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1, Introduction

It is accepted now, that in systems having negative 

differential conductivity there is a possibility for 

electrical domain formation [1] - [2]. In case of re­

combination instability, the negative differential 

conductivity is due to the field dependence cf the electron 

capture cross section of multiolectron centers. At proper 

conditions, the domains can steadily travel along the sample, 

say, from the cathode to the anode, and cause in the external 

circuit a characteristic oscillation. If we neglect the 

times of domain formation and disappearance, two parameters 

seem to be important for characterizing tho system. The first 

parameter is the domain velocity /uQ/ which determines the 

oscillation frequency if the geometry is fixed, the second 

one Is the current /js/, which characterizes the amplitude of 

oscillations.

Recently, several papers were published on the theory 

of domain formation and domain dynamics for recombination 

Instability [j] - [11] . It seems that the conditions for the 

onset of instability one nay calculate from the linear 

theory correctly, but this is not the case for domain 

velocity and current, though, since the first observations 

of current oscillations [12] - [17] , new and more precise 

experimental data on recombination instability are available 

[18] - [24j. The discrepancy between tho experiment and the 

theory is related to the fact, that the steadily travelling 

domains cannot be considered as a small perturbation and, 

on the Other hand, in tho dynamics of slowly moving domains, 
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the domain shape, which was taken into account only partly 

in the existing non-linear theories, plays a non-negligible 

role.

In the present paper a method is proposed to deterBine 

the domain velocity /uQ/ and the current /j / in the presence 

of steadily travelling domains. The essential point of the 

method is the determination of charge densities in the 

conduction band and in the localized states / ; 1 a 1,2/

as a function of electric field E and its derivatives, or 

more precisely the functions & (e, e',e") /the ’ means the 

differentiation with respect to z = x - u( t/. Then a system 

of nonlinear algebraic equation for uo and jg will be given, 
c ft) introducing the parameters S.s r= E /i = 1,2,..,4./. They1 n H O 

characterize the domain shape in the neutrality point where 

E /zQ/ = 0* We consider the case, when the concentration of 

empty and filled centers is much larger than the electron 

concentration in,the band. For the determination of possible 

domain velocity values uo, an algebraic equation of fourth 

degree will be derived. The actual domain shape /and hence 

the domain shape parameters S^/ may be calculated from a 

nonlinear differential equation of third order. Instead of 

numerical or analitical examination of this equation we shall 

consider /with some arbitrariness/ the following hypothetical 

domain shapes: flat domains; almost flat domains; symmetrical 

domains and domains of arbitrary shape. The calculation led 

to the following results. Several domain modes exist, which, 

in general, are sensitive to the domain shape, that is they 

depend on the shape parameters S^. From the expression of
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domain velocity given here, the related expression® of 

previous papers may be deduced.

On the basis of the available experimental data, it is 

possible to decide which node is realized in a given 

experiment. Starting from the slowest mode and assuming a 

proper /non-symmetrical/ domain shape, the velocity in 

correct order of magnitude is found. The current is only 

slightly sensitive to the domain shape.

2, The basic equations for the problem

Let denote the charge densities in the high and low 

mobility states and , respectively. In the case of 

recombination instability the mobility /‘■z and the diffusion 

constant Dg are zero, therefore, using the usual notations 

^4 and D^=D, the equation of continuity, the 

Poisson equation and the equation of recombination kinetics 

may be written in the form [63, [93*

M = o ft)
3t 3x

* = E + W

H = y

C0^CNt - 4J/(E)-^e) 
vhore, is the compensating positive charge density;

the dielectric constant; £ - the space charge density; CQ - 

the capture parameter at zero field; C/E/ a Cof/E/ - the 

same in the presence of electric field E; n^ - the usual

*
For the simplicity's saket/A and D are assumed to be 

independent from the field. There is no difficulty to extend 

the calculation for the field dependent u and D,
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parameter of the S-R-H theorytTi^n p/y^ , where p. and / to
nfco are the concentrations of empty and filled centers, resp

and n^Q + p^Q = = en; « en^/. -^e background

illumination may be taken into consideration by introducing

an effective S-R-H factor, defined by Hi= nt+ Ê1
Co

where

S is the photon capture cross section of the recombination 

centers, I - the photon flux density of incident light [?].

