vector and the x, spectral tristimulus vector.

4. Vectorial picture of colour vision

X
The spectral power distribution of a given colour gives a vector P, in the 

space of power distributions. In the same space the STV-s of the CIE-system 

(x (a), y (>), z (A)) are represented by three vectors: Xp an<^ -3' 

These vectors form a threedimensional subspace; in the following we will 

refere to this subspace as to the colour measuring subspace.

The visual perception of a spectral power distribution is the orthogonal pro

jection of this power distribution vector into the colour-measuring subspace. 

The colour perception is influenced only by this projection and not by the 

"arbitrarily" chosen triplet of STV-s, forming a basis of the subspace. The 

projection can be expressed as the linear combination of the reference stimuli

Xj, 0 = 1vectors

vectors

.3), but just as well in an orthonormal system of basic 

(see e.g. 3), reached as linear transformation of the reference stimuli

vectors x. (1 = 1 ..3). Budinszky [1] used in his calculation an orthonormal

system k. (I = 1...3) where

9



I =0, if i # |
k. k. = 5.. < i, i = 1...3 12
i 1 H 1

L = 1» !f ' = i

(We will come back to this problem in Chapter 6.)

Let us try to find that particular basis, where the tristimulus values are 

coordinates of the projection.

It can be shown that every spectral power distribution vector has one and only 

one projection in the colour-measuring subspace. The projection of pX will be 

marked by P . The tristimulus values of the spectral power distribution PX are
X X X

the £xj, P,«2' £ £3 'nner products. We will show now that the P x. 

(i = 1,2,3) tristimulus values are the coordinates in the inverted system of 

x. (i = 1 ..3) : 2; G = 1 ..3), where y. x. = 5 see Equ.12., i.e.:

3 
r( PXx,) y. = P , where y. x. =5.. 13

\~ _,y 'i _o' zi _| ,|

i=l

Let us describe P o in the system of y. (1 = 1 .3) in the following way

fo = rl 21 + r2*2 + r3 14

As P° is the projection of P , 

PXx. = P x, , i = 1 .. 3 15

and thus 
3 3 3

ZZ (£ y l -l ) y l ^ri + r£ y^ *t+r3 43^1^1

and this, by using 13 and 14, gives:

9i “£> 16
L“1 “ L-1
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Tfius we reached the very simple result that for all those spectral power 

distributions for which P is the projection (i.e. for all the colours metameric 

with Pq), the STV-s represent the projection as coordinates in the invert system 

of basic vectors.

By the help of these results we get a somewhat better insight into the colour 

vision and measurement mechanism. Postulating the spectral power distribution 

space, and the colour measuring subspace, the Grassmann laws are reached 

very easily:

According to the first Grassmann law, in case of additive colour mixture, 

the final colour depends only on the colour and not on the spectral distribution 

of the primeries. As the spectral power distribution and colour measuring spaces 

are linear, and vector addition corresponds to additive colour mixture, just the 

projections of the spectral distributions into the colour measuring subspace show 

these characteristics. Grassmann's second law (the necessity of three independent 

data to describe a colour) shows that the colour measuring subspace is three- 

dimensional.

Grassmann's third law that the colour mixing series are continuous is a 

consequence of the linearity of the vector spaces.

Most important among these is the first Grassmann law, describing metamerism. 

In vector representation this means that an (infinite) number of spectral 

distributions can have the same projection in the colour measuring subspace. 

Fig. 1. visualizes this in a simplified form: x^ and x^ represent the basis 

of the colour measuring subspace (let us take it now as only two-dimensional) 

and e" the other n-2 coordinates (n—oo) of the spectral power distribution 

space. PX is a vector in this space, and P° is its projection in the sub

space. At the same time is an other spectral distrbution yielding F* 

as projection, i.e. the same colour, thus PX and PX represent metameric 
met r 

colours.

This gives a - theoretical - tool for finding a basis of the colour measuring 

subspace. It is necessary to determine a high number of pairs of spectral

11



Fig. 1. Schematic representation of the spectral power distribution 

and colour measuring spaces, and the colour measurement of
X X

two metameric colour stimuli (P and P . ). met

distributions being metameric. If one calculates the difference of every two 

distributions forming a pair this difference vectors form a subspace, and the 

colour measuring subspace contains the vectors perpendicular to these differ

ence vectors.

By the help of this experiment it is thus possible to determine the colour 

measuring subspace. The x. STV-s (I.e. the x (A), y (A), i(A) functions) 

are a basis of this space, determined by the help of some further requirements: 

One of the basic vectors should coincide with the VMIuminosity curve, all 

the coordinates of the vectors forming the basis should be non-negative, and 

the vector, representing the equienergetic spectrum should be of equal di

stance from the basis. These demands determine the CIE STV-s unambiguously, 

and by this we can reach these distributions - theoretically - without using 

the concept of primary colours.

12



5. The transformation of an instrumental system

Tristimulus values of colours can be determined either by measuring the spectral 

power distribution P^ and using the equations of Equ.10., or by duplicating 

the STV functions by detector - filter combinations and thus performing the in

tegrations of Equ.10. in the detectors themselves. In practice the filter-detector 

combinations never match the STV functions perfectly, and thus a transformation 

of the instrumental results into the CIE tristimulus values might increase the 

measuring accuracy.

From the discussions in Chapter 3 and 4 it is obvious that an exact trans

formation is possible only if the instrumental STV "vectors" lie within the sub

space spanned by the CIE STV vectors Xp Xj.

The instrumental subspace is not necessarily threedimensional (this depends on 

the number of detectors used, in usual tristimulus colorimeters it is four di

mensional, due to the fact that the x(>) curve shows two maxima), in the 

following we will take it as five dimensional giving a further degree of 

freedom for the construction. Increasing the number of detectors enables a 

more complete transformation, but the practical circuitry becomes increasingly 

complicated, five channels seem to be a reasonable compromise. Let us mark 

these instrumental STV vectors by a. (i = 1 ...5).

X x
Measuring P by this instrument yields the £ a. values as results, i.e. the 

measurement gives us the projection of in the subspace spanned by the 

vectors a,, a_, ... a_.
~I ~z “3

Let us denote the coordinates of this projection by p. (i = 1 ... 5), and 

the projection of £x in this subspace by P. Thus

= P2] = M + P2-2 + ^3-3 + ^4-4 + S1

PX22 = ~~2 = ^l3! + P2S2 + P3g3 + P494 + Ps3^ 92 17

P^S = P°5 = (P^ + P2°2 + P3-3 + P4-4 + P595) a5

13



Performing the multiplication and using a column vector notation for p.

(i = 1 ...5): pT, writing also the five results of the measurement (Pg( 

(i = 1 ...5)) in this form: P; and realizing that the g(gk products form the 

a.^ elements of a matrix A, Equ.lZ can be written in a simpler form:

P • A p 18

and thus the coordinates are given by

F = a-1 r 19

F is the “instrumental value", the tristimulus values can be calculated from 

this in the following way:

5
The instrument produces the P = J p.a. vector, and the tristimulus values 

are the L"'

P Xj, P *2' P *3 products.