To complete the equation /I/ - /4/ the proper boundary 

conditions are to be given. Assuming the electrical 

neutrality of the whole sample, and using the Kirchoff’s law

we have /ô/, fy]: L
J ?dx =O 
o

J E dx + JR = c 
o

Here L is the length of the sample 

(5<0

(5bJ

"J - the cufrent in the

circuit of resistivity R, and Z is the e.m.f. of the 

battery. We note, that if the sample has a net charge [20], 

the condition /5a/ should be changed.

To describe the steadily travelling domains we shall 

use the so called Riemann-type solution [?J, [pj, when the 

electric field E and the components of space charge density 

depend only on the variable z s x - « t, that is, the domain 

represents a space charge wave propagating with constant 

velocity u0« In this case the differentiation rules are 

at="U’4 ; and denoting by ' the

differentiation with respect to the z, one obtains the 

following system of equations:

/ = U. J' W

j 8 Is W

e'= ÇW

(9)
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Integrating the equ./6/ it was taken into account, that for 

the wave-like solution the total current /Js/ is constant [9]: 

= i + y = co"st-

To simplify the further calculations we shall linearize the 

function in the equ. /9/ with respect to the concentration, 

but not to the electric field. To do this, we assume that the 

concentration of empty and filled centers is much larger 

than the electron concentration in the band. This condition 

is fulfilled almost in every experiments on Au and Cu 

centers /except for perhaps the case of too large background 

illumination/. We have then, with the notation Y = •

for the kinetics of recombination:

-“■&' = (<oj

where and Tj, are the characteristic times of recombination 

and generation, respectively:

Coptof(E) ' Co[n1+ n.fCE)! Gn,

The last approximation means that the field dependence of ty 

is neglected ¡4],

3. Determination of the functions /£,£,£/ and the 

differential equation for field R/z/.

The charge densities ^/i = ^»2/ and the electtic 

field strength E are connected by the differential equation 

system /6/, /?/, /8/ and /10/. As basic function, it is 

suitable to choose the field E, expressing the other 

quantities in term of the field and its derivatives. The 

only reason of doing so is that the electric field is 

generally known from experiments. In order to determine 
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the function & (e, e' e'J one obtains, using equ./8/ 

repeatedly, the following systea of equations;

+ §2 = T

VE - D<=
- U. £ = A _ ( }

Tf
si + & = Tz

where T = g.—£JL is the total negative charge density.

After simple calculation we obtain:

& = * + ; ?2= - R+ tl (42)
L + M l_ + M 7

where:
L =/4Euo + £ M= D

R - “• (»• * W * W') ®

The equs./12/ in fact give the expressionsG,= $ /E,K,K/ with 

the unknown parameters /integration constants/ uQ and jg. It 

is quite easy now to write the differential eqnation for 

E/z/, using equs. /12/ and /?/. Vo have then:
F^E^^EG^E.bf ^=0. («J

x SO o E- y
Instead of analitical or nusorical investigation of this 

differential equation, our purpose is to determine the 

domain velocity uQ and current jg assuming the electric 

field and its derivatives to be known, say, in the point of 

electrioal neutrality defined evidently by K/z0/ x 0.

4. Determination of un and j, for domains of arbitrary 

shape

The calculation is based on the oqus./6/ and /7/. In 

fact, if and KCz) were known the velocity and current 

could be determined from these equations. Let us introduce
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C (0
the domain shape parameters *0. *hich characterize

the domain shape in the neutrality point ?=<» Thon we

have
js =

= + 310 (45)