Thus e.g.

Jx, = (p,^ + p2a2 + p3a3 + p4g4 + p^) x, =

= p^,^ + p2g2x2 + ... + p^ 20

Using again the column vector and for the x a, product the m., matrix element 
K IKi

notation, the tristimulus values (X ) are:

X - M p 21

where m.^ is an element of matrix M.

By the help of Equ.19. this gives

F = M A -1 F 22

Thus matrix M A gives the final transformation. To visualize this, Fig. 2 = == —*
shows an oversimplified version of the measurement: P is the spectral power 

distribution in the total spectral power distribution space, consisting of the

14



Fig.2. Schematic representation of the spectral power distribution, 

colour measuring and instrumental subspaces, showing an ideal 

and an instrumental measurement together with a transformation
(PX — Po and PX—T— P^ )

independent instrumental subspace (a), the colour measuring subspace (x)

and the N - N - N dimensional space (here N and N represents the 
ax ' a x

number of dimensions of the instrumental and colour measuring subspace)

visualized by vector e".

A correct colour measurement projects Px onto the x axis and yields thus

the colour P° . The instrument performs instead of this the projection onto 

axis a) resulting in the " instrumental value" P, the transformation according

to Equ.21. performs the projection onto the x" axis giving the final value PT

The aim of the transformation technique is to decrease the average P - £
o

value. It will be shown in the next Chapter that the method outlined above

gives the "best" transformation for all the monochromatic colours. As normal

colours are composed by monochromatic radiations the transformation will give

better tristimulus values also for most of the practical colours. It is, however, 

quite obvious that it might deteriorate the measurement results of some special 

15



spectral distributions, and that more efficient transformations can be found, if 

the number of spectral distributions that might occure is limited. If, e.g. the 

spectral distributions that have to be measured can be composed from three 

basic distributions as in colour TV reproduction techniques, exact transformations 

can be found.

6. Optimal transformation

In the following we will try to find the best transformation by the help of two 

successive transformations, an exact one, transforming the instrumental STV 

vectors into an orthogonal system, and a second one giving the smallest mean 

error in transforming all the monochromatic radiations.

Let us denote the instrumental basis by g. (i = 1 ...5) and the orthogonal 

ones by k. (i = 1...5). Due to orthogonality

k. k. = 5 23
"I 'I

where 5., is the Kronecker-symbol (see Equ.12.).

Using the column vector representation the transforming matrix (0) between

g. and k (i, m = 1 ...5) is found from the following equation:

o . r = r 24

Thus, if the elements of matrix Q_ are denoted by can be written that

5
h - r«’n<=k 0-'-» «

k»1

Putting Equ.25. into Equ.23.,and taking into consideration that multiplication 

is commutative, 15 equations can be found for the 25 elements of the matrix. 

The other elements con be chosen arbitrarily. Thus it is always possible to use 

instead of the instrumental functions an orthogonal transformation of these.

The problem is now to find such a transformation matrix that the difference 

between the transformed orthogonal instrumental vectors and the basis of the 

16



colour measuring subspace (x^ ( n = 1, 2, 3) is a minimum.

Denoting this matrix by B (and its elements by b,^) this means that (by using 

column vector representation):

h = B . k - x 26
txr

should be as small as possible.

(Let us now reconsider, for a moment, the meaning of Equ.26.: It covers 

really three equations for h^, hj, h$, that have to hold for every (wavelength) 

dimension, thus are of the following form:

h.(^) = [b.. k.(A) + b,, k, (*)+..+ b., kc (A)]- x(A) 27 
I u I I I Iz z I □ 3 J

and similarly for y(X)and z(A)wlth h„(A), h_(A) and b01 ... bq_ .) 
z J ZI JD

Instead of finding the minimum of Equ.26. it is reasonable to look for the 

minimum of

H i ( i = 1, 2, 3 ) 28

the norm of vector h , this is, due to Equ.11. an other description of

780
2

Hj = [hj (A) = 1, 2, 3)

380
The minimum requirements are of the following form:

29

3 H[ (bn I bi2i■■ jb^) _ g
30

Writing Equ. 27. and 29. into Equ.30., and by using the orthogonality 

critérium of Equ.23. we get that the matrix elements of B have to be of the 

following form

bik -I -k
31

17



Comparing Equ.31. with Equ.21. and 22. It is seen that matrix M is equal to 

matrix B^, if the instrumental system is orthogonal^ and thus in the vector 

transformation technique of Chapter 5 matrix A constructed from the instrumental 

STV vectors has the same meaning as the transformation of the instrumental STV 

vectors into an orthogonal basic vector system.

Thus the transformation equation of Equ.22. yields the "best" transformation of 

the instrumental subspace into the colour measuring one. (Matrix M performs 

a rotation within the instrumental subspace giving the "best" threedimensional 

subspace.)

7. Application of the matrix transformation technique

The above described technique has been used to correct some crude photocell- 

filter combinations. In each combination a red sensitive Si-photoelement and 

two colour filters have been used. We calculated the difference between the 

uncorrected instrumental STV functions and the CIE STV functions, as well 

as the same values using the transformed STV-s, always correcting the absolute 

values of the curves to give the same area under the curve, and calculated 

the mean deviations.

Table I and II show some representative results of this calculation. As seen 

from Table II although filter combination No.2 is better than combination No.3 

the transformed results of combination 3 are the best ones. This means that it 

is possible to find a combined optimum for filter thickness and transformation.

Table I.

Filter combinations used

combination 1 combination 2 combination 3

S1! BG 18 + OG 1 BG 18 + GG 20 BG 18 + GG 20

a2 : BG 18 + BG 3 BG 18 + BG 1 BG 18 + BG 3

s3 : BG 18 + VG 4 BG 18 + VG 4 BG 18 + GG 10

~4 : BG 18 + BG 24 BG 18 + BG 24 BG 18 + BG 24

18



Table II.

Filter 
combination

Instrumental-CIE 
STV-s

Transformed-CIE 
STV-s

Mean deviation 
from CIE values

X y z X y z instum. transf.

1 1,427 0,244 0,731 1,294 0,175 0,565 0,541 0,474

2 0,944 0,244 0,731 0,887 0,103 0,706 0,399 0,382

3 0,968 0,463 0,731 0,925 0,268 0,561 0,439 0,372

the values in column 2-7 are calculated as \
1-1

t ) “ X j
(A,)]'

where a. refers to the instrumental STV-s, x. to the CIE ones (i: x, y, z; iq ।
q = 0 for the instrumental and is t for the transformed one).

Table III gives, as an example, the values of the transformation matrix for 

combination 3.

Table III.

Transformation matrix of filter combination No.3

0,966 0,834 0,092 0,029

-0,193 0,308 1,134 -0,043

0,0374 -2,103 -0,042 1,393

Fig. 3 shows the spectral distribution of the instrumental, the transformed and the 

CIE y (X) curve. It is seen that the transformation improves the curve form 

considerably.

Our aim is to use the matrix transformation technique in a tristimulus light 

source colorimeter, thus we calculated the chromaticity coordinates for several 

light sources as well Fig. 4. and 5, shows the spectral distribution of some 

sources used in this calculation, Table IV-VI presents the chromaticity co

ordinates of these sources for the instrumental, the transformed and the CIE 

STV-s (column A, B and C) as well as differences between the instrumental and 

CIE, as well as the transformed and CIE chromaticity coordinates (column D

19



Fig. 4. Some spectral power distributions used in the calculations
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Fig. 5. Some spectral power distributions used in the calculations

and E). The difference of column D and E visulaizes the amount of amelioration 

(column F). For every filter combination the mean relative amelioration 

(F /D ) has been calculated as well. It is interesting to note that for 
mean mean °

the relatively bad combination No.l a strong amel¡oration was achieved, the 

relatively good combination No. 2 is not much better after transformation as 

combination No.l, on the other hand combination No.3 shows a mean ame

lioration comparable to that of combination No.l, and gives at the same time 

relatively good results.

The instrumental realization of these results is under way, together with the 

development of a new computer program enabling the determination of the 

optimal filter thickness together with the best transformation matrix.

21



Table IV

Some results for combination No. 1.

Mean:

Light 
source

Instru
mental 

A

Corrected 
instru
mental B

CIE 
C

A - C 
D

B - C 
E

D - E 
F

F 34

X 0,36505 0,39339 0,38541 0,02036 0,00798 0,01238

Y 0,38058 0,35873 0,36481 0,01577 0,00608 0,00969

Z 0,25436 0,24788 0,24979 0,00457 0,00191 0,00266

F 32

X 0,40634 0,44381 0,43226 0,02592 0,01155 0,01437

Y 0,43833 0,40498 0,41554 0,02279 0,01056 0,01223

Z 0,15534 0,15121 0,15220 0,00314 0,00099 0,00215

A

X 0,42823 0,46856 0,44753 0,01930 0,02103 -0,00173

Y 0,42775 0,38762 0,40744 0,02031 0,01982 0,00049

Z 0,14402 0,14382 0,14503 0,00101 0,00121 -0,00020

F 6

X 0,31513 0,33185 0,33436 0,01923 0,00251 0,01672

Y 0,36326 0,35568 0,35373 0,00953 0,00195 0,00758

Z 0,32161 0,31247 0,31191 0,00970 0,00056 0,00914

F 25

X 0,37345 0,40352 0,40807 0,03462 0,00455 0,03007

Y 0,41555 0,39115 0,38820 0,02735 0,00295 0,02440

Z 0,21100 0,20534 0,20373 0,00727 0,00161 0,00566

0,01606 0,00635 0,00971

F mean
D 

mean
= 0,60
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Table V

Some results for combination No.2.

Mean: 0,00685 0,00527 0,00158

Light 
source

Instru
mental

A

Corrected 
instru

mental B

CIE 
C

A - C 
D

B - C 
E

D - E 
F

F 34

X 0,37658 0,38914 0,38541 0,00883 0,00373 0,00510

Y 0,37367 0,35869 0,36481 0,00986 0,00612 0,00375

Z 0,24975 0,25217 0,24979 0,00004 0,00238 -0,00233

F 32

X 0,42209 0,43838 0,43226 0,01017 0,00612 0,00405

Y 0,42669 0,40767 0,41554 0,11115 0,00787 0, 00328

Z 0,15121 0,15395 0,15220 0,00099 0,00175 -0,00076

A

X 0,44719 0,46143 0,44753 0,00034 0,01390 -0,01356

Y 0,41356 0,49453 0,40744 0,00512 0,01291 -0,00779

Z 0,13925 0,14404 0,14503 0,00578 0,00099 0,00479

F 6

X 0,31466 0,32874 0,33436 0,01970 0,00562 0,01408

Y 0,36351 0,35127 0,35373 0,00978 0,00246 0,00731

Z 0,32183 0,32000 0,31191 0,00992 0,00808 0,00184

F 25

X 0,41149 0,40572 0,40807 0,00342 0,00235 0,00107

Y 0,39032 0,38701 0,38820 0,00212 0,00119 0,00094

Z 0,19819 0,20727 0,20373 0,00554 0,00354 0,00200

mean = 0,23
D mean
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Table VI

Some results for combination No.3.

Mean: 0,01080 0,00466 0,00613

Light 
source

Instru
mental

A

Corrected 
instru

mental B

CIE 
C

A - C 
D

B - C 
E

D - E 
F

F 3

X 0,35216 0,37174 0,37838 0,02622 0,00664 0,01958

Y 0,39146 0,38328 0,37631 0,01516 0,00697 0,00818

Z 0,25638 0,24498 0,24531 0,01107 0,00033 0,01074

F 62

X 0,35840 0,37580 0,36774 0,00934 0,00806 0,00128

Y 0,31432 0,30373 0,31043 0,00389 0,00670 -0,00281

Z 0,32728 0,32048 0,32183 0,00545 0,00135 0,00410

F 72

X 0,29276 0,30548 0,30288 0,01012 0,00260 0,00752

Y 0,33212 0,32421 0,32619 0,00593 0,00198 0,00395

Z 0,37512 0,37031 0,37092 0,00420 0,00061 0,00359

F 271

X 0,42077 0,44352 0,43085 0,01008 0,01267 -0,00259

Y 0,35955 0,34057 0,35368 0,00587 0,01311 -0,00724

Z 0,21968 0,21591 0,21547 0,00421 0,00044 0,00377

F 301

X 0,39476 0,41572 0,41997 0,02521 0,00425 0,02096

Y 0,40150 0,38548 0,38150 0,02000 0,00398 0,01602

Z 0,20374 0,19880 0,19853 0,00521 0,00027 0,00494

F mean
D 

mean
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8. Summary

In the present work the vector representation of spectral power distributions 

have been used. By the help of this it was possible to give a visual inter

pretation of such concepts as metamerism, spectral tristimulus values of an 

instrument and its transformation into the colour measuring subspace, a space 

corresponding to the human colour vision mechanism.

Transformation techniques for transforming the spectral sensitivity distribution 

functions of a tristimulus colorimeter as close as possible to the CIE spectral 

tristimulus values have been discussed. Possibilities and limitations of this 

technique are shown theoretically as well as on practical examples. It is 

possible to achieve a twofold mean amelioration of the experimental results 

by this technique.
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THE TEMPERATURE DEPENDENCE ANALYSIS OF THE CHARGE 

CARRIER CONCENTRATION IN GaP

Károly Somogyi

Introduction

The majority of the informations characteristic for the 

various impurities, which are present in a semiconductor 

may be obtained in the temperature range, where the 

impurities are not yet fully ionized. Due to their 

relatively low activation energies this applies generally 

at low temperatures . One of the most important 

and directly measurable data in this range is the con

centration of the free charge carriers which depends, 

beside the temperature, on the concentration and the 

activation energy of the impurities.