The index "o" means from now on that the function should bo

taken in the neutrality point» It is easy now to determine

the mobile charge density and its derivatives in the point

z = zo, using equation /12/. Calculating uQ and jg the 

following notations were Introduced;

then wo have
M..L. = w-£- ; M'=0-

whore the last equation is the consequence of the assumption 

/IO/'. For the current one obtains from equ. /14/t

js = -^bsi4-T.u.6r.si+bs3)+T;u*s2

A simple but longer calculation gives the algebraic equation 

for domain velocity;
uf + > 4. = O (fl)

whore

— IT» S3

= -£-$31- v. P - (js + DSJ

A = ^P -iro K- j>5jj
4 = _d_k _ Sz yg___

P= +VoSJ + I o
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Evidently, equs. /16/ and /17/ are coupled algebraic 

equations for the velocity and the current in terms of 

domiin shape parameters Sp As one can easily see, if j8 is 

inserted in b^ and b^ the system leads to an algebraic 

equation of fourth degree for uq alone. Doing this 

calculation and, at the same time, introducing the 

dimensionless velocity x = uo/wq, where by definition 

one obtains
+ O^X + CLO =o (19)

and the coefficients are

= -o<0o<1 

a3= + r +

a2 =-<*4 Kq - - <£„<» IT «3

a0 = — oCj K4 

where

j ^3= >
° ° ^z Vo '->2

J Imo

K^= 4-oCz-oCa+oCj o¿„ ; k2 = 1 + oC, 4- o¿M J.

Knowing the above parameters one may determine the possible 

values of domain velocity. The model, adopted in the 

present paper, gives four domain modes. It was tacitly 

assumed, that S2 / 0. If = 0 one has to solve the equ. 

/!?/ directly. The equ. /19/ may be used for the exact 

numerical determination of domain velocity. It is more 

convenient, however, to give approximative formulae for 

domain velocities, as they allow to draw some useful

conclusions on the behaviour of slow domains.
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5. Approximativ® expressions for j tnd uQ»

It is easy to see that at usual values of parameters* 

in equ. /19/j the roots are well separated, i.e. |x4|^Xj|^>

“2 this =as® th® following approximation holds for

Xi« -

Using equ./20/ we may obtain the approximative roots 

immediately. In what follows, however, wo shall use a 

plausible physical approximation, namely, the diffusion 

component of the current D will be neglected compared 

to the drift term üi in equ./14/. Then, instead of /16/ we 

have: «-
~ 'v; So * Vo uo Sa C24)

%

In connection with above approximation the following remark 

is necessary. The neglect of DJdc is not equivalent with 

the limit D-+0, because the derivative contains the

To estimate the order of magnitude of the parameters in 

question, one may use the following vainest £Q a IO3 Vcm"\ 

/z a y-do'c^V'^sec"^; D = dO crfsec-1; §o/e a dO^cm-^;
-z p

T^a 2 dO sec; d a dO cm; S^/Sg a -2/d; S4/Sg = J/d ; 

/see equ./28/ for ral/, T"ro= 10 sec; T al sec; = 2.

The parameters of recombination centers refer to Au' at about 

JO°K. M fa} The value of is correct both for 
-ri -dAu" and Cu~ centers ¿¡.¡J • Then we have: °CO a A AO ;

otj a » otg 3 ‘ s-A dO ; ei4 «3 ; oCg = dO 5 ;

=5 do6; of =1 ; K. = 10* ; k2 =4,4 .
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diffusion constant D and the current Js implicitly. Indeed, 

if we compare the expressions /16/ and /21/, it is seen that
□

in equ. /21/ the term with uQ does not appear, though it 

does not contain the diffusion constant. Actually, the neglect 

of term in question involves two approximations: the neglect 

of diffusion and the assumption . As the largest
root of equ./19/ is x^ = , i.e. u^ = - vQ, the

assumption j ^-|«1 means that the domain velocity should 

be much less than the drift velocity of electrons at the 

peak field.

Then, instead of equ. /19/ we obtain:

a3 ** ♦ % * °i X + do = O (22)

where:
3 - o<o

a' = oct - <x0 - K1 - cG.

^4 — — — O<o 0C4.