The activation energies of the impurities determining generally the type of the 

conduction are about of 0.04-0.10 eV in GaP, which came into the foreground 

from the viewpoint of research after the preparation of the first light emitting 

diodes £2] . This activation energy is high relative to the activation energies 

found in the usual semiconductors, therefore the impurities are practically not 

fully ionized even at room temperature. So in the GaP the temperature dependence 

of the charge carrier concentration may be described well in the range of 

77-400 K by the well known formula valid for the ionization of the impurities. 

In the case of electron conduction we have [1] i

N—Na-„ T Ne “P j- IF ) O
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where the notations are as follows

n - free charge carrier concentration 

- donor concentration

- acceptor concentration

N^. - conduction band state density^ 

M _ 2 (2 <F mXkT) 3//2

C = —
g - degeneracy factor

- donor activation energy 

k - Boltzmann's constant

T - absolute temperature

m - effective mass

h - Planck's constant

following form of formula (1) 

1 3/2

On the basis of formula 0) the analysis of the temperature dependence permits 

the determination of the majority and minority impurity concentratirons the 

value of the effective mass and the activation energy of the majority impurity. 

But this analysis is not simple, due to the complexity of formula (1), therefore 

several methods have been developed for this purpose, the most significant of 

which is the iteration analysis by the least square method [3], and the fitting 

along straight line besed on the

n (N^ + n)

where NJ = N. (m*)"3/2 .

The right side of this equation versus 1/T is a straight line in a semi-log plot. 

With this mode of expressing the temperature dependence of the charge carrier 

concentration by representing the left side of the equation as versus 1/T a 

straight line must be obtained, as well. For obtaining the straight line N^ 

and Nd, as the free parameters of the left side, must be varied. The slope 
of the obtained straight line gives the activation energy, and the value A
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3/2 -1 extrapolated on the temperature 1/T = 0 gives the quotient (mX) ' g . The 

advantage of the method is that only two parameters must be varied for 

obtaining the values of all four (and eventually five) fitting parameters.

The parameters determined with the help of formula (1), and in the first 

place the effective mass, show a wide scatter for GaP, according to literature. 
(See e.g. ref. [5], where the value of the product (mx) ^^.g ’ varies 

between 0.19 - 2.7, however, g may be assumed as constant.) Such a wide 

scatter of the value of m cannot be explained by the possible temperature 

dependence, or charge carrier concentration dependence of the effective 

mass, but may be assumed sooner to be the error of the analysis. This 

assumption made the examination of the analysability of formula (1), of the 

applicability of the Hutson method and the reliability of the results necassary 

M-

Analysis by the Hutson method

Fig. 1 shows some typical results of the temperature dependence of the charge 

carrier concentration measured in p-GaP doped with Zn. But for controlling

Fig. 1. Typical temperature dependence 

of the carrier concentration in p-GaP. 

Continous lines are experimental 

curves, the dashed line is the 

calculated curve, which was taken 

for the analysis.

the method we did not rely on the 

measurement's results, as the value of 

the measurement error would have 

disturbed the cleannes of the examin

ation greatly^ Instead we have choosen 

assumed N. , N_. , m and Er Ao Do o Ao 
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parameters, which are characteristic in the GaP. Fig. 1. shows the concen

tration calculated by formula (1) with these parameters in dashed line. (The 

similarity of the calculated and the measured curves is seen well.) The ac

curacy of the concentrations determined in this way is 0.01 % at least.

These parameters are given in Table I. In the following we have carried out

the analysis of the calculated concentration data by the Hutson method, with

selecting Np to a freely assumed N^ value for the fitting, while leaving

constant, (As the formulae 1 and 2 apply with due interpretation to both the

electrons and the holes, so for the analysis it is indifferent, whether an 

n-type, or a p-type material is examined and the subsequent results apply 

also to both cases. Important was only that the calculated p(T ) curve

should be characteristic for the real GaP crystals, so in the following the

notations applied for type p material are used).

The variation of the curve form of the realtionship (2) in the course of the 

variation of N^, when N. was chosen for the value of N,, is shown in 
D Ao A

Fig. 2a. By Fig. 2 it is seen that when Np < NpQ was chosen for the 

purpose of fitting, the deviation from the straight line appears in the first 

place down. When Np > NpQ, ^en deviation from the straight line 

appears preferentially up at high temperatures (see also Figs. 3 and 4). The

transition between these deviations is continuous in the variation of 

and in this course also the required straight line may be found (Fig. 

approximates NpQ closely. (Naturally in fact it is very difficult to

the

2).

curve

ND

" NAo

given preliminarily with a 5-digit accuracy, therefore we applied only the 

value of N^ with the practically selectable in this "graphical" method 3-digit 

accuracy.)

In the following we assumed an N^ value,, which is higher than N^^ used 

in calculating the curve and tried the fitting again. This is seen in Fig. 3. 

Np was increased from 0 until the nature of the deviation from the straight 

line, similarly to the previous case, changed at a high temperature. Then we 

looked for the intermediate Np value and succeeded in finding an Np value 

producing the straight line giving the solution. The values N^, Np, m* and
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Fig.2.

a) The change of the curve 

form, the deviations 

from the straight line by 

N. NA .
A A° i n q

N. = 1.43x10 cm ;
A 17

N = 0-3x10 ; x-4.3x 
tn’7 j.zm17 -3 xlO and *-6x10 cm

b) The position of the five 

fitted straight lines relative 

to each other

Fig. 3. The change of the curve 

form by N. > N. .' A Ao

1R -R
N. = 2x10 cm i

A 1R
Nd = o -1.4x10 ;
□ -1.3xl018-r 1-1.2x1018, 

IO 1 Q
x-1.09x10 , △-1x10 , 
▲ -6xl017, + -4.3xl017

, - ,J7 "3and *-3x10 cm
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ea belonging to this N D value and differing, naturally, from ,
Do

X 
m 

o
and E .

Ao
are also given in Table

We have also assumed additional 

lower (Fig. 4) than N^o and as

arbitray values partly higher and partly

expected on the basis of Figs. 2-3; in every

case an supplying the straight line could be found. The position of these 

straight lines is shown in Fig. 2b and the data of the parameter sets are given

in Table I. Self-evidently the produced 

parameter sets are totally different and 

not all of them can be correct. From 

Table I. it is seen that each set of the 

parameters is completely realistic, contain 

data which are existent in the GaP and 

cannot be distinguished on the basis of 

their reality.

Fig. 4. The chance of curve form
17 -3

by N. 4 N. . N. = 8x10 cm ' A Ao A '
Nn =A-6xlO17, + - 4.3xl017,

D 17 p I /
• - 3x10 , ■ -1x10 , A-3x10 , 
0-1,25x10^, □-from 0 up to 

1 "31x10 cm

For controlling the sets of the parameters and for findig their errors respectively 

we have calculated the temperature dependence of the charge carrier concentr

ation with each set of the parameters by expression (1). Experience has shown 

that the concentrations calculated in this way approximated well the original 

concentration values. For indicating the accuracy of the agreement we have 

calculated the value of the relative errors assigned to the individual sets of the 

parameters appearing in the concentration versus the temperature. This is shown 

in Fig. 5 demonstrating clearly that in the studied temperature range the relative
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Fig.5. The temperature dependence of the relativ error. po is the 
original carrier concentration (Fig.2.), p^ is the concentration 
calculated by formula (1) on the basis of the fitted parameter 
sets. The number of the sets is given in Table I, O -1, • -2,

X -3, + -4.

error is less than + 5 % in the case of each set of the parameters and with this 

regard not even the straight line fitted with the original value can be

distinguished by its lower relative error. Each set of the parameters may be 

regarded equivalent on the basis of the relative errors obtained in carrer kbbr 
concentration as the error caused by them is considerably less than the + 10 % 

accepted as usual for the Hal I-measurements. (In the GaP the Hall voltage is 

generally low, so the real value of the error is in fact not les than + 10 % 

in general.)

The continuity of the error curves shown in Fig. 5 is due to the fact that 

because of the calculation of the initial "experimental curve" the "measurement 

error of the concentration" is 0.01 %; if real measurement results were fitted in 

a similar way, then instead of the continuous curves we would find a statistical 

error scattering surpassing + 5 % and by this the difference of the sets of the 

parameters would be still less evaluable.

It may be assumed that when this method is used for fitting, then after the first 

good fit (whereby the first straight line could be obtained) the determined set 

of the parameters would be accepted as correct, which is not always true un
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conditionally, on the basis of the above said. This might be the reason why 

e.g. in. ref. [5] extreme m* values are found.

On the basis of the recalculations of carrier concentration and the calculations 

of the relative errors it must be stated that the selection of the wrong para

meters cannot be assigned to the Hutson method, rather it may be assumed that 

equation (1) may be solved for several sets of parameters beeing equivalent 

within certain accuracy limits.

As soon as the (average) difference between the measured and the fitted curves 

becomes less than the (average) measurement error, the sets of the parameters 

used for fitting get indistinguishable immediately. This is clearly issustrated 

in Fig. 5. Accordingly, in a less detailed manner, we have controlled also 

the least squares method and by the character of the iterations came to the 

conclusion that also by this method several sets of parameters satisfying the 

measured relationship on the basis of equation (1) within similar error limits 

can be produced. The character of the temperature dependence of the relative 

error shows also that the obtained sets of parameters could not be distinguished 

by the method of the least squares either.

The possibility of the analysis of formula (1) leading to completely erronous 

results makes the control of the obtained set of parameters necessary in order 

to attain information on whether the result is correct, or incorrect.

The selection of a correct set of parameters would be ensured by determining 

the temperature dependence of the charge carrier concentration over a wider

range extending both to higher and lower temperatures. If the state of complete 

ionization can be attained at high temperatures in the temperature dependence

of the concentration, i.e. when p = N then the analysis of the curve-ndA
based on formula (2) is safe, as the difference of the impurity concentrations 

can be unequivocally determined and only one data must be varied for obtaining 

the single straight line. But the experimental results show that in GaP complete 

ionization cannot be attained even at high temperatures Fs], F^J , so only as
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approximative value for N ND may be found at the most, facilitating little

the safe dete imination of the parameters. “ND differences found in
A

The N . 
A

Table I correspond to the "experimental curve" plotted in dashed lines in Fig.l.

N. - is nowhere less than the "measured" A D
maximum free charge carrier

concentration. In spite of this fact an uncertainty presents itself.

The lower temperature limit for determining the concentration, i.e. its extension 

to lower temperatures respectively would be just as important. By Fig. 5 it is 

seen that the relative error increases (fast, according to the calculations) at 

the boundary of the temperature range and may leave relatively soon the limits 

of + 5 %, which would be characteristic of a bad result. But unfortunately in 

the GaP this leads frequently to no result either, as under 77 K the variation 

of the charge carrier concentration and of mobility can not be measured or 

assumes a character, which cannot be described by formula (1) any more [^7]. 

So the extension of the temperature limits is impossible in the case of the GaP.

The raised problem, as it is seen, is sharpened specifically in the case of the 

GaP. The fact that the analysis and the determination of the parameter cannot 

be univocal, might be caused by the narrow temperature range utilizable 

practically in the case of the GaP. In other materials (e.g, Ge), where no 

smiliar excluding cause exists neither at low, nor at high temperatures, the 

correctness of the obtained parameters cannot be doubted on the basis of the 

above.

The effect of the various parameters on the character of n(T ^)

A method for controlling the correctness of fitting may be found by using 

instead of formula (1) a simplified form ot it at low temperatures. With the 

conditions of

n «Na

and (3)

n«ND - na
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formula (1) may be written in the following form:

Nl - Na
D An

na
(4)

Nc

g

On the basis of this form the activation energy can be determined graphically 

from the slope of the temperature dependence of the charge carrier concentration
-1 3/2if the product n T z is plotted versus 1/T,

Partly on the basis of what has been said in the preceding paragraph and partly 

with respect to meeting the conditions (3) necessary for determining E^, we 

have studied the temperature dependence variations of the charge carrier 

concentration under the influence of the various parameters according to the

cases, which may occur in the GaP. Figs. 6, 7, 8 and 9 show several sets of 
calculated p(T b curves with varying the individual parameters. It is seen in

of the carrier concentration by 
various values.

Fig.7. The temperature dependence 
of the carrier concentration by 

various N. values.A
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[c
m

'3
/

Fig. 8. The temperature depencence

n3/r ¡ri

Fig.9. The temperature dependence 
of the carrier concentration by 

various E. values.A

of the carrier concentration
* 

various values.
by

these figures that the individual variations of the various parameters may result

in temperature dependence variations of the charge carrier concentration in a 

way that when two, or more parameters are varied simultaneously in the 

appropriate sense and measure, the variation appearing in the concentration is

negligibly small. (So e.g. the increase of N. A and the simultaneous decrease

of Nd at low temperatures compensate each other.) By this the validity of the 

statements of the preceding paragraph is expressly illustrated.

In the following we have determined the activation energies graphically by 

plotting the product p T ' versus 1/T. The activation energies used for 

calculating the curves presented in Figs. 6, 7, 8, 9 and the values of the 

graphically determined activation energies are given in Table II. (As the 

"accuracy" of the concentration values in the calculated curves is better 

than + 0.01 %, we have based the graphic determination of E^ always on
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the concentrations belonging to two temperatures, namely in two cases each.) 