O-o = -

x s -1 is a root of equ./22/, hence a possible domain 

velocity is:

The velocity given by /2J/ is an exact root of equ./22/, 

but not that of the original equation. This fact is very 
(uj 

important, because if u = u then M * L =0 and ft and o o 00 J
its derivatives would have singularities in the neutrality 

point. These singularities, however, disappear, if we make 

the approximation carefully, taking into account that|-~|4Cl. 

The two other roots we may obtain from the equation:
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Thus ths possible domain velocities are obtained, assuming 

that tne diffusion term in the current is negligible. The 

calculation is valid for arbitrary domain shapes if S2 / 0.

For the slowest mode equ./24/ gives fh K^O/: 

6) T-u. =-^-vo

Before discussing

PS3 + ^DT. 
Oir.Si ^rMoTr.

- breSjL+
Si Tj.Vmo

(25)

the consequences of expression /25/, the

following remark is necessary. The domain velocity generally 

depends on the domain shape, therefore, one has to apply 

/25/ carefully. Thus, if we are interested in the peak field 

dependence of the domain velocity it is to remember that 

also the domain shape parameters nay vary with Xn what 

follows, therefore, it is more convenient to define /with 

sone arbitrariness/ different donaln shapes for the 

determination of donaln velocity, using e.g. equs./24/ or 

/25/. As all quantities refer to the neutrality point, it is 

sufficient to know the function E/z/ only around this point. 

The hypothetical field and space charge distributions are 

illustrated on Fig.l.

For flat domains, all domain shape parameters are zero, by 

definition, therefore the velocity remains undetermined. In 

this very special, if not oversimplified case, instead of 

electrical neutrality point an other one has to be chosen. 

The case of almost flat domain nay be treated again on the 

basis of equ./17/, as S2 = 0. We have the result 

immediately: there exists only a single domain mode with 

velocity uj.
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For the Gaussian domain the

fbT.
TmO

Suppose that the doaain around its neutrality point may be 

described by symmetrical function. Two special cases will be 

considered: the Gaussian doaain S =Eoexp[-Cj)Z] and a 

quadratic doaain E = E0[l-(jf] . 

equ./25/ gives: 
(i) r 4 + 

"u^ =  
* 4 +----------- +

Let » 4 and » 1 +then /26/ gives /using «0 Two a T^Tmo

X ~ /» X. W . „ \ %.

r 7

This expression offers a relationship between the domain 

width d and domain velocity uq. a similar expression was 

given first in [?J; based on the so called quasi linear 

approximation, except for a VJ factor and for the fact that 

In /26/ all quantities refer to the neutrality point, while 

in equ./16/ of paper [7J to the average field in the sample. 

If the domainshape is quadratic and thus = 0;

S„ / 0 we have:
yp

1 + -Xe__

and the inconvenient Sg falls out. It can be easily seen, 

that the equ./27/, with the except of the correction factor 

is identical with the formula /19/ of paperjdjf* . In case 

of domains of arbitrary shape it is necessary to allow for 

all dOKiin shape parameters to bo different from zero. Its 

important consequence Is that, if differs but slightly 

from zero, it may alter the domain velocity essentially,

* To make it more clear we remind that the definition of Tm 
andTkd of paper fAl differ by a factor of^-, i.o.'CMO=;^-'t;Kd 
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since in the denominator of /25/ S^/Sg is multiplied by the 

large vq factor. If all parameters were known, the domain 

velocity could be determined. For a rough estimate of

domain velocity It is sufficient to assume •
'5a1 a ¿a' a

It is more convenient, however, to use a concrete function. 

Suppose, for simplicity’s sake that in the neutrality point 

the field distribution behaves like a function of type

%= around its maximum. Then we have
— _JL • S>< _ fa (2S) 

Sa “ ' S2--------------- 1------+ '

For r = 0,5s Sj_-_A.. • In this special case the
Sa d Sa d* 

expression /25/ gives:
(29)

Uoa — ^Tmo /

as in the denominator, the term v_ _ S,/S? dominates. Other 

empirical domain shapes may be examined in a similar way.
4-exp(-°£x) _ 

Let us illustrate this by the function ^.= On

Fig.2. the function ^(x1) / / iB plotted for different

values of parameters o£ = oZ dj/3 = /3 d: In Table I. the 

four domain velocities are given, calculated from equs./24/, 

/23/ and using the shape parameters of the above functions 
/d = 10“2cm, u^ = - vQ/.