We have calculated the concentration for the plots up to the temperatures

corresponding to 15, e.i. lower than the boiling point of the liquid
3Nj, so in one case we have used the concentration corresponding to 10 /T =

12 and 15. The value obtained in this way Is E^ In the other case we 
used the concentrations corresponding to 10^/T = 11 and 13, as basis, which

max be regarded more frequent In the measurement range over 77 K and obtained

E... ... It is seen that E € E , because over 77 K the conditions (3)
I I “IO I I -I J I z “■ 13

are satisfield with a less close approximation. As it can be seen from Table II, 

the initially fixed E^ values are approximated well by the E^ 15 values, but 

an acceptable approximation is ensured also by the E . values, especially 

in the case of high activation energies and a high degree of compensation.

This means that if the activation enegy can be determined according to the 

conditions (3) in the temperature range used, then the result obtained in this 

way approximates well the correct activation energy and may be used in the 

case of the uncertainty in the parameter determination described in the preceding 

chapter. But unfortunately in part of the cases the low temperature range en

suring the satisfaction of the conditions (3) cannot be reached even down to 

77 K (e.g. curves 1. in Figs. 6, 7 and 8).

We must note that the charge carrier concentration range corresponding to the 

intermediate temperatures existing in principle, where the conditions

nd » " » na (S)

would be satisfield and where the activation energy could be determined on the 

(6)

cannot be found in the presented cases. The values of the activation energy 

based on the assumption (5) does not even approximate those given in Table II, 

so these values are unusable.
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Conclusions

The analysis of the relationship (1) shows that the determination of the para

meters and needed especially for the analysis of the low temperature 

mobilities (the case of scattering on the ionized and the neutral impurities) 

and the determination of the effective mass and the activation energy 

respectively may be uncertain, possibly reflected in contradictions appearing 

in the fitting of the temperature dependence of the mobility. The obtained 

set of the parameters must be controlled in each case and this is only supported 

partly by the activation energy which can be determined in the low temperature 

section of the temperature dependence of the charge carrier concentration.
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A SIMPLE NORMAL INCIDENCE MICROREFLECTOMETER 

ARRANGEMENT 

J. Peisner and M. Pintér

Abstract

An inexpensive modification of a normal incidence 

reflecometer is described which allows absolute mea

surements of reflectivity and transmission on very small 

areas (0,2 mm x 0,5 mm) of crystals and thin layers. 

The horizontal and vertical position of the sample can 

be adjusted by micrometer screws and is reproducible 

within + 0,01 mm. A simple three-mirror system is 

incorporated allowing easy adaptation to different types 

of monochromators having different horizontal divergence 

of the monochromatic beam following the exit slit.

Introduction

It is often desirable to obtain absolute values of the near normal incidence 

reflectivity on very small areas of crystals or thin films through a large spectral 

range. Usual equipment requires samples as large as 10-20 mm square. Micro

spectrophotometers developed for the purposes of biological researches enable 

only transmission measurements to be made [1],

Several authors refer to microreflection measurements (see Tubbs [2^ Fried [3], 

Knopp [4J and Collins [5]. All these authors use a monochromator or a 

spectrograph and a microscope as major components. Common disadvantage of 

this technique is that the reflectivity of the microsample is determined as a 

relative value compared to a previously calibrated reference sample, without 
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the possibility of checking the absolute reflectivity of the latter. By applying 

several modifications to a well-known normal incidence reflectometer arrange
ment ( [6] - [8] ), a versatile reflectometer-microreflectometer equipment has 

been built by us. The apparatus enables the measurement of absolute values for 

reflectivity and transmission on samples of usual size as well as on microsamples 

(0,2 mm x 0,5 mm). During "microreflectometer-operation" a quartz microscope 

objective is inserted in the light path and this focuses the light on the sample. 

Reflectivity is determined in comparison to the reference surface. Absolute 

reflectivity of this later is determined in the same apparatus, without the applic

ation of the focusing objective ("reflectometer-operation"). The checking of 

this reflectivity can be quickly repeated.

2. Equipment

The schematic diagram of the apparatus is demonstrated in figure 1. The basic

part a normal incidence single mirror reflectometer is very similar to the

Fig.l. Scheamatic diagram of the reflectometer Ml, M2 ” plane mirrors, Mg - 
concave mirror, P - polarizer prism, F - filter-holder, OM - pivoting plane 
mirror, Q - microscope objective, S - sample, R - reference mirror, A - 

apperture, D - light diffuser 
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equipment reported by EXPOSITO et al [8], but the dimensions are drasticaly 

changed in order to be able to accomodate the microreflectometer attachment.

The absolute value of the reflectivity of a sample can be directly determined 

by taking the ratio of the light intensities measured with the PM photomultiplier 

in position OM and OM of the plane mirror pivoting about axis 0. The 

microscope objective is now in position Y, and we will call thet "reflecto

meter-operation" of the apparatus.

The central ray of the light beam satisfies the following relations:

P = T = 2<*- 

tg P = tg î =
L

tgT = T

tg o( =

We fixed the values of L and f, and tried to optimize the geometry for the 

microreflection measurements. The dimensions and angles used in our apparatus 
are: L=100 mm, = 7°, 0( = 48,5°, T = 88,47 mm, z = 12,28 mm, Y = 

10,86 mm.

For obtaining the true value of the absolute reflectivity a parallel monochromatic 

light beam is necessary. As the light beam leaving the exit slit of a monochro-.

motor is divergent, we use a simple mirror system: M^ and Mj are plane mirrors

which can be rotated and M^ is a concave mirror capable of beeing translated

ant rotated. This system allows easy adaptation of the reflectometer to different 

monochromators (e.g to the Zeiss SPM 2 or the monochromator part of the

SPECTROMOM UV-VIS Spectrometer made by the Hungarian firm MOM).
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Fig. 2 General view of the set-up

The use of a parallel beam allows a polariser to be included. A Gian air- 

spaced polariser prism (P) covering a wavelength range from 0,02 yU to 2,5 yu 

is mounted on a tumable dial, so that it may be easily removed from the 

light path if not required.

A three position filter holder (F) can be optionally employed for transmission 

measurement on normal size solid or liquid samples in cuvette-holders.

By applying a quartz microscope objective in position Q and pivoting the plane 

mirror into position OM , we can detect the light reflected from very small 

areas approximately 0,3 mm . The horizontal and vertical positions of the 

samples may be adjusted by micrometer screws with an accuracy of 0,01 mm 

in both directions, and the angle of incidence and reflection are kept constant 

within 0,01 .
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Absolute reflectivity of the "microsamples" can be measured by comparing the 

reflected light intensities detected with the light beam focussed on the semple 

S and reference surface R, respectively. Absolute reflectivity of the reference 

surface R is determined in the "reflectometer-operation" of the arrangement, as 

described above.