It should be noted, that neither the values nor the 

signs of the ratios S^/Sg and S^/Sg could be determined from 

the present theory itself. /Probably, Sj/Sg and S^/Sg should 

be negative in order to make all terms of the denominator 

positive/. It is known from experiments that generally the 

domain shape and the propagation direction are closely 

related /see Fig.la./, but on the Influence of a proper 

/Inhomogeneous/ background illumination the domain may be 

stopped or it nay get started in any direction along the 

sample [-16] ; [22].
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6» ^uasi-aquilibriun between band and traps

Let us consider the case, when the distribution of

electrons over the zero and high-mobility states takes place 

in a short tine compared to other characteristic tines in 

the problem. The previously used method may be applied in a 

similar way. The actual calculation is quite simple« In fact, 

for the case considered, one nay write:

i.e. the ratio of the localized and the moving parts of 

space charge density depends on the field E alone. Using the 

equs./8/ and /JO/ for and we obtain:

The equs./Jl/ show that and depend both on E and E. 

For the current j and the velocity uQ one obtains:

-uo = + ^.-^4, Si

v ir.T-.tj s, Tj
In the second term of equ./£J/ the approximation ~ Z-t0 was 

used. According to the difference between the definitions of

tBO here and 'Ch in paper [5]/see footnote at equ./27/ /, 

the expression /J3/ may be considered as a generalization of 

related result of paper [5] in two respects: in cited paper

the domain was assumed to be symmetrical, therefore the third 

tern of equ. /JJ/ was omitted, secondly, here a correction 

factor arose with a value of about 2. For the usual

parameter values, the third term is small compared to the 

first one, thus in the approximation used, the domain 

velocity turned out to be insensitive to the domain shape.
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From these calculations follows that the assumption of quasi- 

equilibrium results In omission of generally non-negligible 

terns In the expression for domain velocity >.W- 

7, Conclusions and comparison with experiments

Before surveying the results of the calculations, it is worth­

while to repeat the most important assumptions and simplifica­

tions. It was assumed that a./ there exists, in the originally 

homogeneous sample, a steadily propagating domain which can ba 

described by a wave-like solution /Riemann-type solution/;

b./ the negative differential conductivity is due to the field 

induced transfer of electrons from high-mobility states to zero­

mobility-states. The effects of traps and deeper levels of 

multielectron centers were neglected. For the sake of 

simplicity a./ the mobility and the diffusion coefficient wore 

assumed to be field independent and b./ the equation of the 

recombination kinetics was linearized with respect to the 

concentrations, but not to the field.

The main results of the paper nay be summarized as follows.

/!/ The mobile and the localized components Z^^Z of the 

space charge wave are given In terms of electric field E/z/ 

and Its derivatives, or more precisely, the functions 

Si s ^ZB,I,S /, together with the nonlinear differential 

equation F/B,i',I^e"7 = 0 using u„ and i as parameters.
o s

/il/ Introducing the domain shape parameters S* /up to f an 

algebraic equation system Is derived to determine the domain 

velocity and the current, /ill/ There exist different domain 

modes with noncommensurable velocities. tSQ In general, the 

domain velocity depends on the actual domain shape, i.e. on 

the domain shape parameters Sp /iv/ Based on the experimental 
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data it is possible to decide which mode will be realized. 

Assuming a proper domiin shape the theory gives the domain 

velocity in correct order of magnitude /lO^cmsec-1/.

In connection with /!/ it is important to remark that the 

existence of the Ce,E,e)functions is a direct consequence of 

the wave-like solution and it holds for more general case, 

when the equ./ / is not linearized with respect to the 

concentrations and, further, for field dependent and D as 

well. This result shows, that for general case, one cannot 

expect the components to be the function of electric field 

alone in every point of the domain /?/.