The sample holder is shown in figure 3. Its construction enables transmission 

measurements of semitransparent crystals and thin layers. The reflectivity of 

the same small area may be determined simultaneously.

Fig. 3. Diagram of the sample holder: S - sample, 
R - reference mirror

3. Conclusions. Applications

By using mirrors and special re

flection objectives with MgF^ 

coated metallic surfaces and other 

detectors instead of the photomulit- 

pliers the same reflectometer-micro- 

reflectometer arrangemat can be 

employed in the vacuum ultraviolet 

and in the near infrared spectral 

ranges without significant modi

fications.

Fig. 4 shows the reflectivity 

spectrum of a small size a 2 mm 

x 3 mm GaP-ZnS mixed crystal 

measured on an 0,2x0,5 mm area.

tu

* 30 40 50

Fig.4 Reflectivity of a GaP-ZnS 
mixed crystal (composition: 50 
mole % GaP, 50 mole % ZnS, 
measured on an 0,2 mm x 0,5 

mm area.
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The simultanous measurement of transmission and reflectivity of very small 

crystal areas or thin films has many applications: e.g. the investigation of 

uniformity of the thickness of semiconductor wafers, the determination of the 

optical constants and the thickness of thin dielectric or metallic films.
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AN APPARATUS FOR THERMOELECTRIC POWER MEASUREMENTS 

ON SEMICONDUCTORS

K.Somogyi and B.Pb'dOr

Abstract

A simple sample holder and cryostat system is described, 

suitable for the measurements of the thermoelectric power 

of semiconductors in the temperature range of 80-400 K.

The measurement of thermoelectrix power of semiconductors involves many 

well-known experimental difficulties, though in principle the measurement is 

quite simple. Several designs of sample holders and cryostats were already 

discribed in the literature £1-62, different works emphasizing different aspects 

of the measurement of thermoelectric power. In the present note a sample 

holder and cryostat system suitable for thermoelectric power measurements on 

semiconductors in the temperature range of 80-400 K is described. This 

communication serves as a medium of preliminary information on this apparatus 

the description of which will be published in £7], A detailed analysis of the 

problems connected with the measurements of thermoelectric power of semi- 

condustors can be found in [8].

In Fig. 1, the outline of the relevant parts of the sample holder is shown. 

Its most important parts are the copper blocks 1 and 2, in which the ends of 

the prism shaped sample can be fixed. The sample and the copper blocks are 

surrounded by the vapours of boiling liquid nitrogen. Each of them is fitted 

with a T-shaped movable piece 3, fixed by brass screws 4 and springs 5. The 

ends of the sample 6 are to be attached between the copper blocks and its 

T-shaped parts. Experience showed later that the sample can be mounted in an
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Fig. 1. Schematic outline of the sample holder (see text)

other way too, simply by pressing it in between the two copper blocks. The 

thermocouples 7 go through the copper blocks, then through a hole into the 

T-shaped movable parts, touching the samples. In this way the heat conduction 

through the thermocouple wires is minimized. The material of the thermocouples 

is chromel and alumel, having a diameter of 0.4 mm, therefore the effects of 

possible inhomogeneities in the thermocouple wires are eliminated [4j. The 

ends of the thermocouples are soldered to the movable parts of the sample 

holder.
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The copper blocks ore heated by heaters 8 placed inside the blocks. In this 

way the heat transfer to the surrounding medium takes place through the sample 

blocks, minimizing both the heat transfer to the nitrogen gas and the convection 

of the latter. Moreover, the maximum temperature of the surrounding medium 

does not exceed the temperature of the copper blocks.

The two copper blocks are connected by textile-bakelite rods 9 and brass rods 

10 in such a way that with the help of screw 11 the distance between them 

con be varied, while the spring 12 assures the elastic connection between the 

copper blocks. The ends of the sample can be clamped between the movable 

and fixed parts of the copper blocks, or if necessary they can be simply 

pressed between the copper blocks. Those parts of the sample holder which 

make direct contact with the sample are covered by a 20-30 pm thick gold 

foil to ensure good electrical and thermal contacts as well. The sample holder 

is mounted on two rods of low heat conductivity 13. The whole sample holder 

is placed into a thick walled (1.5-2 mm) glass tube, closed at the bottom, 

and the whole assambly is lowered into a Dewar containing liquid nitrogen (see 

Fig.2.). Liquid nitrogen is poured into the glass tube too, up to the middle 

of the lower copper block. In this way the sample holder and the sample are 

in the vapour of boiling nitrogen. Without switching on the heater of the lower 

block, its temperature reaches 77 K, and nearly the same temperature can be 

measured on the lower end of the sample. With the other heater a convenient 

temperature gradient can be established and maintained during the measurements, 

regulating simultaneously the input power of the two heaters. During the heating 

the liquid nitrogen of the glass tube boils off. At measurements above room 

temperature the outer Dewar can be filled with water.

The convection of the nitrogen gas does not influence the measurement procedure 

because the thermocouples partly go through the copper blocks ^2,5^, and on 

the other hand the big copper blocks ensure an effective thermal screening of 

the sample.
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Á 2

Fig. 2. The Dewar system. 1 - liquid nitrogen, 2 - Dewar, 
3 - support rods, 4 - glass tube, 5 - top of the Dewar, 
6 - top of the sample holder, 7 - sample holder blocks, 

8 - sample.

The temperature gradient on the sample can be varied between wide limits. 

According to our experiences the most suitable temperature gradient was 5-10 K. 

In this case the lowest limit of the measurements was about 80-85 K (the ave

rage temperature of the sample). The upper temperature limit is determined by 

the contacting material used for making electrical contacts on the sample, and 

in our case it was about 400 K.
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The measurement of the thermoelectric voltage of the semiconductos sample was 

accomplished with a d.c potentiometric system or with a sensitive digital volt

meter. The termocouple voltages were measured by a potentiometer too.

We have found that the measuring apparatus is simple to work with and it is 

reliable, providing the contacts on the sample are ohmic or of low resistance.

The accuracy of the measurements is better than 10 per cent. Near and above 

room temperature it might even be better. In order to control the function of 

the set up we made measurements of thermoelectric power on pure Ge samples. 

In Fig. 3. a typical result of such a measurement on n-Ge is shown and is 

Fig. 3. Typical results on a 
concentration of 3.6x10^

pure n-Ge sample with a donor 
cm"^. Theoretical curves are

calculated without taking into account the phonon drag 
effect for donor concentrations of 1x10^, 3.6x10^ and 

1x1015 cm'3 respectively.

compared with the appropriate theoretical curves, without taking into account 

the phonong-drag effect which predominates at low temperatures. Our experi

mental results compare favourably with those found in the literature [9j. Near 

and above room temperature where the phonon drag effect is negligible the 

measured curve coincides with the calculated one.
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Some results of thermoelectric power measurements on semiconductors obtained 

with the help of this apparatus are described in [10, 11],

The authors gratefully acknowledge the participation of Miss B. Bodó in setting 

up the apparatus and in performing some of the measurements.
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A NOTE ON THE TEMPERATURE DEPENDENCE OF ELECTRON 

MOBILITY IN Ga As

B.Pd'ddr and N.Nddor

Abstract

The possibility of describing the electron mobility of 

GaAs in the form of yu.''-T~n is examined. From the 

theoretical lattice mobility curve a temperature inde

pendent exponent n can not be deduced. Experimental 

mobility curves with such a temperature depedence 

indicate the presence of an other scattering mechanism, 

most probably space charge scattering.

The lattice limited carrier mobility in semiconductors decreases with increasing 

temperature. In the case of Ge and Si, the best known semiconductors so far, 

the temperature dependence of the lattice mobility of electrons and holes obey 

an inverse power law of the form of ¿u~T n where the exponent has a value 

between 1.5 and 2.5 0,2,3]. This temperature dependence is firmly established 

for the electrons and holes in Ge and Si in a wide temperature range and can 

be theoretically interpreted invoking acoustic phonon scattering with an admixture 

of nonpolar optical scattering, and in the case of holes in Ge (and presumably 

in Si too) including the effects of the valence band structure. Motivated perhaps 

by this success, the experimental mobility curves of the more complicated 

compound semiconductors were repeatedly described in the literature by inverse 

power law functions.
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A compilation of such experimentally derived inverse power law functions for 

the mobility of electrons and holes in ANIBV type compound semiconductors 

and in lead chalcogenides can be found in [1], Because of the predominant 

role of polar optical phonon scattering in most of the compound semiconductors 
of A B and A^B^1 type [4,5,6] with its characteristic exponential tempera

ture dependence, the inverse power law in these semiconductors can not be 

founded theoretically. Nevertheless the description of experimental mobility 

curves in this form has been widely used until now.

In this note we would like to discuss some aspects of this problem as applied 

to the case of n-type GaAs.

Nasledov et al. [7] have measured the electron mobility of GaAs at high 

temperatures and observed that with increasing temperature the temperature 
-3/2

dependence of the mobility approaches T . From this fact and from 

other measurements they inferred that acoustic phonon scattering dominates the 

mobility in GaAs at least at elevated temperatures [7]. Fistul' [1 ] quotes

= 8500 (T/300) for the lattice mobility of electrons. While the value 

at 300 K is also in reasonable agreement with the recent experimental and 

theoretical results, this law breaks down at temperatures below 300 K. As 

recently as in 1972 Blood [8] measured the temperature dependence of electron 

mobility in epitaxial GaAs from 300 K up to 800 K, and found that in the 

range from 300 to 500 K the experimental curve closely follows a T n 

law, with n = 1.24-1.26. The slope of his experimental curves somewhat 

diminishes above 500 K and above 650 K it rises again, but this rise is due 

to the onset of conduction in the X conduction band minima. Blood has 

compared the slope of the experimental curve with that of the theoretical 

mobility curves calculated recently by Rode [9] and Rode et al. [10], and 

found a reasonable agreement between 300 and 400 K, the slope of the calcula

ted curve being somewhat larger. However the experimental mobility data was 

about 20 per cent lower than the theoretical mobility[SL Rode's calculated 

curve also showed a decrease in its slope above 500 K.
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We have recently measured the temperature dependence of the electron mobility 

of liquid phase epitaxial GaAs, having an electron concentration in the range 
of 10^ - 10 cm [11]. Most of the experimental mobility curves if drawn 

in a double logarithmic scale are linear in the temperature range of 200-400 K. 

The corresponding exponent in u~T'n is n =1.13-1.26 for the different 
exP Q

samples having a room temperature electron mobility of about 5000-6000 cm /Vs.

The theoretical lattice mobility was also recalculated by us [11,12,13], Based 

on these calculations we have evaluated the exponent n simply by taking the 

arithmic derivative of the calculated curve. The calculated values of n . 
th 

are shown in Fig. 1 . For the sake of reference the calculated lattice mobility 

is shown in Fig. 2. together with its components Q2,13], According to the 

curve presented in Fig. 1. shows a strong temperature dependence, even 

in the relatively narrow interval from 300 to 500 K referred to above. At the

Fig. 1. The temperature dependence of the theoretical 
value of - n = d (]n p) (J pn T) fOr the lattice 
mobility of electrons in GaAs. 1 - measured by 
Blood [8]f 2 - our measurements.

lowest temperatures (T £ 30 K) piezoelectric scattering dominates the mobility 

and n^ approaches 0.5 the characteristic exponent in the temperature dependence 
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of piezoelectric mobility [6]. For T£ 50 K neglecting polar optical phonon

scattering we have n , = d (In /i) / d (In T) = - (1/2 + r——-----7-------------
^AC^IEZO

and with decreasing T ^PIEZO !ncreases as

With increasing temperature n rises to its maximal value at about 120 K and

then falls again. Above 100 K polar optical scattering dominates the mobility

[12,13], and this is reflected by the strong temperature dependence of n . For 

temperatures T > 9^ = 420 K, the Debye temperature for longitudinal optical 

phonons, but below about the melting point, where the influence of acoustic 

phonon scattering is already considerable, n .th
falls to about 0,6 wnick is close

to the theoretical value of 0.5 for polar optical phonon scattering in the high 

temperature limit [2,6] (see [12,13] too).

In Fig. 1. the experimentally determined n values from the work of Blood 

[8]and from our measurements [11] are also shown. While on agreement can 

be seen between the theoretical n values and the experimental ones at about 

400 K, we think that this agreement is probably fortuitous. This is based on the 

observation that the absolute values of the mobilities are considerably less than 

the theoretical lattice limited mobility, moreover in the case of our samples we 

have already shown [11] that near room temperature space charge scattering 

plays an important role in determining the mobility, which results in a decrease 

of the slope of mobility-temperature curves. Probably a similar situation exists 

in the case of the measurements described in [8].

We have recently put forward some suggestions about the universal occurrence 

and nature of space charge scattering in GaAs and probably in other compound 

semiconductors too [14]. We therefore suggest that in those cases where the 

experimental mobility curves csan be described with a temperature dependence 

of the form of /j— T n, besides lattice scattering, space charge 

scattering plays an important role in determining the mobility.

The authors are deeply indebted to Dr. I. Bert6ti for growing the epitaxial GaAs 

samples on which the measurements referred to above were performed.
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^'9. 2. The calculated lattice limited electron mobility 
of GaAs [11,12,13]. “ lattice mobility, PpQ “
polar optical phonon mobility, Pac ” acoustic phonon 
mobility , ” P'ezoe’ec"'c mibility. Experi

mental points are the best data recently available (see 
01,12,13}).
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