From the point of view of comparison of the present theory 

with experimental results, the first problem is to decide, 

which mode is realized in a given experiment. The velocity of 

the fourth, omitted mode is equal to the electron drift 

velocity at the peak-field. One can hardly expect such a 

high velocity for a space charge wave having a zero-mobility 

component /&/• The second mode «ay be excluded on the basis 

of the temperature dependence of domain velocity. In fact, 

according to faj the domain velocity and the current have 

similar temperature dependence, namely both are determined by
. It is obvious, that u^ does not show a temperature 

dependence like this. On the other hand the order of magnitude 
60 of uo is different from that of the measured velocity for

*
The wave-like solution is not the unique possibility for 

domain motion. One can Imagine that the domain "migration" 

is accompanied by a small change of the domain shape itself.

"caterpillar-like" movement
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Au centers in Ge at about JO°K Zi8/, ¿¡9/ , L^J • The same 
is true for uq. In fact, |u^ | = 0,2 cmsec 1; |ujj a 2,6.102cmse£ \ 

Similarly, the Gaussian and quadratic domains lead t<b too high 
velocities, since j uoq|^“qG| 3 1«2h:’*s®c 1» The correct 

velocity value may be obtained from the slowest domain mode, 
assuming 4 0. From equ./29/ (= 3»5»iO ^cmsec 1 follows, 

while for more complex domain shapes /Fig.2/ see data in Table 1. 

Finally, the following question is to be answered: what is the 

physical reason for the domain velocity being so sensitive to 

the domain shape, at least for two domain modes. By a simple 

consideration this is connected probably with the fact that 

the low-mobility states are actually zero-mobility states /u =0/. 

Let us assume momentarily thaty«^ 0. It is clear physically 

that a condition for stabbA domain propagation is 

where Eq is the peak-field, E the low field at the front of 

the domain. In this case, one may expect, that the domain shape 

has no important role in the determination of domain velocity, 

as after all both components of space charge wave are mobile. 

For recombination instability, however, E0/z = 0 for arbitrary 

but finite values of Eq, therefore, requiring an invariable 

domain shape, the domain "migration" may be determined by the 

domain shape itself. It is, in our opinion, the reason for the 

high sensitivity of domain velocity on its bhape, especially 

for the parameter Sy

To answer this question more precisely one has to analize, at

which conditions the quantities c<a z oC3 /containing the

parameters/ are small, say, compared to unity, or Tj.'T'ho

In this respect T, has an important role, as decreasing the 

life-time , also <<a and A will decrease /see the case 

of quasi-equilibrlum/, and the domain velocity will insensitive
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to the donate shape parameter.

The proposed theory, in its present fora, does not yield 

the shape parameters the disadvantage of which is obvious.

From the above treatment of the non-linear problem, 

however, one may conclude, that in the dynamics of steadily 

travelling recombination domains the domain shape plays basic 

role.
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Fig. 1.
Different possible domain shapes E/z/ and the distri 
button of space charge /■/ ~ s /z'•
a. arbitrary domain shape /S^^o/)
b. symmetrical domain /Sgui^/«
c. almost flat domain /SgsSyaO, 8^0/

d. flat domain /S^/





rig. 2« । ix
The function y/x’/= at dlff«ent values

, , 4+exp [# (*'-!) JOf <’ and /3 . '
/ . / X

oC1 = oCd } ~ d





Table I.

}
a -3° -1.10 cmsec cusec -, .10 cmsec cmsec

0.5 30 0,522 0,2 9,81? 5.106

1,5 30 0,522 N 15,19 w
3,0 30 0,533 M 30,4? n
6,0 30 0,?28 n 100,2 W
6,0 10 4,021 n 12,597 n

0,9 30 0,521 W 11,635 w

0,9 20 0,854 tf 6.924 «

0,9 10 2,190 W 6,851 «

Approximative domain velocities, calculated on basis of aqua. /23/ and 
/24/, using the function % the determination of
domain shape parameters /d=10 cm/
For acae values of o<7/X=30/ y/x’/ Is plotted on Fig, (nJ.
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